JP2002090319A - Fluorescent x-ray analysis device - Google Patents

Fluorescent x-ray analysis device

Info

Publication number
JP2002090319A
JP2002090319A JP2000285152A JP2000285152A JP2002090319A JP 2002090319 A JP2002090319 A JP 2002090319A JP 2000285152 A JP2000285152 A JP 2000285152A JP 2000285152 A JP2000285152 A JP 2000285152A JP 2002090319 A JP2002090319 A JP 2002090319A
Authority
JP
Japan
Prior art keywords
ray
intensity
sample
rays
fluorescent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2000285152A
Other languages
Japanese (ja)
Other versions
JP4279983B2 (en
Inventor
Takuya Nakatani
拓也 中谷
Yoshiyuki Kataoka
由行 片岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Rigaku Corp
Original Assignee
Rigaku Industrial Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Rigaku Industrial Corp filed Critical Rigaku Industrial Corp
Priority to JP2000285152A priority Critical patent/JP4279983B2/en
Publication of JP2002090319A publication Critical patent/JP2002090319A/en
Application granted granted Critical
Publication of JP4279983B2 publication Critical patent/JP4279983B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a device capable of accurately correcting the influence of a characteristic X-ray from an X-ray tube in a fluorescent X-ray analysis device for analyzing the composition of a sample by an FP method. SOLUTION: This fluorescent X-ray analysis device is provided with a computing means 16 for estimating the measured intensity of scattered radiation of the characteristic X-ray from the X-ray tube 1, from theoretical intensity computed according to the composition of the sample 13.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、FP法で試料の組
成を分析する蛍光X線分析装置において、X線管からの
特性X線の影響を補正する装置に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an X-ray fluorescence analyzer for analyzing the composition of a sample by the FP method, which corrects the influence of characteristic X-rays from an X-ray tube.

【0002】[0002]

【従来の技術】従来より、蛍光X線分析では、試料にX
線管から1次X線を照射し、発生する蛍光X線の強度を
検出器等で測定して、試料の組成等を分析するが、X線
管からは、ターゲット元素の特性X線の他に、X線管窓
に付着した物質やX線管内の構造物の元素の特性X線、
いわゆる不純線が発生する。この不純線が試料で散乱し
て検出器で検出されると、試料中の成分から発生した同
じ波長の蛍光X線と区別がつかない。
2. Description of the Related Art Conventionally, in fluorescent X-ray analysis, X
Primary X-rays are emitted from the X-ray tube, and the intensity of the generated fluorescent X-rays is measured with a detector or the like to analyze the composition of the sample. In addition, the characteristic X-ray of the substance attached to the X-ray tube window and the element of the structure in the X-ray tube,
A so-called impure line occurs. If this impure line is scattered by the sample and detected by the detector, it cannot be distinguished from fluorescent X-rays of the same wavelength generated from components in the sample.

【0003】これに対し、例えばファンダメンタルパラ
メータ法すなわちFP法では、蛍光X線の測定強度に基
づく理論強度スケールへの換算強度と、試料における各
成分の含有率(試料の組成)を仮定して計算した蛍光X
線の理論強度を対応する成分ごとに対比し、両強度が合
致するように、仮定した各成分の含有率を逐次近似的に
修正計算して、各成分の含有率を算出するが、前記不純
線の影響を補正するため、不純線と同じ波長の蛍光X線
を分析線とする成分を含まないブランク試料を用いてあ
らかじめ不純線の散乱強度を測定しておき、分析対象の
試料における分析線の波長での測定強度から差し引い
て、試料中の成分から発生した蛍光X線のみの測定強度
としていた。
On the other hand, for example, in the fundamental parameter method, that is, the FP method, calculation is performed assuming the converted intensity to a theoretical intensity scale based on the measured intensity of fluorescent X-rays and the content of each component (sample composition) in the sample. Fluorescent X
The theoretical intensities of the lines are compared for each of the corresponding components, and the content rates of the assumed components are successively and approximately corrected to calculate the content rates of the respective components so that the two intensities match. In order to correct the influence of the line, the scattering intensity of the impurity line is measured in advance using a blank sample that does not contain a component that uses the fluorescent X-ray having the same wavelength as the impurity line as the analysis line. Was subtracted from the measured intensity at the wavelength of, to obtain the measured intensity of only the fluorescent X-rays generated from the components in the sample.

【0004】[0004]

【発明が解決しようとする課題】しかし、不純線の測定
強度は、試料の組成の影響を受けるため、ブランク試料
と分析対象の試料との組成が大きく異なる場合には、不
純線の影響を正確に補正できない。また、あらゆる品種
の試料に対応すべく、膨大な数のブランク試料を準備し
て不純線の散乱強度を測定しておくことも、実際上きわ
めて困難である。同様の問題が、試料にX線管のターゲ
ット元素が含まれる場合にも起こる。すなわち、そのよ
うな場合には、試料から発生した蛍光X線に重ならない
ように、X線管のターゲットからの特性X線を、1次フ
ィルタを用いて、X線管から発生したX線から除去して
1次X線とするが、完全には除去できず、上述の不純線
と同様に、その影響を正確に補正できない。さらに、こ
のようなX線管からの特性X線の影響の補正は、分析線
とX線管からの特性X線の波長が同じ、すなわち同じ特
性X線である場合のみならず、両者の波長が接近してス
ペクトルが重なる場合にも必要となる。
However, since the measured intensity of the impure line is affected by the composition of the sample, if the composition of the blank sample and the sample to be analyzed are significantly different, the influence of the impure line can be accurately determined. Cannot be corrected. Further, it is practically very difficult to prepare an enormous number of blank samples and measure the scattered intensity of the impure rays in order to handle samples of all kinds. A similar problem occurs when the sample contains the target element of the X-ray tube. That is, in such a case, the characteristic X-rays from the target of the X-ray tube are converted from the X-rays generated from the X-ray tube using a primary filter so as not to overlap the fluorescent X-rays generated from the sample. Although the primary X-rays are removed, they cannot be completely removed, and their effects cannot be corrected exactly as in the case of the above-mentioned impure lines. Further, the correction of the influence of the characteristic X-ray from the X-ray tube is performed not only when the wavelength of the characteristic X-ray from the analysis line and the characteristic X-ray from the X-ray tube are the same, that is, when the characteristic X-ray is the same, Is also necessary when the spectra are close and the spectra overlap.

【0005】本発明は前記従来の問題に鑑みてなされた
もので、FP法で試料の組成を分析する蛍光X線分析装
置において、X線管からの特性X線の影響を十分正確に
補正できる装置を提供することを目的とする。
SUMMARY OF THE INVENTION The present invention has been made in view of the above-mentioned conventional problems. In an X-ray fluorescence analyzer for analyzing the composition of a sample by the FP method, the influence of characteristic X-rays from an X-ray tube can be corrected sufficiently accurately. It is intended to provide a device.

【0006】[0006]

【課題を解決するための手段】前記目的を達成するため
に、本発明の蛍光X線分析装置は、試料に1次X線を照
射するX線管と、試料から発生する2次X線の強度を測
定する検出手段とを備え、また、その検出手段で測定し
た蛍光X線の測定強度に基づく理論強度スケールへの換
算強度と、試料における各成分の含有率を仮定して計算
した蛍光X線の理論強度を対応する成分ごとに対比し、
両強度が合致するように、前記仮定した各成分の含有率
を逐次近似的に修正計算して、前記各成分の含有率を算
出する算出手段を備えている。すなわち、FP法で分析
を行う蛍光X線分析装置である。
In order to achieve the above object, an X-ray fluorescence spectrometer according to the present invention comprises an X-ray tube for irradiating a sample with primary X-rays and a secondary X-ray generated from the sample. Detecting means for measuring the intensity, and converting the intensity of the fluorescent X-rays measured by the detecting means to a theoretical intensity scale based on the measured intensity and the fluorescent X-ray calculated assuming the content of each component in the sample. Compare the theoretical intensity of the line for each corresponding component,
A calculating means is provided for sequentially and approximately correcting and calculating the assumed content of each component so that the two intensities coincide with each other to calculate the content of each component. That is, it is a fluorescent X-ray analyzer that performs analysis by the FP method.

【0007】ここで、算出手段が、前記X線管からの特
性X線とスペクトルが重なる蛍光X線を分析線とする成
分については、その分析線の波長において、組成が既知
の試料を用いてあらかじめ求められた前記X線管からの
特性X線の散乱線についての理論強度と測定強度との相
関を表す不純線装置感度定数に基づいて、分析対象の試
料における前記X線管からの特性X線の散乱線の測定強
度を理論強度から推定し、前記検出手段による測定強度
から差し引いて、分析対象の試料から発生した蛍光X線
の測定強度として用いる。
[0007] Here, the calculation means uses a sample whose composition is known at the wavelength of the analysis line for a component that uses a fluorescent X-ray whose spectrum overlaps with the characteristic X-ray from the X-ray tube as an analysis line. The characteristic X from the X-ray tube in the sample to be analyzed is determined based on a previously determined impurity constant of the impurity device representing the correlation between the theoretical intensity and the measured intensity of the characteristic X-ray scattered radiation from the X-ray tube. The measured intensity of the scattered X-rays is estimated from the theoretical intensity, and is subtracted from the measured intensity by the detection means, and is used as the measured intensity of the fluorescent X-ray generated from the sample to be analyzed.

【0008】本発明の蛍光X線分析装置によれば、FP
法において、X線管からの特性X線の散乱線の測定強度
を、試料の組成に応じて計算した理論強度から推定する
ので、X線管からの特性X線の影響を十分正確に補正で
きる。
According to the X-ray fluorescence spectrometer of the present invention, the FP
In the method, the measured intensity of the scattered radiation of the characteristic X-ray from the X-ray tube is estimated from the theoretical intensity calculated according to the composition of the sample, so that the influence of the characteristic X-ray from the X-ray tube can be corrected sufficiently accurately. .

【0009】[0009]

【発明の実施の形態】以下、本発明の一実施形態の装置
について、図1にしたがって説明する。まず、この装置
の構成について説明する。この装置は、試料13が載置
される試料台8と、試料13に1次X線2を照射するX
線管1と、試料13から発生する蛍光X線等の2次X線
4の強度を測定する検出手段10とを備えている。検出
手段10は、試料13から発生する2次X線4を分光す
る分光素子5と、分光素子5で分光された2次X線6の
強度を測定する検出器7とを含む。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An apparatus according to an embodiment of the present invention will be described below with reference to FIG. First, the configuration of this device will be described. This apparatus includes a sample stage 8 on which a sample 13 is placed and an X-ray for irradiating the sample 13 with primary X-rays 2.
The apparatus includes a tube 1 and a detection unit 10 for measuring the intensity of secondary X-rays 4 such as fluorescent X-rays generated from a sample 13. The detecting means 10 includes a spectroscopic element 5 for separating the secondary X-rays 4 generated from the sample 13 and a detector 7 for measuring the intensity of the secondary X-rays 6 separated by the spectroscopic element 5.

【0010】また、この装置は、検出手段10で測定し
た蛍光X線4の測定強度に基づく理論強度スケールへの
換算強度と、試料13における各成分の含有率を仮定し
て計算した蛍光X線の理論強度を対応する成分ごとに対
比し、両強度が合致するように、前記仮定した各成分の
含有率を逐次近似的に修正計算して、前記各成分の含有
率を算出する算出手段16を備えている。すなわち、こ
の実施形態の装置は、FP法で分析を行う蛍光X線分析
装置である。
Further, this apparatus uses a fluorescent X-ray 4 calculated by assuming the converted intensity to a theoretical intensity scale based on the measured intensity of the fluorescent X-ray 4 measured by the detecting means 10 and the content of each component in the sample 13. Calculating means 16 for comparing the theoretical intensities of the respective components and calculating the content rates of the respective components by successively and approximately correcting and calculating the assumed content rates of the respective components so that the two intensities coincide with each other. It has. That is, the apparatus of this embodiment is an X-ray fluorescence analyzer that performs analysis by the FP method.

【0011】ここで、この装置の算出手段16は、X線
管1からの特性X線とスペクトルが重なる蛍光X線4を
分析線とする成分については、その分析線の波長におい
て、組成が既知の試料3,23を用いてあらかじめ求め
られた前記X線管1からの特性X線の散乱線4について
の理論強度と測定強度との相関を表す不純線装置感度定
数に基づいて、分析対象の試料13における前記X線管
1からの特性X線の散乱線4の測定強度を理論強度から
推定し、検出手段10による測定強度から差し引いて、
分析対象の試料13から発生した蛍光X線4の測定強度
として用いる。なお、X線管1からの特性X線には、X
線管1の窓に付着した物質やX線管1内の構造物の元素
の特性X線、いわゆる不純線と、ターゲット元素の特性
X線とがある。また、不純線装置感度定数を求める際に
用いる組成が既知の試料3,23には、分析対象の試料
13に組成が近似する標準試料3と、X線管1からの特
性X線とスペクトルが重なる蛍光X線4を分析線とする
成分を含まないブランク試料23とがある。
Here, the calculating means 16 of this apparatus determines that the composition of the component, which is the fluorescent X-ray 4 whose spectrum overlaps with the characteristic X-ray from the X-ray tube 1, is known at the wavelength of the analytical line. Based on a sensitivity constant of an impurity device indicating a correlation between the theoretical intensity and the measured intensity of the scattered radiation 4 of the characteristic X-rays from the X-ray tube 1 obtained in advance using the samples 3 and 23, The measured intensity of the scattered radiation 4 of the characteristic X-rays from the X-ray tube 1 in the sample 13 is estimated from the theoretical intensity, and is subtracted from the measured intensity by the detecting means 10;
It is used as the measured intensity of the fluorescent X-rays 4 generated from the sample 13 to be analyzed. The characteristic X-rays from the X-ray tube 1 include X-rays.
There are characteristic X-rays of elements adhered to the window of the X-ray tube 1 and elements of structures in the X-ray tube 1, so-called impure lines, and characteristic X-rays of target elements. Samples 3 and 23, whose compositions are used to determine the sensitivity constant of the impurity device, have a standard sample 3 whose composition is similar to the sample 13 to be analyzed, and characteristic X-rays and spectra from the X-ray tube 1. There is a blank sample 23 which does not contain a component having the fluorescent X-rays 4 to be analyzed as the analysis line.

【0012】この装置の算出手段16には、あらかじ
め、以下のように、蛍光X線装置感度係数A,B,Cお
よび不純線装置感度定数a,b,cを求めて記憶させて
おく。まず、蛍光X線装置感度係数A,B,Cは、この
装置で組成が既知の標準試料3について測定した測定強
度IFMおよび計算した理論強度IFTを用いて、次式
(1)から求められる。
The calculating means 16 of this apparatus obtains and stores in advance the fluorescent X-ray apparatus sensitivity coefficients A, B, and C and the impurity line apparatus sensitivity constants a, b, and c as follows. First, the fluorescent X-ray apparatus sensitivity coefficient A, B, C on the composition in the device using the measured intensities I FM and calculated theoretical intensity I FT was measured for a known standard sample 3, determined by the following equation (1) Can be

【0013】IFT=AIFM 2 +BIFM+C …(1)I FT = AI FM 2 + BI FM + C (1)

【0014】ここで、不純線と同じ波長の蛍光X線4を
分析線とする成分を含む試料13を分析しようとする場
合を例にとると、そのような成分については、次式
(2)にように、標準試料3から発生した蛍光X線4の
みの測定強度IFMは、不純線の散乱線4の測定強度IIM
を、その波長における検出手段10によるトータル測定
強度(バックグラウンドを除去したネット強度)ITM
ら差し引いて求める。なお、それ以外の成分について
は、通常のFP法どおり、トータル測定強度ITMをその
まま標準試料3から発生した蛍光X線4のみの測定強度
FMとして用いる。
Here, taking as an example a case in which a sample 13 containing a component having the fluorescent X-ray 4 having the same wavelength as the impurity line as the analysis line is to be analyzed, such a component is expressed by the following equation (2). so, only the measured intensity I FM of the fluorescent X-ray 4 generated from the reference sample 3, impure line of scattered radiation 4 measured intensity I IM
The obtained by subtracting from the (net intensity to remove background) total measured intensity by the detection means 10 at the wavelength I TM. Incidentally, it for other components, conventional FP method exactly, is used as the measured intensity I FM of the total measured intensity I TM as only the fluorescent X-ray 4 generated from the standard sample 3.

【0015】IFM=ITM−IIM …(2)I FM = I TM -I IM (2)

【0016】この不純線の散乱線4の測定強度IIMにつ
いては、次のようにして推定することができる。まず、
不純線の散乱線4についての理論強度と測定強度との相
関を表す不純線装置感度定数a,b,cを、前述した通
常のFP法で蛍光X線装置感度係数A,B,Cを求める
のと同様に、この装置で、不純線と同じ波長の蛍光X線
4を分析線とする成分を含まず組成が既知のブランク試
料23について測定した不純線の散乱線4の測定強度I
IMおよび計算した不純線の散乱線(トムソン散乱線)の
理論強度IITを用いて、次式(3)から求めることがで
き、あらかじめ算出手段16に記憶させておく。そし
て、その不純線装置感度定数a,b,cに基づいて、式
(3)のように、標準試料3において、不純線の散乱線
4の測定強度IIMを、計算した不純線の散乱線の理論強
度IITから推定する。ブランク試料23としては、Si
2 やアクリル板を用いることができる。なお、各成分
について蛍光X線装置感度係数A,B,Cを求める際に
用いる標準試料3は、不純線と同じ波長の蛍光X線4を
分析線とする成分を含んでもよい。
The measured intensity I IM of the scattered radiation 4 of the impure radiation can be estimated as follows. First,
Impurity ray apparatus sensitivity constants a, b, and c representing the correlation between the theoretical intensity and the measured intensity of the scattered ray 4 of the impure ray, and the fluorescent X-ray apparatus sensitivity coefficients A, B, and C obtained by the above-described ordinary FP method. In the same manner as described above, the intensity I of the scattered radiation 4 of the impure radiation measured on the blank sample 23 which does not contain the component having the X-ray fluorescence 4 having the same wavelength as that of the impure radiation as the analysis radiation and has a known composition.
Using the IM and the calculated theoretical intensity I IT of the scattered radiation of the impure radiation (Thomson scattered radiation), it can be obtained from the following equation (3), and is stored in the calculation means 16 in advance. Then, based on the impurity constants a, b, and c of the impurity, the measured intensity I IM of the scattered radiation 4 of the impurity in the standard sample 3 is calculated as shown in equation (3). From the theoretical strength I IT of As the blank sample 23, Si
O 2 or an acrylic plate can be used. The standard sample 3 used when obtaining the fluorescent X-ray apparatus sensitivity coefficients A, B, and C for each component may include a component that uses the fluorescent X-ray 4 having the same wavelength as the impurity line as the analytical line.

【0017】IIM=aIIT 2 +bIIT+c …(3)I IM = aI IT 2 + bI IT + c (3)

【0018】単一のブンラク試料23を用いるときに
は、a=c=0とすればよい。
When a single Bunraku sample 23 is used, a = c = 0 may be set.

【0019】不純線と同じ波長の蛍光X線4を分析線と
する成分についての蛍光X線装置感度係数A,B,Cお
よび不純線装置感度定数a,b,cは、以下のようにし
て求めることもできる。
The fluorescent X-ray apparatus sensitivity coefficients A, B, and C and the impurity line apparatus sensitivity constants a, b, and c for the component that uses the fluorescent X-ray 4 having the same wavelength as the impurity line as the analysis line are as follows. You can also ask.

【0020】すなわち、式(3)を式(2)に代入した
式を、式(1)に代入して次式(1−2)とする。
That is, the equation obtained by substituting equation (3) into equation (2) is substituted into equation (1) to obtain the following equation (1-2).

【0021】 IFT=A(ITM−aIIT 2 −bIIT−c)2 +B(ITM−aIIT 2 −bIIT− c)+C …(1−2) [0021] I FT = A (I TM -aI IT 2 -bI IT -c) 2 + B (I TM -aI IT 2 -bI IT - c) + C ... (1-2)

【0022】この装置で組成が既知の標準試料3につい
て測定したトータル測定強度ITMならびに計算した理論
強度IFTおよび不純線の散乱線の理論強度IITを用い
て、式(1−2)から、不純線と同じ波長の蛍光X線4
を分析線とする成分についての蛍光X線装置感度係数
A,B,Cおよび不純線装置感度定数a,b,cが、同
時に求められる。この場合においても、a=c=0とし
てもよい。また、用いる標準試料3の中には、不純線と
同じ波長の蛍光X線4を分析線とする成分を含まないも
のがあってもよい。
[0022] Using the theoretical strength I IT scattered radiation of the total measured intensity I TM and the calculated theoretical intensity I FT and impure lines composition in the device was measured for a known standard sample 3, the equation (1-2) Fluorescent X-rays 4
The X-ray fluorescence device sensitivity coefficients A, B, and C and the impurity beam device sensitivity constants a, b, and c for the component having the analysis line as the analysis line are simultaneously obtained. Also in this case, a = c = 0 may be set. Further, some of the standard samples 3 to be used may not include a component that uses the fluorescent X-ray 4 having the same wavelength as the impurity line as an analysis line.

【0023】次に、この実施形態の装置の動作につい
て、不純線の影響を補正する場合を例にとり、説明す
る。試料台8に載置した試料13に1次X線2を照射し
て、試料13の各成分(元素)から発生する2次X線4
の強度を測定する。この測定強度に基づいて、算出手段
16が、FP法により、例えば以下の手順で各成分の含
有率を算出する。
Next, the operation of the apparatus according to this embodiment will be described with reference to an example in which the influence of an impure line is corrected. The sample 13 placed on the sample stage 8 is irradiated with primary X-rays 2, and secondary X-rays 4 generated from each component (element) of the sample 13 are irradiated.
Measure the strength of Based on the measured intensity, the calculating means 16 calculates the content of each component by the FP method, for example, in the following procedure.

【0024】(ステップ1)各測定強度に基づく換算強
度を求める。すなわち、各成分について、前式(1)の
ように、測定強度IFMを蛍光X線装置感度係数A,B,
Cを用いて理論強度スケールに換算して換算強度IFT M
とする。ここでは、不純線と同じ波長の蛍光X線4を分
析線とする成分についても、不純線の散乱線4の測定強
度IIMを差し引かず、トータル測定強度ITMをそのまま
試料から発生した蛍光X線4のみの測定強度IFMとして
用いる。
(Step 1) A converted intensity based on each measured intensity is obtained. That is, for each component, the measurement intensity IFM is converted to the fluorescent X-ray apparatus sensitivity coefficients A, B,
In terms of the theoretical intensity scale using a C in terms of the intensity I FT M
And Here, for the components to be analyzed line X-ray fluorescence 4 having the same wavelength as impure line, not deducted measured intensity I IM scattered radiation 4 of impure lines, fluorescent X generated total measured intensity I TM directly from the sample Used as the measured intensity I FM for line 4 only.

【0025】(ステップ2)各成分についての換算強度
FT M とその成分の純物質からの蛍光X線の理論強度I
FTとの強度比から、各成分の含有率Wの初期値を仮定す
る。
[0025] (Step 2) theoretical intensity I of the fluorescence X-rays from the pure substance Conversion intensity I FT M and its components for each component
An initial value of the content W of each component is assumed from the intensity ratio with FT .

【0026】(ステップ3)そのように仮定した組成か
ら、各蛍光X線と不純線の散乱線の理論強度IFT,IIT
を計算する。
(Step 3) From the assumed composition, the theoretical intensities I FT and I IT of the scattered X-ray and impure X-rays
Is calculated.

【0027】(ステップ4)不純線と同じ波長の蛍光X
線4を分析線とする成分について、計算した不純線の散
乱線の理論強度IITを用いて、ステップ1で求めた換算
強度IFT M を計算しなおす。すなわち、前式(3)のよ
うに、不純線装置感度定数a,b,cに基づいて、不純
線の散乱線4の測定強度IIMを、計算した不純線の散乱
線の理論強度IITから推定し、その推定した不純線の散
乱線4の測定強度IIMを、前式(2)のように、トータ
ル測定強度ITMから差し引いて、試料13から発生した
蛍光X線4のみの測定強度IFMとして用いる。そして、
その試料13から発生した蛍光X線4のみの測定強度I
FMを、前式(1)のように、蛍光X線装置感度係数A,
B,Cを用いて理論強度スケールに換算して、次のステ
ップ5のための新たな換算強度IFT M とする。他の成分
については、ステップ1で求めた換算強度IFT Mをその
まま用いる。
(Step 4) Fluorescence X of the same wavelength as the impure line
The components that the line 4 and the analysis line, by using the theoretical intensity I IT of scattered radiation calculated impure lines, recalculate the converted intensity I FT M obtained in step 1. That is, as shown in the above equation (3), the measured intensity I IM of the scattered ray 4 of the impure ray is calculated based on the sensitivity constants a, b, and c of the impure ray apparatus, and the calculated theoretical intensity I IT of the scattered ray of the impure ray is calculated. Then, the measured intensity I IM of the scattered radiation 4 of the impure radiation is subtracted from the total measured intensity I TM as in the above equation (2), and only the fluorescent X-rays 4 generated from the sample 13 are measured. used as the intensity I FM. And
The measured intensity I of only the fluorescent X-rays 4 generated from the sample 13
FM is calculated by the fluorescent X-ray apparatus sensitivity coefficient A,
B, and in terms of the theoretical intensity scale with C, and a new conversion intensity I FT M for the next step 5. For other components, the converted intensity I FT M obtained in step 1 is used as it is.

【0028】(ステップ5)各成分について、ステップ
1または4で求めた換算強度IFT M とステップ3で計算
した理論強度IFTとから、次式(4)により含有率の更
新を行う。ここで、W(n+1) はn+1回目の含有率、W
(n) はn回目の含有率、IFT M(n)はn回目の換算強度
(不純線と同じ波長の蛍光X線4を分析線とする成分に
ついては、ステップ4で不純線の散乱線4の測定強度I
IMを除去済み)、IFT (n) はn回目の理論強度である。
[0028] (Step 5) for each component, from the theoretical intensity I FT calculated in terms of the intensity I FT M and Step 3 obtained in Step 1 or 4, to update the content of the following equation (4). Here, W (n + 1) is the content rate of the (n + 1) th time, W
(n) is the content rate of the n-th time, and I FTM (n) is the converted intensity of the n-th time (for the component using the fluorescent X-ray 4 having the same wavelength as the impurity line as the analysis line, the scattered ray of the impurity line is determined in step 4) Measurement intensity I of 4
IM has been removed), and I FT (n) is the nth theoretical intensity.

【0029】 W(n+1) =W(n) ×(IFT M(n)/IFT (n) ) …(4)W (n + 1) = W (n) × ( IFTM (n) / IFT (n) ) (4)

【0030】(ステップ6)各成分について、n回目の
含有率とn+1回目の含有率を比較し、すべての成分の
含有率の変化が所定値以下になったときに収束とする。
収束していないときには、ステップ3以降の手順を繰り
返す。
(Step 6) For each component, the content ratio of the nth time and the content ratio of the (n + 1) th time are compared, and the convergence is made when the change in the content ratio of all the components becomes equal to or less than a predetermined value.
If the convergence has not occurred, the procedure from step 3 is repeated.

【0031】すなわち、ステップ1または4で求めた換
算強度と、ステップ2で各成分の含有率を仮定してステ
ップ3で計算した蛍光X線の理論強度を、ステップ5、
6で対応する成分ごとに対比し、ステップ3〜6を繰り
返すことで、両強度が合致するように、仮定した各成分
の含有率を逐次近似的に修正計算して、各成分の含有率
を算出する。
That is, the converted intensity obtained in step 1 or 4 and the theoretical intensity of the fluorescent X-rays calculated in step 3 assuming the content of each component in step 2 are
By comparing each corresponding component in step 6 and repeating steps 3 to 6, the content rates of the assumed components are successively and approximately corrected to calculate the content rates of the components so that both intensities match. calculate.

【0032】このように、本実施形態の蛍光X線分析装
置によれば、FP法において、不純線の散乱線4の測定
強度IIMを、試料13の組成に応じて計算した理論強度
ITから推定するので、不純線の影響を十分正確に補正
できる。
[0032] Thus, according to the fluorescent X-ray analyzer of the present embodiment, the FP method, the measured intensity I IM scattered radiation 4 of impure line, calculated theoretical intensity I IT according to the composition of the sample 13 Therefore, the influence of the impure line can be corrected sufficiently accurately.

【0033】以上は、不純線と同じ波長の蛍光X線4を
分析線とする成分を含む試料13について、不純線の影
響を補正して分析する場合を例にとったが、試料13に
X線管1のターゲット元素が含まれる場合にも、同様に
対処できる。すなわち、そのような場合には、試料13
から発生した蛍光X線4に重ならないように、X線管1
のターゲットからの特性X線を、1次フィルタ(図示せ
ず)を用いて、X線管1から発生したX線から除去して
1次X線2とするが、完全に除去できない分について
は、上述の不純線と同様に扱い、その影響を補正する。
したがって、X線管1のターゲットからの特性X線の散
乱線4の測定強度IIMを、試料13の組成に応じて計算
した理論強度IITから推定することにより、X線管1の
ターゲットからの特性X線の影響を十分正確に補正でき
る。
In the above, the case of analyzing the sample 13 containing a component using the fluorescent X-ray 4 having the same wavelength as the impurity line as the analysis line by correcting the influence of the impurity line was taken as an example. The same can be applied to the case where the target element of the wire tube 1 is included. That is, in such a case, the sample 13
X-ray tube 1 so that it does not overlap with fluorescent X-rays 4 generated from
The characteristic X-rays from the target are removed from the X-rays generated from the X-ray tube 1 using a primary filter (not shown) to obtain primary X-rays 2. , Is treated in the same manner as the impure line described above, and its influence is corrected.
Therefore, by estimating the measured intensity I IM of the scattered radiation 4 of the characteristic X-ray from the target of the X-ray tube 1 from the theoretical intensity I IT calculated according to the composition of the sample 13, the target of the X-ray tube 1 Can be corrected sufficiently accurately.

【0034】さて、分析線とX線管1からの特性X線の
スペクトルが重なる場合としては、上述のように、分析
線とX線管1からの特性X線の波長が同じ、すなわち同
じ特性X線(例えばRh −Kα線)である場合の他に、
両者の波長が異なるものの接近してスペクトルが重なる
場合(例えば、分析線がCd −Kα線で、X線管1から
の特性X線がRh −Kβ2 線である場合)があり、この
場合にもX線管1からの特性X線の影響の補正が必要で
ある。この場合も、不純線装置感度定数a,b,cは、
分析線の波長についてのものであり、分析線の波長にお
ける測定強度および理論強度を用いて、式(1)または
(1−2)から求められる。
When the spectrum of the analysis line and the characteristic X-ray from the X-ray tube 1 overlap, as described above, the wavelength of the analysis line and the characteristic X-ray from the X-ray tube 1 are the same, that is, the same characteristic. In addition to X-rays (eg, Rh-Kα rays)
There is a case where the two wavelengths are different but the spectra are close to each other and overlap (for example, the analysis line is a Cd-Kα line and the characteristic X-ray from the X-ray tube 1 is a Rh-Kβ 2 line). Also, it is necessary to correct the influence of characteristic X-rays from the X-ray tube 1. Also in this case, the sensitivity constants a, b, and c of the impurity device are as follows:
This is for the wavelength of the analysis line, and is obtained from Equation (1) or (1-2) using the measured intensity and the theoretical intensity at the wavelength of the analysis line.

【0035】[0035]

【発明の効果】以上詳細に説明したように、本発明の蛍
光X線分析装置によれば、FP法において、X線管から
の特性X線の散乱線の測定強度を、試料の組成に応じて
計算した理論強度から推定するので、X線管からの特性
X線の影響を十分正確に補正できる。
As described in detail above, according to the X-ray fluorescence spectrometer of the present invention, in the FP method, the measured intensity of the scattered X-ray scattered radiation from the X-ray tube is changed according to the composition of the sample. Thus, the influence of the characteristic X-ray from the X-ray tube can be corrected sufficiently accurately.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の一実施形態の蛍光X線分析装置を示す
概略図である。
FIG. 1 is a schematic diagram showing an X-ray fluorescence analyzer according to one embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1…X線管、2…1次X線、3,23…組成が既知の試
料、4…試料から発生する2次X線、10…検出手段、
13…分析対象の試料、16…算出手段。
DESCRIPTION OF SYMBOLS 1 ... X-ray tube, 2 ... Primary X-ray, 3,23 ... Sample whose composition is known, 4 ... Secondary X-ray generated from a sample, 10 ... Detection means,
13: sample to be analyzed, 16: calculation means.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 試料に1次X線を照射するX線管と、 試料から発生する2次X線の強度を測定する検出手段
と、 その検出手段で測定した蛍光X線の測定強度に基づく理
論強度スケールへの換算強度と、試料における各成分の
含有率を仮定して計算した蛍光X線の理論強度を対応す
る成分ごとに対比し、両強度が合致するように、前記仮
定した各成分の含有率を逐次近似的に修正計算して、前
記各成分の含有率を算出する算出手段とを備えた蛍光X
線分析装置において、 前記算出手段が、前記X線管からの特性X線とスペクト
ルが重なる蛍光X線を分析線とする成分については、そ
の分析線の波長において、組成が既知の試料を用いてあ
らかじめ求められた前記X線管からの特性X線の散乱線
についての理論強度と測定強度との相関を表す不純線装
置感度定数に基づいて、分析対象の試料における前記X
線管からの特性X線の散乱線の測定強度を理論強度から
推定し、前記検出手段による測定強度から差し引いて、
分析対象の試料から発生した蛍光X線の測定強度として
用いることを特徴とする蛍光X線分析装置。
1. An X-ray tube for irradiating a sample with primary X-rays, a detecting means for measuring the intensity of secondary X-rays generated from the sample, and a measuring intensity of fluorescent X-rays measured by the detecting means. The converted intensity to the theoretical intensity scale and the theoretical intensity of the fluorescent X-rays calculated by assuming the content of each component in the sample are compared for each corresponding component, and the above-mentioned components are assumed so that both intensities match. Calculating means for successively and approximately correcting and calculating the content of
In the X-ray analysis apparatus, the calculation unit uses a sample whose composition is known at a wavelength of the analysis line for a component that uses a fluorescent X-ray whose spectrum overlaps with a characteristic X-ray from the X-ray tube as an analysis line. On the basis of a previously determined impurity constant of the impurity device representing a correlation between the theoretical intensity and the measured intensity of the characteristic X-ray scattered X-rays from the X-ray tube, the X-ray intensity in the sample to be analyzed is determined.
Estimating the measured intensity of the scattered radiation of the characteristic X-ray from the tube from the theoretical intensity, subtracting from the measured intensity by the detection means,
An X-ray fluorescence analyzer for use as a measurement intensity of X-ray fluorescence generated from a sample to be analyzed.
JP2000285152A 2000-09-20 2000-09-20 X-ray fluorescence analyzer Expired - Fee Related JP4279983B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000285152A JP4279983B2 (en) 2000-09-20 2000-09-20 X-ray fluorescence analyzer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000285152A JP4279983B2 (en) 2000-09-20 2000-09-20 X-ray fluorescence analyzer

Publications (2)

Publication Number Publication Date
JP2002090319A true JP2002090319A (en) 2002-03-27
JP4279983B2 JP4279983B2 (en) 2009-06-17

Family

ID=18769269

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000285152A Expired - Fee Related JP4279983B2 (en) 2000-09-20 2000-09-20 X-ray fluorescence analyzer

Country Status (1)

Country Link
JP (1) JP4279983B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007132955A (en) * 2007-02-21 2007-05-31 Jeol Ltd X-ray analyzer
CN103048346A (en) * 2011-10-17 2013-04-17 株式会社理学 Calibration sample and fluorescence x-ray analytical device and method
JP2019158587A (en) * 2018-03-13 2019-09-19 公立大学法人大阪市立大学 Quantitative analysis method

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007132955A (en) * 2007-02-21 2007-05-31 Jeol Ltd X-ray analyzer
CN103048346A (en) * 2011-10-17 2013-04-17 株式会社理学 Calibration sample and fluorescence x-ray analytical device and method
JP2013088216A (en) * 2011-10-17 2013-05-13 Rigaku Corp Calibration sample for fluorescent x-ray analysis, fluorescent x-ray analyzer with the same and fluorescent x-ray analysis method using the same
CN103048346B (en) * 2011-10-17 2016-08-31 株式会社理学 Check sample and fluorescent x-ray analyzer and fluorescent x-ray analysis method
JP2019158587A (en) * 2018-03-13 2019-09-19 公立大学法人大阪市立大学 Quantitative analysis method
JP7122739B2 (en) 2018-03-13 2022-08-22 公立大学法人大阪 Quantitative analysis method

Also Published As

Publication number Publication date
JP4279983B2 (en) 2009-06-17

Similar Documents

Publication Publication Date Title
US11210366B2 (en) Analysis of X-ray spectra using fitting
JPH05240808A (en) Method for determining fluorescent x rays
EP1054254B1 (en) Data processor for X-ray fluorescence spectroscopy taking into account the element sensitivities of the measuring device independent of measurement conditions
JPH10123071A (en) Method and equipment for x ray analysis
JP2848751B2 (en) Elemental analysis method
US6173037B1 (en) Method of and apparatus for X-ray fluorescent analysis of thin layers
JP2928688B2 (en) Pollution element analysis method and device
IL126620A (en) Analysis of chemical elements
JP2001091481A (en) Background correction method for fluorescent x-ray analyzer
JP2002090319A (en) Fluorescent x-ray analysis device
JP3610256B2 (en) X-ray fluorescence analyzer
JP4523958B2 (en) X-ray fluorescence analyzer and program used therefor
JPH0247542A (en) Quantitative analysis using x-ray spectroscope
CN114641687B (en) Fluorescent X-ray analyzer
EP1521947B1 (en) Scatter spectra method for x-ray fluorescent analysis with optical components
JP3291251B2 (en) X-ray fluorescence analyzer
JPH071311B2 (en) Method for peak separation of fluorescent X-ray spectrum
JP2645226B2 (en) X-ray fluorescence analysis method
JP2000097885A (en) Fluorescence x-ray analyzing method, and fluorescence x-ray analyzer
JPS59214743A (en) X-ray analyzing apparatus
JP3377328B2 (en) X-ray fluorescence analysis method
JP2872926B2 (en) X-ray fluorescence analysis method
JP2645227B2 (en) X-ray fluorescence analysis method
USH922H (en) Method for analyzing materials using x-ray fluorescence
JPH03285153A (en) Quantitative analyser with x-rays

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060906

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20081009

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081028

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081218

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20090113

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090310

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090313

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120319

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees