JP2013088216A - Calibration sample for fluorescent x-ray analysis, fluorescent x-ray analyzer with the same and fluorescent x-ray analysis method using the same - Google Patents

Calibration sample for fluorescent x-ray analysis, fluorescent x-ray analyzer with the same and fluorescent x-ray analysis method using the same Download PDF

Info

Publication number
JP2013088216A
JP2013088216A JP2011227624A JP2011227624A JP2013088216A JP 2013088216 A JP2013088216 A JP 2013088216A JP 2011227624 A JP2011227624 A JP 2011227624A JP 2011227624 A JP2011227624 A JP 2011227624A JP 2013088216 A JP2013088216 A JP 2013088216A
Authority
JP
Japan
Prior art keywords
ray
sample
calibration
fluorescent
ray intensity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011227624A
Other languages
Japanese (ja)
Other versions
JP5938708B2 (en
JP2013088216A5 (en
Inventor
Hiroshi Kobayashi
寛 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Rigaku Denki Co Ltd
Rigaku Corp
Original Assignee
Rigaku Denki Co Ltd
Rigaku Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Rigaku Denki Co Ltd, Rigaku Corp filed Critical Rigaku Denki Co Ltd
Priority to JP2011227624A priority Critical patent/JP5938708B2/en
Priority to CN201210392351.2A priority patent/CN103048346B/en
Publication of JP2013088216A publication Critical patent/JP2013088216A/en
Publication of JP2013088216A5 publication Critical patent/JP2013088216A5/ja
Application granted granted Critical
Publication of JP5938708B2 publication Critical patent/JP5938708B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Analysing Materials By The Use Of Radiation (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a calibration sample or the like for fluorescent X-ray analysis of a liquid sample, which can be used for a long time and in which accurate drift calibration can be performed.SOLUTION: A calibration sample 20 is a solid-state calibration sample for calibrating aging in measured X-ray intensity of an analysis target metal element in fluorescent X-ray analysis of a liquid sample S. In the calibration sample 20, a metal layer 21 containing the analysis target metal element is formed while overlapping a light element layer 22 in which at least one light element of hydrogen, boron, carbon, nitrogen, oxygen and fluorine has a maximum mol fraction and of which the thickness is 1 mm or more. In the metal layer 21, a surface at the side opposite to a surface confronted with the light element layer 22 is used as an analysis surface 23.

Description

本発明は、蛍光X線分析用の較正試料ならびにそれを備える蛍光X線分析装置およびそれを用いる蛍光X線分析方法に関する。   The present invention relates to a calibration sample for fluorescent X-ray analysis, an X-ray fluorescence analyzer equipped with the same, and a fluorescent X-ray analysis method using the same.

従来、試料に1次X線を照射して発生する蛍光X線の強度を測定する蛍光X線分析装置において、同一の試料についての測定X線強度が種々の原因で経時変化(ドリフト)するのを較正するいわゆるドリフト較正が定期的に行われる。このドリフト較正のために、例えば、検量線を作成するのに用いた標準試料すべてについて元素ごとにX線強度を測定しなおすとすると、較正のたびに多大な手間と時間を要する。そこで、ドリフト較正用に較正試料を設定して基準となるX線強度を測定しておき、較正する際には、設定した較正試料のみを測定してその時の測定X線強度と前記基準となる測定X線強度とからドリフト較正係数を求め、そのドリフト較正係数を分析対象試料の測定X線強度に適用して較正することが行われる。   Conventionally, in a fluorescent X-ray analyzer that measures the intensity of fluorescent X-rays generated by irradiating a sample with primary X-rays, the measured X-ray intensity of the same sample changes (drifts) over time due to various causes. A so-called drift calibration is performed periodically to calibrate. For this drift calibration, for example, if the X-ray intensity is measured again for each element for all the standard samples used to create a calibration curve, a great amount of labor and time are required for each calibration. Therefore, a calibration sample is set for drift calibration and the reference X-ray intensity is measured, and when calibrating, only the set calibration sample is measured and the measured X-ray intensity at that time is used as the reference. A drift calibration coefficient is obtained from the measured X-ray intensity, and the drift calibration coefficient is applied to the measured X-ray intensity of the sample to be analyzed for calibration.

そのため、蛍光X線分析において、いろいろな較正試料が用いられている。例えば、シリコン基板上に金属膜を形成した試料を分析する際に用いられている、シリコン基板上にAu、Pt、Coなどの金属膜を形成した較正試料がある(特許文献1)。   Therefore, various calibration samples are used in fluorescent X-ray analysis. For example, there is a calibration sample in which a metal film such as Au, Pt, or Co is formed on a silicon substrate, which is used when analyzing a sample in which a metal film is formed on a silicon substrate (Patent Document 1).

また、薄膜上に載せた微量粉末試料、ろ紙やポリマーフィルムに保持された微量溶液試料、薄膜試料などの蛍光X線分析に用いられている較正試料がある。この較正試料は、ポリイミドフィルムと、このポリイミドフイルム上の分析対象元素を混入したポリイミドフイルムとで形成されている(特許文献2)。この較正試料の変形例として、金属箔や基板上に分析対象元素を混入したポリイミド膜を形成した較正試料が知られている。   In addition, there are calibration samples used for fluorescent X-ray analysis, such as a trace powder sample placed on a thin film, a trace solution sample held on a filter paper or a polymer film, and a thin film sample. This calibration sample is formed of a polyimide film and a polyimide film mixed with an element to be analyzed on the polyimide film (Patent Document 2). As a modified example of the calibration sample, a calibration sample in which a polyimide film in which an element to be analyzed is mixed is formed on a metal foil or a substrate is known.

さらに、原油や石油製品に含まれる硫黄分の濃度の測定において、硫黄の濃度が既知の重油を容器内に封入した標準試料では、液漏れや沈殿などによる濃度変化により経時変化が生じ、長期間使用できないため、標準試料として固体の模擬試料を用いる方法がある。この模擬試料は、円板状のモリブデン本体と、このモリブデン本体の一次X線照射側に設けられたポリエチレンテレフタレートやポリイミドからなる吸収体とで形成されている(特許文献3)。   Furthermore, when measuring the concentration of sulfur in crude oil and petroleum products, the standard sample in which heavy oil with a known sulfur concentration is enclosed in a container changes over time due to changes in concentration due to liquid leakage or precipitation. Since it cannot be used, there is a method using a solid simulated sample as a standard sample. This simulated sample is formed of a disk-shaped molybdenum main body and an absorber made of polyethylene terephthalate or polyimide provided on the primary X-ray irradiation side of the molybdenum main body (Patent Document 3).

特開2005−156213号公報JP 2005-156213 A 特開2010−204087号公報JP 2010-204087 A 特開平7−5127号公報Japanese Patent Laid-Open No. 7-5127

特許文献1に記載されている較正試料は、シリコン基板上に金属膜を形成した試料、すなわち、固体試料の分析に用いられている。特許文献2に記載されている較正試料は、微量粉末試料や薄膜試料などの固体試料の分析に用いられるとともに、ろ紙やポリマーフィルムに保持された微量溶液試料の分析に用いられている。この較正試料は微量粉末試料や微量溶液試料など微量試料の分析に用いられるので、較正試料から発生するバックグラウンドができるだけ小さくなるように構成されている。   The calibration sample described in Patent Document 1 is used for analyzing a sample in which a metal film is formed on a silicon substrate, that is, a solid sample. The calibration sample described in Patent Document 2 is used for analyzing a solid sample such as a trace powder sample or a thin film sample, and for analyzing a trace solution sample held on a filter paper or a polymer film. Since this calibration sample is used for analysis of a trace sample such as a trace powder sample or a trace solution sample, the background generated from the calibration sample is configured to be as small as possible.

特許文献3に記載されている模擬試料は、原油や石油製品に含まれる硫黄分の濃度の測定のみに用いられており、その他の元素やその他の液体試料には用いられていない。この模擬試料は、円板状のモリブデン本体と、この本体の一次X線照射側に設けられた吸収体とで形成されているが、この吸収体はモリブデン本体から発生する蛍光X線強度を減衰させるためのものであり、試料から発生するバックグラウンドについては何ら考慮されていない。液体試料は溶媒である水や有機溶媒などに水素、炭素、酸素などの軽元素を主な成分として含んでいるため、散乱X線を多く発生し、測定されるX線には蛍光X線に加えて散乱X線が多く含まれ、この散乱X線によって大きなバックグラウンドが発生する。しかし、従来、液体試料から発生するバックグラウンドを考慮した固体の較正試料はなかった。   The simulated sample described in Patent Document 3 is used only for measuring the concentration of sulfur contained in crude oil and petroleum products, and is not used for other elements or other liquid samples. This simulated sample is formed of a disk-shaped molybdenum main body and an absorber provided on the primary X-ray irradiation side of the main body. This absorber attenuates the fluorescent X-ray intensity generated from the molybdenum main body. The background generated from the sample is not considered at all. The liquid sample contains light elements such as hydrogen, carbon, and oxygen as the main components in the solvent water or organic solvent, so it generates a lot of scattered X-rays. In addition, a lot of scattered X-rays are contained, and a large background is generated by the scattered X-rays. However, there has been no solid calibration sample in consideration of the background generated from a liquid sample.

このように、従来は、液体試料から発生するバックグラウンドを含めた測定X線強度の経時変化(ドリフト)の較正を正確に行うことができ、かつ長期間にわたって使用できる較正試料はなかった。   Thus, conventionally, there has been no calibration sample that can accurately perform the calibration of the time-dependent change (drift) of the measured X-ray intensity including the background generated from the liquid sample and can be used for a long period of time.

本発明は前記従来の問題に鑑みてなされたもので、長期間にわたって使用できるとともに、正確なドリフト較正をすることができる、液体試料の蛍光X線分析用の較正試料ならびにそれを備える蛍光X線分析装置およびそれを用いる蛍光X線分析方法を提供することを目的とする。   The present invention has been made in view of the above-described conventional problems. A calibration sample for fluorescent X-ray analysis of a liquid sample that can be used over a long period of time and can perform accurate drift calibration, and fluorescent X-rays including the calibration sample. An object is to provide an analyzer and a fluorescent X-ray analysis method using the same.

前記目的を達成するために、本発明の較正試料は、液体試料の蛍光X線分析において、分析対象金属元素の測定X線強度の経時変化を較正するための固体の較正試料であって、分析対象金属元素を含む金属層と、水素、ホウ素、炭素、窒素、酸素およびフッ素のうち少なくとも1つの軽元素を最大のモル分率とする厚さ1mm以上の軽元素層と、が重ねられて形成され、前記金属層において、前記軽元素層との対向面の反対側の面を分析面とする。   To achieve the above object, the calibration sample of the present invention is a solid calibration sample for calibrating a change in measured X-ray intensity over time of a metal element to be analyzed in a fluorescent X-ray analysis of a liquid sample. Formed by overlapping a metal layer containing the target metal element and a light element layer having a thickness of 1 mm or more with at least one light element of hydrogen, boron, carbon, nitrogen, oxygen and fluorine as the maximum molar fraction. In the metal layer, the surface opposite to the surface facing the light element layer is an analysis surface.

本発明の較正試料は、分析対象金属元素を含む金属層と、水素、ホウ素、炭素、窒素、酸素およびフッ素のうち少なくとも1つの軽元素を最大のモル分率とする厚さ1mm以上の軽元素層と、が重ねられて形成された固体であるので、蒸発、沈殿、変質などによる経時変化が生じず、長期間にわたって使用できる。さらに、前記金属層は一次X線が照射される分析面であり、この金属層を透過した一次X線が軽元素層に入射することにより、軽元素層の軽元素が分析対象の液体試料と同程度の散乱X線(バックグラウンド)を発生させるので、正確なドリフト較正をすることができる。   The calibration sample of the present invention includes a metal layer containing a metal element to be analyzed, and a light element having a thickness of 1 mm or more having a maximum molar fraction of at least one light element among hydrogen, boron, carbon, nitrogen, oxygen, and fluorine. Since it is a solid formed by overlapping layers, it does not change over time due to evaporation, precipitation, alteration, etc., and can be used over a long period of time. Further, the metal layer is an analysis surface irradiated with primary X-rays, and the primary X-rays transmitted through the metal layer are incident on the light element layer, so that the light elements in the light element layer are analyzed with the liquid sample to be analyzed. Since similar scattered X-rays (background) are generated, accurate drift calibration can be performed.

本発明の蛍光X線分析方法では、本発明の較正試料を用いて液体試料の蛍光X線分析を行う。   In the fluorescent X-ray analysis method of the present invention, fluorescent X-ray analysis of a liquid sample is performed using the calibration sample of the present invention.

本発明の蛍光X線分析方法によれば、本発明の較正試料を用いるので、本発明の較正試料と同様の効果を奏することができる。   According to the fluorescent X-ray analysis method of the present invention, since the calibration sample of the present invention is used, the same effects as the calibration sample of the present invention can be achieved.

本発明の蛍光X線分析方法では、さらに、前記較正試料の前記軽元素層のみで形成され、液体試料のバックグラウンドX線強度の経時変化を較正するためのバックグラウンド較正試料を用いるのが好ましい。この場合には、前記金属層と前記軽元素層とで形成された較正試料と、前記軽元素層のみで形成されたバックグラウンド較正試料との2点の較正試料を用いるので、より正確な較正を行うことができる。   In the fluorescent X-ray analysis method of the present invention, it is further preferable to use a background calibration sample that is formed only by the light element layer of the calibration sample and calibrates a change with time of the background X-ray intensity of the liquid sample. . In this case, since a calibration sample formed by the metal layer and the light element layer and a background calibration sample formed only by the light element layer are used, more accurate calibration is used. It can be performed.

本発明の蛍光X線分析装置は、本発明の較正試料と、前記較正試料の分析対象金属元素の測定X線強度に基づいて、液体試料の測定X線強度の経時変化を較正するドリフト較正手段と、を備える。   The X-ray fluorescence analyzer of the present invention is a drift calibration means for calibrating a change in measured X-ray intensity of a liquid sample over time based on the calibration sample of the present invention and the measured X-ray intensity of a metal element to be analyzed of the calibration sample. And comprising.

本発明の蛍光X線分析装置によれば、本発明の較正試料と、前記較正試料の分析対象金属元素の測定X線強度に基づいて、液体試料の測定X線強度の経時変化を較正するドリフト較正手段と、を備えているので、本発明の較正試料と同様の効果を奏することができる。   According to the fluorescent X-ray analysis apparatus of the present invention, the drift for calibrating the time-dependent change of the measured X-ray intensity of the liquid sample based on the calibration sample of the present invention and the measured X-ray intensity of the metal element to be analyzed of the calibration sample. Since the calibration means is provided, the same effect as the calibration sample of the present invention can be obtained.

本発明の蛍光X線分析装置は、さらに、前記軽元素層のみで形成され、液体試料のバックグラウンドX線強度の経時変化を較正するためのバックグラウンド較正試料を備え、前記ドリフト較正手段が、前記較正試料の分析対象金属元素の測定X線強度および前記バックグラウンド較正試料の測定X線強度に基づいて、液体試料の測定X線強度の経時変化を較正するのが好ましい。この場合には、前記金属層と前記軽元素層とで形成された較正試料と、前記軽元素層のみで形成されたバックグラウンド較正試料との2点の較正試料を用いるので、より正確な較正を行うことができる。   The fluorescent X-ray analysis apparatus of the present invention further includes a background calibration sample that is formed of only the light element layer and calibrates a change in the background X-ray intensity of the liquid sample with time, and the drift calibration unit includes: It is preferable to calibrate the time-dependent change of the measured X-ray intensity of the liquid sample based on the measured X-ray intensity of the metal element to be analyzed of the calibration sample and the measured X-ray intensity of the background calibration sample. In this case, since a calibration sample formed by the metal layer and the light element layer and a background calibration sample formed only by the light element layer are used, more accurate calibration is used. It can be performed.

本発明の第1実施形態の蛍光X線分析装置の概略図である。1 is a schematic view of a fluorescent X-ray analyzer according to a first embodiment of the present invention. 同蛍光X線分析装置が備える較正試料の側面図である。It is a side view of the calibration sample with which the fluorescent X-ray-analysis apparatus is provided. 同較正試料の金属層と軽元素層との厚さを求める手順を示す図である。It is a figure which shows the procedure which calculates | requires the thickness of the metal layer and light element layer of the same calibration sample. 同較正試料の変形例の側面断面図である。It is side surface sectional drawing of the modification of the same calibration sample. 同較正試料の別の変形例の側面図である。It is a side view of another modification of the calibration sample. 本発明の第2実施形態の蛍光X線分析装置が備えるバックグラウンド較正試料の斜視図である。It is a perspective view of the background calibration sample with which the fluorescent X-ray-analysis apparatus of 2nd Embodiment of this invention is provided.

以下、本発明の第1実施形態の蛍光X線分析装置について説明する。図1に示すように、この蛍光X線分析装置は、液体試料Sまたは較正試料20が載置される試料台3と、液体試料Sまたは較正試料20に1次X線2を照射する、例えばロジウムX線管であるX線源1と、液体試料Sまたは較正試料20から発生する2次X線4を分光する分光素子5と、分光素子5で分光された2次X線6を検出する検出器7と、ドリフト較正手段9とを備えている。分光素子5および検出器7は検出手段8を構成する。ドリフト較正手段9は、較正試料20の分析対象金属元素の測定X線強度に基づいて、液体試料Sの測定X線強度の経時変化を較正する。2次X線4および6は蛍光X線と散乱X線を含む。   Hereinafter, the X-ray fluorescence analyzer of the first embodiment of the present invention will be described. As shown in FIG. 1, the X-ray fluorescence analyzer irradiates the sample stage 3 on which the liquid sample S or the calibration sample 20 is placed and the primary X-ray 2 to the liquid sample S or the calibration sample 20, for example, An X-ray source 1 that is a rhodium X-ray tube, a spectroscopic element 5 that splits secondary X-rays 4 generated from the liquid sample S or the calibration sample 20, and secondary X-rays 6 that are split by the spectroscopic element 5 are detected. A detector 7 and drift calibration means 9 are provided. The spectroscopic element 5 and the detector 7 constitute detection means 8. The drift calibration means 9 calibrates the change over time in the measured X-ray intensity of the liquid sample S based on the measured X-ray intensity of the metal element to be analyzed in the calibration sample 20. Secondary X-rays 4 and 6 include fluorescent X-rays and scattered X-rays.

なお、較正試料20は、試料交換機(図示せず)の所定の位置に載置しておくか、装置が内蔵することが好ましい。   The calibration sample 20 is preferably placed at a predetermined position of a sample changer (not shown) or built in the apparatus.

第1実施形態の蛍光X線分析装置の動作、すなわち本発明の一実施形態となる蛍光X線分析方法について説明する。蛍光X線分析装置が作動されると、最初に較正試料20が測定されて、ドリフト較正手段9が分析対象金属元素の2次X線7についての測定X線強度を基準強度ISとして記憶する。そして、順次、液体試料Sが測定され、分析対象金属元素の測定X線強度が較正されるときに、較正試料20が測定されて、分析対象金属元素の2次X線7の強度IMが求められる。強度IMが求められると、ドリフト較正手段9が求められた強度IMと先に記憶した基準強度ISとに基づいて下記の式(1)からドリフト較正係数αを算出する。 The operation of the X-ray fluorescence analyzer of the first embodiment, that is, the X-ray fluorescence analysis method according to one embodiment of the present invention will be described. When X-ray fluorescence spectrometer is operated, it is first calibrated specimen 20 is measured, drift calibration means 9 stores the measured X-ray intensities for the secondary X-ray 7 in the analyzed metal element as a reference intensity I S . Then, when the liquid sample S is sequentially measured and the measured X-ray intensity of the analysis target metal element is calibrated, the calibration sample 20 is measured and the intensity I M of the secondary X-ray 7 of the analysis target metal element is determined. Desired. When the intensity I M is obtained, the drift calibration means 9 calculates the drift calibration coefficient α from the following equation (1) based on the obtained intensity I M and the previously stored reference intensity I S.

α=IS/IM (1) α = I S / I M (1)

そして、ドリフト較正手段9が、測定される液体試料Sの分析対象金属元素の測定X線強度Iにドリフト較正係数αを乗じて、ドリフト較正を行う。 The drift calibration means 9, by multiplying the drift calibration coefficient α to measure X-ray intensity I n of the analyte metal elements of the liquid sample S to be measured and performs drift calibration.

上記の例では、測定X線強度Iにドリフト較正係数αを乗じてドリフト較正を行ったが、1次式検量線の勾配定数aにドリフト較正係数αを乗じて検量線を較正してドリフト較正を行ってもよい。 In the above example, were subjected to drift calibration by multiplying the drift calibration coefficient α to measure X-ray intensity I n, to calibrate a calibration curve by multiplying the drift calibration coefficient α to the gradient constant a linear expression calibration curve drift Calibration may be performed.

第1実施形態の蛍光X線分析装置が備える固体の較正試料20について以下に詳細に説明する。図2に示すように、較正試料20は、分析対象金属元素を含む金属層21と、水素、ホウ素、炭素、窒素、酸素およびフッ素のうち少なくとも1つの軽元素を最大のモル分率とする厚さ1mm以上の軽元素層22とが重ねられて形成され、金属層21が軽元素層22に接着剤で接着されている。金属層21において、軽元素層22との対向面の反対側の面を分析面23とする。   The solid calibration sample 20 included in the X-ray fluorescence analyzer of the first embodiment will be described in detail below. As shown in FIG. 2, the calibration sample 20 has a thickness in which the metal layer 21 containing the metal element to be analyzed and at least one light element among hydrogen, boron, carbon, nitrogen, oxygen, and fluorine has a maximum molar fraction. A light element layer 22 having a thickness of 1 mm or more is overlaid, and the metal layer 21 is bonded to the light element layer 22 with an adhesive. In the metal layer 21, a surface opposite to the surface facing the light element layer 22 is an analysis surface 23.

第1実施形態の蛍光X線分析装置が備える較正試料20において、金属層21が、液体試料Sの分析対象元素の最大含有率に相当する蛍光X線強度を発生させる厚さの2倍以内となる厚さで形成され、軽元素層22が、液体試料Sと同等のバックグラウンドX線強度を発生させる厚さで形成されることが好ましい。   In the calibration sample 20 included in the fluorescent X-ray analyzer of the first embodiment, the metal layer 21 is within twice the thickness that generates the fluorescent X-ray intensity corresponding to the maximum content of the analysis target element of the liquid sample S. It is preferable that the light element layer 22 is formed with a thickness that generates a background X-ray intensity equivalent to that of the liquid sample S.

上記のように液体試料Sに適合する、金属層21の厚さと軽元素層22の厚さとの求め方について図3に示す手順に基づいて説明する。   A method of obtaining the thickness of the metal layer 21 and the thickness of the light element layer 22 that matches the liquid sample S as described above will be described based on the procedure shown in FIG.

第1段階S1において、金属層21の厚さと軽元素層22の厚さとを求めるために、金属層21から発生する蛍光X線強度(ネットX線強度)と軽元素層22から発生するバックグラウンドX線強度とのそれぞれの目標値を決定する。液体試料Sの検量線を作成するための複数の標準試料の中で最大蛍光X線強度を発生させる標準試料の蛍光X線強度(ネットX線強度)を、金属層21の目標値として決定する。作成した検量線の切片のX線強度であるバックグラウンドX線強度を軽元素層22の目標値として決定する。   In the first stage S1, in order to obtain the thickness of the metal layer 21 and the thickness of the light element layer 22, the fluorescent X-ray intensity (net X-ray intensity) generated from the metal layer 21 and the background generated from the light element layer 22 are obtained. Each target value with X-ray intensity is determined. The fluorescent X-ray intensity (net X-ray intensity) of the standard sample that generates the maximum fluorescent X-ray intensity among the plurality of standard samples for creating the calibration curve of the liquid sample S is determined as the target value of the metal layer 21. . The background X-ray intensity, which is the X-ray intensity of the created section of the calibration curve, is determined as the target value of the light element layer 22.

第2段階S2において、第1段階S1において目標値として決定した金属層21の蛍光X線強度を用いて、FP法理論強度計算によって、この蛍光X線強度の目標値の許容範囲内(例えば、目標値100〜200%以内)のX線強度になる金属層21の厚さを算出する。   In the second stage S2, the fluorescent X-ray intensity of the metal layer 21 determined as the target value in the first stage S1 is used to calculate the fluorescent X-ray intensity within the allowable range of the target value (for example, The thickness of the metal layer 21 that achieves the X-ray intensity of the target value (within 100 to 200%) is calculated.

第3段階S3において、第2段階S2において算出された厚さの金属層21を形成し、その金属層21を、1mm以上の任意の厚さの軽元素層22の上に重ねて較正試料20を形成する。形成された較正試料20について、蛍光X線分析装置で金属層21の蛍光X線強度と軽元素層22のバックグラウンドX線強度を測定する。なお、金属層21と軽元素層22とを重ねて較正試料20を形成する形態については後述する。   In the third step S3, the metal layer 21 having the thickness calculated in the second step S2 is formed, and the metal layer 21 is overlaid on the light element layer 22 having an arbitrary thickness of 1 mm or more to calibrate the sample 20. Form. With respect to the formed calibration sample 20, the fluorescent X-ray intensity of the metal layer 21 and the background X-ray intensity of the light element layer 22 are measured with a fluorescent X-ray analyzer. A form in which the calibration sample 20 is formed by overlapping the metal layer 21 and the light element layer 22 will be described later.

第4段階S4において、金属層21の蛍光X線強度が第1段階S1で決定した目標値の許容範囲内の強度になっているか、否かを判断する。金属層21の蛍光X線強度が目標値の許容範囲内の強度になっていると判断すると、第5段階S5へ進む。第4段階S4において、金属層21の蛍光X線強度が第1段階S1で決定した目標値の許容範囲内の強度になっていないと判断すると、第4A段階S4Aへ進む。   In the fourth step S4, it is determined whether or not the fluorescent X-ray intensity of the metal layer 21 is within the allowable range of the target value determined in the first step S1. If it is determined that the fluorescent X-ray intensity of the metal layer 21 is within the allowable range of the target value, the process proceeds to the fifth step S5. If it is determined in the fourth stage S4 that the fluorescent X-ray intensity of the metal layer 21 is not within the allowable range of the target value determined in the first stage S1, the process proceeds to a fourth A stage S4A.

第4A段階S4Aにおいて、金属層21の蛍光X線強度が第1段階S1で決定した目標値の許容範囲内の強度になるように、金属層21の厚さを変更して、第3段階S3へ戻り、第4段階S4において、金属層21の蛍光X線強度が第1段階S1で決定した目標値の許容範囲内の強度になっていると判断するまで、第4A段階S4Aから第4段階S4に至る手順を繰り返す。   In the fourth A stage S4A, the thickness of the metal layer 21 is changed so that the fluorescent X-ray intensity of the metal layer 21 is within the allowable range of the target value determined in the first stage S1, and the third stage S3 Returning to Step 4, the fourth stage S4A to the fourth stage until it is determined in the fourth stage S4 that the fluorescent X-ray intensity of the metal layer 21 is within the allowable range of the target value determined in the first stage S1. The procedure up to S4 is repeated.

第5段階S5において、軽元素層22のバックグラウンドX線強度が第1段階S1で決定した目標値の許容範囲内の強度になっているか、否かを判断する。軽元素層22のバックグラウンドX線強度が目標値の許容範囲内の強度になっていると判断すると、第6段階S6へ進む。第5段階S5において、軽元素層22のバックグラウンドX線強度が第1段階S1で決定した目標値の許容範囲内の強度になっていないと判断すると、第5A段階S5Aへ進む。   In the fifth step S5, it is determined whether or not the background X-ray intensity of the light element layer 22 is within an allowable range of the target value determined in the first step S1. If it is determined that the background X-ray intensity of the light element layer 22 is within the allowable range of the target value, the process proceeds to a sixth step S6. If it is determined in the fifth step S5 that the background X-ray intensity of the light element layer 22 is not within the allowable range of the target value determined in the first step S1, the process proceeds to a fifth A step S5A.

第5A段階S5Aにおいて、軽元素層22のバックグラウンドX線強度が第1段階S1で決定した目標値の許容範囲内の強度になるように、軽元素層22の厚さを変更して、第3段階S3へ戻り、第5段階S5において、軽元素層22の蛍光X線強度が第1段階S1で決定した目標値の許容範囲内の強度になっていると判断するまで、第5A段階S5Aから第5段階S5に至る手順を繰り返す。   In the fifth A stage S5A, the thickness of the light element layer 22 is changed so that the background X-ray intensity of the light element layer 22 is within the allowable range of the target value determined in the first stage S1. Returning to the third step S3, the fifth A step S5A is performed until it is determined in the fifth step S5 that the fluorescent X-ray intensity of the light element layer 22 is within the allowable range of the target value determined in the first step S1. The procedure from step S5 to step S5 is repeated.

第6段階S6において、金属層21と軽元素層22の厚さを確定する。   In the sixth step S6, the thicknesses of the metal layer 21 and the light element layer 22 are determined.

較正試料20の変形例として、ニッケルメッキ液である液体試料S中のニッケルを分析する場合の較正試料20について説明する。この較正試料20の場合、図4に示すように、例えば、厚さ10μmのニッケル箔21である金属層21が、例えば、厚さ(高さ)10mmの直方体状アクリル樹脂22である軽元素層22の上面に密着するように環状固定具50で固定され、この金属層21の外表面が分析面23となる。直方体状アクリル樹脂22は、軽元素である炭素、水素、酸素で構成され、水素を最大のモル分率としている。直方体状アクリル樹脂22の寸法は、例えば、横100mm、縦100mm、厚さ(高さ)10mmである。このニッケルメッキ液である液体試料S用の較正試料20の金属層21と軽元素層22の厚さは図3に示す手順によって求められた値である。   As a modified example of the calibration sample 20, the calibration sample 20 in the case of analyzing nickel in the liquid sample S which is a nickel plating solution will be described. In the case of this calibration sample 20, as shown in FIG. 4, for example, a metal layer 21 that is a nickel foil 21 having a thickness of 10 μm is a light element layer that is a rectangular parallelepiped acrylic resin 22 having a thickness (height) of 10 mm, for example. The outer surface of the metal layer 21 is an analysis surface 23. The rectangular parallelepiped acrylic resin 22 is composed of light elements such as carbon, hydrogen, and oxygen, with hydrogen being the maximum molar fraction. The dimensions of the rectangular parallelepiped acrylic resin 22 are, for example, 100 mm in width, 100 mm in length, and 10 mm in thickness (height). The thicknesses of the metal layer 21 and the light element layer 22 of the calibration sample 20 for the liquid sample S, which is the nickel plating solution, are values obtained by the procedure shown in FIG.

環状固定具50は、環状板51と固定ねじ52とで構成され、固定ねじ52が軽元素層22の上部(環状固定具50が固定される部分)に形成されたねじ孔25に螺合され、金属層21を、軽元素層22の上面と環状固定具50の下面(軽元素層22に対向する面)との間に挟みこんで固定している。なお、金属層21の固定方法は、上記のような環状固定具50に限ったものではなく、その他の固定具で固定してもよい。   The annular fixture 50 includes an annular plate 51 and a fixing screw 52, and the fixing screw 52 is screwed into a screw hole 25 formed in an upper portion of the light element layer 22 (a portion to which the annular fixture 50 is fixed). The metal layer 21 is sandwiched and fixed between the upper surface of the light element layer 22 and the lower surface of the annular fixture 50 (the surface facing the light element layer 22). The method for fixing the metal layer 21 is not limited to the annular fixture 50 as described above, and may be fixed by other fixtures.

図2の較正試料20では、金属層21として、1枚の100μmのニッケル箔を用いたが、例えば、図5に示すように複数枚のニッケル箔21a、21b、21cのそれぞれを接着剤で接着して重ねて形成してもよいし、図4に示す環状固定具50で複数枚の金属箔を固定してもよい。また、複数の分析対象金属元素に用いられる較正試料20の場合、金属層21は、異なる分析対象金属元素の金属箔を重ねて形成しても、複数の分析対象金属元素を含む1枚の金属箔で形成してもよい。さらに、金属層21は金属箔でなくてもよく、軽元素層22の上に蒸着(PVD、CVDなど)、メッキなどで分析対象金属元素の薄膜を積層して形成してもよい。金属層21は、図3に示す手順に基づいて、液体試料S中に含まれる分析対象金属元素の濃度に応じた厚さに形成するのが好ましく、厚さの具体的な数値としては、例えば、高濃度であれば厚く、10〜300μmが好ましく、低濃度であれば薄く、1〜10μmが好ましく、極低濃度であれば、0μmよりも大きく10μm未満であるのが好ましい。   In the calibration sample 20 of FIG. 2, a single 100 μm nickel foil is used as the metal layer 21. For example, as shown in FIG. 5, a plurality of nickel foils 21 a, 21 b, and 21 c are bonded with an adhesive. Then, a plurality of metal foils may be fixed by an annular fixture 50 shown in FIG. Further, in the case of the calibration sample 20 used for a plurality of analysis target metal elements, even if the metal layer 21 is formed by overlapping metal foils of different analysis target metal elements, a single metal containing the plurality of analysis target metal elements is included. You may form with foil. Further, the metal layer 21 may not be a metal foil, and may be formed by laminating a thin film of a metal element to be analyzed on the light element layer 22 by vapor deposition (PVD, CVD, etc.), plating, or the like. The metal layer 21 is preferably formed to a thickness corresponding to the concentration of the metal element to be analyzed contained in the liquid sample S based on the procedure shown in FIG. If the concentration is high, it is thick and preferably 10 to 300 μm. If the concentration is low, the thickness is thin and 1 to 10 μm is preferable. If the concentration is extremely low, it is preferably greater than 0 μm and less than 10 μm.

本実施形態では、較正試料20は軽元素層22に金属層21を接着、密着、蒸着などさせて形成されているが、軽元素層22と金属層21との間に隙間がある状態で重ねられて形成されてもよい。   In the present embodiment, the calibration sample 20 is formed by adhering, adhering, and vapor-depositing the metal layer 21 to the light element layer 22. However, the calibration sample 20 is overlapped with a gap between the light element layer 22 and the metal layer 21. May be formed.

軽元素層22には、アクリル樹脂を用いたが、水素、ホウ素、炭素、窒素、酸素およびフッ素のうち少なくとも1つの軽元素を最大のモル分率とする厚さ1mm以上の物質であればよく、高分子有機化合物(ポリプロピレン、ポリエチレン、ポリイミド、フッ素樹脂など)、グラファイト、窒化ホウ素、金属ボロン、石英、ガラスなどであってもよい。グラファイトでは、炭素が最大のモル分率であり、窒化ホウ素では窒素とホウ素が最大のモル分率である。図2、4、5に示す較正試料20の軽元素層22は、図3に示す手順に基づいて、液体試料Sの種類に応じた厚さ(高さ)Hに形成すればよく、厚さHの具体的な数値としては、例えば、1〜100mmが好ましい。軽元素層22の形状は直方体に限らず、円柱、角柱などであってもよく、液体試料Sが注入される液体試料容器内に収容されていてもよい。   An acrylic resin is used for the light element layer 22, but any material having a thickness of 1 mm or more with at least one light element of hydrogen, boron, carbon, nitrogen, oxygen, and fluorine having the maximum molar fraction may be used. , High molecular organic compounds (polypropylene, polyethylene, polyimide, fluororesin, etc.), graphite, boron nitride, metal boron, quartz, glass, and the like. In graphite, carbon is the largest mole fraction, and in boron nitride, nitrogen and boron are the largest mole fraction. The light element layer 22 of the calibration sample 20 shown in FIGS. 2, 4, and 5 may be formed to a thickness (height) H corresponding to the type of the liquid sample S based on the procedure shown in FIG. As a specific numerical value of H, for example, 1 to 100 mm is preferable. The shape of the light element layer 22 is not limited to a rectangular parallelepiped, but may be a cylinder, a prism, or the like, and may be accommodated in a liquid sample container into which the liquid sample S is injected.

軽元素層22をこのように形成することによって、液体試料Sと同程度のバックグラウンドを発生させることができ、測定される液体試料Sと同程度の蛍光X線強度対散乱X線強度になるので正確なドリフト較正をすることができる。図2、4、5を用いて以上に説明した較正試料20もそれぞれ本発明の一実施形態となる。   By forming the light element layer 22 in this way, a background equivalent to that of the liquid sample S can be generated, and the fluorescent X-ray intensity versus the scattered X-ray intensity equivalent to that of the liquid sample S to be measured. Therefore, accurate drift calibration can be performed. Each of the calibration samples 20 described above with reference to FIGS. 2, 4, and 5 is also an embodiment of the present invention.

第1実施形態の蛍光X線分析装置によれば、この蛍光X線装置が備える較正試料20は、金属層21が分析対象金属元素で形成され、軽元素層22が水素、ホウ素、炭素、窒素、酸素およびフッ素のうち少なくとも1つの軽元素を最大のモル分率とする厚さ1mm以上の物質で形成されている固体であり、かつ軽元素層22の軽元素が液体試料Sと同程度の散乱X線(バックグラウンド)を発生させるので、長期間にわたって使用できるとともに、分析対象金属元素の測定X線強度のドリフトを正確に較正することができる。   According to the fluorescent X-ray analysis apparatus of the first embodiment, the calibration sample 20 provided in the fluorescent X-ray apparatus has a metal layer 21 formed of a metal element to be analyzed and a light element layer 22 of hydrogen, boron, carbon, nitrogen. , A solid formed of a material having a thickness of 1 mm or more having at least one light element of oxygen and fluorine as a maximum molar fraction, and the light element of the light element layer 22 is approximately the same as the liquid sample S. Since scattered X-rays (background) are generated, it can be used for a long period of time, and the measured X-ray intensity drift of the metal element to be analyzed can be accurately calibrated.

以下、本発明の第2実施形態である蛍光X線分析装置について説明する。第2実施形態の蛍光X線分析装置は、第1実施形態の蛍光X線分析装置が備える較正試料20と、その較正試料20の軽元素層22のみで形成され、液体試料SのバックグラウンドX線強度の経時変化を較正するためのバックグラウンド較正試料40(図6)との2種類の較正試料を備え、ドリフト較正手段9が、較正試料20の分析対象金属元素の測定X線強度および試料台3に載置されたバックグラウンド較正試料40の測定X線強度に基づいて、液体試料Sの測定X線強度の経時変化を較正する点が第1実施形態である蛍光X線分析装置と異なるが、その他の構成については同じであるので、異なる点について説明する。なお、2種類の較正試料20、40は、第1実施形態の蛍光X線分析装置と同様に、試料交換機の所定の位置に載置しておくか、装置が内蔵することが好ましい。   Hereinafter, a fluorescent X-ray analyzer according to the second embodiment of the present invention will be described. The X-ray fluorescence analyzer of the second embodiment is formed by only the calibration sample 20 included in the X-ray fluorescence analyzer of the first embodiment and the light element layer 22 of the calibration sample 20, and the background X of the liquid sample S Two types of calibration samples are provided with a background calibration sample 40 (FIG. 6) for calibrating the change in line intensity with time, and the drift calibration means 9 measures the measured X-ray intensity and sample of the metal element to be analyzed in the calibration sample 20 The point which calibrates the time-dependent change of the measured X-ray intensity of the liquid sample S based on the measured X-ray intensity of the background calibration sample 40 placed on the table 3 is different from the fluorescent X-ray analyzer according to the first embodiment. However, since other configurations are the same, different points will be described. In addition, it is preferable that the two types of calibration samples 20 and 40 are placed at predetermined positions of the sample exchanger or built in the apparatus, as in the fluorescent X-ray analysis apparatus of the first embodiment.

第2実施形態の蛍光X線分析装置の動作、すなわち本発明の一実施形態となる蛍光X線分析方法について説明する。蛍光X線分析装置が作動されると、最初に較正試料40が測定されて、ドリフト較正手段9がバックグラウンドX線強度をバックグラウンド基準強度Iとして記憶する。そして、バックグラウンドX線強度が較正されるときに、バックグラウンド較正試料40が測定されて、バックグラウンドX線強度Iが求められる。バックグラウンドX線強度Iが求められると、ドリフト較正手段9が、求められた強度Iと先に記憶した基準強度Iとに基づいて下記の式(2)からバックグラウンド較正係数βを算出する。 The operation of the X-ray fluorescence analyzer according to the second embodiment, that is, the X-ray fluorescence analysis method according to one embodiment of the present invention will be described. When X-ray fluorescence spectrometer is operated, it is first calibrated specimen 40 is measured, drift calibration means 9 stores the background X-ray intensity as a background reference intensity I B. When the background X-ray intensity is calibrated, it is measured background calibration sample 40, the background X-ray intensity I C is obtained. When the background X-ray intensity I C is obtained, the drift calibration means 9 calculates the background calibration coefficient β from the following equation (2) based on the obtained intensity I C and the previously stored reference intensity I B. calculate.

β=I/I (2) β = I B / I C (2)

次に、第1実施形態の蛍光X線装置の動作同様に較正試料20が測定されると、ドリフト較正手段9がドリフト較正係数αを算出する。ドリフト較正手段9が、算出したドリフト較正係数α、βによって1次式検量線の勾配定数aと切片定数bとを較正して、検量線を較正する。検量線の較正後に測定される液体試料Sは較正された検量線に基づいて定量される。   Next, when the calibration sample 20 is measured similarly to the operation of the fluorescent X-ray apparatus of the first embodiment, the drift calibration means 9 calculates the drift calibration coefficient α. The drift calibration means 9 calibrates the calibration curve by calibrating the slope constant a and the intercept constant b of the linear equation calibration curve with the calculated drift calibration coefficients α and β. The liquid sample S measured after calibration of the calibration curve is quantified based on the calibrated calibration curve.

第2実施形態の蛍光X線分析装置は、第1実施形態の蛍光X線分析装置が備える較正試料20と同じ較正試料20と、軽元素層22のみで形成されたバックグラウンド較正試料40とを備え、高濃度領域用の較正試料20と低濃度領域用のバックグラウンド較正試料40との2種類の較正試料で、勾配定数aと切片定数bとを較正して検量線を較正するので、より正確に検量線を較正することができる。特に、分析対象金属元素の測定X線強度の経時変化とバックグラウンドX線強度の経時変化が異なる場合には、その効果が大きい。   The X-ray fluorescence analyzer of the second embodiment includes a calibration sample 20 that is the same as the calibration sample 20 included in the X-ray fluorescence analyzer of the first embodiment, and a background calibration sample 40 formed by only the light element layer 22. The calibration curve is calibrated by calibrating the slope constant a and the intercept constant b with two types of calibration samples, the calibration sample 20 for the high concentration region and the background calibration sample 40 for the low concentration region. The calibration curve can be accurately calibrated. In particular, when the time-dependent change in measured X-ray intensity of the metal element to be analyzed is different from the time-dependent change in background X-ray intensity, the effect is great.

以上に説明した蛍光X線分析装置が備える、図2、4、5に示した較正試料20を、較正試料20から発生する散乱X線を内標準線として測定する散乱線モニター法(散乱線内標準法)に用いてもよい。散乱線モニター法は、散乱X線が多く発生する液体試料、有機化合物などの分析に用いられることが多く、分析対象金属元素の測定X線強度とバックグラウンド(散乱X線)のX線強度との比を用いることによって、試料S中の共存元素の影響を補正する蛍光X線分析方法である。   2, 4, and 5, which is provided in the fluorescent X-ray analysis apparatus described above, measures the scattered X-ray generated from the calibration sample 20 as an internal standard line (scattered ray monitoring method). Standard method) may be used. Scattered ray monitoring is often used for analysis of liquid samples and organic compounds that generate a lot of scattered X-rays. The measured X-ray intensity of the metal element to be analyzed and the X-ray intensity of the background (scattered X-rays) This is a fluorescent X-ray analysis method for correcting the influence of coexisting elements in the sample S by using the ratio of

例えば、散乱線モニター法が可能な多元素同時型蛍光X線分析装置では、液体試料Sから発生する分析対象金属元素の2次X線を測定する測定チャンネル(分析対象金属元素に適した分光素子とX線検出器を備える)と、液体試料Sから発生する散乱X線を測定するバックグラウンドチャンネル(バックグラウンド測定に適した分光素子とX線検出器を備える)とを備え、測定チャンネルで測定したX線強度Iとバックグラウンドチャンネルで測定したX線強度Iとの比I/Iを縦軸とし、測定する液体試料Sの分析対象金属元素の濃度を横軸とする検量線を作成して、液体試料Sを分析する。 For example, in a multi-element simultaneous X-ray fluorescence analyzer capable of monitoring scattered radiation, a measurement channel for measuring secondary X-rays of a metal element to be analyzed generated from a liquid sample S (a spectroscopic element suitable for the metal element to be analyzed) And an X-ray detector) and a background channel for measuring scattered X-rays generated from the liquid sample S (with a spectroscopic element suitable for background measurement and an X-ray detector) calibration curve the ratio I a / I d between the X-ray intensity I a and background X-ray intensity measured by the channel I d on the vertical axis, the concentration of the analyte metallic elements of the measurement to the liquid sample S and the horizontal axis And the liquid sample S is analyzed.

最初に、較正試料20が測定チャンネルとバックグラウンドチャンネルで同時に測定され、測定チャンネルで測定されたX線強度である基準強度Iと、バックグラウンドチャンネルで測定されたX線強度である基準強度Iとの比I/Iが算出される。測定X線強度が較正されるときに、較正試料20が測定チャンネルとバックグラウンドチャンネルで同時に測定され、測定チャンネルで測定されたX線強度Iとバックグラウンドチャンネルで測定されたX線強度Iとの比I/Iが算出される。算出された比I/Iと算出された比I/Iとの比(I/I)/(I/I)を用いて検量線を較正してドリフト較正を行う。 First, the calibration sample 20 is simultaneously measured in the measurement channel and the background channel, and the reference intensity I p that is the X-ray intensity measured in the measurement channel and the reference intensity I that is the X-ray intensity measured in the background channel. the ratio I p / I g of g is calculated. When the measured X-ray intensity is calibrated, the calibration sample 20 is measured simultaneously in the measurement channel and background channels, measured by the measuring channel X-ray intensity I r and background channels measured X-ray intensity I q The ratio I r / I q is calculated. Performing drift calibration to calibrate a calibration curve using the ratio of the calculated and the calculated ratio I p / I g ratio I r / I q (I p / I g) / (I r / I q) .

較正試料20は、分析対象の液体試料Sと同程度のバックグラウンドを発生させることができ、蛍光X線強度対散乱X線強度の比が分析対象の液体試料Sと同程度になるので、散乱線モニター法においても正確なドリフト較正をすることができる。   The calibration sample 20 can generate the same background as the liquid sample S to be analyzed, and the ratio of the fluorescent X-ray intensity to the scattered X-ray intensity is the same as that of the liquid sample S to be analyzed. Even in the line monitor method, accurate drift calibration can be performed.

第1、第2実施形態の蛍光X線分析装置では、較正試料20を検量線の較正に用いたが、蛍光X線分析装置の感度安定度を評価する感度安定度試験に用いてもよい。蛍光X線分析装置の感度安定度試験に用いる安定度試験試料は、液体試料Sと同程度の強度の蛍光X線を発生し、液体試料Sと同程度の蛍光X線強度対散乱X線強度の比をもつことが好ましく、例えば、金属層21の厚さが5μm、軽元素層22の厚さが5mmであるのが好ましい。   In the fluorescent X-ray analyzers of the first and second embodiments, the calibration sample 20 is used for calibration of the calibration curve. However, it may be used for a sensitivity stability test for evaluating the sensitivity stability of the fluorescent X-ray analyzer. The stability test sample used for the sensitivity stability test of the fluorescent X-ray analyzer generates fluorescent X-rays with the same intensity as the liquid sample S, and the fluorescent X-ray intensity versus the scattered X-ray intensity with the same level as the liquid sample S For example, the thickness of the metal layer 21 is preferably 5 μm, and the thickness of the light element layer 22 is preferably 5 mm.

第1、2実施形態の蛍光X線分析装置は、波長分散型蛍光X線分析装置として説明したが、本発明の装置は、エネルギー分散型蛍光X線分析装置であってもよい。   Although the fluorescent X-ray analyzer of the first and second embodiments has been described as a wavelength dispersive fluorescent X-ray analyzer, the apparatus of the present invention may be an energy dispersive fluorescent X-ray analyzer.

1 X線源
2 1次X線
3 試料台
4、6 2次X線
5 分光素子
7 検出器
8 検出手段
9 ドリフト較正手段
20 較正試料
21 金属層
22 軽元素層
23 分析面
40 バックグラウンド較正試料
S 液体試料















DESCRIPTION OF SYMBOLS 1 X-ray source 2 Primary X-ray 3 Sample stage 4, 6 Secondary X-ray 5 Spectroscopic element 7 Detector 8 Detection means 9 Drift calibration means 20 Calibration sample 21 Metal layer 22 Light element layer 23 Analytical surface 40 Background calibration sample S liquid sample















Claims (5)

液体試料の蛍光X線分析において、分析対象金属元素の測定X線強度の経時変化を較正するための固体の較正試料であって、
分析対象金属元素を含む金属層と、
水素、ホウ素、炭素、窒素、酸素およびフッ素のうち少なくとも1つの軽元素を最大のモル分率とする厚さ1mm以上の軽元素層と、
が重ねられて形成され、
前記金属層において、前記軽元素層との対向面の反対側の面を分析面とする較正試料。
In a fluorescent X-ray analysis of a liquid sample, a solid calibration sample for calibrating a time-dependent change in measured X-ray intensity of a metal element to be analyzed,
A metal layer containing the metal element to be analyzed;
A light element layer having a thickness of 1 mm or more having a maximum molar fraction of at least one light element of hydrogen, boron, carbon, nitrogen, oxygen and fluorine;
Is formed by overlapping,
The calibration sample which uses the surface on the opposite side of the surface facing the said light element layer in the said metal layer as an analysis surface.
請求項1に記載の較正試料を用いて液体試料の分析を行う蛍光X線分析方法。   A fluorescent X-ray analysis method for analyzing a liquid sample using the calibration sample according to claim 1. 請求項2に記載の蛍光X線分析方法において、
さらに、前記軽元素層のみで形成され、液体試料のバックグラウンドX線強度の経時変化を較正するためのバックグラウンド較正試料を用いる蛍光X線分析方法。
The fluorescent X-ray analysis method according to claim 2,
Furthermore, a fluorescent X-ray analysis method using a background calibration sample, which is formed of only the light element layer and calibrates a change with time of background X-ray intensity of a liquid sample.
請求項1に記載の較正試料と、
前記較正試料の分析対象金属元素の測定X線強度に基づいて、液体試料の測定X線強度の経時変化を較正するドリフト較正手段と、
を備える蛍光X線分析装置。
A calibration sample according to claim 1;
Drift calibration means for calibrating changes with time of the measured X-ray intensity of the liquid sample based on the measured X-ray intensity of the metal element to be analyzed of the calibration sample;
A fluorescent X-ray analyzer.
請求項4に記載の蛍光X線分析装置において、
さらに、前記軽元素層のみで形成され、液体試料のバックグラウンドX線強度の経時変化を較正するためのバックグラウンド較正試料を備え、
前記ドリフト較正手段が、前記較正試料の分析対象金属元素の測定X線強度および前記バックグラウンド較正試料の測定X線強度に基づいて、液体試料の測定X線強度の経時変化を較正する蛍光X線分析装置。

The fluorescent X-ray analyzer according to claim 4,
Furthermore, a background calibration sample that is formed of only the light element layer and calibrates a change in background X-ray intensity of the liquid sample with time,
X-ray fluorescence in which the drift calibration means calibrates the change over time of the measured X-ray intensity of the liquid sample based on the measured X-ray intensity of the metal element to be analyzed of the calibration sample and the measured X-ray intensity of the background calibration sample Analysis equipment.

JP2011227624A 2011-10-17 2011-10-17 Calibration sample for fluorescent X-ray analysis, fluorescent X-ray analysis apparatus including the same, and fluorescent X-ray analysis method using the same Active JP5938708B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2011227624A JP5938708B2 (en) 2011-10-17 2011-10-17 Calibration sample for fluorescent X-ray analysis, fluorescent X-ray analysis apparatus including the same, and fluorescent X-ray analysis method using the same
CN201210392351.2A CN103048346B (en) 2011-10-17 2012-10-16 Check sample and fluorescent x-ray analyzer and fluorescent x-ray analysis method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011227624A JP5938708B2 (en) 2011-10-17 2011-10-17 Calibration sample for fluorescent X-ray analysis, fluorescent X-ray analysis apparatus including the same, and fluorescent X-ray analysis method using the same

Publications (3)

Publication Number Publication Date
JP2013088216A true JP2013088216A (en) 2013-05-13
JP2013088216A5 JP2013088216A5 (en) 2014-09-25
JP5938708B2 JP5938708B2 (en) 2016-06-22

Family

ID=48061061

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011227624A Active JP5938708B2 (en) 2011-10-17 2011-10-17 Calibration sample for fluorescent X-ray analysis, fluorescent X-ray analysis apparatus including the same, and fluorescent X-ray analysis method using the same

Country Status (2)

Country Link
JP (1) JP5938708B2 (en)
CN (1) CN103048346B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116106347A (en) * 2022-11-07 2023-05-12 成都物熙科技有限公司 Second-order X-ray fluorometer and measuring method thereof

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107290378A (en) * 2017-07-05 2017-10-24 深圳市华唯计量技术开发有限公司 Material adulterated method and its system are quickly judged based on X-fluorescence

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5917845U (en) * 1982-07-27 1984-02-03 東京芝浦電気株式会社 Standard sample for fluorescent X-rays
JPS61178651A (en) * 1985-02-05 1986-08-11 Daido Steel Co Ltd Method for solidifying powdery specimen for fluorescent x-ray analysis
JPS62130345A (en) * 1985-12-03 1987-06-12 Seiko Instr & Electronics Ltd Method for calibrating fluorescent x-ray liquid analyzer
JPH0257951A (en) * 1988-08-23 1990-02-27 Nippon Atom Ind Group Co Ltd Standard specimen for fluorescent x rays and manufacture thereof
JP2002090319A (en) * 2000-09-20 2002-03-27 Rigaku Industrial Co Fluorescent x-ray analysis device
JP2005156213A (en) * 2003-11-21 2005-06-16 Rigaku Industrial Co Calibration sample for x-ray fluorescence analysis

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01257210A (en) * 1988-04-06 1989-10-13 Seiko Instr Inc Fluorescent x-ray film thickness meter
JPH02187689A (en) * 1989-01-14 1990-07-23 Toto Ltd Method of calibrating energy dispersion type x-ray detector for light element
JPH07119716B2 (en) * 1990-04-19 1995-12-20 株式会社島津製作所 Surface analyzer
JPH075127A (en) * 1993-06-14 1995-01-10 Horiba Ltd X-ray fluorescence analytic method for sulfur
JP2000065764A (en) * 1998-08-20 2000-03-03 Horiba Ltd X-ray fluorescence analysis of liquid sample
RU2308024C2 (en) * 2003-08-01 2007-10-10 Ригаку Индастриал Корпорейшн Device for fastening specimen for roentgen fluorescence analysis and method of roentgen fluorescence analysis
JP5489098B2 (en) * 2009-02-05 2014-05-14 株式会社リガク Drift correction sample for fluorescent X-ray analysis, fluorescent X-ray analysis method using the same, and method for producing the same

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5917845U (en) * 1982-07-27 1984-02-03 東京芝浦電気株式会社 Standard sample for fluorescent X-rays
JPS61178651A (en) * 1985-02-05 1986-08-11 Daido Steel Co Ltd Method for solidifying powdery specimen for fluorescent x-ray analysis
JPS62130345A (en) * 1985-12-03 1987-06-12 Seiko Instr & Electronics Ltd Method for calibrating fluorescent x-ray liquid analyzer
JPH0257951A (en) * 1988-08-23 1990-02-27 Nippon Atom Ind Group Co Ltd Standard specimen for fluorescent x rays and manufacture thereof
JP2002090319A (en) * 2000-09-20 2002-03-27 Rigaku Industrial Co Fluorescent x-ray analysis device
JP2005156213A (en) * 2003-11-21 2005-06-16 Rigaku Industrial Co Calibration sample for x-ray fluorescence analysis

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116106347A (en) * 2022-11-07 2023-05-12 成都物熙科技有限公司 Second-order X-ray fluorometer and measuring method thereof

Also Published As

Publication number Publication date
JP5938708B2 (en) 2016-06-22
CN103048346B (en) 2016-08-31
CN103048346A (en) 2013-04-17

Similar Documents

Publication Publication Date Title
Thürmer et al. Accurate vertical ionization energy and work function determinations of liquid water and aqueous solutions
Kumari et al. Metallicity calibrations for diffuse ionized gas and low-ionization emission regions
US8492718B2 (en) Measurement apparatus and measurement method
JP4908119B2 (en) X-ray fluorescence analyzer
CN106596613B (en) A method of road detection elements content is scanned using Xray fluorescence spectrometer
JP2011089987A (en) X-ray diffraction and fluorescence
JP6175662B2 (en) X-ray fluorescence analyzer
KR20120012391A (en) Sample inspection device and sample inspection method
JP2014048182A (en) Film thickness measuring device
JP2017219428A (en) Laser spectroscopic stable isotope ratio analysis method, apparatus, and multipoint stable isotope ratio analysis system
Baumann et al. Laboratory setup for scanning-free grazing emission X-ray fluorescence
JP6026936B2 (en) Foreign object detection device
Chantler et al. A step toward standardization: development of accurate measurements of X-ray absorption and fluorescence
RU2493553C1 (en) Gas analyser to measure mercury content in gas
JP5938708B2 (en) Calibration sample for fluorescent X-ray analysis, fluorescent X-ray analysis apparatus including the same, and fluorescent X-ray analysis method using the same
Queralt et al. Thickness measurement of semiconductor thin films by energy dispersive X-ray fluorescence benchtop instrumentation: Application to GaN epilayers grown by molecular beam epitaxy
Guerra et al. Development of a combined portable x-ray fluorescence and Raman spectrometer for in situ analysis
Wählisch et al. Validation of secondary fluorescence excitation in quantitative X-ray fluorescence analysis of thin alloy films
US10782225B2 (en) Optical measurement cell and particle properties measuring instrument using the same
CN109313146B (en) Sample processing apparatus for pressurized fluids and X-ray analyzer applications thereof
WO2014038403A1 (en) Film thickness measuring device
WO2017169247A1 (en) X-ray fluorescence analyzer and x-ray fluorescence analysis method
US6845147B2 (en) Scatter spectra method for x-ray fluorescent analysis with optical components
US20080219409A1 (en) Inspection method for thin film stack
Skrzypek et al. Reference materials selection for the stable carbon isotope analysis of dissolved carbon using a wet oxidation system

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140808

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140808

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150420

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150519

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150630

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20151124

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20151222

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160412

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160419

R150 Certificate of patent or registration of utility model

Ref document number: 5938708

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

SG99 Written request for registration of restore

Free format text: JAPANESE INTERMEDIATE CODE: R316G99

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

SG99 Written request for registration of restore

Free format text: JAPANESE INTERMEDIATE CODE: R316G99

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S803 Written request for registration of cancellation of provisional registration

Free format text: JAPANESE INTERMEDIATE CODE: R316805

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S803 Written request for registration of cancellation of provisional registration

Free format text: JAPANESE INTERMEDIATE CODE: R316805

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250