JPS59214743A - X-ray analyzing apparatus - Google Patents

X-ray analyzing apparatus

Info

Publication number
JPS59214743A
JPS59214743A JP58088674A JP8867483A JPS59214743A JP S59214743 A JPS59214743 A JP S59214743A JP 58088674 A JP58088674 A JP 58088674A JP 8867483 A JP8867483 A JP 8867483A JP S59214743 A JPS59214743 A JP S59214743A
Authority
JP
Japan
Prior art keywords
wavelength
ray
counted
value
sample
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP58088674A
Other languages
Japanese (ja)
Inventor
Yoshiaki Ono
小野 芳章
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jeol Ltd
Original Assignee
Jeol Ltd
Nihon Denshi KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jeol Ltd, Nihon Denshi KK filed Critical Jeol Ltd
Priority to JP58088674A priority Critical patent/JPS59214743A/en
Publication of JPS59214743A publication Critical patent/JPS59214743A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N23/00Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00
    • G01N23/22Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by measuring secondary emission from the material
    • G01N23/225Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by measuring secondary emission from the material using electron or ion

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Analysing Materials By The Use Of Radiation (AREA)

Abstract

PURPOSE:To measure the peak strength excluding a background component in a short time, by multiplying a counted value at a wavelength in the vicinity of a wavelength selected by a spectroscope by a specified ratio, and subtracting the resultant value from the counted value of the detected pulses of an X-ray detector. CONSTITUTION:An X ray having a wavelength lambdao is selectively detected by an X-ray detector 8. Pulses are counted only during a time T. The X-rays generated from a sample 6 are simultaneously detected by a semiconductor detector 14 and counted at every energy region. An electronic computer 12 obtains a measured value Be' of a background expressed by the expression in the Figure from a wavelength-dispersed type X-ray spectroscope, based on the stored value. A counted ratio (f) and a counted time T at this time are multiplied. Thus, Bw= Be'fT, which is a background measured value converted by the wavelength-dispersed type X-ray spectroscope, is counted. By using the counted value N(lambdao), N(lambdao)-Be'fT is computed. The result is the peak strength excluding the background component at the wavelength lambdao.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は試おIに電子線を照射し、その際試料より発生
ずる〉(線を・分光してX線スヘ91〜ルを冑、試料を
分析づ−る装置に関づる。
[Detailed Description of the Invention] [Industrial Field of Application] The present invention involves irradiating a sample with an electron beam, and at the time, emitting electron beams from the sample. Related to equipment for analyzing samples.

[従来技術] X線ンイクロアナライザー等のX線分析装置におい−C
は、試料の微小領域に電子線を照OiJじ暑の際試料j
、り発生するX線を分光し′CX線スペク1ヘルを得て
いる。このようなX線分析択′0ゴは、波長分解能に優
れに波長分散型−1−ネルギー分(I7器と、波長分解
能は悪いが、分光結晶を機械的に移動して]ネルギー(
市川することなく分光1す能なエネルギー分散型X線分
光器とを(dlolえ゛(おり、目的に応じr +rL
i分光器を使い分けCいる1、このX線分析装置を用い
て、第1図に示り、L:)な例えば鉱(Fe)のにα線
のピークのり(のくバックグラウンド成分を除いた)強
α(を測定りる(Jは、通常、波長分解能に優れた1ネ
ルギ眸分j19型分光器を使用して以下のように1lj
ll定しくいる。即ち、この!くα線のピークの波長を
一λ0 でl< :lっ’l 4)のとづ−ると、まず
波長λ0を右りるX線のみをノF択的にX線検出器に導
く位置に分光結晶を移動して、この波長λ0の強度W(
λ0)を測定すると共に、ピークの両裾の波長λ0+Δ
λとλ0−Δλをm IR的に測定Jるための位置に分
光結晶を順次移動さ氾て、波長λ0+Δλとλ0−Δλ
における強度W(λ0−トΔλ)とW(λ0−Δλ)を
求め、次いでW(λ0)から20にお(ブるバックグラ
ウンドの兇秘値である BWcλ。)−J、w<入。+4入)十vJ(>−−4
χ))/2  ・ < 1 >を差し引くようにしてい
る。その1=め、従来においては、分光結晶の移動を3
回も行なって各位置で測定を行なわす()れば、ある波
長におけるバックグラウンド成分を除いたピ〜り強度を
測定することはできず、繁雑であり、時間を要した。
[Prior art] X-ray analyzer such as X-ray microanalyzer -C
When the sample is exposed to heat, the electron beam is irradiated onto a minute area of the sample.
The generated X-rays are spectrally analyzed to obtain the CX-ray spectrum. Such an X-ray analyzer has excellent wavelength resolution and wavelength-dispersive type -1-energy (I7 instrument), which has poor wavelength resolution, but mechanically moves the spectroscopic crystal] energy (
An energy dispersive X-ray spectrometer that can perform spectroscopy without
Using this X-ray spectrometer, we can detect the α-ray peak of mineral (Fe), as shown in Figure 1, by removing the background component. ) Strong α
I'm sure. In other words, this! If the peak wavelength of α-rays is one λ0, then l <:l'l 4). First, the position where only the X-rays having the wavelength λ0 are selectively guided to the X-ray detector is determined. The intensity W(
λ0) and the wavelength λ0+Δ of both tails of the peak.
The spectroscopic crystal was sequentially moved to the position for IR measurement of λ and λ0-Δλ, and the wavelengths λ0+Δλ and λ0-Δλ were measured.
Find the intensities W(λ0−Δλ) and W(λ0−Δλ) at , and then calculate from W(λ0) to 20 (BWcλ, which is the secret value of the background)−J, w<enter. +4 included) 10 vJ (>--4
χ))/2 ・<1> is subtracted. Part 1: In the past, the movement of the spectroscopic crystal was
If the measurement was repeated several times at each position, it was not possible to measure the pea intensity excluding the background component at a certain wavelength, which was complicated and time consuming.

[発明の目的] 本発明はこのような従来装置の欠点を解決し、短時間に
バックグラウンド成分を除い/jピーク強度を測定する
ことのできる装置を提供することを目的としている。
[Object of the Invention] An object of the present invention is to solve the drawbacks of the conventional apparatus and to provide an apparatus capable of removing background components and measuring peak intensity in a short time.

[発明の構成] 本発明は、試別に電子線を照tJA−する手段と、該電
子線の試別への照射によって′試料より発クリろX線の
うち特定波長成分のみを選択りるための分光■、晶ど、
該分光結晶を介してン9かれたX線を検出り−るための
X線検出器とより成る波長分散型X線分析器と、試料よ
り発生りるX線を:「ネルギーに応じて弁別して計数丈
るためのエネルギー分1)シ型X線分光器とをh;hえ
た装置にJ3い(、法会)Ic 1TI4によって)顎
択されl〔波長の近傍の波長におLJる前記エネルギー
分散型X線分光器のb1数伯に、一定比率を掛(プ合せ
た数値を、前記X線検出器の検出パルスの計数愉から引
綽Jるための1段を具(Ii5りることを特徴としてい
る。
[Structure of the Invention] The present invention provides a means for irradiating a sample with an electron beam, and a method for selecting only a specific wavelength component of X-rays emitted from a sample by irradiating the sample with an electron beam. The spectroscopy of ■、crystal、
A wavelength dispersive X-ray analyzer consists of an X-ray detector for detecting the X-rays emitted through the spectroscopic crystal, and a wavelength-dispersive X-ray analyzer that Separately, the energy required for counting 1) is added to a device equipped with an X-ray spectrometer. Multiply the b1 number of the energy-dispersive X-ray spectrometer by a certain ratio (Ii5). It is characterized by

[実施例] 以下、図面に基づき本発明の実施例を1.1′述する。[Example] Embodiments of the present invention will be described below with reference to the drawings.

。 本発明の一実施例を示1第2図において、1はX線分析
装置の筐体であり、この]ホ1内には電子銃2が配置さ
れている。電子銃2よりの電子線3はレンズ4,5によ
り細く絞られ(試料(ウレこ照射される。又、図示しく
いないがこの筐体1内には電子線偏向手段が配置され−
Cおり、電子線3の試料6土におりる黒用位置を任意に
選べるようになっている。7は電子線2の試料6への照
射によって、試別6より発生−4るxtMのうち特定の
波長のものだ番〕を選択してX線検出器8に導くための
分光結晶である。このX線検出器8によって検出されI
〔検出パルスは増幅器9により増幅された後、計数回路
10に供給され、この回路10においてタイマー11で
設定された時間だ【)計数される。
. In FIG. 1 showing an embodiment of the present invention, 1 is a housing of an X-ray analyzer, and an electron gun 2 is disposed inside this housing 1. As shown in FIG. The electron beam 3 from the electron gun 2 is narrowed down by lenses 4 and 5 (the sample is irradiated).Although not shown in the figure, an electron beam deflection means is disposed within the housing 1.
It is possible to arbitrarily select the black position where the electron beam 3 falls on the sample 6 soil. Reference numeral 7 denotes a spectroscopic crystal for selecting a specific wavelength of xtM generated from the sample 6 by irradiating the sample 6 with the electron beam 2 and guiding it to the X-ray detector 8. This X-ray detector 8 detects I
[After the detection pulse is amplified by the amplifier 9, it is supplied to the counting circuit 10, where it is counted for the time set by the timer 11].

この計数回路10よりの計数値信号は電子計算機12に
供給されている。13はスペクトルビークの強度を数値
表示したりスペクトル波形を表示するための表示装置C
ある。14は試料6より発生するX線を検出づるための
半導体検出器である。
The count signal from this counting circuit 10 is supplied to an electronic computer 12. 13 is a display device C for numerically displaying the intensity of the spectral peak and displaying the spectral waveform.
be. 14 is a semiconductor detector for detecting X-rays generated from the sample 6.

16はこの半導体検出器14を冷却するための冷却棒で
あり、15は冷却棒16を冷却するための冷媒を供給4
るデ7アーである。この半導体検出器14は入用するX
線のエネルギーに応じた波高値のパルスを発生り”る。
16 is a cooling rod for cooling the semiconductor detector 14, and 15 is a cooling rod 4 for supplying refrigerant for cooling the cooling rod 16.
It's a 7-a-day game. This semiconductor detector 14 is required
Generates a pulse with a peak value that corresponds to the energy of the line.

この検出パルスは、増幅器17を介してマルチチャンネ
ル波高分析器18に供給されている。このマルチチャン
ネル波高分析器18は半導体検出器14の出力パルスを
波1lLl値に応じて弁別してカラン1〜し、内R−d
るメモリーの各エネルギー領域に対応した’If jl
、!!(J、各−1ネルギー領域ごとのカラン1〜値を
記憶りる。このマルチチャンネル波高分析器18にt;
L、 iW+記タイ、ノー11より計測時間を指定する
ための4.:1. qが11(給されでいる。マルチチ
ャンネル波高分析器18の出力化ηは前記電子計算■1
2に供給eきるようになっている。
This detection pulse is supplied to a multichannel pulse height analyzer 18 via an amplifier 17. This multi-channel pulse height analyzer 18 discriminates the output pulses of the semiconductor detector 14 according to the wave 1lLl values and calculates the output pulses from 1 to 1.
'If jl corresponding to each energy region of the memory
,! ! (J, store values of 1 to 1 for each −1 energy region. In this multi-channel pulse height analyzer 18, t;
4. To specify the measurement time from L, iW+, No. 11. :1. q is 11 (supplied).The output η of the multichannel pulse height analyzer 18 is calculated by the electronic calculation 1
2 can be supplied.

このような構成において、まヂ分ソC結晶7を波長λ0
+Δλの測定位置に移動させ、(の際試わ16より発生
りるXI!i1をX線検出器F1により検出し、この検
出パルスを計数回路10においてタイン=11よりの制
御信号に基づいて所定詩間τh1故・]ることにより波
長λ0+Δλにお(りる検出強度W(20+Δλ)を求
め、このW(λO−1Δλ)(J対応する信号を電子計
算様12に供給づ−る。i)(!j:分光結晶7を波長
λ0−Δλの測定1)′/買に移動さ氾、波長λ0−Δ
λにJハブる強度W(λ0−△λ)を求めC1この強度
を表わ!I (P号を電子fit ′g+Il誉12(
こ供給でる。そこて゛、電子計算機12においては前K
[E第(1)式(Jうえられる波長分散型X線分光器で
求めたバックグラウンドBwを表わり値を陣出し、この
値をメUリ−に記憶づる。この測定と前後しCあるいは
同時に、半導体検出器14の出ツノパルスをマルチデシ
ンネル波高分析器18に供給しで、この分In器18に
おい(各−1ネルギー領1或こ′とにパルスをカラン1
〜りる。このr余、前記タイ:、/−iiの信号が分析
器18に供給されており、分析器18にお(プる7、1
1ウン1〜は、割数回路10にお1]る前記計故旧間τ
だ11行な4つれる。、、てこで、電子61算榔12よ
りマルチチャンネル波高分析器18に1」制御信号を供
給しく、この分析器18内のメモリーに記憶されている
波長;Ao+Δλ及びλ0 △λにおける旧数値[(λ
0+△λ)及び]:(λ0−△λ)を表わす信号を読み
出して電子ii’t I”;l 4幾12に供給覆る。
In such a configuration, the magnifying glass crystal 7 has a wavelength of λ0.
+Δλ measurement position, XI! The detection intensity W (20 + Δλ) at the wavelength λ0 + Δλ is obtained by calculating the wavelength λ0 + Δλ, and the signal corresponding to this W (λO−1Δλ) (J is supplied to the electronic calculator 12.i) (!j: Measurement of wavelength λ0-Δλ with spectroscopic crystal 7 1)'/Move to buy, wavelength λ0-Δ
Find the intensity W (λ0-△λ) that J hubs on λ and express this intensity C1! I (electronically fit the P issue 'g+Il Homare 12 (
This is supplied. Therefore, in the electronic computer 12,
[Expression (1) (J) Express the background Bw determined by the wavelength dispersive X-ray spectrometer, enter the value, and store this value in the memory. At the same time, the output horn pulses from the semiconductor detector 14 are supplied to the multi-de-sinnel wave height analyzer 18, and the output pulses from the semiconductor detector 14 are sent to the input device 18 (each -1 energy region 1).
~Rir. This r remainder, the above-mentioned tie:, /-ii signals are supplied to the analyzer 18;
1 un 1 ~ is the above-mentioned error interval τ in the divisor circuit 10
There are 11 lines and 4. ,, the electronic 61 calculation 12 supplies the multi-channel wave height analyzer 18 with a 1'' control signal, and the wavelengths stored in the memory of this analyzer 18; the old values at Ao + Δλ and λ0 Δλ λ
0+Δλ) and ]:(λ0−Δλ) are read out and supplied to the electrons ii't I'';l4 and 12.

電子泪算(幾12においては、以下の式で・うえられる
エネルギー分散型X線分光器C測定さ4またバックグラ
ウンド3eを算出して、該h1算機内のメモリーに記憶
づ−る。
In the electronic calculation (12), the energy dispersive X-ray spectrometer C measured by the following formula 4 and the background 3e are calculated and stored in the memory in the h1 calculator.

B、(χ。)=EE(入。寸乙入)中口(入。−6入)
)/2    −< 2 )更に電子hi算榔12 i
、k、パックブラウンl’ Heど先に記憶した波長分
散Jljj X練力光盟;にょ1〕測定したバックグラ
ウンドBwどのLス下の式て示(i lj位時間当りの
A’+故(Ejt亭[を棹出し、メモリー(J記憶する
。。
B, (χ.) = EE (Enter. Dimensions Entry) Middle Exit (Enter. -6 Entries)
)/2 −< 2) Furthermore, electronic hi calculation 12 i
, k, Pack-Brown l' He previously memorized wavelength dispersion Jljj Extract Ejt-tei and store it in memory.

r −(8w 、/3e ) X (1/τ)・・・に
〕)この、J、うにしく−庶「の値を算出して記憶した
後、ある試Vjlのdする分析点(Jお1jる鉄の1く
υ・!2のバックグラウンド成分分を除いたピーク強度
を測)t−。
r - (8w, /3e) Measure the peak intensity excluding the background component of 1 υ・! 2 of iron) t-.

りるに(・J、ま”す”、波長/ioのX線4−選択的
1.T検出し得る位置に分光結晶74・移動させ、X線
検出茄(3によ・りて検出されたパルスを一訓数回路’
I Oにおい乙、例えば時間Tたり計数する1、その結
果、31数回路′10により例えば計数飴N(λ0)が
計数されたとりる。この計数ll&N<20)を表わす
信号を電子計算1812に供給して記憶寸ろ3.又1.
−の時同時に試F316より発生したX線を半導体検出
器14にJ、・−)り−も検出1ノ、この検出パルスを
マルチチャンネル波高分4R器18により、エネルキー
藺域毎に81数する。そこで、電子計算機12は、マル
チチャンネル波高分析器18に制御信号を供給し、マル
チチャンネル波高分析器18によって時間下の間に計数
され、そのメモリーに記憶され−Cいる波長λ0+△λ
及びλ0−△λにお(ジる訓数値[ゝ(λ0+△λ)及
び[(λ0−△λ)を表わす信号を読み出して電子計算
機12に供給する。
Move the spectroscopic crystal 74 to a position where it can be detected, and the X-rays of wavelength/IO can be detected by A pulse is a number of circuits'
In I/O, for example, time T is counted, and as a result, for example, counting candy N(λ0) is counted by the 31 number circuit '10. A signal representing this count ll&N<20) is supplied to the electronic calculator 1812 to calculate the memory size. Also 1.
At the same time, the semiconductor detector 14 sends the X-rays generated by the test F316 to the semiconductor detector 14. The detection pulse is also detected by the multi-channel wave height 4R unit 18, and is counted 81 times for each energy key range. . There, the electronic computer 12 supplies a control signal to the multi-channel pulse height analyzer 18, and the wavelength λ0+Δλ counted by the multi-channel pulse height analyzer 18 over time and stored in its memory is -C.
and λ0-Δλ () Signals representing the numerical values [ゝ(λ0+Δλ) and [(λ0-Δλ) are read out and supplied to the electronic computer 12.

電子訓算ぼ12においては、これらの値に基づいて第〈
2)式で表わされるエネルギー分散型X線分光器による
バックグラウンドの測定値3e’ を求めると共に、こ
の求められた測定値Be′に予め記憶しであるfの値と
、この時の計数時間下とを掛は合せて、このバックグラ
ウンドの測定値を波長分散型X線分光器によるバックグ
ラウンド測定値に換算した値3w =3e’ f 丁を
算出する。
In electronic training program 12, based on these values, the
2) Determine the background measurement value 3e' by the energy dispersive X-ray spectrometer expressed by the formula, and add the value of f stored in advance to this determined measurement value Be' and the counting time period at this time. By multiplying these values together, a value 3w = 3e' f is calculated by converting this background measurement value into a background measurement value by a wavelength dispersive X-ray spectrometer.

更に、電子計算機12においては先に求めである計数値
N(λ0)を用いて N (2c ) −Be ’ f T−(4)を算出す
れば、これが求める波長λ0におけるバックグラウンド
成分を除いたピーク強度である。
Furthermore, in the electronic computer 12, if N (2c) -Be' f T- (4) is calculated using the calculated count value N(λ0) first, the background component at the desired wavelength λ0 is removed. is the peak intensity.

そこで、電子計算機12よりこの求められたR田を表わ
づ一信号を表示装置13に供給づれば、表示装置13に
は、バックブラウン1〜を除いた鉄のにα線のピーク強
度が表示される。
Therefore, when the computer 12 supplies a signal representing the obtained R field to the display device 13, the peak intensity of alpha rays is displayed on the display device 13, excluding the back brown 1~. Ru.

尚、上述した実施例は本発明の一実施例に過ぎず、実流
にあたっては幾多の他の態様を取り得る。
Note that the above-described embodiment is only one embodiment of the present invention, and many other embodiments may be adopted in actual use.

例えば、上述した実施例においては、トネルギー分散型
X線分光器によって求められたバックグラウンドの測定
値から波長分散へ1jX線分光器におけるバックグラウ
ンド」11定値を換算して求めるための8)り算や、第
〈4)式の引亦を電子計p機において実行するようにし
たが、これらの演紳を掛は算回路や、引算回路を股(プ
てハード的に措成づることもできる。
For example, in the above-mentioned embodiment, 8) Multiplication is performed to convert the background measured value obtained by the energy dispersive X-ray spectrometer into the wavelength dispersion by converting the constant value of 1j background in the X-ray spectrometer. In addition, we have attempted to execute the subtraction of equation (4) on an electronic computer, but these operations can also be implemented in hardware by using an arithmetic circuit or a subtraction circuit. can.

又、上述した実施例においては、バックグラウンド成分
の大きさを求める際にピークの山裾の強喰を測定して平
均値を求めるようにしたが、片ブフの裾における強度だ
(プを求めて一簡略的に実施づることもできる。
In addition, in the above embodiment, when determining the magnitude of the background component, the intensity at the base of the peak was measured and the average value was determined. It can also be implemented simply.

更に又、」−述した実施例にJシいては、釦、のにα線
ピークのバックグラウンド測定に対する換算係数rのみ
を予め測定して記憶するだりであったが、鉄のにβ線ピ
ークや他の元素のピークのバックグラウンド測定に対リ
−る換算係数を予め測定して記憶してJ3りぽ、バック
グラウンド成分を除いたこれらのピークの強電を測定す
る場合にも、本発明を同様に適用できる。
Furthermore, in the above-mentioned embodiment, only the conversion coefficient r for the background measurement of the α-ray peak of the button was measured and stored in advance, but for the β-ray peak of iron. The present invention can also be used when measuring the strong electric current of these peaks excluding the background components by measuring and storing in advance conversion factors for background measurements of peaks of other elements. The same applies.

[効果] 上述した説明から明らかなように、本発明によれば、−
葭波長分散型X線分光器によりバックグラウンド成分の
人込さを測定すれば、次の測定から、測定しようとする
ピーク波長にのみ分光結晶を移@するだけで、このピー
クのバックグラウンドを除いた強度を測定することがで
き、測定を簡単且つ短時間に行ない得る。
[Effect] As is clear from the above explanation, according to the present invention, -
If you measure the crowding of background components using the Yoshi wavelength dispersive The intensity can be measured easily and in a short time.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来技術を説明するための図、第2図は本発明
の一実施例を示すための図である。 1:筐体、2:電子銃、3:電子線、4,5:レンズ、
6:試料、7:分光結晶、8:X線検出器、9.17:
増幅器、’ 10 :4数1jjl路、11:タイマー
、12:電子計1機、13:表示装[,14:半導体検
出器、15:デコアー、16:冷却棒、18:マル(−
fvンネル波16分析器。 特許出願人 1−1木電了株式会君 代表者 伊11)−夫
FIG. 1 is a diagram for explaining the prior art, and FIG. 2 is a diagram for showing an embodiment of the present invention. 1: Housing, 2: Electron gun, 3: Electron beam, 4, 5: Lens,
6: Sample, 7: Spectroscopic crystal, 8: X-ray detector, 9.17:
Amplifier, ' 10: 4 number 1jjl path, 11: Timer, 12: 1 electronic meter, 13: Display [, 14: Semiconductor detector, 15: Decore, 16: Cooling rod, 18: Maru (-
fv channel wave 16 analyzer. Patent Applicant 1-1 Kiden Ryo Co., Ltd. Representative I11) - Husband

Claims (1)

【特許請求の範囲】[Claims] 試料に電子線を照射(る手段と、該電子線の試お1への
照qjによっ−C試お1より発生りるX線のうち特定波
長成分のみを選択するための分光結晶と、該分光結晶を
介して導かれたX線を検出器るためのX線検出器どより
成る波長分散型X線分析器と、試料より5R:/:′f
、りるX線をエネルギーに応じて弁別して計数り−るた
めの−「ネルギー分散型X線分光器とを備えた装置に(
13いて、該分光器によって選択された波長の近(ブj
の波長にお(する前記エネルギー分散型X線分光器の計
数値に、一定比率を掛り合せた数値を、前記X線検出器
の検出パルスの計数値から引算り−るための手段を貝伽
σることを特徴どりるX線分析装置。
means for irradiating a sample with an electron beam; a spectroscopic crystal for selecting only a specific wavelength component of the X-rays generated from the sample 1 by irradiating the sample 1 with the electron beam; A wavelength-dispersive X-ray analyzer consisting of an X-ray detector for detecting the X-rays guided through the spectroscopic crystal, and 5R:/:'f from the sample.
In order to distinguish and count the radioactive X-rays according to their energies, an apparatus equipped with an energy dispersive X-ray spectrometer
13, near the wavelength selected by the spectrometer (bj
Means for subtracting a value obtained by multiplying the count value of the energy dispersive X-ray spectrometer by a fixed ratio from the count value of the detected pulses of the X-ray detector is provided. An X-ray analyzer that is characterized by its unique characteristics.
JP58088674A 1983-05-20 1983-05-20 X-ray analyzing apparatus Pending JPS59214743A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58088674A JPS59214743A (en) 1983-05-20 1983-05-20 X-ray analyzing apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58088674A JPS59214743A (en) 1983-05-20 1983-05-20 X-ray analyzing apparatus

Publications (1)

Publication Number Publication Date
JPS59214743A true JPS59214743A (en) 1984-12-04

Family

ID=13949366

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58088674A Pending JPS59214743A (en) 1983-05-20 1983-05-20 X-ray analyzing apparatus

Country Status (1)

Country Link
JP (1) JPS59214743A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1997006430A1 (en) * 1995-08-09 1997-02-20 Asahi Kasei Kogyo Kabushiki Kaisha Method and apparatus for total reflection x-ray fluorescence spectroscopy
JP2002357571A (en) * 2001-05-31 2002-12-13 Rigaku Industrial Co Wavelength dispersion type fluorescent x-ray analysis apparatus
WO2003054531A1 (en) * 2001-12-20 2003-07-03 Koninklijke Philips Electronics N.V. A method of determining the background corrected counts of radiation quanta in an x-ray energy spectrum
JP2008122267A (en) * 2006-11-14 2008-05-29 Jeol Ltd Sample analyzing method and sample analyzing apparatus
WO2018101133A1 (en) * 2016-12-01 2018-06-07 株式会社リガク X-ray fluorescence analyzer
WO2018100873A1 (en) * 2016-12-01 2018-06-07 株式会社リガク X-ray fluorescence analyzer

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1997006430A1 (en) * 1995-08-09 1997-02-20 Asahi Kasei Kogyo Kabushiki Kaisha Method and apparatus for total reflection x-ray fluorescence spectroscopy
US6041096A (en) * 1995-08-09 2000-03-21 Asahi Kasei Kogyo Kabushiki Kaisha Method and apparatus for total reflection X-ray fluorescence spectroscopy
JP2002357571A (en) * 2001-05-31 2002-12-13 Rigaku Industrial Co Wavelength dispersion type fluorescent x-ray analysis apparatus
WO2003054531A1 (en) * 2001-12-20 2003-07-03 Koninklijke Philips Electronics N.V. A method of determining the background corrected counts of radiation quanta in an x-ray energy spectrum
JP2008122267A (en) * 2006-11-14 2008-05-29 Jeol Ltd Sample analyzing method and sample analyzing apparatus
US7579591B2 (en) 2006-11-14 2009-08-25 Jeol Ltd. Method and apparatus for analyzing sample
WO2018101133A1 (en) * 2016-12-01 2018-06-07 株式会社リガク X-ray fluorescence analyzer
WO2018100873A1 (en) * 2016-12-01 2018-06-07 株式会社リガク X-ray fluorescence analyzer
JPWO2018101133A1 (en) * 2016-12-01 2018-11-29 株式会社リガク X-ray fluorescence analyzer
CN110088603A (en) * 2016-12-01 2019-08-02 株式会社理学 Fluorescent x-ray analyzer
US10514346B2 (en) 2016-12-01 2019-12-24 Rigaku Corporation X-ray fluorescence spectrometer

Similar Documents

Publication Publication Date Title
US4189645A (en) X-ray measuring system
US10613043B2 (en) Method and apparatus for sample analysis
GB1525488A (en) Method and apparatus for spectrometric analysis of fine grained minerals and other substances using an electron bea
GB1560970A (en) On-line system for monitoring sheet material additives
Birks et al. Use of a Multichannel Analyzer for Electron Probe Microanalysis.
JPS59214743A (en) X-ray analyzing apparatus
Leitner et al. The CoESCA station at BESSY: Auger electron–photoelectron coincidences from surfaces demonstrated for Ag MNN
Seah Quantitative AES and XPS: convergence between theory and experimental databases
Singh et al. Energy and intensity distributions of multiple Compton scattering of 0.279-, 0.662-, and 1.12− MeV γ rays
US4962516A (en) Method and apparatus for state analysis
US5428656A (en) Apparatus and method for fluorescent x-ray analysis of light and heavy elements
JP2928688B2 (en) Pollution element analysis method and device
CN114641687B (en) Fluorescent X-ray analyzer
JP2000283933A (en) Fluorescent x-ray analyzer
JP3291251B2 (en) X-ray fluorescence analyzer
JPH0247542A (en) Quantitative analysis using x-ray spectroscope
Heinrich Instrumental developments for electron microprobe readout
JP4279983B2 (en) X-ray fluorescence analyzer
JP2009074954A (en) Fluorescent x-ray analyzer and program used therein
WO2024005006A1 (en) Thickness measurement method, x-ray analysis device, information processing device, and computer program
JP4486438B2 (en) X-ray analyzer with wave height distribution display function
JPS6170444A (en) Concentration analyzing method in electron ray micro-analysis instrument
JP2645226B2 (en) X-ray fluorescence analysis method
JPS58196446A (en) Analysis employing x-rays microanalyzer
JP2645227B2 (en) X-ray fluorescence analysis method