JP2000097885A - Fluorescence x-ray analyzing method, and fluorescence x-ray analyzer - Google Patents

Fluorescence x-ray analyzing method, and fluorescence x-ray analyzer

Info

Publication number
JP2000097885A
JP2000097885A JP11196153A JP19615399A JP2000097885A JP 2000097885 A JP2000097885 A JP 2000097885A JP 11196153 A JP11196153 A JP 11196153A JP 19615399 A JP19615399 A JP 19615399A JP 2000097885 A JP2000097885 A JP 2000097885A
Authority
JP
Japan
Prior art keywords
intensity
sample
component
measured
fluorescent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP11196153A
Other languages
Japanese (ja)
Other versions
JP3331192B2 (en
Inventor
Yoshiyuki Kataoka
由行 片岡
Naoki Kawahara
直樹 河原
Takashi Matsuo
尚 松尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Rigaku Corp
Original Assignee
Rigaku Industrial Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Rigaku Industrial Corp filed Critical Rigaku Industrial Corp
Priority to JP19615399A priority Critical patent/JP3331192B2/en
Publication of JP2000097885A publication Critical patent/JP2000097885A/en
Application granted granted Critical
Publication of JP3331192B2 publication Critical patent/JP3331192B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Analysing Materials By The Use Of Radiation (AREA)

Abstract

PROBLEM TO BE SOLVED: To allow an accurate overlap correction using an overlap correcting coefficient independent from analyzer sensitivity and a sample composition in an FP(fundamental parameter) method or the like. SOLUTION: In an FP method, measured intensity relating to each component in a sample is converted at first into a theoretical intensity scale to provide converted intensity, using as a disturbance ray a fluorescent X-ray having a spectrum of which at least one portion is overlapped with a spectrum of a measured X-ray. The converted intensity is corrected to provide intensity based on the measured intensity using theoretical intensity of the disturbance ray calculated while assuming at least one of a thickness and a containing rate of each component in the sample, to be compared with the theoretical intensity in each component.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、試料からの蛍光X
線の測定強度に基づき、蛍光X線について計算される理
論強度を利用して、試料における各成分の含有率等を求
める蛍光X線分析方法および装置に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to fluorescence X from a sample.
The present invention relates to a fluorescent X-ray analysis method and apparatus for obtaining the content of each component in a sample and the like using theoretical intensity calculated for fluorescent X-rays based on the measured intensity of the X-ray.

【0002】[0002]

【従来の技術】従来より、試料からの蛍光X線の測定強
度に基づいて、試料における各成分(元素)の含有率等
を求める蛍光X線分析方法のひとつに、いわゆるファン
ダメンタルパラメータ法(以下、FP法という)があ
る。このFP法で例えば各成分の含有率を求める場合に
は、試料に1次X線を照射して発生した各成分の蛍光X
線の測定強度に基づく強度と、試料における各成分の含
有率を仮定して計算した各成分の蛍光X線の理論強度と
を用い、両強度が一致するように、前記仮定した各成分
の含有率を逐次近似的に修正計算して、各成分の含有率
を算出する。
2. Description of the Related Art Conventionally, one of the so-called fundamental parameter methods (hereinafter, referred to as the "parameter method") is one of the fluorescent X-ray analysis methods for obtaining the content of each component (element) in a sample based on the measured intensity of the fluorescent X-ray from the sample. FP method). For example, when the content of each component is determined by the FP method, the fluorescent X of each component generated by irradiating the sample with primary X-rays is used.
Using the intensity based on the measured intensity of the line and the theoretical intensity of the fluorescent X-ray of each component calculated assuming the content of each component in the sample, the content of each of the assumed components is adjusted so that both intensities coincide. The ratio is corrected by successive approximation to calculate the content of each component.

【0003】さて、試料中の各成分から発生する蛍光X
線そのものは、波長(またはエネルギー)において拡が
りのないものであるが、分析装置の分解能の関係で、測
定される蛍光X線は、波長(またはエネルギー)におい
てある程度拡がりを有する。このような蛍光X線の測定
結果(強度と波長またはエネルギーとの関係)をスペク
トルという。ここで、例えば、測定されるべき蛍光X線
Cu −Kα線に対し、Ni −Kβ1 線が妨害線としてス
ペクトルの一部において重なる場合がある。このような
妨害線の影響を除去するために、従来は、特開平10−
123071号に示されるように、次式(1)を用い
て、重なり補正をしていた。
Now, the fluorescence X generated from each component in the sample
The line itself does not spread in wavelength (or energy), but due to the resolution of the analyzer, the measured fluorescent X-ray has some spread in wavelength (or energy). Such a fluorescent X-ray measurement result (relation between intensity and wavelength or energy) is called a spectrum. Here, for example, there is a case where the Ni-Kβ1 line overlaps with a part of the spectrum as an interference line with the fluorescent X-ray Cu-Kα line to be measured. Conventionally, in order to remove the influence of such an interference line, Japanese Patent Laid-Open No.
As shown in No. 123071, overlap correction was performed using the following equation (1).

【0004】 Ci =Ii −Σ 1γik Tk …(1)[0004] C I i = I i -Σ 1 γ ik T I k ... (1)

【0005】ここで、 Ci は、成分kによる妨害線の
理論強度 Tk および重なり補正係数 1γikを用いて、
成分iについての測定強度Ii を補正した重なり補正強
度である。そして、例えば次式(2)を用いて、この重
なり補正強度 Ci を理論強度スケールに換算し、その
換算強度CSi を前記測定強度に基づく強度として、理
論強度 Ti と比較していた。なお、Iの左肩の添字 C
は重なり補正された強度であること、 Tは理論強度であ
ること、 Sは理論強度スケールに換算された強度である
ことを示し、CSは重なり補正された後理論強度スケール
に換算された強度であることを示す。また、重なり補正
係数γの左肩には、種類の異なる重なり補正係数を区別
するために種類ごとに異なる数字を添字として付してい
る。
[0005] Here, C I i, using the theoretical strength T I k and the overlap correction coefficient 1 gamma ik interference line according to component k,
Is a correction intensity overlap was corrected measured intensity I i of the component i. Then, for example, using the following equation (2), and converting the overlapping correction intensity C I i to the theoretical intensity scale, as intensity based the converted intensity CS I i the measured intensity, compared with the theoretical strength T I i I was The subscript C of the left shoulder of I
Indicates that the intensity is the overlap-corrected intensity, T indicates the theoretical intensity, S indicates the intensity converted to the theoretical intensity scale, and CS indicates the intensity converted to the theoretical intensity scale after the overlap correction. Indicates that there is. Also, different numbers are added as subscripts to the left shoulder of the overlap correction coefficient γ to distinguish different types of overlap correction coefficients.

【0006】CSi =ai Ci 2 +bi Ci +ci …(2) CS I i = a i C i i 2 + b i C i i + c i (2)

【0007】ところが、このような方法では、式(1)
において、理論強度スケールである妨害線の理論強度 T
k に重なり補正係数 1γikを乗じて、測定強度スケー
ルである測定強度Ii を補正するので、重なり補正係数
1γikが用いる装置の感度に依存することになり、装置
ごとに重なり補正係数 1γikを求めない限り正確な重な
り補正ができない。
However, in such a method, equation (1)
In the theoretical intensity scale, the theoretical intensity T of the disturbance line
Since I k is multiplied by an overlap correction coefficient 1 γ ik to correct the measurement intensity I i , which is a measurement intensity scale, the overlap correction coefficient
Will depend on the sensitivity of 1 gamma ik is used apparatus can not accurately overlap correction unless seek correction coefficient 1 gamma ik overlap each device.

【0008】また、従来より、試料からの蛍光X線の測
定強度に基づいて、試料における各成分の含有率を求め
る他の方法に、いわゆるセミファンダメンタルパラメー
タ法(以下、SFP法という)がある。このSFP法で
は、組成を仮定した複数の試料から発生すべき蛍光X線
の理論強度を計算し、その理論強度に基づいて蛍光X線
の吸収および励起に関する理論マトリックス補正定数を
計算し、その理論マトリックス補正定数を用いて補正し
た検量線を、試料中の各成分から発生する蛍光X線の測
定強度に適用して、各成分の含有率を求める。すなわ
ち、SFP法は検量線法に属するが、通常の検量線法で
は分析対象の試料に対応した標準試料を用いてマトリッ
クス補正定数を実験的に求めるところ、前記FP法を用
いて蛍光X線の理論強度を計算しひいては理論マトリッ
クス補正定数を計算して求める方法である。このSFP
法において、妨害線の影響を除去する場合には、従来
は、次式(3)で示される検量線を用いて、重なり補正
をしていた。
Further, conventionally, there is a so-called semi-fundamental parameter method (hereinafter referred to as an SFP method) as another method for obtaining the content of each component in a sample based on the measured intensity of fluorescent X-rays from the sample. In this SFP method, the theoretical intensity of fluorescent X-rays to be generated from a plurality of samples whose composition is assumed is calculated, and a theoretical matrix correction constant for absorption and excitation of fluorescent X-rays is calculated based on the theoretical intensity. The calibration curve corrected using the matrix correction constant is applied to the measured intensity of the fluorescent X-ray generated from each component in the sample to determine the content of each component. That is, although the SFP method belongs to the calibration curve method, the matrix correction constant is experimentally obtained by using the standard sample corresponding to the sample to be analyzed in the normal calibration curve method, and the fluorescent X-ray is obtained using the FP method. This is a method of calculating the theoretical strength and eventually calculating the theoretical matrix correction constant. This SFP
In the method, when the influence of the interference line is removed, the overlap correction has been conventionally performed using a calibration curve represented by the following equation (3).

【0009】 Wi =(ai i 2 +bi i +ci )(1+Σαijj )−Σ 2γikk …(3)[0009] W i = (a i I i 2 + b i I i + c i) (1 + Σα ij W j) -Σ 2 γ ik W k ... (3)

【0010】すなわち、妨害線を発生する各成分kの含
有率Wk に関する1次式 2γikkを用いて重なり補正
した検量線を適用して、試料における各成分iの含有率
iを求めていた。ここで、Ii は各蛍光X線として測
定された強度、ai ,bi ,ci は検量線定数、Σαij
j は共存元素についてのいわゆるマトリックス補正
項、αijは理論マトリックス補正定数、 2γikは重なり
補正係数である。重なり補正項を 2γikk としたの
は、妨害成分kによる妨害線の測定すべき蛍光X線への
重なりの影響が、妨害成分kの含有率Wk に比例すると
の前提による。しかし、後述するように、厳密にはこの
前提は正しいとはいえず、この重なり補正係数 2γ
ikは、試料の組成に依存して定数とならないので、試料
の品種ごとに求めない限り正確な重なり補正ができな
い。
[0010] That is, by applying the calibration curve overlap corrected by using the first-order equation 2 gamma ik W k relating to content W k of each component k to generate interference lines, content W i of each component i in the sample I was seeking. Here, I i is the intensity measured as each fluorescent X-ray, a i , b i , and c i are calibration curve constants, Σα ij
W j is the so-called matrix correction term, alpha ij theory matrix correction constant, 2 gamma ik overlap correction coefficient for coexisting elements. Was a 2 gamma ik W k correction terms overlap, according to the preamble of the influence of the overlapping of the fluorescent X-ray to be measured of the disturbing lines by interfering components k is proportional to the content of W k interfering components k. However, as will be described later, this assumption is not strictly correct, and the overlap correction coefficient 2 γ
Since ik does not become a constant depending on the composition of the sample, accurate overlap correction cannot be performed unless it is obtained for each sample type.

【0011】また、前記特開平10−123071号に
示されるように、SFP法において、次式(4)および
前式(1)で示される検量線を用いて、重なり補正をす
ることも考えられる。
Further, as disclosed in the above-mentioned Japanese Patent Application Laid-Open No. 10-123071, it is conceivable to correct the overlap by using the calibration curve represented by the following equation (4) and the previous equation (1) in the SFP method. .

【0012】 Wi =(ai Ci 2 +bi Ci +ci )(1+Σαijj ) …(4)W i = (a i C i 2 + b i C i i + c i ) (1 + Σα ij W j ) (4)

【0013】 Ci =Ii −Σ 1γik Tk …(1) C I i = I i −Σ 1 γ ik T I k (1)

【0014】しかし、この場合は、式(1)を用いるの
で、前述した従来のFP法の重なり補正と同様に、重な
り補正係数 1γikが用いる装置の感度に依存することに
なり、装置ごとに重なり補正係数 1γikを求めない限り
正確な重なり補正ができない。
However, in this case, since equation (1) is used, the overlap correction coefficient 1 γ ik depends on the sensitivity of the device used, as in the above-described overlap correction of the conventional FP method. It fails to accurately overlap correction unless seek correction coefficient 1 gamma ik overlap.

【0015】[0015]

【発明が解決しようとする課題】すなわち、従来のFP
法やSFP法における重なり補正では、重なり補正係数
が装置感度や試料の組成に依存するので、装置ごとまた
は試料の品種ごとに重なり補正係数を求めない限り正確
な重なり補正ができない。
That is, the conventional FP
In the overlap correction in the method and the SFP method, since the overlap correction coefficient depends on the sensitivity of the apparatus and the composition of the sample, accurate overlap correction cannot be performed unless the overlap correction coefficient is obtained for each apparatus or each type of sample.

【0016】本発明は前記従来の問題に鑑みてなされた
もので、試料からの蛍光X線の測定強度に基づき、蛍光
X線について計算される理論強度を利用して、試料にお
ける各成分の含有率等を求める蛍光X線分析方法および
装置において、装置感度や試料の組成に依存しない重な
り補正係数を用いて、正確な重なり補正のできる蛍光X
線分析方法および装置を提供することを目的とする。
The present invention has been made in view of the above-mentioned conventional problems, and based on the measured intensity of fluorescent X-rays from a sample, utilizing the theoretical intensity calculated for the fluorescent X-rays, the content of each component in the sample. In an X-ray fluorescence analysis method and apparatus for determining a ratio, etc., an X-ray fluorescence which can be accurately overlap-corrected by using an overlap correction coefficient independent of apparatus sensitivity and sample composition.
An object of the present invention is to provide a line analysis method and apparatus.

【0017】[0017]

【課題を解決するための手段】前記目的を達成するため
に、請求項1の蛍光X線分析方法では、いわゆるFP法
において、測定されるべき蛍光X線のスペクトルと少な
くとも一部が重複するスペクトルを有する蛍光X線を妨
害線とし、試料中の各成分についての測定強度をまず理
論強度スケールに換算して換算強度とする。そして、試
料における厚さまたは各成分の含有率の少なくとも一方
を仮定して計算した前記妨害線の理論強度を用いて、前
記換算強度を補正して測定強度に基づく強度とし、各成
分ごとに理論強度と比較する。
In order to achieve the above-mentioned object, according to the X-ray fluorescence analysis method of the first aspect, in the so-called FP method, the spectrum which at least partially overlaps with the spectrum of the X-ray fluorescence to be measured. Is used as an interference line, and the measured intensity of each component in the sample is first converted to a theoretical intensity scale to obtain a converted intensity. Then, using the theoretical intensity of the disturbing line calculated assuming at least one of the thickness and the content of each component in the sample, the converted intensity is corrected to an intensity based on the measured intensity, and a theoretical value is obtained for each component. Compare with strength.

【0018】請求項1の方法によれば、FP法におい
て、測定強度を理論強度スケールに換算した換算強度
を、理論強度スケールである妨害線の理論強度で補正す
るので、装置感度に依存しない重なり補正係数を用いて
正確な重なり補正ができる。
According to the method of the first aspect, in the FP method, the converted intensity obtained by converting the measured intensity to the theoretical intensity scale is corrected by the theoretical intensity of the disturbing line, which is the theoretical intensity scale. Accurate overlap correction can be performed using the correction coefficient.

【0019】請求項2の蛍光X線分析方法では、前記換
算強度の補正にあたり、前記厚さまたは各成分の含有率
の少なくとも一方を仮定して計算した前記妨害線の理論
強度もしくは前記妨害線と同一系列で波長の近接する蛍
光X線の理論強度を用いる点において、前記請求項1の
方法と異なる。
In the X-ray fluorescence analysis method according to the second aspect, in correcting the converted intensity, the theoretical intensity of the interference line or the interference intensity calculated based on at least one of the thickness and the content of each component is assumed. The method differs from the method according to claim 1 in that the theoretical intensity of fluorescent X-rays having similar wavelengths in the same series is used.

【0020】請求項2の方法によれば、妨害線の理論強
度またはそれら妨害線と同一系列で波長の近接する蛍光
X線の理論強度を用いて換算強度を補正するので、妨害
線について理論強度を計算するための定数が用意されて
いないような場合にも、装置感度に依存しない重なり補
正係数を用いて正確な重なり補正ができる。
According to the method of claim 2, the converted intensity is corrected by using the theoretical intensity of the disturbing line or the theoretical intensity of the fluorescent X-ray having the same system as the disturbing line and having a wavelength close to the disturbing line. In the case where a constant for calculating is not prepared, an accurate overlap correction can be performed using an overlap correction coefficient independent of the apparatus sensitivity.

【0021】請求項3の蛍光X線分析方法では、いわゆ
るSFP法において、測定されるべき蛍光X線のスペク
トルと少なくとも一部が重複するスペクトルを有する蛍
光X線を妨害線とし、検量線を求めるにあたり、測定さ
れるべき蛍光X線に対する妨害線の影響を理論マトリッ
クス補正定数を用いて補正する。
According to the X-ray fluorescence analysis method of the present invention, in the so-called SFP method, a calibration curve is obtained by using X-ray fluorescence having a spectrum at least partially overlapping the spectrum of the X-ray fluorescence to be measured as an interference line. In this case, the influence of the interference line on the fluorescent X-rays to be measured is corrected using a theoretical matrix correction constant.

【0022】請求項3の方法によれば、SFP法におい
て、検量線を求めるにあたり、測定されるべき蛍光X線
に対する妨害線の影響を、厳密に理論マトリックス補正
定数を用いて補正するので、装置感度や試料の組成に依
存しない重なり補正係数を用いて正確な重なり補正がで
きる。
According to the method of the third aspect, in the SFP method, when obtaining a calibration curve, the influence of the interference line on the fluorescent X-ray to be measured is corrected strictly using the theoretical matrix correction constant. Accurate overlap correction can be performed using an overlap correction coefficient that does not depend on sensitivity or sample composition.

【0023】請求項4の蛍光X線分析装置は、請求項1
の方法に用いられる装置であって、まず、試料にX線源
から1次X線を照射させ、試料中の各成分から発生する
蛍光X線の強度を検出手段に測定させ、それら測定強度
を記憶する測定手段を備えている。また、この測定手段
に記憶された測定強度に基づく強度と、試料における厚
さまたは各成分の含有率の少なくとも一方を仮定して計
算した各成分の蛍光X線の理論強度とを用い、両強度が
一致するように、前記仮定した厚さまたは各成分の含有
率を逐次近似的に修正計算して、前記厚さまたは各成分
の含有率の少なくとも一方を算出する算出手段を備えて
いる。
According to a fourth aspect of the present invention, there is provided an X-ray fluorescence analyzer.
First, a sample is irradiated with primary X-rays from an X-ray source, the intensity of fluorescent X-rays generated from each component in the sample is measured by a detection means, and the measured intensities are measured. There is a measuring means for storing. Further, the intensity based on the measured intensity stored in the measuring means and the theoretical intensity of the fluorescent X-ray of each component calculated by assuming at least one of the thickness in the sample and the content of each component are used. Calculating means for sequentially and approximately correcting and calculating the assumed thickness or the content of each component so as to match, and calculating at least one of the thickness or the content of each component.

【0024】ここで、この算出手段は、測定されるべき
蛍光X線のスペクトルと少なくとも一部が重複するスペ
クトルを有する蛍光X線を妨害線とし、前記測定手段に
記憶された測定強度を理論強度スケールに換算して換算
強度とし、前記厚さまたは各成分の含有率の少なくとも
一方を仮定して計算した前記妨害線の理論強度を用い
て、前記換算強度を補正して前記測定強度に基づく強度
とする。請求項4の装置によっても、請求項1の方法と
同様の作用効果が得られる。
Here, the calculating means uses the fluorescent X-ray having a spectrum at least partially overlapping with the spectrum of the fluorescent X-ray to be measured as an interference line, and uses the measured intensity stored in the measuring means as the theoretical intensity. Converted to a scale and converted intensity, using the theoretical intensity of the disturbing line calculated assuming at least one of the thickness or the content of each component, the intensity based on the measured intensity by correcting the converted intensity And According to the device of the fourth aspect, the same operation and effect as those of the method of the first aspect can be obtained.

【0025】請求項5の蛍光X線分析装置は、請求項2
の方法に用いられる装置であって、前記算出手段におけ
る換算強度の補正にあたり、前記厚さまたは各成分の含
有率の少なくとも一方を仮定して計算した前記妨害線の
理論強度もしくは前記妨害線と同一系列で波長の近接す
る蛍光X線の理論強度を用いる点において、前記請求項
4の装置と異なる。請求項5の装置によっても、請求項
2の方法と同様の作用効果が得られる。
According to a fifth aspect of the present invention, there is provided an X-ray fluorescence analyzer.
Wherein the correction means corrects the converted intensity in the calculation means, and calculates the theoretical intensity of the disturbing line or the same as the disturbing line calculated assuming at least one of the thickness and the content of each component. It differs from the device according to claim 4 in that the theoretical intensity of fluorescent X-rays whose wavelengths are close in series is used. According to the device of the fifth aspect, the same operation and effect as the method of the second aspect can be obtained.

【0026】請求項6の蛍光X線分析装置は、請求項3
の方法に用いられる装置であって、まず、組成を仮定し
た複数の試料から発生すべき蛍光X線の理論強度に基づ
いて計算された、蛍光X線の吸収および励起に関する理
論マトリックス補正定数を記憶する補正定数記憶手段を
備えている。また、組成が既知で相異なる複数の標準試
料中の各成分から発生して測定された蛍光X線の測定強
度と、標準試料における成分の含有率との相関関係とし
て、各成分ごとに、前記理論マトリックス補正定数を用
いて補正してあらかじめ求められた検量線を記憶する検
量線記憶手段を備えている。
[0026] The X-ray fluorescence spectrometer according to the sixth aspect is the third aspect.
An apparatus used in the method of (1), which first stores a theoretical matrix correction constant for absorption and excitation of fluorescent X-rays calculated based on the theoretical intensity of fluorescent X-rays to be generated from a plurality of samples whose composition is assumed. Correction constant storage means for performing the correction. Further, as a correlation between the measured intensity of the fluorescent X-rays generated and measured from each component in a plurality of different standard samples having a known composition, the content of the component in the standard sample, for each component, There is provided a calibration curve storage means for storing a calibration curve previously obtained by correction using a theoretical matrix correction constant.

【0027】さらに、試料に前記X線源から1次X線を
照射させ、試料中の各成分から発生する蛍光X線の強度
を前記検出手段に測定させ、それら測定強度を記憶する
測定手段を備えている。さらにまた、前記測定手段に記
憶された測定強度に前記検量線を適用して、試料におけ
る各成分の含有率を求める検量線適用手段を備えてい
る。ここで、前記検量線記憶手段に記憶される検量線
は、測定されるべき蛍光X線のスペクトルと少なくとも
一部が重複するスペクトルを有する蛍光X線を妨害線と
し、測定されるべき蛍光X線に対する妨害線の影響が前
記理論マトリックス補正定数を用いて補正されたもので
ある。請求項6の装置によっても、請求項3の方法と同
様の作用効果が得られる。
Further, a measuring means for irradiating a sample with primary X-rays from the X-ray source, causing the detecting means to measure the intensity of fluorescent X-rays generated from each component in the sample, and storing the measured intensities. Have. Still further, there is provided a calibration curve applying means for applying the calibration curve to the measured intensity stored in the measuring means to determine the content of each component in the sample. Here, the calibration curve stored in the calibration curve storage means is a fluorescence X-ray having a spectrum that at least partially overlaps the spectrum of the fluorescent X-ray to be measured, and the fluorescence X-ray to be measured. Is corrected using the theoretical matrix correction constant. According to the device of the sixth aspect, the same operation and effect as the method of the third aspect can be obtained.

【0028】[0028]

【発明の実施の形態】以下、本発明の第1実施形態の方
法について説明する。まず、この方法に用いる装置につ
いて、図1にしたがって説明する。この装置は、まず、
試料13が固定される試料台8と、試料13に1次X線
2を照射するX線源1と、試料13から発生する蛍光X
線6の強度を測定する検出手段10とを備えている。検
出手段10は、試料13から発生した2次X線4を分光
する分光器5と、分光器5で分光された蛍光X線6ごと
にその強度を測定する検出器7からなる。また、この装
置は、以下の測定手段12および算出手段16を含む制
御手段17を備えている。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, a method according to a first embodiment of the present invention will be described. First, an apparatus used in this method will be described with reference to FIG. This device, first,
A sample stage 8 on which the sample 13 is fixed, an X-ray source 1 for irradiating the sample 13 with primary X-rays 2, and a fluorescent X-ray generated from the sample 13
Detecting means 10 for measuring the intensity of the line 6. The detecting means 10 includes a spectroscope 5 for separating the secondary X-rays 4 generated from the sample 13 and a detector 7 for measuring the intensity of each fluorescent X-ray 6 separated by the spectrometer 5. Further, the apparatus includes a control unit 17 including the following measurement unit 12 and calculation unit 16.

【0029】前記測定手段12は、試料13にX線源1
から1次X線2を照射させ、試料13中の各成分から発
生する蛍光X線6の強度を検出手段10に測定させ、そ
れら測定強度を記憶する。前記算出手段16は、測定手
段12に記憶された測定強度に基づく強度と、試料13
における厚さまたは各成分の含有率の少なくとも一方を
仮定して計算した各成分の蛍光X線の理論強度とを用
い、両強度が一致するように、前記仮定した厚さまたは
各成分の含有率を逐次近似的に修正計算して、前記厚さ
または各成分の含有率の少なくとも一方を算出する。こ
こで、算出手段16は、測定されるべき蛍光X線のスペ
クトルと少なくとも一部が重複するスペクトルを有する
蛍光X線を妨害線とし、測定手段12に記憶された測定
強度を理論強度スケールに換算して換算強度とし、前記
厚さまたは各成分の含有率の少なくとも一方を仮定して
計算した妨害線の理論強度を用いて、換算強度を補正し
て前記測定強度に基づく強度とする。
The measuring means 12 applies the X-ray source 1 to the sample 13.
Irradiates the primary X-rays 2 from the sample, causes the detecting means 10 to measure the intensity of the fluorescent X-rays 6 generated from each component in the sample 13, and stores the measured intensities. The calculating means 16 calculates the intensity based on the measured intensity stored in the measuring means 12 and the sample 13
And the theoretical intensity of the fluorescent X-ray of each component calculated assuming at least one of the thickness or the content of each component, and the assumed thickness or the content of each component so that both intensities match. Is corrected by successive approximation to calculate at least one of the thickness and the content of each component. Here, the calculating unit 16 sets the fluorescent X-ray having a spectrum at least partially overlapping with the spectrum of the fluorescent X-ray to be measured as an obstruction line, and converts the measured intensity stored in the measuring unit 12 into a theoretical intensity scale. Then, the converted intensity is corrected and the converted intensity is corrected using the theoretical intensity of the disturbing line calculated assuming at least one of the thickness and the content of each component to obtain an intensity based on the measured intensity.

【0030】この装置を用いる第1実施形態の方法は、
FP法に属するものであり、試料13が、いわゆる薄膜
試料、すなわち基板上に蒸着等で形成された薄膜である
場合には、含有率Wi を求めるのと同様に、各成分の蛍
光X線6の測定強度Ii に基づく強度と、試料13にお
ける厚さTを仮定して計算した各成分の蛍光X線の理論
強度 Ti とを用いて、両強度が一致するように、前記
仮定した厚さTを逐次近似的に修正計算して、試料13
における厚さTを算出できる。
The method of the first embodiment using this apparatus is as follows.
Are those belonging to the FP method, the sample 13 is a so-called thin film sample, that is, when a thin film formed by vapor deposition or the like on the substrate, similarly to determine the content of W i, X-ray fluorescence of the components 6 using the intensity based on the measured intensity I i and the theoretical intensity T I i of the fluorescent X-ray of each component calculated assuming the thickness T in the sample 13 so that the two intensities match. The corrected thickness T is successively and approximately corrected to obtain a sample 13
Can be calculated.

【0031】さらに、薄膜試料である試料13におい
て、厚さTと各成分の含有率Wi の両方が未知である場
合には、両方を仮定して計算した各成分の蛍光X線の理
論強度 Ti と、各成分の蛍光X線6の測定強度Ii
基づく強度とを用いて、両強度が一致するように、前記
仮定した厚さTおよび各成分の含有率Wi を逐次近似的
に修正計算して、試料13における厚さTおよび各成分
の含有率Wi を算出できる。なお、薄膜でないいわゆる
バルク試料においては、厚さはX線的には無限大であ
り、各成分の含有率Wi のみが求められる。
Further, in Sample 13 which is a thin film sample,
The thickness T and the content W of each componentiWhere both are unknown
In this case, the X-ray fluorescence of each component
Argument TIiAnd the measured intensity I of the fluorescent X-ray 6 of each componentiTo
Using the strength based on, so that the two strengths match,
Assumed thickness T and content W of each componentiIs successively approximated
The thickness T of the sample 13 and each component
Content W ofiCan be calculated. In addition, what is called a thin film
For bulk samples, the thickness is infinitely x-ray
And the content W of each componentiOnly required.

【0032】第1実施形態の方法では、このFP法にお
いて、測定強度Ii に重なり補正を行うが、従来の技術
のように、測定強度Ii を重なり補正してから
Ci )理論強度スケールに換算する(CSi )ので
はなく、測定強度Ii を理論強度スケールに換算してか
ら( Si )重なり補正をする(SCi )。
[0032] In the method of the first embodiment, in this FP method, the measured intensity performs overlap correction I i, but as in the prior art, measuring the intensity I i of the overlap correction to the (C I i) Theory Instead of converting to the intensity scale ( CS I i ), the measured intensity I i is converted to the theoretical intensity scale ( S I i ) and the overlap correction is performed ( SC I i ).

【0033】薄膜試料である試料13において厚さTと
各成分の含有率Wi の両方を求める場合を例にとり、以
下に説明する。まず、測定手段12により、試料13に
1次X線2を照射して、試料13中の各成分iから発生
する蛍光X線6の強度Ii を測定し、記憶する。次に、
算出手段16により、前記測定手段12に記憶された試
料13中の各成分iについての測定強度Ii を、次式
(5)を用い、まず理論強度スケールに換算して換算強
Si とする。
The case where both the thickness T and the content W i of each component are obtained in the sample 13 which is a thin film sample will be described below as an example. First, the measurement means 12 irradiates the sample 13 with the primary X-ray 2 to measure and store the intensity I i of the fluorescent X-ray 6 generated from each component i in the sample 13. next,
The calculating means 16 first converts the measured intensity I i of each component i in the sample 13 stored in the measuring means 12 into a theoretical intensity scale using the following equation (5), and obtains the converted intensity S Ii . I do.

【0034】 Si =ai i 2 +bi i +ci …(5) S I i = a i I i 2 + b i I i + c i (5)

【0035】換算のための係数ai ,bi ,ci は、例
えば成分iの純物質である標準試料3についての測定強
度Ii および理論強度 Ti から求められるので、あら
かじめ算出手段16に記憶させておく。なお、係数
i ,ci は、必ずしも用いなくても良い。さて、算出
手段16には、あらかじめ仮定された初期の厚さT(0)
と各成分の含有率Wi (0) が読み込まれ、算出手段16
は、それらから、厚さTと各成分の含有率Wi が所定の
範囲に収束するまで逐次近似的に修正計算をする。
The coefficients a i, b i, c i for the translation, for example, since it is determined from the measured intensities I i and theoretical strength T I i for the standard sample 3 is a pure substance component i, calculated in advance means 16 To be stored. Note that the coefficients a i and c i need not always be used. Now, the calculating means 16 has an initial thickness T (0) assumed in advance.
And the content W i (0) of each component are read,
Calculates a correction calculation from them successively and approximately until the thickness T and the content W i of each component converge to a predetermined range.

【0036】n回目の計算について説明すると、まず、
n回目に仮定した厚さT(n) と各成分の含有率Wi (n)
を、周知の理論強度計算式に代入して、n回目の各成分
の蛍光X線の理論強度 Ti (n) を計算する。ここで、
測定されるべき蛍光X線と少なくとも一部が重複するス
ペクトルを有する蛍光X線を妨害線として扱い、n回目
の妨害線の理論強度 Tk (n) も、同様に計算する。次
に、この妨害線の理論強度 Tk (n) を用いて、前記換
算強度 Si を補正する。具体的には、次式(6)に、
前記換算強度 Si と妨害線の理論強度 Tk (n) を代
入して、n回目の換算重なり補正強度SCi (n) を求め
る。
To explain the n-th calculation, first,
The thickness T (n) assumed for the n-th time and the content W i (n) of each component
Is substituted into a well-known theoretical intensity calculation formula to calculate an n-th theoretical X-ray fluorescence intensity T I i (n) of each component. here,
A fluorescent X-ray having a spectrum at least partially overlapping the fluorescent X-ray to be measured is treated as an interference line, and the theoretical intensity T I k (n) of the n-th interference line is calculated in the same manner. Next, the converted intensity S Ii is corrected using the theoretical intensity T I k (n) of the disturbing line. Specifically, the following equation (6):
By substituting the converted intensity S Ii and the theoretical intensity T I k (n) of the disturbance line, an n-th converted overlap correction intensity SCI i (n) is obtained.

【0037】SCi Si −Σ 3γik Tk …(6) SC I i = S I i −Σ 3 γ ik T I k (6)

【0038】このように、第1実施形態の方法によれ
ば、FP法において、測定強度Ii を理論強度スケール
に換算した換算強度 Si を、理論強度スケールである
妨害線の理論強度 Tk で補正するので、重なり補正係
3γikが装置感度に依存しない定数となり、装置ごと
に重なり補正係数を求めることなく正確な重なり補正が
できる。
[0038] Thus, according to the method of the first embodiment, the FP method, the measured intensity I of the converted intensity S I i in terms of the theoretical intensity scale i, theoretical strength of the disturbing line is a theoretical intensity scale T is corrected by I k, the overlap correction factor 3 gamma ik becomes constant that does not depend on device sensitivity can accurately overlap correction without determining the correction coefficient overlap each device.

【0039】そして、n回目の換算重なり補正換算強度
SCi (n) を前記測定強度Ii に基づく強度として理論
強度 Ti (n) と比較し、n+1回目の厚さT(n+1)
各成分の含有率Wi (n+1) を求める。具体的には、次式
(7),(8)から、それぞれΔT,ΔWi を求め、そ
れぞれ次式(9),(10)に代入する。
Then, the n-th conversion overlap correction conversion intensity
The SC I i (n) is compared with the theoretical strength T I i (n) as an intensity based on the measured intensity I i , and the thickness T (n + 1) of the (n + 1) th time and the content W i (n + Ask for 1) . Specifically, ΔT and ΔW i are obtained from the following equations (7) and (8), respectively, and substituted into the following equations (9) and (10).

【0040】SCi (n) Ti (n) +ΔT×(d Ti (n) /dT) …(7) SC I i (n) = T I i (n) + ΔT × (d T I i (n) / dT) (7)

【0041】SCi (n) Ti (n) +ΔWi ×(d Ti (n) /dWi ) …(8) SC I i (n) = T I i (n) + ΔW i × (d T I i (n) / dW i ) (8)

【0042】 T(n+1) =T(n) +ΔT …(9)T (n + 1) = T (n) + ΔT (9)

【0043】 Wi (n+1) =Wi (n) +ΔWi …(10)W i (n + 1) = W i (n) + ΔW i (10)

【0044】なお、式(7)の(d Ti (n) /dT)
は、厚さをdTだけ変化させたときの理論強度 Ti
(n) の変化量で、式(8)の(d Ti (n) /dW
i T)は、各成分の含有率Wi をdWi だけ変化させた
ときの理論強度 Ti (n) の変化量である。
It should be noted that (d T I i (n) / dT) in equation (7)
Is the theoretical intensity T I i when the thickness is changed by dT.
The amount of change of (n) is expressed by (d T I i (n) / dW in equation (8)).
i T) is the amount of change in the theoretical intensity T I i (n) when the content W i of each component is changed by dW i .

【0045】そして、次式(11),(12)が満たさ
れたときに、厚さT(n+1) と各成分の含有率Wi (n+1)
がそれぞれ収束したものとし、満たされないときには、
理論強度 Ti (n+1) の計算以降を繰り返す。なお、式
(11),(12)のβT ,βW は、所定の収束判定値
である。
When the following equations (11) and (12) are satisfied, the thickness T (n + 1) and the content W i (n + 1) of each component are obtained.
Are converged, and if they are not satisfied,
The calculation after the calculation of the theoretical intensity T I i (n + 1) is repeated. Note that β T and β W in Expressions (11) and (12) are predetermined convergence determination values.

【0046】 |T(n+1) /T(n) −1.0|<βT …(11)| T (n + 1) / T (n) −1.0 | <β T (11)

【0047】 |Wi (n+1) /Wi (n) −1.0|<βW …(12)| W i (n + 1) / W i (n) −1.0 | <β W (12)

【0048】なお、分析対象が多層膜である場合等、複
数組の厚さと各成分の含有率を求める場合には、以上の
式(7)〜(12)が複数組の連立方程式となる。ここ
で、収束判定は、逐次近似により、厚さTまたは含有率
i の変化量が一定値以下であることを条件としたが、
n回目の理論強度 Ti (n) とn+1回目の理論強度 T
i (n+1) を比較し、この変化量が一定値以下になるこ
とを判定してもよい。このとき、換算重なり補正換算強
SCi (n) を測定強度Ii に基づく強度として理論強
Ti (n) と比較し、結果の信頼性のチェックが行え
る。
It should be noted that when the analysis target is a multilayer film or the like,
When calculating the thickness of several sets and the content of each component,
Equations (7) to (12) are a plurality of simultaneous equations. here
In the convergence judgment, the thickness T or the content ratio is determined by successive approximation.
WiIs required to be less than a certain value.
nth theoretical strengthTIi (n)And n + 1 th theoretical intensity T
Ii (n + 1)And make sure that the amount of change is
May be determined. At this time, the conversion overlap correction conversion strength
Every timeSCIi (n)Is the measured intensity IiBased on theoretical strength
Every timeTIi (n)And check the reliability of the results.
You.

【0049】次に、本発明の第2実施形態の方法につい
て説明する。第2実施形態の方法に用いる装置において
は、図1に示した前記第1実施形態の方法に用いる装置
と比べ、図2に示すように、制御手段17が、前記算出
手段16(図1)に代えて、以下の補正定数記憶手段1
8、検量線記憶手段11および検量線適用手段14を含
む点で異なっており、その他の構成については同様であ
るので説明を省略する。前記補正定数記憶手段18は、
組成を仮定した複数の試料から発生すべき蛍光X線の理
論強度に基づいて計算された、蛍光X線の吸収および励
起に関する理論マトリックス補正定数を記憶する。
Next, a method according to the second embodiment of the present invention will be described. In the apparatus used in the method of the second embodiment, as shown in FIG. 2, as compared with the apparatus used in the method of the first embodiment shown in FIG. Instead of the following correction constant storage means 1
8, the difference is that a calibration curve storage means 11 and a calibration curve application means 14 are included. The correction constant storage means 18
A theoretical matrix correction constant for the absorption and excitation of fluorescent X-rays calculated based on the theoretical intensity of fluorescent X-rays to be generated from a plurality of samples whose composition is assumed is stored.

【0050】前記検量線記憶手段11は、組成が既知で
相異なる複数の標準試料3中の各成分から発生して測定
された蛍光X線6の測定強度と、標準試料3における成
分の含有率との相関関係として、各成分ごとに、前記理
論マトリックス補正定数を用いて補正してあらかじめ求
められた検量線を記憶する。前記検量線適用手段14
は、前記測定手段12に記憶された測定強度に前記検量
線を適用して、試料13における各成分の含有率を求め
る。ここで、前記検量線記憶手段11に記憶される検量
線は、測定されるべき蛍光X線のスペクトルと少なくと
も一部が重複するスペクトルを有する蛍光X線を妨害線
とし、測定されるべき蛍光X線に対する妨害線の影響が
前記理論マトリックス補正定数を用いて補正されたもの
である。なお、検量線適用手段14が適用する検量線
は、理論マトリックス補正定数を含むものであるが、そ
の具体的な数値は、補正定数記憶手段18から呼び出し
て用いればよい。
The calibration curve storage means 11 stores the measured intensity of the fluorescent X-ray 6 generated and measured from each component in the plurality of standard samples 3 having different compositions and the content of the component in the standard sample 3. As a correlation with the above, a calibration curve previously obtained by correction using the theoretical matrix correction constant is stored for each component. The calibration curve applying means 14
Calculates the content of each component in the sample 13 by applying the calibration curve to the measured intensity stored in the measuring means 12. Here, the calibration curve stored in the calibration curve storage means 11 is a fluorescence X-ray having a spectrum at least partially overlapping the spectrum of the fluorescent X-ray to be measured, and the fluorescence X-ray to be measured The effect of the disturbing line on the line has been corrected using the theoretical matrix correction constant. Note that the calibration curve applied by the calibration curve application unit 14 includes a theoretical matrix correction constant, and a specific numerical value may be retrieved from the correction constant storage unit 18 and used.

【0051】この装置を用いる第2実施形態の方法は、
SFP法に属するものであり、バルク試料にのみ適用さ
れ、各成分の含有率Wi が求められる。まず、例えば特
願平9−12336号に示された手法により、組成を仮
定した複数の試料から発生すべき蛍光X線の理論強度を
計算し、その理論強度に基づいて蛍光X線の吸収および
励起に関する理論マトリックス補正定数αijを計算し、
補正定数記憶手段11に記憶させておく。
The method of the second embodiment using this apparatus is as follows.
The method belongs to the SFP method, and is applied only to a bulk sample, and the content W i of each component is obtained. First, the theoretical intensity of fluorescent X-rays to be generated from a plurality of samples whose compositions are assumed is calculated by the method disclosed in Japanese Patent Application No. 9-12336, for example. Calculate the theoretical matrix correction constant α ij for excitation,
It is stored in the correction constant storage unit 11.

【0052】また、組成が既知で相異なる複数の標準試
料3に1次X線2を照射して、標準試料3中の各成分i
から発生する蛍光X線6の強度Ii を測定し、それら測
定強度Ii と標準試料3における成分iの含有率Wi
の相関関係を、各成分iごとに、前記理論マトリックス
補正定数αijを用いて共存元素による蛍光X線の吸収お
よび励起の影響を補正(マトリックス補正)した検量線
としてあらかじめ求め、検量線記憶手段11に記憶させ
ておく。ここで、検量線を求めるにあたり、測定される
べき蛍光X線のスペクトルと少なくとも一部が重複する
スペクトルを有する蛍光X線を妨害線とし、測定される
べき蛍光X線に対する妨害成分kからの妨害線の影響を
前記理論マトリックス補正定数αij,αkjを用いて補正
する。具体的には、検量線は、例えば次式(13)で示
される。
Further, primary X-rays 2 are radiated to a plurality of standard samples 3 having different compositions, and each component i in the standard sample 3 is illuminated.
The intensity I i of the fluorescent X-rays 6 generated from the measurement is measured, and the correlation between the measured intensity I i and the content W i of the component i in the standard sample 3 is calculated for each component i by the theoretical matrix correction constant α. The influence of the absorption and excitation of the fluorescent X-ray by the coexisting element is determined using ij as a calibration curve corrected (matrix corrected) and stored in the calibration curve storage unit 11 in advance. Here, in obtaining the calibration curve, a fluorescent X-ray having a spectrum at least partially overlapping with the spectrum of the fluorescent X-ray to be measured is regarded as an interference line, and the interference from the interference component k with respect to the fluorescent X-ray to be measured is determined. The influence of the line is corrected using the theoretical matrix correction constants α ij and α kj . Specifically, the calibration curve is represented by, for example, the following equation (13).

【0053】 Wi =(ai i 2 +bi i +ci )(1+Σαijj ) −Σ 4γik{(1+Σαijj )/(1+Σαkjj )}Wk …(13)[0053] W i = (a i I i 2 + b i I i + c i) (1 + Σα ij W j) -Σ 4 γ ik {(1 + Σα ij W j) / (1 + Σα kj W j)} W k ... (13 )

【0054】この式(13)は以下のように導出され
る。まず、重なり補正をしない検量線は、次式(14)
で示される。
This equation (13) is derived as follows. First, a calibration curve without overlap correction is given by the following equation (14).
Indicated by

【0055】 Wi =(ai i 2 +bi i +ci )(1+Σαijj ) …(14)W i = (a i I i 2 + b i I i + c i ) (1 + Σα ij W j ) (14)

【0056】ここで、マトリックス補正にLachan
ce補正定数の理論マトリックス補正を用いると、式
(14)は次式(15)で書き換えられる。なお、Iip
は成分(元素)iの純物質の測定強度である。
Here, Lachan is used for matrix correction.
When the theoretical matrix correction of the ce correction constant is used, Expression (14) can be rewritten as Expression (15). Note that I ip
Is the measured intensity of the pure substance of component (element) i.

【0057】 Wi =(Ii /Iip)100(1+Σαijj ) …(15)W i = (I i / I ip ) 100 (1 + Σα ij W j ) (15)

【0058】これに、測定強度Ii を補正する形で重な
り補正を加えると、次式(16)のようになる。
[0058] thereto, the addition of correction overlap in a manner to correct the measured intensity I i, the following equation (16).

【0059】 Wi ={(Ii −Σ 5γikk )/Iip)}100(1+Σαijj ) …(16)[0059] W i = {(I i -Σ 5 γ ik I k) / I ip)} 100 (1 + Σα ij W j) ... (16)

【0060】ここで、 5γikは重なり補正係数である
が、妨害線の測定強度Ik を用いて測定されるべき蛍光
X線の測定強度Ii を補正するものであるので、試料の
組成にも装置の感度にも依存しない定数である。さて、
妨害成分kの含有率Wk と測定強度Ik ,Ikpの関係
は、前式(15)と同様に、次式(17)で示される。
Here, 5 γ ik is an overlap correction coefficient, which corrects the measured intensity I i of the fluorescent X-ray to be measured using the measured intensity I k of the disturbing line. And a constant that does not depend on the sensitivity of the device. Now,
Content W k and the measured intensity I k of interfering components k, the relationship of I kp, like Equation (15), represented by the following formula (17).

【0061】 Wk =(Ik /Ikp)100(1+Σαkjj ) …(17)W k = (I k / I kp ) 100 (1 + Σα kj W j ) (17)

【0062】この式で得られるIk を前式(16)に代
入し、さらに次式(18)のようにおいて変形すると、
式(19)が得られる。
By substituting I k obtained by this equation into the above equation (16), and further transforming it into the following equation (18),
Equation (19) is obtained.

【0063】 6 γik 5γikkp/Iip …(18)[0063] 6 γ ik = 5 γ ik I kp / I ip ... (18)

【0064】 Wi =(Ii /Iip)100(1+Σαijj ) −Σ 6γik{(1+Σαijj )/(1+Σαkjj )}Wk …(19)[0064] W i = (I i / I ip) 100 (1 + Σα ij W j) -Σ 6 γ ik {(1 + Σα ij W j) / (1 + Σα kj W j)} W k ... (19)

【0065】この重なり補正係数 6γikも、前式(1
8)から明らかなように、前式(16)の重なり補正係
5γikと同様に、試料の組成にも装置の感度にも依存
しない定数である。式(19)のマトリックス補正を、
前式(14)の形に戻すと、前式(13)が得られる。
The overlap correction coefficient 6 γ ik is also calculated by the equation (1)
As is apparent from 8), similarly to the overlap correction coefficient 5 gamma ik of Equation (16) is a constant that does not depend on the sensitivity of the device on the composition of the sample. The matrix correction of equation (19)
Reverting to the form of Equation (14), Equation (13) is obtained.

【0066】 Wi =(ai i 2 +bi i +ci )(1+Σαijj ) −Σ 4γik{(1+Σαijj )/(1+Σαkjj )}Wk …(13)[0066] W i = (a i I i 2 + b i I i + c i) (1 + Σα ij W j) -Σ 4 γ ik {(1 + Σα ij W j) / (1 + Σα kj W j)} W k ... (13 )

【0067】すなわち、第2実施形態の方法で用いる重
なり補正係数 4γikも、前式(19)における重なり補
正係数 6γikと同様に、ひいては前式(16)の重なり
補正係数 5γikと同様に、試料の組成にも装置感度にも
依存しない定数である。
That is, the overlap correction coefficient 4 γ ik used in the method of the second embodiment is also the same as the overlap correction coefficient 6 γ ik in the equation (19), and thus the overlap correction coefficient 5 γ ik in the equation (16). Similarly to the above, the constant is independent of the composition of the sample and the sensitivity of the apparatus.

【0068】第2実施形態の方法の検量線を示す式(1
3)と、前述した従来のSFP法の検量線を示す式
(3)とを対比してみると、各重なり補正係数 4γik
2γikが次式(20)で示される関係にあることが分か
る。
The equation (1) showing the calibration curve of the method of the second embodiment
3) and Equation (3) showing the calibration curve of the conventional SFP method described above, it can be seen that each overlap correction coefficient 4 γ ik ,
2 gamma ik it is understood that a relationship represented by the following formula (20).

【0069】 Wi =(ai i 2 +bi i +ci )(1+Σαijj )−Σ 2γikk …(3)[0069] W i = (a i I i 2 + b i I i + c i) (1 + Σα ij W j) -Σ 2 γ ik W k ... (3)

【0070】 2 γik 4γik{(1+Σαijj )/(1+Σαkjj )} …(20)[0070] 2 γ ik = 4 γ ik { (1 + Σα ij W j) / (1 + Σα kj W j)} ... (20)

【0071】すなわち、従来のSFP法においては、用
いる重なり補正係数 2γikが正しくは試料13の組成W
j に依存するものであるのに、定数として扱っていたた
め、正確な重なり補正ができていなかった。
That is, in the conventional SFP method, the overlap correction coefficient 2 γ ik to be used is correctly determined by the composition W of the sample 13.
Although it depends on j , since it was treated as a constant, accurate overlap correction could not be performed.

【0072】これに対し、第2実施形態の方法によれ
ば、SFP法において、検量線すなわち前式(13)を
求めるにあたり、測定されるべき蛍光X線に対する妨害
線の影響を、厳密に理論マトリックス補正定数αij,α
kjを用いて補正する。つまり妨害成分kの含有率Wk
重なり補正係数 4γikのみならず補正項{(1+Σαij
j )/(1+Σαkjj )}をも乗じて補正するの
で、装置感度や試料の組成に依存しない重なり補正係数
4γikを用いて正確な重なり補正ができる。したがっ
て、用いる装置において、従来よりマトリックス補正の
ために記憶させていた理論マトリックス補正定数αij
加えて、装置感度や試料の組成に依存しない重なり補正
係数 4γikを記憶させればよく、装置や試料の品種ごと
に重なり補正係数を求めることなく正確な重なり補正が
できる。
On the other hand, according to the method of the second embodiment, in obtaining the calibration curve, that is, the equation (13) in the SFP method, the influence of the interference line on the fluorescent X-ray to be measured is strictly theoretically determined. Matrix correction constants α ij , α
Correct using kj . That not only the correction coefficient 4 gamma ik overlap content W k interfering components k correction term {(1 + Σα ij
W j ) / (1+ { α kj W j )}, so that the overlap correction coefficient does not depend on the device sensitivity or the sample composition.
It can accurately overlap correction using the 4 gamma ik. Therefore, in the apparatus to be used, in addition to the theoretical matrix correction constant α ij conventionally stored for matrix correction, an overlap correction coefficient 4 γ ik independent of the apparatus sensitivity and the composition of the sample may be stored. Accurate overlap correction can be performed without finding an overlap correction coefficient for each sample type.

【0073】さて、このように求められた検量線を検量
線記憶手段11に記憶させた装置において、測定手段1
2により、試料13に1次X線2を照射して、試料13
中の各成分iから発生する蛍光X線の強度Ii を測定
し、記憶する。そして、検量線適用手段14により、そ
れら測定強度Ii に前記検量線を適用して、試料13に
おける各成分の含有率Wi を求める。
In the apparatus in which the calibration curve obtained in this way is stored in the calibration curve storage means 11, the measuring means 1
2 irradiates the sample 13 with primary X-rays 2
The intensity I i of the fluorescent X-ray generated from each component i in the inside is measured and stored. Then, the calibration curve applying unit 14 applies the above-mentioned calibration curve to the measured intensities I i to determine the content W i of each component in the sample 13.

【0074】なお、第1、第2実施形態の方法におい
て、例えば、測定されるべき蛍光X線がP−Kα線であ
り、妨害線Mo −Ll線について理論強度を計算するた
めの定数が用意されていない場合がある。このような場
合には、妨害線Mo −Ll線と同一系列で波長の近接す
る蛍光X線例えばMo −Lα線の理論強度を Tk とし
て用いる。これにより、妨害線について理論強度を計算
するための定数が用意されていないような場合にも、装
置感度等に依存しない重なり補正係数を用いて正確な重
なり補正ができる。
In the methods of the first and second embodiments, for example, the fluorescent X-ray to be measured is a P-Kα ray, and a constant for calculating the theoretical intensity for the interference line Mo-Ll is prepared. May not be. In such a case, the theoretical strength of the adjacent X-ray fluorescence for example Mo -Eruarufa radiation of a wavelength in the interference line Mo -Ll line the same sequence is used as the T I k. Thus, even when a constant for calculating the theoretical strength of the disturbance line is not prepared, accurate overlap correction can be performed using the overlap correction coefficient independent of the device sensitivity or the like.

【0075】また、第1、第2実施形態の方法における
重なり補正係数 3γik 4γikは、簡単な計算により次
式(21)の関係にあることが示される。
Further, it is shown by simple calculation that the overlap correction coefficients 3 γ ik and 4 γ ik in the methods of the first and second embodiments have the relationship of the following equation (21).

【0076】 3 γik 4γik Tip Tkp) …(21)[0076] 3 γ ik = 4 γ ik ( T I ip / T I kp) ... (21)

【0077】ここで、 Tipは成分(元素)iの純物質
の理論強度、 Tkpは妨害成分(元素)kの純物質の理
論強度であり、ともに計算で求められる。つまり、両重
なり補正係数 3γik 4γik間で換算が可能である。し
たがって、ある装置を、第1、第2両方の実施形態の方
法に用いる装置として構成する場合、両方の重なり補正
係数 3γik 4γikを求めて記憶させておく必要はな
く、いずれか一方を求めて記憶させておけば、他方は前
式(21)により換算して求められる。
[0077] Here, T I ip is the theoretical strength of the pure substance of the component (element) theoretical strength of the pure substance i, T I kp is interfering components (elements) k, obtained by both calculations. In other words, it is possible in terms between the two overlap correction factor 3 γ ik, 4 γ ik. Therefore, a certain device, first, when configured as a device used in the method of the second both embodiments, both the overlap correction coefficient 3 gamma ik, 4 gamma no need to store in search of ik, either If one is obtained and stored, the other is obtained by conversion according to the equation (21).

【0078】[0078]

【発明の効果】以上詳細に説明したように、本発明によ
れば、試料からの蛍光X線の測定強度に基づき、蛍光X
線について計算される理論強度を利用して、試料におけ
る各成分の含有率等を求める蛍光X線分析方法および装
置において、装置感度や試料の組成に依存しない重なり
補正係数を用いて、正確な重なり補正ができる。
As described above in detail, according to the present invention, the fluorescent X-ray is measured based on the measured intensity of the fluorescent X-ray from the sample.
In the X-ray fluorescence analysis method and apparatus for determining the content of each component in a sample using the theoretical intensity calculated for the X-ray, an accurate overlap using an overlap correction coefficient independent of the apparatus sensitivity and the composition of the sample. Can be corrected.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の第1実施形態の蛍光X線分析方法に用
いる装置を示す概略図である。
FIG. 1 is a schematic view showing an apparatus used for a fluorescent X-ray analysis method according to a first embodiment of the present invention.

【図2】本発明の第2実施形態の蛍光X線分析方法に用
いる装置を示す概略図である。
FIG. 2 is a schematic view showing an apparatus used for a fluorescent X-ray analysis method according to a second embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1…X線源、2…1次X線、3…標準試料、6…蛍光X
線、8…試料台、10…検出手段、11…検量線記憶手
段、12…測定手段、13…試料、14…検量線適用手
段、16…算出手段、18…補正定数記憶手段。
1: X-ray source, 2: primary X-ray, 3: standard sample, 6: fluorescent X
Reference numeral 8: sample stage, 10: detection means, 11: calibration curve storage means, 12: measurement means, 13: sample, 14: calibration curve application means, 16: calculation means, 18: correction constant storage means.

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 試料に1次X線を照射して、試料中の各
成分から発生する蛍光X線の強度を測定し、 それら測定強度に基づく強度と、試料における厚さまた
は各成分の含有率の少なくとも一方を仮定して計算した
各成分の蛍光X線の理論強度とを用い、 両強度が一致するように、前記仮定した厚さまたは各成
分の含有率を逐次近似的に修正計算して、前記厚さまた
は各成分の含有率の少なくとも一方を算出する蛍光X線
分析方法において、 測定されるべき蛍光X線のスペクトルと少なくとも一部
が重複するスペクトルを有する蛍光X線を妨害線とし、 前記測定強度を理論強度スケールに換算して換算強度と
し、 前記厚さまたは各成分の含有率の少なくとも一方を仮定
して計算した前記妨害線の理論強度を用いて、前記換算
強度を補正して前記測定強度に基づく強度とすることを
特徴とする蛍光X線分析方法。
1. A sample is irradiated with primary X-rays, the intensity of fluorescent X-rays generated from each component in the sample is measured, and the intensity based on the measured intensity and the thickness or the content of each component in the sample are measured. Using the theoretical intensity of the fluorescent X-ray of each component calculated assuming at least one of the rates, the assumed thickness or the content rate of each component is successively and approximately corrected so that both intensities match. In the X-ray fluorescence analysis method for calculating at least one of the thickness or the content of each component, the X-ray fluorescence having a spectrum at least partially overlapping the spectrum of the X-ray to be measured is regarded as an interference line. The converted intensity is converted to a theoretical intensity scale to obtain a converted intensity, and the converted intensity is corrected using the theoretical intensity of the disturbing line calculated assuming at least one of the thickness and the content of each component. Before X-ray fluorescence analysis method, characterized in that to be based on the measured intensity strength.
【請求項2】 試料に1次X線を照射して、試料中の各
成分から発生する蛍光X線の強度を測定し、 それら測定強度に基づく強度と、試料における厚さまた
は各成分の含有率の少なくとも一方を仮定して計算した
各成分の蛍光X線の理論強度とを用い、 両強度が一致するように、前記仮定した厚さまたは各成
分の含有率を逐次近似的に修正計算して、前記厚さまた
は各成分の含有率の少なくとも一方を算出する蛍光X線
分析方法において、 測定されるべき蛍光X線のスペクトルと少なくとも一部
が重複するスペクトルを有する蛍光X線を妨害線とし、 前記測定強度を理論強度スケールに換算して換算強度と
し、 前記厚さまたは各成分の含有率の少なくとも一方を仮定
して計算した前記妨害線の理論強度もしくは前記妨害線
と同一系列で波長の近接する蛍光X線の理論強度を用い
て、前記換算強度を補正して前記測定強度に基づく強度
とすることを特徴とする蛍光X線分析方法。
2. A sample is irradiated with primary X-rays to measure the intensity of fluorescent X-rays generated from each component in the sample, and the intensity based on the measured intensity and the thickness or the content of each component in the sample are measured. Using the theoretical intensity of the fluorescent X-ray of each component calculated assuming at least one of the rates, the assumed thickness or the content rate of each component is successively and approximately corrected so that both intensities match. In the X-ray fluorescence analysis method for calculating at least one of the thickness or the content of each component, the X-ray fluorescence having a spectrum at least partially overlapping the spectrum of the X-ray to be measured is regarded as an interference line. The measured intensity is converted into a theoretical intensity scale to obtain a converted intensity, and the theoretical intensity of the disturbing line or the wavelength in the same series as the disturbing line is calculated assuming at least one of the thickness and the content of each component. Using theoretical strength of adjacent fluorescent X-ray, X-ray fluorescence analysis method characterized in that the intensity based on the measured intensity by correcting the conversion strength.
【請求項3】 組成を仮定した複数の試料から発生すべ
き蛍光X線の理論強度を計算し、その理論強度に基づい
て蛍光X線の吸収および励起に関する理論マトリックス
補正定数を計算し、 組成が既知で相異なる複数の標準試料に1次X線を照射
して、標準試料中の各成分から発生する蛍光X線の強度
を測定し、 それら測定強度と標準試料における成分の含有率との相
関関係を、各成分ごとに、前記理論マトリックス補正定
数を用いて補正した検量線としてあらかじめ求めてお
き、 試料に1次X線を照射して、試料中の各成分から発生す
る蛍光X線の強度を測定し、 それら測定強度に前記検量線を適用して、試料における
各成分の含有率を求める蛍光X線分析方法において、 測定されるべき蛍光X線のスペクトルと少なくとも一部
が重複するスペクトルを有する蛍光X線を妨害線とし、 前記検量線を求めるにあたり、測定されるべき蛍光X線
に対する妨害線の影響を前記理論マトリックス補正定数
を用いて補正することを特徴とする蛍光X線分析方法。
3. Calculating the theoretical intensity of fluorescent X-rays to be generated from a plurality of samples assuming the composition, calculating a theoretical matrix correction constant for absorption and excitation of the fluorescent X-ray based on the theoretical intensity, A plurality of known and different standard samples are irradiated with primary X-rays, the intensity of fluorescent X-rays generated from each component in the standard sample is measured, and the correlation between the measured intensity and the component content in the standard sample is measured. The relationship is determined in advance as a calibration curve corrected using the theoretical matrix correction constant for each component, and the sample is irradiated with primary X-rays, and the intensity of fluorescent X-rays generated from each component in the sample is measured. In the fluorescent X-ray analysis method for determining the content of each component in the sample by applying the calibration curve to the measured intensities, the spectrum of the fluorescent X-ray to be measured at least partially overlaps X-ray fluorescence analysis comprising: using a fluorescent X-ray having a spectrum as an interference line; and obtaining the calibration curve by correcting the influence of the interference line on the fluorescent X-ray to be measured using the theoretical matrix correction constant. Method.
【請求項4】 試料が固定される試料台と、 試料に1次X線を照射するX線源と、 試料から発生する蛍光X線の強度を測定する検出手段
と、 試料に前記X線源から1次X線を照射させ、試料中の各
成分から発生する蛍光X線の強度を前記検出手段に測定
させ、それら測定強度を記憶する測定手段と、 前記測定手段に記憶された測定強度に基づく強度と、試
料における厚さまたは各成分の含有率の少なくとも一方
を仮定して計算した各成分の蛍光X線の理論強度とを用
い、両強度が一致するように、前記仮定した厚さまたは
各成分の含有率を逐次近似的に修正計算して、前記厚さ
または各成分の含有率の少なくとも一方を算出する算出
手段とを備え、 前記算出手段は、測定されるべき蛍光X線のスペクトル
と少なくとも一部が重複するスペクトルを有する蛍光X
線を妨害線とし、前記測定手段に記憶された測定強度を
理論強度スケールに換算して換算強度とし、前記厚さま
たは各成分の含有率の少なくとも一方を仮定して計算し
た前記妨害線の理論強度を用いて、前記換算強度を補正
して前記測定強度に基づく強度とする蛍光X線分析装
置。
4. A sample stage on which a sample is fixed, an X-ray source for irradiating the sample with primary X-rays, detection means for measuring the intensity of fluorescent X-rays generated from the sample, Irradiating primary X-rays from the sample, causing the detecting means to measure the intensity of the fluorescent X-rays generated from each component in the sample, and measuring means for storing the measured intensities. Based on the theoretical intensity of the fluorescent X-rays of each component calculated assuming at least one of the thickness or the content of each component in the sample, so that both intensities match, the assumed thickness or Calculating means for sequentially and approximately correcting and calculating the content of each component, and calculating at least one of the thickness or the content of each component, wherein the calculation means comprises a spectrum of a fluorescent X-ray to be measured. Specs that at least partially overlap with Fluorescent X with Le
Line as a disturbing line, the measured intensity stored in the measuring means is converted to a theoretical intensity scale to be a converted intensity, and the theoretical value of the disturbing line calculated by assuming at least one of the thickness or the content of each component. An X-ray fluorescence spectrometer that corrects the converted intensity using the intensity to obtain an intensity based on the measured intensity.
【請求項5】 試料が固定される試料台と、 試料に1次X線を照射するX線源と、 試料から発生する蛍光X線の強度を測定する検出手段
と、 試料に前記X線源から1次X線を照射させ、試料中の各
成分から発生する蛍光X線の強度を前記検出手段に測定
させ、それら測定強度を記憶する測定手段と、 前記測定手段に記憶された測定強度に基づく強度と、試
料における厚さまたは各成分の含有率の少なくとも一方
を仮定して計算した各成分の蛍光X線の理論強度とを用
い、両強度が一致するように、前記仮定した厚さまたは
各成分の含有率を逐次近似的に修正計算して、前記厚さ
または各成分の含有率の少なくとも一方を算出する算出
手段とを備え、 前記算出手段は、測定されるべき蛍光X線のスペクトル
と少なくとも一部が重複するスペクトルを有する蛍光X
線を妨害線とし、前記測定手段に記憶された測定強度を
理論強度スケールに換算して換算強度とし、前記厚さま
たは各成分の含有率の少なくとも一方を仮定して計算し
た前記妨害線の理論強度もしくは前記妨害線と同一系列
で波長の近接する蛍光X線の理論強度を用いて、前記換
算強度を補正して前記測定強度に基づく強度とする蛍光
X線分析装置。
5. A sample stage on which a sample is fixed, an X-ray source for irradiating the sample with primary X-rays, detection means for measuring the intensity of fluorescent X-rays generated from the sample, and an X-ray source for the sample. Irradiating primary X-rays from the sample, causing the detecting means to measure the intensity of the fluorescent X-rays generated from each component in the sample, and measuring means for storing the measured intensities. Based on the theoretical intensity of the fluorescent X-rays of each component calculated assuming at least one of the thickness or the content of each component in the sample, so that both intensities match, the assumed thickness or Calculating means for sequentially and approximately correcting and calculating the content of each component, and calculating at least one of the thickness or the content of each component, wherein the calculation means comprises a spectrum of a fluorescent X-ray to be measured. Specs that at least partially overlap with Fluorescent X with Le
A line as a disturbing line, the measured intensity stored in the measuring means is converted to a theoretical intensity scale to obtain a converted intensity, and the theoretical value of the disturbing line is calculated assuming at least one of the thickness and the content of each component. An X-ray fluorescence spectrometer that corrects the converted intensity by using the intensity or the theoretical intensity of X-ray fluorescence having the same series as the disturbing line and having a wavelength close to each other to obtain an intensity based on the measured intensity.
【請求項6】 試料が固定される試料台と、 試料に1次X線を照射するX線源と、 試料から発生する蛍光X線の強度を測定する検出手段
と、 組成を仮定した複数の試料から発生すべき蛍光X線の理
論強度に基づいて計算された、蛍光X線の吸収および励
起に関する理論マトリックス補正定数を記憶する補正定
数記憶手段と、 組成が既知で相異なる複数の標準試料中の各成分から発
生して測定された蛍光X線の測定強度と、標準試料にお
ける成分の含有率との相関関係として、各成分ごとに、
前記理論マトリックス補正定数を用いて補正してあらか
じめ求められた検量線を記憶する検量線記憶手段と、 試料に前記X線源から1次X線を照射させ、試料中の各
成分から発生する蛍光X線の強度を前記検出手段に測定
させ、それら測定強度を記憶する測定手段と、 前記測定手段に記憶された測定強度に前記検量線を適用
して、試料における各成分の含有率を求める検量線適用
手段とを備え、 前記検量線記憶手段に記憶される検量線は、測定される
べき蛍光X線のスペクトルと少なくとも一部が重複する
スペクトルを有する蛍光X線を妨害線とし、測定される
べき蛍光X線に対する妨害線の影響が前記理論マトリッ
クス補正定数を用いて補正されたものである蛍光X線分
析装置。
6. A sample stage on which a sample is fixed, an X-ray source for irradiating the sample with primary X-rays, detection means for measuring the intensity of fluorescent X-rays generated from the sample, and a plurality of Correction constant storage means for storing a theoretical matrix correction constant for the absorption and excitation of fluorescent X-rays calculated based on the theoretical intensity of fluorescent X-rays to be generated from the sample; As a correlation between the measured intensity of the fluorescent X-rays generated and measured from each of the components and the content of the component in the standard sample, for each component,
Calibration curve storage means for storing a calibration curve obtained in advance by correcting using the theoretical matrix correction constant; and irradiating the sample with primary X-rays from the X-ray source, and generating fluorescence from each component in the sample. A measuring means for causing the detecting means to measure the intensity of X-rays, and storing the measured intensities; and a calibration method for applying the calibration curve to the measured intensity stored in the measuring means to determine the content of each component in the sample. A calibration curve stored in the calibration curve storage means, the fluorescence X-ray having a spectrum at least partially overlapping with the spectrum of the fluorescent X-ray to be measured is measured as an interference line. An X-ray fluorescence spectrometer, wherein the influence of disturbing rays on X-ray fluorescence to be corrected is corrected using the theoretical matrix correction constant.
JP19615399A 1998-07-22 1999-07-09 X-ray fluorescence analysis method and apparatus Expired - Lifetime JP3331192B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19615399A JP3331192B2 (en) 1998-07-22 1999-07-09 X-ray fluorescence analysis method and apparatus

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP20603898 1998-07-22
JP10-206038 1998-07-22
JP19615399A JP3331192B2 (en) 1998-07-22 1999-07-09 X-ray fluorescence analysis method and apparatus

Publications (2)

Publication Number Publication Date
JP2000097885A true JP2000097885A (en) 2000-04-07
JP3331192B2 JP3331192B2 (en) 2002-10-07

Family

ID=26509570

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19615399A Expired - Lifetime JP3331192B2 (en) 1998-07-22 1999-07-09 X-ray fluorescence analysis method and apparatus

Country Status (1)

Country Link
JP (1) JP3331192B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001249089A (en) * 2000-03-06 2001-09-14 Rigaku Industrial Co Method and apparatus for fluorescence x-ray analysis
CN102128851A (en) * 2010-12-24 2011-07-20 沈阳飞机工业(集团)有限公司 Method for correcting overlap of X ray fluorescent spectroscopy spectral lines
JP2018105859A (en) * 2016-12-22 2018-07-05 マルバーン パナリティカル ビー ヴィ Analysis of layered samples with xrf
CN108982560A (en) * 2017-05-30 2018-12-11 马尔文帕纳科公司 It is measured using the pressed powder sample of x-ray fluorescence

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001249089A (en) * 2000-03-06 2001-09-14 Rigaku Industrial Co Method and apparatus for fluorescence x-ray analysis
CN102128851A (en) * 2010-12-24 2011-07-20 沈阳飞机工业(集团)有限公司 Method for correcting overlap of X ray fluorescent spectroscopy spectral lines
JP2018105859A (en) * 2016-12-22 2018-07-05 マルバーン パナリティカル ビー ヴィ Analysis of layered samples with xrf
CN108982560A (en) * 2017-05-30 2018-12-11 马尔文帕纳科公司 It is measured using the pressed powder sample of x-ray fluorescence

Also Published As

Publication number Publication date
JP3331192B2 (en) 2002-10-07

Similar Documents

Publication Publication Date Title
JP3108660B2 (en) X-ray analysis method and apparatus
WO2006112084A1 (en) Fluorescence x-ray spectroscope and program used therefore
EP1054254B1 (en) Data processor for X-ray fluorescence spectroscopy taking into account the element sensitivities of the measuring device independent of measurement conditions
JP6232568B2 (en) X-ray fluorescence analyzer
US11402343B2 (en) X-ray fluorescence spectrometer
JP2848751B2 (en) Elemental analysis method
US6173037B1 (en) Method of and apparatus for X-ray fluorescent analysis of thin layers
JP3889187B2 (en) X-ray fluorescence analysis method and apparatus
JP3331192B2 (en) X-ray fluorescence analysis method and apparatus
JP2000283933A (en) Fluorescent x-ray analyzer
JP4523958B2 (en) X-ray fluorescence analyzer and program used therefor
JP4279983B2 (en) X-ray fluorescence analyzer
JP3569734B2 (en) X-ray fluorescence analyzer
JP2872926B2 (en) X-ray fluorescence analysis method
JP2645226B2 (en) X-ray fluorescence analysis method
JPH11271244A (en) Quantitative analysing method by x-ray spectrum
JP3377328B2 (en) X-ray fluorescence analysis method
JP7190751B2 (en) X-ray fluorescence analyzer
JP2000065764A (en) X-ray fluorescence analysis of liquid sample
JP3069305B2 (en) X-ray fluorescence analysis method and apparatus
JPH08334481A (en) X-ray fluorescent analysis
JPH06337252A (en) Fluorescent x ray analytic method
JPH05119000A (en) Fluorescent x-ray analyzing device
JP3389161B2 (en) X-ray fluorescence analyzer and recording medium used therein
JP3399861B2 (en) X-ray analyzer

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
R150 Certificate of patent or registration of utility model

Ref document number: 3331192

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080719

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090719

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090719

Year of fee payment: 7

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090719

Year of fee payment: 7

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100719

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100719

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110719

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110719

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120719

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130719

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140719

Year of fee payment: 12

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term