GB2171198A - Monitoring a heterogeneous transformation process - Google Patents

Monitoring a heterogeneous transformation process Download PDF

Info

Publication number
GB2171198A
GB2171198A GB08503773A GB8503773A GB2171198A GB 2171198 A GB2171198 A GB 2171198A GB 08503773 A GB08503773 A GB 08503773A GB 8503773 A GB8503773 A GB 8503773A GB 2171198 A GB2171198 A GB 2171198A
Authority
GB
United Kingdom
Prior art keywords
liquid
spectral
signal
producing
turbulent flow
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
GB08503773A
Other versions
GB8503773D0 (en
GB2171198B (en
Inventor
Dr Gabor Pal
Gabor Endroczi
Gyorgy Hollos
Gabor Nagy
Gabor Szonyi
Laszlo Bodi
Zoltan Balazs
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
VASIPARI KUTATO FEJLESZTO
Vasipari Kutato Es Fejleszto Vallalat
Original Assignee
VASIPARI KUTATO FEJLESZTO
Vasipari Kutato Es Fejleszto Vallalat
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to AT0042685A priority Critical patent/AT390516B/en
Application filed by VASIPARI KUTATO FEJLESZTO, Vasipari Kutato Es Fejleszto Vallalat filed Critical VASIPARI KUTATO FEJLESZTO
Priority to GB08503773A priority patent/GB2171198B/en
Priority to DE19853505286 priority patent/DE3505286A1/en
Priority to SE8500860A priority patent/SE457018B/en
Priority to FR8502840A priority patent/FR2578068B1/en
Publication of GB8503773D0 publication Critical patent/GB8503773D0/en
Publication of GB2171198A publication Critical patent/GB2171198A/en
Application granted granted Critical
Publication of GB2171198B publication Critical patent/GB2171198B/en
Expired legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/04Analysing solids
    • G01N29/12Analysing solids by measuring frequency or resonance of acoustic waves
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/08Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor
    • B01J19/10Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor employing sonic or ultrasonic vibrations
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01HMEASUREMENT OF MECHANICAL VIBRATIONS OR ULTRASONIC, SONIC OR INFRASONIC WAVES
    • G01H3/00Measuring characteristics of vibrations by using a detector in a fluid
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/20Metals
    • G01N33/205Metals in liquid state, e.g. molten metals
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D21/00Control of chemical or physico-chemical variables, e.g. pH value
    • G05D21/02Control of chemical or physico-chemical variables, e.g. pH value characterised by the use of electric means
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N13/00Investigating surface or boundary effects, e.g. wetting power; Investigating diffusion effects; Analysing materials by determining surface, boundary, or diffusion effects
    • G01N13/02Investigating surface tension of liquids
    • G01N2013/0241Investigating surface tension of liquids bubble, pendant drop, sessile drop methods
    • G01N2013/025Measuring foam stability
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/01Indexing codes associated with the measuring variable
    • G01N2291/014Resonance or resonant frequency
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/02Indexing codes associated with the analysed material
    • G01N2291/024Mixtures
    • G01N2291/02433Gases in liquids, e.g. bubbles, foams
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/02Indexing codes associated with the analysed material
    • G01N2291/025Change of phase or condition
    • G01N2291/0251Solidification, icing, curing composites, polymerisation

Abstract

A heterogeneous transformation process taking place in a liquid, e.g. the desulphurization of steel, which produces vibrations, is monitored by detecting vibrations produced therein 1. The vibrations are subjected to spectral analysis and, in signal processing circuit 3, is divided into two frequency ranges (figures 3 and 4). The ratio of the (average) vibration amplitudes in the two frequency ranges is formed, and this enables instantaneous values for a diffusion coefficient of the transformation process to be calculated, so that the end point of the process may be determined. Automatic control of the process is also envisaged. <IMAGE>

Description

SPECIFICATION Method of and apparatus for checking a heterogeneous transformation process of diffusion kinetics taking place in a turbulent flow of a liquid Background of the invention The invention relates to a method of and an apparatus for checking a heterogeneous transformation process of diffusion kinetics taking place in a turbulent flow of a liquid.
A lot of processes in different technical fields forms a heterogeneous transformation process which takes place in a liquid. The chemical and physicochemical transformation processes taking place on certain surfaces, e.g. on limiting surfaces of different phases /e.g. in systems comprising a liquid dispersive phase and a diespergated liquid, gaseous or solid phase/, on cathalytical surfaces, electrodes immersed into liquid or on the wall of a vessel comprising liquid are generally classified as heterogeneous transformation process.
The invention relates to checking such heterogeneous transformation processes taking place in liquids, for which the following conditions are satisfied: that the liquid performs a turbulent flow and the process is characterised by diffusion kinetics. The last means that the rate of the transformation process is determined by the rate of material transport from the inner region of the liquid to the surface being the place of the heterogeneous transformation or from this surface to the inner region of the liquid.
For checking the heterogeneous transformation processes taking place in liquids the direct methods have become the most popular. The essence of these methods lies in sampling and in aftergoing chemical or physicochemical analyse of the samples. These methods doubtless ensure the accuracy required by the technical praxis, however, on their basis the real-time intervention or control is practically impossible: in fast changing industrial conditions the direct methods can generally not serve for solving regulation problems.
Sometimes sampling is difficult to realise and especially in processes wherein it could be performed only on the condition of stopping the entire process. Another special problem is to be seen in the analyse of components present in small quantities. In this case one sample is less than enough: the contents determined for different samples can differ from one another in a wide range comprising the correct value.
Therefore the analyse can rely only a higher number of samples for obtaining an average value which is the better approach of the correct value the higher is the number of samples analyzed.
Another group of solutions which have become known consists of indirect methods, wherein the rate or development of the transformation process can be checked on the basis of measuring parameters depending on the concentration /as pressure, temperature, colour, sound etc./. The known methods ensure the required information promptly, but the accuracy or reliability thereof is low, is not as high as desired for realising a control or regulation loop. In the steel production a method has been known for carrying out intervention in an oxygen converter provess /Baptizmanski. V. I. et al. IVUZ, Tchornaya Metallurgiya, 1982 No. 2, p. 34 to 38/ which is based on acoustic principle. The essence of this method is the following the sound effect and exactly the acoustic pressure level during blowing oxygen into the molten steel bath.According to the recognition shown by the authors a rush form alteration of the acoustic pressure level is a sign of reaching a high density of the slag covering the molten steel and this density makes stopping the oxygen supply advantageous. By this measure it is possible to avoid development of harmful secondary processes, however, it is impossible to obtain information on the basis of which data could be gained about the alteration of the carbon content of the steel bath.
Summary of the invention The object of the invention is to create a method and an apparatus whereby sampling can be avoided and concentration data of high reliability can be obtained on heterogeneous transformation processes of diffusion kinetics taking place in a turbulent flow of a liquid, wherein an indirect way of measurement should be applied.
The invention is based on the recognition that the bubbles always present in a turbulent flow of a liquid bubbles of steam or gas, cavitation bubbles/ cause by their oscillation a liquid sound the spectral composition of which remains in a well-defined connection with the turbulent diffusion coefficient characterizing the transformation process. The increasing values of the turbulent diffusion coefficient Dturb during the turbulent flow involve a characteristic change of the continuous spectrum of the liquid sound: in the frequency range really covered by the spectrum the ratio of energy contents /effective values assigned to the frequency values higher than a determined level to the energy contents /effective values/ to the lower frequency range.This means the higher is the turbulent diffusion coefficient Dturb the higher are the amplitudes of the components of higher frequency in the spectrum of the liquid sound in comparison to the components of lower frequency. According to the recognition there exists a time function signed by R/tl determined in relation to the timely changing spectrum which is in a monotonous functional connection with the turbulent diffusion coefficient Dturb. In making use of the recognition is very advantageous that in case of heterogeneous transformation processes of diffusion kinetics taking place in a turbulent flow of a liquid the characteristic actual concentration values can be computed in a known way on the basis of the actual values of the turbulent diffusion coefficient.In order to do it the following data have to be known: the concentration at the beginning, the dependency of the magnitude of the surface giving place the transformation on time and/or concentration if the surface is not stable, and in case of transformation with equilibrium the data concerning the equilibrium concentration, further the number value of the constant present in the rate equation of the transformation.
The aim of invention is to create a method of and an apparatus for real-time checking a heterogeneous transformation process of diffusion kinetics taking place in a turbulent flow of a liquid, wherein the method and apparatus are based on the recognition as shown above, on the analyse of the sound effects associated with the turbulent flow. Making use of the concentration values at the beginning and the data of active interventions applied to the transformation process e.g. supplying active substances etc./ the invention should ensure the real-time checking of the processes of mentioned kind by detecting the sound effects.
In order to reach the object set a method and an apparatus have been created. The essence of the invention lies in applying the steps of detecting an oscillation or vibration process of acoustic frequency caused by oscillations of steam and/or gas bubbles present in the turbulent flow of liquid, producing an electric signal reflecting the spectral composition of the detected signal and forming therefrom a measure signal reflecting the relative instantaneous value of the turbulent diffusion coefficient of the flowing liquid, for indirect real-time checking the transformation.
For detecting a microphone or a solid state sound meter can be used. Instead of direct detecting it is advantageous to measure the vibration, the solid state sound effect when the frequency range of the liquid sound is wider than the range of the audible sounds and it is necessary in case of placing the turbulent flowing liquid in vacuum because of the want of a gaseous atmosphere transmitting the oscillations determining the sound.
The signal. noise ratio determining the effectiveness of the detection can be improved by means of bubbles produced in an additional process, e.g. by means of surface-active substances or a pulver of a solid body vapouring in the temperature of the liquid or by blowing a gas into the liquid.
The measure signal can be produced by different methods from the detected signal. The main feature of the measure signal is that it should reflect the spectral composition of the detected signal. One of the possibility lies in selecting a reference frequency and to divide thereby the spectrum into two parts. The next step is to determine the effective value or average value assigned to one of the mentioned parts and to the entire spectrum or to both mentioned parts and to divide the two values with one another. Generally the value determined for the spectral range lying over the reference frequency is divided by the value determined for the entire spectrum or the other range. According to the recognition shown above the higher ratio means the higher turbulent diffusion coeffIcient Dturb.
In a further advantageous embodiment of the method according to the invention the detected signal undergoes spectral transformation before determining the effective or average value. This operation can include the noise filtration and the essence thereof lies in modification of the amplitudes in one or more spectral ranges, if required, eventually by deleting some of these ranges. The spectral transformation can be carried out by a series of narrow bank filters, a spectral analizator or a computer connected to an analogue-to-digital converter etc.
The object set is reached also by an apparatus, capable of carrying out the method shown above, comprising a series member including a sensing unit based on acoustic principle, an amplifier, signal processing means and computing means, wherein the signal processing means are equipped with a circuit for dividing the output signal of the amplifier into spectral ranges and determining an effective or average value for each range and the ratio of the determined values.
The signal processing means comprise in an advantageous embodiment a circuit arrangement whereby the output signal of the amplifier can be spectrally transformed.
In the signal processing means of the apparatus according to the invention for carrying out the operation of determining it is advantageous to use input filter means, as a series of narrow band filters or a system of low pass and high pass filters, one or more multiplying units 'required, summation means and elements for determining effective or average value arranged in two series members, wherein the outputs of the series members are connected to a dividing unit producing the measure signal identified with the time function R(tl. The multiplying units can take part in spectral transformation operations, too.
It is advantageous to equip the computing means with inputs for forwarding constants, calibration and real-time data.
The method and the apparatus according to the invention render possible the real-time checking of heterogeneous transformation processes of diffusion kinetics taking place in a turbulent flow of a liquid and even of liquids not available for direct investigation. Therefore it is very advantageous for use in regulation processes needed in the steel production, for detecting the sulphur content of row iron, and for starting regulation and intervention operations for reaching a sulphur content in a prescribed range.
Brief description of the drawings The invention will be described in more detail by way of examples and with reference to preferred embodiments and realisations illustrated in the drawings, wherein Figure I shows a possible form of a signal processed during realisation of the process according to the invention, Figure 2 is a block scheme of the apparatus according to the invention, Figure 3 shows a preferred embodiment of a circuit used in the signal processing means of the apparatus according to the invention, and Figure 4 shows a further preferred embodiment of a circuit used in the signal processing means of the apparatus according to the invention.
Description of the preferred embodiments The method according to the invention can be used in especially advantageous manner during steel production wherein the steel is arranged in a vessel equipped with an inductive mixer. The objects set is for example the determination of the optimal time moment of casting and in order to reach it the following of the process of solving an alloying material supplied in pulverized form to the vessel comprising the steel is in turbulent flow. The problem is important because the casting operation can be started at a level of e.g. 99% of solving. The dissolution is a process of diffusion kinetics. A solid state sound meter arranged on the cover element of the vessel comprising the steel detects the sound effects associating with the flow. The effects are measured in the spectral range from 0 up to 16 kHz.In the processing the first step is to exclude from the spectrum the high level noises caused by the current transformer of the induction mixer with maximal amplitude at 50Hz. These noises with frequency up to 100 Hz attenuate the useful signals. Therefore it is advantageous to eliminate the frequency range from 0 to 100 Hz by means of filters. In a determined time moment a function y = ylxl shown in Figure 1 can be obtained wherein y means the amplitude and x the frequency. In the Figure 1 f= 100 Hz is the lower limit of the analysis of the spectrum, F = 16 kHz gives the upper limit and H = 5 kHz the reference frequency thereof. By the reference frequency H = 5 kHz the spectrum is divided into two parts signed by T1 and T2.The essence of the proposed method lies in the analysis of functions y = y/x,ti/ determined in time moments tj, and in the evaluating the changes following from the analysis. One of the possibility of analysis is e.g. the determination of an effective value Ii reflecting the spectrum part T1 of the frequency range from 100 Hz to 5 kHz and another effective value 12 reflecting the full frequency range of analysis, i.e. the spectrum from 100 Hz to 16 kHz. The ratio 11/12 of the two effective values gives the measuring signal representing the moment value of the time Rltl. Because a transfer function was previously determined by means of preparatory measurements the momentary value of the turbulent diffusion coefficient Dturb can be computed.On the basis of this value, the time moment of supplying and the supplied quantity the characteristic concentration showing the development of the dissolution process can be followed.
Another possibility is the determination of the time function Rltl on the basis of an effective or average value 13, by following the value of the ratio 13/12, wherein the effective or average value 12 is given above and 13 is determined with a function ylx,tjl.zlxl, wherein zlxl means a spectrum transformation function: for example a monotonous increasing function of the variable x. An appropriate example thereof is the function of the integer part of the ratio x/1000 multiplied by 1000. This step is practically a spectrum transformation.
By means of the mentioned function zlxl it is possible to eliminate the influence of the amplitudes with frequency lower than 1000 Hz, and the increasing amplitude means increasing influence.
The intensity of the acoustic effect can be increased by artificial producing bubbles in the liquid flowing in a turbulent stream. The bubbles can be produced buy a pulverised solid material vapourised in the temperature of the liquid, by a surface-active material or by an appropriate gas blown in, wherein, of course, a material should be selected which cannot affect in a disadvantageous way the process. Other methods can be used, too.
The apparatus as proposed by the invention /Figure 2/is capable of realising the method shown above and generally of real-time checking heterogeneous transformation processes of diffusion kinetics taking place in a turbulent flow of a liquid. The apparatus comprises a series member including a sensing unit 1 based on acoustic principle for following the acoustic effect /sound effect in the turbulent flow of the liquid, an amplifier 2, signal processing means 3 receiving the amplified signal and computing means 4 producing an output signal on the basis of the processed signal. The computing means 4 can be equipped with inputs 11, 12, 13 for forwarding the characteristic constant and real-time data of the process and calibration data.
Of course, the signal processing means 3 and the computing means 4 can form together a computer with appropriate program, and the output signal of the computing means 4 is generally forwarded to a special unit of well-known construction for controlling and/or checking the process to be detected. e.g. for supplying active materials, altering the intensity of mixing etc.
The signal processing means 3 comprise a circuit, whereby the output signal of the amplifier 2 can be processed according to the requirement the processing should ensure information about the process detected by the sensing unit 1. An appropriate circuit arrangement can be described in the following manner with reference also to the operation:: The output signal of the amplifier 2 corresponding to the signals produced by the sensing unit 1 is forwarded to narrow band filters 6/Figure 3/arranged in parallel, or to a system of a low pass filter 15 and a high pass filter 14/Figure 4/. The outputs of the filters are connected directly/Figure 4/or by means of multiplying units 7/Figure 3/to summation means 8 and thereoverto elements 9 for determining effective values or average values. The mentioned elements are arranged in two series members the outputs of which are connected to a dividing unit 10 producing on its output a measuring signal consisting of the momentary levels giving the time function Rltl. By means of the narrow band filters 6 it is possible to eliminate noises of specific frequencies, if required.
The sensing unit 1 can be a microphone or a solid state sound meter, the output signal of which after amplifying is the input signal to be forwarded to the signal processing means 3. The computing means 4 should produce the output signal required for displaying orthe desired data and/or for initiating a regulation or control process.
The invention will be better understood on the basis of the following example.
Example In a vessel there is displaced 64 tons molten steel and this amount of metal should be desulphurized, i.e.
the sulphur content thereof has to reach a predetermined range. The object set is solved by blowing in an active material in a stream of an inert gas carrier, over a lance immerged into the liquid.
The molten steel is in a turbulent flow and comprises the cavitation bubbles and the bubbles of the gas carrier, as well. The heterogeneous transformation of diffusion kinetics is a reaction taking place on the surface of dispergated particles present due to the reaction between the active material blown in and the molten metal. Within this transformation process sulphur dissolved in the molten steel enters the dispergated particles and the particles are leaving in a continuous process the inner space of the molten steel bath. Their surface magnitude remains practically unchanged during this reaction of receiving sulphur.
For producing a measuring signal containing the momentary values of the time function R/tl a direction sensitive microphon was used, the amplified signal of which as output signal of the amplifier 2 entered a high pass filter 14 with lower frequency limit 7 kHz, and another high pass filter not passing the signal parts of frequency lower than 100 Hz. The second filter ensures filtration of noises of low frequency, practically in the range of 50 kHz, present due to the work of a current transformer arranged adjacent to the vessel with molten steel. The outputs of the filters are connected direct to elements 9 for determining effective values and thereover to the dividing unit 10 producing an analogous signal.This means that the apparatus generates signals of values reflecting the energy contents assigned to the range T2 and the entire spectrum with range T1 t T2 as shown in Figure 1. The ratio of these values forms the measure signal with momentary values of the time function Ritl.
For preparing the checking process the constants appearing in the function connecting the time function P/tI to the turbulent diffusion coefficient Dturb, i.e. the transfer function of the measurement were determined.
The determination required the investigation of the desulphurizing process in some cases. For this aim the sulphur content of the steel was determined before handling /by samples taken from the furnace before castingl and after it yin the stream of steel flowing to forms/, by means of photometric flame detector.From the denoted values of the time function R/t/produced by the apparatus and the data of photometric analysis was concluded that in the value range 0,05 to 0,08 of the time function R/Vthe actual sulphur concentration S/t/ can be described by the actual form dS/t/ ~ ~ 0 89 P/tI = - 0,89 Sil-,- of the kinetical equation, wherein Eltl means the equilibrium sulphur concentration.The theoretic investigation shows that the equilibrium sulphur concentration can be described by the equation E/t/= 1 + 1 t 0,0225 multi wherein SO is the sulphur concentration before handling /casting/ and mIt/the mass of the active material blown into the steel up to moment t of the handling and determined by means of an electronic balance.
The real-time checking of the tranformation is carried out in the following way: the signals representing the time function Pit/of the apparatus according to the invention and the signals of apparatus comprising the balance are processed by a microcomputer storing the actual form of the kinetic equation. In short time sequences the actual sulphur can concentration S/tI is computed on the basis of the known /from the analysis of the samples/ value of the sulphur concentration S0. The analysis of the sample lasts about 20 to 30 minutes and this means that the handling of a steel bath should be started in this time aftertaking a sample from the furnace.The duration of the checked process is reiatively short, it is from 3 to 10 minutes which depends on the rate of reaching the required sulphur content.
The checking is aimed for producing steel with an acceptable level of sulphur content. It is, however, important - for avoiding use of a high amount of active material - not to undergo a prescribed lower level because the low sulphur concentration is also harmful: it starts with increasing intensity a secondary process of solving nitrogen from the air with re!atively high intensity after eliminating sulphur.
The data obtained by photometric flame analysis of samples taken after handling gave a high proof of the method of invention. The sulphur content of the samples taken at a value of the time function R/t/ predetermined by preparatory measurements was equal to those expected on the basis of the samples analyzed previously by flame photometry. The results were proved by 21 measurements carried out by the method and apparatus of the invention compared to the investigations ccording to the art /by sampling/.
The method and apparatus according to the invention render possible real-time checking of a lot of processes by means of relatively simple solutions, without sampling. It is especially advantageous that in case of meeting some conditions /the conditions of the Reynolds-analogy/ it is possible to determine the values of the turbulent viscosity coefficient and the turbulent thermal conductivity number on the basis of the turbulent diffusion coefficient.
The correct results of measurements can be reached only on the condition of performing checking measurements and computations, sometimes checking is necessary during the measurements, the proposed method and apparatus are capable, however, of producing reliable data required in real-time processes and thereby of solving an object not reached before.
From the above description it should be understood that methods and apparata equivalent to the shown above as examples will be within the scope of the claimed invention and such methods and apparata will work on conditions depending on the field of the application and the given circumstances.

Claims (10)

1. Method of checking a heterogeneous transformation process of diffusion kinetics taking place in a turbulent flow of a liquid, comprising the steps of detecting a vibration process of acoustic frequency caused by oscillations of bubbles present in the turbulent flow of liquid, producing an electric signal reflecting the spectral composition of the detected signal, and forming therefrom a measure signal reflecting the relative instantaneous value of the turbulent diffusion coefficient of the flowing liquid, for indirect real-time checking the transformation.
2. Method as claimed in claim 1, comprising the step of producing bubbles in the liquid in an artificial way.
3. Method as claimed in claim 1 or 2, comprising the step of dividing the detected signal into two spectral ranges for producing the electric signal reflecting the spectral composition and determining the ratio of the effective values of the spectral ranges.
4. Method of claimed in claim 1 or 2, comprising the step of dividing the detected signal into two spectral ranges for producing the electric signal reflecting the spectral composition and determining the ratio of the values of the spectral ranges.
5. Method as claimed in any preceding claim, comprising the step of spectral transforming the detected signal before producing the electric signal.
6. Apparatus for checking a heterogeneous transformation process of diffusion kinetics taking place in a turbulent flow of a liquid, especially for carrying out the method of any preceding claim, comprising a series of members including a sensing unit /1/ based on acoustic principle, an amplifier/2/, signal processing means 131 and computing means /4/, wherein the signal processing means 131 includes a circuit for dividing the output signal of the amplifier/2/ into spectral ranges and determining a characteristic value selected from the group comprising the effective value and the average value for each range and the ratio of the characteristic values.
7. Apparatus as claimed in claim 6, wherein the signal processing means 131 includes a circuit for spectral forming the ouputsignal of the amplifier 121.
8. Apparatus as claimed in claim 6 or 7, wherein the computing means 141 comprise inputs /11, 12, 13/for forwarding real-time data, constants and calibration data.
9. An apparatus substantially as herein described with reference to and as shown in the drawings.
10. An apparatus according to any of claims 6 to 8, in use for real-time controlling a heterogeneous transformation process of diffusion kinetics taking place in a turbulent flow of a liquid.
GB08503773A 1985-02-14 1985-02-14 Method of and apparatus for checking a hetergeneous transformation process of diffusion kinetics taking place in a liquid exhibiting turbulent movement Expired GB2171198B (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
AT0042685A AT390516B (en) 1985-02-14 1985-02-13 METHOD FOR CONTROLLING A HETEROGENIC DIFFUSION-KINETIC CONVERSION PROCESS IN A TURBULENT LIQUID FLOW
GB08503773A GB2171198B (en) 1985-02-14 1985-02-14 Method of and apparatus for checking a hetergeneous transformation process of diffusion kinetics taking place in a liquid exhibiting turbulent movement
DE19853505286 DE3505286A1 (en) 1985-02-14 1985-02-15 METHOD AND DEVICE FOR CONTROLLING A HETEROGENIC DIFFUSION-KINETIC CONVERSION PROCESS IN A TURBULENT LIQUID FLOW
SE8500860A SE457018B (en) 1985-02-14 1985-02-22 SET AND DEVICE FOR CONTROL OF A CONTINUOUS, Heterogeneous, DIFFUSION Kinetic Conversion Process In A Turbulent Hydrogen Flow
FR8502840A FR2578068B1 (en) 1985-02-14 1985-02-27 METHOD AND DEVICE FOR CONTROLLING A HETEROGENEOUS TRANSFORMATION PROCESS WITH CINETIC DIFFUSION HELD IN A TURBULENT LIQUID STREAM

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
GB08503773A GB2171198B (en) 1985-02-14 1985-02-14 Method of and apparatus for checking a hetergeneous transformation process of diffusion kinetics taking place in a liquid exhibiting turbulent movement

Publications (3)

Publication Number Publication Date
GB8503773D0 GB8503773D0 (en) 1985-03-20
GB2171198A true GB2171198A (en) 1986-08-20
GB2171198B GB2171198B (en) 1988-10-26

Family

ID=10574467

Family Applications (1)

Application Number Title Priority Date Filing Date
GB08503773A Expired GB2171198B (en) 1985-02-14 1985-02-14 Method of and apparatus for checking a hetergeneous transformation process of diffusion kinetics taking place in a liquid exhibiting turbulent movement

Country Status (5)

Country Link
AT (1) AT390516B (en)
DE (1) DE3505286A1 (en)
FR (1) FR2578068B1 (en)
GB (1) GB2171198B (en)
SE (1) SE457018B (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2211938A (en) * 1987-11-05 1989-07-12 Atomic Energy Authority Uk Acoustic monitoring of plant operation
WO1999015890A2 (en) * 1997-09-24 1999-04-01 Sca Graphic Sundsvall Ab Method and device for process monitoring
FR2872518A1 (en) * 2004-07-02 2006-01-06 Usinor Sa POCKET BULLAGE MONITORING METHOD AND IMPLEMENTATION INSTALLATION

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0948736A1 (en) * 1996-12-20 1999-10-13 Bühler AG Process for monitoring the state of operation of machines

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1052239A (en) * 1962-10-15
GB1417676A (en) * 1973-04-27 1975-12-17 Centre Rech Metallurgique Method of monitoring effervescence of a steel
GB1498372A (en) * 1975-05-19 1978-01-18 Rockwell International Corp Method and apparatus for automatic abnormal events monitor in operating plants
GB1595839A (en) * 1977-07-07 1981-08-19 Mtu Muenchen Gmbh Liquid processing of workpieces
GB2129979A (en) * 1982-08-25 1984-05-23 British Steel Corp Improvements in lancing in electric arc steelmaking

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3157045A (en) * 1960-08-15 1964-11-17 Textron Electronics Inc Vibration testing system
BE786018A (en) * 1971-07-09 1973-01-08 Allegheny Ludlum Ind Inc PROCESS FOR INJECTING A REACTIVE GAS IN A BATH OF MELTED METAL
US4149877A (en) * 1974-06-27 1979-04-17 Centre De Recherches Metallurgiques, Centrum Voor Research In De Metallurgie Controlling pig iron refining
LU71261A1 (en) * 1974-11-08 1976-09-06
BE822742A (en) * 1974-11-28 1975-05-28 PROCESS FOR CONTROLLING THE REFINING OF HEMATITE CAST IRON.
DE2829259A1 (en) * 1978-07-04 1980-01-17 Bayer Ag METHOD FOR PRODUCING MOLDED BODIES FROM POLYCARBONATES CROSSLINKED BY means of UV and / or other high-energy rays
DE3004605A1 (en) * 1980-02-08 1981-08-13 Robert Bosch Gmbh, 7000 Stuttgart Valve play measurement for IC engine - comparing amplitude of sound signal conducted through engine component parts with reference
DE3033575A1 (en) * 1980-09-06 1982-05-06 Klöckner-Humboldt-Deutz AG, 5000 Köln Cylindrical pulveriser load regulation system - uses measured oscillation of pulveriser wall to determine contents grade
DE3205941C2 (en) * 1982-02-19 1986-10-30 Forschungsgesellschaft Druckmaschinen E.V., 6000 Frankfurt Device for contactless metrological detection of liquid transport through roller gaps in inking or dampening units of printing machines

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1052239A (en) * 1962-10-15
GB1417676A (en) * 1973-04-27 1975-12-17 Centre Rech Metallurgique Method of monitoring effervescence of a steel
GB1498372A (en) * 1975-05-19 1978-01-18 Rockwell International Corp Method and apparatus for automatic abnormal events monitor in operating plants
GB1595839A (en) * 1977-07-07 1981-08-19 Mtu Muenchen Gmbh Liquid processing of workpieces
GB2129979A (en) * 1982-08-25 1984-05-23 British Steel Corp Improvements in lancing in electric arc steelmaking

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2211938A (en) * 1987-11-05 1989-07-12 Atomic Energy Authority Uk Acoustic monitoring of plant operation
WO1999015890A2 (en) * 1997-09-24 1999-04-01 Sca Graphic Sundsvall Ab Method and device for process monitoring
WO1999015890A3 (en) * 1997-09-24 1999-05-20 Sca Graphic Sundsvall Ab Method and device for process monitoring
FR2872518A1 (en) * 2004-07-02 2006-01-06 Usinor Sa POCKET BULLAGE MONITORING METHOD AND IMPLEMENTATION INSTALLATION
WO2006013239A2 (en) 2004-07-02 2006-02-09 Arcelor France Method for controlling a molten metal bath bubbling in a metallurgical vessel and a device for carrying out said method
WO2006013239A3 (en) * 2004-07-02 2006-05-04 Usinor Method for controlling a molten metal bath bubbling in a metallurgical vessel and a device for carrying out said method
US7780906B2 (en) 2004-07-02 2010-08-24 Arcelor France Method for controlling a molten metal bath bubbling in a metallurgical vessel and a device for carrying out said method
US7942950B2 (en) 2004-07-02 2011-05-17 Arcelormittal France Method for controlling a molten metal bath bubbling in a metallurgical vessel and a device for carrying out said method

Also Published As

Publication number Publication date
DE3505286A1 (en) 1986-08-21
GB8503773D0 (en) 1985-03-20
SE457018B (en) 1988-11-21
AT390516B (en) 1990-05-25
ATA42685A (en) 1989-10-15
SE8500860D0 (en) 1985-02-22
DE3505286C2 (en) 1989-09-07
FR2578068B1 (en) 1987-10-09
SE8500860L (en) 1986-08-23
GB2171198B (en) 1988-10-26
FR2578068A1 (en) 1986-08-29

Similar Documents

Publication Publication Date Title
US5129257A (en) System for measuring engine exhaust constituents
US3329495A (en) Process for measuring the value of carbon content of a steel bath in an oxygen top-blowing converter
GB1594395A (en) Method and apparatus for measuring slag foaming using microwave level meter
GB2171198A (en) Monitoring a heterogeneous transformation process
US4617830A (en) Method and apparatus for checking heterogeneous transformation process of diffusing kinetics in turbulent liquid flow
CN206671193U (en) A kind of high frequency infrared ray carbon sulphur analyser
FR2355287A1 (en) PROCEDURE FOR AUTOMATICALLY AND QUANTITATIVELY MEASURING THE QUANTITY OF HYDROGEN CONTAINED IN A METAL AND APPARATUS FOR CARRYING OUT THIS PROCESS
JPH0813125A (en) Furnace gas controlling method for gas carbonitriding process and device therefor
US3432288A (en) Process control of top-blown oxygen converter
CN206387722U (en) A kind of infrared carbon sulfur analyzer
JPS61202150A (en) Method and device for inspecting heterogeneous transformation process of diffusion motion in turbulence of liquid
JPS6138250B2 (en)
EP0899571A3 (en) Method for selective gas sensors based on non-linear gas reactions.
HU190820B (en) Method and apparatus for controlling heterogeneous transformation proceeding with diffusion kinetics in liquids streaming with turbulence
US3661559A (en) Metallurgical process control of oxygen content
RU99104345A (en) METHOD FOR DETERMINING IRON CONTENT IN OPERATIONAL SAMPLES OF ORE MATERIAL AND DEVICE FOR ITS IMPLEMENTATION
PL151784B1 (en) METHOD AND DEVICE FOR CONTROL OF NON-HOMOGENEOUS DIFUSINKINETIC TRANSFORMATION PROCESS IN STORM FLOW C IE C AND Y, ESPECIALLY FOR DETERMINING THE COMPOSITION OF THE L I
JPS6247418A (en) Method for estimating oxygen concentration in molten steel
SU828062A1 (en) Method and device for electromagnetic checking
SU1265583A1 (en) Method for nondestructive check of coating thickness and device for effecting same
JPH0642184Y2 (en) Gas temperature measuring device
SU892200A1 (en) Coating thickness measuring apparatus
SU390579A1 (en) METHOD FOR MEASUREMENT OF INTENSITY AND NERLIN11-RNOSTI OF DEPRESSING THE CHARGE IN DOMAINS
JPH0666822A (en) Method of measuring surface flow rate of in-mold molten steel in continuous casting
SU1528325A3 (en) Method and apparatus for checking heterogeneous conversion process in turbulent flow of molten metal

Legal Events

Date Code Title Description
PCNP Patent ceased through non-payment of renewal fee