JPH0813125A - Furnace gas controlling method for gas carbonitriding process and device therefor - Google Patents

Furnace gas controlling method for gas carbonitriding process and device therefor

Info

Publication number
JPH0813125A
JPH0813125A JP17373194A JP17373194A JPH0813125A JP H0813125 A JPH0813125 A JP H0813125A JP 17373194 A JP17373194 A JP 17373194A JP 17373194 A JP17373194 A JP 17373194A JP H0813125 A JPH0813125 A JP H0813125A
Authority
JP
Japan
Prior art keywords
gas
ammonia
heat treatment
treatment furnace
furnace
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP17373194A
Other languages
Japanese (ja)
Other versions
JP3326972B2 (en
Inventor
Takeshi Isotani
武史 磯谷
Joji Hachisuga
譲二 蜂須賀
Ryuichi Uchino
龍一 内野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Aisin Corp
Original Assignee
Aisin Seiki Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Aisin Seiki Co Ltd filed Critical Aisin Seiki Co Ltd
Priority to JP17373194A priority Critical patent/JP3326972B2/en
Publication of JPH0813125A publication Critical patent/JPH0813125A/en
Application granted granted Critical
Publication of JP3326972B2 publication Critical patent/JP3326972B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE:To guarantee the quality of the material to be treated by controlling the amt. of gaseous ammonia to be fed based on the correlation between the concn. of the residual gas of ammonia in a heat treating furnace and the nitrogen concn. in the material to be treated in accordance with the detected amt. of the same gas. CONSTITUTION:The flow rate of gaseous ammonia fed to a heat treating furnace 1 at the time of a carbonitriding process is detected by a flowmeter 2, the amt. of the residual gas of ammonia in the furnace 1 is detected by a gaseous ammonia annalyzer 3 and the temp. in the furnace 1 is detected by a temp. sensor 4. Then, in accordance with the concn. of the residual gas of ammonia in the furnace 1 detected by a controller 5, based on the correlation data between the concn. of the residual gas of ammonia in the furnace 1 previously experimentally found and housed into ROM and the nitrogen concn. in the material 10 to be treated and the correlation data between the concn. of the residual gas of ammonia in the furnace 1 and the amt. of the gaseous ammonia to be fed to the furnace 1, the detected temp. in the furnace 1 is taken into consideration, and a signal of controlling the amt. of the gaseous ammonia to be fed to the furnace 1 is made. Thus, the precise control of the nitrogen concn. in the material to be treated is made possible.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、ガス浸炭窒化処理にお
いて、熱処理炉内のアンモニアの残留ガス量に基づき予
め実験的に求めた前記熱処理炉内のアンモニアの残留ガ
ス濃度と被処理材中の窒素濃度との相関を考慮して、前
記熱処理炉内に供給するアンモニアガスの供給量を制御
して、前記被処理材の窒素濃度を制御するガス浸炭窒化
処理の炉気制御方法および装置に関する。
BACKGROUND OF THE INVENTION The present invention relates to the residual gas concentration of ammonia in the heat treatment furnace and the residual gas concentration in the material to be treated which are experimentally obtained in advance based on the residual gas amount of ammonia in the heat treatment furnace in the gas carbonitriding treatment. The present invention relates to a furnace gas control method and apparatus for gas carbonitriding which controls the nitrogen concentration of the material to be processed by controlling the supply amount of ammonia gas supplied into the heat treatment furnace in consideration of the correlation with the nitrogen concentration.

【0002】[0002]

【従来の技術】従来のガス浸炭窒化処理は、図8に示す
ように被処理材Wが載置され、温度および供給ガスその
他の制御がなされた熱処理炉R内において、浸炭処理を
行った後、一定量のアンモニアガスを供給して前記浸炭
処理より低い温度で行われていた。
2. Description of the Related Art A conventional gas carbonitriding treatment is carried out after a carburizing treatment is carried out in a heat treatment furnace R in which a material W to be treated is placed as shown in FIG. 8 and temperature, supply gas and other factors are controlled. It was performed at a lower temperature than the carburizing treatment by supplying a fixed amount of ammonia gas.

【0003】[0003]

【発明が解決しようとする課題】上記従来のガス浸炭窒
化処理は、一定量のアンモニアガスを前記熱処理炉R内
に供給して行うものであったので、前記熱処理炉R内の
アンモニアの残留ガスの濃度および前記被処理材W中の
窒素濃度を検出して、それに応じた制御がなされていな
いので、前記熱処理炉R内のアンモニアの残留ガスおよ
び前記被処理材W中の窒素濃度を精確に制御出来ず、前
記被処理材Wの品質を十分保証することが出来ないとい
う問題が有った。
Since the conventional gas carbonitriding process described above is performed by supplying a fixed amount of ammonia gas into the heat treatment furnace R, residual gas of ammonia in the heat treatment furnace R is used. Of the residual gas of ammonia in the heat treatment furnace R and the nitrogen concentration in the material to be treated W are accurately detected because the concentration of nitrogen and the concentration of nitrogen in the material to be treated W are not detected and controlled accordingly. There is a problem that the quality of the material W to be processed cannot be sufficiently guaranteed because it cannot be controlled.

【0004】そこで本発明者らは、熱処理炉内のアンモ
ニアの残留ガス量に基づき予め実験的に求めた前記熱処
理炉内のアンモニアの残留ガス濃度と被処理材中の窒素
濃度との相関を考慮して、前記熱処理炉内に供給するア
ンモニアの供給量を制御して、前記被処理材の窒素濃度
を制御するという本発明の技術的思想に着眼し、さらに
研究開発を重ねた結果、前記熱処理炉内のアンモニアの
残留ガスおよび前記被処理材中の窒素濃度の精確な制御
を可能にし、前記被処理材の品質を充分保証するという
目的を達成する本発明に到達した。
Therefore, the inventors of the present invention consider the correlation between the residual gas concentration of ammonia in the heat treatment furnace and the nitrogen concentration in the material to be treated, which is experimentally obtained in advance based on the residual gas amount of ammonia in the heat treatment furnace. Then, focusing on the technical idea of the present invention of controlling the nitrogen concentration of the material to be processed by controlling the supply amount of ammonia supplied into the heat treatment furnace, and further research and development, as a result, the heat treatment The present invention has been achieved which achieves the object of precisely controlling the residual gas of ammonia in the furnace and the nitrogen concentration in the material to be treated and sufficiently guaranteeing the quality of the material to be treated.

【0005】[0005]

【課題を解決するための手段】本発明(請求項1に記載
の第1発明)のガス浸炭窒化処理の炉気制御方法は、前
記熱処理炉内のアンモニアの残留ガス量を検出し、前記
検出したアンモニアの残留ガス量に従い予め実験的に求
めた前記熱処理炉内のアンモニアの残留ガス濃度と被処
理材中の窒素濃度との相関に基づき、前記熱処理炉内に
供給するアンモニアガスの供給量を制御して、前記被処
理材中の窒素濃度を制御するものである。
A furnace gas control method for gas carbonitriding treatment according to the present invention (a first invention according to claim 1) detects the residual gas amount of ammonia in the heat treatment furnace and performs the detection. Based on the correlation between the residual gas concentration of ammonia in the heat treatment furnace and the nitrogen concentration in the material to be treated, which was experimentally obtained in advance according to the residual gas amount of ammonia, the supply amount of ammonia gas to be supplied into the heat treatment furnace The nitrogen concentration in the material to be treated is controlled to control.

【0006】本発明(請求項2に記載の第2発明)のガ
ス浸炭窒化処理の炉気制御方法は、前記第1発明におい
て、ガス浸炭窒化処理用の熱処理炉に供給されているア
ンモニアのガス供給量を検出し、前記検出したアンモニ
アの残留ガス量に従い予め実験的に求めた前記熱処理炉
内のアンモニアの残留ガス濃度と被処理材中の窒素濃度
との相関に基づき、前記被処理材中の窒素濃度を演算
し、演算された窒素濃度と目標窒素濃度とを比較して、
検出された前記アンモニアガスの供給量を考慮して前記
熱処理炉内に供給するアンモニアガスの供給量を制御す
るものである。
A furnace gas control method for gas carbonitriding treatment according to the present invention (a second invention according to claim 2) is the ammonia gas supplied to the heat treatment furnace for gas carbonitriding treatment in the first invention. Based on the correlation between the residual gas concentration of ammonia in the heat treatment furnace and the nitrogen concentration in the material to be treated, which is experimentally obtained in advance according to the amount of residual gas to be detected, which is detected in the material to be treated. Calculate the nitrogen concentration of, and compare the calculated nitrogen concentration with the target nitrogen concentration,
The supply amount of the ammonia gas supplied into the heat treatment furnace is controlled in consideration of the detected supply amount of the ammonia gas.

【0007】本発明(請求項3に記載の第3発明)のガ
ス浸炭窒化処理の炉気制御方法は、前記第2発明におい
て、前記アンモニアの供給量を、予め実験的に求めた前
記熱処理炉内のアンモニアの残留ガス濃度と前記熱処理
炉へのアンモニアガスの供給量との相関も考慮して決定
するものである。
The furnace gas control method for gas carbonitriding treatment of the present invention (the third invention according to claim 3) is the heat treatment furnace according to the second invention, wherein the supply amount of the ammonia is experimentally obtained in advance. It is determined in consideration of the correlation between the residual gas concentration of ammonia in the inside and the supply amount of ammonia gas to the heat treatment furnace.

【0008】本発明(請求項4に記載の第4発明)のガ
ス浸炭窒化処理の炉気制御方法は、前記第3発明におい
て、前記熱処理炉内の温度を検出し、前記アンモニアガ
スの供給量を、検出した前記熱処理炉内の温度を考慮し
て決定するものである。
A furnace gas control method for gas carbonitriding treatment according to the present invention (a fourth invention according to claim 4) is the same as the third invention, wherein the temperature in the heat treatment furnace is detected and the amount of the ammonia gas supplied is determined. Is determined in consideration of the detected temperature in the heat treatment furnace.

【0009】本発明(請求項5に記載の第5発明)のガ
ス浸炭窒化処理の炉気制御方法は、前記第4発明におい
て、前記検出したアンモニアの残留ガス量が予め設定し
た上限および下限を越えた場合はそれに応じた制御をす
るものである。
In the furnace gas control method for gas carbonitriding treatment of the present invention (the fifth invention according to claim 5), in the fourth invention, the detected residual gas amount of ammonia has an upper limit and a lower limit set in advance. If it exceeds the limit, the control is performed accordingly.

【0010】本発明(請求項6に記載の第6発明)のガ
ス浸炭窒化処理の炉気制御装置は、ガス浸炭窒化処理用
の熱処理炉に供給されているアンモニアガスの流量を検
出する流量計と、前記熱処理炉内のアンモニアの残留ガ
ス量を検出するアンモニアガス分析計と、前記熱処理炉
内の温度を検出する温度センサと、前記検出したアンモ
ニアの残留ガス量に従い、予め実験的に求めた前記熱処
理炉内のアンモニアの残留ガス濃度と被処理材中の窒素
濃度との相関および前記熱処理炉内のアンモニアの残留
ガス濃度と前記熱処理炉へのアンモニアガスの供給量と
の相関に基づき、前記検出された前記熱処理炉内の温度
を考慮して、前記被処理材中の窒素濃度を制御するため
に前記熱処理炉内に供給されているアンモニアガスの供
給量を制御する制御信号を出力するコントローラと、前
記コントローラからの制御信号に基づきアンモニアガス
の供給量を制御する流量制御弁とから成るものである。
A furnace gas control device for gas carbonitriding treatment according to the present invention (sixth invention according to claim 6) is a flow meter for detecting the flow rate of ammonia gas supplied to a heat treatment furnace for gas carbonitriding treatment. According to the ammonia gas analyzer for detecting the residual gas amount of ammonia in the heat treatment furnace, the temperature sensor for detecting the temperature in the heat treatment furnace, and the residual gas amount of the detected ammonia, experimentally obtained in advance. Based on the correlation between the residual gas concentration of ammonia in the heat treatment furnace and the nitrogen concentration in the material to be treated and the correlation between the residual gas concentration of ammonia in the heat treatment furnace and the supply amount of ammonia gas to the heat treatment furnace, Considering the detected temperature in the heat treatment furnace, a control for controlling the supply amount of ammonia gas supplied in the heat treatment furnace in order to control the nitrogen concentration in the material to be treated. A controller for outputting a signal, which is made of a flow control valve for controlling the supply amount of the ammonia gas on the basis of a control signal from the controller.

【0011】[0011]

【作用】上記構成より成る第1発明のガス浸炭窒化処理
の炉気制御方法は、前記熱処理炉内のアンモニアの残留
ガス量を検出し、前記検出したアンモニアの残留ガス量
に従い予め実験的に求めた前記熱処理炉内のアンモニア
の残留ガス濃度と被処理材中の窒素濃度との相関に基づ
き、前記熱処理炉内に供給するアンモニアガスの供給量
を制御して、前記被処理材中の窒素濃度を制御する。
The furnace gas control method for gas carbonitriding treatment of the first aspect of the present invention having the above structure detects the residual gas amount of ammonia in the heat treatment furnace and experimentally obtains it in advance according to the detected residual gas amount of ammonia. Based on the correlation between the residual gas concentration of ammonia in the heat treatment furnace and the nitrogen concentration in the material to be treated, the supply amount of ammonia gas to be supplied into the heat treatment furnace is controlled, and the nitrogen concentration in the material to be treated is controlled. To control.

【0012】上記構成より成る第6発明のガス浸炭窒化
処理の炉気制御装置は、前記流量計が、ガス浸炭窒化処
理用の前記熱処理炉に供給されているアンモニアガスの
流量を検出し、前記アンモニアガス分析計が、前記熱処
理炉内のアンモニアの残留ガス量を検出し、前記温度セ
ンサが、前記熱処理炉内の温度を検出し、前記コントロ
ーラが、前記検出したアンモニアの残留ガス量に従い、
予め実験的に求めた前記熱処理炉内のアンモニアの残留
ガス濃度と被処理材中の窒素濃度との相関および前記熱
処理炉内のアンモニアの残留ガス濃度と前記熱処理炉へ
のアンモニアガスの供給量との相関に基づき、前記検出
された前記熱処理炉内の温度を考慮して、前記被処理材
中の窒素濃度を制御するために前記熱処理炉内に供給さ
れているアンモニアガスの供給量を制御する制御信号を
出力し、前記流量制御弁が、前記コントローラからの制
御信号に基づきアンモニアガスの供給量を制御して、前
記被処理材中の窒素濃度を制御するものである。
In the furnace carbonization control device for gas carbonitriding treatment of the sixth invention having the above structure, the flowmeter detects the flow rate of ammonia gas supplied to the heat treatment furnace for gas carbonitriding treatment, Ammonia gas analyzer detects the residual gas amount of ammonia in the heat treatment furnace, the temperature sensor detects the temperature in the heat treatment furnace, the controller according to the detected residual gas amount of ammonia,
Correlation between the residual gas concentration of ammonia in the heat treatment furnace and the nitrogen concentration in the material to be treated, which was experimentally obtained in advance, and the residual gas concentration of ammonia in the heat treatment furnace and the supply amount of ammonia gas to the heat treatment furnace. Based on the above correlation, the supply amount of the ammonia gas supplied to the heat treatment furnace for controlling the nitrogen concentration in the material to be treated is controlled in consideration of the detected temperature in the heat treatment furnace. A control signal is output, and the flow rate control valve controls the supply amount of ammonia gas based on the control signal from the controller to control the nitrogen concentration in the material to be treated.

【0013】[0013]

【発明の効果】上記作用を奏する第1発明のガス浸炭窒
化処理の炉気制御方法は、前記熱処理炉内のアンモニア
の残留ガス濃度と被処理材中の窒素濃度との相関に基づ
き、検出した前記熱処理炉内のアンモニアの残留ガス濃
度に応じて前記熱処理炉内に供給するアンモニアガスの
供給量を制御して、前記被処理材中の窒素濃度を制御す
るので、前記熱処理炉内のアンモニアの残留ガスおよび
前記被処理材中の窒素濃度の精確な制御を可能にし、前
記被処理材の品質を充分保証するという効果を奏する。
The furnace gas control method for gas carbonitriding treatment according to the first aspect of the present invention, which has the above-described effect, detects based on the correlation between the residual gas concentration of ammonia in the heat treatment furnace and the nitrogen concentration in the material to be treated. By controlling the supply amount of the ammonia gas supplied into the heat treatment furnace according to the residual gas concentration of ammonia in the heat treatment furnace to control the nitrogen concentration in the material to be treated, The residual gas and the nitrogen concentration in the material to be processed can be precisely controlled, and the quality of the material to be processed is sufficiently ensured.

【0014】上記作用を奏する第6発明のガス浸炭窒化
処理の炉気制御装置は、前記コントローラが、前記検出
したアンモニアの残留ガス量に従い、予め実験的に求め
た前記熱処理炉内のアンモニアの残留ガス濃度と被処理
材中の窒素濃度との相関および前記熱処理炉内のアンモ
ニアの残留ガス濃度と前記熱処理炉へのアンモニアガス
の供給量との相関に基づき、前記検出された前記熱処理
炉内の温度を考慮して、前記被処理材中の窒素濃度を制
御するために前記熱処理炉内に供給されているアンモニ
アガスの供給量を制御する制御信号を出力し、前記流量
制御弁が、前記コントローラからの制御信号に基づきア
ンモニアガスの供給量を制御して、前記被処理材中の窒
素濃度を制御するので、前記熱処理炉内のアンモニアの
残留ガスおよび前記被処理材中の窒素濃度の一層精確な
制御を可能にし、前記被処理材の品質を充分保証すると
いう効果を奏する。
In the furnace gas control apparatus for gas carbonitriding treatment of the sixth aspect of the present invention, which has the above-described operation, the controller determines the residual amount of ammonia in the heat treatment furnace which has been experimentally obtained in advance according to the detected residual gas amount of ammonia. Based on the correlation between the gas concentration and the nitrogen concentration in the material to be treated and the correlation between the residual gas concentration of ammonia in the heat treatment furnace and the supply amount of ammonia gas to the heat treatment furnace, the detected heat treatment furnace In consideration of the temperature, a control signal that controls the supply amount of the ammonia gas that is being supplied into the heat treatment furnace to control the nitrogen concentration in the material to be processed is output, and the flow rate control valve includes the controller. The amount of supply of ammonia gas is controlled based on the control signal from the control unit to control the nitrogen concentration in the material to be treated. Enabling a more precise control of the nitrogen concentration in the material to be treated, an effect that sufficiently guarantee the quality of the material to be treated.

【0015】[0015]

【実施例】以下本発明の実施例につき、図面を用いて説
明する。
Embodiments of the present invention will be described below with reference to the drawings.

【0016】(第1実施例)本第1実施例のガス浸炭窒
化処理の炉気制御方法および装置は、図1ないし図6に
示すようにガス浸炭窒化処理用の熱処理炉1に供給され
ているアンモニアガスの流量を検出する流量計2と、前
記熱処理炉1内のアンモニアの残留ガス量を検出するア
ンモニアガス分析計3と、前記熱処理炉1内の温度を検
出する温度センサ4と、前記検出したアンモニアの残留
ガス量に従い、予め実験的に求めた前記熱処理炉1内の
アンモニアの残留ガス濃度と被処理材10中の窒素濃度
との相関および前記熱処理炉1内のアンモニアの残留ガ
ス濃度と前記熱処理炉1へのアンモニアガスの供給量と
の相関に基づき、前記検出された前記熱処理炉1内の温
度を考慮して、前記被処理材10中の窒素濃度を制御す
るために前記熱処理炉1内に供給されているアンモニア
ガスの供給量を制御する制御信号を出力するコントロー
ラ5と、前記コントローラ5からの制御信号に基づきア
ンモニアガスの供給量を制御する流量制御弁6とから成
るものである。
(First Embodiment) The furnace gas control method and apparatus for gas carbonitriding treatment of the first embodiment is supplied to a heat treatment furnace 1 for gas carbonitriding treatment as shown in FIGS. 1 to 6. A flow meter 2 for detecting the flow rate of ammonia gas present, an ammonia gas analyzer 3 for detecting the residual gas amount of ammonia in the heat treatment furnace 1, a temperature sensor 4 for detecting the temperature in the heat treatment furnace 1, Correlation between the residual gas concentration of ammonia in the heat treatment furnace 1 and the nitrogen concentration in the material 10 to be treated, which are experimentally obtained in advance, and the residual gas concentration of ammonia in the heat treatment furnace 1 according to the detected residual gas amount of ammonia. Based on the correlation between the amount of ammonia gas supplied to the heat treatment furnace 1 and the temperature in the heat treatment furnace 1 detected, the heat for controlling the nitrogen concentration in the material 10 to be treated is taken into consideration. place A controller 5 for outputting a control signal for controlling the supply amount of the ammonia gas supplied into the furnace 1, and a flow rate control valve 6 for controlling the supply amount of the ammonia gas based on the control signal from the controller 5. Is.

【0017】前記熱処理炉1は、図1および図2に示す
ように炉壁11に包囲されており、トランスミッション
の歯車その他の被処理材10が棚に多数載置され、C2
2、N2 、H2 、CO、CO2 等のRXガスと、アン
モニアガスNH3 と、C4 10の混合ガスが導入され、
結果としてCOと、H2 と、N2 のガス成分が充填され
ている。
The heat treatment furnace 1 is surrounded by a furnace wall 11 as shown in FIGS. 1 and 2, and a large number of transmission gears and other materials 10 to be treated are placed on a shelf and C 2
A mixed gas of RX gas such as H 2 , N 2 , H 2 , CO, and CO 2 , ammonia gas NH 3 , and C 4 H 10 is introduced,
As a result, CO, H 2 , and N 2 gas components are filled.

【0018】前記流量計2は、図1に示すようにアンモ
ニアガスのタンク(図示せず)と前記熱処理炉1とを連
絡するアンモニアガス供給配管20に配設され、熱処理
炉1に供給されているアンモニアガスの流量を検出し得
る構成より成る。
As shown in FIG. 1, the flow meter 2 is installed in an ammonia gas supply pipe 20 which connects an ammonia gas tank (not shown) to the heat treatment furnace 1 and is supplied to the heat treatment furnace 1. The configuration is such that the flow rate of the ammonia gas present can be detected.

【0019】前記アンモニアガス分析計3は、図1に示
すように前記熱処理炉1内にガス導出管30が挿入さ
れ、前記熱処理炉1内のアンモニアガスが導出され、図
3に示すように光源31と検出セル32との間に試料セ
ル33と比較セル34とを配置して、吸収される赤外線
の波長と吸収量より、前記導出されたアンモニアの残留
ガスの濃度を精確に測定し得る構成より成る。
In the ammonia gas analyzer 3, a gas outlet pipe 30 is inserted into the heat treatment furnace 1 as shown in FIG. 1, and the ammonia gas in the heat treatment furnace 1 is led out. As shown in FIG. A configuration in which a sample cell 33 and a comparison cell 34 are arranged between a detection cell 31 and a detection cell 32, and the concentration of the derived residual gas of ammonia can be accurately measured from the wavelength and absorption amount of infrared rays absorbed. Consists of

【0020】前記温度センサ4は、図1に示すように前
記熱処理炉1内に挿入された例えば熱伝対センサによっ
て構成され、前記熱処理炉内の温度を測定し、温度信号
を出力し得る構成より成る。
The temperature sensor 4 is composed of, for example, a thermocouple sensor inserted in the heat treatment furnace 1 as shown in FIG. 1, and is capable of measuring the temperature in the heat treatment furnace and outputting a temperature signal. Consists of

【0021】前記コントローラ5は、コンピュータ50
によって構成され、図4に一例を示す予め実験的に求め
た前記熱処理炉1(例えば容積1.3m3 )内のアンモ
ニアの残留ガス濃度と被処理材10中の窒素濃度との相
関線図および図5(A)ないし図5(C)に一例を示す
異なった温度における前記熱処理炉1内のアンモニアの
残留ガス濃度と前記熱処理炉1へのアンモニアガスの供
給量との相関線図に対応するデータがROMに予め格納
されている。
The controller 5 is a computer 50.
And a correlation diagram between the residual gas concentration of ammonia in the heat treatment furnace 1 (for example, a volume of 1.3 m 3 ) and the nitrogen concentration in the material 10 to be treated, which is experimentally obtained in advance and which is shown in FIG. 5 (A) to 5 (C) correspond to the correlation diagrams of the residual gas concentration of ammonia in the heat treatment furnace 1 at different temperatures and the supply amount of ammonia gas to the heat treatment furnace 1 at different temperatures. The data is stored in the ROM in advance.

【0022】前記コントローラ5のROMには、図6に
示すような浸炭処理、浸炭窒化処理、および焼入れの処
理パターンが予め格納されており、各処理時において各
部に必要な制御信号を出力して最適制御が行われるよう
に構成されている。すなわち、本第1実施例の一例にお
ける前記浸炭処理においては900℃で2時間処理さ
れ、前記浸炭窒化処理においては若干温度が下げられ8
50℃で30分処理され、次に急冷して焼入れ処理を行
うものである。
The ROM of the controller 5 previously stores carburizing, carbonitriding, and quenching processing patterns as shown in FIG. 6, and outputs a control signal necessary for each part at each processing. It is configured to perform optimum control. That is, in the carburizing treatment in the example of the first embodiment, the treatment is performed at 900 ° C. for 2 hours, and in the carbonitriding treatment, the temperature is slightly lowered.
It is treated at 50 ° C. for 30 minutes, then rapidly cooled for quenching.

【0023】前記コントローラ5は、前記ROMに予め
格納されている制御プログラムに従い、前記流量計2と
前記アンモニアガス分析計3および前記温度センサ4か
ら出力される信号をI/Oを介して取込み、これらの各
信号に基づき前記ROMに予め格納された前記予め実験
的に求めた前記熱処理炉1内のアンモニアの残留ガス濃
度と被処理材10中の窒素濃度との相関データおよび前
記熱処理炉1内のアンモニアの残留ガス濃度と前記熱処
理炉1へのアンモニアガスの供給量との相関データに従
い、前記検出された前記熱処理炉1内の温度を考慮し
て、前記被処理材10中の窒素濃度を制御するために前
記熱処理炉1内に供給されるアンモニアガスの供給量を
制御する制御信号を出力し得る構成より成る。
The controller 5 fetches the signals output from the flow meter 2, the ammonia gas analyzer 3 and the temperature sensor 4 through I / O according to a control program stored in advance in the ROM, Correlation data between the residual gas concentration of ammonia in the heat treatment furnace 1 preliminarily stored in the ROM on the basis of each of these signals and the nitrogen concentration in the material 10 to be processed and the heat treatment furnace 1 previously stored in the ROM. In accordance with the correlation data between the residual gas concentration of ammonia and the supply amount of ammonia gas to the heat treatment furnace 1, the nitrogen concentration in the material to be treated 10 is determined in consideration of the detected temperature in the heat treatment furnace 1. The control signal for controlling the supply amount of the ammonia gas supplied into the heat treatment furnace 1 for control is output.

【0024】すなわち前記コントローラ5は、前記検出
した前記アンモニアの残留ガスの濃度から前記予め実験
的に求めた前記熱処理炉1内のアンモニアの残留ガス濃
度と被処理材10中の窒素濃度との相関データに基づき
前記被処理材中の窒素濃度を演算し、この演算された窒
素濃度と前記被処理材1の目標窒素濃度とを比較して、
前記熱処理炉1内のアンモニアの残留ガス濃度と前記熱
処理炉1へのアンモニアガスの供給量との相関データに
基づき、前記検出された前記アンモニアガスの供給量を
考慮して前記熱処理炉内に供給するアンモニアガスの供
給量を制御するための制御信号を出力し得る構成より成
る。
That is, the controller 5 correlates the residual gas concentration of ammonia in the heat treatment furnace 1 obtained experimentally in advance from the detected residual gas concentration of ammonia with the nitrogen concentration in the material 10 to be treated. The nitrogen concentration in the processed material is calculated based on the data, and the calculated nitrogen concentration is compared with the target nitrogen concentration of the processed material 1,
Based on the correlation data between the residual gas concentration of ammonia in the heat treatment furnace 1 and the supply amount of ammonia gas to the heat treatment furnace 1, the ammonia gas is supplied into the heat treatment furnace in consideration of the detected supply amount. The control signal for controlling the supply amount of the ammonia gas to be output is output.

【0025】前記流量制御弁6は、図1に示すように前
記アンモニアガス供給配管20に配設された比例制御弁
によって構成され、前記コントローラ5からの制御信号
に基づき開度が制御され、アンモニアガスの供給量を制
御し得る構成より成る。
As shown in FIG. 1, the flow rate control valve 6 is composed of a proportional control valve arranged in the ammonia gas supply pipe 20, and its opening degree is controlled based on a control signal from the controller 5, so that the The gas supply amount can be controlled.

【0026】上記構成より成る第1実施例のガス浸炭窒
化処理の炉気制御装置によって実施されるガス浸炭窒化
処理の炉気制御方法は、前記流量計2によって、ガス浸
炭窒化処理時の前記熱処理炉1に供給されているアンモ
ニアガスの流量が検出され、前記アンモニアガス分析計
3によって、前記熱処理炉1内のアンモニアの残留ガス
量が検出され、前記温度センサ4によって、前記熱処理
炉1内の温度が検出される。
The furnace carbonization control method for gas carbonitriding carried out by the furnace carbonization controller for gas carbonitriding according to the first embodiment having the above-mentioned structure is such that the heat treatment at the time of gas carbonitriding is performed by the flow meter 2. The flow rate of the ammonia gas supplied to the furnace 1 is detected, the residual gas amount of ammonia in the heat treatment furnace 1 is detected by the ammonia gas analyzer 3, and the temperature sensor 4 detects the residual gas amount of ammonia in the heat treatment furnace 1. The temperature is detected.

【0027】さらに本第1実施例のガス浸炭窒化処理の
炉気制御方法は、前記コントローラ5によって、前記検
出したアンモニアの残留ガス量に従い、予め実験的に求
め前記ROMに格納された前記熱処理炉1内のアンモニ
アの残留ガス濃度と被処理材10中の窒素濃度との相関
データおよび前記熱処理炉1内のアンモニアの残留ガス
濃度と前記熱処理炉1へのアンモニアガスの供給量との
相関データに基づき、前記温度センサによって検出され
た前記熱処理炉1内の温度を考慮して、前記被処理材1
0中の窒素濃度を制御するために前記熱処理炉1内に供
給されているアンモニアガスの供給量を制御する制御信
号が出力される。
Furthermore, the furnace gas control method for gas carbonitriding treatment of the first embodiment is such that the controller 5 experimentally obtains the heat treatment furnace previously stored in the ROM in accordance with the detected residual gas amount of ammonia. The correlation data between the residual gas concentration of ammonia in 1 and the nitrogen concentration in the material to be treated 10 and the correlation data between the residual gas concentration of ammonia in the heat treatment furnace 1 and the supply amount of ammonia gas to the heat treatment furnace 1. Based on the above, in consideration of the temperature in the heat treatment furnace 1 detected by the temperature sensor, the material 1 to be treated is
A control signal for controlling the supply amount of the ammonia gas supplied into the heat treatment furnace 1 for controlling the nitrogen concentration in zero is output.

【0028】すなわち、前記コントローラ5によって、
前記検出した前記アンモニアの残留ガスの濃度から前記
予め実験的に求めた前記熱処理炉1内のアンモニアの残
留ガス濃度と被処理材10中の窒素濃度との相関データ
に基づき前記被処理材中の窒素濃度が演算され、この演
算された窒素濃度と前記被処理材1の目標窒素濃度とが
比較され、前記熱処理炉1内のアンモニアの残留ガス濃
度と前記熱処理炉1へのアンモニアガスの供給量との相
関データに基づき、前記検出された前記アンモニアガス
の供給量を考慮して前記熱処理炉内に供給するアンモニ
アガスの供給量を制御するための制御信号が出力され
る。
That is, by the controller 5,
Based on the correlation data between the residual gas concentration of ammonia in the heat treatment furnace 1 and the nitrogen concentration in the material 10 to be treated, which are experimentally obtained in advance from the detected concentration of the residual gas of the ammonia, The nitrogen concentration is calculated, the calculated nitrogen concentration is compared with the target nitrogen concentration of the material to be treated 1, the residual gas concentration of ammonia in the heat treatment furnace 1 and the supply amount of ammonia gas to the heat treatment furnace 1 are compared. A control signal for controlling the supply amount of the ammonia gas supplied into the heat treatment furnace is output in consideration of the detected supply amount of the ammonia gas based on the correlation data with.

【0029】また前記流量制御弁6によって、前記コン
トローラ5からの制御信号に基づきアンモニアガスの供
給量を制御して、前記熱処理炉1内に載置されている前
記被処理材10中の窒素濃度が制御されるものである。
Further, the flow rate control valve 6 controls the supply amount of ammonia gas based on the control signal from the controller 5, so that the nitrogen concentration in the material 10 to be treated placed in the heat treatment furnace 1 is controlled. Is controlled.

【0030】上記第1実施例のガス浸炭窒化処理の炉気
制御方法は、前記熱処理炉1内のアンモニアの残留ガス
濃度と被処理材10中の窒素濃度との相関データに基づ
き、検出した前記熱処理炉内のアンモニアの残留ガス濃
度に応じて前記熱処理炉内に供給するアンモニアガスの
供給量を制御して、前記被処理材10中の窒素濃度を制
御するので、前記熱処理炉1内のアンモニアの残留ガス
および前記被処理材10中の窒素濃度の精確な制御を可
能にし、前記被処理材10の品質を充分保証するという
効果を奏する。
The furnace gas control method for the gas carbonitriding process of the first embodiment is based on the correlation data between the residual gas concentration of ammonia in the heat treatment furnace 1 and the nitrogen concentration in the material 10 to be detected. Since the supply amount of the ammonia gas supplied into the heat treatment furnace is controlled according to the residual gas concentration of ammonia in the heat treatment furnace to control the nitrogen concentration in the material to be treated 10, the ammonia in the heat treatment furnace 1 is controlled. The residual gas and the nitrogen concentration in the material 10 to be processed can be precisely controlled, and the quality of the material 10 to be processed is sufficiently guaranteed.

【0031】また本第1実施例のガス浸炭窒化処理の炉
気制御方法は、ガス浸炭窒化処理時の前記熱処理炉1に
供給されているアンモニアのガス供給量を検出し、前記
検出したアンモニアの残留ガス量に従い予め実験的に求
めた前記熱処理炉1内のアンモニアの残留ガス濃度と被
処理材中の窒素濃度との相関データに基づき、前記被処
理材10中の窒素濃度を演算し、前記演算された窒素濃
度と前記被処理材10の目標窒素濃度とを比較して、前
記検出された前記アンモニアガスの供給量を考慮して前
記熱処理炉内に供給するアンモニアガスの供給量を制御
するので、前記熱処理炉1内のアンモニアの残留ガスお
よび前記被処理材10中の窒素濃度の一層精確な制御を
可能にし、前記被処理材10の品質を充分保証するとい
う効果を奏する。
Further, the furnace gas control method for gas carbonitriding treatment of the first embodiment detects the gas supply amount of ammonia supplied to the heat treatment furnace 1 at the time of gas carbonitriding treatment, and detects the detected ammonia amount. Based on the correlation data between the residual gas concentration of ammonia in the heat treatment furnace 1 and the nitrogen concentration in the material to be treated which have been experimentally obtained in advance according to the amount of residual gas, the nitrogen concentration in the material to be treated 10 is calculated, The calculated nitrogen concentration is compared with the target nitrogen concentration of the processing target material 10, and the supply amount of the ammonia gas supplied into the heat treatment furnace is controlled in consideration of the detected supply amount of the ammonia gas. Therefore, the residual gas of ammonia in the heat treatment furnace 1 and the nitrogen concentration in the material 10 to be processed can be controlled more accurately, and the quality of the material 10 to be processed can be sufficiently ensured.

【0032】また本第1実施例のガス浸炭窒化処理の炉
気制御方法は、前記アンモニアの供給量を、予め実験的
に求めた前記熱処理炉内のアンモニアの残留ガス濃度と
前記熱処理炉へのアンモニアガスの供給量との相関も考
慮して決定するので、アンモニアガスの供給量を精確に
制御することが出来るという効果を奏する。
Further, in the furnace gas control method for gas carbonitriding treatment of the first embodiment, the supply amount of ammonia is determined by experimentally preliminarily experimentally determining the residual gas concentration of ammonia in the heat treatment furnace and the amount of ammonia supplied to the heat treatment furnace. Since the determination is made in consideration of the correlation with the supply amount of ammonia gas as well, there is an effect that the supply amount of ammonia gas can be accurately controlled.

【0033】また本第1実施例のガス浸炭窒化処理の炉
気制御方法は、前記温度センサ4によって前記熱処理炉
1内の温度を検出し、前記アンモニアガスの供給量を、
検出した前記熱処理炉1内の温度を考慮して決定するの
で、温度に応じて前記アンモニアガスの供給量を制御す
ることが出来るという効果を奏する。
In the furnace gas control method for gas carbonitriding of the first embodiment, the temperature inside the heat treatment furnace 1 is detected by the temperature sensor 4, and the supply amount of the ammonia gas is
Since the determination is made in consideration of the detected temperature in the heat treatment furnace 1, there is an effect that the supply amount of the ammonia gas can be controlled according to the temperature.

【0034】また本第1実施例のガス浸炭窒化処理の炉
気制御方法は、前記コントローラ5によって、前記アン
モニアガス分析計3によって検出されたアンモニアの残
留ガス量が予め設定した上限および下限を越えた場合は
それに応じた制御信号を出力するので、例えは必要に応
じて制御を停止することも出来るという効果を奏する。
Further, in the furnace gas control method for gas carbonitriding treatment of the first embodiment, the residual gas amount of ammonia detected by the ammonia gas analyzer 3 by the controller 5 exceeds the preset upper and lower limits. In such a case, the control signal corresponding to that is output, so that the control can be stopped as necessary, for example.

【0035】上記作用を奏する第1実施例のガス浸炭窒
化処理の炉気制御装置は、前記コントローラ5が、前記
検出したアンモニアの残留ガス量に従い、予めROMに
格納した前記熱処理炉1内のアンモニアの残留ガス濃度
と被処理材10中の窒素濃度との相関データおよび前記
熱処理炉1内のアンモニアの残留ガス濃度と前記熱処理
炉1へのアンモニアガスの供給量との相関データに基づ
き、前記検出された前記熱処理炉1内の温度を考慮し
て、前記被処理材10中の窒素濃度を制御するために前
記熱処理炉1内に供給されているアンモニアガスの供給
量を制御する制御信号を出力し、前記流量制御弁6が、
前記コントローラ5からの制御信号に基づきアンモニア
ガスの供給量を制御して、前記被処理材10中の窒素濃
度を制御するので、前記熱処理炉1内のアンモニアの残
留ガスおよび前記被処理材中の窒素濃度の一層精確且つ
緻密な制御を可能にし、従来は難しいとされていた1パ
ーセント以下のアンモニアの残留ガスの制御を可能にし
て、前記被処理材の品質を格段に高め、品質を充分保証
するという効果を奏する。
In the furnace gas control apparatus for gas carbonitriding treatment of the first embodiment which has the above-mentioned operation, the controller 5 stores the ammonia in the heat treatment furnace 1 stored in the ROM in advance in accordance with the detected residual gas amount of ammonia. Detection based on the correlation data between the residual gas concentration of Ni and the nitrogen concentration in the material to be treated 10 and the correlation data between the residual gas concentration of ammonia in the heat treatment furnace 1 and the supply amount of ammonia gas to the heat treatment furnace 1. A control signal for controlling the supply amount of the ammonia gas supplied into the heat treatment furnace 1 in order to control the nitrogen concentration in the material to be treated 10 is output in consideration of the temperature in the heat treatment furnace 1. The flow control valve 6
Since the supply amount of the ammonia gas is controlled based on the control signal from the controller 5 to control the nitrogen concentration in the material 10 to be processed, the residual gas of ammonia in the heat treatment furnace 1 and the material in the material to be processed are controlled. It enables more precise and precise control of nitrogen concentration and enables control of residual gas of 1% or less of ammonia, which has been considered difficult in the past, to dramatically improve the quality of the material to be treated and ensure sufficient quality. Has the effect of doing.

【0036】また第1実施例のガス浸炭窒化処理の炉気
制御装置は、前記アンモニアガス分析計として赤外線方
式のセンサを採用したので、1%以下のアンモニアの残
留ガス濃度の検出を可能とし、結果として従来は難しい
とされていた0.1%ないし0.8%のアンモニアの残
留ガス濃度の制御を可能にして、浸炭窒化処理の品質を
格段に高めるという効果を奏する。
Further, since the furnace gas control apparatus for the gas carbonitriding process of the first embodiment employs the infrared type sensor as the ammonia gas analyzer, it is possible to detect the residual gas concentration of ammonia of 1% or less, As a result, it is possible to control the residual gas concentration of 0.1% to 0.8% of ammonia, which has been considered difficult in the past, and to significantly improve the quality of carbonitriding.

【0037】上述の実施例は、説明のために例示したも
ので、本発明としてはそれらに限定されるものでは無
く、特許請求の範囲、発明の詳細な説明および図面の記
載から当業者が認識することができる本発明の技術的思
想に反しない限り、変更および付加が可能である。
The embodiments described above are merely examples for the purpose of explanation, and the present invention is not limited thereto, and those skilled in the art will recognize from the claims, the detailed description of the invention and the description of the drawings. Modifications and additions can be made without departing from the technical idea of the present invention.

【0038】上述の実施例においては、前記アンモニア
ガス分析計の一例として赤外線方式のセンサについて説
明したが、本発明は、それに限定するものでは無く、例
えば図7に示すように熱フィラメント35によりガスを
イオン化し、電界36を通して加速して、磁界セクタ3
7によりイオンの方向を変え、その方向はイオン個々の
持つ電荷と質量の比に依存するので、ファラデーカップ
38によって検出して、検出位置と量より定量的にガス
濃度を測定するアンモニアガス分析計も採用可能であ
り、同様の作用効果を奏する。
Although the infrared type sensor has been described as an example of the ammonia gas analyzer in the above-described embodiment, the present invention is not limited to this. For example, as shown in FIG. Of the magnetic field sector 3
The direction of the ions is changed by 7 and the direction depends on the ratio of the charge and the mass of each ion. Therefore, an ammonia gas analyzer that detects the gas concentration by the Faraday cup 38 and quantitatively measures the gas concentration from the detection position and amount. Can also be adopted, and the same action and effect can be obtained.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の第1実施例装置を示すブロック図であ
る。
FIG. 1 is a block diagram showing a first embodiment device of the present invention.

【図2】本第1実施例で用いる熱処理炉の内部を示す断
面図である。
FIG. 2 is a cross-sectional view showing the inside of a heat treatment furnace used in the first embodiment.

【図3】本第1実施例で用いるアンモニアガス分析計を
示すブロック図である。
FIG. 3 is a block diagram showing an ammonia gas analyzer used in the first embodiment.

【図4】本第1実施例で用いる熱処理炉内のアンモニア
の残留ガス濃度と被処理材中の窒素濃度との相関データ
を示す線図である。
FIG. 4 is a diagram showing correlation data between the residual gas concentration of ammonia in the heat treatment furnace used in the first embodiment and the nitrogen concentration in the material to be treated.

【図5】本第1実施例で用いる異なる温度における熱処
理炉内のアンモニアの残留ガス濃度と前記熱処理炉への
アンモニアガスの供給量との相関データを示す線図であ
る。
FIG. 5 is a diagram showing the correlation data between the residual gas concentration of ammonia in the heat treatment furnace at different temperatures used in the first embodiment and the supply amount of ammonia gas to the heat treatment furnace.

【図6】本第1実施例における浸炭処理および浸炭窒化
処理等の処理パターンを示す線図である。
FIG. 6 is a diagram showing treatment patterns such as carburizing treatment and carbonitriding treatment in the first embodiment.

【図7】アンモニアガス分析計の他の例を示すブロック
図である。
FIG. 7 is a block diagram showing another example of an ammonia gas analyzer.

【図8】従来装置を示すブロック図である。FIG. 8 is a block diagram showing a conventional device.

【符号の説明】[Explanation of symbols]

1 熱処理炉 2 流量計 3 アンモニアガス分析計 4 温度センサ 5 コントローラ 6 流量制御弁 10 被処理材 1 Heat treatment furnace 2 Flowmeter 3 Ammonia gas analyzer 4 Temperature sensor 5 Controller 6 Flow control valve 10 Workpiece material

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 前記熱処理炉内のアンモニアの残留ガス
量を検出し、 前記検出したアンモニアの残留ガス量に従い予め実験的
に求めた前記熱処理炉内のアンモニアの残留ガス濃度と
被処理材中の窒素濃度との相関に基づき、前記熱処理炉
内に供給するアンモニアガスの供給量を制御して、 前記被処理材中の窒素濃度を制御することを特徴とする
ガス浸炭窒化処理の炉気制御方法。
1. The residual gas concentration of ammonia in the heat treatment furnace and the residual gas concentration in the heat treatment furnace which are experimentally obtained in advance according to the detected residual gas amount of ammonia in the heat treatment furnace are detected. Based on the correlation with the nitrogen concentration, by controlling the supply amount of ammonia gas to be supplied into the heat treatment furnace, to control the nitrogen concentration in the material to be treated furnace gas control method of gas carbonitriding treatment .
【請求項2】 請求項1において、 ガス浸炭窒化処理用の熱処理炉に供給されているアンモ
ニアのガス供給量を検出し、 前記検出したアンモニアの残留ガス量に従い予め実験的
に求めた前記熱処理炉内のアンモニアの残留ガス濃度と
被処理材中の窒素濃度との相関に基づき、前記被処理材
中の窒素濃度を演算し、 演算された窒素濃度と目標窒素濃度とを比較して、 検出された前記アンモニアガスの供給量を考慮して前記
熱処理炉内に供給するアンモニアガスの供給量を制御す
ることを特徴とするガス浸炭窒化処理の炉気制御方法。
2. The heat treatment furnace according to claim 1, wherein a gas supply amount of ammonia supplied to the heat treatment furnace for gas carbonitriding is detected, and the heat treatment furnace is experimentally obtained in advance according to the detected residual gas amount of ammonia. Based on the correlation between the residual gas concentration of ammonia inside and the nitrogen concentration in the material to be treated, the nitrogen concentration in the material to be treated is calculated, and the calculated nitrogen concentration and the target nitrogen concentration are compared and detected. A furnace gas control method for gas carbonitriding treatment, characterized in that the supply amount of the ammonia gas supplied into the heat treatment furnace is controlled in consideration of the supply amount of the ammonia gas.
【請求項3】 請求項2において、 前記アンモニアの供給量を、予め実験的に求めた前記熱
処理炉内のアンモニアの残留ガス濃度と前記熱処理炉へ
のアンモニアガスの供給量との相関も考慮して決定する
ことを特徴とするガス浸炭窒化処理の炉気制御方法。
3. The supply amount of ammonia according to claim 2, taking into consideration the correlation between the residual gas concentration of ammonia in the heat treatment furnace and the supply amount of ammonia gas to the heat treatment furnace, which are experimentally obtained in advance. A furnace gas control method for gas carbonitriding, characterized in that
【請求項4】 請求項3において、 前記熱処理炉内の温度を検出し、 前記アンモニアガスの供給量を、検出した前記熱処理炉
内の温度を考慮して決定することを特徴とするガス浸炭
窒化処理の炉気制御方法。
4. The gas carbonitriding method according to claim 3, wherein the temperature in the heat treatment furnace is detected, and the supply amount of the ammonia gas is determined in consideration of the detected temperature in the heat treatment furnace. Furnace control method for processing.
【請求項5】 請求項4において、 前記検出したアンモニアの残留ガス量が予め設定した上
限および下限を越えた場合はそれに応じた制御をするこ
とを特徴とするガス浸炭窒化処理の炉気制御方法。
5. The furnace gas control method for gas carbonitriding according to claim 4, wherein when the detected residual gas amount of ammonia exceeds a preset upper limit and lower limit, control is performed in accordance with the upper limit and the lower limit. .
【請求項6】 ガス浸炭窒化処理用の熱処理炉に供給さ
れているアンモニアガスの流量を検出する流量計と、 前記熱処理炉内のアンモニアの残留ガス量を検出するア
ンモニアガス分析計と、 前記熱処理炉内の温度を検出する温度センサと、 前記検出したアンモニアの残留ガス量に従い、予め実験
的に求めた前記熱処理炉内のアンモニアの残留ガス濃度
と被処理材中の窒素濃度との相関および前記熱処理炉内
のアンモニアの残留ガス濃度と前記熱処理炉へのアンモ
ニアガスの供給量との相関に基づき、前記検出された前
記熱処理炉内の温度を考慮して、前記被処理材中の窒素
濃度を制御するために前記熱処理炉内に供給されている
アンモニアガスの供給量を制御する制御信号を出力する
コントローラと、 前記コントローラからの制御信号に基づきアンモニアガ
スの供給量を制御する流量制御弁とから成ることを特徴
とするガス浸炭窒化処理の炉気制御装置。
6. A flow meter for detecting the flow rate of ammonia gas supplied to a heat treatment furnace for gas carbonitriding, an ammonia gas analyzer for detecting the residual gas amount of ammonia in the heat treatment furnace, and the heat treatment. A temperature sensor for detecting the temperature in the furnace, according to the residual gas amount of the detected ammonia, the correlation between the residual gas concentration of ammonia in the heat treatment furnace and the nitrogen concentration in the material to be treated, which have been experimentally obtained in advance, and Based on the correlation between the residual gas concentration of ammonia in the heat treatment furnace and the supply amount of ammonia gas to the heat treatment furnace, considering the detected temperature in the heat treatment furnace, the nitrogen concentration in the material to be treated is determined. A controller that outputs a control signal that controls the supply amount of the ammonia gas that is being supplied into the heat treatment furnace for controlling, and a controller that outputs a control signal based on the control signal from the controller. Loki control device for a gas carbonitriding process, characterized in that comprising a flow control valve for controlling the supply amount of ammonia gas can.
JP17373194A 1994-06-30 1994-06-30 Furnace gas control method and apparatus for gas carbonitriding Expired - Fee Related JP3326972B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17373194A JP3326972B2 (en) 1994-06-30 1994-06-30 Furnace gas control method and apparatus for gas carbonitriding

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17373194A JP3326972B2 (en) 1994-06-30 1994-06-30 Furnace gas control method and apparatus for gas carbonitriding

Publications (2)

Publication Number Publication Date
JPH0813125A true JPH0813125A (en) 1996-01-16
JP3326972B2 JP3326972B2 (en) 2002-09-24

Family

ID=15966100

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17373194A Expired - Fee Related JP3326972B2 (en) 1994-06-30 1994-06-30 Furnace gas control method and apparatus for gas carbonitriding

Country Status (1)

Country Link
JP (1) JP3326972B2 (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007131933A (en) * 2005-11-14 2007-05-31 Dowa Holdings Co Ltd Nitriding method and nitriding apparatus
WO2007066441A1 (en) * 2005-12-08 2007-06-14 Ntn Corporation Method of carbonitriding, process for producing machine part, and machine part
JP2009057607A (en) * 2007-08-31 2009-03-19 Ntn Corp Heat treatment furnace
JP2009057606A (en) * 2007-08-31 2009-03-19 Ntn Corp Carbonitriding method, method for manufacturing mechanical component, mechanical component and heat treatment furnace
CN102242335A (en) * 2010-05-13 2011-11-16 苏州国光机电工业有限公司 Tempering method of pin
CN102362000A (en) * 2009-03-25 2012-02-22 Ntn株式会社 High-strength and high-ductility steel for spring, method for producing same, and spring
US8128761B2 (en) 2006-04-28 2012-03-06 Ntn Corporation Carbonitriding method, machinery component fabrication method, and machinery component
US9062355B2 (en) 2006-04-07 2015-06-23 Ntn Corporation Carbonitriding method, machinery component fabrication method, and machinery component
JP2017082275A (en) * 2015-10-27 2017-05-18 光洋サーモシステム株式会社 Nitriding treatment apparatus and nitriding treatment method
KR20210020647A (en) * 2019-08-16 2021-02-24 (주)상도티디에스 A system of nitriding furnace)
KR20210032346A (en) * 2019-08-16 2021-03-24 (주)상도티디에스 A flow rate measuring part of ammonia
CN115786759A (en) * 2022-11-11 2023-03-14 广州众山精密科技有限公司 Equipment and method for preparing near-net-shape aluminum-based silicon carbide foil by gas-phase aluminizing

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007131933A (en) * 2005-11-14 2007-05-31 Dowa Holdings Co Ltd Nitriding method and nitriding apparatus
WO2007066441A1 (en) * 2005-12-08 2007-06-14 Ntn Corporation Method of carbonitriding, process for producing machine part, and machine part
EP1964940A1 (en) * 2005-12-08 2008-09-03 Ntn Corporation Method of carbonitriding, process for producing machine part, and machine part
EP1964940A4 (en) * 2005-12-08 2010-02-24 Ntn Toyo Bearing Co Ltd Method of carbonitriding, process for producing machine part, and machine part
EP2360287A1 (en) 2005-12-08 2011-08-24 NTN Corporation Method of gas carbonitriding, process for producing machine part and machine part
US8747572B2 (en) 2005-12-08 2014-06-10 Ntn Corporation Carbonitriding method, machinery component fabrication method, and machinery component
US9062355B2 (en) 2006-04-07 2015-06-23 Ntn Corporation Carbonitriding method, machinery component fabrication method, and machinery component
US8128761B2 (en) 2006-04-28 2012-03-06 Ntn Corporation Carbonitriding method, machinery component fabrication method, and machinery component
JP2009057606A (en) * 2007-08-31 2009-03-19 Ntn Corp Carbonitriding method, method for manufacturing mechanical component, mechanical component and heat treatment furnace
US8444912B2 (en) 2007-08-31 2013-05-21 Ntn Corporation Heat treatment furnace
JP2009057607A (en) * 2007-08-31 2009-03-19 Ntn Corp Heat treatment furnace
CN102362000A (en) * 2009-03-25 2012-02-22 Ntn株式会社 High-strength and high-ductility steel for spring, method for producing same, and spring
CN102242335A (en) * 2010-05-13 2011-11-16 苏州国光机电工业有限公司 Tempering method of pin
JP2017082275A (en) * 2015-10-27 2017-05-18 光洋サーモシステム株式会社 Nitriding treatment apparatus and nitriding treatment method
KR20210020647A (en) * 2019-08-16 2021-02-24 (주)상도티디에스 A system of nitriding furnace)
KR20210032346A (en) * 2019-08-16 2021-03-24 (주)상도티디에스 A flow rate measuring part of ammonia
CN115786759A (en) * 2022-11-11 2023-03-14 广州众山精密科技有限公司 Equipment and method for preparing near-net-shape aluminum-based silicon carbide foil by gas-phase aluminizing

Also Published As

Publication number Publication date
JP3326972B2 (en) 2002-09-24

Similar Documents

Publication Publication Date Title
JPH0813125A (en) Furnace gas controlling method for gas carbonitriding process and device therefor
US7435929B2 (en) Methods for monitoring or controlling the ratio of hydrogen to water vapor in metal heat treating atmospheres
US20080073002A1 (en) Carburization treatment method and carburization treatment apparatus
US5261976A (en) Control system for a soft vacuum furnace
US4288062A (en) Apparatus for control and monitoring of the carbon potential of an atmosphere in a heat-processing furnace
US20200190609A1 (en) Surface hardening treatment device and surface hardening treatment method
KR101028538B1 (en) A system for controlling atmosphere gas inside furnace
US3522035A (en) Determining operation of furnace vessel
US3871871A (en) Monitoring and control of pig iron refining
US20210214832A1 (en) Surface hardening treatment device and surface hardening treatment method
US4719073A (en) Method of monitoring an article in sintering furnace
US7276204B2 (en) Carburization treatment method and carburization treatment apparatus
JP3973795B2 (en) Gas carburizing method
US3693409A (en) Method and apparatus for measuring the carbon potential in gas atmospheres
CN102618816A (en) Method and apparatus for heat treating a metal
US6635121B2 (en) Method and apparatus for controlling the decarburization of steel components in a furnace
JPH07197135A (en) Temperature controller
Kamruddin et al. Evolved gas analysis by mass spectrometry
JP2000074798A (en) Gas analyzer
US3593565A (en) Method for monitoring the refining of pig iron
EP4043606A1 (en) Surface hardening apparatus and surface hardening method
JPH0650869A (en) Formation method of standard sample for analysis of minute carbon in metal
GB2171198A (en) Monitoring a heterogeneous transformation process
JP2004191369A (en) Method and apparatus for measuring amount of component discharged from gaseous atmosphere at thermochemical treatment on metal workpiece
SU1392141A1 (en) Method of controlling process of chemical-thermal treatment of metals by gases

Legal Events

Date Code Title Description
FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080712

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080712

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090712

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090712

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100712

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110712

Year of fee payment: 9

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120712

Year of fee payment: 10

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120712

Year of fee payment: 10

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 11

Free format text: PAYMENT UNTIL: 20130712

LAPS Cancellation because of no payment of annual fees