AU2002339845A1 - Antibody glycosylation variants having increased antibody-dependent cellular cytotoxicity - Google Patents

Antibody glycosylation variants having increased antibody-dependent cellular cytotoxicity

Info

Publication number
AU2002339845A1
AU2002339845A1 AU2002339845A AU2002339845A AU2002339845A1 AU 2002339845 A1 AU2002339845 A1 AU 2002339845A1 AU 2002339845 A AU2002339845 A AU 2002339845A AU 2002339845 A AU2002339845 A AU 2002339845A AU 2002339845 A1 AU2002339845 A1 AU 2002339845A1
Authority
AU
Australia
Prior art keywords
antibody
human
host cell
cell
region
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
AU2002339845A
Other versions
AU2002339845B2 (en
Inventor
James E. Bailey
Joel Jean-Mairet
Pablo Umana
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Roche Glycart AG
Original Assignee
Roche Glycart AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Roche Glycart AG filed Critical Roche Glycart AG
Priority claimed from PCT/US2002/024739 external-priority patent/WO2003011878A2/en
Publication of AU2002339845A1 publication Critical patent/AU2002339845A1/en
Application granted granted Critical
Publication of AU2002339845B2 publication Critical patent/AU2002339845B2/en
Assigned to ROCHE GLYCART AG reassignment ROCHE GLYCART AG Request to Amend Deed and Register Assignors: GLYCART BIOTECHNOLOGY AG
Anticipated expiration legal-status Critical
Expired legal-status Critical Current

Links

Description

ANTIBODY GLYCOSYLATION VARIANTS HAVING INCREASED ANTIBODY-DEPENDENT CELLULAR CYTOTOXICITY
BACKGROUND OF THE INVENTION
Field of the Invention
[0001] The present invention relates to the field of glycosylation engineering of proteins. More particularly, the present invention relates to glycosylation engineering to generate proteins with improved therapeutic properties, including antibodies with increased antibody-dependent cellular cytotoxicity.
Background Art
[0002] Glycoproteins mediate many essential functions in human beings, other eukaryotic organisms, andsomeprokaryotes, including catalysis, signaling, cell- cell communication, and molecular recognition and association. They make up the majority of non-cytosolic proteins in eukaryotic organisms. (Lis et ah, Eur. J. Biochem. 218:1-21 (1993)). Many glycoproteins have been exploited for therapeutic purposes, and during the last two decades, recombinant versions of naturally-occurring, secreted glycoproteins have been a major product of the biotechnology industry. Examples include erythropoietin (EPO), therapeutic monoclonal antibodies (therapeutic mAbs), tissue plasminogen activator (tPA), interferon-β, (IFN-β), granulocyte-macrophage colony stimulating factor (GM- CSF), and human chorionic gonadotrophin (hCG). (Gumming et al., Glycobiology 7:115-130 (1991)).
[0003] The oligosaccharide component can significantly affect properties relevant to the efficacy of a therapeutic glycoprotein, includingphysical stability, resistance to protease attack, interactions with the immune system, pharrnacokinetics, and specific biological activity. Such properties may depend not only on the presence or absence, but also on the specific structures, of oligosaccharides. Some generalizations between oligosaccharide structure and glycoprotein function can be made. For example, certain oligosaccharide structures mediate rapid clearance of the glycoprotein from the bloodstream through interactions with specific carbohydrate bindingproteins, while others can be bound by antibodies and trigger undesired immune reactions . (Jenkins et al. , Nature Biotechnol. 14:975-81 (1996)).
[0004] Mammalian cells are the preferred hosts for production of therapeutic glycoproteins, due to their capability to glycosylate proteins in the most compatible form for human application. (Gumming et al., Glycobiology 7:115- 30 (1991); Jenkins et al, Nature Biotechnol 14:975-81 (1996)). Bacteria very rarely glycosylate proteins, and like other types of common hosts, such as yeasts, filamentous fungi, insect and plant cells, yield glycosylation patterns associated with rapid clearance from the bloodstream, undesirable immune interactions, and in some specific cases, reduced biological activity. Among mammalian cells, Chinese hamster ovary (CHO) cells have been most commonly used during the last two decades. In addition to giving suitable glycosylation patterns, these cells allow consistent generation of genetically stable, highly productive clonal cell lines. They can be cultured to high densities in simple bioreactors using serum- free media, and permit the development of safe and reproducible bioprocesses. Other commonly used animal cells include baby hamster kidney (BHK) cells, NS0- and SP2/0-mouse myeloma cells. More recently, production from transgenic animals has also been tested. (Jenkins et al, Nature Biotechnol. 14:975-81 (1996)).
[0005] All antibodies contain carbohydrate structures at conserved positions in the heavy chain constant regions, with each isotype possessing a distinct array of N-linked carbohydrate structures, which variably affect protein assembly, secretion or functional activity. (Wright, A., and Morrison, S. L., Trends Biotech. 15:26-32 (1997)). The structure of the attached N-linked carbohydrate varies considerably, depending on the degree of processing, and can include high-mannose, multiply-branched as well as biantennary complex oligosaccharides. (Wright, A., and Morrison, S. L., Trends Biotech. 15:26-32 ( 1997)) . Typically, there is heterogeneous processing of the core oligosaccharide structures attached at a particular glycosylation site such that even monoclonal antibodies exist as multiple glycoforms. Likewise, it has been shown that major differences in antibody glycosylation occur between cell lines, and even minor differences are seen for a given cell line grown under different culture conditions . (Lifely, M. R. et al, Glycobiology 5(8): 3-22 (1995)).
[0006] Unconjugatedmonoclonal antibodies (mAbs) can be useful medicines for the treatment of cancer, as demonstrated by the U.S. Food and Drug Administration's approval of Rituximab (Rituxan™; IDEC Pharmaceuticals, San Diego, CA, and Genentech Inc., San Francisco, CA), for the treatment of CD20 positive B-cell, low-grade or follicular Non-Hodgkin's lymphoma, and Trastuzumab (Herceptin™; Genentech Inc,) forthe treatment of advanced breast cancer (Grillo-Lopez, A. -J., etal, Semin. Oncol. 26:66-13 (1999); Goldenberg, M. M., Gin. Ther. 27:309-18 (1999)). The success of these products relies not only on their efficacy but also on their outstanding safety profiles (Grillo-Lopez, A.-J., et al, Semin. Oncol. 26:66-13 (1999); Goldenberg, M. M., Gin. Ther. 27:309-18 (1999)). In spite of the achievements of these two drugs, there is currently a large interest in obtaining higher specific antibody activity than what is typically afforded by unconjugated mAb therapy.
[0007] One way to obtain large increases in potency, while maintaining a simple production process and potentially avoiding significant, undesirable side effects, is to enhance the natural, cell-mediated effector functions of mAbs by engineering their oligosaccharide component (Umana, P. et al, Nature Biotechnol 17: 116-180 (1999)). IgGl type antibodies, the most commonly used antibodies in cancer immunotherapy, are glycoproteins that have a conservedN- linked glycosylation site at Asn297 in each CH2 domain. The two complex biantennary oligosaccharides attached to Asn297 are buried between the CH2 domains, forming extensive contacts with the polypeptide backbone, and their presence is essential for the antibody to mediate effector functions such as antibody dependent cellular cytotoxicity (ADCC) (Lifely, M. R., et al, Glycobiology 5:813-822 (1995); Jefferis, R, et al, Immunol Rev. 163:59-16 (1998); Wright, A. and Morrison, S. L, Trends Biotechnol 75:26-32 (1997)). The present inventors showed previously that overexpression in Chinese hamster ovary (CHO) cells of β(l,4)-N-acetylglucosaminyltransferase III (GnTiπ), a glycosyltransferase catalyzing the formation of bisected oligosaccharides, significantly increases the in vitro ADCC activity of an anti- neuroblastoma chimeric monoclonal antibody (chCE7) produced by the engineered CHO cells. (See Umafia, P. et al, Nature Biotechnol. 77:176-180 (1999), International Publication No. WO 99/54342, the entire contents of each of which are hereby incorporated by reference in their entirety). The antibody chCE7 belongs to a large class of unconjugated mAbs which have high tumor affinity and specificity, but have too little potency to be clinically useful when produced in standard industrial cell lines lacking the GnTHJ enzyme (Umana, P., et al, Nature Biotechnol. 77: 176-180 (1999)). That study was the first to show that large increases of maximal in vitro ADCC activity could be obtained by increasing the proportion of constant region (Fc)-associated, bisected oligosaccharides above the levels found in naturally occurring antibodies. To determine if this finding could be extrapolated to an unconjugated mAb, which already has significant ADCC activity in the absence of bisected oligosaccharides, the present inventors have applied this technology to Rituximab, the anti-CD20, IDEC-C2B8 chimeric antibody. The present inventors have likewise applied the technology to the unconjugated anti-cancer mAb chG250. BRIEF SUMMARY OF THE INVENTION
[0009] The present inventors have now generated new glycosylation variants of the anti-CD20 monoclonal antibody (mAb) IDEC-C2B8 (Rituximab) and the anti-cancer mAb chG250 using genetically engineered mAb-producing cell lines that overexpress N-acetylglucosaminyltransferase III (GnTIII; EC 2.1.4.144) in a tetracycline regulated fashion. GnTIII is required for the synthesis of bisected oligosaccharides, which are found at low to intermediate levels in naturally- occurring human antibodies but are missing in mAbs produced in standard industrial cell lines. The new glycosylated versions outperformed Mabthera™ (the version of Rixtuximab marketed in Europe) and mouse-myeloma derived chG250 in biological (ADCC) activity. For example, a ten-fold lower amount of the variant carrying the highest levels of bisected oligosaccharides was required to reach the maximal ADCC activity as Mabthera™. For chG250, the variant carrying the highest levels of bisected oligosaccharides mediated significant ADCC activity at a 125-fold lower concentration than that required to detect even low ADCC activity by the unmodified control chG250. A clear correlation was found between the level of GnTIII expression and ADCC activity.
[0010] Accordingly, in one aspect the claimed invention is directed to ahost cell engineered to produce a polypeptide having increased Fc-mediated cellular cytotoxicity by expression of at least one nucleic acid encoding β(l,4)-N- acetylglucosaminyltransferase UI (GnT IH), wherein the polypeptide produced by the host cell is selected from the group consisting of a whole antibody molecule, an antibody fragment, and a fusion protein which includes a region equivalent to the Fc region of an immunoglobulin, and wherein the GnT HI is expressed in an amount sufficient to increase the proportion of said polypeptide carrying bisected hybrid oligosaccharides or galactosylated complex oligosaccharides or mixtures thereof in the Fc region relative to polypeptides carrying bisected complex oligosaccharides in the Fc region. [0011] In a preferred embodiment, the polypeptide is IgG or a fragment thereof, most preferably, IgGl or a fragment thereof. In a further preferred embodiment, the polypeptide is a fusion protein that includes a region equivalent to the Fc region of a human IgG.
[0012] In another aspect of the claimed invention, a nucleic acid molecule comprising at least one gene encoding GnTIII has been introduced into the host cell. In a preferred embodiment, at least one gene encoding GnTIII has been introduced into the host cell chromosome.
[0013] Alternatively, the host cell has been engineered such that an endogenous
GnT III gene is activated, for example, by insertion of a DNA element which increases gene expression into the host chromosome. In a preferred embodiment, the endogenous GnTIII has been activated by insertion of a promoter, an enhancer, a transcription factor binding site, atransposon, or aretroviral element or combinations thereof into the host cell chromosome. In another aspect, the host cell has been selected to carry a mutation triggering expression of an endogenous GnTIII. Preferably, the host cell is the CHO cell mutant lee 10.
[0014] In a further preferred embodiment of the claimed invention, the at least one nucleic acid encoding a GnTIII is operably linked to a constitutive promoter element.
[0015] In a further preferred embodiment, the host cell is a CHO cell, a BHK cell, a NS0 cell, a SP2/0 cell, or a hybridoma cell, a Y0 myeloma cell, a P3X63 mouse myeloma cell, aPER cell or a PER.C6 cell andsaid polypeptide is an anti- CD20 antibody. In another preferred embodiment, the host cell is a SP2/0 cell and the polypeptide is the monoclonal antibody chG250.
[0016] In another aspect, the claimed invention is directed to a host cell that further comprises at least one transfected nucleic acid encoding an antibody molecule, an antibody fragment, or a fusion protein that includes a region equivalent to the Fc region of an immunoglobulin. In a preferred embodiment, the host cell comprises at least one transfected nucleic acid encoding an anti- CD20 antibody, the chimeric anti-human neuroblastoma monoclonal antibody chCE7, the chimeric anti-human renal cell carcinoma monoclonal antibody chG250, the chimeric anti-human colon, lung, and breast carcinoma monoclonal antibody ING- 1 , the humanized anti-human 17-1 A antigen monoclonal antibody 3622W94, the humanized anti-human colorectal tumor antibody A33, the anti- human melanoma antibody directed against GD3 ganglioside R24, or the chimeric anti-human squamous-cell carcinoma monoclonal antibody SF-25, an anti-human EGFR antibody, an anti-human EGFRvJH antibody, an anti-human PSMA antibody, and anti-human PSCA antibody, an anti-human CD22 antibody, an anti-human CD30 antibody, an anti-human CD33 antibody, an anti-human CD38 antibody, an anti-human CD40 antibody, an anti-human CD45 antibody, an anti-human CD52 antibody, an anti-human CD 138 antibody, an anti-human HLA-DR variant antibody, an anti-human EpCAM antibody, an anti-human CEA antibody, an anti-human MUCl antibody, an anti-human MUCl core protein antibody, an anti-human aberrantly glycosylated MUCl antibody, an antibody against human fibronectin variants containing the ED-B domain, and an anti- human HER2/neu antibody.
[0017] In another aspect, the claimed invention is directed to a method for producing a polypeptide in a host cell comprising culturing any of the above- described the host cells under conditions which permit the production of said polypeptide having increased Fc-mediated cellular cytotoxicity. In a preferred embodiment, the method further comprises isolating said polypeptide having increased Fc-mediated cellular cytotoxicity.
[0018] In a further preferred embodiment, the host cell comprises at least one nucleic acid encoding a fusion protein comprising a region equivalent to a glycosylated Fc region of an immunoglobulin.
[0019] In a preferred embodiment, the proportion of bisected oligosaccharides in the Fc region of said polypeptides is greater than 50%, more preferably, greater than 70%. In another embodiment, the proportion of bisected hybrid oligosaccharides or galactosylated complex oligosaccharides or mixtures thereof in the Fc region is greater than the proportion of bisected complex oligosaccharides in the Fc region of said polypeptide.
[0020] In a preferred aspect of the claimed method, the polypeptide is an anti-
CD20 antibody and the anti-CD20 antibodies produced by said host cell have a glycosylation profile, as analyzed by MALDI/TOF-MS, that is substantially equivalent to that shown in FIG. 2E.
[0021] In another preferred aspect of the claimed method, the polypeptide is the chG250 monoclonal antibody and the chG250 antibodies produced by said host cell have a glycosylaton profile, as analyzed by MALDI/TOF-MS, that is substantially equivalent to that shown in FIG. 7D.
[0022] In a further aspect, the claimed invention is directed to an antibody having increased antibody dependent cellular cytotoxicity (ADCC) produced by any of the methods described above. In preferred embodiments, the antibody is selected from the group consisting of an anti-CD20 antibody, chCE7, ch-G250, a humanized anti-HER2 monoclonal antibody, ING-1, 3622W94, SF-25, A33, and R24. Alternatively, the polypeptide can be an antibody fragment that includes a region equivalent to the Fc region of an immunoglobulin, having increased Fc-mediated cellular cytotoxicity produced by any of the methods described above.
[0023] In a further aspect, the claimed invention is directed to a fusion protein that includes a region equivalent to the Fc region of an immunoglobulin and having increased Fc-mediated cellular cytotoxicity produced by any of the methods described above.
[0024] In a further aspect, the claimed invention is directed to a pharmaceutical composition comprising the antibody, antibody fragment, or fusion protein of the invention and a pharmaceutically acceptable carrier.
[0025] In a further aspect, the claimed invention is directed to a method for the treatment of cancer comprising administering a therapeutically effective amount of said pharmaceutical composition to a patient in need thereof. In a further aspect, the invention is directed to an improved method for treating an autoimmune disease produced in whole or in part by pathogenic autoantibodies based on B-cell depletion comprising administering a therapeutically effective amount of immunologically active antibody to a human subject in need thereof, the improvement comprising administering a therapeutically effective amountof an antibody having increased ADCC prepared as described above. In a preferred embodiment, the antibody is an anti-CD20 antibody. Examples of autoimmune diseases or disorders include, but are not limited to, immune-mediated thrombocytopenias, such as acute idiopathic thrombocytopenic purpurea and chronic idiopathic thrombocytopenic purpurea, dermatomyositis, Sydenham's chorea, lupus nephritis, rheumatic fever, polyglandular syndromes, Henoch-Schonlein purpura, post-streptococcal nephritis, erythema nodosum, Takayasu's arteritis, Addison's disease, erythema multiforme, polyarteritis nodosa, ankylosing spondylitis, Goodpasture's syndrome, thromboangitis ubiterans, primary biliary cirrhosis, Hashimoto's thyroiditis, thyrotoxicosis , chroni c active hepatitis , polymyositis/dermatomyositis, polychondritis, pamphigus vulgaris, Wegener's granulomatosis, membranous nephropathy, amyotrophic lateral sclerosis, tabes dorsalis, polymyaglia, pernicious anemia, rapidly progressive glomerulonephritis and fibrosing alveolitis, inflammatory responses such as inflammatory skin diseases including psoriasis and dermatitis (e.g. atopic dermatitis); systemic sclerodermaandsclerosis; responses associated with inflammatory bowel disease (such as Crohn's disease and ulcerative colitis); respiratory distress syndrome (including adult respiratory distress syndrome; ARDS); dermatitis; meningitis; encephalitis; uveitis; colitis; glomerulonephritis; allergic conditions such as eczema and asthma and other conditions involving infiltration of T cells and chronic inflammatory responses; atherosclerosis; leukocyte adhesion deficiency; rheumatoid arthritis; systemic lupus erythematosus (SLE); diabetes mellitus (e.g. Type 1 diabetes mellitus or insulin dependent diabetes mellitus); multiple sclerosis; Reynaud's syndrome; autoimmune thyroiditis; allergic encephalomyelitis; Sjorgen's syndrome; juvenile onset diabetes; and immune responses associated with acute and delayed hypersensitivity mediated by cytokines and T-lymphocytes typically found in tuberculosis, sarcoidosis, polymyositis, granulomatosis and vasculitis; pernicious amenia (Addison's disease); diseases involving leukocyte diapedesis; central nervous system (CNS) inflammatory disorder; multiple organ injury syndrome; hemolytic anemia (including, but not limited to cryoglobinemia or Coombs positive anemia); myastheniagravis; antigen-antibody complex mediated diseases; anti-glomerular basement membrane disease; antiphospholipid syndrome; allergic neuritis; Graves' disease; Lambert-Eaton myasthenic syndrome; pemphigoid bullous; pemphigus; autoimmune polyendocrinopathies; Reiter's disease; stiff-man syndrome; Behcet disease; giant cell arteritis; immune complex nephritis; IgA nephropathy; IgM polyneuropathies; immune thrombocytopenic purpura (ITP) or autoimmune thrombocytopenia etc. In this aspect of the invention, the antibodies of the invention are used to deplete the blood of normal B-cells for an extended period.
BRIEF DESCRIPTION OF THE FIGURES
[0027] FIG 1. Indirect immunofluorescence assay showing the reactivity of the antibody preparation C2B8-25t to CD20 positive SB cells. Negative controls, including the HSB CD20 negative cell line and cells treated only with the secondary FITC-conjugated anti-human Fc polyclonal antibody are not shown.
[0028] FIG. 2A-2E. MALDI/TOF-MS spectra of the oligosaccharides derived from Mabthera™ (FIG.2A), C2B8-nt (FIG.2B), C2B8-2000t (FIG.2C), C2B8- 50t (FIG. 2D), and C2B8-25t (FIG. 2E) antibody samples. Oligosaccharides appear as [M+Na+] and [M+K+] ions. Oligosaccharide appearing in the first two spectra were derived from cell cultures that do not express GnTIII, whereas oligosaccharides in C, D, and E were derived from a single cell line expressing GnTM at different levels (i.e. tetracycline concentrations). [0029] FIG. 3A and 3B. Illustration of a typical human IgG Fc-associated oligosaccharide structure (A) and partial N-linked glycosylation pathway (B). (FIG. 3 A) The core of the oligosaccharide is composed of three mannose (M) and two N-acetylglucosamine (Gn) monosaccharide residues attached to Asn297. Galactose (G), fucose (F), and bisecting N-acetylglucosamine (Gn, boxed) can be present or absent. Terminal N-acetylneuraminic acid may be also present but it is not included in the figure. (FIG.3B) Partial N-linked glycosylation pathway leading to the formation of the major oligosaccharide classes (dotted frames). Bisecting N-acetylglucosamine is denoted as Gnb. Subscript numbers indicate how many monosaccharide residues are present in each oligosaccharide. Each structure appears together with its sodium-associated [M+Na+] mass. The mass of those structures that contain fucose (f) are also included.
[0030] FIG. 4A and 4B. ADCC activities of Rituximab glycosylation variants.
The percentage of cytotoxicity was measured via lysis of 51Cr labeled CD20- positive SB cells by human lymphocytes (E:T ratio of 100:1) mediated by differentmAb concentrations. (FIG.4A) Activity of C2B8 samples derived from a single cell line but produced at increasing GnTIII expression levels (i.e., decreasing tetracycline concentrations). The samples are C2B8-2000t, C2B8-50t, C2B8-25t, and C2B8-nt (control mAb derived from a clone that does not express GnTπi (FIG 4B) ADCC activity of C2B8-50t and C2B8-25t compared to Mabthera™.
[0031] FIG. 5. Western blot analysis of the seven GnTIII expressing clones and the wild type. 30 μg of each sample were loaded on a 8.75% SDS gel, transferred to a PVDF membrane and probed with the anti-c-myc monoclonal antibody (9E10). WT refers to wt-chG250-SP2/0 cells.
[0032] FIG. 6. SDS polyacrylamide gel electrophoresis of resolved purified antibody samples.
[0033] FIG. 7A-7D. MALDI/TOF-MS spectra of neutral oligosaccharide mixtures from chG250 mAb samples produced by clones expressing different GnTπi levels and wt-chG250-SP2/0 cells: WT (FIG. 7A), 2F1 (FIG. 7B), 3D3
(FIG. IC), 4E6 (FIG. 7D). [0034] FIG. 8A-8D. MALDI/TOF-MS spectra of neutral oligosaccharide mixtures from chG250 mAb samples produced by clones expressing different
GnTIII levels: 4E8, (FIG. 8A); 5G2, (FIG. 8B); 4G3, (FIG. 8C); 5H12, (FIG.
8D), [0035] FIG. 9. In vitro ADCC assay of antibody samples derived from control wt-chG250-SP2/- cells and GnTIII transected clones 3D3 and 5H12.
DETAILED DESCRIPTION OF THE INVENTION
[0036] Terms are used herein as generally used in the art, unless otherwise defined as follows:
[0037] As used herein, the term antibody is intended to include whole antibody molecules, antibody fragments, or fusion proteins that include aregion equivalent to the Fc region of an immunoglobulin.
[0038] As used herein, the term region equivalent to the Fc region of an immunoglobulin is intended to include naturally occurring allelic variants of the Fc region of an immunoglobulin as well as variants having alterations which produce substitutions, additions, or deletions but which do not decrease substantially the ability of the immunoglobulin to mediate antibody dependent cellular cytotoxicity. For example, one or more amino acids can be deleted from the N-terminus or C-terminus of the Fc region of an immunoglobulin without substantial loss of biological function. Such variants can be selected according to general rules known in the art so as to have minimal effect on activity. (See, e.g., Bowie, J. U. et al, Science 247:1306-10 (1990).
[0039] As used herein, the term glycoprotein-modifying glycosyl transferase refers to β(l,4)-N-acetylglucosaminyltransferase III (GnTIII).
[0040] As used herein, the terms engineer, engineered, engineering and glycosylation engineering are considered to include any manipulation of the glycosylation pattern of a naturally occurring polypeptide or fragment thereof. Glycosylation engineering includes metabolic engineering of the glycosylation machinery of a cell, including genetic manipulations of the oligosaccharide synthesis pathways to achieve altered glycosylation of glycoproteins expressed in cells. Furthermore, glycosylation engineering includes the effects of mutations and cell environment on glycosylation. [0041] As used herein, the term host cell covers any kind of cellular system which can be engineered to generate modified glycoforms of proteins, protein fragments, or peptides of interest, including antibodies and antibody fragments. Typically, the host cells have been manipulated to express optimized levels of GnT in. Host cells include cultured cells, e.g., mammalian cultured cells, such as CHO cells, BHK ceUs, NSO cells, SP2/0 cells, YO myeloma cells, P3X63 mouse myeloma cells, PER cells, PER.C6 cells or hybridoma cells, yeast cells, and insect cells, to name only a few, but also cells comprised within a transgenic animal or cultured tissue. [0042] As used herein, the term Fc-mediated cellular cytotoxicity includes antibody-dependent cellular cytotoxicity and cellular cytotoxicity mediated by a soluble Fc-fusion protein containing a human Fc-region. It is an immune mechanism leading to the lysis of "antibody-targeted cells" by "human immune effector cells", wherein:
The "human immune effector cells" are a population of leukocytes that display Fc receptors on their surface through which they bind to the Fc- region of antibodies or of Fc-fusion proteins and perform effector functions. Such a population may include, but is not limited to, peripheral blood mononuclear cells (PBMC) and/or natural killer (NK) cells.
The "antibody-targeted cells" are cells bound by the antibodies or Fc- fusion proteins. The antibodies or Fc fusion-proteins bind to target cells via the protein part N-terminal to the Fc region. [0043] As used herein, the term increased Fc-mediated cellular cytotoxicity is defined as either an increase in the number of "antibody-targeted cells" that are lysed in a given time, at a given concentration of antibody, or of Fc-fusion protein, in the medium surrounding the target cells, by the mechanism of Fc- mediated cellular cytotoxicity defined above, and/or a reduction in the concentration of antibody, or of Fc-fusion protein, in the medium surrounding the target cells, required to achieve the lysis of a given number of "antibody- targeted cells", in a given time, by the mechanism of Fc -mediated cellular cytotoxicity. The increase in Fc-mediated cellular cytotoxicity is relative to the cellular cytotoxicity mediated by the same antibody, or Fc-fusion protein, produced by the same type of host cells, using the same standard production, purification, formulation and storage methods, which are known to those skilled in the art, but that has not been produced by host cells engineered to express the glycosyltransferase GnTIII by the methods described herein.
[0044] By antibody having increased antibody dependent cellular cytotoxicity
(ADCC) is meant an antibody having increased ADCC as determined by any suitable method known to those ofordinary skill in the art. One accepted in vitro ADCC assay is as follows:
1) the assay uses target cells that are known to express the target antigen recognized by the antigen-binding region of the antibody;
2) the assay uses human peripheral blood mononuclear cells (PBMCs), isolated from blood of a randomly chosen healthy donor, as effector cells;
3) the assay is carried out according to following protocol: i) the PBMCs are isolated using standard density centrifugation procedures and are suspended at 5 x 106 cells/ml in RPMI cell culture medium; ii) the target cells are grown by standard tissue culture methods, harvested from the exponential growth phase with a viability higher than 90%, washed in RPMI cell culture medium, labelled with 100 micro-Curies of 51Cr, washed twice with cell culture medium, and resuspended in cell culture medium at a density of 105 cells/ml; iii) 100 microliters of the final target cell suspension above are transferred to each well of a 96-well microtiter plate; iv) the antibody is serially-diluted from 4000 ng/ml to 0.04 ng ml in cell culture medium and 50 microliters of the resulting antibody solutions are added to the target cells in the 96-well microtiter plate, testing in triplicate various antibody concentrations covering the whole concentration range above; v) forthemaximumrelease (MR) controls, 3 additional wells in the plate containing the labelled target cells, receive 50 microliters of a 2% (V/V) aqueous solution of non-ionic detergent (Nonidet, Sigma, St. Louis), instead of the antibody solution (point iv above); vi) for the spontaneous release (SR) controls, 3 additional wells in the plate containing the labelled target cells, receive 50 microliters of RPMI cell culture medium instead of the antibody solution (point iv above); vii) the 96-well microtiter plate is then centrifuged at 50 x g for 1 minute and incubated for 1 hour at 4°C; viii) 50 microliters of the PBMC suspension (point i above) are added to each well to yield an effector: target cell ratio of 25: 1 and the plates are placed in an incubator under 5% CO2 atmosphere at 37°C for 4 hours; ix) the cell-free supernatant from each well is harvested and the experimentally released radioactivity (ER) is quantified using a gamma counter; x) the percentage of specific lysis is calculated for each antibody concentration according to the formula (ER-MR)/(MR-SR) x 100, where ER is the average radioactivity quantified (see point ix above) for that antibody concentration, MR is the average radioactivity quantified (see point ix above) for the MR controls (see point v above), and SR is the average radioactivity quantified (see point ix above) for the SR controls (see point vi above);
4) "increased ADCC" is defined as either an increase in the maximum percentage of specific lysis observed within the antibody concentration range tested above, and/or a reduction in the concentration of antibody required to achieve one half of the maximum percentage of specific lysis observed within the antibody concentration range tested above. The increase in ADCC is relative to the ADCC, measured with the above assay, mediated by the same antibody, produced by the same type of host cells, using the same standard production, purification, formulation and storage methods, which are known to those skilled in the art, but that has not been produced by host cells engineered to overexpress the glycosyltransferase GnTIII. [0045] As used herein, the term anti-CD20 antibody is intended to mean an antibody which specifically recognizes a jcell surface non-glycosylated phosphoprotein of 35,000 Daltons, typically designated as the human B lymphocyte restricted differentiation antigen Bp35, commonly referred to as CD20.
Identification and Generation of Nucleic Acids Encoding A Protein for Which Modification of The Glycosylation Pattern Is Desired
[0046] The present invention provides methods for the generation and use of host cell systems for the production of glycoforms of antibodies or antibody fragments or fusion proteins which include antibody fragments with increased antibody-dependent cellular cytotoxicity. Identification of target epitopes and generation of antibodies having potential therapeutic value, for which modification of the glycosylation pattern is desired, and isolation of their respective coding nucleic acid sequence is within the scope of the invention.
[0047] Various procedures known in the art may be used for the production of antibodies to target epitopes of interest. Such antibodies include but are not limited to polyclonal, monoclonal, chimeric, single chain, Fab fragments and fragments produced by an Fab expression library. Such antibodies may be useful, e.g., as diagnostic or therapeutic agents. As therapeutic agents, neutralizing antibodies, i.e., those which compete for binding with a ligand, substrate or adapter molecule, are of especially preferred interest.
[0048] For the production of antibodies, various host animals are immunized by injection with the target protein of interest including, but not limited to, rabbits, mice, rats, etc. Various adjuvants may be used to increase the immunological response, depending on the host species, including but not limited to Freund's (complete and incomplete), mineral gels such as aluminum hydroxide, surface active substances such as lysolecithin, pluronic polyols, polyanions, peptides, saponin, oil emulsions, keyhole limpet hemocyanin, dinitrophenol, and potentially useful human adjuvants such as BCG (bacille Calmette-Guerin) and Corynebacterium parvum.
[0049] Monoclonal antibodies to the target of interest may be prepared using any technique which provides for the production of antibody molecules by continuous cell lines in culture. These include, but are not limited to, the hybridoma technique originally described by Kohler and Milstein, Nature 256Λ95-91 (1975), the human B-cell hybridoma technique (Kosbor et al, Immunology Today 4:72 (1983); Cote et al, Proc. Natl. Acad. Sci. U.S.A. 80:2026-30 (1983 ) and the EBV-hybridoma technique (Cole etal, Monoclonal Antibodies and Cancer Therapy 11-96 (Alan R. Liss, Inc., 1985)). In addition, techniques developed for the production of "chimeric antibodies" (Morrison et al, Proc. Natl Acad. Sci. U.S.A. 81:6851-55 (1984); Neuberger et al, Nature 312:604-08 (1984) ; Takeda et al, Nature 314:452-54 (1985) by splicing the genes from amouse antibody molecule of appropriate antigen specificity together with genes from a human antibody molecule of appropriate biological activity can be used. Alternatively, techniques described for the production of single chain antibodies (U.S. Patent No. 4,946,778) can be adapted to produce single chain antibodies having a desired specificity. [0050] Antibody fragments which contain specific binding sites of the target protein of interest may be generated by known techniques. For example, such fragments include, but are not limited to, F(ab')2 fragments which can be produced by pepsin digestion of the antibody molecule and the Fab fragments which can be generated by reducing the disulfide bridges of the F(ab')2 fragments. Alternatively, Fab expression libraries may be constructed (Huse et al, Science 246:1275-81 (1989) to allow rapid and easy identification of monoclonal Fab fragments with the desired specificity to the target protein of interest.
[0051] Once an antibody or antibody fragment has been identified for which modification in the glycosylation pattern are desired, the coding nucleic acid sequence is identified and isolated using techniques well known in the art.
a. Generation Of Cell Lines For The Production Of Proteins With
Altered Glycosylation Pattern
[0052] The present invention provides host cell expression systems for the generation of proteins having modified glycosylation patterns. In particular, the present invention provides host cell systems for the generation of glycoforms of proteins having an improved therapeutic value. Therefore, the invention provides host cell expression systems selected or engineered to increase the expression of a glycoprotein-modifying glycosyltransferase, namely β(l,4)-N- acetylglucosaminyltransferase UI (GnTIII). Specifically, such host cell expression systems may be engineered to comprise a recombinant nucleic acid molecule encoding GnTIII, operatively linked to a constitutive or regulated promoter system. Alternatively, host cell expression systems may be employed that naturally produce, are induced to produce, and/or are selected to produce GnTIII.
[0053] In one specific embodiment, the present invention provides a host cell that has been engineered to express at least one nucleic acid encoding GnTIII. In one aspect, the host cell is transformed or transfected with a nucleic acid molecule comprising at least one gene encoding GnTIII. In an alternate aspect, the host cell has been engineered and/or selected in such way that endogenous GnTIII is activated. For example, the host cell may be selected to carry a mutation triggering expression of endogenous GnTIII. In one specific embodiment, the host cell is a CHO lee 10 mutant. Alternatively, the host cell may be engineered such that endogenous GnTIII is activated. In again another alternative, the host cell is engineered such that endogenous GnTIII has been activated by insertion of a constitutive promoter element, a transposon, or a retroviral element into the host cell chromosome.
[0054] Generally, any type of cultured cell line can be used as a background to engineer the host cell lines of the present invention. In apreferred embodiment, CHO cells, BHK cells, NS0 cells, SP2/0 cells, YO myeloma cells, P3X63 mouse myeloma cells, PER cells, PER.C6 cells or hybridoma cells, yeast cells, or insect cells are used as the background cell line to generate the engineered host cells of the invention.
[0055] The invention is contemplated to encompass any engineered host cells expressing GnTIII as defined herein.
[0056] One or several nucleic acids encoding GnTIII may be expressed under the control of a constitutive promoter or, alternately, a regulated expression system. Suitable regulated expression systems include, but are not limited to, a tetracycline-regulated expression system, an ecdysone-inducible expression system, a lac-switch expression system, a glucocorticoid-inducible expression system, a temperature-inducible promoter system, and a metallothionein metal- inducible expression system. If several different nucleic acids encoding GnTIII are comprised within the host cell system, some of them may be expressed under the control of a constitutive promoter, while others are expressed under the control of a regulated promoter. The maximal expression level is considered to be the highest possible level of stable GnTIII expression that does not have a significant adverse effect on cell growth rate, and will be determined using routine experimentation. Expression levels are determined by methods generally known in the art, including Western blot analysis using a GnTIII specific antibody, Northern blot analysis using a GnTIII specific nucleic acid probe, or measurement of enzymatic activity. Alternatively, a lectin may be employed which binds to biosynthetic products of the GnTIII, for example, E4-PHA lectin. In a further alternative, the nucleic acid may be operatively linked to a reporter gene; the expression levels of the GnTIII are determined by measuring a signal correlated with the expression level of the reporter gene. The reporter gene may transcribed together with the nucleic acid(s) encoding said GnTIII as a single mRNA molecule; their respective coding sequences may be linked either by an internal ribosome entry site (IRES) or by a cap-independent translation enhancer (CITE). The reporter gene may be translated together with at least one nucleic acid encoding said GnTIII such that a single polypeptide chain is formed. The nucleic acid encoding the GnTIII may be operatively linked to the reporter gene under the control of a single promoter, such that the nucleic acid encoding the GnTIII and the reporter gene are transcribed into an RNA molecule which is alternatively spliced into two separate messenger RNA (mRNA) molecules; one of the resulting mRNAs is translated into said reporter protein, and the other is translated into said GnTffl.
[0057] If several different nucleic acids encoding GnTIII are expressed, they may be arranged in such way that they are transcribed as one or as several mRNA molecules. If they are transcribed as a single mRNA molecule, their respective coding sequences may be linked either by an internal ribosome entry site (IRES) or by a cap-independent translation enhancer (CITE). They may be transcribed from a single promoter into an RNA molecule which is alternatively spliced into several separate messenger RNA (mRNA) molecules, which then are each translated into their respective encoded GnTIII.
[0058] In other embodiments, the present invention provides host cell expression systems for the generation of therapeutic antibodies, having an increased antibody-dependent cellular cytotoxicity, and cells which display the IgG Fc region on the surface to promote Fc-mediated cytotoxicity. Generally, the host cell expression systems have been engineered and/or selected to express nucleic acids encoding the antibody for which the production of altered glycoforms is desired, along with at least one nucleic acid encoding GnTIII. In one embodiment, the host cell system is transfected with at least one gene encoding GnTIII. Typically, the transfected cells are selected to identify and isolate clones that stably express the GnTIII. In another embodiment, the host cell has been selected for expression of endogenous GnTIII. For example, cells may be selected carrying mutations which trigger expression of otherwise silent GnTIII. For example, CHO cells are known to carry a silent GnT HI gene that is active in certain mutants, e.g., in the mutant LeclO. Furthermore, methods known in the art may be used to activate silent GnTIII, including the insertion of a regulated or constitutive promoter, the use of transposons, retroviral elements, etc. Also the use of gene knockout technologies or the use of ribozyme methods may be used to tailor the host cell's GnTIII expression level, and is therefore within the scope of the invention.
[0059] Any type of cultured cell line can be used as background to engineer the host cell lines of the present invention. In a preferred embodiment, CHO cells, BHK cells, NSO cells, SP2/0 cells, YO myeloma cells, P3X63 mouse myeloma cells, PER cells, PER.C6 cells or hybridoma cells, yeast cell, or insect cells may be used. Typically, such cell lines are engineered to further comprise at least one transfected nucleic acid encoding a whole antibody molecule, an antibody fragment, or a fusion protein that includes a region equivalent to the Fc region of an immunoglobulin. In an alternative embodiment, a hybridoma cell line expressing a particular antibody of interest is used as background cell line to generate the engineered host cells of the invention.
[0060] Typically, at least one nucleic acid in the host cell system encodes
GnT iπ.
[0061] One or several nucleic acids encoding GnTIII may be expressed underthe control of a constitutive promoter, or alternately, a regulated expression system. Suitable regulated expression systems include, but are not limited to, a tetracycline-regulated expression system, an ecdysone-inducible expression system, a lac-switch expression system, a glucocorticoid-inducible expression system, a temperature-inducible promoter system, and a metallothionein metal- inducible expression system. If several different nucleic acids encoding GnTIII are comprised within the host cell system, some of them may be expressed under the control of a constitutive promoter, while others are expressed under the control of a regulated promoter. The maximal expression level is considered to be the highest possible level of stable GnTIII expression that does not have a significant adverse effect on cell growth rate, and will be determined using routine experimentation. Expression levels are determined by methods generally known in the art, including Western blot analysis using a GnTIII specific antibody, Northern blot analysis using a GnTIII specific nucleic acid probe, or measurement of GnTIII enzymatic activity. Alternatively, a lectin may be employed which binds to biosynthetic products of GnTIII, for example, E4-PHA lectin. In a further alternative, the nucleic acid may be operatively linked to a reporter gene; the expression levels of the glycoprotein-modifying glycosyl transferase are determined by measuring a signal correlated with the expression level of the reporter gene. The reporter gene may transcribed together with the nucleic acid(s) encoding said glycoprotein-modifying glycosyl transferase as a single mRNA molecule; their respective coding sequences may be linked either by an internal ribosome entry site (IRES) or by a cap-independent translation enhancer (CITE). The reporter gene may be translated together with at least one nucleic acid encoding GnTIII such that a single polypeptide chain is formed. The nucleic acid encoding the GnTIII may be operatively linked to the reporter gene under the control of a single promoter, such that the nucleic acid encoding the GnTIII and the reporter gene are transcribed into an RNA molecule which is alternatively spliced into two separate messenger RNA (mRNA) molecules; one of ithe resulting mRNAs is translated into said reporter protein, and the other is translated into said GnTIII. [0062] If several different nucleic acids encoding a GnTIII are expressed, they may be arranged in such way that they are transcribed as one or as several mRNA molecules. If they are transcribed as single mRNA molecule, their respective coding sequences may be linked either by an internal ribosome entry site (IRES) or by a cap-independent translation enhancer (CITE). They may be transcribed from a single promoter into an RNA molecule which is alternatively spliced into several separate messenger RNA (mRNA) molecules, which then are each translated into their respective encoded GnTIII.
i. Expression Systems
[0063] Methods which are well known to those skilled in the art can be used to construct expression vectors containing the coding sequence of the protein of interest and the coding sequence of the GnTIII and appropriate transcriptional/translational control signals. These methods include in vitro recombinant DNA techniques, synthetic techniques and in vivo recombination/geneticrecombination. See, for example, thetechniques described in Maniatis et al, Molecular Cloning A Laboratory Manual, Cold Spring Harbor Laboratory, N.Y. (1989) and Ausubel et al, Current Protocols in Molecular Biology, Greene Publishing Associates and Wiley Interscience, N.Y (1989).
[0064] A variety of host-expression vector systems may be utilized to express the coding sequence of the protein of interest and the coding sequence of the GnTIII. Preferably, mammalian cells are used as host cell systems transfected with recombinant plasmid DNA or cosmid DNA expression vectors containing the coding sequence of the protein of interest and the coding sequence of the GnTIII. Most preferably, CHO cells, BHK cells, NSO cells, SP2/0 cells, YO myeloma cells, P3X63 mouse myeloma cells, PER cells, PER.C6 cells or hybridoma cells, yeast cells, or insect cells are used as host cell system. In alternate embodiments, other eukaryotic host cell systems may be contemplated, including, yeast cells transformed with recombinant yeast expression vectors containing the coding sequence of the protein of interest and the coding sequence of the GnTIII; insect cell systems infected with recombinant virus expression vectors (e.g., baculovirus) containing the coding sequence of the protein of interest and the coding sequence of the GnTIII; plant cell systems infected with recombinant virus expression vectors (e.g., cauliflower mosaic virus, CaMV; tobacco mosaic virus, TMV) or transformed with recombinant plasmid expression vectors (e.g., Ti plasmid) containing the coding sequence of the protein of interest and the coding sequence of the GnTHI; or animal cell systems infected with recombinant virus expression vectors (e.g., adenovirus, vaccinia virus) including cell lines engineered to contain multiple copies of the DNA encoding the protein of interest and the coding sequence of the GnTIII either stably amplified (CHO/dhfr) or unstably amplified in double-minute chromosomes (e.g., murine cell lines).
[0065] For the methods of this invention, stable expression is generally preferred to transient expression because it typically achieves more reproducible results and also is more amenable to large scale production. Rather than using expression vectors which contain viral origins of replication, host cells can be transformed with the respective coding nucleic acids controlled by appropriate expression control elements (e.g., promoter, enhancer, sequences, transcription terminators, polyadenylation sites, etc.), and a selectable marker. Following the introduction of foreign DNA, engineered cells may be allowed to grow for 1-2 days in an enriched media, and then are switched to a selective media. The selectable marker in the recombinant plasmid confers resistance to the selection and allows selection of cells which have stably integrated the plasmid into their chromosomes and grow to form foci which in turn can be cloned and expanded into cell lines.
[0066] A number of selection systems may be used, including, but not limited to, the herpes simplex virus thymidine kinase (Wigler et al, Cell 77:223 (1977)), hypoxanthine-guaninephosphoribosyltransferase (Szybalska& Szybalski, Proc. Natl. Acad. Sci. USA 48:2026 (1962)), and adenine phosphoribosyltransferase (Lowy et al, Cell22:Sll (1980)) genes, which can be employed in tk", hgprt" or aprt" cells, respectively. Also, antimetabolite resistance can be used as the basis of selection for dhfr, which confers resistance to methotrexate (Wigler et al, Natl. Acad. Sci. USA 77:3561 (1989); O'Hare et al, Proc. Natl. Acad. Sci. USA 78: 1527 (1981)); gpt, which confers resistance to mycophenolic acid (Mulligan & Berg, Proc. Natl. Acad. Sci. USA 78:2012 (1981)); neo, which confers resistance to the aminoglycoside G-418 (Colberre-Garapin et al, J. Mol. Biol. 150: 1 (1981)); and hygro, which confers resistance to hygromycin (Santerre et al, Gene 30: 147 (1984) genes. Recently, additional selectable genes have been described, namely trpB, which allows cells to utilize indole in place of tryptophan; hisD, which allows cells to utilize histinol in place of histidine (Hartman & Mulligan, Proc. Natl. Acad. Sci. USA 55:8047 (1988)); the glutamine synthase system; and ODC (omithine decarboxylase) which confers resistance to the omithine decarboxylase inhibitor, 2-(difluoromethyl)-DL- ornithine, DFMO (McConlogue, in: Current Communications in Molecular Biology, Cold Spring Harbor Laboratory ed. (1987)).
ii. Identification Of Transfectants Or Transformants That Express The Protein Having A Modified Glycosylation Pattern
[0067] The host cells which contain the coding sequence and which express the biologically active gene products may be identified by at least four general approaches; (a) DNA-DNA or DNA-RNA hybridization; (b) the presence or absence of "marker" gene functions; (c) assessing the level of transcription as measured by the expression of the respective mRNA transcripts in the host cell; and (d) detection of the gene product as measured by immunoassay or by its biological activity.
[0068] In the first approach, the presence of the coding sequence of the protein of interest and the coding sequence of the GnTIII inserted in the expression vector can be detected by DNA-DNA or DNA-RNA hybridization using probes comprising nucleotide sequences that are homologous to the respective coding sequences, respectively, or portions or derivatives thereof.
[0069] In the second approach, the recombinant expression vector/host system can be identified and selected based upon the presence or absence of certain "marker" gene functions (e.g. , thymidine kinase activity, resistance to antibiotics, resistance to methotrexate, transformation phenotype, occlusion body formation in baculovirus, etc.). For example, if the coding sequence of the protein of interest and the coding sequence of the Gn'l'JU are inserted within a marker gene sequence of the vector, recombinants containing the respective coding sequences can be identified by the absence of the marker gene function. Alternatively, a marker gene can be placed in tandem with the coding sequences under the control of the same or different promoter used to control the expression of the coding sequences. Expression of the marker in response to induction or selection indicates expression of the coding sequence of the protein of interest and the coding sequence of the GnTIII.
[0070] In the third approach, transcriptional activity for the coding region of the protein of interest and the coding sequence of the GnTIII can be assessed by hybridization assays. For example, RNA can be isolated and analyzed by Northern blot using a probe homologous to the coding sequences of the protein of interest and the coding sequence of the GnTIII or particular portions thereof. Alternatively, total nucleic acids of the host cell may be extracted and assayed for hybridization to such probes.
[0071] In the fourth approach, the expression of the protein products of the protein of interest and the coding sequence of the GnTIII can be assessed immunologically, for example by Western blots, immunoassays such as radioimmuno-precipitation, enzyme-linked immunoassays and the like. The ultimate test of the success of the expression system, however, involves the detection of the biologically active gene products. b. Generation And Use Of Proteins And Protein Fragments Having Altered Glycosylation Patterns
Generation And Use Of Antibodies Having Increased Antibody-Dependent Cellular Cytotoxicity
[0072] In preferred embodiments, the present invention provides glycoforms of antibodies and antibody fragments having increased antibody-dependent cellular cytotoxicity.
[0073] Clinical trials of unconjugated monoclonal antibodies (mAbs) for the treatment of some types of cancer have recently yielded encouraging results. Dillman, Cancer Biother. & Radiopharm. 72:223-25 (1997); Deo et al, Immunology Today 75: 127 (1997). A chimeric, unconjugated IgGl has been approved for low-grade or follicular B-cell non-Hodgkin's lymphoma Dillman, Cancer Biother. & Radiopharm. 12:223-25 (1997), while another unconjugated mAb, a humanized IgGl targeting solid breast tumors, has also been showing promising results in phase III clinical trials. Deo et al, Immunology Today 75:127 (1997). The antigens of these two mAbs are highly expressed in their respective tumor cells and the antibodies mediate potent tumor destruction by effector cells in vitro and in vivo. In contrast, many other unconjugated mAbs with fine tumor specificities cannot trigger effector functions of sufficient potency to be clinically useful. Frost et al, Cancer 80:311-33 (1997); Surfus et al, J. Immunother. 19: 184-91 (1996). For some of these weaker mAbs, adjunct cytokine therapy is currently being tested. Addition of cytokines can stimulate antibody-dependent cellular cytotoxicity (ADCC) by increasing the activity and number of circulating lymphocytes. Frost et al, Cancer 80:311-33 (1997); Surfus et al, J. Immunother. 19: 184-91 (1996). ADCC, a lytic attack on antibody-targeted cells, is triggered upon binding of leukocyte receptors to the constant region (Fc) of antibodies. Deo etal, Immunology Today 18: 127(1997).
[0074] A different, but complementary, approach to increase ADCC activity of unconjugated IgGls is to engineer the Fc region of the antibody to increase its affinity for the lymphocyte receptors (FcγRs). Protein engineering studies have shown that FcγRs interact with the lower hinge region of the IgG CH2 domain. Lund et al, J. Immunol. 757:4963-69 (1996). However, FcγR binding also requires the presence of oligosaccharides covalently attached at the conserved Asn 297 in the CH2 region. Lund et al, J. Immunol. 757:4963-69 (1996); Wright and Morrison, Trends Biotech. 75:26-31 (1997), suggesting that either oligosaccharide and polypeptide both directly contribute to the interaction site or that the oligosaccharide is required to maintain an active CH2 polypeptide conformation. Modification of the oligosaccharide structure can therefore be explored as a means to increase the affinity of the interaction.
[0075] An IgG molecule carries two N-linked oligosaccharides in its Fc region, one on each heavy chain. As any glycoprotein, an antibody is produced as a population of glycoforms which share the same polypeptide backbone but have different oligosaccharides attached to the glycosylation sites. The oligosaccharides normally found in the Fc region of serum IgG are of complex bi-antennary type (Wormald et al, Biochemistry 36: 130-38 (1997), with low level of terminal sialic acid and bisecting N-acetylglucosamine (GlcNAc), and a variable degree of terminal galactόsylation and core fucosylation. Some studies suggest that the minimal carbohydrate structure required for FcγR binding lies within the oligosaccharide core. Lund et al, J. Immunol 757:4963-69 (1996) The removal of terminal galactoses results in approximately a two-fold reduction in ADCC activity, indicating a role for these residues in FcγR receptor binding. Lund et al, J. Immunol. 157Λ963-69 (1996)
[0076] The mouse- or hamster-derived cell lines used in industry and academia for production of unconjugated therapeutic mAbs normally attach the required oligosaccharide determinants to Fc sites. IgGs expressed in these cell lines lack, however, the bisecting GlcNAc found in low amounts in serum IgGs. Lifely et al, Glycobiology 375:813-22 (1995). In contrast, it was recently observed that a rat myeloma-produced, humanized IgGl (CAMPATH-IH) carried a bisecting GlcNAc in some of its glycoforms. Lifely et al, Glycobiology 375:813-22 (1995). The rat cell-derived antibody reached a similar in vitro ADCC activity as CAMP ATH- 1 H antibodies produced in standard cell lines , but at significantly lower antibody concentrations.
[0077] The CAMP ATH antigen is normally present at high levels on lymphoma cells, and this chimeric mAb has high ADCC activity in the absence of a bisecting GlcNAc. Lifely et al, Glycobiology 375:813-22 (1995). In the N- linked glycosylation pathway, a bisecting GlcNAc is added by the enzyme β(l,4)-N-acetylglucosammyltransferaseiπ(GnTiπ). Schachter, Biochem. Cell Biol. 64: 163-81 (1986).
[0078] The present inventors used a single antibody-producing CHO cell line, that was previously engineered to express, in an externally-regulated fashion, different levels of a cloned GnT in gene. This approach established for the first time arigorous correlation between expression of GnTHI and the ADCC activity of the modified antibody.
[0079] The present inventors previously showed that C2B8 antibody modified according to the disclosed method had an about sixteen-fold higher ADCC activity than the standard, unmodified C2B8 antibody produced under identical cell culture and purification conditions. Briefly, a C2B8 antibody sample expressed in CHO-tTA-C2B8 cells that do not have GnT ffl expression showed, a cytotoxic activity of about 31 % (at 1 μg/ml antibody concentration), measured as in vitro lysis of SB cells (CD20+) by human lymphocytes. In contrast, C2B8 antibody derived from a CHO cell culture expressing GnT in at a basal, largely repressed level showed at 1 μg/ml antibody concentration a 33% increase in ADCC activity againstthe control at the same antibody concentration. Moreover, increasing the expression of GnT in produced a large increase of almost 80% in the maximal ADCC activity (at 1 μg/ml antibody concentration) compared to the control at the same antibody concentration. (See International Publication No. WO 99/54342, the entire contents of which are hereby incorporated by reference.) Further antibodies of the invention having increased antibody-dependent cellular cytotoxicity include, but are not limited to, anti-human neuroblas oma monoclonal antibody (chCE7) produced by the methods of the invention, a chimeric anti-human renal cell carcinoma monoclonal antibody (ch-G250) produced by the methods of the invention, a humanized anti-HER2 monoclonal antibody (e.g., Trastuzumab (HERCEPTIN)) produced by the methods of the invention, a chimeric anti-human colon, lung, and breast carcinoma monoclonal antibody (ING-1) produced by the methods of the invention, a humanized anti- human 17-1 A antigen monoclonal antibody (3622 W94) produced by the methods of the invention, a humanized anti-human colorectal tumor antibody (A33) produced by the methods of the invention, an anti-human melanoma antibody (R24) directed against GD3 ganglioside produced by the methods of the invention, and a chimeric anti-human squamous-cell carcinoma monoclonal antibody (SF-25) produced by the methods of the invention, an anti-human small cell lung carcinoma monoclonal antibody (BEC2, ImClone Systems, Merck KgaA) produced by the methods of the invention, an anti-human non-Hodgkin's lymphoma monoclonal antibody (Bexxar (tositumomab, Coulter Pharmaceuticals), Oncolym (Techniclone, Alpha Therapeutic)) produced by the methods of the invention, an anti-human squamous cell head andneck carcinoma monoclonal antibody (C225, ImClone Systems) prepared by the methods of the invention, an anti-human rectal and colon carcinoma monoclonal antibody (Panorex (edrecolomab), Centocor, Glaxo Wellcome) prepared by the methods of the invention, an anti-human ovarian carcinoma monoclonal antibody (Theragyn, Antisoma) produced by the methods of the invention, an anti-human acute myelogenous leukemia carcinoma monoclonal antibody (SmartM195, Protein Design Labs, Kanebo) produced by the methods of the invention, an anti- humanmalignantgliomamonoclonal antibody (Cotara, Techniclone, Cambridge Antibody Technology) produced by the methods of the invention, an anti-human B cell non-Hodgkins lymphoma monoclonal antibody (IDEC-Y2B8, IDEC Pharmaceuticals) produced by the methods of the invention, an anti-human s olid tumors monoclonal antibody (CEA-Cide, Immunomedics) produced by the methods of the invention, an anti-human colorectal carcinoma monoclonal antibody (Iodine 13 l-MN-14, Immunomedics) produced by the methods of the invention, an anti-human ovary, kidney, breast, and prostate carcinoma monoclonal antibody (MDX-210, Medarex, Novartis) produced by the methods of the invention, an anti-human colorectal and pancreas carcinoma monoclonal antibody (TTMA, Pharmacie & Upjohn) produced by the methods of the invention, an anti-human TAG-72 expressing carcinoma monoclonal antibody (MDX-220, Medarex) produced by the methods of the invention, an anti-human EGFr-expressing carcinoma monoclonal antibody (MDX-447) produced by the methods of the invention, Anti-VEGF monoclonal antibody (Genentech) produced by the methods of the invention, an anti-human breast, lung, prostate and pancreas carcinoma and malignant melanoma monoclonal antibody (BrevaRex, AltaRex) produced by the methods of the invention, and an anti- human acute my elogenous leukemiamonoclonal antibody (Monoclonal Antibody Conjugate, Immunex) produced by the methods of the invention. In addition, the invention is directed to antibody fragment and fusion proteins comprising a region that is equivalent to the Fc region of immunoglobulins.
ii. Generation And Use Of Fusion Proteins Comprising A Region Equivalent To An Fc Region Of An Immunoglobulin That Promote Fc-Mediated Cytotoxicity
As discussed above, the present invention relates to a method for increasing the ADCC activity of therapeutic antibodies. This is achieved by engineering the glycosylation pattern of the Fc region of such antibodies, in particular by maximizing the proportion of antibody molecules carrying bisected complex oligosaccharides and bisected hybrid oligosaccharides N-linked to the conserved glycosylation sites in their Fc regions. This strategy can be applied to increase Fc-mediated cellular cytotoxicity against undesirable cells mediated by any molecule carrying a region that is an equivalent to the Fc region of an immunoglobulin, not only by therapeutic antibodies, since the changes introduced by the engineering of glycosylation affect only the Fc region and therefore its interactions with the Fc receptors on the surface of effector cells involved in the ADCC mechanism. Fc-containing molecules to which the presently disclosed methods can be applied include, but are not limited to, (a) soluble fusion proteins made of a targeting protein domain fused to the N- terminus of an Fc-region (Chamov and Ashkenazi, Trends Biotech. 14: 52(1996) and (b) plasma membrane-anchored fusion proteins made of a type H transmembrane domain that localizes to the plasma membrane fused to the N- terminus of an Fc region (Stabila, P.F., Nature Biotech. 16: 1357 (1998)).
[0082] In the case of soluble fusion proteins (a) the targeting domain directs binding of the fusion protein to undesirable cells such as cancer cells, i.e., in an analogous fashion to therapeutic antibodies. The application of presently disclosedmethodto enhance the Fc-mediated cellular cytotoxic activity mediated by these molecules would therefore be identical to the method applied to therapeutic antibodies.
[0083] In the case of membrane-anchored fusion proteins (b) the undesirable cells in the body have to express the gene encoding the fusion protein. This can be achieved either by gene therapy approaches, i.e., by transfecting the cells in vivo with a plasmid or viral vector that directs expression of the fusion protein- encoding gene to undesirable cells, or by implantation in the body of cells genetically engineered to express the fusion protein on their surface. The later cells would normally be implanted in the body inside a polymer capsule (encapsulated cell therapy) where they cannot be destroyed by an Fc-mediated cellular cytotoxicity mechanism. However should the capsule device fail and the escaping cells become undesirable, then they can be eliminated by Fc-mediated cellular cytotoxicity. Stabila et al, Nature Biotech. 16: 1357 (1998). In this case, the presently disclosed method would be applied either by incorporating into the gene therapy vector an additional gene expression cassette directing adequate or maximal expression levels of GnT UI or by engineering the cells to be implanted to express adequate or maximal levels of GnT ffl. In both cases, the aim of the disclosed method is to increase or maximize the proportion of surface-displayed Fc regions carrying bisected complex oligosaccharides and/or bisected hybrid oligosaccharides. [0084] The examples below explain the invention in more detail. The following preparations and examples are given to enable those skilled in the art to more clearly understand and to practice the present invention. The present invention, however, is not limited in scope by the exemplified embodiments, which are intended as illustrations of single aspects of the invention only, and methods which are functionally equivalent are within the scope of the invention. Indeed, various modifications of the invention in addition to those described herein will become apparent to those skilled in the art from the foregoing description and accompanying drawings. Such modifications are intended to fall within the scope of the appended claims.
EXAMPLE 1
New Versions of the Chimeric Anti-CD20 Antibody IDEC-C2B8
Having Enhanced Antibody-Dependent Cellular Cytotoxicity
Obtained, by Glycosylation Engineering of an IDEC-CEB8
Producing Cell Line
[0085] Synthesis of VHand VL coding regions of IDEC-C2B8 and construction of mammalian expression vectors. cDNAs encoding the VH and VL regions of IDEC-C2B8 antibody were assembled from a set of overlapping single-stranded oligonucleotides in a one-step process using PCR (Kobayashi, N., et al, Biotechniques 23:500-503 (1997)). The original sequence data coding for IDEC- C2B8 VL and VH were obtained from a published international patent application (International Publication Number: WO 94/11026). Assembled VL and VH cDNA fragments were subcloned into pBluescriptπKS(+), sequenced and directly joined by ligation to the human constant light (Igκ) and heavy (IgGl) chain cDNAs, respectively, using unique restriction sites introduced at the variable and constant region junctions without altering the original amino acid residue sequence (Umana, P., et al, Nat Biotechnol. 77:176-180 (1999); Reff, M. E, et al, Blood 53:435-445 (1994)). Each full-length cDNA was separately subcloned into pcDNA3.1(+) (Invitrogen, Leek, The Netherlands) yielding mammalian expression vectors for chimeric C2B8 light (pC2B8L) and heavy (pC2B8H) chains.
[0086] Production ofIDEC-C2B8 in CHO cells expressing different levels of
GnTIII. Establishment of two CHO cell lines, CHO-tet-GnTffl expressing different levels of GnTHI depending on the tetracycline concentration in the culture medium; and CHO-tTA, the parental cell line that does not express GnTHI has been described previously (Umana, P., et al, Nat Biotechnol 17: 116- 180 (1999); Umana, P., etal, Biotechnol Bioeng. (55:542-549 (1999)). Each cell line was cotianfected with vectors pC2B8L, pC2B8H, and pZeoSV2(+) (for Zeocin resistance; Invitrogen, Leek, The Netherlands) using a calcium phosphate method. Zeocin resistant clones were transferred to a 96-well plate and assayed for IDEC-C2B8 production using an ELISA assay specific for the human constant region (4). Three IDEC-C2B8 samples were obtained from parallel cultures of a selected clone (CHO-tet-GnTIII-C2B8), differing only in the tetracycline concentration added to the medium (25, 50 and 2000 ng/mL respectively) . Culture supernatants were harvested in the late exponential phase. An additional antibody sample was obtained from a CHO-tTA-derived clone, CHO-tTA-C2B8, cultured under identical conditions but without adding tetracycline to the medium. Antibody samples were purified from culture medium by protein A affinity chromatography and buffer exchanged to PBS on a cation exchange column as previously described (Umana, P., et al, Nat Biotechnol 77:176-180 (1999)). Antibody concentration was measured using a fluorescence-based kit from Molecular Probes (Leiden, The Netherlands) with Rituximab used as standard.
[0087] Indirect immunofluorescence. CD20-positive cells (SB cells; ATCC depositno. ATCC CCL120) andCD20-negative cells (HSB cells; ATCC deposit no. ATCC CCL120.1) were each incubated for lh with 2.5 μg/ml of CHO-tet- GnTπi-derived IDEC-C2B8 antibody in Hank's balanced salt solution (GibcoBRL, Basel, Switzerland) and 2% bovine serum albumin fraction V (Roche Diagnostics, Rotkreuz, Switzerland) (HBSSB). As a negative control HBSSB was used instead of C2B8 antibody. AFITC-conjugated, anti-humanFc polyclonal antibody was used as a secondary antibody (SIGMA, St. Louis) for all samples. Cells were examined using a Leica fluorescence microscope (Wetzlar, Germany).
[0088] Oligosaccharide profiling by MALDI/TOF-MS. Neutral, N-linked oligosaccharides were derived from C2B8 antibody samples, MabThera™ (European counterpart of Rituximab; kind gift from R Stahel, Universitatspital, Switzerland), C2B8-25t, C2B8-50t, C2B8-2000t, andC2B8-nt, (100 μg each) as previously described (Umana, P., et al, Nat Biotechnol. 77:176-180 (1999)). Briefly, the antibody samples were first treated with Arthrobacter ureafaciens sialidase (Oxford Glycosciences, Abingson, UK) to remove any sialic acid monosaccharide residues. Neutral N-linked oligosaccharides were then released from the desialylated antibody samples using peptide-N-glycosidase F (Oxford Glycosciences), purified using micro-columns, and analyzed by MALDI/TOF- MS in an Elite Voyager 400 spectrometer (Perseptive Biosystems, Farmingham, MA).
[0089] ADCC Activity Assay. Peripheral blood mononuclear cells (PBMC) were s eparated from heparinated fresh human blood (in all experiments obtained from the same healthy donor) by centrifugation over a Ficoll-Paque (Pharmacia Biotech, Dϋbendorf, Switzerland) gradient. PBMC (effector) were depleted of monocytes by plastic adherence. CD20-positive SB (target) cells, were labeled for 90min with lOOμCi 51Cr (Amersham, Dϋbendorf, Switzerland) at 37 °C, washed twice in RPMI (GibcoBRL, Basel, Switzerland) and resuspended at a concentration of 105 cells/ml. Fifty microliters of C2B8 mAb diluted in RPMI medium was added to 100 μl SB cells (10,000 cells/well) in a 96-well round bottom microtiter plate (Greiner, Langenthal, Switzerland), centrifuged at 50xg for lmin, and incubated for lh at 4 °C. Subsequently, 50 μl of effector cell (suspended at 2xl07 cells/ml in RPMI medium) were added to each 96-well yielding a final E:T ratio of 100. Plates were incubated for 4h at 37 °C and 5%CO2, supernatant was harvested with a Skatron harvesting system (Skatron Instruments, Sterling, VA) and counted (ER, experimental release) in a Cobra 05005 γ counter (Canberra Packard, Meriden, CT). Maximum (MR) and spontaneous (SR) releases Were obtained by adding, instead of C2B8 mAb, 100 μl of 1% Nonidet (Sigma, St. Louis) or lOOμl of RPMI medium, respectively, to 100 μl labeled target cells. All data points were performed in triplicate. Specific lysis (%) was calculated with the following formula: (ER-SR) / (MR- SR) x l00.
Results and Discussion
Production ofIDEC-C2B8 and verification of specific antigen binding.
CHO-tet-GnTiπ cells, with stable, tetracycline-regulated expression of GnTffl and stable, constitutive expression of IDEC-C2B8, were established and scaled- up forproduction of aset of antibody samples. During scale-up, parallel cultures from the same clone were grown under three different tetracycline concentrations, 25, 50 and 2000 ng/ml. These levels of tetracycline had previously been shown to result in different levels of GnTffl and bisected oligosaccharides (Umana, P., etal, Nat Biotechnol. 17: 176-180 (1999); Umana, P., et al, Biotechnol Bioeng. (55:542-549 (1999)). A C2B8-producing, control cell line that does not express GnTHI was also established and cultured under the same conditions as for the three parallel cultures of CHO-tet-GnTIH. After Protein A-affinity chromatography, mAb purity was estimated to be higher than 95% by SDS-PAGE and Coomassie-blue staining. The samples were named according to the tetracycline concentration added to the culture medium for their production: C2B8-25t,C2B8-50t, C2B8-2000t and C2B8-nt (i.e., no tetracycline for the non-bisected control). Sample C2B8-25tshowedspecificantigen binding by indirect immunofluorescence using CD20-positive and CD20-negative cells (FIG. 1), indicating that the synthesized VL and VH gene fragments were functionally correct.
[0091] Oligosaccharide profiling with MALDI/TOF-MS. The glycosylation profile of each antibody sample was analyzed by MALDI/TOF-MS of the released, neutral oligosaccharide mix. In this technique, oligosaccharides of different mass appear as separate peaks in the spectrum and their proportions are quantitatively reflected by the relative peak heights (Harvey, D. J., Rapid Common Mass Spectrom. 7:614-619 (1993); Harvey, D. J., et al, Glycoconj J. 75:333-338 (1998)). Oligosaccharide structures were assigned to different peaks based on their expected molecular masses, previous structural data for oligosaccharides derived from IgGl mAbs produced in the same host, and information on the N-linked oligosaccharide biosynthetic pathway.
[0092] A clear correlation was found between GnTHI expression levels (i.e., tetracycline concentration) and the amount of bisected oligosaccharides derived from the different antibody samples. As expected, MabThera™ and C2B8-nt, which are derived from hosts that do not express GnTHI, did not carry bisected oligosaccharides (FIGS. 2 A and2B). In contrast, bisected structures amounted up to approximately 35% of the oligosaccharides pool in sample C2B8-2000t, i. e, at a basal level of GnTHI expression. In this case, the main bisected oligosaccharide peaks were of complex type, unequivocally assigned to peaks at m/z 1689 and m/z 1851 (FIG. 2C). The next higher GnTHI expression level, sample C2B8-50t, led to, an increase in these peaks (including their associated potassium aducts at m/z 1705 and 1861) of around 20%. This increase was accompanied by a concomitant reduction of their non-bisected counterparts at m/z 1486 and 1648, respectively (FIG. 2D). At the highest GnTHI expression level, sample C2B8-25t, the main substrate for GnTHI, m/z 1486, decreased to almost base-line level, while complex bisected structures (m z 1689 and 1851) decreased in favor of increases in peaks at m/z 1664, 1810 and 1826 (FIG. 2E). These peaks can be assigned either to bisected hybrid compounds, to galactosylated complex oligosaccharides, or to a mixture of both. Their relative increase, however, is consistent with the accumulation of bisected hybrid compounds, as GnTIII overexpression can divert the biosynthetic flux at early stages of the pathway (see FIG. 3A and 3B). The amount of bisected oligosaccharide structures (complex and hybrid type) reached approximately 80% for this sample.
[0093] ADCC activity ofIDEC-C2B8 glycosylated variants. Different C2B8 mAb glycosylationvariants were compared for ADCC activity, measured as in vitro lysis of CD20-positive SB cells. An additional mAb sample, C2B8-nt, derived from the parental cell line lacking GnTHI, was also studied. Sample C2B8-2000t produced at the basal GnTHI expression level and carrying low levels of bisected oligosaccharides was slightly more active than C2B8-nt (FIG. 4A). At the next higher level of GnTHI -expression, sample C2B8-50t carried approximately equal levels ofbisected andnon-bisected oligosaccharides, but did not mediate significantly higher target-cell lysis. However, at the lowest tetracycline concentration, sample C2B8-25t, which contained up to 80% of bisected oligosaccharide structures, was significantly more active than the rest of the samples in the whole antibody concentration range. It reached the maximal level of ADCC activity of sample C2B8-nt at a 10-fold lower antibody concentration (FIG. 4A). Sample C2B8-25t also showed a significant increase in the maximal ADCC activity with respect to the control (50% vs. 30% lysis).
[0094] Samples C2B8-50t and C2B8-25t, bearing the highest proportions of bisected oligosaccharides, were further compared in ADCC activity to Mabthera™, the version of Rituxan™ currently marketed in Europe (FIG. 4B). Sample C2B8-50t showed a slight increase in activity whereas sample C2B8-25t clearly outperformed Mabthera™ at all antibody concentrations. Approximately a five to ten-fold lower concentration of C2B8-25t was required to reach the maximal ADCC activity of Mabthera™, and the maximal activity of C2B8-25t was about 25% higher than that of Mabthera™. [0095] These results show that, in general, the in vitro ADCC activity of the
C2B8 antibody correlates with the proportion of molecules carrying bisected oligosaccharides in the Fc region. We had previously reported that in the case of chCE7, an antibody with a low baseline level of ADCC activity, significant increases of activity could be obtained by increasing the fraction of bisected oligosaccharides above the levels found in naturally-occurring antibodies (Umana, P., etal, Nat Biotechnol. 77:176-180 (1999)). The same is true for the C2B8 mAb, which already has high ADCC activity in the absence of bisected oligosaccharides. In the case of chCE7, however, very large increases of ADCC activity were observed at a level of GnTffl expression where bisected oligosaccharides were predominantly of complex type (Umana, P., et al, Nat Biotechnol. 17: 176-180 (1999)). For the potent C2B8 mAb, such a large boost in activity was only observed at the highest levels of GnTffl expression studied, where bisected oligosaccharides had shifted mainly to the hybrid type (FIG. 2). For both mAbs, the samples with the highest activities had considerably higher levels of bisected than non-bisected oligosaccharides. Together, these observations indicate that probably both complex and hybrid bisected oligosaccharides are important for ADCC activity.
[0096] In both complex and hybrid oligosaccharides, a bisecting GlcNAc leads to a large change in oligosaccharide conformations (Balaji, P. V., et al, Int. J. Biol. Macromol 75:101-114 (1996)). The change occurs in a part of the oligosaccharide that interacts extensively with the polypeptide in the CH2 domain (Jefferis, R, et al, Immunol Rev. 163:59-16 (1998)). Since the polypetide is relatively flexible at this location (Jefferis, R, et al, Immunol Rev. 163:59-16 (1998)), it is possible that the bisecting N-acetylglucosamine is mediating its biological effects through a conformational change in the Fc region. The potentially altered conformations would already exist in nature, as all serum IgGs carry bisected oligosaccharides. The main difference between the engineered and. natural antibodies would be the proportion of molecules displaying the more active conformations. [0097] Various approaches for increasing the activity of unconjugated mAbs are currently under clinical evaluation, including radio-immunotherapy, antibody- dependent enzyme/prodrugtherapy, immunotoxins and adjuvant therapy with cytokines (Hjelm Skog, A., et al, Cancer Immunol Immunother. ¥5:463-470 (1999); Blakey, D. C, et al, Cell Biophys. 25: 175-183 (1994); Wiseman, G A., et al, Gin Cancer Res. 5:3281s-3296s (1999); Hank, J. A., et al, Cancer Res. 50:5234-5239 (1990)). These technologies can give large increases in activity, but they can also lead to significantly higher side effects, elevated production costs and complex logistics from production to administration to patients when compared to unconjugated mAbs. The technology presented here offers an alternative way to obtain increases in potency while maintaining a simple production process, and should be applicable to many unconjugated mAbs.
EXAMPLE 2.
New Versions of the Anti-Renal Cell Carcinoma Antibody chG250 Having
Enhanced Antibody-Dependent Cellular Cytotoxicity Obtained by
Glycosylation Engineering of a chG250 Producing Cell Line
1. Cell culture
[0098] SP2/0 mouse myeloma cells producing chG250 chimeric mAb
(wt-chG250-SP2/0 cells) were grown in standard cell culture medium supplemented with 1:100 (v/v) penicillin/streptomycin/antimycotic solution (SIGMA, Buchs, Switzerland). Cells were cultured at 37 ° C in a 5% CO2 humidified atmosphere in Tissue Culture Flasks. Medium was changed each 3-4 days. Cells were frozen in culture medium containing 10% DMSO. 2. Generation of SP2/0 cells with pGnTffl-puro expression
[0099] wt-chG250-SP2/0 myeloma cells weretransfectedby electroporation with a vector for constitutive expression of GnTHI operatively linked via an IRES to a puromycin resistance gene. 24 hours before electroporation culture medium was changed and cells were seeded at 5xl05 cells/ml. Seven million cells were centrifuged for 4 min at 1300 rpm at 4 °C. Cells were washed with 3 mL new medium and centrifuged again. Cells were resuspended in a volume of 0.3-0.5 ml of reaction mix, containing 1.25% (v/v) DMSO and 20-30 μg DNA in culture medium. The electroporation mix was then transferred to a 0.4 cm cuvette and pulsed at low voltage (250-300 V) and high capacitance (960 μF) using Gene Pulser from Bio Rad. After electroporation cells were quickly transferred to 6 mL 1.25% (v/v) DMSO culture medium in a T25 culture flask and incubated at 37 °C. Stable integrants were selected by applying 2 μg/mL puromycin to the medium two days after electroporation. After 2-3 weeks a stable, puromycin-resitant mixed population was obtained. Single-cell derived clones were obtained via FACS and were subsequently expanded and maintained under puromycin selection.
3. Western Blot
[0100] Puromycin-resistant clones were screened for GnTHI expression by
Western blotting. The Western blots clearly showed that clones 5H12, 4E6 and 4E8 were expressing the highest levels of GnTHI. 5G2 also showed a GnTffl band of middle intensity, whereas 2F1, 3D3 and 4G3 had the lowest band intensities, therefore expressing lower amounts of GnTHI (FIG. 5). 4. Production and purification of chG250 monoclonal antibody from seven GnTHI-expressing clones including wild type
[0101] Clones 2F1, 3D3, 4E6, 4E8, 4G3, 5G2, 5H12 and the wild type
(wt-chG250-SP2/0 cells) were seeded at 3x10s cells/mL in atotal volume of 130 ml culture medium, and cultivated in single Triple-flasks. Cells used for seeding were all in full exponential growth phase, therefore cells were considered to be at the same growth state when the production batches started. Cells were cultivated for 4 days. Supernatants containing the antibody were collected in the late exponential growth phase to ensure reproducibility. The chG250 monoclonal antibody was purified in two chromatographic steps. Culture supernatants containing the chG250 monoclonal antibody derived from each batch were first purified using a HiTrap Protein A affinity chromatography. Protein A is highly specific for the human IgG Fc region. Pooled samples from the protein A eluate were buffer exchanged to PBS by cation-exchange chromatography on a Resource S 1ml column (Amersham Pharmacia Biotech). Final puritywas judged to be higher than 95% from SDS-staining and Coomassie blue staining (FIG. 6). The concentration of each sample was determined with a standard calibration curve using wild type antibody with known concentration.
5. Oligosaccharide profiling of mAb preparations derived from the seven clones expressing different GnTHI levels
[0102] Oligosaccharide profiles were obtained by matrix-assisted laser desorption/ionization time of flight mass spectrometry (MALDI/TOF-MS), which accurately provides the molecular masses of the different oligosaccharide structures. This technique allows a quantitative analysis of proportions between different oligosaccharide structures within a mixture. Neutral oligosaccharides appeared predominantly as [M + Na+] ions, however sometimes they were accompanied by smaller [M + K+] ions, leading to an increase in mass of m/z of 16. The percentage of the structure appearing as potassium ion adducts depends on the content of the matrix and may thus vary between samples. A mixture of neutral N-linked oligosaccharides derived from each antibody preparation was analyzed using a 2,5-dehydrobenzoic acid (2,5-DHB) as matrix. Some of the peaks in the spectra were unequivocally assigned to specific oligosaccharide structures, because of known monosaccharide composition and unique mass. However, sometimes multiple structures could be assigned to a particular mass. MALDI enables the determination of the mass and cannot distinguish between isomers. Knowledge of the biosynthetic pathway and previous structural data enable, in most cases, the assignment of an oligosaccharide structure to a peak in the spectrum.
[0103] Oligosaccharides derived from the mAb sample produced in wt-chG250-SP2/0 cell line, that does not express GnTHI, contained nonbisected biantennary complex (m/z 1486) and mono- or di-galactosylated nonbisected biantennary complex structures (FIG. 7A), both α(l,6)-fucosylated in the core region (peaks m/z 1648 and 1810 respectively).
[0104] Expression of GnTffl generated bisected Fc-associated oligosaccharide structures of two types: complex or hybrid. Complex bisected oligosaccharides were unequivocally assigned to peaks at m/z 1543, 1689, 1705, 1851 and 1867 ([M + K+] adduct). As expected, the increase in bisected oligosaccharides was accompanied by a concomitant reduction of peaks m/z 1486 and 1648, that correspond to nonbisected complex oligosaccharides. For all samples derived from the GnTffl expressing clones, the main substrate of GnTHI (m/z 1486) decreased dramatically. As expected, the percentage of the nonbisected complex oligosaccharide type, assigned to peak at m/z 1648, had the lowest values for the clones expressing the highest GnTffl levels (clones 4E6, 4E8, 5G2 and 5H12). These two peaks decreased in favor of the accumulation of bisected complex and bisected hybrid type oligosaccharides (FIGS. 7A-7D and 8A-8D). The percentage of bisected complex oligosaccharides was higher for the samples derived from the clones expressing lower amounts of GήTHI. This is consistent with the fact that a higher GnTHI expression level probably shifts the biosynthetic flux to bisected hybrid structures, thereby decreasing the relative proportions of complex and complex bisected compound. For bisected hybrid structures, two possible structures could sometimes be assigned to a single peak. Therefore, some assumptions were made in order to approximate the percentage of these structures over the total oligosaccharide pool. Peaks m/z 1664, 1680, 1810 and 1826 can be assigned to either bisected hybrid type, to galactosylated complex oligosaccharides, or a mixture of them. Due to the fact that the wt-antibody preparation had a relatively low percentage of peak 1664, it was assumed that this peak, appearing in significant amounts in the antibody samples derived from the different clones, corresponded entirely to bisected hybrid structures (FIGS. 7A-7D and 8A-8D). However to assign a specific structure to peaks m/z 1810 and 1826 further characterization has to be performed. In summary, by overexpression of GnTHI, bisected oligosaccharides structures were generated and their relative proportions correlated with GnTffl expression levels .
Measurement "of antibody mediated cytotoxic activity by Calcein-AM retention
The Calcein-AM retention method of measuring cytotoxicity measures the dye fluorescence remaining in the cells after incubation with the antibody. Four million G250 antigen-positive cells (target) were labelled with 10 μM Calcein-AM (Molecular Probes, Eugene, OR) in 1.8 mL RPMI-1640 cell culture medium (GIBCO BRL, Basel, Switzerland) supplemented with 10% fetal calf serum for 30 min at 37°C in a 5% CO2 humidified atmosphere. The cells were washed twice in culture medium and resuspended in 12 mL AIMV serum free medium (GIBCO BRL, Basel, Switzerland). Labelled cells were then transferred to U-bottom 96-wells (30,000 cells/well) and incubated in triplicate with different concentrations of antibody for 1 hour at 4°C. Peripheral blood mononuclear cells (PBMC) were separated from heparinated fresh human blood (in all experiments obtained from the same healthy donor) by centrifugation over a Ficoll-Paque (Pharmacia Biotech, Dϋbendorf, Switzerland) gradient. PBMCs were added in triplicate wells in a 50 μL volume, yielding an effector to target ratio (E:T ratio) of 25: 1 and a final volume of 200 μL. The 96-well plate was then incubated for 4 hours at 37°C in a 5% CO2 atmosphere. Thereafter the 96-well plate was centrifuged at 700 x g for 5 min and the supernatants were discarded. The cell pellets were washed twice with Hank's balanced salt solution (HBSS) and lysed in 200 μL 0.05M sodium borate, pH 9, 0.1% Triton X-100. Retention of the fluorescent dye in the target cells was measured with a FLUOstarmicroplate reader (BMGLabTechnologies,Offenburg, Germany). The specific lysis was calculated relative to a total lysis control, resulting from exposure of the target cells to saponin (200 μg/mL in AIMV; SIGMA, Buchs, Switzerland) instead of exposure to antibody. Specific lysis (%) was calculated with the following formula:
F — F % Cytotoxicity — me exp
where Fmed represents the fluorescence of target cells treated with medium alone and considers unspecific lysis by PMBCs, Fexp represents the fluorescence of cells treated with antibody and Fdet represents the fluorescence of cells treated with saponin instead of antibody.
[0106] To determine the effect of modified glycosylation variants of chG250 on the in vitro ADCC activity, G250 antigen-positive target cells were cultured with PBMCs with and without chG250 antibody samples at different concentrations. The cytotoxicity of unmodified chG250 antibody derived from the wild type cell line was compared with two antibody preparations derived from two cell lines (3D3, 5H12) expressing intermediate and high GnTffl levels, respectively (see FIG. 5).
[0107] Unmodified chG250 antibody did not mediate significant ADCC activity over the entire concentration range used in the assay (the activity was not significantly different from background). Augmented ADCC activity (close to 20%, see FIG. 9) at 2 g/mL was observed with the antibody sample derived from clone 3D3, which expressed intermediate GnTffl levels. The cytotoxic activity of this antibody samples did not grow at higher antibody concentrations. As expected the antibody preparation derived from clone 5H 12 showed a striking increase over samples 3D3 and unmodified antibody in its ability to mediate ADCC against target cells. The maximal ADCC activity of this antibody preparation was around 50% and was remarkable in mediating significant ADCC activity at 125-fold less concentrated when comparing with the unmodified control sample.
EXAMPLE 3
Treatment of Immune-Mediated Thrombocytopenia in a Patient with Chronic Graft- Versus-Host Disease
[0108] Autoimmune thrombocytopenia in chronic graft-versus-host disease represents an instance of B-cell dysregulation leading to clinical disease. To treat immune-mediated thrombocytopenia in a subject with chronic graft-versus-host disease, an anti-CD20 chimeric monoclonal antibody prepared by the methods of the present invention and having increased ADCC is administered to the subject as described in Ratanatharathorn, V. et al, Ann. Intern. Med. 133(4):215- 79 (2000) (the entire contents of which is hereby incorporated by reference). Specifically, a weekly infusion of the antibody, 375 mg/m2 is administered to the subject for 4 weeks. The antibody therapy produces a marked depletion of B cells in the peripheral blood and decreas ed levels of platelet-ass ociated antibody.
EXAMPLE 4
Treatment of Severe, Immune-Mediated, Pure Red Cell Aplasia and Hemolytic Anemia
[0109] Immune-mediated, acquired pure red cell aplasia (PRCA) is a rare disorder frequently associated with other autoimmune phenomena. To treat immune-mediated, acquired pure red cell aplasia in" a subject, an anti-CD20 chimeric monoclonal antibody prepared by the methods of the present invention and having increased ADCC is administered to the subject as described in Zecca, M. et al, Blood 72:3995-97 (1997) (the entire contents of which are hereby incorporated by reference) . Specifically, a subj ect with PRCA and autoimmune hemolytic anemia is given two doses of antibody, 375 mg/m2, per week. After antibody therapy, substitutive treatment with intravenous immunoglobulin is initiated. This treatment produces a marked depletion of B cells and a significant rise in reticulocyte count accompanied by increased hemoglobin levels.
[0110] It will be clear that the invention may be practiced otherwise than as particularly described in the foregoing description and examples. Numerous modifications and variations of the present invention are possible in light of the above teachings and, therefore, are within the scope of the appended claims.
[0111] The entire disclosure of all publications (including patents, patent applications, journal articles, laboratory manuals, books, or other documents) cited herein are hereby incorporated by reference.

Claims (38)

WHAT IS CLAIMED IS:
1. A host cell engineered to produce a polypeptide having increased Fc-mediated cellular cytotoxicity by expression of at least one nucleic acid encoding β(l,4)-N-acetylglucosaminyltransferase HI (GnT HI), wherein said polypeptide produced by said host cell is selected from the group consisting of a whole antibody molecule, an antibody fragment, and a fusion protein which includes a region equivalent to the Fc region of an immunoglobulin, and wherein said GnT IH is expressed in an amount sufficient to increase the proportion of said polypeptides carrying bisected hybrid oligosaccharides or galactosylated complex oligosaccharides or mixtures thereof in the Fc region relative to polypeptides carrying bisected complex oligosaccharides in the Fc region.
2. The host cell of claim 1, wherein said polypeptide is IgG or a fragment thereof.
3. The host cell of claim 1, wherein said polypeptide is IgGl or a fragment thereof.
4. The host cell of claim 1, wherein said polypeptide is a fusion protein that includes a region equivalent to the Fc region of a human IgG.
5. The host cell of claim 1, wherein a nucleic acid molecule comprising at least one gene encoding GnTHI has been introduced into said host cell.
6. The host cell of claim 1, wherein said host cell .has been engineered such that an endogenous GnT IH gene is activated.
7. The host cell of claim 6, wherein said endogenous GnTHI has been activated by insertion of a DNA element which increases gene expression into the host chromosome.
8. The host cell of claim 6, wherein said host cell has been selected to carry a mutation triggering expression of an endogenous GnTHI.
9. The host cell of claim 8, wherein said host cell is the CHO cell mutant lee 10.
10. The host cell of claim 1, wherein said host cell is a CHO cell, a BHK cell, a NSO cell, aSP2/0 cell, a YO myeloma cell, aP3X63 mouse myeloma cell, a PER cell, a PER.C6 cell or a hybridoma cell.
11. The host cell of claim 10, wherein said polypeptide is an anti- CD20 antibody.
12. The host cell of claim 11, wherein said anti-CD20 antibody is IDEC-C2B8.
13. The host cell of claim 10, wherein said host cell is a SP2/0 cell.
14. The host cell of claim 13, wherein said antibody is the chimeric anti-human renal cell carcinoma monoclonal antibody chG250.
15. The host cell of claim 5, wherein said at least one gene encoding GnTffl has been introduced into said host cell chromosome.
16. The host cell of claim 6, wherem said endogenous GnTHI has been activated by insertion of a promoter element, a transposon, or a retroviral element into the host cell chromosome.
17. The host cell of claim 1, further comprising at least one transfected nucleic acid encoding an antibody molecule, an antibody fragment, or a fusion protein that includes a region equivalent to the Fc region of an immunoglobulin.
18. The host cell of claim 1, wherein said at least one nucleic acid encoding a GnTHI is operably linked to a constitutive promoter element.
19. The host cell of claim 17, wherein s aid host cell compris es at least one transfected nucleic acid encoding an anti-CD20 antibody, the chimeric anti- human neuroblastoma monoclonal antibody chCE7, the chimeric anti-human renal cell carcinoma monoclonal antibody chG250, the chimeric anti-human colon, lung, and breast carcinoma monoclonal antibody ING-1, the humanized anti-human 17-1 A antigen monoclonal antibody 3622W94, the humanized anti- human colorectal tumor antibody A33, the anti-human melanoma antibody directed against GD3 ganglioside R24, the chimeric anti-human squamous-cell carcinoma monoclonal antibody SF-25, an anti-human EGFR antibody, an anti- human EGFRvHI antibody, an anti-human PSMA antibody, an anti-human PSCA antibody, an anti-human CD22 antibody, an anti-human CD30 antibody, an anti-human CD33 antibody, an anti-human CD38 antibody, an anti-human CD40 antibody, an anti-human CD45 antibody, an anti-human CD52 antibody, an anti-human CD138 antibody, an anti-human HLA-DR variant antibody, an anti-human EpCAM antibody, an anti-human CEA antibody, an anti-human MUCl antibody, an anti-human MUCl core protein antibody, an anti-human aberrantly glycosylated MUCl antibody, an antibody against human fibronectin variants containing the ED-B domain, or an anti-human HER2/neu antibody.
20. A method for producing a polypeptide in a host cell comprising culturing the host cell of any one of claims 1-19 under conditions which permit the production of said polypeptide having increased Fc-mediated cellular cytotoxicity.
21. The method of claim 20, further comprising isolating said polypeptide having increased Fc-mediated cellular cytotoxicity.
22. The method of claim 20, wherein said host cell comprises at least one nucleic acid encoding a fusion protein comprising a region equivalent to a Fc region of an immunoglobulin.
23. The method of claim 20, wherein greater than 50% of the oligosaccharides in the Fc region of said polypeptides are bisected.
24. The method of claim 20, wherein greater than 70% of the oligosaccharides in the Fc region of said polypeptides are bisected.
25. The method of claim 20, wherein the proportion of bisected hybrid oligosaccharides or galactosylated complex oligosaccharides or mixtures thereof in the Fc region is greater than the proportion of bisected complex oligosaccharides in the Fc region of said polypeptides.
26. The method of claim 20, wherein said polypeptide is the anti- CD20 antibody 1DEC-C2B8 and the IDEC-C2B8 antibodies produced by said host cell have a glycosylaton profile, as analyzed by MALDI TOF-MS, that is substantially equivalent to that shown in FIG 2E.
27. The method of claim 20, wherein said polypeptide is the chG250 monoclonal antibody and the chG250 antibodies produced by said host cell have a gly cosy laton profile, as analyzed by MALDI/TOF-MS, that is substantially equivalent to that shown in FIG 7D.
28. An antibody having increased antibody dependent cellular cytotoxicity (ADCC) produced by the method of claim 21.
29. The antibody of claim 28, wherein said antibody is selectedfrom the group consisting of IDEC-C2B8, chCE7, ch-G250, a humanized anti-HER2 monoclonal antibody, ING-1, 3622W94, SF-25, A33, and R24.
30. An antibody fragment that includes a region equivalent to the Fc region of an immunoglobulin, having increased Fc-mediated cellular cytotoxicity produced by the method of claim 21.
31. A fusion protein that includes a region equivalent to the Fc region of an immunoglobulin and having increased Fc-mediated cellular cytotoxicity produced by the method of claim 21.
32. A pharmaceutical composition comprising the antibody of claim 28 and a pharmaceutically acceptable carrier.
33. A pharmaceutical composition comprising the antibody fragment of claim 30 and a pharmaceutically acceptable carrier.
34. A pharmaceutical composition comprising the fusion protein of claim 31 and a pharmaceutically acceptable carrier.
35. A method for the treatment of cancer comprising administering a therapeutically effective amount of the pharmaceutical composition of any one of claims 32-34 to a patient in need thereof.
36. An improved method for disease treatment based on B-cell depletion comprising administering a therapeutically effective amount of antibody to a human subject in need thereof, the improvement comprising administering a therapeutically effective amount of an antibody produced by the method of claim 28.
37. The improved method of claim 36, wherein said antibody is an anti-CD20 monoclonal antibody.
38. The improved method of claim 37, wherein said anti-CD20 antibody is IDEC-C2B8.
AU2002339845A 2001-08-03 2002-08-05 Antibody glycosylation variants having increased antibody-dependent cellular cytotoxicity Expired AU2002339845B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US30951601P 2001-08-03 2001-08-03
US60/309,516 2001-08-03
PCT/US2002/024739 WO2003011878A2 (en) 2001-08-03 2002-08-05 Antibody glycosylation variants having increased antibody-dependent cellular cytotoxicity

Publications (2)

Publication Number Publication Date
AU2002339845A1 true AU2002339845A1 (en) 2003-05-29
AU2002339845B2 AU2002339845B2 (en) 2009-03-26

Family

ID=23198536

Family Applications (1)

Application Number Title Priority Date Filing Date
AU2002339845A Expired AU2002339845B2 (en) 2001-08-03 2002-08-05 Antibody glycosylation variants having increased antibody-dependent cellular cytotoxicity

Country Status (15)

Country Link
US (5) US20030175884A1 (en)
EP (2) EP2180044A1 (en)
JP (2) JP2005524379A (en)
KR (2) KR20040054669A (en)
CN (1) CN1555411A (en)
AU (1) AU2002339845B2 (en)
CA (2) CA2455365C (en)
HU (1) HUP0700103A3 (en)
IL (2) IL160170A0 (en)
MX (1) MXPA04001072A (en)
NO (1) NO332457B1 (en)
NZ (5) NZ531219A (en)
PL (1) PL217751B1 (en)
RU (1) RU2321630C2 (en)
WO (1) WO2003011878A2 (en)

Families Citing this family (921)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6136311A (en) 1996-05-06 2000-10-24 Cornell Research Foundation, Inc. Treatment and diagnosis of cancer
DK2180007T4 (en) 1998-04-20 2017-11-27 Roche Glycart Ag Glycosylation technique for antibodies to enhance antibody-dependent cell cytotoxicity
EP2264177B1 (en) 1998-12-09 2015-09-30 Phyton Holdings, LLC Glycoproteins having human-type glycosylation
NZ513935A (en) 1999-02-17 2004-02-27 Csl Ltd Immunogenic complexes and methods relating thereto
ATE365219T1 (en) 1999-10-26 2007-07-15 Plant Res Int Bv MAMMAL-TYPE GLYCOLIZATION IN PLANTS
WO2001079299A1 (en) * 2000-04-13 2001-10-25 The Rockefeller University Enhancement of antibody-mediated immune responses
US7449308B2 (en) 2000-06-28 2008-11-11 Glycofi, Inc. Combinatorial DNA library for producing modified N-glycans in lower eukaryotes
US8697394B2 (en) * 2000-06-28 2014-04-15 Glycofi, Inc. Production of modified glycoproteins having multiple antennary structures
US7598055B2 (en) * 2000-06-28 2009-10-06 Glycofi, Inc. N-acetylglucosaminyltransferase III expression in lower eukaryotes
ES2330330T3 (en) * 2000-06-28 2009-12-09 Glycofi, Inc. PROCEDURE OF PRODUCTION OF MODIFIED GLUCOPROTEINS.
IL156879A0 (en) 2001-01-19 2004-02-08 Dow Chemical Co Method for secretory production of glycoprotein having human-type sugar chain using plant cell
WO2002079255A1 (en) * 2001-04-02 2002-10-10 Idec Pharmaceuticals Corporation RECOMBINANT ANTIBODIES COEXPRESSED WITH GnTIII
KR20040054669A (en) 2001-08-03 2004-06-25 글리카트 바이오테크놀로지 아게 Antibody glycosylation variants having increased antibody-dependent cellular cytotoxicity
US20060210555A1 (en) * 2001-12-21 2006-09-21 Antigenics, Inc. Compositions comprising immunoreactive reagents and saponins, and methods of use thereof
US8093357B2 (en) 2002-03-01 2012-01-10 Xencor, Inc. Optimized Fc variants and methods for their generation
US8188231B2 (en) 2002-09-27 2012-05-29 Xencor, Inc. Optimized FC variants
US20080254027A1 (en) * 2002-03-01 2008-10-16 Bernett Matthew J Optimized CD5 antibodies and methods of using the same
US7317091B2 (en) * 2002-03-01 2008-01-08 Xencor, Inc. Optimized Fc variants
US20070148171A1 (en) * 2002-09-27 2007-06-28 Xencor, Inc. Optimized anti-CD30 antibodies
US20080260731A1 (en) * 2002-03-01 2008-10-23 Bernett Matthew J Optimized antibodies that target cd19
US20040132101A1 (en) 2002-09-27 2004-07-08 Xencor Optimized Fc variants and methods for their generation
US7897842B2 (en) * 2002-03-19 2011-03-01 Plant Research International B.V. GnTIII expression in plants
CA2923247A1 (en) 2002-03-19 2003-09-25 Stichting Dienst Landbouwkundig Onderzoek Optimizing glycan processing in plants
US20060235208A1 (en) * 2002-09-27 2006-10-19 Xencor, Inc. Fc variants with optimized properties
AR042145A1 (en) 2002-11-27 2005-06-08 Dow Agrociences Llc IMMUNOGLOBULIN PRODUCTION IN PLANTS WITH A REDUCED FUCOCILATION
WO2004067716A2 (en) * 2003-01-24 2004-08-12 Agensys, Inc. Nucleic acids and corresponding proteins entitled 254p1d6b useful in treatment and detection of cancer
US7332299B2 (en) 2003-02-20 2008-02-19 Glycofi, Inc. Endomannosidases in the modification of glycoproteins in eukaryotes
US8388955B2 (en) * 2003-03-03 2013-03-05 Xencor, Inc. Fc variants
US20090010920A1 (en) * 2003-03-03 2009-01-08 Xencor, Inc. Fc Variants Having Decreased Affinity for FcyRIIb
US8084582B2 (en) 2003-03-03 2011-12-27 Xencor, Inc. Optimized anti-CD20 monoclonal antibodies having Fc variants
US20070275460A1 (en) * 2003-03-03 2007-11-29 Xencor.Inc. Fc Variants With Optimized Fc Receptor Binding Properties
US9051373B2 (en) 2003-05-02 2015-06-09 Xencor, Inc. Optimized Fc variants
AR044388A1 (en) 2003-05-20 2005-09-07 Applied Molecular Evolution CD20 UNION MOLECULES
US9714282B2 (en) 2003-09-26 2017-07-25 Xencor, Inc. Optimized Fc variants and methods for their generation
US8101720B2 (en) 2004-10-21 2012-01-24 Xencor, Inc. Immunoglobulin insertions, deletions and substitutions
RS57466B1 (en) * 2003-11-05 2018-09-28 Roche Glycart Ag Antigen binding molecules with increased fc receptor binding affinity and effector function
US20050249723A1 (en) * 2003-12-22 2005-11-10 Xencor, Inc. Fc polypeptides with novel Fc ligand binding sites
ATE452147T1 (en) 2004-02-19 2010-01-15 Genentech Inc ANTIBODIES WITH CORRECTED CDR
TW200539855A (en) * 2004-03-15 2005-12-16 Wyeth Corp Calicheamicin conjugates
WO2005092925A2 (en) * 2004-03-24 2005-10-06 Xencor, Inc. Immunoglobulin variants outside the fc region
AR049021A1 (en) * 2004-04-16 2006-06-21 Genentech Inc TREATMENT OF DISORDERS WITH AN ANTIBODY THAT JOINS CD20
CN102512675A (en) 2004-06-04 2012-06-27 健泰科生物技术公司 Method for treating multiple sclerosis
CN111925445A (en) * 2004-07-09 2020-11-13 中外制药株式会社 Anti-glypican 3 antibody
US7759464B2 (en) 2004-07-14 2010-07-20 Greenovation Biotech Gmbh N-glycosylated antibody
US20150010550A1 (en) 2004-07-15 2015-01-08 Xencor, Inc. OPTIMIZED Fc VARIANTS
WO2006031994A2 (en) * 2004-09-14 2006-03-23 Xencor, Inc. Monomeric immunoglobulin fc domains
EP1812060A2 (en) 2004-10-05 2007-08-01 Genentech, Inc. Method for treating vasculitis
JO3000B1 (en) 2004-10-20 2016-09-05 Genentech Inc Antibody Formulations.
UA93488C2 (en) * 2004-10-26 2011-02-25 Чугаі Сейяку Кабусікі Кайся Anti-glypican 3 antibody having modified sugar chain
US8367805B2 (en) 2004-11-12 2013-02-05 Xencor, Inc. Fc variants with altered binding to FcRn
BRPI0517837A (en) 2004-11-12 2008-10-21 Xencor Inc fc variants with altered link to fcrn
US8546543B2 (en) 2004-11-12 2013-10-01 Xencor, Inc. Fc variants that extend antibody half-life
US8802820B2 (en) 2004-11-12 2014-08-12 Xencor, Inc. Fc variants with altered binding to FcRn
EP1858925A2 (en) * 2005-01-12 2007-11-28 Xencor, Inc. Antibodies and fc fusion proteins with altered immunogenicity
KR20200058588A (en) 2005-01-21 2020-05-27 제넨테크, 인크. Fixed dosing of her antibodies
CN101115773B (en) 2005-02-07 2015-06-10 罗氏格黎卡特股份公司 Antigen binding molecules that bind egfr, vectors encoding same, and uses thereof
JP2008530244A (en) * 2005-02-18 2008-08-07 メダレックス, インク. Monoclonal antibody against CD30 lacking fucosyl residues
ZA200707078B (en) 2005-02-23 2008-11-26 Genentech Inc Extending time to disease progression or survival in cancer patients
JP2008533985A (en) * 2005-03-25 2008-08-28 グリクアート バイオテクノロジー アクチェンゲゼルシャフト Antigen binding molecule for MCSP with enhanced Fc receptor binding affinity and effector function
PE20061324A1 (en) 2005-04-29 2007-01-15 Centocor Inc ANTI-IL-6 ANTIBODIES, COMPOSITIONS, METHODS AND USES
JP2008539753A (en) * 2005-05-09 2008-11-20 グリクアート バイオテクノロジー アクチェンゲゼルシャフト Antigen binding molecule having modified FC region and altered binding to FC receptor
KR20080031001A (en) * 2005-06-02 2008-04-07 아스트라제네카 아베 Antibodies directed to cd20 and uses thereof
CA2608818A1 (en) * 2005-06-03 2006-12-14 Genentech, Inc. Method of producing antibodies with modified fucosylation level
PL1896073T3 (en) 2005-06-30 2013-08-30 Janssen Biotech Inc Anti-il-23 antibodies, compositions, methods and uses
ES2530265T3 (en) 2005-07-21 2015-02-27 Genmab A/S Binding potency assays of an antibody drug substance to an FC receptor
BRPI0614850A2 (en) * 2005-08-19 2011-04-19 Centocor Inc proteolysis resistant antibody preparations
CN101291954B (en) * 2005-08-26 2013-03-27 罗氏格黎卡特股份公司 Modified antigen binding molecules with altered cell signaling activity
EP1931709B1 (en) * 2005-10-03 2016-12-07 Xencor, Inc. Fc variants with optimized fc receptor binding properties
EP1951757B1 (en) * 2005-10-06 2014-05-14 Xencor, Inc. Optimized anti-cd30 antibodies
US20070087005A1 (en) 2005-10-14 2007-04-19 Lazar Gregory A Anti-glypican-3 antibody
MY149159A (en) 2005-11-15 2013-07-31 Hoffmann La Roche Method for treating joint damage
KR101453570B1 (en) 2005-12-02 2014-10-22 제넨테크, 인크. Compositions and methods for the treatment of diseases and disorders associated with cytokine signaling involving antibodies that bind to il-22 and il-22r
RS53685B1 (en) 2005-12-29 2015-04-30 Janssen Biotech Inc. Human anti-il-23 antibodies, compositions, methods and uses
BRPI0706840A2 (en) 2006-01-05 2011-04-05 Genentech Inc polynucleotide isolated anti-ephb4 antibodies, vector, host cell, method for producing an anti ephb4 antibody, method for producing an anti ephb4 immunoconjugate, method for detecting ephb4, method for diagnosing a composition disorder, method for inhibiting angiogenesis, method for treating a cancer, tumor and / or cell proliferation disorder and use of an antibody
US20070166306A1 (en) * 2006-01-17 2007-07-19 Fey Georg H M Anti-CD19 antibody composition and method
CA2637254A1 (en) 2006-01-17 2007-07-26 Biolex Therapeutics, Inc. Compositions and methods for humanization and optimization of n-glycans in plants
DK1987068T3 (en) 2006-02-10 2018-09-03 Life Technologies Corp OLIGOSACCHARID MODIFICATION AND LABELING OF PROTEINS
AR059851A1 (en) 2006-03-16 2008-04-30 Genentech Inc ANTIBODIES OF EGFL7 AND METHODS OF USE
ES2363891T3 (en) 2006-03-20 2011-08-18 The Regents Of The University Of California ANTIBODIES AGAINST THE ANTIGEN OF TRONCAL CELLS OF THE PROSTATE (PSCA) GENETICALLY MODIFIED FOR ADDRESSING TO CANCER.
KR101328756B1 (en) 2006-05-30 2013-11-18 제넨테크, 인크. Antibodies and immunoconjugates and uses therefor
CL2007001623A1 (en) 2006-06-06 2008-01-18 Genentech Inc Anti-dll4 antibody; polynucleotide that encodes it; vector and host cell comprising said polynucleotide; method for making the antibody and immunojugate; method of detection of dll4 and diagnostic method of a disorder associated with dll4; composition comprising the antibody.
AU2007275467B2 (en) 2006-07-14 2013-12-05 Ac Immune S.A. Humanized antibody against amyloid beta
KR20160049045A (en) 2006-07-14 2016-05-04 에이씨 이뮨 에스.에이. Humanized antibody against amyloid beta
MX2009000696A (en) 2006-07-19 2009-01-30 Univ Pennsylvania Wsx-1/p28 as a target for anti-inflammatory responses.
AR062223A1 (en) * 2006-08-09 2008-10-22 Glycart Biotechnology Ag MOLECULES OF ADHESION TO THE ANTIGEN THAT ADHER TO EGFR, VECTORS THAT CODE THEM, AND THEIR USES OF THESE
JP5825756B2 (en) 2006-08-14 2015-12-02 ゼンコー・インコーポレイテッドXencor、 Inc. Optimized antibody targeting CD19
US8911964B2 (en) 2006-09-13 2014-12-16 Abbvie Inc. Fed-batch method of making human anti-TNF-alpha antibody
TWI548747B (en) 2006-09-13 2016-09-11 艾伯維有限公司 Cell culture improvements
JP5562031B2 (en) 2006-09-18 2014-07-30 ゼンコー・インコーポレイテッド Optimized antibody targeting HM1.24
CA2665644A1 (en) 2006-10-12 2008-05-29 Genentech, Inc. Antibodies to lymphotoxin-alpha
RS52452B (en) 2006-10-27 2013-02-28 Genentech Inc. Antibodies and immunoconjugates and uses thereof
CN103172743B (en) * 2006-12-01 2015-04-08 梅达雷克斯有限责任公司 Human Antibodies That Bind Cd22 And Uses Thereof
CL2008000420A1 (en) 2007-02-09 2008-06-27 Genentech Inc ANTI-BODY ANTIBODY4; AND ITS USE TO MODULATE ANGIOGENESIS.
DK2132573T3 (en) 2007-03-02 2014-07-14 Genentech Inc PREDICTION OF RESPONSE TO A HER DIMERIZATION INHIBITOR BASED ON LOW HER3 EXPRESSION
SG187521A1 (en) * 2007-03-07 2013-02-28 Glycofi Inc Production of glycoproteins with modified fucosylation
US7960139B2 (en) 2007-03-23 2011-06-14 Academia Sinica Alkynyl sugar analogs for the labeling and visualization of glycoconjugates in cells
MX341988B (en) 2007-04-17 2016-09-08 Stichting Dienst Landbouwkunding Onderzoek Mammalian-type glycosylation in plants by expression of non-mammalian glycosyltransferases.
DK3072525T3 (en) 2007-05-14 2018-04-30 Astrazeneca Ab PROCEDURES FOR REDUCING BASOFILE CELL LEVELS
ES2583377T3 (en) 2007-06-08 2016-09-20 Genentech, Inc. Gene expression markers of tumor resistance to HER2 inhibitor treatment
US20090155249A1 (en) 2007-06-12 2009-06-18 Ac Immune S.A. Humanized antibody igg1
NZ581944A (en) * 2007-06-15 2012-03-30 Medicago Inc Modifying glycoprotein production in plants
US7580304B2 (en) * 2007-06-15 2009-08-25 United Memories, Inc. Multiple bus charge sharing
CA2691692C (en) 2007-07-09 2021-05-18 Genentech, Inc. Prevention of disulfide bond reduction during recombinant production of polypeptides
CA2698343C (en) 2007-09-04 2018-06-12 The Regents Of The University Of California High affinity anti-prostate stem cell antigen (psca) antibodies for cancer targeting and detection
CA3139492A1 (en) 2007-09-26 2009-04-02 Chugai Seiyaku Kabushiki Kaisha Modified antibody constant region
SG178809A1 (en) 2007-10-05 2012-03-29 Genentech Inc Use of anti-amyloid beta antibody in ocular diseases
RS57021B1 (en) 2007-11-07 2018-05-31 Genentech Inc Il-22 for use in treating microbial disorders
TWI580694B (en) 2007-11-30 2017-05-01 建南德克公司 Anti-vegf antibodies
WO2009086072A2 (en) * 2007-12-21 2009-07-09 Genentech, Inc. Therapy of rituximab-refractory rheumatoid arthritis patients
WO2009080831A1 (en) * 2007-12-26 2009-07-02 Biotest Ag Method of decreasing cytotoxic side-effects and improving efficacy of immunoconjugates
ES2475201T3 (en) 2007-12-26 2014-07-10 Biotest Ag Agents directed against CD138 and their uses
CA2703997C (en) 2007-12-26 2017-04-04 Xencor, Inc. Fc variants with altered binding to fcrn
WO2009080832A1 (en) * 2007-12-26 2009-07-02 Biotest Ag Methods and agents for improving targeting of cd138 expressing tumor cells
KR20100097753A (en) 2007-12-26 2010-09-03 바이오테스트 아게 Immunoconjugates targeting cd138 and uses thereof
TWI472339B (en) 2008-01-30 2015-02-11 Genentech Inc Composition comprising antibody that binds to domain ii of her2 and acidic variants thereof
WO2009134738A1 (en) * 2008-04-29 2009-11-05 Genentech, Inc. Responses to immunizations in rheumatoid arthritis patients treated with a cd20 antibody
KR101054362B1 (en) * 2008-07-03 2011-08-05 재단법인 목암생명공학연구소 How to reduce the fucose content of recombinant protein
US8680020B2 (en) 2008-07-15 2014-03-25 Academia Sinica Glycan arrays on PTFE-like aluminum coated glass slides and related methods
AR073295A1 (en) 2008-09-16 2010-10-28 Genentech Inc METHODS TO TREAT PROGRESSIVE MULTIPLE SCLEROSIS. MANUFACTURING ARTICLE.
US8025879B2 (en) * 2008-09-26 2011-09-27 Eureka Therapeutics, Inc. Modified glycoproteins and uses thereof
PE20150682A1 (en) 2008-10-14 2015-05-20 Genentech Inc IMMUNOGLOBULIN VARIANTS AND THEIR USES
TW201028433A (en) 2008-10-20 2010-08-01 Abbott Lab Viral inactivation during purification of antibodies
ES2535734T3 (en) 2008-10-20 2015-05-14 Abbvie Inc. Isolation and purification of antibodies by affinity chromatography with protein A
MX340724B (en) 2008-11-22 2016-07-22 Genentech Inc Use of anti-vegf antibody in combination with chemotherapy for treating breast cancer.
TW201029662A (en) 2008-12-19 2010-08-16 Glaxo Group Ltd Novel antigen binding proteins
WO2010075249A2 (en) 2008-12-22 2010-07-01 Genentech, Inc. A method for treating rheumatoid arthritis with b-cell antagonists
US20120009182A1 (en) 2008-12-23 2012-01-12 Genentech, Inc. Immunoglobulin variants with altered binding to protein a
US10517969B2 (en) 2009-02-17 2019-12-31 Cornell University Methods and kits for diagnosis of cancer and prediction of therapeutic value
EP2401696B1 (en) 2009-02-26 2017-06-21 Intrexon CEU, Inc. Mammalian cell line models and related methods
RU2504553C2 (en) 2009-03-20 2014-01-20 Дженентек, Инк. Antibodies to her
MY173526A (en) 2009-03-25 2020-01-31 Genentech Inc Novel anti-?5?1 antibodies and uses thereof
TWI507205B (en) 2009-03-25 2015-11-11 Genentech Inc Anti-fgfr3 antibodies and methods using same
NZ613647A (en) * 2009-05-06 2015-02-27 Biotest Ag Uses of immunoconjugates targeting cd138
US8815242B2 (en) 2009-05-27 2014-08-26 Synageva Biopharma Corp. Avian derived antibodies
WO2010146059A2 (en) 2009-06-16 2010-12-23 F. Hoffmann-La Roche Ag Biomarkers for igf-1r inhibitor therapy
US9676845B2 (en) 2009-06-16 2017-06-13 Hoffmann-La Roche, Inc. Bispecific antigen binding proteins
WO2011014457A1 (en) 2009-07-27 2011-02-03 Genentech, Inc. Combination treatments
WO2011014750A1 (en) 2009-07-31 2011-02-03 Genentech, Inc. Inhibition of tumor metastasis using bv8- or g-csf-antagonists
LT2464725T (en) 2009-08-11 2020-06-10 F. Hoffmann-La Roche Ag Production of proteins in glutamine-free cell culture media
MX336476B (en) 2009-08-15 2016-01-20 Genentech Inc Anti-angiogenesis therapy for the treatment of previously treated breast cancer.
TWI412375B (en) 2009-08-28 2013-10-21 Roche Glycart Ag Humanized anti-cdcp1 antibodies
AU2010288469A1 (en) 2009-08-31 2012-03-01 Roche Glycart Ag Affinity-matured humanized anti CEA monoclonal antibodies
JP5887270B2 (en) 2009-09-02 2016-03-16 ジェネンテック, インコーポレイテッド Mutant SMOOTHENED AND METHOD OF USING THE SAME
US9493578B2 (en) 2009-09-02 2016-11-15 Xencor, Inc. Compositions and methods for simultaneous bivalent and monovalent co-engagement of antigens
ES2534646T3 (en) 2009-10-22 2015-04-27 F. Hoffmann-La Roche Ag Anti-hepsin antibodies and methods of use thereof
WO2011056497A1 (en) 2009-10-26 2011-05-12 Genentech, Inc. Activin receptor type iib compositions and methods of use
WO2011056494A1 (en) 2009-10-26 2011-05-12 Genentech, Inc. Activin receptor-like kinase-1 antagonist and vegfr3 antagonist combinations
WO2011056502A1 (en) 2009-10-26 2011-05-12 Genentech, Inc. Bone morphogenetic protein receptor type ii compositions and methods of use
EP2496600A1 (en) 2009-11-04 2012-09-12 Fabrus LLC Methods for affinity maturation-based antibody optimization
EP2496601B1 (en) 2009-11-05 2017-06-07 F. Hoffmann-La Roche AG Methods and composition for secretion of heterologous polypeptides
US11377485B2 (en) 2009-12-02 2022-07-05 Academia Sinica Methods for modifying human antibodies by glycan engineering
US10087236B2 (en) 2009-12-02 2018-10-02 Academia Sinica Methods for modifying human antibodies by glycan engineering
CA2782333C (en) 2009-12-02 2019-06-04 Imaginab, Inc. J591 minibodies and cys-diabodies for targeting human prostate specific membrane antigen (psma) and methods for their use
JP5818805B2 (en) 2009-12-11 2015-11-18 ジェネンテック, インコーポレイテッド Anti-VEGF-C antibody and method of use thereof
CN103068849B (en) 2009-12-23 2016-04-06 霍夫曼-拉罗奇有限公司 Anti-Bv8 antibody and uses thereof
US8362210B2 (en) 2010-01-19 2013-01-29 Xencor, Inc. Antibody variants with enhanced complement activity
AR080027A1 (en) 2010-01-28 2012-03-07 Glaxo Group Ltd PROTEINS OF UNION TO CD127
SG182783A1 (en) 2010-02-09 2012-09-27 Glaxo Group Ltd Treatment of a metabolic disorder
BR112012020102A2 (en) 2010-02-10 2016-11-29 Immunogen Inc cd20 antibodies and uses thereof.
US20110200595A1 (en) 2010-02-18 2011-08-18 Roche Glycart TREATMENT WITH A HUMANIZED IgG CLASS ANTI EGFR ANTIBODY AND AN ANTIBODY AGAINST INSULIN LIKE GROWTH FACTOR 1 RECEPTOR
AU2011218125A1 (en) 2010-02-18 2012-07-19 Genentech, Inc. Neuregulin antagonists and use thereof in treating cancer
RU2012140447A (en) 2010-02-23 2014-03-27 Дженентек, Инк. ANTIANGIOGENIC THERAPY FOR TREATMENT OF OVARIAN CANCER
UA108227C2 (en) 2010-03-03 2015-04-10 ANTIGENCY PROTEIN
BR112012022044A2 (en) 2010-03-24 2020-08-25 Genentech Inc ''antibody, immunoconjugate, pharmaceutical formulation, antibody use, treatment method, isolated bispecific antibody and host cell''.
US9441032B2 (en) 2010-04-07 2016-09-13 Agency For Science, Technology And Research Binding molecules against Chikungunya virus and uses thereof
EP2374816B1 (en) 2010-04-07 2016-09-28 Agency For Science, Technology And Research Binding molecules against Chikungunya virus and uses thereof
WO2011130332A1 (en) 2010-04-12 2011-10-20 Academia Sinica Glycan arrays for high throughput screening of viruses
CA2835489C (en) 2010-05-10 2018-03-06 Chi-Huey Wong Zanamivir phosphonate congeners with anti-influenza activity and determining oseltamivir susceptibility of influenza viruses
WO2011146568A1 (en) 2010-05-19 2011-11-24 Genentech, Inc. Predicting response to a her inhibitor
WO2011147834A1 (en) 2010-05-26 2011-12-01 Roche Glycart Ag Antibodies against cd19 and uses thereof
WO2011153243A2 (en) 2010-06-02 2011-12-08 Genentech, Inc. Anti-angiogenesis therapy for treating gastric cancer
JP6048973B2 (en) 2010-06-03 2016-12-27 ジェネンテック, インコーポレイテッド ImmunoPET imaging of antibodies and immunoconjugates and methods for their use
UY33421A (en) 2010-06-03 2011-12-30 Glaxo Wellcome House HUMANIZED ANTIGEN UNION PROTEINS
JP5940061B2 (en) 2010-06-18 2016-06-29 ジェネンテック, インコーポレイテッド Anti-AXL antibodies and methods of use
WO2011161119A1 (en) 2010-06-22 2011-12-29 F. Hoffmann-La Roche Ag Antibodies against insulin-like growth factor i receptor and uses thereof
WO2011161189A1 (en) 2010-06-24 2011-12-29 F. Hoffmann-La Roche Ag Anti-hepsin antibodies and methods of use
SG186983A1 (en) 2010-07-09 2013-02-28 Genentech Inc Anti-neuropilin antibodies and methods of use
EP2409712A1 (en) 2010-07-19 2012-01-25 International-Drug-Development-Biotech Anti-CD19 antibody having ADCC and CDC functions and improved glycosylation profile
EP2409989A1 (en) 2010-07-19 2012-01-25 International-Drug-Development-Biotech Method to improve glycosylation profile for antibody
EP2409993A1 (en) 2010-07-19 2012-01-25 International-Drug-Development-Biotech Anti-CD19 antibody having ADCC function with improved glycosylation profile
WO2012010582A1 (en) 2010-07-21 2012-01-26 Roche Glycart Ag Anti-cxcr5 antibodies and methods of use
JP2013538191A (en) 2010-07-23 2013-10-10 トラスティーズ オブ ボストン ユニバーシティ Anti-DEsupR inhibitors as therapeutics for inhibition of pathological angiogenesis and tumor cell invasiveness and for molecular imaging and targeted delivery
JP2013541501A (en) 2010-08-03 2013-11-14 エフ・ホフマン−ラ・ロシュ・アクチェンゲゼルシャフト Biomarkers for chronic lymphocytic leukemia (CLL)
KR20130049196A (en) 2010-08-05 2013-05-13 에프. 호프만-라 로슈 아게 Anti-mhc antibody anti-viral cytokine fusion protein
JP5793568B2 (en) 2010-08-13 2015-10-14 ロシュ グリクアート アーゲー Anti-FAP antibodies and methods of use
TW201209063A (en) 2010-08-13 2012-03-01 Roche Glycart Ag Anti-tenascin-C A2 antibodies and methods of use
ES2553262T3 (en) 2010-08-25 2015-12-07 F. Hoffmann-La Roche Ag Antibodies against IL-18R1 and their uses
EP3264089A1 (en) 2010-08-31 2018-01-03 Genentech, Inc. Biomarkers and methods of treatment
EP2625197B1 (en) 2010-10-05 2016-06-29 Genentech, Inc. Mutant smoothened and methods of using the same
KR20190120439A (en) 2010-11-08 2019-10-23 제넨테크, 인크. Subcutaneously administered anti-il-6 receptor antibody
AU2011326564A1 (en) 2010-11-10 2013-05-09 Genentech, Inc. Methods and compositions for neural disease immunotherapy
BR112013012627A2 (en) 2010-11-23 2016-10-04 Glaxo Group Ltd antigen binding protein, polynucleotide, pharmaceutical composition, and use of said composition
WO2012069557A1 (en) 2010-11-24 2012-05-31 Glaxo Group Limited Multispecific antigen binding proteins targeting hgf
EP3208282A1 (en) 2010-11-30 2017-08-23 F. Hoffmann-La Roche AG Low affinity anti transferrin receptor and their use to transfer therapeutic scfv across the blood brain barrier
NZ609493A (en) 2010-12-16 2015-11-27 Genentech Inc Diagnosis and treatments relating to th2 inhibition
SG191294A1 (en) 2010-12-20 2013-07-31 Genentech Inc Anti-mesothelin antibodies and immunoconjugates
CA2820953A1 (en) 2010-12-22 2012-06-28 Genentech, Inc. Anti-pcsk9 antibodies and methods of use
WO2012092539A2 (en) 2010-12-31 2012-07-05 Takeda Pharmaceutical Company Limited Antibodies to dll4 and uses thereof
EP2482074A1 (en) * 2011-01-27 2012-08-01 Medizinische Hochschule Hannover Methods and means for diagnosing vasculitis
PE20181077A1 (en) 2011-02-10 2018-07-05 Roche Glycart Ag INTERLEUQUIN-2-MUTANT POLYPEPTIDES
WO2012107416A2 (en) 2011-02-10 2012-08-16 Roche Glycart Ag Improved immunotherapy
WO2012116927A1 (en) 2011-02-28 2012-09-07 F. Hoffmann-La Roche Ag Monovalent antigen binding proteins
MX341921B (en) 2011-02-28 2016-09-07 Hoffmann La Roche Antigen binding proteins.
PE20141017A1 (en) 2011-03-02 2014-08-25 Roche Glycart Ag CEA ANTIBODIES
WO2012138975A1 (en) 2011-04-07 2012-10-11 Genentech, Inc. Anti-fgfr4 antibodies and methods of use
WO2012149197A2 (en) 2011-04-27 2012-11-01 Abbott Laboratories Methods for controlling the galactosylation profile of recombinantly-expressed proteins
EA201892619A1 (en) 2011-04-29 2019-04-30 Роше Гликарт Аг IMMUNOCONJUGATES CONTAINING INTERLEUKIN-2 MUTANT POLYPETIPS
WO2012146630A1 (en) 2011-04-29 2012-11-01 F. Hoffmann-La Roche Ag N-terminal acylated polypeptides, methods for their production and uses thereof
CA2833212C (en) 2011-05-12 2020-06-09 Genentech, Inc. Multiple reaction monitoring lc-ms/ms method to detect therapeutic antibodies in animal samples using framework signature peptides
PL2710035T3 (en) 2011-05-16 2017-09-29 F.Hoffmann-La Roche Ag Fgfr1 agonists and methods of use
RS64791B1 (en) 2011-05-27 2023-11-30 Glaxo Group Ltd Bcma (cd269/tnfrsf17) - binding proteins
CN103596984B (en) 2011-06-15 2016-04-13 霍夫曼-拉罗奇有限公司 The antibody of Anti-human EPO receptor and using method
MX354663B (en) 2011-06-22 2018-03-14 Hoffmann La Roche Removal of target cells by circulating virus-specific cytotoxic t-cells using mhc class i comprising complexes.
AR086823A1 (en) 2011-06-30 2014-01-22 Genentech Inc ANTI-C-MET ANTIBODY FORMULATIONS, METHODS
US20130022551A1 (en) 2011-07-22 2013-01-24 Trustees Of Boston University DEspR ANTAGONISTS AND AGONISTS AS THERAPEUTICS
EP2736925A2 (en) 2011-07-27 2014-06-04 Glaxo Group Limited Anti-vegf single variable domains fused to fc domains
JP2014526891A (en) 2011-08-17 2014-10-09 ジェネンテック, インコーポレイテッド Neuregulin antibodies and their use
CN103890008A (en) 2011-08-17 2014-06-25 霍夫曼-拉罗奇有限公司 Inhibition of angiogenesis in refractory tumors
DK2748202T3 (en) 2011-08-23 2018-09-17 Roche Glycart Ag BISPECIFIC ANTI-BINDING MOLECULES
CN103890006A (en) 2011-08-23 2014-06-25 罗切格利卡特公司 Anti-mcsp antibodies
WO2013040433A1 (en) 2011-09-15 2013-03-21 Genentech, Inc. Methods of promoting differentiation
CA2846630A1 (en) 2011-09-19 2013-03-28 Genentech, Inc. Combination treatments comprising c-met antagonists and b-raf antagonists
BR112014008212A2 (en) 2011-10-05 2017-06-13 Genentech Inc method for treating a liver condition, hepatic differentiation induction method, and abnormal bile duct proliferation reduction method
PL2766393T3 (en) 2011-10-14 2018-11-30 F.Hoffmann-La Roche Ag ANTI-HtrA1 ANTIBODIES AND METHODS OF USE
EP2768845B1 (en) 2011-10-19 2017-01-18 Roche Glycart AG Separation method for fucosylated antibodies
WO2013059531A1 (en) 2011-10-20 2013-04-25 Genentech, Inc. Anti-gcgr antibodies and uses thereof
EP2776051A4 (en) 2011-10-28 2015-06-17 Hoffmann La Roche Therapeutic combinations and methods of treating melanoma
BR112014012005A2 (en) 2011-11-21 2017-12-19 Genentech Inc compositions, methods, pharmaceutical formulation and article
EP2788024A1 (en) 2011-12-06 2014-10-15 F.Hoffmann-La Roche Ag Antibody formulation
SG11201402887SA (en) 2011-12-08 2014-07-30 Biotest Ag Uses of immunoconjugates targeting cd138
MX2014007262A (en) 2011-12-22 2014-08-01 Hoffmann La Roche Full length antibody display system for eukaryotic cells and its use.
WO2013092743A2 (en) 2011-12-22 2013-06-27 F. Hoffmann-La Roche Ag Expression vector element combinations, novel production cell generation methods and their use for the recombinant production of polypeptides
US9963511B2 (en) 2011-12-22 2018-05-08 Hoffmann-La Roche Inc. Expression vector organization, novel production cell generation methods and their use for the recombinant production of polypeptides
WO2013096791A1 (en) 2011-12-23 2013-06-27 Genentech, Inc. Process for making high concentration protein formulations
WO2013101771A2 (en) 2011-12-30 2013-07-04 Genentech, Inc. Compositions and method for treating autoimmune diseases
EP2802603A4 (en) 2012-01-09 2015-11-04 Scripps Research Inst Ultralong complementarity determining regions and uses thereof
EP3663314A1 (en) 2012-01-09 2020-06-10 The Scripps Research Institute Humanized antibodies with ultralong cdr3s
CN104168920A (en) 2012-01-18 2014-11-26 霍夫曼-拉罗奇有限公司 Methods of using FGF19 modulators
EA028202B1 (en) 2012-01-18 2017-10-31 Дженентек, Инк. Anti-lrp5 antibodies and methods of use thereof
WO2013113641A1 (en) 2012-01-31 2013-08-08 Roche Glycart Ag Use of nkp46 as a predictive biomarker for cancer treatment with adcc- enhanced antibodies
CA2862316A1 (en) 2012-02-11 2013-08-15 Genentech, Inc. R-spondin translocations and methods using the same
JP6152120B2 (en) 2012-02-15 2017-06-21 エフ.ホフマン−ラ ロシュ アーゲーF. Hoffmann−La Roche Aktiengesellschaft Affinity chromatography based on Fc receptors
BR112014018374A8 (en) 2012-03-02 2017-07-11 Roche Glycart Ag METHOD FOR PREDICTING THE RESPONSE OF A PATIENT WITH CANCER, KIT, ANTIBODY, METHOD FOR THE TREATMENT OF CANCER AND PHARMACEUTICAL COMPOSITION
US20130259867A1 (en) 2012-03-27 2013-10-03 Genentech, Inc. Diagnosis and treatments relating to her3 inhibitors
AR090549A1 (en) 2012-03-30 2014-11-19 Genentech Inc ANTI-LGR5 AND IMMUNOCATE PLAYERS
US10130714B2 (en) 2012-04-14 2018-11-20 Academia Sinica Enhanced anti-influenza agents conjugated with anti-inflammatory activity
WO2013158279A1 (en) 2012-04-20 2013-10-24 Abbvie Inc. Protein purification methods to reduce acidic species
WO2013158273A1 (en) 2012-04-20 2013-10-24 Abbvie Inc. Methods to modulate c-terminal lysine variant distribution
US9067990B2 (en) 2013-03-14 2015-06-30 Abbvie, Inc. Protein purification using displacement chromatography
US9505833B2 (en) 2012-04-20 2016-11-29 Abbvie Inc. Human antibodies that bind human TNF-alpha and methods of preparing the same
EP2844300B1 (en) 2012-05-01 2018-10-17 Genentech, Inc. Anti-pmel17 antibodies and immunoconjugates
WO2013170191A1 (en) 2012-05-11 2013-11-14 Genentech, Inc. Methods of using antagonists of nad biosynthesis from nicotinamide
SI2849723T1 (en) 2012-05-18 2018-09-28 Genentech, Inc. High-concentration monoclonal antibody formulations
TW201400132A (en) 2012-05-21 2014-01-01 Genentech Inc Methods for improving safety of blood-brain barrier transport
RU2625771C2 (en) 2012-05-23 2017-07-18 Дженентек, Инк. Therapeutics selection method
EP2852610B1 (en) 2012-05-23 2018-07-11 Glykos Finland Oy Production of fucosylated glycoproteins
US9249182B2 (en) 2012-05-24 2016-02-02 Abbvie, Inc. Purification of antibodies using hydrophobic interaction chromatography
CN103463633B (en) * 2012-06-07 2016-03-30 复旦大学 Chimeric hepatitis B virus core antigen therapeutic vaccine of a kind of targeting and uses thereof
KR20150023711A (en) 2012-06-15 2015-03-05 제넨테크, 인크. Anti-pcsk9 antibodies, formulations, dosing, and methods of use
WO2014004549A2 (en) 2012-06-27 2014-01-03 Amgen Inc. Anti-mesothelin binding proteins
CN104394886B (en) 2012-07-04 2017-05-24 弗·哈夫曼-拉罗切有限公司 Anti-theophylline antibodies and methods of use
BR112014029403A2 (en) 2012-07-04 2018-10-09 F. Hoffmann-La Roche Ag conjugates, antibody and pharmaceutical formulation
RU2630296C2 (en) 2012-07-04 2017-09-06 Ф. Хоффманн-Ля Рош Аг Antibodies to biotin and application methods
CA2877009C (en) 2012-07-05 2023-10-03 Devin TESAR Expression and secretion system
KR20150030753A (en) 2012-07-09 2015-03-20 제넨테크, 인크. Immunoconjugates comprising anti-cd79b antibodies
TW201406785A (en) 2012-07-09 2014-02-16 Genentech Inc Anti-CD22 antibodies and immunoconjugates
MX2015000315A (en) 2012-07-09 2015-07-06 Genentech Inc Immunoconjugates comprising anti-cd22 antibodies.
MX2015000314A (en) 2012-07-09 2015-04-10 Genentech Inc Immunoconjugates comprising anti - cd79b antibodies.
MY183712A (en) 2012-07-13 2021-03-09 Roche Glycart Ag Bispecific anti-vegf/anti-ang-2 antibodies and their use in the treatment of ocular vascular diseases
ES2673847T3 (en) 2012-07-25 2018-06-26 Celldex Therapeutics, Inc. Anti KIT antibodies and uses thereof
MX365382B (en) 2012-08-07 2019-05-31 Roche Glycart Ag Composition comprising two antibodies engineered to have reduced and increased effector function.
CA2880701A1 (en) 2012-08-18 2014-02-27 Academia Sinica Cell-permeable probes for identification and imaging of sialidases
AU2013305827A1 (en) 2012-08-21 2015-03-05 Academia Sinica Benzocyclooctyne compounds and uses thereof
WO2014029752A1 (en) 2012-08-22 2014-02-27 Glaxo Group Limited Anti lrp6 antibodies
KR101885044B1 (en) 2012-08-29 2018-08-02 에프. 호프만-라 로슈 아게 Blood brain barrier shuttle
US9512214B2 (en) 2012-09-02 2016-12-06 Abbvie, Inc. Methods to control protein heterogeneity
US9206390B2 (en) 2012-09-02 2015-12-08 Abbvie, Inc. Methods to control protein heterogeneity
EP3919079A1 (en) 2012-09-07 2021-12-08 Genentech, Inc. Combination therapy of a type ii anti-cd20 antibody with a selective bcl-2 inhibitor
CA2941485C (en) 2012-10-12 2018-06-12 Philip Wilson Howard Pyrrolobenzodiazepines and conjugates thereof
US10100102B2 (en) 2012-10-29 2018-10-16 The University Of North Carolina At Chapel Hill Compositions and methods for inhibiting pathogen infection
AU2013337277B2 (en) 2012-11-05 2018-03-08 Foundation Medicine, Inc. Novel NTRK1 fusion molecules and uses thereof
WO2014072306A1 (en) 2012-11-08 2014-05-15 F. Hoffmann-La Roche Ag Her3 antigen binding proteins binding to the beta-hairpin of her3
EP2919813B1 (en) 2012-11-13 2018-10-24 F.Hoffmann-La Roche Ag Anti-hemagglutinin antibodies and methods of use
SG11201504414UA (en) 2012-12-21 2015-07-30 Hoffmann La Roche Disulfide-linked multivalent mhc class i comprising multi-function proteins
CA3150658A1 (en) 2013-01-18 2014-07-24 Foundation Medicine, Inc. Methods of treating cholangiocarcinoma
WO2014114595A1 (en) 2013-01-23 2014-07-31 Roche Glycart Ag Predictive biomarker for cancer treatment with adcc-enhanced antibodies
WO2014116749A1 (en) 2013-01-23 2014-07-31 Genentech, Inc. Anti-hcv antibodies and methods of using thereof
WO2014140927A2 (en) 2013-02-13 2014-09-18 Laboratoire Francais Du Fractionnement Et Des Biotechnologies Proteins with modified glycosylation and methods of production thereof
ES2755181T3 (en) 2013-02-13 2020-04-21 Lab Francais Du Fractionnement Highly galactosylated anti-TNF-alpha antibodies and uses thereof
CA2900097A1 (en) 2013-02-22 2014-08-28 F. Hoffmann-La Roche Ag Methods of treating cancer and preventing drug resistance
MX2015010789A (en) 2013-02-26 2015-11-26 Roche Glycart Ag Anti-mcsp antibodies.
CA2902263A1 (en) 2013-03-06 2014-09-12 Genentech, Inc. Methods of treating and preventing cancer drug resistance
BR112015023333A8 (en) 2013-03-13 2018-04-17 Medimmune Ltd pyrrolbenzodiazepines and conjugates thereof
US20140271634A1 (en) 2013-03-14 2014-09-18 The Regents Of The University Of California Combinations of a mek inhibitor compound with an her3/egfr inhibitor compound and methods of use
US9017687B1 (en) 2013-10-18 2015-04-28 Abbvie, Inc. Low acidic species compositions and methods for producing and using the same using displacement chromatography
US9499614B2 (en) 2013-03-14 2016-11-22 Abbvie Inc. Methods for modulating protein glycosylation profiles of recombinant protein therapeutics using monosaccharides and oligosaccharides
KR20150127199A (en) 2013-03-14 2015-11-16 제넨테크, 인크. Anti-b7-h4 antibodies and immunoconjugates
WO2014159579A1 (en) 2013-03-14 2014-10-02 Abbvie Inc. MUTATED ANTI-TNFα ANTIBODIES AND METHODS OF THEIR USE
EP2968565A2 (en) 2013-03-14 2016-01-20 Genentech, Inc. Methods of treating cancer and preventing cancer drug resistance
US9562099B2 (en) 2013-03-14 2017-02-07 Genentech, Inc. Anti-B7-H4 antibodies and immunoconjugates
BR112015023140A8 (en) 2013-03-15 2018-01-23 Genentech Inc fusion proteins, fusion protein manufacturing method, compositions, nucleic acid, vector, host cell, methods of producing a fusion protein, treating inflammatory bowel disease, inhibiting microbial infection, treating kidney injury , to accelerate or improve healing, to prevent or treat a cardiovascular condition, to treat metabolic syndrome, and to treat endotoxemia.
MX2015012326A (en) 2013-03-15 2016-03-08 Genentech Inc Anti-crth2 antibodies and their use.
WO2014151866A1 (en) 2013-03-15 2014-09-25 Genentech, Inc. Compositions and methods for diagnosis and treatment of hepatic cancers
CN105209919B (en) 2013-03-15 2019-03-05 豪夫迈·罗氏有限公司 The biomarker and method for treating PD-1 and PD-L1 related disorders
BR112015023262B8 (en) 2013-03-15 2024-02-06 Ac Immune Sa Isolated antibody, immunoconjugate, pharmaceutical formulation and uses of antibody
PE20151530A1 (en) 2013-03-15 2015-11-06 Glaxosmithkline Ip Dev Ltd ANTIGEN BINDING PROTEINS
CA2905123A1 (en) 2013-03-15 2014-09-18 Genentech, Inc. Methods of treating cancer and preventing cancer drug resistance
UA118028C2 (en) 2013-04-03 2018-11-12 Рош Глікарт Аг Bispecific antibodies specific for fap and dr5, antibodies specific for dr5 and methods of use
CA2904805A1 (en) 2013-04-29 2014-11-06 F. Hoffmann-La Roche Ag Fc-receptor binding modified asymmetric antibodies and methods of use
MX364861B (en) 2013-04-29 2019-05-09 Hoffmann La Roche Fcrn-binding abolished anti-igf-1r antibodies and their use in the treatment of vascular eye diseases.
SG11201508911PA (en) 2013-04-29 2015-11-27 Hoffmann La Roche Human fcrn-binding modified antibodies and methods of use
IL242088B2 (en) 2013-05-20 2023-12-01 Genentech Inc Anti-transferrin receptor antibodies and methods of use
WO2014210397A1 (en) 2013-06-26 2014-12-31 Academia Sinica Rm2 antigens and use thereof
US9981030B2 (en) 2013-06-27 2018-05-29 Academia Sinica Glycan conjugates and use thereof
EP3022224A2 (en) 2013-07-18 2016-05-25 Fabrus, Inc. Antibodies with ultralong complementarity determining regions
AU2014290361B2 (en) 2013-07-18 2019-04-18 Taurus Biosciences, Llc Humanized antibodies with ultralong complementarity determining regions
RS58719B1 (en) 2013-08-01 2019-06-28 Five Prime Therapeutics Inc Afucosylated anti-fgfr2iiib antibodies
CR20160132A (en) 2013-08-12 2016-08-25 Genentech Inc COMPOSITIONS AND METHOD TO TREAT CONDITIONS ASSOCIATED WITH THE COMPLEMENT
WO2015035337A1 (en) 2013-09-06 2015-03-12 Academia Sinica HUMAN iNKT CELL ACTIVATION USING GLYCOLIPIDS WITH ALTERED GLYCOSYL GROUPS
WO2015042108A1 (en) 2013-09-17 2015-03-26 Genentech, Inc. Methods of using anti-lgr5 antibodies
WO2015051293A2 (en) 2013-10-04 2015-04-09 Abbvie, Inc. Use of metal ions for modulation of protein glycosylation profiles of recombinant proteins
CA2922912A1 (en) 2013-10-11 2015-04-16 F. Hoffmann-La Roche Ag Multispecific domain exchanged common variable light chain antibodies
RU2016117978A (en) 2013-10-11 2017-11-17 Дженентек, Инк. NSP4 INHIBITORS AND WAYS OF THEIR APPLICATION
EP3620470B1 (en) 2013-10-11 2023-07-26 The United States of America, as represented by The Secretary, Department of Health and Human Services Tem8 antibodies and their use
US9181337B2 (en) 2013-10-18 2015-11-10 Abbvie, Inc. Modulated lysine variant species compositions and methods for producing and using the same
US9085618B2 (en) 2013-10-18 2015-07-21 Abbvie, Inc. Low acidic species compositions and methods for producing and using the same
CN105744954B (en) 2013-10-18 2021-03-05 豪夫迈·罗氏有限公司 anti-RSPO 2 and/or anti-RSPO 3 antibodies and uses thereof
US8946395B1 (en) 2013-10-18 2015-02-03 Abbvie Inc. Purification of proteins using hydrophobic interaction chromatography
SG11201603127WA (en) 2013-10-23 2016-05-30 Genentech Inc Methods of diagnosing and treating eosinophilic disorders
WO2015073884A2 (en) 2013-11-15 2015-05-21 Abbvie, Inc. Glycoengineered binding protein compositions
EP3071597B1 (en) 2013-11-21 2020-07-29 F.Hoffmann-La Roche Ag Anti-alpha-synuclein antibodies and methods of use
KR20230107382A (en) 2013-12-09 2023-07-14 알라코스 인크. Anti-siglec-8 antibodies and methods of use thereof
AR098743A1 (en) 2013-12-13 2016-06-08 Genentech Inc ANTI-CD33 ANTIBODIES AND IMMUNOCATION
WO2015089375A1 (en) 2013-12-13 2015-06-18 The General Hospital Corporation Soluble high molecular weight (hmw) tau species and applications thereof
CA2933883A1 (en) 2013-12-17 2015-06-25 Genentech, Inc. Methods of treating her2-positive cancers using pd-1 axis binding antagonists and anti-her2 antibodies
SG11201604979WA (en) 2013-12-17 2016-07-28 Genentech Inc Combination therapy comprising ox40 binding agonists and pd-1 axis binding antagonists
IL302303A (en) 2013-12-17 2023-06-01 Genentech Inc Anti-cd3 antibodies and methods of use
SG11201604875PA (en) 2013-12-17 2016-07-28 Genentech Inc Methods of treating cancer using pd-1 axis binding antagonists and an anti-cd20 antibody
TWI670283B (en) 2013-12-23 2019-09-01 美商建南德克公司 Antibodies and methods of use
ES2742682T3 (en) 2013-12-24 2020-02-17 Argenx Bvba FCRN antagonists and methods of use
CA2930154A1 (en) 2014-01-03 2015-07-09 F. Hoffmann-La Roche Ag Covalently linked helicar-anti-helicar antibody conjugates and uses thereof
CN105873616B (en) 2014-01-03 2020-06-05 豪夫迈·罗氏有限公司 Covalently linked polypeptide toxin-antibody conjugates
WO2015103549A1 (en) 2014-01-03 2015-07-09 The United States Of America, As Represented By The Secretary Department Of Health And Human Services Neutralizing antibodies to hiv-1 env and their use
CN111228509A (en) 2014-01-03 2020-06-05 豪夫迈·罗氏有限公司 Bispecific anti-hapten/anti-blood brain barrier receptor antibodies, complexes thereof and their use as blood brain barrier shuttles
MX2016008190A (en) 2014-01-06 2016-10-21 Hoffmann La Roche Monovalent blood brain barrier shuttle modules.
CA2931986A1 (en) 2014-01-15 2015-07-23 F. Hoffmann-La Roche Ag Fc-region variants with modified fcrn- and maintained protein a-binding properties
CA2937123A1 (en) 2014-01-16 2015-07-23 Academia Sinica Compositions and methods for treatment and detection of cancers
US10150818B2 (en) 2014-01-16 2018-12-11 Academia Sinica Compositions and methods for treatment and detection of cancers
EP3096797A1 (en) 2014-01-24 2016-11-30 F. Hoffmann-La Roche AG Methods of using anti-steap1 antibodies and immunoconjugates
US20170044232A1 (en) 2014-02-04 2017-02-16 Genentech, Inc. Mutant smoothened and methods of using the same
AU2015213741B2 (en) 2014-02-08 2020-10-08 Genentech, Inc. Methods of treating Alzheimer's Disease
MX2016010173A (en) 2014-02-08 2016-10-13 Genentech Inc Methods of treating alzheimer's disease.
JP6571115B2 (en) 2014-02-12 2019-09-04 ジェネンテック, インコーポレイテッド Anti-JAGGED1 antibody and method of use
JP2017507939A (en) 2014-02-21 2017-03-23 ジェネンテック, インコーポレイテッド Anti-IL-13 / IL-17 bispecific antibody and use thereof
US10183996B2 (en) 2014-02-28 2019-01-22 Allakos Inc. Methods and compositions for treating Siglec-8 associated diseases
US10435694B2 (en) 2014-03-14 2019-10-08 Genentech, Inc. Methods and compositions for secretion of heterologous polypeptides
WO2015140591A1 (en) 2014-03-21 2015-09-24 Nordlandssykehuset Hf Anti-cd14 antibodies and uses thereof
BR112016021383A2 (en) 2014-03-24 2017-10-03 Genentech Inc METHOD TO IDENTIFY A PATIENT WITH CANCER WHO IS LIKE OR LESS LIKELY TO RESPOND TO TREATMENT WITH A CMET ANTAGONIST, METHOD TO IDENTIFY A PATIENT WITH PREVIOUSLY TREATED CANCER, METHOD TO DETERMINE THE EXPRESSION OF THE HGF BIOMARKER, ANTI-C-MET ANTAGONIST AND ITS USE, DIAGNOSTIC KIT AND ITS PREPARATION METHOD
WO2015148915A1 (en) 2014-03-27 2015-10-01 Academia Sinica Reactive labelling compounds and uses thereof
CA2943834A1 (en) 2014-03-31 2015-10-08 Genentech, Inc. Combination therapy comprising anti-angiogenesis agents and ox40 binding agonists
KR20160145624A (en) 2014-03-31 2016-12-20 제넨테크, 인크. Anti-ox40 antibodies and methods of use
WO2015164615A1 (en) 2014-04-24 2015-10-29 University Of Oslo Anti-gluten antibodies and uses thereof
CN106414499A (en) 2014-05-22 2017-02-15 基因泰克公司 Anti-GPC3 antibodies and immunoconjugates
BR112016025040A2 (en) 2014-05-23 2018-02-20 Genentech Inc methods to determine mit biomarker expression, to treat cancer, to identify an individual with cancer, to predict whether an individual with cancer is more or less likely to respond effectively to treatment, to inhibit cell proliferation, and to treat nccrcc in an individual
CN106573971A (en) 2014-05-27 2017-04-19 中央研究院 Anti-CD20 glycoantibodies and uses thereof
TWI717319B (en) 2014-05-27 2021-02-01 中央研究院 Fucosidase from bacteroides and methods using the same
CN106661099A (en) 2014-05-27 2017-05-10 中央研究院 Anti-her2 glycoantibodies and uses thereof
US10118969B2 (en) 2014-05-27 2018-11-06 Academia Sinica Compositions and methods relating to universal glycoforms for enhanced antibody efficacy
AU2015267044A1 (en) 2014-05-28 2016-12-15 Academia Sinica Anti-TNF-alpha glycoantibodies and uses thereof
MX2016016233A (en) 2014-06-11 2017-03-31 Genentech Inc Anti-lgr5 antibodies and uses thereof.
WO2015191986A1 (en) 2014-06-13 2015-12-17 Genentech, Inc. Methods of treating and preventing cancer drug resistance
CN106687476B (en) 2014-06-26 2020-11-13 豪夫迈·罗氏有限公司 anti-BRDU antibodies and methods of use
KR20170029490A (en) 2014-07-11 2017-03-15 제넨테크, 인크. Notch pathway inhibition
ES2916923T3 (en) 2014-07-11 2022-07-06 Ventana Med Syst Inc Anti-PD-L1 antibodies and diagnostic uses thereof
EP3172333B1 (en) 2014-07-21 2020-05-13 Glykos Finland Oy Production of glycoproteins with mammalian-like n-glycans in filamentous fungi
JO3664B1 (en) 2014-08-19 2020-08-27 Merck Sharp & Dohme Anti-tigit antibodies
TWI805109B (en) 2014-08-28 2023-06-11 美商奇諾治療有限公司 Antibodies and chimeric antigen receptors specific for cd19
MX2017002605A (en) 2014-08-28 2017-05-19 Bioatla Llc Conditionally active chimeric antigen receptors for modified t-cells.
US9879042B2 (en) 2014-09-08 2018-01-30 Academia Sinica Human iNKT cell activation using glycolipids
US10188746B2 (en) 2014-09-10 2019-01-29 Medimmune Limited Pyrrolobenzodiazepines and conjugates thereof
JP6943760B2 (en) 2014-09-12 2021-10-06 ジェネンテック, インコーポレイテッド Anti-B7-H4 antibody and immune complex
WO2016040868A1 (en) 2014-09-12 2016-03-17 Genentech, Inc. Anti-cll-1 antibodies and immunoconjugates
US9518118B2 (en) 2014-09-12 2016-12-13 Genentech, Inc. Anti-HER2 antibodies and immunoconjugates
CA2957148A1 (en) 2014-09-17 2016-03-24 Genentech, Inc. Immunoconjugates comprising anti-her2 antibodies and pyrrolobenzodiazepines
HUE049175T2 (en) 2014-09-23 2020-09-28 Hoffmann La Roche Method of using anti-cd79b immunoconjugates
MA40764A (en) 2014-09-26 2017-08-01 Chugai Pharmaceutical Co Ltd THERAPEUTIC AGENT INDUCING CYTOTOXICITY
US9732148B2 (en) 2014-10-16 2017-08-15 Genentech, Inc. Anti-α-synuclein antibodies and methods of use
WO2016059602A2 (en) 2014-10-16 2016-04-21 Glaxo Group Limited Methods of treating cancer and related compositions
WO2016070001A1 (en) 2014-10-31 2016-05-06 Jounce Therapeutics, Inc. Methods of treating conditions with antibodies that bind b7-h4
AU2015343337A1 (en) 2014-11-03 2017-06-15 Genentech, Inc. Assays for detecting T cell immune subsets and methods of use thereof
SG11201703521UA (en) 2014-11-03 2017-05-30 Genentech Inc Methods and biomarkers for predicting efficacy and evaluation of an ox40 agonist treatment
JP6877350B2 (en) 2014-11-05 2021-05-26 ジェネンテック, インコーポレイテッド Anti-FGFR2 / 3 antibody and how to use it
BR112017008628A2 (en) 2014-11-06 2018-01-30 Genentech Inc combination therapy comprising ox40 binding agonists and tigit inhibitors
SI3215528T1 (en) 2014-11-06 2019-11-29 Hoffmann La Roche Fc-region variants with modified fcrn-binding and methods of use
RU2713131C1 (en) 2014-11-06 2020-02-03 Ф. Хоффманн-Ля Рош Аг EMBODIMENTS OF Fc-REGION WITH MODIFIED BINDING PROPERTIES OF FcRn AND PROTEIN A
EP3217787B1 (en) 2014-11-10 2019-04-17 F.Hoffmann-La Roche Ag Animal model for nephropathy and agents for treating the same
EP3783023A1 (en) 2014-11-10 2021-02-24 H. Hoffnabb-La Roche Ag Anti-interleukin-33 antibodies and uses thereof
EP3875481A1 (en) 2014-11-14 2021-09-08 The U.S.A. as represented by the Secretary, Department of Health and Human Services Neutralizing antibodies to ebola virus glycoprotein and their use
IL282922B (en) 2014-11-14 2022-08-01 Hoffmann La Roche Antigen binding molecules comprising a tnf family ligand trimer
RU2017121096A (en) 2014-11-17 2018-12-19 Дженентек, Инк. COMBINED THERAPY, INCLUDING APPLICATION OF THE OX40-BINDING AGONISTS AND ANALOGUALISTS OF THE AXIS PD-1
RU2730668C2 (en) 2014-11-19 2020-08-24 Аксон Ньюросайенс Се Humanised tau antibodies in alzheimer disease
EP3221361B1 (en) 2014-11-19 2021-04-21 Genentech, Inc. Anti-transferrin receptor / anti-bace1 multispecific antibodies and methods of use
WO2016081639A1 (en) 2014-11-19 2016-05-26 Genentech, Inc. Antibodies against bace1 and use thereof for neural disease immunotherapy
WO2016081643A1 (en) 2014-11-19 2016-05-26 Genentech, Inc. Anti-transferrin receptor antibodies and methods of use
SI3221355T1 (en) 2014-11-20 2021-01-29 F. Hoffmann-La Roche Ag Combination therapy of t cell activating bispecific antigen binding molecules cd3 and folate receptor 1 (folr1) and pd-1 axis binding antagonists
ES2764111T3 (en) 2014-12-03 2020-06-02 Hoffmann La Roche Multispecific antibodies
US9975949B2 (en) 2014-12-05 2018-05-22 Genentech, Inc. Anti-CD79b antibodies and methods of use
BR112017011234A2 (en) 2014-12-10 2018-03-27 Genentech Inc antibodies to the blood-brain barrier receptor and methods of use
CN107207607B (en) 2014-12-19 2021-05-04 中外制药株式会社 anti-C5 antibodies and methods of use
US20160200815A1 (en) 2015-01-05 2016-07-14 Jounce Therapeutics, Inc. Antibodies that inhibit tim-3:lilrb2 interactions and uses thereof
US10495645B2 (en) 2015-01-16 2019-12-03 Academia Sinica Cancer markers and methods of use thereof
CA2973964A1 (en) 2015-01-16 2016-07-21 Juno Therapeutics, Inc. Antibodies and chimeric antigen receptors specific for ror1
US9975965B2 (en) 2015-01-16 2018-05-22 Academia Sinica Compositions and methods for treatment and detection of cancers
EP3247723A1 (en) 2015-01-22 2017-11-29 Chugai Seiyaku Kabushiki Kaisha A combination of two or more anti-c5 antibodies and methods of use
EP3789766A1 (en) 2015-01-24 2021-03-10 Academia Sinica Novel glycan conjugates and methods of use thereof
WO2016123329A2 (en) 2015-01-28 2016-08-04 Genentech, Inc. Gene expression markers and treatment of multiple sclerosis
US10330683B2 (en) 2015-02-04 2019-06-25 Genentech, Inc. Mutant smoothened and methods of using the same
CN114773470A (en) 2015-02-05 2022-07-22 中外制药株式会社 Antibodies comprising an ion concentration-dependent antigen-binding domain, FC region variants, IL-8-binding antibodies and uses thereof
US10301377B2 (en) 2015-02-24 2019-05-28 The United States Of America, As Represented By The Secretary, Department Of Health And Human Services Middle east respiratory syndrome coronavirus immunogens, antibodies, and their use
EP3268391B1 (en) 2015-03-09 2021-08-11 argenx BVBA Methods of reducing serum levels of fc-containing agents using fcrn antagonsits
CN107430117A (en) 2015-03-16 2017-12-01 豪夫迈·罗氏有限公司 Detection and quantitative IL 13 method and the purposes in diagnosing and treating Th2 relevant diseases
WO2016146833A1 (en) 2015-03-19 2016-09-22 F. Hoffmann-La Roche Ag Biomarkers for nad(+)-diphthamide adp ribosyltransferase resistance
WO2016154003A1 (en) 2015-03-20 2016-09-29 The United States Of America, As Represented By The Secretary, Department Of Health & Human Services Neutralizing antibodies to gp120 and their use
PT3273992T (en) 2015-03-23 2020-08-21 Jounce Therapeutics Inc Antibodies to icos
CN107743495B (en) 2015-03-23 2021-05-14 拜耳制药股份公司 anti-CEACAM 6 antibodies and uses thereof
JP6903587B2 (en) 2015-04-03 2021-07-14 ユーリカ セラピューティックス, インコーポレイテッド Constructs targeting AFP peptide / MHC complexes and their use
WO2016172551A2 (en) 2015-04-24 2016-10-27 Genentech, Inc. Methods of identifying bacteria comprising binding polypeptides
WO2016179003A1 (en) 2015-05-01 2016-11-10 Genentech, Inc. Masked anti-cd3 antibodies and methods of use
WO2016179194A1 (en) 2015-05-04 2016-11-10 Jounce Therapeutics, Inc. Lilra3 and method of using the same
TWI820377B (en) 2015-05-07 2023-11-01 美商艾吉納斯公司 Anti-ox40 antibodies and methods of use thereof
EP3294771A1 (en) 2015-05-11 2018-03-21 H. Hoffnabb-La Roche Ag Compositions and methods of treating lupus nephritis
PT3294770T (en) 2015-05-12 2020-12-04 Hoffmann La Roche Therapeutic and diagnostic methods for cancer
EP3302563A1 (en) 2015-05-29 2018-04-11 H. Hoffnabb-La Roche Ag Humanized anti-ebola virus glycoprotein antibodies and methods of use
KR20180013881A (en) 2015-05-29 2018-02-07 제넨테크, 인크. PD-L1 promoter methylation in cancer
IL255372B (en) 2015-05-29 2022-07-01 Genentech Inc Therapeutic and diagnostic methods for cancer
JP2018516933A (en) 2015-06-02 2018-06-28 ジェネンテック, インコーポレイテッド Compositions and methods for treating neurological disorders using anti-IL-34 antibodies
WO2016196975A1 (en) 2015-06-03 2016-12-08 The United States Of America, As Represented By The Secretary Department Of Health & Human Services Neutralizing antibodies to hiv-1 env and their use
AU2016272044B2 (en) 2015-06-04 2018-12-06 Ospedale San Raffaele Srl IGFBP3 and uses thereof
CN107921132B (en) 2015-06-04 2021-05-07 圣拉斐尔医院有限公司 Diabetes and IGFBP3/TMEM219 axis inhibitors
AR104875A1 (en) 2015-06-05 2017-08-23 Genentech Inc ANTI-TAU ANTIBODIES AND METHODS OF USE
KR20180011839A (en) 2015-06-08 2018-02-02 제넨테크, 인크. Treatment of Cancer Using Anti-OX40 Antibody
EP3303397A1 (en) 2015-06-08 2018-04-11 H. Hoffnabb-La Roche Ag Methods of treating cancer using anti-ox40 antibodies and pd-1 axis binding antagonists
CN108064246A (en) 2015-06-15 2018-05-22 基因泰克公司 Antibody and immune conjugate
WO2016204966A1 (en) 2015-06-16 2016-12-22 Genentech, Inc. Anti-cd3 antibodies and methods of use
KR20180023952A (en) 2015-06-16 2018-03-07 제넨테크, 인크. Humanized and Affinity Maturation Antibodies to FcRH5 and Methods of Use
TW201718647A (en) 2015-06-16 2017-06-01 建南德克公司 Anti-CLL-1 antibodies and methods of use
EP3310812A2 (en) 2015-06-17 2018-04-25 H. Hoffnabb-La Roche Ag Anti-her2 antibodies and methods of use
JP6846362B2 (en) 2015-06-17 2021-03-24 アラコス インコーポレイテッド Methods and Compositions for Treating Fibrous Diseases
MX2017016353A (en) 2015-06-17 2018-05-02 Genentech Inc Methods of treating locally advanced or metastatic breast cancers using pd-1 axis binding antagonists and taxanes.
RS62986B1 (en) 2015-06-24 2022-03-31 Hoffmann La Roche Anti-transferrin receptor antibodies with tailored affinity
AU2016285596A1 (en) 2015-06-29 2018-01-18 Genentech, Inc. Type II anti-CD20 antibody for use in organ transplantation
AU2016288461B2 (en) 2015-06-29 2021-10-07 Ventana Medical Systems, Inc. Materials and methods for performing histochemical assays for human pro-epiregulin and amphiregulin
RU2611685C2 (en) * 2015-07-20 2017-02-28 Илья Владимирович Духовлинов Humanized monoclonal antibody specific to syndecan-1
US11254744B2 (en) 2015-08-07 2022-02-22 Imaginab, Inc. Antigen binding constructs to target molecules
CN105384825B (en) 2015-08-11 2018-06-01 南京传奇生物科技有限公司 A kind of bispecific chimeric antigen receptor and its application based on single domain antibody
EP3932953A1 (en) 2015-08-28 2022-01-05 F. Hoffmann-La Roche AG Anti-hypusine antibodies and uses thereof
MX2018002610A (en) 2015-09-02 2018-09-27 Immutep Sas Anti-LAG-3 Antibodies.
AU2016328357B2 (en) 2015-09-22 2023-03-02 Ventana Medical Systems, Inc. Anti-OX40 antibodies and diagnostic uses thereof
JP6959912B2 (en) 2015-09-23 2021-11-05 ジェネンテック, インコーポレイテッド Optimized variant of anti-VEGF antibody
AU2016326738B2 (en) 2015-09-24 2023-08-31 Abvitro Llc HIV antibody compositions and methods of use
CN113912724A (en) 2015-09-25 2022-01-11 豪夫迈·罗氏有限公司 anti-TIGIT antibodies and methods of use
CA2997444A1 (en) 2015-09-29 2017-04-06 Amgen Inc. Asgr inhibitors for reducing cholesterol levels
AR106188A1 (en) 2015-10-01 2017-12-20 Hoffmann La Roche ANTI-CD19 HUMANIZED HUMAN ANTIBODIES AND METHODS OF USE
EP3356403A2 (en) 2015-10-02 2018-08-08 H. Hoffnabb-La Roche Ag Bispecific antibodies specific for a costimulatory tnf receptor
AR106189A1 (en) 2015-10-02 2017-12-20 Hoffmann La Roche BIESPECTIFIC ANTIBODIES AGAINST HUMAN A-b AND THE HUMAN TRANSFERRINE RECEIVER AND METHODS OF USE
MA43345A (en) 2015-10-02 2018-08-08 Hoffmann La Roche PYRROLOBENZODIAZEPINE ANTIBODY-DRUG CONJUGATES AND METHODS OF USE
HUE055407T2 (en) 2015-10-02 2021-11-29 Hoffmann La Roche Bispecific antibodies specific for pd1 and tim3
TWI819458B (en) 2015-10-02 2023-10-21 瑞士商赫孚孟拉羅股份公司 Bispecific anti-human cd20/human transferrin receptor antibodies and methods of use
EP3150636A1 (en) 2015-10-02 2017-04-05 F. Hoffmann-La Roche AG Tetravalent multispecific antibodies
IL293708A (en) 2015-10-06 2022-08-01 Genentech Inc Method for treating multiple sclerosis
JP7074665B2 (en) 2015-10-07 2022-05-24 エフ・ホフマン-ラ・ロシュ・アクチェンゲゼルシャフト Field of Invention of Tetravalent Bispecific Antibodies to Co-Stimulated TNF Receptors
US10392441B2 (en) 2015-10-07 2019-08-27 United States Of America, As Represented By The Secretary, Department Of Health And Human Services IL-7R-alpha specific antibodies for treating acute lymphoblastic leukemia
US10604577B2 (en) 2015-10-22 2020-03-31 Allakos Inc. Methods and compositions for treating systemic mastocytosis
AU2016342269A1 (en) 2015-10-22 2018-03-29 Jounce Therapeutics, Inc. Gene signatures for determining icos expression
JO3555B1 (en) 2015-10-29 2020-07-05 Merck Sharp & Dohme Antibody neutralizing human respiratory syncytial virus
EP3184547A1 (en) 2015-10-29 2017-06-28 F. Hoffmann-La Roche AG Anti-tpbg antibodies and methods of use
CN114891102A (en) 2015-10-29 2022-08-12 豪夫迈·罗氏有限公司 Anti-variant Fc region antibodies and methods of use
WO2017075212A1 (en) 2015-10-30 2017-05-04 Genentech, Inc. Anti-htra1 antibodies and methods of use thereof
JP2018534930A (en) 2015-10-30 2018-11-29 ジェネンテック, インコーポレイテッド Anti-factor D antibodies and conjugates
AU2016349392B2 (en) 2015-11-03 2023-07-13 The Trustees Of Columbia University In The City Of New York Neutralizing antibodies to HIV-1 gp41 and their use
WO2017079768A1 (en) 2015-11-08 2017-05-11 Genentech, Inc. Methods of screening for multispecific antibodies
CN116327924A (en) 2015-11-23 2023-06-27 戊瑞治疗有限公司 FGFR2 inhibitors alone or in combination with immunostimulants for cancer treatment
CN108290954B (en) 2015-12-09 2022-07-26 豪夫迈·罗氏有限公司 Use of type II anti-CD 20 antibodies to reduce anti-drug antibody formation
CN114478760A (en) 2015-12-18 2022-05-13 中外制药株式会社 anti-C5 antibodies and methods of use
EP3397287A1 (en) 2015-12-30 2018-11-07 Genentech, Inc. Formulations with reduced degradation of polysorbate
US10596257B2 (en) 2016-01-08 2020-03-24 Hoffmann-La Roche Inc. Methods of treating CEA-positive cancers using PD-1 axis binding antagonists and anti-CEA/anti-CD3 bispecific antibodies
WO2017127764A1 (en) 2016-01-20 2017-07-27 Genentech, Inc. High dose treatments for alzheimer's disease
WO2017132298A1 (en) * 2016-01-27 2017-08-03 Medimmune, Llc Methods for preparing antibodies with a defined glycosylation pattern
JP2019509721A (en) 2016-02-04 2019-04-11 キュリス,インコーポレイテッド Mutant smoothened and method of using the same
EP3419664A4 (en) * 2016-02-25 2019-08-28 B.G. Negev Technologies and Applications Ltd., at Ben-Gurion University Composition and method for treating amyotrophic lateral sclerosis
AU2017225854B2 (en) 2016-02-29 2020-11-19 Foundation Medicine, Inc. Therapeutic and diagnostic methods for cancer
EP3426693A4 (en) 2016-03-08 2019-11-13 Academia Sinica Methods for modular synthesis of n-glycans and arrays thereof
WO2017159699A1 (en) 2016-03-15 2017-09-21 Chugai Seiyaku Kabushiki Kaisha Methods of treating cancers using pd-1 axis binding antagonists and anti-gpc3 antibodies
CN108700598A (en) 2016-03-25 2018-10-23 豪夫迈·罗氏有限公司 The drug of the total antibody of multichannel and antibody conjugate quantifies measuring method
CA3019164A1 (en) 2016-03-29 2017-10-05 Janssen Biotech, Inc. Method of treating psoriasis with increased interval dosing of anti-il12/23 antibody
BR112018070534A2 (en) 2016-04-05 2019-02-12 Glaxosmithkline Intellectual Property Development Limited tgfbeta inhibition in immunotherapy
WO2017180864A1 (en) 2016-04-14 2017-10-19 Genentech, Inc. Anti-rspo3 antibodies and methods of use
WO2017181079A2 (en) 2016-04-15 2017-10-19 Genentech, Inc. Methods for monitoring and treating cancer
KR102459684B1 (en) 2016-04-15 2022-10-26 바이오아트라, 인코퍼레이티드 Anti-axl antibodies and their immunoconjugates and uses thereof
CA3019921A1 (en) 2016-04-15 2017-10-19 Genentech, Inc. Methods for monitoring and treating cancer
WO2017192589A1 (en) 2016-05-02 2017-11-09 The United States Of America, As Represented By The Secretary, Department Of Health And Human Services Neutralizing antibodies to influenza ha and their use and identification
MX2018013342A (en) 2016-05-02 2019-05-09 Hoffmann La Roche The contorsbody - a single chain target binder.
EP3243836A1 (en) 2016-05-11 2017-11-15 F. Hoffmann-La Roche AG C-terminally fused tnf family ligand trimer-containing antigen binding molecules
EP3455252B1 (en) 2016-05-11 2022-02-23 F. Hoffmann-La Roche AG Modified anti-tenascin antibodies and methods of use
CN109071652B (en) 2016-05-11 2022-09-23 豪夫迈·罗氏有限公司 Antigen binding molecules comprising TNF family ligand trimers and tenascin binding modules
EP3243832A1 (en) 2016-05-13 2017-11-15 F. Hoffmann-La Roche AG Antigen binding molecules comprising a tnf family ligand trimer and pd1 binding moiety
IL262404B2 (en) 2016-05-13 2024-04-01 Bioatla Llc Anti-ror2 antibodies, antibody fragments, their immunoconjugates and uses thereof
WO2017201449A1 (en) 2016-05-20 2017-11-23 Genentech, Inc. Protac antibody conjugates and methods of use
WO2017205741A1 (en) 2016-05-27 2017-11-30 Genentech, Inc. Bioanalytical method for the characterization of site-specific antibody-drug conjugates
BR112019022558A2 (en) 2016-06-02 2020-05-19 Hoffmann La Roche antibodies, methods to treat or slow the progression of a proliferative disease and to treat or slow the progression of cancer in an individual, pharmaceutical compositions, kit, uses of a combination of an anti-cd20 antibody and an antibody and invention
EP3252078A1 (en) 2016-06-02 2017-12-06 F. Hoffmann-La Roche AG Type ii anti-cd20 antibody and anti-cd20/cd3 bispecific antibody for treatment of cancer
WO2017223405A1 (en) 2016-06-24 2017-12-28 Genentech, Inc. Anti-polyubiquitin multispecific antibodies
EP3478717B1 (en) 2016-07-04 2022-01-05 F. Hoffmann-La Roche AG Novel antibody format
WO2018014260A1 (en) 2016-07-20 2018-01-25 Nanjing Legend Biotech Co., Ltd. Multispecific antigen binding proteins and methods of use thereof
RU2019104730A (en) 2016-07-29 2020-08-28 Чугаи Сейяку Кабусики Кайся BISPECIFIC ANTIBODY WITH INCREASED ACTIVITY, ALTERNATIVE FUNCTION OF COFACTOR FVIII
KR20230107408A (en) 2016-07-29 2023-07-14 주노 쎄러퓨티크스 인코퍼레이티드 Anti-idiotypic antibodies against anti-cd19 antibodies
NL2017270B1 (en) 2016-08-02 2018-02-09 Aduro Biotech Holdings Europe B V New anti-hCTLA-4 antibodies
CN109689099B (en) 2016-08-05 2023-02-28 中外制药株式会社 Composition for preventing or treating IL-8-related diseases
CN109476748B (en) 2016-08-08 2023-05-23 豪夫迈·罗氏有限公司 Methods for treatment and diagnosis of cancer
CA3034057A1 (en) 2016-08-22 2018-03-01 CHO Pharma Inc. Antibodies, binding fragments, and methods of use
US10870694B2 (en) 2016-09-02 2020-12-22 Dana Farber Cancer Institute, Inc. Composition and methods of treating B cell disorders
US11168148B2 (en) 2016-09-07 2021-11-09 The Regents Of The University Of California Antibodies to oxidation-specific epitopes
SG10201607778XA (en) 2016-09-16 2018-04-27 Chugai Pharmaceutical Co Ltd Anti-Dengue Virus Antibodies, Polypeptides Containing Variant Fc Regions, And Methods Of Use
CN109689682B (en) 2016-09-19 2022-11-29 豪夫迈·罗氏有限公司 Complement factor-based affinity chromatography
IL265473B2 (en) 2016-09-23 2024-01-01 Genentech Inc Uses of il-13 antagonists for treating atopic dermatitis
JOP20190055A1 (en) 2016-09-26 2019-03-24 Merck Sharp & Dohme Anti-cd27 antibodies
MA46366A (en) 2016-09-30 2019-08-07 Janssen Biotech Inc SAFE AND EFFECTIVE PROCESS FOR TREATING PSORIASIS WITH A SPECIFIC ANTIBODY AGAINST IL-23
CN110139873A (en) 2016-10-03 2019-08-16 朱诺治疗学股份有限公司 HPV specific binding molecules
CN110139674B (en) 2016-10-05 2023-05-16 豪夫迈·罗氏有限公司 Method for preparing antibody drug conjugates
CA3038712A1 (en) 2016-10-06 2018-04-12 Genentech, Inc. Therapeutic and diagnostic methods for cancer
EP3525829A1 (en) 2016-10-11 2019-08-21 Medimmune Limited Antibody-drug conjugates with immune-mediated therapy agents
WO2018068201A1 (en) 2016-10-11 2018-04-19 Nanjing Legend Biotech Co., Ltd. Single-domain antibodies and variants thereof against ctla-4
JP2019535250A (en) 2016-10-29 2019-12-12 ジェネンテック, インコーポレイテッド Anti-MIC antibody and method of use
ES2898025T3 (en) 2016-11-02 2022-03-03 Jounce Therapeutics Inc Antibodies against PD-1 and their uses
KR20190074300A (en) 2016-11-15 2019-06-27 제넨테크, 인크. Dosage for treatment with anti-CD20 / anti-CD3 bispecific antibodies
KR20190078648A (en) 2016-11-16 2019-07-04 얀센 바이오테크 인코포레이티드 Methods for treating psoriasis with anti-IL23 specific antibodies
JOP20190100A1 (en) 2016-11-19 2019-05-01 Potenza Therapeutics Inc Anti-gitr antigen-binding proteins and methods of use thereof
KR102532256B1 (en) 2016-11-21 2023-05-12 쿠레아브 게엠베하 Anti-gp73 antibodies and immunoconjugates
WO2018102746A1 (en) 2016-12-02 2018-06-07 Rigel Pharmaceuticals, Inc. Antigen binding molecules to tigit
AR110321A1 (en) 2016-12-07 2019-03-20 Genentech Inc ANTITAU ANTIBODIES AND METHODS OF USE
WO2018106864A1 (en) 2016-12-07 2018-06-14 Agenus Inc. Antibodies and methods of use thereof
AU2017373884A1 (en) 2016-12-07 2019-05-30 Ac Immune Sa Anti-tau antibodies and methods of their use
KR20190095921A (en) 2016-12-12 2019-08-16 제넨테크, 인크. How to Treat Cancer Using Anti-PD-L1 Antibody and Antiandrogen
MX2019006955A (en) 2016-12-19 2019-08-01 Hoffmann La Roche Combination therapy with targeted 4-1bb (cd137) agonists.
AU2017384126A1 (en) 2016-12-20 2019-05-02 F. Hoffmann-La Roche Ag Combination therapy of anti-CD20/anti-CD3 bispecific antibodies and 4-1BB (CD137) agonists
JOP20190134A1 (en) 2016-12-23 2019-06-02 Potenza Therapeutics Inc Anti-neuropilin antigen-binding proteins and methods of use thereof
CA3047070A1 (en) 2017-01-03 2018-07-12 F.Hoffmann-La Roche Ag Bispecific antigen binding molecules comprising anti-4-1bb clone 20h4.9
TW201825515A (en) 2017-01-04 2018-07-16 美商伊繆諾金公司 Met antibodies and immunoconjugates and uses thereof
EP3568468A4 (en) 2017-01-12 2020-12-30 Eureka Therapeutics, Inc. Constructs targeting histone h3 peptide/mhc complexes and uses thereof
WO2018147960A1 (en) 2017-02-08 2018-08-16 Imaginab, Inc. Extension sequences for diabodies
JP6995127B2 (en) 2017-02-10 2022-02-04 ジェネンテック, インコーポレイテッド Anti-tryptase antibody, its composition, and its use
US11021535B2 (en) 2017-02-10 2021-06-01 The United States Of America As Represented By The Secretary, Department Of Health And Human Services Neutralizing antibodies to plasmodium falciparum circumsporozoite protein and their use
WO2018160841A1 (en) 2017-03-01 2018-09-07 Genentech, Inc. Diagnostic and therapeutic methods for cancer
BR112019019706A2 (en) 2017-03-22 2020-04-28 Genentech Inc antibody conjugate, antibody, pharmaceutical composition, methods to reduce or inhibit angiogenesis and to treat an eye disorder
EP3601337A1 (en) 2017-03-28 2020-02-05 Genentech, Inc. Methods of treating neurodegenerative diseases
EP3601346A1 (en) 2017-03-29 2020-02-05 H. Hoffnabb-La Roche Ag Bispecific antigen binding molecule for a costimulatory tnf receptor
CN110573528B (en) 2017-03-29 2023-06-09 豪夫迈·罗氏有限公司 Bispecific antigen binding molecules to costimulatory TNF receptors
JOP20190203A1 (en) 2017-03-30 2019-09-03 Potenza Therapeutics Inc Anti-tigit antigen-binding proteins and methods of use thereof
PE20200010A1 (en) 2017-04-03 2020-01-06 Hoffmann La Roche ANTIBODIES THAT JOIN STEAP-1
AU2018247796A1 (en) 2017-04-04 2019-08-29 F. Hoffmann-La Roche Ag Novel bispecific antigen binding molecules capable of specific binding to CD40 and to FAP
TWI690538B (en) 2017-04-05 2020-04-11 瑞士商赫孚孟拉羅股份公司 Bispecific antibodies specifically binding to pd1 and lag3
HRP20221141T1 (en) 2017-04-05 2022-11-25 F. Hoffmann - La Roche Ag Anti-lag3 antibodies
CN110621787A (en) 2017-04-14 2019-12-27 豪夫迈·罗氏有限公司 Methods for diagnosis and treatment of cancer
CN110536691A (en) 2017-04-21 2019-12-03 豪夫迈·罗氏有限公司 The purposes of KLK5 antagonist for treating disease
CA3059820A1 (en) 2017-04-26 2018-11-01 Eureka Therapeutics, Inc. Constructs specifically recognizing glypican 3 and uses thereof
CA3059468A1 (en) 2017-04-27 2018-11-01 Tesaro, Inc. Antibody agents directed against lymphocyte activation gene-3 (lag-3) and uses thereof
BR112019022912A2 (en) 2017-05-05 2020-05-26 Allakos Inc. METHODS AND COMPOSITIONS TO TREAT ALLERGIC EYE DISEASES
CN110621336A (en) 2017-05-16 2019-12-27 戊瑞治疗有限公司 Combination of an anti-FGFR 2 antibody with a chemotherapeutic agent in the treatment of cancer
US11634488B2 (en) 2017-07-10 2023-04-25 International—Drug—Development—Biotech Treatment of B cell malignancies using afucosylated pro-apoptotic anti-CD19 antibodies in combination with anti CD20 antibodies or chemotherapeutics
JP2020527351A (en) 2017-07-21 2020-09-10 ジェネンテック, インコーポレイテッド Cancer treatment and diagnosis
ES2963157T3 (en) 2017-07-26 2024-03-25 Forty Seven Inc Anti-SIRP-alpha antibodies and related methods
TWI817952B (en) 2017-08-25 2023-10-11 美商戊瑞治療有限公司 B7-h4 antibodies and methods of use thereof
US20200216542A1 (en) 2017-09-20 2020-07-09 Chugai Seiyaku Kabushiki Kaisha Dosage regimen for combination therapy using pd-1 axis binding antagonists and gpc3 targeting agent
TW201922780A (en) 2017-09-25 2019-06-16 美商健生生物科技公司 Safe and effective method of treating Lupus with anti-IL12/IL23 antibody
MX2020003536A (en) 2017-10-03 2020-09-14 Juno Therapeutics Inc Hpv-specific binding molecules.
US11230601B2 (en) 2017-10-10 2022-01-25 Tilos Therapeutics, Inc. Methods of using anti-lap antibodies
CA3185107A1 (en) 2017-10-12 2019-04-18 Immunowake Inc. Vegfr-antibody light chain fusion protein
EP3703746A1 (en) 2017-11-01 2020-09-09 F. Hoffmann-La Roche AG Novel tnf family ligand trimer-containing antigen binding molecules
MX2020004573A (en) 2017-11-01 2020-09-25 Hoffmann La Roche Combination therapy with targeted ox40 agonists.
TWI829658B (en) 2017-11-01 2024-01-21 瑞士商赫孚孟拉羅股份公司 Bispecific 2+1 contorsbodies
SG11202003501XA (en) 2017-11-01 2020-05-28 Juno Therapeutics Inc Antibodies and chimeric antigen receptors specific for b-cell maturation antigen
CA3077664A1 (en) 2017-11-06 2019-05-09 Genentech, Inc. Diagnostic and therapeutic methods for cancer
SG11202003930YA (en) 2017-12-01 2020-05-28 Pfizer Anti-cxcr5 antibodies and compositions and uses thereof
EA202091410A1 (en) 2017-12-08 2021-01-13 Ардженкс Бвба APPLICATION OF FCRN ANTAGONISTS FOR TREATMENT OF GENERALIZED MYASTHENIA GRAVIS
MA51184A (en) 2017-12-15 2020-10-21 Juno Therapeutics Inc ANTI-CCT5 BINDING MOLECULES AND RELATED METHODS OF USE
EP3502140A1 (en) 2017-12-21 2019-06-26 F. Hoffmann-La Roche AG Combination therapy of tumor targeted icos agonists with t-cell bispecific molecules
TWI805665B (en) 2017-12-21 2023-06-21 瑞士商赫孚孟拉羅股份公司 Antibodies binding to hla-a2/wt1
EP3728321A1 (en) 2017-12-22 2020-10-28 F. Hoffmann-La Roche AG Use of pilra binding agents for treatment of a disease
US10723798B2 (en) 2017-12-22 2020-07-28 Jounce Therapeutics, Inc. Antibodies to LILRB2
TW201930358A (en) 2017-12-28 2019-08-01 大陸商南京傳奇生物科技有限公司 Single-domain antibodies and variants thereof against TIGIT
TW201930350A (en) 2017-12-28 2019-08-01 大陸商南京傳奇生物科技有限公司 Antibodies and variants thereof against PD-L1
WO2019129679A1 (en) 2017-12-29 2019-07-04 F. Hoffmann-La Roche Ag Method for improving vegf-receptor blocking selectivity of an anti-vegf antibody
EP3724223A1 (en) 2018-01-02 2020-10-21 The United States of America, as represented by The Secretary, Department of Health and Human Services Neutralizing antibodies to ebola virus glycoprotein and their use
MX2020006956A (en) 2018-01-05 2020-11-06 Ac Immune Sa Misfolded tdp-43 binding molecules.
EP3508499A1 (en) 2018-01-08 2019-07-10 iOmx Therapeutics AG Antibodies targeting, and other modulators of, an immunoglobulin gene associated with resistance against anti-tumour immune responses, and uses thereof
KR20200120641A (en) 2018-01-15 2020-10-21 난징 레전드 바이오테크 씨오., 엘티디. Single-domain antibody against PD-1 and variants thereof
US20200339686A1 (en) 2018-01-16 2020-10-29 Lakepharma, Inc. Bispecific antibody that binds cd3 and another target
CN112020365A (en) 2018-01-26 2020-12-01 豪夫迈·罗氏有限公司 Compositions and methods of use
JP7349995B2 (en) 2018-01-26 2023-09-25 ジェネンテック, インコーポレイテッド IL-22 Fc fusion protein and method of use
JP7438953B2 (en) 2018-02-01 2024-02-27 イノベント バイオロジックス (スウツォウ) カンパニー,リミテッド Fully humanized anti-B cell maturation antigen (BCMA) single chain antibody and its applications
CN111712261A (en) 2018-02-08 2020-09-25 豪夫迈·罗氏有限公司 Bispecific antigen binding molecules and methods of use
TWI829667B (en) 2018-02-09 2024-01-21 瑞士商赫孚孟拉羅股份公司 Antibodies binding to gprc5d
KR20220098056A (en) 2018-02-09 2022-07-08 제넨테크, 인크. Therapeutic and diagnostic methods for mast cell-mediated inflammatory diseases
AU2019220395A1 (en) 2018-02-14 2020-09-10 Abba Therapeutics Ag Anti-human PD-L2 antibodies
CA3091161A1 (en) 2018-02-21 2019-08-29 Five Prime Therapeutics, Inc. B7-h4 antibody dosing regimens
EP3755364A1 (en) 2018-02-21 2020-12-30 F. Hoffmann-La Roche AG Dosing for treatment with il-22 fc fusion proteins
CN111971299A (en) 2018-02-21 2020-11-20 美国政府(由卫生和人类服务部的部长所代表) Neutralizing antibodies to HIV-1Env and uses thereof
EP3755720A1 (en) 2018-02-21 2020-12-30 Five Prime Therapeutics, Inc. B7-h4 antibody formulations
EP3759141A1 (en) 2018-02-26 2021-01-06 F. Hoffmann-La Roche AG Dosing for treatment with anti-tigit and anti-pd-l1 antagonist antibodies
MA52416A (en) 2018-03-02 2021-04-21 Five Prime Therapeutics Inc B7-H4 ANTIBODIES AND PROCESSES FOR USE
US20190269757A1 (en) 2018-03-05 2019-09-05 Janssen Biotech, Inc. Methods of Treating Crohn's Disease with Anti-IL23 Specific Antibody
JP7159332B2 (en) 2018-03-13 2022-10-24 エフ・ホフマン-ラ・ロシュ・アクチェンゲゼルシャフト Therapeutic combination of 4-1BB agonist and anti-CD20 antibody
TW202003561A (en) 2018-03-13 2020-01-16 瑞士商赫孚孟拉羅股份公司 Combination therapy with targeted 4-1BB (CD137) agonists
TW202003562A (en) 2018-03-14 2020-01-16 中國大陸商北京軒義醫藥科技有限公司 Anti-claudin 18.2 (CLDN18.2) antibodies
US20200040103A1 (en) 2018-03-14 2020-02-06 Genentech, Inc. Anti-klk5 antibodies and methods of use
TWI827585B (en) 2018-03-15 2024-01-01 日商中外製藥股份有限公司 Anti-dengue virus antibodies having cross-reactivity to zika virus and methods of use
KR20200135421A (en) 2018-03-21 2020-12-02 파이브 프라임 테라퓨틱스, 인크. Antibodies that bind to VISTA at acidic pH
MX2020010028A (en) 2018-03-29 2020-10-14 Genentech Inc Modulating lactogenic activity in mammalian cells.
US11958903B2 (en) 2018-03-30 2024-04-16 Nanjing Legend Biotech Co., Ltd. Single-domain antibodies against LAG-3 and uses thereof
TW202011029A (en) 2018-04-04 2020-03-16 美商建南德克公司 Methods for detecting and quantifying FGF21
SG11202009284TA (en) 2018-04-05 2020-10-29 Juno Therapeutics Inc T cell receptors and engineered cells expressing same
PE20210652A1 (en) 2018-04-13 2021-03-26 Hoffmann La Roche HER2 TARGETING ANTIGEN BINDING MOLECULES INCLUDING 4-1BBL
JP2021523138A (en) 2018-05-11 2021-09-02 ヤンセン バイオテツク,インコーポレーテツド How to treat depression with IL-23 antibody
MX2020012248A (en) 2018-05-14 2021-04-28 Werewolf Therapeutics Inc Activatable cytokine polypeptides and methods of use thereof.
WO2019222295A1 (en) 2018-05-14 2019-11-21 Werewolf Therapeutics, Inc. Activatable interleukin-2 polypeptides and methods of use thereof
JP2021524449A (en) 2018-05-23 2021-09-13 アーデーセー セラピューティクス ソシエテ アノニム Molecular adjuvant
US20210221908A1 (en) 2018-06-03 2021-07-22 Lamkap Bio Beta Ltd. Bispecific antibodies against ceacam5 and cd47
JP7372237B2 (en) 2018-06-04 2023-10-31 中外製薬株式会社 Antigen-binding molecules with altered half-lives in the cytoplasm
JP7399895B2 (en) 2018-06-23 2023-12-18 ジェネンテック, インコーポレイテッド Method of treating lung cancer with PD-1 axis binding antagonists, platinum agents, and topoisomerase II inhibitors
TW202035447A (en) 2018-07-04 2020-10-01 瑞士商赫孚孟拉羅股份公司 Novel bispecific agonistic 4-1bb antigen binding molecules
WO2020014132A2 (en) 2018-07-09 2020-01-16 Five Prime Therapeutics, Inc. Antibodies binding to ilt4
WO2020014306A1 (en) 2018-07-10 2020-01-16 Immunogen, Inc. Met antibodies and immunoconjugates and uses thereof
EP3820902A2 (en) 2018-07-11 2021-05-19 Five Prime Therapeutics, Inc. Antibodies binding to vista at acidic ph
US20200025776A1 (en) 2018-07-18 2020-01-23 Janssen Biotech, Inc. Sustained Response Predictors After Treatment With Anti-IL23 Specific Antibody
BR112021000673A2 (en) 2018-07-18 2021-04-20 Genentech, Inc. methods for treating an individual with lung cancer, kits, anti-pd-l1 antibody and compositions
MX2021000745A (en) 2018-07-20 2021-03-26 Surface Oncology Inc Anti-cd112r compositions and methods.
US20220195045A1 (en) 2018-08-03 2022-06-23 Chugai Seiyaku Kabushiki Kaisha Antigen-binding molecule containing two antigen-binding domains that are linked to each other
CA3051549A1 (en) 2018-08-09 2020-02-09 Regeneron Pharmaceuticals, Inc. Methods for assessing binding affinity of an antibody variant to the neonatal fc receptor
PE20210343A1 (en) 2018-08-10 2021-02-23 Chugai Pharmaceutical Co Ltd ANTIGEN BINDING MOLECULE ANTI DIFFERENTIATION GROUP 137 (CD137) AND ITS USE
MA53434A (en) 2018-08-23 2021-12-01 Seagen Inc ANTI-TIGIT ANTIBODIES
GB201814281D0 (en) 2018-09-03 2018-10-17 Femtogenix Ltd Cytotoxic agents
CA3111401A1 (en) 2018-09-19 2020-03-26 Genentech, Inc. Therapeutic and diagnostic methods for bladder cancer
CN113166236A (en) 2018-09-21 2021-07-23 北卡罗来纳大学查佩尔希尔分校 Synthetic adhesive with limited penetration through mucus
ES2955032T3 (en) 2018-09-21 2023-11-28 Hoffmann La Roche Diagnostic methods for triple negative breast cancer
SI3883606T1 (en) 2018-09-24 2023-10-30 Janssen Biotech, Inc. Safe and effective method of treating ulcerative colitis with anti-il12/il23 antibody
EP4321530A2 (en) 2018-09-27 2024-02-14 Xilio Development, Inc. Masked cytokine polypeptides
WO2020070035A1 (en) 2018-10-01 2020-04-09 F. Hoffmann-La Roche Ag Bispecific antigen binding molecules with trivalent binding to cd40
US11242396B2 (en) 2018-10-01 2022-02-08 Hoffmann-La Roche Inc. Bispecific antigen binding molecules comprising anti-FAP clone 212
EP3632929A1 (en) 2018-10-02 2020-04-08 Ospedale San Raffaele S.r.l. Antibodies and uses thereof
MX2021003766A (en) 2018-10-05 2021-05-27 Five Prime Therapeutics Inc Anti-fgfr2 antibody formulations.
WO2020076969A2 (en) 2018-10-10 2020-04-16 Tilos Therapeutics, Inc. Anti-lap antibody variants and uses thereof
CN113166242A (en) 2018-10-15 2021-07-23 戊瑞治疗有限公司 Combination therapy for cancer
WO2020081493A1 (en) 2018-10-16 2020-04-23 Molecular Templates, Inc. Pd-l1 binding proteins
EP3867646A1 (en) 2018-10-18 2021-08-25 F. Hoffmann-La Roche AG Diagnostic and therapeutic methods for sarcomatoid kidney cancer
EP3873944A1 (en) 2018-10-31 2021-09-08 Bayer Aktiengesellschaft Reversal agents for neutralizing the therapeutic activity of anti-fxia antibodies
EP3880714A4 (en) 2018-11-16 2022-07-20 Memorial Sloan Kettering Cancer Center Antibodies to mucin-16 and methods of use thereof
US11548941B2 (en) 2018-11-20 2023-01-10 Janssen Biotech, Inc. Safe and effective method of treating psoriasis with anti-IL-23 specific antibody
CN113260633A (en) 2018-12-05 2021-08-13 豪夫迈·罗氏有限公司 Diagnostic methods and compositions for cancer immunotherapy
US20220025051A1 (en) 2018-12-07 2022-01-27 Ono Pharmaceutical Co., Ltd. Immunosuppresive agent
EP3894427A1 (en) 2018-12-10 2021-10-20 Genentech, Inc. Photocrosslinking peptides for site specific conjugation to fc-containing proteins
WO2020128864A1 (en) 2018-12-18 2020-06-25 Janssen Biotech, Inc. Safe and effective method of treating lupus with anti-il12/il23 antibody
AR117453A1 (en) 2018-12-20 2021-08-04 Genentech Inc CF OF MODIFIED ANTIBODIES AND METHODS TO USE THEM
US20220089694A1 (en) 2018-12-20 2022-03-24 The U.S.A., As Represented By The Secretary, Department Of Health And Human Services Ebola virus glycoprotein-specific monoclonal antibodies and uses thereof
SG11202106198YA (en) 2018-12-21 2021-07-29 Hoffmann La Roche Antibody that binds to vegf and il-1beta and methods of use
WO2020127618A1 (en) 2018-12-21 2020-06-25 F. Hoffmann-La Roche Ag Tumor-targeted agonistic cd28 antigen binding molecules
TW202030204A (en) 2018-12-21 2020-08-16 瑞士商赫孚孟拉羅股份公司 Tumor-targeted superagonistic cd28 antigen binding molecules
US11672858B2 (en) 2018-12-21 2023-06-13 Hoffmann-La Roche Inc. Bispecific antibody molecules binding to CD3 and TYRP-1
WO2020139920A2 (en) 2018-12-26 2020-07-02 City Of Hope Activatable masked anti-ctla4 binding proteins
WO2020141145A1 (en) 2018-12-30 2020-07-09 F. Hoffmann-La Roche Ag Anti-rabbit cd19 antibodies and methods of use
CN115120716A (en) 2019-01-14 2022-09-30 健泰科生物技术公司 Methods of treating cancer with PD-1 axis binding antagonists and RNA vaccines
EP3911675A1 (en) 2019-01-17 2021-11-24 Bayer Aktiengesellschaft Methods to determine whether a subject is suitable of being treated with an agonist of soluble guanylyl cyclase (sgc)
CN113329770A (en) 2019-01-24 2021-08-31 中外制药株式会社 Novel cancer antigen and antibody against said antigen
GB201901197D0 (en) 2019-01-29 2019-03-20 Femtogenix Ltd G-A Crosslinking cytotoxic agents
US20220096651A1 (en) 2019-01-29 2022-03-31 Juno Therapeutics, Inc. Antibodies and chimeric antigen receptors specific for receptor tyrosine kinase like orphan receptor 1 (ror1)
JP2022521773A (en) 2019-02-27 2022-04-12 ジェネンテック, インコーポレイテッド Dosing for treatment with anti-TIGIT antibody and anti-CD20 antibody or anti-CD38 antibody
JP7402247B2 (en) 2019-03-08 2023-12-20 ジェネンテック, インコーポレイテッド Methods for detecting and quantifying membrane-bound proteins of extracellular vesicles
JP2022525145A (en) 2019-03-14 2022-05-11 ヤンセン バイオテツク,インコーポレーテツド A production method for producing an anti-IL12 / IL23 antibody composition.
EP3938403A1 (en) 2019-03-14 2022-01-19 F. Hoffmann-La Roche AG Treatment of cancer with her2xcd3 bispecific antibodies in combination with anti-her2 mab
JP2022526493A (en) 2019-03-18 2022-05-25 ヤンセン バイオテツク,インコーポレーテツド Treatment of Psoriasis in Pediatric Subjects Using Anti-IL12 / IL23 Antibodies
GB2589049C (en) 2019-04-11 2024-02-21 argenx BV Anti-IgE antibodies
EP3952996A1 (en) 2019-04-12 2022-02-16 F. Hoffmann-La Roche AG Bispecific antigen binding molecules comprising lipocalin muteins
WO2020214995A1 (en) 2019-04-19 2020-10-22 Genentech, Inc. Anti-mertk antibodies and their methods of use
CA3137397A1 (en) 2019-04-19 2020-10-22 Chugai Seiyaku Kabushiki Kaisha Chimeric receptor that recognizes engineered site in antibody
EP3962523A2 (en) 2019-05-03 2022-03-09 The United States of America, as represented by the Secretary, Department of Health and Human Services Neutralizing antibodies to plasmodium falciparum circumsporozoite protein and their use
AU2020270376A1 (en) 2019-05-03 2021-10-07 Genentech, Inc. Methods of treating cancer with an anti-PD-L1 antibody
JP2022532217A (en) 2019-05-14 2022-07-13 ウェアウルフ セラピューティクス, インコーポレイテッド Separation part and how to use it
AU2020275415A1 (en) 2019-05-14 2021-11-25 Genentech, Inc. Methods of using anti-CD79B immunoconjugates to treat follicular lymphoma
US20230085439A1 (en) 2019-05-21 2023-03-16 University Of Georgia Research Foundation, Inc. Antibodies that bind human metapneumovirus fusion protein and their use
US11780911B2 (en) 2019-05-23 2023-10-10 Janssen Biotech, Inc. Method of treating inflammatory bowel disease with a combination therapy of antibodies to IL-23 and TNF alpha
TW202110879A (en) 2019-05-23 2021-03-16 瑞士商Ac 免疫有限公司 Anti-tdp-43 binding molecules and uses thereof
MX2021014756A (en) 2019-06-07 2022-01-18 Argenx Bvba PHARMACEUTICAL FORMULATIONS OF FcRn INHIBITORS SUITABLE FOR SUBCUTANEOUS ADMINISTRATION.
AU2020304813A1 (en) 2019-06-26 2022-01-06 F. Hoffmann-La Roche Ag Fusion of an antibody binding CEA and 4-1BBL
WO2020260326A1 (en) 2019-06-27 2020-12-30 F. Hoffmann-La Roche Ag Novel icos antibodies and tumor-targeted antigen binding molecules comprising them
US20220380474A1 (en) 2019-07-02 2022-12-01 The United States Of America, As Represented By The Secretary, Department Of Health And Human Servic Monoclonal antibodies that bind egfrviii and their use
EP3994171A1 (en) 2019-07-05 2022-05-11 iOmx Therapeutics AG Antibodies binding igc2 of igsf11 (vsig3) and uses thereof
WO2021010326A1 (en) 2019-07-12 2021-01-21 中外製薬株式会社 Anti-mutation type fgfr3 antibody and use therefor
AR119382A1 (en) 2019-07-12 2021-12-15 Hoffmann La Roche PRE-TARGETING ANTIBODIES AND METHODS OF USE
AR119393A1 (en) 2019-07-15 2021-12-15 Hoffmann La Roche ANTIBODIES THAT BIND NKG2D
EP4004037A1 (en) 2019-07-26 2022-06-01 Vanderbilt University Human monoclonal antibodies to enterovirus d68
CN114174338A (en) 2019-07-31 2022-03-11 豪夫迈·罗氏有限公司 Antibodies that bind to GPRC5D
JP2022543553A (en) 2019-07-31 2022-10-13 エフ・ホフマン-ラ・ロシュ・アクチェンゲゼルシャフト Antibody that binds to GPRC5D
TWI780464B (en) 2019-08-06 2022-10-11 香港商新旭生技股份有限公司 Antibodies that bind to pathological tau species and uses thereof
CA3146616A1 (en) 2019-09-12 2021-03-18 Matthew Dominic CASCINO Compositions and methods of treating lupus nephritis
KR20220064980A (en) 2019-09-18 2022-05-19 제넨테크, 인크. Anti-KLK7 Antibodies, Anti-KLK5 Antibodies, Multispecific Anti-KLK5/KLK7 Antibodies, and Methods of Use
EP4031575A1 (en) 2019-09-19 2022-07-27 Bristol-Myers Squibb Company Antibodies binding to vista at acidic ph
JP2022549218A (en) 2019-09-20 2022-11-24 ジェネンテック, インコーポレイテッド Anti-tryptase antibody medication
CR20220127A (en) 2019-09-27 2022-05-27 Genentech Inc Dosing for treatment with anti-tigit and anti-pd-l1 antagonist antibodies
CN114945386A (en) 2019-10-18 2022-08-26 基因泰克公司 Methods of treating diffuse large B-cell lymphoma using anti-CD 79B immunoconjugates
CN115066613A (en) 2019-11-06 2022-09-16 基因泰克公司 Diagnostic and therapeutic methods for treating hematologic cancers
JP2023501229A (en) 2019-11-15 2023-01-18 エンテラ・エッセ・エッレ・エッレ TMEM219 antibody and its therapeutic use
EP3822288A1 (en) 2019-11-18 2021-05-19 Deutsches Krebsforschungszentrum, Stiftung des öffentlichen Rechts Antibodies targeting, and other modulators of, the cd276 antigen, and uses thereof
US20230039165A1 (en) 2019-11-21 2023-02-09 Enthera S.R.L. Igfbp3 antibodies and therapeutic uses thereof
EP3831849A1 (en) 2019-12-02 2021-06-09 LamKap Bio beta AG Bispecific antibodies against ceacam5 and cd47
JP2023504740A (en) 2019-12-06 2023-02-06 ジュノー セラピューティクス インコーポレイテッド Anti-idiotypic antibodies against BCMA target binding domains and related compositions and methods
WO2021113780A1 (en) 2019-12-06 2021-06-10 Juno Therapeutics, Inc. Anti-idiotypic antibodies to gprc5d-targeted binding domains and related compositions and methods
US11845799B2 (en) 2019-12-13 2023-12-19 Genentech, Inc. Anti-Ly6G6D antibodies and methods of use
MX2022007635A (en) 2019-12-18 2022-07-19 Hoffmann La Roche Antibodies binding to hla-a2/mage-a4.
CA3162444A1 (en) 2019-12-27 2021-07-01 Hitoshi KATADA Anti-ctla-4 antibody and use thereof
CN113045655A (en) 2019-12-27 2021-06-29 高诚生物医药(香港)有限公司 anti-OX 40 antibodies and uses thereof
EP4087875A1 (en) 2020-01-08 2022-11-16 Argenx BV Methods for treating pemphigus disorders
EP4087866A1 (en) 2020-01-09 2022-11-16 F. Hoffmann-La Roche AG New 4-1bbl trimer-containing antigen binding molecules
CN110818795B (en) 2020-01-10 2020-04-24 上海复宏汉霖生物技术股份有限公司 anti-TIGIT antibodies and methods of use
WO2022050954A1 (en) 2020-09-04 2022-03-10 Genentech, Inc. Dosing for treatment with anti-tigit and anti-pd-l1 antagonist antibodies
WO2021194481A1 (en) 2020-03-24 2021-09-30 Genentech, Inc. Dosing for treatment with anti-tigit and anti-pd-l1 antagonist antibodies
US20230078601A1 (en) 2020-01-31 2023-03-16 The Cleveland Clinic Foundation Anti-mullerian hormone receptor 2 antibodies and methods of use
BR112022015077A2 (en) 2020-01-31 2022-10-04 Genentech Inc METHODS TO INDUCE NEOEPITOPE-SPECIFIC CD8+ T CELLS IN AN INDIVIDUAL WITH A TUMOR AND TO INDUCE CD8+ T CELL TRAFFICKING, RNA VACCINES, RNA VACCINE FOR USE AND BINDING ANTAGONISTS
WO2021163265A1 (en) 2020-02-11 2021-08-19 Vanderbilt University Human monoclonal antibodies to severe acute respiratory syndrome coronavirus 2 (sars-cov- 2)
TW202144395A (en) 2020-02-12 2021-12-01 日商中外製藥股份有限公司 Anti-CD137 antigen-binding molecule for use in cancer treatment
IL295023A (en) 2020-02-14 2022-09-01 Jounce Therapeutics Inc Antibodies and fusion proteins that bind to ccr8 and uses thereof
EP4093762A1 (en) 2020-02-20 2022-11-30 The United States of America, as represented by the Secretary, Department of Health and Human Services Epstein-barr virus monoclonal antibodies and uses thereof
EP3868396A1 (en) 2020-02-20 2021-08-25 Enthera S.R.L. Inhibitors and uses thereof
WO2021170071A1 (en) 2020-02-28 2021-09-02 Shanghai Henlius Biotech, Inc. Anti-cd137 constructs, multispecific antibody and uses thereof
CN115066440A (en) 2020-02-28 2022-09-16 上海复宏汉霖生物技术股份有限公司 anti-CD 137 constructs and uses thereof
CA3174103A1 (en) 2020-03-06 2021-09-10 Go Therapeutics, Inc. Anti-glyco-cd44 antibodies and their uses
EP4118114A1 (en) 2020-03-13 2023-01-18 Genentech, Inc. Anti-interleukin-33 antibodies and uses thereof
US11919948B2 (en) 2020-03-19 2024-03-05 Genentech, Inc. Isoform-selective anti-TGFβ antibodies and methods of use
WO2021194865A1 (en) 2020-03-23 2021-09-30 Genentech, Inc. Method for treating pneumonia, including covid-19 pneumonia, with an il6 antagonist
CN115867577A (en) 2020-03-23 2023-03-28 基因泰克公司 Biomarkers for predicting response to IL-6 antagonists in COVID-19 pneumonia
US20230174656A1 (en) 2020-03-23 2023-06-08 Genentech, Inc. Tocilizumab and remdesivir combination therapy for covid-19 pneumonia
PE20230414A1 (en) 2020-03-24 2023-03-07 Genentech Inc TIE2 FIXING AGENTS AND METHODS OF USE
WO2021195385A1 (en) 2020-03-26 2021-09-30 Vanderbilt University HUMAN MONOCLONAL ANTIBODIES TO SEVERE ACUTE RESPIRATORY SYNDROME CORONAVIRUS 2 (SARS-GoV-2)
WO2021195464A2 (en) 2020-03-26 2021-09-30 Genentech, Inc. Modified mammalian cells
DK4045533T3 (en) 2020-03-26 2024-02-12 Univ Vanderbilt HUMAN MONOCLONAL ANTIBODIES TO SEVERE ACUTE RESPIRATORY SYNDROME CORONAVIRUS 2 (SARS-COV-2)
AR121706A1 (en) 2020-04-01 2022-06-29 Hoffmann La Roche OX40 AND FAP-TARGETED BSPECIFIC ANTIGEN-BINDING MOLECULES
WO2021202959A1 (en) 2020-04-03 2021-10-07 Genentech, Inc. Therapeutic and diagnostic methods for cancer
US20230272056A1 (en) 2020-04-09 2023-08-31 Merck Sharp & Dohme Llc Affinity matured anti-lap antibodies and uses thereof
WO2021207662A1 (en) 2020-04-10 2021-10-14 Genentech, Inc. Use of il-22fc for the treatment or prevention of pneumonia, acute respiratory distress syndrome, or cytokine release syndrome
CA3175530A1 (en) 2020-04-24 2021-10-28 Genentech, Inc. Methods of using anti-cd79b immunoconjugates
AU2021262744A1 (en) 2020-04-27 2022-10-06 The Regents Of The University Of California Isoform-independent antibodies to lipoprotein(a)
JP2023523450A (en) 2020-04-28 2023-06-05 ジェネンテック, インコーポレイテッド Methods and compositions for non-small cell lung cancer immunotherapy
WO2021225892A1 (en) 2020-05-03 2021-11-11 Levena (Suzhou) Biopharma Co., Ltd. Antibody-drug conjugates (adcs) comprising an anti-trop-2 antibody, compositions comprising such adcs, as well as methods of making and using the same
WO2021233834A1 (en) 2020-05-17 2021-11-25 Astrazeneca Uk Limited Sars-cov-2 antibodies and methods of selecting and using the same
CN113993900B (en) 2020-05-27 2023-08-04 舒泰神(北京)生物制药股份有限公司 Antibodies specifically recognizing nerve growth factor and uses thereof
CA3185858A1 (en) 2020-06-02 2021-12-09 Dynamicure Biotechnology Llc Anti-cd93 constructs and uses thereof
CN116529260A (en) 2020-06-02 2023-08-01 当康生物技术有限责任公司 anti-CD 93 constructs and uses thereof
KR20230020975A (en) 2020-06-08 2023-02-13 에프. 호프만-라 로슈 아게 Anti-HBV Antibodies and Methods of Use
WO2021252977A1 (en) 2020-06-12 2021-12-16 Genentech, Inc. Methods and compositions for cancer immunotherapy
JP2023531406A (en) 2020-06-16 2023-07-24 ジェネンテック, インコーポレイテッド Methods and compositions for treating triple-negative breast cancer
JP2023531200A (en) 2020-06-18 2023-07-21 ジェネンテック, インコーポレイテッド Treatment with anti-TIGIT antibody and PD-1 axis binding antagonist
MX2022016069A (en) 2020-06-19 2023-02-02 Hoffmann La Roche Antibodies binding to cd3 and cd19.
WO2021255146A1 (en) 2020-06-19 2021-12-23 F. Hoffmann-La Roche Ag Antibodies binding to cd3 and cea
AU2021291005A1 (en) 2020-06-19 2023-01-05 F. Hoffmann-La Roche Ag Antibodies binding to CD3 and FolR1
MX2022015204A (en) 2020-06-19 2023-01-05 Hoffmann La Roche Antibodies binding to cd3.
EP4168448A1 (en) 2020-06-23 2023-04-26 F. Hoffmann-La Roche AG Agonistic cd28 antigen binding molecules targeting her2
WO2021262783A1 (en) 2020-06-24 2021-12-30 Genentech, Inc. Apoptosis resistant cell lines
WO2021260064A1 (en) 2020-06-25 2021-12-30 F. Hoffmann-La Roche Ag Anti-cd3/anti-cd28 bispecific antigen binding molecules
EP4175668A1 (en) 2020-07-06 2023-05-10 iOmx Therapeutics AG Antibodies binding igv of igsf11 (vsig3) and uses thereof
CR20230076A (en) 2020-07-10 2023-03-13 Hoffmann La Roche Antibodies which bind to cancer cells and target radionuclides to said cells
MX2023000617A (en) 2020-07-17 2023-02-13 Genentech Inc Anti-notch2 antibodies and methods of use.
GB2597532A (en) 2020-07-28 2022-02-02 Femtogenix Ltd Cytotoxic compounds
JP2023536461A (en) 2020-07-29 2023-08-25 ダイナミキュア バイオテクノロジー エルエルシー Anti-CD93 constructs and uses thereof
CN116568824A (en) 2020-08-03 2023-08-08 基因泰克公司 Method for diagnosing and treating lymphoma
KR20230095918A (en) 2020-08-05 2023-06-29 주노 쎄러퓨티크스 인코퍼레이티드 Anti-idiotype antibodies to the ROR1-target binding domain and related compositions and methods
WO2022031876A1 (en) 2020-08-07 2022-02-10 Genentech, Inc. Flt3 ligand fusion proteins and methods of use
JP2023537078A (en) 2020-08-10 2023-08-30 アストラゼネカ・ユーケイ・リミテッド SARS-CoV-2 Antibodies for Treating and Preventing COVID-19
EP4196162A1 (en) 2020-08-14 2023-06-21 AC Immune SA Humanized anti-tdp-43 binding molecules and uses thereof
EP4204448A2 (en) 2020-08-27 2023-07-05 cureab GmbH Anti-golph2 antibodies for macrophage and dendritic cell differentiation
JP2023539201A (en) 2020-08-28 2023-09-13 ジェネンテック, インコーポレイテッド CRISPR/Cas9 multiplex knockout of host cell proteins
CN116323663A (en) 2020-09-04 2023-06-23 豪夫迈·罗氏有限公司 Antibodies that bind VEGF-A and ANG2 and methods of use thereof
CN116249719A (en) 2020-09-15 2023-06-09 拜耳公司 Novel anti-A2 AP antibodies and uses thereof
US20230357418A1 (en) 2020-09-17 2023-11-09 Genentech, Inc. Results of empacta: a randomized, double-blind, placebo-controlled, multicenter study to evaluate the efficacy and safety of tocilizumab in hospitalized patients with covid-19 pneumonia
KR20230082632A (en) 2020-10-05 2023-06-08 제넨테크, 인크. Dosing for Treatment with Anti-FCRH5/Anti-CD3 Bispecific Antibodies
WO2022079211A1 (en) 2020-10-16 2022-04-21 Adc Therapeutics Sa Glycoconjugates
CN116685325A (en) 2020-10-20 2023-09-01 豪夫迈·罗氏有限公司 Combination therapy of a PD-1 axis binding antagonist and an LRRK2 inhibitor
EP4232475A1 (en) 2020-10-20 2023-08-30 Kantonsspital St. Gallen Antibodies or antigen-binding fragments specifically binding to gremlin-1 and uses thereof
TW202233671A (en) 2020-10-20 2022-09-01 美商建南德克公司 Peg-conjugated anti-mertk antibodies and methods of use
WO2022093981A1 (en) 2020-10-28 2022-05-05 Genentech, Inc. Combination therapy comprising ptpn22 inhibitors and pd-l1 binding antagonists
CA3173151A1 (en) 2020-11-03 2022-05-12 Deutsches Krebsforschungszentrum Stiftung Des Offentlichen Rechts Target-cell restricted, costimulatory, bispecific and bivalent anti-cd28 antibodies
WO2022098638A2 (en) 2020-11-04 2022-05-12 Genentech, Inc. Dosing for treatment with anti-cd20/anti-cd3 bispecific antibodies
JP2023548069A (en) 2020-11-04 2023-11-15 ジェネンテック, インコーポレイテッド Subcutaneous dosing of anti-CD20/anti-CD3 bispecific antibodies
US20220153842A1 (en) 2020-11-04 2022-05-19 Genentech, Inc. Dosing for treatment with anti-cd20/anti-cd3 bispecific antibodies and anti-cd79b antibody drug conjugates
WO2022101458A1 (en) 2020-11-16 2022-05-19 F. Hoffmann-La Roche Ag Combination therapy with fap-targeted cd40 agonists
JP2023551935A (en) 2020-12-02 2023-12-13 グラクソスミスクライン、インテレクチュアル、プロパティー、ディベロップメント、リミテッド IL-7 binding proteins and their use in medical therapy
TW202237638A (en) 2020-12-09 2022-10-01 日商武田藥品工業股份有限公司 Compositions of guanylyl cyclase c (gcc) antigen binding agents and methods of use thereof
TW202237639A (en) 2020-12-09 2022-10-01 日商武田藥品工業股份有限公司 Compositions of guanylyl cyclase c (gcc) antigen binding agents and methods of use thereof
WO2022132904A1 (en) 2020-12-17 2022-06-23 The United States Of America, As Represented By The Secretary, Department Of Health And Human Services Human monoclonal antibodies targeting sars-cov-2
MX2023007846A (en) 2021-01-06 2023-07-07 Hoffmann La Roche Combination therapy employing a pd1-lag3 bispecific antibody and a cd20 t cell bispecific antibody.
US20240082437A1 (en) 2021-01-12 2024-03-14 Hoffmann-La Roche Inc. Split antibodies which bind to cancer cells and target radionuclides to said cells
MX2023008083A (en) 2021-01-13 2023-07-13 Hoffmann La Roche Combination therapy.
WO2022162587A1 (en) 2021-01-27 2022-08-04 Centre Hospitalier Universitaire Vaudois (C.H.U.V.) Anti-sars-cov-2 antibodies and use thereof in the treatment of sars-cov-2 infection
WO2022162201A1 (en) 2021-01-28 2022-08-04 Vaccinvent Gmbh Method and means for modulating b-cell mediated immune responses
CN117120084A (en) 2021-01-28 2023-11-24 维肯芬特有限责任公司 Methods and means for modulating B cell mediated immune responses
WO2022162203A1 (en) 2021-01-28 2022-08-04 Vaccinvent Gmbh Method and means for modulating b-cell mediated immune responses
EP4288458A1 (en) 2021-02-03 2023-12-13 Genentech, Inc. Multispecific binding protein degrader platform and methods of use
CA3210753A1 (en) 2021-02-09 2022-08-18 University Of Georgia Research Foundation, Inc. Human monoclonal antibodies against pneumococcal antigens
KR20230142790A (en) 2021-02-09 2023-10-11 더 유나이티드 스테이츠 오브 어메리카, 애즈 리프리젠티드 바이 더 세크러테리, 디파트먼트 오브 헬쓰 앤드 휴먼 서비씨즈 Antibodies targeting the coronavirus SPIKE PROTEIN
CA3208365A1 (en) 2021-02-15 2022-08-18 Chantal KUHN Cell therapy compositions and methods for modulating tgf-b signaling
GB202102396D0 (en) 2021-02-19 2021-04-07 Adc Therapeutics Sa Molecular adjuvant
WO2022180172A1 (en) 2021-02-26 2022-09-01 Bayer Aktiengesellschaft Inhibitors of il-11 or il-11ra for use in the treatment of abnormal uterine bleeding
US20220306743A1 (en) 2021-03-01 2022-09-29 Xilio Development, Inc. Combination of ctla4 and pd1/pdl1 antibodies for treating cancer
AU2022230384A1 (en) 2021-03-01 2023-09-07 Xilio Development, Inc. Combination of masked ctla4 and pd1/pdl1 antibodies for treating cancer
EP4301418A1 (en) 2021-03-03 2024-01-10 Sorrento Therapeutics, Inc. Antibody-drug conjugates comprising an anti-bcma antibody
JP2024512324A (en) 2021-03-05 2024-03-19 ジーオー セラピューティクス,インコーポレイテッド Anti-glycoCD44 antibodies and their uses
WO2022187863A1 (en) 2021-03-05 2022-09-09 Dynamicure Biotechnology Llc Anti-vista constructs and uses thereof
BR112023018400A2 (en) 2021-03-12 2023-12-12 Janssen Biotech Inc METHOD FOR TREATMENT OF PSORIATIC ARTHRITIS PATIENTS WITH INADEQUATE RESPONSE TO TNF THERAPY WITH SPECIFIC ANTI-IL23 ANTIBODY
JP2024512377A (en) 2021-03-12 2024-03-19 ジェネンテック, インコーポレイテッド Anti-KLK7 antibodies, anti-KLK5 antibodies, multispecific anti-KLK5/KLK7 antibodies, and methods of use
IL305802A (en) 2021-03-12 2023-11-01 Janssen Biotech Inc Safe and effective method of treating psoriatic arthritis with anti-il23 specific antibody
KR20230156373A (en) 2021-03-15 2023-11-14 제넨테크, 인크. Therapeutic compositions and methods of treating lupus nephritis
WO2022197877A1 (en) 2021-03-19 2022-09-22 Genentech, Inc. Methods and compositions for time delayed bio-orthogonal release of cytotoxic agents
TW202300648A (en) 2021-03-25 2023-01-01 美商當康生物科技有限公司 Anti-igfbp7 constructs and uses thereof
PE20240357A1 (en) 2021-03-30 2024-02-27 Bayer Ag ANTI-SEMA3A ANTIBODIES AND USES THEREOF
AR125344A1 (en) 2021-04-15 2023-07-05 Chugai Pharmaceutical Co Ltd ANTI-C1S ANTIBODY
IL307501A (en) 2021-04-19 2023-12-01 Hoffmann La Roche Modified mammalian cells
CN117222412A (en) 2021-04-23 2023-12-12 豪夫迈·罗氏有限公司 Prevention or alleviation of NK cell binding agent-related adverse reactions
JP2024517535A (en) 2021-04-30 2024-04-23 エフ・ホフマン-ラ・ロシュ・アクチェンゲゼルシャフト Administration of combination therapy with anti-CD20/anti-CD3 bispecific antibody and anti-CD79B antibody drug conjugate
IL308351A (en) 2021-05-12 2024-01-01 Genentech Inc Methods of using anti-cd79b immunoconjugates to treat diffuse large b-cell lymphoma
JP2024518545A (en) 2021-05-14 2024-05-01 ジェネンテック, インコーポレイテッド TREM2 agonists
WO2022243261A1 (en) 2021-05-19 2022-11-24 F. Hoffmann-La Roche Ag Agonistic cd40 antigen binding molecules targeting cea
WO2022246259A1 (en) 2021-05-21 2022-11-24 Genentech, Inc. Modified cells for the production of a recombinant product of interest
CA3220227A1 (en) 2021-05-28 2022-12-01 Matthew Bruce Combination therapies for treating cancer
AR126009A1 (en) 2021-06-02 2023-08-30 Hoffmann La Roche CD28 ANTIGEN-BINDING AGONIST MOLECULES THAT TARGET EPCAM
CN117480184A (en) 2021-06-04 2024-01-30 中外制药株式会社 anti-DDR 2 antibodies and uses thereof
AU2022289684A1 (en) 2021-06-09 2023-10-05 F. Hoffmann-La Roche Ag Combination of a particular braf inhibitor (paradox breaker) and a pd-1 axis binding antagonist for use in the treatment of cancer
AU2022289017A1 (en) 2021-06-11 2023-11-30 Genentech, Inc. Method for treating chronic obstructive pulmonary disease with an st2 antagonist
WO2022263638A1 (en) 2021-06-17 2022-12-22 Centre Hospitalier Universitaire Vaudois (C.H.U.V.) Anti-sars-cov-2 antibodies and use thereof in the treatment of sars-cov-2 infection
EP4355785A1 (en) 2021-06-17 2024-04-24 Amberstone Biosciences, Inc. Anti-cd3 constructs and uses thereof
AU2022297107A1 (en) 2021-06-25 2024-01-18 Chugai Seiyaku Kabushiki Kaisha Use of anti-ctla-4 antibody
TW202317627A (en) 2021-06-25 2023-05-01 日商中外製藥股份有限公司 Anti-ctla-4 antibodies
WO2023283611A1 (en) 2021-07-08 2023-01-12 Staidson Biopharma Inc. Antibodies specifically recognizing tnfr2 and uses thereof
IL309987A (en) 2021-07-09 2024-03-01 Janssen Biotech Inc Manufacturing methods for producing anti-il12/il23 antibody compositions
WO2023288182A1 (en) 2021-07-12 2023-01-19 Genentech, Inc. Structures for reducing antibody-lipase binding
IL309856A (en) 2021-07-14 2024-02-01 Genentech Inc Anti-c-c motif chemokine receptor 8 (ccr8) antibodies and methods of use
CN115812082A (en) 2021-07-14 2023-03-17 舒泰神(北京)生物制药股份有限公司 Antibody specifically recognizing CD40 and application thereof
WO2023001884A1 (en) 2021-07-22 2023-01-26 F. Hoffmann-La Roche Ag Heterodimeric fc domain antibodies
WO2023004386A1 (en) 2021-07-22 2023-01-26 Genentech, Inc. Brain targeting compositions and methods of use thereof
WO2023012147A1 (en) 2021-08-03 2023-02-09 F. Hoffmann-La Roche Ag Bispecific antibodies and methods of use
CA3228178A1 (en) 2021-08-05 2023-02-09 Go Therapeutics, Inc. Anti-glyco-muc4 antibodies and their uses
WO2023019092A1 (en) 2021-08-07 2023-02-16 Genentech, Inc. Methods of using anti-cd79b immunoconjugates to treat diffuse large b-cell lymphoma
CN117897409A (en) 2021-08-13 2024-04-16 基因泰克公司 Administration of anti-tryptase antibodies
AU2022327859A1 (en) 2021-08-13 2024-02-22 Glaxosmithkline Intellectual Property Development Limited Cytotoxicity targeting chimeras
AU2022327742A1 (en) 2021-08-13 2024-03-14 Glaxosmithkline Intellectual Property Development Limited Cytotoxicity targeting chimeras for ccr2-expressing cells
CN117858905A (en) 2021-08-19 2024-04-09 豪夫迈·罗氏有限公司 Multivalent anti-variant FC region antibodies and methods of use
CA3229448A1 (en) 2021-08-23 2023-03-02 Immunitas Therapeutics, Inc. Anti-cd161 antibodies and uses thereof
WO2023028591A1 (en) 2021-08-27 2023-03-02 Genentech, Inc. Methods of treating tau pathologies
WO2023034750A1 (en) 2021-08-30 2023-03-09 Genentech, Inc. Anti-polyubiquitin multispecific antibodies
TW202325733A (en) 2021-09-03 2023-07-01 美商Go治療公司 Anti-glyco-lamp1 antibodies and their uses
TW202328188A (en) 2021-09-03 2023-07-16 美商Go治療公司 Anti-glyco-cmet antibodies and their uses
CA3232223A1 (en) 2021-09-17 2023-03-23 Ying Fu Synthetic humanized llama nanobody library and use thereof to identify sars-cov-2 neutralizing antibodies
TW202321308A (en) 2021-09-30 2023-06-01 美商建南德克公司 Methods for treatment of hematologic cancers using anti-tigit antibodies, anti-cd38 antibodies, and pd-1 axis binding antagonists
CA3233953A1 (en) 2021-10-05 2023-04-13 Matthew Bruce Combination therapies for treating cancer
WO2023073615A1 (en) 2021-10-29 2023-05-04 Janssen Biotech, Inc. Methods of treating crohn's disease with anti-il23 specific antibody
WO2023081818A1 (en) 2021-11-05 2023-05-11 American Diagnostics & Therapy, Llc (Adxrx) Monoclonal antibodies against carcinoembryonic antigens, and their uses
TW202342095A (en) 2021-11-05 2023-11-01 英商阿斯特捷利康英國股份有限公司 Composition for treatment and prevention of covid-19
WO2023086807A1 (en) 2021-11-10 2023-05-19 Genentech, Inc. Anti-interleukin-33 antibodies and uses thereof
US20230151087A1 (en) 2021-11-15 2023-05-18 Janssen Biotech, Inc. Methods of Treating Crohn's Disease with Anti-IL23 Specific Antibody
CA3236006A1 (en) 2021-11-16 2023-05-25 Genentech, Inc. Methods and compositions for treating systemic lupus erythematosus (sle) with mosunetuzumab
AR127692A1 (en) 2021-11-16 2024-02-21 Ac Immune Sa ANTI-ASC ANTIBODIES FOR USE IN ANTI-INFLAMMATORY TREATMENTS
WO2023095000A1 (en) 2021-11-23 2023-06-01 Janssen Biotech, Inc. Method of treating ulcerative colitis with anti-il23 specific antibody
WO2023094569A1 (en) 2021-11-26 2023-06-01 F. Hoffmann-La Roche Ag Combination therapy of anti-tyrp1/anti-cd3 bispecific antibodies and tyrp1-specific antibodies
AR127887A1 (en) 2021-12-10 2024-03-06 Hoffmann La Roche ANTIBODIES THAT BIND CD3 AND PLAP
AR128031A1 (en) 2021-12-20 2024-03-20 Hoffmann La Roche ANTI-LTBR AGONIST ANTIBODIES AND BISPECIFIC ANTIBODIES THAT COMPRISE THEM
US20230227545A1 (en) 2022-01-07 2023-07-20 Johnson & Johnson Enterprise Innovation Inc. Materials and methods of il-1beta binding proteins
WO2023141445A1 (en) 2022-01-19 2023-07-27 Genentech, Inc. Anti-notch2 antibodies and conjugates and methods of use
WO2023154824A1 (en) 2022-02-10 2023-08-17 The United States Of America, As Represented By The Secretary, Department Of Health And Human Services Human monoclonal antibodies that broadly target coronaviruses
TW202342519A (en) 2022-02-16 2023-11-01 瑞士商Ac 免疫有限公司 Humanized anti-tdp-43 binding molecules and uses thereof
WO2023159182A1 (en) 2022-02-18 2023-08-24 Rakuten Medical, Inc. Anti-programmed death-ligand 1 (pd-l1) antibody molecules, encoding polynucleotides, and methods of use
WO2023161881A1 (en) 2022-02-25 2023-08-31 Glaxosmithkline Intellectual Property Development Limited Cytotoxicity targeting chimeras for ccr2-expressing cells
WO2023161876A1 (en) 2022-02-25 2023-08-31 Glaxosmithkline Intellectual Property Development Limited Cytotoxicity targeting chimeras for cxcr3-expressing cells
WO2023161875A1 (en) 2022-02-25 2023-08-31 Glaxosmithkline Intellectual Property Development Limited Cytotoxicity targeting chimeras for prostate specific membrane antigen-expressing cells
WO2023161877A1 (en) 2022-02-25 2023-08-31 Glaxosmithkline Intellectual Property Development Limited Cytotoxicity targeting chimeras for integrin avb6-expressing cells
WO2023161879A1 (en) 2022-02-25 2023-08-31 Glaxosmithkline Intellectual Property Development Limited Cytotoxicity targeting chimeras for fibroblast activation protein-expressing cells
WO2023161874A1 (en) 2022-02-25 2023-08-31 Glaxosmithkline Intellectual Property Development Limited Cytotoxicity targeting chimeras for c-c chemokine receptor 2-expressing cells
WO2023161878A1 (en) 2022-02-25 2023-08-31 Glaxosmithkline Intellectual Property Development Limited Cytotoxicity targeting chimeras for folate receptor-expressing cells
WO2023173026A1 (en) 2022-03-10 2023-09-14 Sorrento Therapeutics, Inc. Antibody-drug conjugates and uses thereof
WO2023180353A1 (en) 2022-03-23 2023-09-28 F. Hoffmann-La Roche Ag Combination treatment of an anti-cd20/anti-cd3 bispecific antibody and chemotherapy
WO2023192827A1 (en) 2022-03-26 2023-10-05 The United States Of America, As Represented By The Secretary, Department Of Health And Human Services Bispecific antibodies to hiv-1 env and their use
WO2023186756A1 (en) 2022-03-28 2023-10-05 F. Hoffmann-La Roche Ag Interferon gamma variants and antigen binding molecules comprising these
WO2023192881A1 (en) 2022-03-28 2023-10-05 The United States Of America, As Represented By The Secretary, Department Of Health And Human Services Neutralizing antibodies to hiv-1 env and their use
WO2023187707A1 (en) 2022-03-30 2023-10-05 Janssen Biotech, Inc. Method of treating mild to moderate psoriasis with il-23 specific antibody
GB202204813D0 (en) 2022-04-01 2022-05-18 Bradcode Ltd Human monoclonal antibodies and methods of use thereof
WO2023191816A1 (en) 2022-04-01 2023-10-05 Genentech, Inc. Dosing for treatment with anti-fcrh5/anti-cd3 bispecific antibodies
WO2023194565A1 (en) 2022-04-08 2023-10-12 Ac Immune Sa Anti-tdp-43 binding molecules
JP2024517042A (en) 2022-04-13 2024-04-19 エフ・ホフマン-ラ・ロシュ・アクチェンゲゼルシャフト Pharmaceutical compositions and methods of use of anti-CD20/anti-CD3 bispecific antibodies
US20230406930A1 (en) 2022-04-13 2023-12-21 Genentech, Inc. Pharmaceutical compositions of therapeutic proteins and methods of use
WO2023203177A1 (en) 2022-04-20 2023-10-26 Kantonsspital St. Gallen Antibodies or antigen-binding fragments pan-specifically binding to gremlin-1 and gremlin-2 and uses thereof
WO2023212304A1 (en) 2022-04-29 2023-11-02 23Andme, Inc. Antigen binding proteins
WO2023209177A1 (en) 2022-04-29 2023-11-02 Astrazeneca Uk Limited Sars-cov-2 antibodies and methods of using the same
WO2023215737A1 (en) 2022-05-03 2023-11-09 Genentech, Inc. Anti-ly6e antibodies, immunoconjugates, and uses thereof
WO2023219613A1 (en) 2022-05-11 2023-11-16 Genentech, Inc. Dosing for treatment with anti-fcrh5/anti-cd3 bispecific antibodies
WO2023217933A1 (en) 2022-05-11 2023-11-16 F. Hoffmann-La Roche Ag Antibody that binds to vegf-a and il6 and methods of use
WO2023223265A1 (en) 2022-05-18 2023-11-23 Janssen Biotech, Inc. Method for evaluating and treating psoriatic arthritis with il23 antibody
WO2023227641A1 (en) 2022-05-27 2023-11-30 Glaxosmithkline Intellectual Property Development Limited Use of tnf-alpha binding proteins and il-7 binding proteins in medical treatment
WO2023235699A1 (en) 2022-05-31 2023-12-07 Jounce Therapeutics, Inc. Antibodies to lilrb4 and uses thereof
WO2023240058A2 (en) 2022-06-07 2023-12-14 Genentech, Inc. Prognostic and therapeutic methods for cancer
WO2023237706A2 (en) 2022-06-08 2023-12-14 Institute For Research In Biomedicine (Irb) Cross-specific antibodies, uses and methods for discovery thereof
WO2024015897A1 (en) 2022-07-13 2024-01-18 Genentech, Inc. Dosing for treatment with anti-fcrh5/anti-cd3 bispecific antibodies
WO2024020407A1 (en) 2022-07-19 2024-01-25 Staidson Biopharma Inc. Antibodies specifically recognizing b- and t-lymphocyte attenuator (btla) and uses thereof
WO2024020432A1 (en) 2022-07-19 2024-01-25 Genentech, Inc. Dosing for treatment with anti-fcrh5/anti-cd3 bispecific antibodies
WO2024020579A1 (en) 2022-07-22 2024-01-25 Bristol-Myers Squibb Company Antibodies binding to human pad4 and uses thereof
WO2024020564A1 (en) 2022-07-22 2024-01-25 Genentech, Inc. Anti-steap1 antigen-binding molecules and uses thereof
WO2024030829A1 (en) 2022-08-01 2024-02-08 The United States Of America, As Represented By The Secretary, Department Of Health And Human Services Monoclonal antibodies that bind to the underside of influenza viral neuraminidase
WO2024028731A1 (en) 2022-08-05 2024-02-08 Janssen Biotech, Inc. Transferrin receptor binding proteins for treating brain tumors
WO2024028732A1 (en) 2022-08-05 2024-02-08 Janssen Biotech, Inc. Cd98 binding constructs for treating brain tumors
WO2024042112A1 (en) 2022-08-25 2024-02-29 Glaxosmithkline Intellectual Property Development Limited Antigen binding proteins and uses thereof
WO2024044779A2 (en) 2022-08-26 2024-02-29 Juno Therapeutics, Inc. Antibodies and chimeric antigen receptors specific for delta-like ligand 3 (dll3)
WO2024049949A1 (en) 2022-09-01 2024-03-07 Genentech, Inc. Therapeutic and diagnostic methods for bladder cancer
WO2024054822A1 (en) 2022-09-07 2024-03-14 The United States Of America, As Represented By The Secretary, Department Of Health And Human Services Engineered sars-cov-2 antibodies with increased neutralization breadth
WO2024054929A1 (en) 2022-09-07 2024-03-14 Dynamicure Biotechnology Llc Anti-vista constructs and uses thereof
WO2024064826A1 (en) 2022-09-22 2024-03-28 The United States Of America, As Represented By The Secretary, Department Of Health And Human Services Neutralizing antibodies to plasmodium falciparum circumsporozoite protein and their use
WO2024068996A1 (en) 2022-09-30 2024-04-04 Centre Hospitalier Universitaire Vaudois (C.H.U.V.) Anti-sars-cov-2 antibodies and use thereof in the treatment of sars-cov-2 infection
WO2024077239A1 (en) 2022-10-07 2024-04-11 Genentech, Inc. Methods of treating cancer with anti-c-c motif chemokine receptor 8 (ccr8) antibodies

Family Cites Families (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4215051A (en) * 1979-08-29 1980-07-29 Standard Oil Company (Indiana) Formation, purification and recovery of phthalic anhydride
KR850004274A (en) * 1983-12-13 1985-07-11 원본미기재 Method for preparing erythropoietin
US4946778A (en) 1987-09-21 1990-08-07 Genex Corporation Single polypeptide chain binding molecules
US4978745A (en) * 1987-11-23 1990-12-18 Centocor, Inc. Immunoreactive heterochain antibodies
US5047335A (en) * 1988-12-21 1991-09-10 The Regents Of The University Of Calif. Process for controlling intracellular glycosylation of proteins
ATE243713T1 (en) * 1989-05-25 2003-07-15 Sloan Kettering Inst Cancer ANTIIDIOTYPIC ANTIBODY THAT INDUCES AN IMMUNE RESPONSE AGAINST A GLYCOSPHINGOLIPIDE AND ITS USE
DE4028800A1 (en) 1990-09-11 1992-03-12 Behringwerke Ag GENETIC SIALYLATION OF GLYCOPROTEINS
US5665569A (en) 1991-08-22 1997-09-09 Nissin Shokuhin Kabushiki Kaisha HIV immunotherapeutics
US5753229A (en) * 1991-09-25 1998-05-19 Mordoh; Jose Monoclonal antibodies reactive with tumor proliferating cells
US5958403A (en) * 1992-02-28 1999-09-28 Beth Israel Hospital Association Methods and compounds for prevention of graft rejection
US5736137A (en) * 1992-11-13 1998-04-07 Idec Pharmaceuticals Corporation Therapeutic application of chimeric and radiolabeled antibodies to human B lymphocyte restricted differentiation antigen for treatment of B cell lymphoma
RO118524B1 (en) 1992-11-13 2003-06-30 Idec Pharmaceuticals Corp San Method for treating a disorder related to cells b
JPH08507680A (en) 1993-01-12 1996-08-20 バイオジェン インコーポレイテッド Recombinant anti-VLA4 antibody molecule
EP0749492A1 (en) 1994-03-09 1996-12-27 Abbott Laboratories Humanized milk
US5811524A (en) * 1995-06-07 1998-09-22 Idec Pharmaceuticals Corporation Neutralizing high affinity human monoclonal antibodies specific to RSV F-protein and methods for their manufacture and therapeutic use thereof
JP3606536B2 (en) * 1995-11-17 2005-01-05 タカラバイオ株式会社 Viral replication inhibitor
GB9603256D0 (en) * 1996-02-16 1996-04-17 Wellcome Found Antibodies
WO1998006855A1 (en) 1996-08-16 1998-02-19 The Texas A & M University System Compositions and methods for delivery of nucleic acids to hepatocytes
US6183744B1 (en) * 1997-03-24 2001-02-06 Immunomedics, Inc. Immunotherapy of B-cell malignancies using anti-CD22 antibodies
US6306393B1 (en) 1997-03-24 2001-10-23 Immunomedics, Inc. Immunotherapy of B-cell malignancies using anti-CD22 antibodies
US5952203A (en) * 1997-04-11 1999-09-14 The University Of British Columbia Oligosaccharide synthesis using activated glycoside derivative, glycosyl transferase and catalytic amount of nucleotide phosphate
DK2180007T4 (en) 1998-04-20 2017-11-27 Roche Glycart Ag Glycosylation technique for antibodies to enhance antibody-dependent cell cytotoxicity
US6946292B2 (en) 2000-10-06 2005-09-20 Kyowa Hakko Kogyo Co., Ltd. Cells producing antibody compositions with increased antibody dependent cytotoxic activity
WO2002079255A1 (en) * 2001-04-02 2002-10-10 Idec Pharmaceuticals Corporation RECOMBINANT ANTIBODIES COEXPRESSED WITH GnTIII
KR20040054669A (en) 2001-08-03 2004-06-25 글리카트 바이오테크놀로지 아게 Antibody glycosylation variants having increased antibody-dependent cellular cytotoxicity
EP2264151B1 (en) 2003-01-22 2016-04-20 Roche Glycart AG Fusion constructs and use of same to produce antibodies with increased FC receptor binding affinity and effector function
RS57466B1 (en) 2003-11-05 2018-09-28 Roche Glycart Ag Antigen binding molecules with increased fc receptor binding affinity and effector function
CN101115773B (en) 2005-02-07 2015-06-10 罗氏格黎卡特股份公司 Antigen binding molecules that bind egfr, vectors encoding same, and uses thereof
CN101291954B (en) 2005-08-26 2013-03-27 罗氏格黎卡特股份公司 Modified antigen binding molecules with altered cell signaling activity
AR062223A1 (en) 2006-08-09 2008-10-22 Glycart Biotechnology Ag MOLECULES OF ADHESION TO THE ANTIGEN THAT ADHER TO EGFR, VECTORS THAT CODE THEM, AND THEIR USES OF THESE
AU2010288469A1 (en) 2009-08-31 2012-03-01 Roche Glycart Ag Affinity-matured humanized anti CEA monoclonal antibodies

Similar Documents

Publication Publication Date Title
US9631023B2 (en) Antibody glycosylation variants having increased antibody-dependent cellular cytotoxicity
AU2002339845A1 (en) Antibody glycosylation variants having increased antibody-dependent cellular cytotoxicity
EP2264152B1 (en) Fusion constructs and use of same to produce antibodies with increased FC receptor binding affinity and effector function