WO2024245333A1 - 脂肽用于提高植物品质的用途 - Google Patents

脂肽用于提高植物品质的用途 Download PDF

Info

Publication number
WO2024245333A1
WO2024245333A1 PCT/CN2024/096291 CN2024096291W WO2024245333A1 WO 2024245333 A1 WO2024245333 A1 WO 2024245333A1 CN 2024096291 W CN2024096291 W CN 2024096291W WO 2024245333 A1 WO2024245333 A1 WO 2024245333A1
Authority
WO
WIPO (PCT)
Prior art keywords
lipopeptide
plant
composition
content
group
Prior art date
Application number
PCT/CN2024/096291
Other languages
English (en)
French (fr)
Inventor
王苗苗
陈博
Original Assignee
北京衍微科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京衍微科技有限公司 filed Critical 北京衍微科技有限公司
Publication of WO2024245333A1 publication Critical patent/WO2024245333A1/zh

Links

Classifications

    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N37/00Biocides, pest repellants or attractants, or plant growth regulators containing organic compounds containing a carbon atom having three bonds to hetero atoms with at the most two bonds to halogen, e.g. carboxylic acids
    • A01N37/44Biocides, pest repellants or attractants, or plant growth regulators containing organic compounds containing a carbon atom having three bonds to hetero atoms with at the most two bonds to halogen, e.g. carboxylic acids containing at least one carboxylic group or a thio analogue, or a derivative thereof, and a nitrogen atom attached to the same carbon skeleton by a single or double bond, this nitrogen atom not being a member of a derivative or of a thio analogue of a carboxylic group, e.g. amino-carboxylic acids
    • A01N37/46N-acyl derivatives
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01PBIOCIDAL, PEST REPELLANT, PEST ATTRACTANT OR PLANT GROWTH REGULATORY ACTIVITY OF CHEMICAL COMPOUNDS OR PREPARATIONS
    • A01P1/00Disinfectants; Antimicrobial compounds or mixtures thereof
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01PBIOCIDAL, PEST REPELLANT, PEST ATTRACTANT OR PLANT GROWTH REGULATORY ACTIVITY OF CHEMICAL COMPOUNDS OR PREPARATIONS
    • A01P21/00Plant growth regulators
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01PBIOCIDAL, PEST REPELLANT, PEST ATTRACTANT OR PLANT GROWTH REGULATORY ACTIVITY OF CHEMICAL COMPOUNDS OR PREPARATIONS
    • A01P3/00Fungicides
    • CCHEMISTRY; METALLURGY
    • C05FERTILISERS; MANUFACTURE THEREOF
    • C05GMIXTURES OF FERTILISERS COVERED INDIVIDUALLY BY DIFFERENT SUBCLASSES OF CLASS C05; MIXTURES OF ONE OR MORE FERTILISERS WITH MATERIALS NOT HAVING A SPECIFIC FERTILISING ACTIVITY, e.g. PESTICIDES, SOIL-CONDITIONERS, WETTING AGENTS; FERTILISERS CHARACTERISED BY THEIR FORM
    • C05G3/00Mixtures of one or more fertilisers with additives not having a specially fertilising activity
    • CCHEMISTRY; METALLURGY
    • C05FERTILISERS; MANUFACTURE THEREOF
    • C05GMIXTURES OF FERTILISERS COVERED INDIVIDUALLY BY DIFFERENT SUBCLASSES OF CLASS C05; MIXTURES OF ONE OR MORE FERTILISERS WITH MATERIALS NOT HAVING A SPECIFIC FERTILISING ACTIVITY, e.g. PESTICIDES, SOIL-CONDITIONERS, WETTING AGENTS; FERTILISERS CHARACTERISED BY THEIR FORM
    • C05G3/00Mixtures of one or more fertilisers with additives not having a specially fertilising activity
    • C05G3/60Biocides or preservatives, e.g. disinfectants, pesticides or herbicides; Pest repellants or attractants

Definitions

  • the present application relates to the fields of biotechnology and biochemical engineering, and in particular to the use of lipopeptides for improving plant quality.
  • Lipopeptide is composed of hydrophobic alkyl chain and hydrophilic polypeptide, and is a naturally synthesized cyclic compound. Lipopeptide has antibacterial, antifungal, anti-inflammatory activities, and has the advantages of high efficiency, wide selectivity, and biodegradability. According to the type, number, and ring-forming groups of amino acids in the peptide ring, Bacillus lipopeptides can be divided into surfactin, fenmucin, iturin, lichenin, etc.
  • surfactin is a cyclic lipopeptide biosurfactant with excellent surface/interfacial activity, which can significantly reduce the surface tension of water, and exhibits good antifungal, antiviral, antitumor, insecticidal, and anti-mycoplasma biological activities. It has great application potential in the fields of medicine, agriculture, food, daily chemicals, and oil extraction.
  • lipopeptides can degrade residual pesticides. Adding lipopeptide biosurfactants or surfactant-producing bacteria to pesticide-contaminated soil can significantly degrade harmful components. The degradation rate of endosulfan insecticide can be increased by 30%-45%. Lipopeptides have a significant inhibitory effect on plant pathogens and have application value in plant disease prevention and control. They can be used to prevent and control plant diseases and insect pests and increase crop yields. Li Mingtong et al. reported that lipopeptides have a significant antibacterial effect on ginger root rot. After the application of lipopeptides, the incidence of ginger root rot decreased by 40.0%-56.7%, and the disease index decreased by 41.0-58.9.
  • Lipopeptides have a significant antibacterial effect on Fusarium graminearum, banana wilt, rice blast, and loquat anthracnose. Lipopeptides have good application prospects in biological control, food safety, and soil pollution reduction. The promotion and application of lipopeptide biological pesticides will contribute to the sustainable development of green agriculture and organic agriculture, and provide new biological pesticide varieties to choose from, which will achieve social and economic benefits.
  • Vegetables contain a variety of minerals, vitamins and dietary fiber, which play an important role in the physiological activities of the human body. Many nutrients needed by the human body come from the intake of vegetables.
  • Fruits are low in energy but high in vitamins, minerals, dietary fiber and plant compounds, which are important for maintaining human health, maintaining normal intestinal function and reducing the risk of chronic diseases. Fruits also contain various organic acids, aromatic substances and pigments, which can increase appetite and help digestion. Human life is closely related to green plants. At present, in plant cultivation and management, plant growth is often regulated by applying nutrient solution, plant growth regulator, nitrogen fertilizer and other measures.
  • the nutrient concentration of the nutrient solution is easily affected by multiple factors such as root secretions, pH, water quality, etc., and the effect is unstable.
  • the nutrient solution is applied to the soil, it is easily absorbed by the soil, and the nutrients that can be absorbed by the plant roots are very few and unbalanced.
  • Plant growth regulators have the function of plant hormones or are artificial biomimetic plant hormones. Plant growth regulators must be used during the peak growth period of plants. If used at the wrong time, it will inhibit plant growth.
  • Nitrogen fertilizer is needed throughout the entire growth period of plants and is the nutrient with the highest demand. Its main function is to promote the growth of plant stems and leaves, and it is suitable for base fertilizer and topdressing. The amount of nitrogen fertilizer applied is extremely difficult to control. Low nitrogen fertilizer application will cause slow plant growth and yellowing of lower leaves. Excessive nitrogen will cause leaves to be too large and internodes to be too long, which will cause an imbalance between plant reproductive growth and nutritional growth, causing plants to grow too long and mature too late, and will easily cause flowers and fruits to drop, and fruit development to be slow.
  • the present application solves the technical problems existing in the prior art through the following technical solutions.
  • composition for improving plant quality wherein the composition contains:
  • compositions for improving plant quality while promoting root system and/or plant growth wherein the composition contains:
  • composition for agricultural fertilizer, agricultural adjuvant or pesticide, wherein the composition contains:
  • R represents the carbon chain of the fatty acid chain
  • a 1 , A 2 , A 3 ... Am represent the 1st, 2nd, 3rd ... mth amino acids on the peptide chain respectively
  • the carboxyl group of the fatty acid is connected to the N-terminus of A 1
  • the C-terminal carboxyl group of Am is connected to the hydroxyl or amino group of other amino acids on the fatty acid or peptide chain to form a ring structure
  • the linear lipopeptide is a linear product obtained after the cyclic lipopeptide is ring-opened.
  • lipopeptide is one or more selected from the following group: surfactin family, iturin family and fenmucin family.
  • lipopeptide is one or more selected from the following group: surfactin, iturin, fenmucin, lichenin, babylonin, pamirasin, sporomycin, mycobacterium, phospholipids, fusarium, kurstak, bacillus, polymyxin, octapeptidin, agroin and polypeptide bacteriocin.
  • the bacteria is selected from the group consisting of Bacillus, Pseudomonas, Streptomyces, Arthrobacter and Burkholderia
  • the actinomycetes are selected from the group consisting of Streptomyces, Amycolomonas and Microbacterium
  • the fungi are selected from the group consisting of Aspergillus, Microcystis, Sporophore, Myrocera, Scopulariopsis, Microspores and Acanthosporium
  • the cyanobacteria are selected from the group consisting of Marine Cyanobacteria, Lithospermum and Penicillium.
  • lipopeptide is obtained by culturing Bacillus and regulating the expression of lipopeptide synthesis-related genes
  • the lipopeptide synthesis-related genes are selected from the following group: lipopeptide synthesis genes, transmembrane transport protein genes ycxA, biotin carboxylase genes yngH, spore synthesis genes spoIVA/B/C/F, spoVA/B/D/E and leucine biosynthesis pathway genes leuABCD/ilvK.
  • lipopeptide synthesis gene is selected from the following group: surfactin synthesis gene srfA, fenmustine synthesis gene fen, lichenin synthesis gene lic, sporin synthesis gene bam, mycosubtiline myc, iturin synthesis gene itu, phospholipid synthesis gene pps, fusarium fus, kurstaktoxin krs, polymyxin pmx and octapeptidemycin oct.
  • composition further contains 0.01-99.99% by weight of one or more components selected from the following group: polysaccharides, oligosaccharides, dextrins, amino acids, oligopeptides, lipids, proteins, and fatty acids or their derivatives, inorganic salts, dispersants, wetting agents and polymers, etc.
  • composition is a fermentation broth, aqueous solution, concentrated solution or partially purified, dried powder containing lipopeptides.
  • composition is a culture solution obtained by culturing bacteria, actinomycetes, fungi and cyanobacteria capable of producing lipopeptides.
  • the food or livestock plant is a Poaceae plant
  • the vegetable plant is selected from the following groups: Solanaceae, Cruciferae, Chenopodiaceae, Compositae, Umbelliferae, Cucurbitaceae, Lamiaceae, Malvaceae and Convolvulaceae
  • the fruit plant is selected from the following group: strawberry, blueberry, cranberry, cranberry, cherry, peach, plum, date, apple, pear, citrus, orange, grapefruit and banana
  • the horticultural plant is selected from the following group: Pachira aquatica, Chlorophytum comosum, Epipremnum aureum, Jasmine, Money Tree, Lucky Bamboo, Yuanbao Tree, Banyan Tree, Dieffenbachia and Miniature Coconut Tree
  • the flower plant is selected from the following group: daffodil, dahlia, freesia, iris, peony, peony, tulip,
  • the food or livestock plant is selected from the group consisting of wheat, rice, upland rice, corn, oats, rye, barley, buckwheat, millet, sorghum, highland barley, wild rice stem, teff, coix, sugarcane, beet, sweet potato, oat grass, sedge grass, wheatgrass, sand reed grass, sheep grass, Elymus, barley grass, new wheat grass, rhododendron, bermudagrass, three-eared silvergrass, andropogon spp., duckbill grass, wild ancient grass, double flower grass, bluestem grass, bamboo spp., teosinte, bullwhip grass, alfalfa and hollow axis grass.
  • lipopeptides for improving plant quality and promoting root system and/or plant growth.
  • lipopeptides in agricultural fertilizers, agricultural adjuvants or pesticides.
  • the quality parameter of the plant cultivated with the composition or lipopeptide is at least 110%, at least 120%, at least 130%, at least 140% or at least 150% of the control group without the addition of the composition or lipopeptide,
  • the quality parameters are selected from one or more of the following groups: chlorophyll content, total nitrogen content, vitamin content, protein content, soluble sugar content, fatty acid content, amino acid content, anthocyanin content, lycopene content, carotenoid content, pectin content, growth cycle, drought resistance, cold resistance and/or lodging resistance.
  • a method for improving plant quality comprising:
  • quality parameters of the cultivated plants and/or their fruits are selected from one or more of the following groups: chlorophyll content, total nitrogen content, vitamin content, protein content, soluble sugar content, fatty acid content, amino acid content, anthocyanin content, lycopene content, carotenoid content, pectin content, growth cycle, drought resistance, cold resistance and/or lodging resistance.
  • the quality parameter of the plant grown with the addition of the composition is at least 110%, at least 120%, at least 130%, at least 140% or at least 150% of the control group without the addition of the composition.
  • the growth parameter of the plant cultured with the addition of the composition is at least 110%, at least 120%, at least 130%, at least 140% or at least 150% of the control group without the addition of the composition.
  • Figure 1 shows the effect of the lipopeptide composition on improving the quality of corn.
  • the upper left figure shows a comparison of the number of rows of corn harvested in the field and the number of corn kernels per row in the control group and the lipopeptide treatment group, and the upper right, lower left and lower right figures respectively show that the soluble sugar content (%), anthocyanin content (mg/100g) and fatty acid content (%) of the corn in the lipopeptide treatment group are significantly improved compared with the control group;
  • Figure 2 shows the effect of the lipopeptide composition on improving the quality of wheat.
  • the left and right figures show that the soluble sugar content (%) and protein content (%) of the wheat in the lipopeptide treatment group are significantly increased compared with the control group;
  • Figure 3 shows the effect of the lipopeptide composition on improving the quality of spinach.
  • the left, middle and right figures respectively show that the chlorophyll SPAD, total nitrogen content (mg/g) and vitamins (mg/100g) of spinach in the lipopeptide treatment group are significantly improved compared with the control group;
  • Figure 4 shows the effect of the lipopeptide composition on improving the quality of cucumbers.
  • the left, middle and right figures respectively show that the soluble sugar content (%), protein content (%) and vitamin C content (mg/100g) of the cucumbers in the lipopeptide treatment group are significantly improved compared with the control group;
  • Figure 5 shows the effect of the lipopeptide composition on improving the quality of wax gourd.
  • the left and right figures show that the flowering and fruiting of wax gourd in the lipopeptide treatment group are significantly improved compared with the control group;
  • FIG6 shows the effect of the lipopeptide composition on improving the quality of strawberries.
  • the figures show that the number of flowers, the number of fruits and the number of normal fruit shapes, the soluble sugar content (g/100g), the protein content (g/100g) and the pectin content (g/100g) of the strawberries in the lipopeptide treatment group are significantly improved compared with the control group;
  • Figure 7 shows the growth comparison of the control group plants and the lipopeptide-treated group plants in different plants.
  • the left picture shows the growth comparison of the aboveground part of the corn potted plants in the control group and the lipopeptide-treated group, and the right picture shows the growth comparison of the roots of the corn potted plants in the control group and the lipopeptide-treated group;
  • the left picture shows the seedling stage of the corn in the control group and the lipopeptide-treated group, and the right picture shows the morphology comparison of the corn after harvest in the control group and the lipopeptide-treated group;
  • panel 4 shows the germination potential comparison of wheat in the control group and the lipopeptide-treated group;
  • panel 5 shows the root development comparison of wheat in the control group and the lipopeptide-treated group;
  • panel 6 shows the paper culture comparison of wheat in the control group and the lipopeptide-treated group;
  • panel 7 shows the Growth comparison of Elymus dahliae in the control group and the lipopeptide-treated group
  • lipopeptide lipopeptide, peptideolipid
  • acylpeptide generally refers to a peptide formed by connecting a fatty acid and a peptide chain with an ester bond or an amide bond, and can be divided into cyclic lipopeptides and linear lipopeptides.
  • Cyclic lipopeptides refer to lipopeptides with a cyclic structure, in which the carboxyl group of the fatty acid is connected to the N-terminus of the amino acid on the peptide chain, and the C-terminal carboxyl group of the amino acid on the peptide chain is connected to the hydroxyl or amino group of other amino acids on the fatty acid or peptide chain to form a cyclic structure.
  • the cyclic forms of cyclic lipopeptides include: fatty acid hydroxyl cyclization, fatty acid amino cyclization, and fatty acid cyclization or cyclization, which have the following formulas respectively:
  • Lipopeptides are mainly produced by bacteria, preferably by Bacillus, Pseudomonas, Streptomyces or Arthrobacter (see Janek et al., 2010).
  • the three well-known lipopeptide families are the surfactin family, the iturin family and the fengycin family.
  • the lipopeptide can be one or more selected from the following group: surfactin, iturin, fengycin, lichenin, babylonin, pamilasin, sporebacter The main differences between them are the length of fatty acid side chain, isomerization mode, and the type, number and connection order of amino acids in the peptide ring.
  • the surfactin family includes more than 20 different molecules, which are cyclic peptides formed by condensation of C 12-16 ⁇ -hydroxy fatty acids and 7 amino acids through lactone bonds (Bonmatin et al., 2003).
  • the heptapeptide part has a chiral sequence of LLDLLDL, and the chirality of the D-Leu at the 3rd and 6th positions and the L-amino acid at the 4th position is strictly conserved, playing a key role in the closure of the peptide chain (Peypoux et al., 1999), while amino acid substitutions such as Leu, Val, Ile, and Ala can be found at the 2nd, 4th, and 7th positions (Bonmatin et al., 1995; Peypoux et al., 1991; Peypoux et al., 1994).
  • the molecular structure of surfactin is shown in the following formula (IV):
  • the iturin family has 6 main members: iturin A, C, sporemycin D, F, L and mycosubtilisin (Bonmatin et al., 2003). They are all cyclic peptides formed by a C 14-17 ⁇ -amino fatty acid and a 7-amino acid condensation polypeptide through a lactam bond. All molecules of the iturin family strictly follow the chiral conformation of LDDLLDL and contain a common amino acid sequence ⁇ -amino fatty acid-L-Asx-D-Tyr-D-Asn (Peypoux et al., 1978). The molecular structure of iturin is shown in the following formula (V):
  • the fenmucin family is the third largest lipopeptide family after the surfactin family and the iturin family.
  • the fenmucin family members are formed by the ⁇ -hydroxy fatty acid of C 14-17 connected to the Glu at the first position of the decapeptide cyclic peptide through an ester bond, and the lactone bond is formed by the hydroxyl group of Tyr at the third position and the carbon end of Ile at the tenth position (Nishikiori et al., 1986).
  • the molecular structure of fenmucin is shown in the following formula (VI):
  • the lipopeptide of the present application is a cyclic lipopeptide or a linear lipopeptide.
  • the cyclic lipopeptide of the present application has one of the following formulas (I)-(III):
  • R represents the carbon chain of the fatty acid chain
  • A1 , A2 , A3 ... Am represent the 1st, 2nd, 3rd...mth amino acids on the peptide chain respectively
  • the carboxyl group of the fatty acid is connected to the N-terminus of A1
  • the C-terminal carboxyl group of Am is connected to the hydroxyl or amino group of other amino acids on the fatty acid or peptide chain to form a ring structure.
  • the linear lipopeptide of the present application is a linear product obtained after the ring opening of the cyclic lipopeptide.
  • m in formula (I)-(III) is an integer of 6-20.
  • the lipopeptide of the present application is one or more selected from the following groups: surfactin family, iturin family and fenmucin family. In one embodiment, the lipopeptide of the present application is selected from the following group: surfactin, iturin, fengycin, lichenysin, bamylocin, pumilacidin, bacillomycin, mycosubtilin, plipastatin, fusaricidin, kurstakin, paenibacterin, polymyxin, octapeptin, bacaucin and polypeptin. In one embodiment, the lipopeptide of the present application is surfactin. In one embodiment, the lipopeptide of the present application is iturin. In one embodiment, the lipopeptide of the present application is fengycin.
  • the lipopeptide of the present application is produced by bacteria, actinomycetes, fungi or cyanobacteria. In one embodiment, the lipopeptide of the present application is produced by bacteria. In one embodiment, the bacteria are wild bacteria or genetically engineered bacteria. In one embodiment, the bacteria are selected from the following Group: Bacillus, Pseudomonas, Streptomyces, Arthrobacter and Burkholderia.
  • the lipopeptide of the present application is produced by Bacillus alkalophilus, Bacillus amyloliquefaciens, Bacillus brevis, Bacillus circulans, Bacillus clausii, Bacillus coagulans, Bacillus firmus, Bacillus lautus, Bacillus lentus, Bacillus licheniformis, Bacillus megaterium, Bacillus pumilus, Bacillus stearothermophilus, Bacillus subtilis or Bacillus thuringiensis.
  • the lipopeptide of the present application is produced by Pseudomonas aeruginosa, Pseudomonas fluorescens, Pseudomonas mallei or Pseudomonas pseudomallei.
  • the lipopeptide of the present application is produced by Streptomyces achromogenes, Streptomyces avermitilis, Streptomyces coelicolor, Streptomyces griseus or Streptomyces lividans.
  • the lipopeptide of the present application is produced by Arthrobacter or Arthrobacter luteus.
  • the lipopeptide of the present application is produced by Burkholderia cepacia, Burkholderia pseudomallei or Burkholderia glanders. In one embodiment, the lipopeptide of the present application is produced by Streptomycetaceae, Amycolatopsis and Microbacterium. In one embodiment, the lipopeptide of the present application is produced by Aspergillus, Microascus, Stachylidium, Myrothecium, Sarocladium, Ophiosphaerella and Clavariopsis. In one embodiment, the lipopeptide of the present application is produced by Okeania, Cladonia and Moorea.
  • the lipopeptide of the present application is obtained by culturing Bacillus or Pseudomonas. In one embodiment, the lipopeptide of the present application is obtained by culturing Bacillus and regulating the expression of lipopeptide synthesis-related genes. In one embodiment, the lipopeptide synthesis-related genes are selected from the following groups: lipopeptide synthesis genes, transmembrane transport protein genes ycxA, biotin carboxylase genes yngH, spore synthesis genes spoIVA/B/C/F, spoVA/B/D/E and leucine synthesis pathway genes leuABCD/ilvK.
  • the lipopeptide synthesis genes are selected from the following groups: surfactant The lipopeptide synthesis gene srfA, the fenmustine synthesis gene fen, the lichenin synthesis gene lic, the spore mycin synthesis gene bam, the mycosubtilisin myc, the iturin synthesis gene itu, the phospholipid synthesis gene pps, the fusicide fus, the kurstaktin krs, the polymyxin pmx and the octapeptide oct.
  • the expression of the lipopeptide synthesis-related gene is regulated and selected from the group consisting of overexpression of the srfA gene, overexpression of ycxA, overexpression of yngH, knockout of spoIVA/B/C/F, knockout of spoV A/B/D/E, overexpression of leuABCD and overexpression of ilvK.
  • the overexpression of the srfA gene is obtained by replacing the natural promoter PsrfA with the Pg3 promoter.
  • the Bacillus is Bacillus subtilis THY-7/Pg3-srfA.
  • the present application relates to a composition for improving the quality of plants, comprising 0.001-100 g/L of lipopeptide and an adjuvant.
  • the composition comprises 0.001 g/L, 0.002 g/L, 0.003 g/L, 0.004 g/L, 0.005 g/L, 0.006 g/L, 0.007 g/L, 0.008 g/L, 0.009 g/L, 0.01 g/L, 0.02 g/L, 0.03 g/L, 0.04 g/L, 0.05 g/L, 0.06 g/L, 0.07 g/L, 0.08 g/L, 0.09 g/L, 0.1 g/L, 0.2 g/L, 0.3 g/L, 0.4 g/L, 0.5 g/L , 0.6g/L, 0.7g/L, 0.8g/L, 0.9g/L, 1g/L, 2g/L, 3
  • the composition contains 0.001-0.005 g/L, 0.001-0.01 g/L, 0.001-0.03 g/L, 0.001-0.05 g/L, 0.001-0.1 g/L, 0.001-0.5 g/L, 0.001-0.8 g/L, 0.001-1.0 g/L, 0.001-1.5 g/L, 0.001-2.5 g/L.
  • / L 0.001-5g/L, 0.001-8g/L, 0.001-12g/L, 0.001-18g/L, 0.001-25g/L, 0.001-35g/L, 0.001-45g/L, 0.001-55g/L, 0.001-65g/L, 0.001-75g/L, 0.001-85g/L or 0.001-95g/L of lipopeptide.
  • the composition of the present application further contains 0.01-99.99% by weight of one or more components selected from the group consisting of polysaccharides, oligosaccharides, dextrins, amino acids, oligopeptides, proteins, lipids, fatty acids or derivatives thereof, inorganic salts, dispersants, wetting agents, polymers and warning color reagents.
  • the polysaccharide is selected from the group consisting of peptidoglycan, cellulose, glycogen, starch, chitin, polyfructose, polygalactose and glycosaminoglycan.
  • the amino acids are common ⁇ -amino acids.
  • the amino acids are selected from the group consisting of alanine, aspartic acid, arginine, glutamic acid, cysteine, glycine, serine, phenylalanine, histidine, isoleucine, lysine, leucine, methionine, asparagine, proline, glutamine, tryptophan, threonine, valine and tyrosine.
  • the oligopeptide is a peptide consisting of 2-10 amino acids, a peptide consisting of 2-8 amino acids. Peptides, peptides composed of 2-6 amino acids.
  • the oligopeptide is selected from the group consisting of oligopeptide-3, oligopeptide-4, oligopeptide-5 and oligopeptide-6.
  • the lipid is selected from the group consisting of lipid compounds, phospholipids, glycolipids and cholesterol and their esters.
  • the fatty acid is selected from the group consisting of saturated fatty acids, monounsaturated fatty acids and polyunsaturated fatty acids.
  • the fatty acid or its derivative is selected from the group consisting of stearic acid, animal fats and vegetable fats.
  • the inorganic salt is selected from the group consisting of sulfates, hydrogen phosphates, dihydrogen phosphates, phosphates, nitrates and superphosphates. In one embodiment, the inorganic salt is selected from the group consisting of sodium salts, potassium salts, calcium salts, iron salts and ammonium salts.
  • the inorganic salt is selected from the group consisting of Na 2 SO 4 , K 2 SO 4 , (NH 4 ) 2 SO 4 , KH 2 PO 4 , K 2 HPO 4 , Na 2 HPO 4 , NaH 2 PO 4 , K 3 PO 4 , CO(NH 2 ) 2 , NH 4 NO 3 , NaNO 3 , CaCl 2 , FeCl 2 , NH 4 Cl, MnSO 4 , FeSO 4 , Ca(H 2 PO 4 ) 2 and hydrates thereof.
  • the dispersant is selected from the group consisting of naphthalene sulfonates, lignin sulfonates, polycarboxylates and polycarboxylates, starch, bovine serum albumin, and cyclodextrin.
  • the wetting agent is selected from the group consisting of dodecyl sulfonates, octyl succinates, and alcohol ether sulfates.
  • the polymer is selected from the group consisting of polyethylene glycol, polyacrylic acid emulsion, polyacrylic acid polyvinyl alcohol emulsion, xanthan gum, and polyglutamic acid.
  • the warning color reagent is selected from the group consisting of carmine or fruit green.
  • the composition of the present application is a culture solution containing 0.001-100 g/L lipopeptides obtained by culturing bacteria capable of producing lipopeptides.
  • the composition of the present application is a solution or solid mixture containing 0.001-100 g/L lipopeptides prepared from purified or partially purified lipopeptides.
  • the composition of the present application is an aqueous solution, concentrate, or dry powder preparation containing lipopeptides.
  • the plant described in the present application is a non-leguminous plant.
  • the plant is selected from the group consisting of food or livestock plants, vegetable plants, fruit plants, horticultural plants and flower plants.
  • the food or livestock plants are grass plants.
  • the food or livestock plants are selected from the group consisting of wheat, rice, upland rice, corn, oats, rye, barley, buckwheat, millet, sorghum, highland barley, wild rice stem, teff, coix, sugarcane, sugar beet, sweet potato, oat grass, sedge grass, wheatgrass, sandgrass, sheep grass, alkali grass, barley grass, new wheatgrass, Luozi grass, Bermuda grass, three-awn grass, androstemon, duckbill grass, wild ancient grass, double flower grass, bluestem grass, bamboo, teosinte, whip grass, alfalfa and hollow axis grass.
  • the vegetable plant is selected from the group consisting of Solanaceae, Cruciferae, Chenopodiaceae, Asteraceae, Umbelliferae, Cucurbitaceae, Lamiaceae, Malvaceae and Convolvulaceae.
  • the vegetable plant is selected from the group consisting of eggplant, potato, tomato, pepper, lettuce, Chinese cabbage, Chinese cabbage, radish, rapeseed, spinach, celery, cucumber, loofah, bitter melon, and radish. Melon, wax gourd, watermelon, muskmelon, cantaloupe, perilla, nepeta, mint and okra.
  • the fruit plant is selected from the group consisting of strawberry, blueberry, cranberry, cranberry, cherry, peach, plum, jujube, apple, pear, citrus, orange, grapefruit and banana.
  • the horticultural plant is selected from the group consisting of Pachira aquatica, Chlorophytum comosum, Epipremnum aureum, Duckweed, Money Tree, Lucky Bamboo, Yuanbao Tree, Banyan Tree, Dieffenbachia and Miniature Coconut Tree.
  • the flower plant is selected from the group consisting of daffodil, dahlia, freesia, iris, peony, peony, tulip, hyacinth, lily, cyclamen, chrysanthemum, hosta, platycodon, lily of the valley, aster, daylily, orchid, rose, Chinese rose, carnation, chrysanthemum, rose and bellflower.
  • the present application relates to a method for preparing a composition for improving the quality of plants.
  • the method comprises: culturing bacteria capable of producing lipopeptides under conditions suitable for producing lipopeptides to obtain a culture solution containing 0.001-100 g/L lipopeptides, and using the culture solution as the composition of the present application; or preparing the purified or partially purified lipopeptides into a solution or solid mixture containing 0.001-100 g/L lipopeptides, and using the solution or solid mixture as the composition of the present application.
  • the solution is an aqueous solution.
  • the solvent in the aqueous solution is deionized water or tap water.
  • the method further comprises: adding 0.01-99.99% by weight of one or more components selected from the following group: polysaccharides, oligosaccharides, dextrins, amino acids, oligopeptides, proteins, lipids, fatty acids or their derivatives, inorganic salts, dispersants, wetting agents, polymers and warning color reagents to the culture solution, solution or solid mixture, and using the obtained product as the composition of the present application.
  • the method further comprises: concentrating and/or drying and/or partially purifying the culture fluid, solution, solid mixture or product, and using the concentrated and/or dried and/or partially purified product as the composition of the present application.
  • the present application relates to a method for improving the quality of plants using the composition of the present application.
  • the method comprises: (1) adding the composition of the present application to the culture of the plant (including pouring the composition into the soil where the plant is planted or spraying it on the plant or placing the plant in the composition (coating, seed soaking or root irrigation)); (2) cultivating and harvesting the plant; (3) optionally measuring the quality parameters of the cultivated plants and/or their fruits, and comparing them with the quality parameters of the plants and/or their fruits cultivated in a culture (such as soil) without the lipopeptide.
  • the quality parameters are selected from one or more of the following groups: chlorophyll content, total nitrogen content, vitamin content, protein content, soluble sugar content, fatty acid content, amino acid content, content, anthocyanin content, lycopene content, carotenoid content, pectin content, growth cycle, drought resistance, cold resistance and/or lodging resistance.
  • the promotion of plant quality is characterized by one or more selected from the group consisting of: the quality parameters of the plants cultured with the addition of the composition are at least 110%, at least 120%, at least 130%, at least 140%, at least 150%, at least 160%, at least 170%, at least 180%, at least 190%, at least 200%, at least 210%, at least 220%, at least 230%, at least 230%, at least 250%, at least 260%, at least 270%, at least 280%, at least 290%, at least 300%, at least 350%, at least 400%, at least 450%, at least 500%, at least 550%, at least 600%, at least 650%, at least 700%, at least 750%, at least 800%, at least 850%, at least 900%, at least 950% or at least 1000% of the control group without the addition of the composition.
  • the quality parameters of the plants cultured with the addition of the composition are at least 110%, at least 120%, at least 130%, at least 140%, at least
  • the present application relates to a method for improving the quality of plants while promoting the growth of the plants using the composition of the present application.
  • the promotion of plant growth is characterized by one or more selected from the group consisting of: germination rate, number of sprouts, plant height, number of leaves (number of new leaves), leaf width, root length, total length, number of flowers (branches), flower branch height, flower stem thickness, number of fruits, fruit shape, root weight, leaf weight, dry matter weight, tiller number, single plant weight, single fruit weight, and plant yield.
  • composition of the present application is added in a manner selected from the group consisting of seed coating, seed soaking treatment, bulb treatment, root irrigation treatment, drip irrigation treatment and foliar spraying.
  • composition or lipopeptide of the present application
  • the present application relates to the use of the composition or lipopeptide of the present application for improving plant quality. In another aspect, the present application relates to the use of the composition or lipopeptide of the present application for improving plant quality while promoting the growth of plants and/or their root systems.
  • the composition or lipopeptide of the present application is used in agricultural fertilizers, agricultural adjuvants or pesticides.
  • the fertilizer is an amino acid-containing water-soluble fertilizer, an organic water-soluble fertilizer, a biological organic fertilizer, a chemical fertilizer, a microbial fertilizer, Microbial concentrates, humic acid fertilizers, soil conditioners, soil remediation agents, slow-release fertilizers, plant growth stimulants and inoculants.
  • the agricultural adjuvants are insecticide adjuvants, fungicide adjuvants, fertilizer adjuvants, acaricide adjuvants, rodenticide adjuvants, nematicide adjuvants and agricultural synergistic adjuvants.
  • the pesticides are plant growth regulators, insecticides, fungicides, herbicides and rodenticides.
  • the composition or lipopeptide of the present application can significantly improve plant quality. Compared with the control, the chlorophyll content, total nitrogen content, vitamin content, protein content, soluble sugar content, fatty acid content, amino acid content, anthocyanin content, lycopene content, carotenoid content and/or pectin content of the plant applied with the lipopeptide composition or lipopeptide are higher, the growth cycle is shorter, and/or the drought resistance, cold resistance and/or lodging resistance are stronger;
  • composition or lipopeptide of the present application has a significant effect on promoting plant growth while improving plant quality.
  • the plants treated with the lipopeptide composition or lipopeptide have higher seedling rate, number of sprouts, plant height, number of leaves, leaf width, root length, total length, number of flowers (branches), flower branch height, flower stem thickness, number of fruits, root weight, leaf weight, dry matter weight, number of tillers, single plant weight, single fruit weight and/or plant yield, better leaf color and fruit shape, and/or longer flowering period;
  • the lipopeptide used in the composition of the present application is a biosurfactant, which is biodegradable, pollution-free, green and environmentally friendly, and has no harm in long-term use;
  • the lipopeptide used in the composition of the present application is highly stable, less affected by temperature and humidity, and has simple preparation and use methods and convenient management.
  • Bacillus subtilis THY-7/Pg3-srfA was obtained from patent ZL 201510654218.3; Bacillus subtilis THY-7/Pg3-srfA(yngH) was obtained from patent ZL 2018108652957; Bacillus subtilis THY-7/Pg3-srfA ⁇ spoIVA, THY-7/Pg3-srfA ⁇ spoIVB, THY-7/Pg3-srfA ⁇ spoIVC, T HY-7/Pg3-srfA ⁇ spoIVF, THY-7/Pg3-srfA ⁇ spoVA, THY-7/Pg3-srfA ⁇ spoVB, THY-7/Pg3-srfA ⁇ spoVD and THY-7/Pg3-srfA ⁇ spoVE were obtained from patent ZL 201811465067.7; Bacillus subtilis THY-7/Pg3-srfA (leuABCD-ilvK) was obtained from patent ZL 201910549289.5
  • the composition of the fermentation medium used is: 30-100 g/L of carbohydrates, 10-50 g/L of inorganic nitrogen source, 0.5-3 g/L of organic nitrogen source, 0.1-1 g/L of KH 2 PO 4 , 0.5-0.3 g/L of Na 2 HPO 4 ⁇ 12H 2 O, 0.002-0.01 g/L of CaCl 2 , 0.002-0.01 g/L of MnSO 4 ⁇ H 2 O 0.002-0.01 g/L, FeSO 4 ⁇ 7H 2 O 0.002-0.01 g/L, pH 6.5-7.5, and 0.01-20 weight % of fermentation additives (silicon defoaming agent, polysaccharide, amino acid or its derivatives, oligopeptide, phospholipid, glycolipid, and/or fatty acid or its derivatives).
  • sicon defoaming agent polysaccharide, amino acid or its derivatives, oligopeptide, phospholipid, glycolipid, and/or fatty acid or its derivatives.
  • the content of surfactin in the fermentation broth was detected by the method disclosed in CN105400784A. Specifically, 1 mL of fermentation broth was centrifuged at 12000 rpm for 1 minute, 100 ⁇ L of supernatant was added to 1900 ⁇ L of deionized water, mixed, filtered through a 0.22 ⁇ m filter membrane, and analyzed by HPLC.
  • the mobile phase of HPLC analysis was methanol and water, the dosage ratio was 85/15, the flow rate was 1 mL/min, the chromatographic column was a C18-ODS reverse phase column, the column temperature was 40 ° C, the UV detector, and the detection wavelength was 205 nm.
  • the content of surfactin in the fermentation broth is about 0.001-90 g/L.
  • the fermentation broth is the surfactin-containing composition 1 of the present application.
  • Surfactin is extracted from the fermentation broth, and a powder product is obtained by freeze drying (which can also be directly applied as the composition of the present application), and the powder is formulated into an aqueous solution of 0.001-100 g/L as the composition 2 of the present application.
  • compositions 3-5 of the present application were purchased from MedChemExpress, and lichenin was purchased from BOC Sciences. They were dissolved in water to prepare 0.001-100 g/L aqueous solutions, which were used as compositions 3-5 of the present application.
  • polysaccharides or their derivatives one or more of peptidoglycan, cellulose, glycogen, starch, chitin, polyfructose, polygalactose and glycosaminoglycan), amino acids (common ⁇ -amino acids), oligopeptides (one or more of oligopeptide-3, oligopeptide-4, oligopeptide-5 and oligopeptide-6), lipids (one or more of ester compounds, phospholipids, glycolipids and cholesterol and their esters), fatty acids or their derivatives (one or more of stearic acid, animal fats and vegetable fats), inorganic salts (Na 2 SO 4 , K 2 SO 4 , (NH 4 ) 2 SO 4 , KH 2 PO 4 , K 2 HPO 4 , Na 2 HPO 4 , NaH 2 PO 4 , K 3 PO 4 , CO(NH 2 ) 2 , NH 4 NO 3 , NaNO 3
  • compositions 1-8 used in the following examples are as follows:
  • composition 1 The content of surfactin in composition 1 is 0.1 g/L;
  • composition 2-1 The content of surfactin in composition 2-1 is 0.001 g/L;
  • composition 2-3 The content of surfactin in composition 2-3 is 1 g/L;
  • composition 2-4 The content of surfactin in composition 2-4 is 50 g/L;
  • composition 2-5 The content of surfactin in composition 2-5 is 100 g/L;
  • composition 3 The content of iturin in composition 3 is 0.1 g/L.
  • composition 4 The content of fenmucin in composition 4 is 0.1 g/L;
  • composition 5 The content of epilichenin in composition 5 is 0.1 g/L;
  • composition 6 The content of iturin in composition 6 is 0.1 g/L.
  • composition 7 The content of fenmucin in composition 7 is 0.1 g/L;
  • composition 8 The content of epilichenin in composition 8 is 0.1 g/L;
  • compositions 6-8 The contents of other components in compositions 6-8 are shown in Table 2 below.
  • Phosphatidylserine and polymyxin were purchased from MCE, and octapeptidin and fusaricide were purchased from Zhejiang Hunda. They were dissolved in water to prepare 0.1 g/L aqueous solutions, which were used as compositions 9-12 of the present application.
  • At least one of the above compositions (1, 2-1, 2-2, 2-3, 2-4, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12) is applied to the following crops.
  • Example 2 Lipopeptide composition is used to improve corn quality and promote corn growth
  • the soluble sugar content of corn in the treatment group was 1.33%-1.80%, which was 1.99-2.73 times that of the control group (0.66%).
  • the anthocyanin content of the treatment group was 63.1-72.6 mg/100g, which was 21.3%-39.6% higher than 52 mg/100g of the control group.
  • the fatty acid content of the treatment group was 1.05-1.19%, which was 31.2%-48.8% higher than 0.8% of the control group.
  • Example 3 Lipopeptide composition for improving wheat quality and promoting wheat growth
  • the effect of lipopeptide on the germination rate and growth potential of wheat was observed by paper culture.
  • the paper bed was fully moistened with water and compositions 1, 3-5, and the seeds were evenly sown in the paper bed.
  • the germination rate and growth potential of wheat were observed on the 2nd, 4th and 7th days in a sunlight culture box. From Table 4, we can see that compared with the control, the wheat in the treatment group germinated earlier, had a higher germination rate, grew stronger (see panel 4 of Figure 7, composition 1), had a stronger root system and an increased number of fibrous roots (see panel 5 of Figure 7, composition 1), and grew more vigorously in the seedling stage (see panel 6 of Figure 7, composition 1). It can be inferred that the wheat in the treatment group has a stronger resistance to stress during the growth period and a higher yield.
  • Example 4 Lipopeptide composition is used to improve the quality of Elymus dahliae and promote its growth
  • Elymus salsa As an excellent forage grass in western my country and the plateau areas, Elymus salsa has an important impact on the development of local animal husbandry. However, the poor climatic conditions, low temperature and drought in the area have a significant impact on the early germination rate of Elymus salsa, and drought during the growth period is also a severe challenge.
  • the seeds of Elymus dahliae were coated with lipopeptide compositions 1, 3-5 and 9-12, and potted and cultured with soil. 1-200 mL of water was irrigated. No water was added during the culture process. The culture temperature was adjusted to about 5 degrees Celsius. The quality improvement of Elymus dahliae was observed. The results are shown in Table 6. After 9 days of sowing, the emergence rate of the control group was The seedling rate of the lipopeptide-treated group was 10%, and the seedling rate of the lipopeptide-treated group was 16.7%-28.0%.
  • the drought and cold resistance of the lipopeptide-treated group was 6.7%-18.0% higher than that of the control group; 14 days after sowing, the seedling rate of the treated group increased by 9.3-12.7% compared with the control group, and the number of tillers increased by 9.33-37.12% compared with the control group. It can be seen that the lipopeptide treatment further improved the drought and cold resistance of Elymus alkali compared with the control group; one month after sowing, the chlorophyll content of the leaves of the lipopeptide-treated group increased by 20-38% compared with the control group.
  • Lipopeptide composition is used to improve the quality of oat grass and promote the growth of oat grass
  • the plant height of the treatment group was 10.1-11 cm, which was 6.3-15.8% higher than that of the control group (9.5 cm).
  • the fresh weight of the aboveground part of the treatment group was 3.2-4.1 g, which was 10.3-41.4% higher than that of the control group (2.9 g) (see the lower picture of the small picture 8 of Figure 7, composition 8).
  • the one-year silage yield of the treatment group increased by 11.89-51.25% relative to the control group.
  • Example 7 Lipopeptide composition is used to improve the quality of biflora and promote the growth of biflora
  • the seeds of the double flower grass were coated with lipopeptide compositions 1-12, potted and soil cultured, and irrigated with 1-200 mL of clean water to investigate the improvement of the quality of the double flower grass, and the results are shown in Table 11.
  • Ten days after sowing the chlorophyll content of the leaves in the lipopeptide-treated group increased by 10.3-19.6% compared with the control group; one month after sowing, the protein content of the double flower grass in the lipopeptide-treated group was 11.6-15.1%, an increase of 5.3-8.8% over the control group, and the fat content of the double flower grass in the lipopeptide-treated group increased by 2.3-4.5% compared with the control group.
  • Example 8 Lipopeptide composition is used to improve the quality of duckbill grass and promote its growth
  • the lipopeptide compositions 1-12 were irrigated to investigate the improvement of the duckbill grass quality, and the results are shown in Table 12. Two months after sowing, the protein content of the duckbill grass in the lipopeptide treatment group increased by 1.0-4.4% compared with the control group.
  • Example 9 Lipopeptide composition is used to improve the quality of bullwhip and promote the growth of bullwhip
  • the lipopeptide compositions 1-12 were irrigated to investigate the improvement of the quality of the bullwhip, and the results are shown in Table 13.
  • the protein and fat contents of the bullwhip in the lipopeptide treatment group increased by 3.0-6.9% and 1.3-5.8% respectively compared with the control group.
  • the growth of the whip grass was further observed, and the results are shown in Table 14.
  • the emergence rate of the water control group was 63%, and the emergence rate of the lipopeptide treatment group was 81.3%-92.7%, which was 18.3-29.7% higher than that of the control group; after 1 month of sowing, the whip grass in the water group tillered only once, and the average tillering number of the treatment group was 1.8.
  • the average height of the whip grass in the treatment group was 97-121cm, and the height of the control group was 83cm, which was 16.9%-45.8% higher than that of the control group.
  • the fresh weight of the aboveground part of the treatment group increased by 22.5-50.8% compared with the control group.
  • the control group was harvested 5 times a year, and the treatment group was harvested 7 times a year on average.
  • the annual silage yield of the treatment group increased by 72-110% compared with the control group.
  • Example 10 Lipopeptide composition is used to improve spinach quality and promote spinach growth
  • the average chlorophyll content of spinach in the lipopeptide treatment group was 37.4-44.5SPAD, which was 16.1%-38.2% higher than that of the control group; the total nitrogen content of the treatment group was 14.9-18.7mg/g, which was 34.7%-68.5% higher than that of the control group; the vitamin content of the treatment group was 1.54-1.89mg/100g, which was 4.8%-28.6% higher than that of the control group (see Figure 3, composition 9).
  • the average yield of the treated groups was 7337.6-7968 g, an increase of 1.7%-10.5% over the control group (see panel 9 of FIG. 7 , composition 9).
  • Example 11 Lipopeptide composition is used to improve the quality and promote the growth of Chinese cabbage
  • Chinese cabbage was planted in the field, with a planting area of 20 m2 /plot.
  • the lipopeptide composition 1 was sprayed on the leaves during the seedling stage and the vigorous growth period, and the application was performed twice.
  • the Chinese cabbage was harvested and the improvement of the quality of the Chinese cabbage was measured.
  • Table 16 the average soluble sugar content of the Chinese cabbage in the lipopeptide treatment group was 3.8 mg/g, which was 119.8% of that in the control group; the average vitamin content of the Chinese cabbage in the lipopeptide treatment group was 0.94 mg/g, which was 148.5% of that in the control group.
  • the average plant height of the lipopeptide-treated group was 29.50 cm, which was 103.8% of that of the control group.
  • the yield of the lipopeptide-treated group increased by an average of 13.77% compared with the control group (see Table 16 and panel 10 of Figure 7, composition 1).
  • Example 12 Lipopeptide composition for improving tomato quality and promoting tomato growth
  • Tomatoes were planted in a greenhouse, with a planting area of 10 m2 /plot.
  • the tomato plants were sprayed with lipopeptide composition 1-12 on the leaves.
  • the tomato was sprayed once in the seedling stage and once in the flowering stage, for a total of two times, and the whole tomato plant was sprayed uniformly.
  • the improvement of tomato quality was measured, and the results are shown in Table 17.
  • the average lycopene content of tomatoes in the lipopeptide treatment group was 12.8-14.1 mg/100g, which was 7.6%-18.5% higher than that of the control group.
  • the average plant height of the lipopeptide treatment group was 42.3-46.8cm, 5.8%-17% higher than the control group.
  • the average number of flowers in the lipopeptide treatment group was 14.6-16.9, 12.3%-30% higher than the control group.
  • the average number of fruits in the lipopeptide treatment group was 12.5-15.6, 8.7%-35.7% higher than the control group.
  • the average single fruit weight in the lipopeptide treatment group was 234.1-256.6g, 6.4%-16.6% higher than the control group.
  • Peppers were planted in a greenhouse, with a planting area of 10 m2 /plot.
  • the pepper plants were sprayed with lipopeptide composition 1-12 on the leaves.
  • the peppers were sprayed once in the seedling stage and once in the flowering stage, for a total of two times, and the whole pepper was sprayed uniformly.
  • the improvement of pepper quality was measured, and the results are shown in Table 18.
  • the vitamin content, fatty acid content and carotenoid content of the peppers in the lipopeptide treatment group were increased by 15.6-27.1%, 3.4-7.9% and 11.8-14.6% respectively compared with the corresponding contents of the control group.
  • the average plant height of the lipopeptide treatment group was 45.8-47.2cm, 6.5%-9.8% higher than the control group.
  • the average number of flowers in the lipopeptide treatment group was 26.3-30.6, 9.6%-27.5% higher than the control group.
  • the average number of fruits in the lipopeptide treatment group was 24.8-28.3, 12.7%-28.6% higher than the control group.
  • Example 14 Lipopeptide composition is used to improve cucumber quality and promote cucumber growth
  • Cucumbers were planted in a greenhouse with a planting area of 10m2/ plot.
  • 1-200mL of lipopeptide composition 1-12 was irrigated on the cucumber plants.
  • the roots of the cucumbers were irrigated once after they were planted and then again after an interval of 10 days.
  • the improvement in the quality of the cucumbers was measured, and the results are shown in Table 19.
  • the soluble sugar content of the cucumbers in the lipopeptide-treated group was 2.7-3.5%, which was 0.69-1.49% higher than that in the control group.
  • the protein content in the lipopeptide-treated group was 1.56-1.83%, an increase of 0.52-0.69% over that in the control group.
  • the vitamin C content in the lipopeptide-treated group was 173-196mg/kg, while that in the control group was 127mg/kg, an increase of 36.2-54.3% over that in the control group (see Figure 4, composition 2-1).
  • the average plant height of the lipopeptide-treated group was 160.8-171.5 cm, 3.7%-10.6% higher than the control group.
  • the average number of flowers in the lipopeptide-treated group was 8-10, 14.3%-42.9% higher than the control group.
  • the average number of fruits in the lipopeptide-treated group was 6.5-7.6, 22.6%-43.4% higher than the control group.
  • the average fruit weight in the lipopeptide-treated group was 312.1-350.6 g, 4%-16.9% higher than the control group (see panel 11 of Figure 7, composition 6).
  • Example 15 Lipopeptide composition is used to improve the quality and promote the growth of bitter melon
  • Example 16 Lipopeptide composition is used to improve the quality and promote the growth of wax gourd
  • the average amino acid content in the wax gourd harvested in the treatment group was 0.61-0.68 g/100 g, an increase of 35.6-51.1% over the control, and the average vitamin C content of the wax gourd in the treatment group was 14.5-15.1 mg/100 g, an increase of 9.0%-13.5% over the 13.3 mg/100 g in the control group.
  • Example 17 Lipopeptide composition for improving strawberry quality and promoting strawberry growth
  • Lipopeptide compositions 1-12 were sprayed on the strawberry plants on the leaves, and the whole plant was evenly sprayed at the early and full flowering stages of the strawberry. After spraying the lipopeptide solution, the improvement in strawberry quality was measured (see Figure 6, composition 7), and the results are shown in Table 22.
  • the number of deformed fruits in the lipopeptide-treated group was 0.33-0.45, and the number of normal-shaped fruits was 10%-34% higher than that of the control group.
  • the average soluble sugar content of the lipopeptide-treated group was 13.5-14.9g/100g, which was higher than that of the control group.
  • the average protein content of the lipopeptide-treated group was 1.63-1.84 g/100 g, which was 19.8%-35.3% higher than that of the control group.
  • the average pectin content of the lipopeptide-treated group was 0.73-0.92 g/100 g, which was 25.8%-58.6% higher than that of the control group.
  • the first flowering and first fruiting time of the lipopeptide-treated group was one week earlier than that of the control group; the number of fruits in the treatment group was significantly more than that of the control group; and the maturity of the fruits in the treatment group was uniform.
  • the average number of flowers in the lipopeptide-treated group was 12.9-15.35, which was 2.5%-22% higher than that of the control group.
  • the average number of fruits in the lipopeptide-treated group was 5.5-5.9, which was 4.5%-12.4% higher than that of the control group.
  • the total fruit weight of the lipopeptide-treated group was 150.1-202.6g, which was 11.3%-50.2% higher than that of the control group.
  • Example 18 Lipopeptide composition for improving apple quality and promoting apple growth
  • Example 19 Lipopeptide composition is used to improve the quality and promote the growth of the money tree
  • the results are shown in Table 24.
  • the chlorophyll content of the money tree in the lipopeptide treatment group is 68.9-74 mg/g, which is 6%-15% higher than that in the control group.
  • the total nitrogen content of the treatment group is 13.3-16.3 mg/g, which is 2.3% higher than that in the control group.
  • the control group increased by 10.8%-35.8%.
  • the lipopeptide-treated group had 20-28 leaves, and the average number of new leaves was 5-10, which was 10%-50% more than that of the control group (see panel 13 of Figure 7, composition 2-1).
  • Example 20 Lipopeptide composition is used to improve the quality and promote the growth of green radish
  • Green radish with similar growth was selected and cut into pots.
  • the lipopeptide compositions 1-8 were placed in the pots and irrigated with fresh lipopeptide treatment solution every 15 days. After 30 days of application of the lipopeptide treatment solution, the quality improvement of the green radish was measured. The results are shown in Table 25.
  • the chlorophyll content of the green radish in the lipopeptide treatment group was 35.5-42.1 mg/g, which was 111%-132% of that in the control group; the total nitrogen content of the treatment group was 24.2%-39.6% higher than that of the control group.
  • the number of leaves of the green radish in the lipopeptide treatment group was 15-20, of which the number of new leaves was 3-5 on average, which was 50%-150% more than that of the control group (see panel 14 of Figure 7, composition 8).
  • Example 21 Lipopeptide composition is used to improve the quality and promote the growth of dahlia
  • the dried roots of dahlia tubers were cut off, and the tubers were soaked in 0.1% carbendazim solution for 10 minutes, washed once with deionized water and drained.
  • the culture soil was sterilized and placed in a culture tray, the bulbs were planted, and the tubers were covered with soil.
  • the quality improvement of dahlias was observed, and the results are shown in Table 26.
  • the chlorophyll and total nitrogen content of dahlias in the lipopeptide treatment group increased by 7.5-12.3% and 12.1-17.4% respectively compared with the control group.
  • the dahlia germination rate in the lipopeptide treatment group was 50%-100% on average, 40%-90% higher than that in the control group.
  • the average plant height in the lipopeptide treatment group was 5.5-18.9 cm, 10%-278% higher than that in the control group (see panel 15 of FIG. 7 , composition 4).
  • Example 22 Lipopeptide composition is used to improve the quality and promote the growth of daffodils
  • narcissus bulbs of uniform size remove the mulch, old roots and dried old stem pieces at the bottom of the narcissus bulbs, soak the bulbs in clean water for 3 hours, and rinse with clean water. Place the bulbs in a culture tray, add lipopeptide compositions 1-12, and culture the lipopeptide-treated solution for 30 days to observe the improvement of the quality of the narcissus.
  • the results are shown in Table 27.
  • the total nitrogen content of the narcissus leaves in the lipopeptide-treated group increased by 5.1-9.0% compared with the control group.
  • narcissus was further observed.
  • the plant height of narcissus in the lipopeptide treatment group was 9.9-24.7 cm on average, which was 12.5%-180.7% higher than that in the control group.
  • the leaf width of narcissus in the lipopeptide treatment group was 1.1-1.3 cm on average, which was 22%-44% higher than that in the control group (see panels 16a and 16b of FIG. 7 , composition 2-2 and composition 2-3).
  • Example 23 Lipopeptide composition for improving the quality and promoting the growth of freesia
  • the average number of buds of freesia in the lipopeptide treatment group was 15-18, an increase of 7%-28.6% over the control group.
  • the average plant height of freesia in the lipopeptide treatment group was 6.7-14.2 cm, an increase of 5%-121.9% over the control group (see panels 17a and 17b of Figure 7, composition 1 and composition 2-3).
  • Example 24 Lipopeptide composition is used to improve rose quality and promote rose growth
  • the lipopeptide composition 1-12 was sprayed on the leaves. After 7 days, the treatment solution was sprayed for the second time to observe the improvement of the rose quality. The results are shown in Table 29. The flowering period of the roses in the lipopeptide treatment group was 3-5 days earlier than that of the control group on average.
  • the average height of the rose branches in the lipopeptide treatment group increased by 15%-31% compared with the control group, and the average flower stem thickness increased by 2mm compared with the control group.
  • Example 25 Lipopeptide composition is used to improve the quality and promote the growth of carnations
  • the lipopeptide composition 1-12 was sprayed on the leaves, and the treatment solution was sprayed again after an interval of 1 week, for a total of 4 times, and the improvement of the quality of the carnations was observed.
  • the results are shown in Table 30.
  • the flowering period of the control group was 4 months, and the flowering period of the carnations in the lipopeptide treatment group was extended by an average of 1 month.
  • the number of branches of carnations in the control group was 4, while the number of branches in the treatment group was 5-7 on average, 25-75% more than the control group.
  • the height of the branches in the treatment group increased by 14.2-21.6% compared with the control group.
  • Example 26 Lipopeptide composition is used to improve the quality and promote the growth of Cymbidium orchid
  • Cymbidium orchids were planted in high-footed pots. After the seedlings were grown, water and lipopeptide treatment solution 1-12 were sprayed. After 7 days, the second leaf spray was carried out. A total of 4 sprays were applied to observe the improvement of the quality of Cymbidium orchids. The results are shown in Table 31.
  • the flowering period of the control group was 3.5 months, and the flowering period of the treatment group was 4.5-5 months on average, which was extended by 1-1.5 months on average.
  • the average number of leaves in the control group was 13, while the average number of leaves in the treatment group was 16-22, an increase of 23.1-69.2% over the control group; the number of flower branches in the control group was 1 branch per plant, while the average number of flower branches in the treatment group was 1.5-2.1 branches per plant, an increase of 50%-110% over the control group.
  • Example 27 Lipopeptide composition is used to improve the quality and promote the growth of Perilla
  • the soluble reducing sugar content in the perilla leaves of the lipopeptide-treated group was 1242-1279 mg/100 g, which was 8-11.2% higher than that of the control group; the vitamin C content in the leaves of the lipopeptide-treated group was 5.1-5.6 g/100 g, which was 10.9-21.7% higher than that of the control group; the carotenoid content in the leaves of the lipopeptide-treated group was 10.4-12.0 mg/100 g, which was 15.6-33.3% higher than that of the control group.
  • the average leaf number and weight of the lipopeptide treatment group increased by 2.2-10.1% and 11.6-20.5% respectively compared with the control group.
  • Example 28 Lipopeptide composition for improving the quality of Nepeta and promoting the growth of Nepeta
  • Nepeta After the seeds of Nepeta were mixed with lipopeptide compositions 1-12, they were planted in pots, cultivated in soil, irrigated with 1-200 mL of clean water, and harvested after 4 months of sowing, and the quality of Nepeta was investigated. The results are shown in Table 33.
  • the content of vitamin C in the leaves of Nepeta in the lipopeptide treatment group was 27.9-32.2 mg/100 g, which was 11.6-28.8% higher than that in the control group; the content of protein and carotene in the leaves of the lipopeptide treatment group was 4.3-10.5% and 11.0-26.9% higher than that in the control group, respectively.
  • Nepeta tenuifolia was further measured.
  • the average fresh weight of the lipopeptide-treated group increased by 7.2-30.2% compared with the control group.
  • Example 29 Lipopeptide composition for improving sweet potato quality and promoting sweet potato growth
  • Transplant sweet potato seedlings in the field the planting area is 20m2/ plot, irrigate 1-200mL lipopeptide composition 1-12 after the seedlings have grown, spray the leaves at intervals of 2 weeks, spray the whole plant evenly, and spray twice in total.
  • the sweet potatoes were harvested and the quality improvement of the sweet potatoes was tested.
  • the results are shown in Table 34.
  • the protein content of the lipopeptide treatment group was 1.3-1.6g/100g, an increase of 11.1-36.8% over the control group; the vitamin content of the lipopeptide treatment group was 25.1-27.8mg/100g, an increase of 21.8-34.9% over the control group.
  • sweet potatoes were further measured.
  • the number and weight of sweet potatoes per mu increased by 3.3-21.3% and 2.0-9.8% respectively compared with the control group.
  • Example 30 Lipopeptide composition is used to improve the quality of highland barley and promote the growth of highland barley
  • the lipopeptide composition 1-12 was mixed with fertilizer and highland barley seeds and then sown in the field. The soil fertility was uniform and the cultivation and management conditions in the test area were consistent. After 136 days of sowing, the highland barley matured, was harvested and the quality improvement of the highland barley was measured. The results are shown in Table 35.
  • the results showed that the total dietary fiber content of the highland barley in the lipopeptide treatment group was 19.9-22.7g/100g, which was 20.6-37.6% higher than that in the control group; the vitamin content of the highland barley in the lipopeptide treatment group was 301-343mg/100g, which was 3.4-18.3% higher than that in the control group; and the anthocyanin content in the lipopeptide treatment group was 5.5-9.1% higher than that in the control group.
  • Example 31 Lipopeptide composition for improving buckwheat quality and promoting buckwheat growth
  • the seeds were mixed with lipopeptide compositions 1-12, insecticides, fungicides and buckwheat seeds and then sown in the field.
  • the fertility of the planting field was uniform, and the cultivation and management conditions in the test area were consistent.
  • the results are shown in Table 36. The results showed that the protein content, vitamin content, carotene content and dietary fiber content of buckwheat in the lipopeptide treatment group were increased by 19.4-23.6%, 10.0-13.7%, 10.4-13.1% and 8.5-9.7% respectively compared with the control group.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Pest Control & Pesticides (AREA)
  • Plant Pathology (AREA)
  • Chemical & Material Sciences (AREA)
  • Zoology (AREA)
  • Environmental Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Wood Science & Technology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Microbiology (AREA)
  • Mycology (AREA)
  • Botany (AREA)
  • Agronomy & Crop Science (AREA)
  • Health & Medical Sciences (AREA)
  • Dentistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Peptides Or Proteins (AREA)
  • Agricultural Chemicals And Associated Chemicals (AREA)

Abstract

本申请涉及包含脂肽的组合物用于提高植物品质的用途。具体地,本申请涉及将包含脂肽的组合物以种子包衣、浸种、灌根或者叶面喷施的方式施用于所述植物。用所述组合物处理的植物与对照组相比,植物和/或其果实的叶绿素含量、维生素含量、蛋白质含量、可溶性糖和/或花青素含量显著增加,生长周期缩短,和/或抗旱、耐寒和/或抗倒伏的能力增强。此外,所述组合物的施用在提高植物品质的同时还进一步促进所述植物的生长和产量的增加。

Description

脂肽用于提高植物品质的用途 技术领域
本申请涉及生物技术和生物化工领域,具体地涉及脂肽用于提高植物品质的用途。
背景技术
脂肽由疏水性烷基链和亲水性多肽组成,是一种天然合成的环状化合物。脂肽具有抗细菌、抗真菌、抗炎症等活性,具有高效、选择性广、可生物降解等优点。根据肽环中氨基酸种类、数目以及成环基团不同,芽孢杆菌脂肽可分为表面活性素、芬芥素、伊枯草菌素、地衣素等。其中,表面活性素(surfactin)是一种环脂肽型生物表面活性剂,具有卓越的表/界面活性,能够显著降低水的表面张力,表现出良好的抗真菌、抗病毒、抗肿瘤、杀虫和抗支原体等生物活性,在医药、农业、食品、日化、石油开采等领域具有很大的应用潜力。
农林应用方面,脂肽可降解残留农药。在农药污染的土壤中添加脂肽生物表面活性剂或表面活性剂产生菌,能显著降解有害成分。对硫丹杀虫剂的降解率可提高30%—45%。脂肽对植物病原菌有明显的抑制作用,具有植物病害防治应用价值,可用于防治植物病虫害和提高作物产量。李明通等报道,脂肽对生姜根腐病有明显的抑菌作用,施用脂肽后生姜根腐病发病率分别下降了40.0%-56.7%,病情指数分别下降了41.0-58.9。脂肽对禾谷镰刀菌、香蕉枯萎病菌、稻瘟病菌、枇杷炭疽病菌均有明显抑菌作用。脂肽在生物防治、保障食品安全和减少土壤污染方面有较好的应用前景。脂肽类生物农药的推广应用将对保障绿色农业和有机农业持续发展做出贡献,并提供可选择的新的生物农药品种,将会取得的社会效益和经济效益。
花卉具有产品量高质优、清洁卫生、调节室内湿度、净化空气等优点,一直以来深受国内外欢迎。蔬菜中含有多种矿物质、维生素和食物纤维,在人体的生理活动中起到重要作用,人体所需要的许多营养来自于摄入的蔬菜。
水果具有能量低,维生素、矿物质、膳食纤维和植物化合物含量高的特点,对维持人类健康、保持人体肠道正常功能以及降低慢性疾病的发生风险 等具有重要作用。水果中还含有各种有机酸、芳香物质和色素等成分,能够增进食欲,帮助消化。人类生活与绿色植物紧密相关。目前在植物栽培管理中,常通过施用营养液、植物生长调节剂、氮肥等措施来调控植物生长。
在上述措施中,营养液养分浓度易受根系分泌物、酸碱度、水质等多种因素的影响,效果不稳定。此外,营养液如果施用于土壤的话则易于被土壤吸收,能供给植物根系吸收的养分很少而且不均衡。目前使用较普遍的营养液中均含有多种化合物,不易降解,污染环境。
大部分植物生长调节剂都具有植物激素的作用或属于人工仿生合成的植物激素。植物生长调节剂必须在植物生长高峰期使用。如果使用时间不当会抑制植株生长。
氮肥在植物的整个生育期都需要,是需求量最大的营养素。它的主要作用是促进植株茎秆和叶片的生长,适合做底肥和追肥。氮肥的施用量极难控制,氮肥施用量少会引起植株生长缓慢,下位叶发黄。如果氮素过剩会使叶片过大,节间过长,会使植物生殖生长和营养生长失衡,引起植物徒长和贪青晚熟,并且容易落花落果,果实发育迟缓。
为了解决目前植物生长过程中与品质不高有关的各种问题,亟需一种既能够提高植物品质和/或促进植物生长,又能够尽量减少化学污染和生物污染、长期使用无危害的方法。
[参考文献]
1、CN202211352992
2、CN202211478828
3、CN202211098497
4、CN202211479391
发明内容
具体地,本申请通过如下各项技术方案解决现有技术中存在的技术问题。
1.一种组合物用于提高植物品质的用途,其中所述组合物含有:
(i)0.001-100g/L的脂肽;和
(ii)助剂。
2.一种组合物用于提高植物品质同时促进根系和/或植物生长的用途,其中所述组合物含有:
(i)0.001-100g/L的脂肽;和
(ii)助剂。
3.一种组合物用于农业肥料、农用助剂或农药中的用途,其中所述组合物含有:
(i)0.001-100g/L的脂肽;和
(ii)助剂。
4.根据项1-3中任一项所述的用途,其中所述脂肽为环状脂肽或线形脂肽,其中所述环状脂肽具有下式(I)-(III)之一:
O-Am←……←A3   (I)
NH-Am←……←A3   (II)
Am←…←A3(III)
其中R表示脂肪酸链的碳链,A1、A2、A3…Am分别表示肽链上的第1、第2、第3…第m个氨基酸,脂肪酸的羧基与A1的N-端相连,Am的C-端羧基又与脂肪酸或者肽链上其他氨基酸的羟基或氨基相连形成环状结构;
所述线形脂肽为所述环状脂肽开环后得到的线形产物。
5.根据项1-4中任一项所述的用途,其中所述脂肽为选自下组的一种或多种:表面活性素家族、伊枯草菌素家族和芬芥素家族。
6.根据项1-4中任一项所述的用途,其中所述脂肽为选自下组的一种或多种:表面活性素、伊枯草菌素、芬芥素、地衣素、巴比伦素、帕米拉素、芽孢菌霉素、抗霉枯草菌素、制磷脂菌素、杀镰孢菌素、库尔斯塔克素、类芽孢杆菌素、多粘菌素、八肽霉素、杆农素和多肽菌素。
7.根据项1-6中任一项所述的用途,其中所述脂肽是由细菌、放线菌、真菌或蓝细菌产生的。
8.根据项7所述的用途,所述细菌选自下组:芽孢杆菌属、假单胞菌属、链霉菌属、节杆菌属和伯克霍尔德菌属,所述放线菌选自以下组:链霉菌属、拟无枝菌酸菌属和微杆菌属,所述真菌选自以下组:曲霉属,微囊菌属,孢霉属,漆斑菌属,帚枝霉属,线孢小球腔菌属和冠芒孢霉属,更所述蓝细菌选自以下组:海洋蓝细菌属、石蕊属和青菌属。
9.根据项7所述的用途,所述脂肽是通过培养芽孢杆菌或假单胞菌得到的。
10.根据项7所述的用途,所述脂肽是通过培养芽孢杆菌并调控脂肽合成相关基因的表达而得到的脂肽,所述脂肽合成相关基因选自下组:脂肽合成基因、跨膜运输蛋白基因ycxA、生物素羧化酶基因yngH、芽孢合成基因 spoIVA/B/C/F、spoVA/B/D/E和亮氨酸合成途径基因leuABCD/ilvK。
11.根据项10所述的用途,其中所述脂肽合成基因选自下组:表面活性素合成基因srfA、芬芥素合成基因fen、地衣素合成基因lic、芽孢菌霉素合成基因bam、抗霉枯草菌素myc、伊枯草菌素合成基因itu、制磷脂菌素合成基因pps、杀镰孢菌素fus、库尔斯塔克素krs、多粘菌素pmx和八肽霉素oct。
12.根据项1-11中任一项所述的用途,其中所述组合物进一步含有0.01-99.99重量%的选自下组的一种多种组分:多糖、寡糖、糊精、氨基酸、寡肽、类脂、蛋白质、和脂肪酸或其衍生物、无机盐、分散剂、润湿剂和聚合物等。
13.根据项1-12中任一项所述的用途,其中所述组合物是含脂肽的发酵液、水溶液、浓缩液或部分纯化、干燥后的粉末。
14.根据项1-13中任一项所述的用途,其中所述组合物为培养能够产生脂肽的细菌、放线菌、真菌和蓝细菌得到的培养液。
15.根据项1-14中任一项所述的用途,所述植物是非豆科的植物,且选自下组:粮食或畜牧植物、蔬菜类植物、水果植物、园艺植物和花卉植物。
16.根据项15所述的用途,其中所述粮食或畜牧植物为禾本科植物、所述蔬菜类植物选自下组:茄科植物、十字花科植物、藜科植物、菊科植物、伞形科植物、葫芦科植物、唇形科植物、锦葵科植物和旋花科植物,所述水果植物选自下组:草莓、蓝莓、红莓、蔓越莓、樱桃、桃、李子、枣、苹果、梨、柑橘、橙子、柚子和香蕉,所述园艺植物选自下组:发财树、吊兰、绿萝、鸭砣草、金钱树、富贵竹、元宝树、榕树、万年青和袖珍椰子,所述花卉植物选自下组:水仙、大丽花、小苍兰、鸢尾、芍药、牡丹、郁金香、风信子、百合、仙客来、菊花、玉簪、桔梗、铃兰、紫菀、萱草、兰花、玫瑰、月季、康乃馨、菊花、蔷薇和风铃花。
17.根据项15或16所述的用途,其中所述蔬菜类植物选自下组:茄子、土豆、西红柿、辣椒、生菜、小白菜、大白菜、萝卜、油菜、菠菜、芹菜、黄瓜、丝瓜、苦瓜、南瓜、冬瓜、西瓜、甜瓜、哈密瓜、紫苏、荆芥、薄荷和秋葵。
18.根据项15或16所述的用途,其中所述粮食或畜牧植物选自下组:小麦、水稻、旱稻、玉米、燕麦、黑麦、大麦、荞麦、谷子、高粱、青稞、茭白、苔麸、薏苡、甘蔗、甜菜、红薯、燕麦草、鹅观草属、冰草、沙芦草、羊草、 披碱草、大麦草、新麦草、罗滋草、狗牙根、三芒草、须芒草属、鸭嘴草属、野古草属、双花草、蓝茎草、莠竹属、类蜀黍、牛鞭草、苜蓿和空轴茅。
19.脂肽用于提高植物品质的用途。
20.脂肽用于提高植物品质同时促进根系和/或植物生长的用途。
21.脂肽用于农业肥料、农用助剂或农药中的用途。
22.根据项19-21中任一项所述的用途,其中所述脂肽为项4-11中任一项所涉及的脂肽。
23.根据项19-22中任一项所述的用途,其中提高植物品质是通过如下表征的:
使用所述组合物或脂肽培养的植物的品质参数是不添加所述组合物或脂肽的对照组的至少110%、至少120%、至少130%、至少140%或至少150%,
其中所述品质参数选自下组的一项或多项:叶绿素含量、总氮量、维生素含量、蛋白质含量、可溶性糖含量、脂肪酸含量、氨基酸含量、花青素含量、番茄红素含量、类胡萝卜素含量、果胶质含量、生长周期、抗旱能力、耐寒能力和/或抗倒伏能力。
24.一种提高植物品质的方法,其包括:
(1)将项1-18中限定的组合物添加到所述植物的培养物中;
(2)在(1)的培养物中培养并收获所述植物;
(3)任选地测量所培养的植物和/或其果实的品质参数,并将其与在不含所述脂肽的培养物中培养的植物和/或其果实的品质参数进行比较,所述品质参数选自下组的一项或多项:叶绿素含量、总氮量、维生素含量、蛋白质含量、可溶性糖含量、脂肪酸含量、氨基酸含量、花青素含量、番茄红素含量、类胡萝卜素含量、果胶质含量、生长周期、抗旱能力、耐寒能力和/或抗倒伏能力。
25.根据项24所述的方法,其中所述植物品质的提高是通过如下表征的:
添加所述组合物培养的植物的品质参数是不添加所述组合物的对照组的至少110%、至少120%、至少130%、至少140%或至少150%。
26.根据项24或25所述的方法,所述植物的生长同时被促进,所述生长的促进是通过选自下组的一项或多项表征的:出苗率、发芽数、株高、叶片数、叶片宽度、根长、总长、花(枝)数、花枝高度、花茎粗壮度、果数、果形、根重、叶片重、干物质重、分蘖数、单株重、单果重和植物产量。
27.根据项26所述的方法,所述植物生长的促进是通过如下表征的:
添加所述组合物培养的植物的生长参数是不添加所述组合物的对照组的至少110%、至少120%、至少130%、至少140%或至少150%。
为使本申请所述的技术方案更加清晰,以下结合附图和具体实施方式,对本申请进行进一步的说明。
附图说明
图1所示为脂肽组合物对玉米的品质提高的作用。其中左上图面显示对照组和脂肽处理组的田间种植收获玉米的行数和每行玉米粒数的对比图,右上、左下和右下图面分别显示,脂肽处理组玉米的可溶性糖含量(%)、花青素含量(mg/100g)和脂肪酸含量(%)相对于对照组均有明显提高;
图2所示为脂肽组合物对小麦的品质提高的作用。其中左图和右图分别显示,脂肽处理组小麦的可溶性糖含量(%)和蛋白质含量(%)相对于对照组均有明显提高;
图3所示为脂肽组合物对菠菜的品质提高的作用。其中左图、中图和右图分别显示,脂肽处理组菠菜的叶绿素SPAD、总氮量(mg/g)和维生素(mg/100g)相对于对照组均有明显提高;
图4所示为脂肽组合物对黄瓜的品质提高的作用。其中左图、中图和右图分别显示,脂肽处理组黄瓜的可溶性糖含量(%)、蛋白质含量(%)和维生素C含量(mg/100g)相对于对照组均有明显提高;
图5所示为脂肽组合物对冬瓜的品质提高的作用。其中左图和右图面显示脂肽处理组冬瓜的开花和结果相对于对照组均有明显提高;
图6所示为脂肽组合物对草莓的品质提高的作用。其中各图面显示脂肽处理组草莓的花数、挂果数和正常果型数、可溶性糖含量(g/100g)、蛋白质含量(g/100g)和果胶质含量(g/100g)相对于对照组均有明显提高;
图7所示为不同植物中对照组植物与脂肽处理组植物的生长情况比较。在小图面1中,左图显示对照组和脂肽处理组的玉米盆栽种植地上部分的生长对比图,右图显示对照组和脂肽处理组的玉米盆栽种植根部的生长对比图;在小图面2中,左图为对照组和脂肽处理组的玉米苗期,右图为对照组和脂肽处理组收获后的玉米形态对比图;小图面4显示对照组和脂肽处理组的小麦的发芽势对比图;小图面5显示对照组和脂肽处理组的小麦根系发育对比图;小图面6显示对照组和脂肽处理组的小麦纸培对比图;小图面7显示对 照组和脂肽处理组的披碱草生长对比图;在小图面8中,上图和下图分别显示对照组和脂肽处理组的燕麦草根系及地上植株的生长对比图;小图面9-11和13-17b分别显示对照组和脂肽处理组的菠菜、小白菜、黄瓜、发财树、绿萝、大丽花、水仙、小苍兰的生长情况对比图。
发明详述
1.定义
本申请使用的术语“脂肽(lipopeptide,peptidolipid)”,又名脂酰肽(acylpeptide),通常指由脂肪酸和肽链以酯键或者酰胺键连接而成的肽,可分为环状脂肽(cyclic lipopeptide)和线形脂肽(linear lipopeptide)。环状脂肽是指具有环状结构的脂肽,脂肪酸的羧基与肽链上氨基酸的N-端相连,而肽链上氨基酸的C-端羧基又与脂肪酸或者肽链上其他氨基酸的羟基或氨基相连形成环状结构。环状脂肽的成环形式包括:脂肪酸羟基成环、脂肪酸氨基成环、脂肪酸接环或离环三种,其分别具有下式:
(I)脂肪酸羟基成环
(II)脂肪酸氨基成环
(III)脂肪酸接环(Am与A1成环)或脂肪酸离环(Am与除A1之外的氨基酸成环)
脂肽主要由细菌产生,优选由芽孢杆菌属(Bacillus)、假单胞菌假单胞菌属(Pseudomonas)、链霉菌属(Streptomyces)或节杆菌属(Arthrobacter)等产生(参见Janek等,2010)。广为人知的三大脂肽家族为表面活性素(surfactin)家族、伊枯草菌素(iturin)家族和芬芥素(fengycin)家族。脂肽可为选自下组的一种或多种:表面活性素、伊枯草菌素、芬芥素、地衣素、巴比伦素、帕米拉素、芽孢菌 霉素、抗霉枯草菌素、制磷脂菌素、杀镰孢菌素、库尔斯塔克素、类芽孢杆菌素、多粘菌素、八肽霉素和多肽菌素。它们之间的主要差别在于脂肪酸侧链长度、异构方式以及肽环的氨基酸种类、数目与连接顺序等。
表面活性素家族包含了超过20种不同的分子,是由C12-16的β-羟基脂肪酸与7个氨基酸缩合多肽通过内酯键形成的环肽(Bonmatin等,2003)。七肽部分具有LLDLLDL的手性序列,并且第3、6位的D-Leu与第4位L-氨基酸的手性是严格保守的,在肽链闭合时起关键作用(Peypoux等,1999),而在第2、4和7位可以发现Leu、Val、Ile、Ala等氨基酸替换现象(Bonmatin等,1995;Peypoux等,1991;Peypoux等,1994),表面活性素的分子结构如下式(IV)所示:
(IV)表面活性素的氨基酸序列和连接方式
伊枯草菌素家族至今已有6个主要成员:伊枯草菌素A、C,芽孢菌霉素D、F、L以及抗霉枯草菌素(Bonmatin等,2003)。它们都是由C14-17的β-氨基脂肪酸与7个氨基酸缩合多肽通过内酰胺键形成的环肽。伊枯草菌素家族的所有分子都严格遵从LDDLLDL的手性构象并且包含一段共同的氨基酸序列β-氨基脂肪酸-L-Asx-D-Tyr-D-Asn(Peypoux等,1978)。伊枯草菌素的分子结构如下式(V)所示:
(V)伊枯草菌素的氨基酸序列和连接方式
芬芥素家族继表面活性素家族与伊枯草菌素家族之后的第三大脂肽家族。芬芥素家族成员是由C14-17的β-羟基脂肪酸通过酯键与十肽环肽的第1位Glu连接形成,内酯键是由第3位Tyr的羟基与第10位Ile的碳末端形成(Nishikiori等,1986)。芬芥素的分子结构如下式(VI)所示:
(VI)芬芥素的氨基酸序列和连接方式
本申请中使用的术语“基因”、“表达增强”、“启动子”、“重组(菌)”、“培养液”等均为分子生物学领域使用的常规术语,具有与本领域技术所理解的相同 的含义。
2.本申请的脂肽
本申请的脂肽为环状脂肽或线形脂肽。在一个实施方案中,本申请的环状脂肽具有下式(I)-(III)之一:
其中R表示脂肪酸链的碳链,A1、A2、A3…Am分别表示肽链上的第1、第2、第3…第m个氨基酸,脂肪酸的羧基与A1的N-端相连,Am的C-端羧基又与脂肪酸或者肽链上其他氨基酸的羟基或氨基相连形成环状结构。在一个实施方案中,本申请的线形脂肽为所述环状脂肽开环后得到的线形产物。在一个实施方案中,式(I)-(III)中m为6-20的整数。在一个实施方案中,本申请的脂肽为选自下组的一种或多种:表面活性素家族、伊枯草菌素家族和芬芥素家族。在一个实施方案中,本申请的脂肽为选自下组:表面活性素(surfactin)、伊枯草菌素(iturin)、芬芥素(fengycin)、地衣素(lichenysin)、巴比伦素(bamylocin)、帕米拉素(pumilacidin)、芽孢菌霉素(bacillomycin)、抗霉枯草菌素(mycosubtilin)、制磷脂菌素(plipastatin)、杀镰孢菌素(fusaricidin)、库尔斯塔克素(kurstakin)、类芽孢杆菌素(paenibacterin)、多粘菌素(polymyxin)、八肽霉素(octapeptin)、杆农素(bacaucin)和多肽菌素(polypeptin)。在一个实施方案中,本申请的脂肽为表面活性素。在一个实施方案中,本申请的脂肽为伊枯草菌素。在一个实施方案中,本申请的脂肽为芬芥素。
在一个实施方案中,本申请的脂肽是由细菌、放线菌、真菌或蓝细菌产生的。在一个实施方案中,本申请的脂肽是由细菌产生的。在一个实施方案中,所述细菌是野生菌或基因工程菌。在一个实施方案中,所述细菌选自下 组:芽孢杆菌属(Bacillus)、假单胞菌属(Pseudomonas)、链霉菌属(Streptomyces)、节杆菌属(Arthrobacter)和伯克霍尔德氏菌属(Burkholderia)。在一个实施方案中,本申请的脂肽是由嗜碱芽孢杆菌(Bacillus alkalophilus)、解淀粉芽孢杆菌(Bacillus amyloliquefaciens)、短芽孢杆菌(Bacillus brevis)、环状芽孢杆菌(Bacillus circulans)、克劳氏芽孢杆菌(Bacillus clausii)、凝结芽孢杆菌(Bacillus coagulans)、坚强芽孢杆菌(Bacillus firmus)、灿烂芽孢杆菌(Bacillus lautus)、迟缓芽孢杆菌(Bacillus lentus)、地衣芽孢杆菌(Bacillus licheniformis)、巨大芽孢杆菌(Bacillus megaterium)、短小芽孢杆菌(Bacillus pumilus)、嗜热脂肪芽孢杆菌(Bacillus stearothermophilus)、枯草芽孢杆菌(Bacillus subtilis)或苏云金芽孢杆菌(Bacillus thuringiensis)产生的。在一个实施方案中,本申请的脂肽是由铜绿假单胞菌(Pseudomonas aeruginosa)、荧光假单胞菌(Pseudomonas fluorescens)、鼻疽假单胞菌(Pseudomonas mallei)或类鼻疽假单胞菌(Pseudomonas pseudomallei)产生的。在一个实施方案中,本申请的脂肽是由不产色链霉菌(Streptomyces achromogenes)、除虫链霉菌(Streptomyces avermitilis)、天蓝链霉菌(Streptomyces coelicolor)、灰色链霉菌(Streptomyces griseus)或浅青紫链霉菌(Streptomyces lividans)产生的。在一个实施方案中,本申请的脂肽是由球形节杆菌(Arthrobacter)或藤黄节杆菌(Arthrobacter)产生的。在一个实施方案中,本申请的脂肽是由洋葱伯克霍尔德氏菌、类鼻疽伯克霍尔德氏菌或鼻疽伯克霍尔德氏菌。在一个实施方案中,本申请的脂肽是由链霉菌属(Streptomycetaceae)、拟无枝菌酸菌属(Amycolatopsis)和微杆菌属(Microbacterium)产生的。在一个实施方案中,本申请的脂肽是由曲霉属(Aspergillus),微囊菌属(Microascus),孢霉属(Stachylidium),漆斑菌属(Myrothecium),帚枝霉属(Sarocladium),线孢小球腔菌属(Ophiosphaerella)和冠芒孢霉属(Clavariopsis)产生的。在一个实施方案中,本申请的脂肽是由海洋蓝细菌属(Okeania)、石蕊属(Cladonia)和青菌属(Moorea)产生的。
在一个实施方案中,本申请的脂肽是通过培养芽孢杆菌或假单胞菌得到的。在一个实施方案中,本申请的脂肽是通过培养芽孢杆菌并调控脂肽合成相关基因的表达而得到的脂肽。在一个实施方案中,所述脂肽合成相关基因选自下组:脂肽合成基因、跨膜运输蛋白基因ycxA、生物素羧化酶基因yngH、芽孢合成基因spoIVA/B/C/F、spoVA/B/D/E和亮氨酸合成途径基因leuABCD/ilvK。在一个实施方案中,所述脂肽合成基因选自下组:表面活性 素合成基因srfA、芬芥素合成基因fen、地衣素合成基因lic、芽孢菌霉素合成基因bam、抗霉枯草菌素myc、伊枯草菌素合成基因itu、制磷脂菌素合成基因pps、杀镰孢菌素fus、库尔斯塔克素krs、多粘菌素pmx和八肽霉素oct。在一个实施方案中,调控脂肽合成相关基因的表达选自下组:过表达srfA基因、过表达ycxA、过表达yngH、敲除spoIVA/B/C/F、敲除spoV A/B/D/E、过表达leuABCD和过表达ilvK。在一个实施方案中,过表达srfA基因是通过将天然启动子PsrfA被替换为Pg3启动子而获得。在一个实施方案中,所述芽孢杆菌为枯草芽孢杆菌THY-7/Pg3-srfA。
3.本申请用于提高植物的品质的组合物
在一个方面,本申请涉及一种用于提高植物的品质的组合物,其含有0.001-100g/L的脂肽和助剂。在一个实施方案中,所述组合物含有0.001g/L、0.002g/L、0.003g/L、0.004g/L、0.005g/L、0.006g/L、0.007g/L、0.008g/L、0.009g/L、0.01g/L、0.02g/L、0.03g/L、0.04g/L、0.05g/L、0.06g/L、0.07g/L、0.08g/L、0.09g/L、0.1g/L、0.2g/L、0.3g/L、0.4g/L、0.5g/L、0.6g/L、0.7g/L、0.8g/L、0.9g/L、1g/L、2g/L、3g/L、4g/L、5g/L、6g/L、7g/L、8g/L、9g/L、10g/L、15g/L、20g/L、25g/L、30g/L、35g/L、40g/L、45g/L、50g/L、55g/L、60g/L、65g/L、70g/L、75g/L、80g/L、85g/L、90g/L、95g/L或100g/L(或其组合而成的范围)的脂肽。在一个实施方案中,所述组合物含有0.001-0.005g/L、0.001-0.01g/L、0.001-0.03g/L、0.001-0.05g/L、0.001-0.1g/L、0.001-0.5g/L、0.001-0.8g/L、0.001-1.0g/L、0.001-1.5g/L、0.001-2.5g/L、0.001-5g/L、0.001-8g/L、0.001-12g/L、0.001-18g/L、0.001-25g/L、0.001-35g/L、0.001-45g/L、0.001-55g/L、0.001-65g/L、0.001-75g/L、0.001-85g/L或0.001-95g/L的脂肽。在一个实施方案中,本申请的组合物进一步含有0.01-99.99重量%的选自下组的一种多种组分:多糖、寡糖、糊精、氨基酸、寡肽、蛋白质、类脂、脂肪酸或其衍生物、无机盐、分散剂、润湿剂、聚合物和警戒色试剂。在一个实施方案中,所述多糖选自下组:肽聚糖、纤维素、糖原、淀粉、壳多糖、多聚果糖、多聚半乳糖和糖胺聚糖。在一个实施方案中,所述氨基酸为常见α-氨基酸。在一个实施方案中,所述氨基酸选自下组:丙氨酸、天冬氨酸、精氨酸、谷氨酸、半胱氨酸、甘氨酸、丝氨酸、苯丙氨酸、组氨酸、异亮氨酸、赖氨酸、亮氨酸、蛋氨酸、天冬酰胺、脯氨酸、谷氨酰胺、色氨酸、苏氨酸、缬氨酸和酪氨酸。在一个实施方案中,所述寡肽为2-10个氨基酸组成的肽、2-8个氨基酸组成的 肽、2-6个氨基酸组成的肽。在一个实施方案中,所述寡肽选自下组:寡肽-3、寡肽-4、寡肽-5和寡肽-6。在一个实施方案中,所述类脂选自下组:脂类化合物、磷脂、糖脂和胆固醇及其酯。在一个实施方案中,所述脂肪酸选自下组:饱和脂肪酸、单不饱和脂肪酸和多不饱和脂肪酸。在一个实施方案中,所述脂肪酸或其衍生物选自下组:硬脂酸、动物油脂和植物油脂。在一个实施方案中,所述无机盐选自下组:硫酸盐、磷酸氢盐、磷酸二氢盐、磷酸盐、硝酸盐和过磷酸盐。在一个实施方案中,所述无机盐选自下组:钠盐、钾盐、钙盐、铁盐和铵盐。在一个实施方案中,所述无机盐选自下组:Na2SO4、K2SO4、(NH4)2SO4、KH2PO4、K2HPO4、Na2HPO4、NaH2PO4、K3PO4、CO(NH2)2、NH4NO3、NaNO3、CaCl2、FeCl2、NH4Cl、MnSO4、FeSO4、Ca(H2PO4)2及其水合物。在一个实施方案中,所述分散剂选自下组:萘磺酸盐、木质素磺酸盐、聚羧酸盐及聚羧酸酯、淀粉、牛血清白蛋白、环糊精。在一个实施方案中,所述润湿剂选自下组:十二烷基磺酸盐、辛基琥珀酸盐、醇醚硫酸盐。在一个实施方案中,所述聚合物选自下组:聚乙二醇、聚丙烯酸乳液、聚丙烯酸聚乙烯醇乳液、黄原胶、聚谷氨酸。在一个实施方案中,所述警戒色试剂选自下组:胭脂红或果绿。在一个实施方案中,本申请的组合物为培养能够产生脂肽的细菌得到的含有0.001-100g/L脂肽的培养液。在一个实施方案中,本申请的组合物为将纯化或部分纯化的脂肽配制成含有0.001-100g/L脂肽的溶液或固体混合物。在一个实施方案中,本申请的组合物为含有脂肽的水溶液、浓缩物或干粉制剂。
在一个实施方案中,本申请所述的植物是非豆科的植物。在一个实施方案中,所述植物选自下组:粮食或畜牧植物、蔬菜类植物、水果植物、园艺植物和花卉植物。在一个实施方案中,所述粮食或畜牧植物为禾本科植物。在一个实施方案中,所述粮食或畜牧植物选自下组:小麦、水稻、旱稻、玉米、燕麦、黑麦、大麦、荞麦、谷子、高粱、青稞、茭白、苔麸、薏苡、甘蔗、甜菜、红薯、燕麦草、鹅观草属、冰草、沙芦草、羊草、披碱草、大麦草、新麦草、罗滋草、狗牙根、三芒草、须芒草属、鸭嘴草属、野古草属、双花草、蓝茎草、莠竹属、类蜀黍、牛鞭草、苜蓿和空轴茅。在一个实施方案中,所述蔬菜类植物选自下组:茄科植物、十字花科植物、藜科植物、菊科植物、伞形科植物、葫芦科植物、唇形科植物、锦葵科植物和旋花科植物。在一个实施方案中,所述蔬菜类植物选自下组茄子、土豆、西红柿、辣椒、生菜、小白菜、大白菜、萝卜、油菜、菠菜、芹菜、黄瓜、丝瓜、苦瓜、南 瓜、冬瓜、西瓜、甜瓜、哈密瓜、紫苏、荆芥、薄荷和秋葵。在一个实施方案中,所述水果植物选自下组:草莓、蓝莓、红莓、蔓越莓、樱桃、桃、李子、枣、苹果、梨、柑橘、橙子、柚子和香蕉。在一个实施方案中,所述园艺植物选自下组:发财树、吊兰、绿萝、鸭砣草、金钱树、富贵竹、元宝树、榕树、万年青和袖珍椰子。在一个实施方案中,所述花卉植物选自下组:水仙、大丽花、小苍兰、鸢尾、芍药、牡丹、郁金香、风信子、百合、仙客来、菊花、玉簪、桔梗、铃兰、紫菀、萱草、兰花、玫瑰、月季、康乃馨、菊花、蔷薇和风铃花。
4.制备本申请的组合物的方法
在一个方面,本申请涉及一种制备用于提高植物的品质的组合物的方法。在一个实施方案中,所述方法包括:在适于产生脂肽的条件下培养能够产生脂肽的细菌以得到含有0.001-100g/L脂肽的培养液,并将所述培养液作为本申请的组合物;或者将纯化或部分纯化的脂肽配制成含有0.001-100g/L脂肽的溶液或固体混合物,并将所述溶液或固体混合物作为本申请的组合物。在一个实施方案中,所述溶液为水溶液。在一个实施方案中,所述水溶液中的溶剂为去离子水或自来水。在一个实施方案中,所述方法进一步包括:在所述培养液、溶液或固体混合物中添加0.01-99.99重量%的选自下组的一种多种成分:多糖、寡糖、糊精、氨基酸、寡肽、蛋白质、类脂、脂肪酸或其衍生物、无机盐、分散剂、润湿剂、聚合物和警戒色试剂,并将所得到的产物作为本申请的组合物。在一个实施方案中,所述方法进一步包括:对所述培养液、溶液、固体混合物或产物进行浓缩和/或干燥和/或部分纯化,并将浓缩和/或干燥和/或部分纯化后的产物作为本申请的组合物。
5.本申请用于提高植物品质的方法
在一个方面,本申请涉及使用本申请的组合物来提高植物的品质的方法。在一个实施方案中,所述方法包括:(1)将本申请的组合物添加到所述植物的培养物中(包括将所述组合物浇灌于种植所述植物的土壤中或喷施于植物上或将植物置于所所述组合物中(包衣、浸种或灌根));(2)培养并收获所述植物;(3)任选地测量所培养的植物和/或其果实的品质参数,并将其与在不含所述脂肽的培养物(例如土壤)中培养的所述植物和/或其果实的品质参数进行比较。在一个实施方案中,所述品质参数选自下组的一项或多项:叶绿素含量、总氮量、维生素含量、蛋白质含量、可溶性糖含量、脂肪酸含量、氨基酸含 量、花青素含量、番茄红素含量、类胡萝卜素含量、果胶质含量、生长周期、抗旱能力、耐寒能力和/或抗倒伏能力。在一个实施方案中,所述植物品质的促进是通过选自下组的一项或多项表征的:添加所述组合物培养的植物的品质参数是不添加所述组合物的对照组的至少110%、至少120%、至少130%、至少140%、至少150%、至少160%、至少170%、至少180%、至少190%、至少200%、至少210%、至少220%、至少230%、至少230%、至少250%、至少260%、至少270%、至少280%、至少290%、至少300%、至少350%、至少400%、至少450%、至少500%、至少550%、至少600%、至少650%、至少700%、至少750%、至少800%、至少850%、至少900%、至少950%或至少1000%。
在一个方面,本申请涉及使用本申请的组合物来提高植物的品质同时促进所述植物生长的方法。在一个实施方案中,所述植物生长的促进是通过选自下组的一项或多项表征的:出苗率、发芽数、株高、叶片数(新生叶片数)、叶片宽度、根长、总长、花(枝)数、花枝高度、花茎粗壮度、果数、果形、根重、叶片重、干物质重、分蘖数、单株重、单果重和植物产量。
在一个实施方案中,所述植物生长的促进是通过选自下组的一项或多项表征的:添加所述组合物培养的植物的生长参数是不添加所述组合物的对照组的至少110%、至少120%、至少130%、至少140%、至少150%、至少160%、至少170%、至少180%、至少190%、至少200%、至少210%、至少220%、至少230%、至少230%、至少250%、至少260%、至少270%、至少280%、至少290%、至少300%、至少350%、至少400%、至少450%、至少500%、至少550%、至少600%、至少650%、至少700%、至少750%、至少800%、至少850%、至少900%、至少950%或至少1000%。
在一个实施方案中,本申请组合物的添加方式选自下组:种子包被、浸种处理、鳞茎处理、灌根处理、滴灌处理和叶面喷施。
6.本申请的组合物或脂肽的用途
在一个方面,本申请涉及本申请的组合物或脂肽用于提高植物品质的用途。在另一个方面,本申请涉及本申请的组合物或脂肽用于提高植物品质同时促进植物和/或其根系生长的用途。在一个实施方案中,本申请的组合物或脂肽用于农业肥料、农用助剂或农药中的用途。在一个实施方案中,所述肥料为含氨基酸水溶肥料、有机水溶肥料、生物有机肥、化学肥料、微生物肥料、 微生物浓缩制剂、腐殖酸肥料、土壤调理剂、土壤修复剂、缓释肥料、植物生长刺激素和接种剂。在一个实施方案中,所述农用助剂为杀虫剂助剂、杀菌剂助剂、肥料助剂、杀螨剂助剂、杀鼠剂助剂、杀线虫助剂和农用增效助剂。在一个实施方案中,所述农药为植物生长调节剂、杀虫剂、杀菌剂、除草剂和杀鼠剂。
其中,植物品质的提高以及生长的促进的表征如上所述。
7.本申请的优势
本申请具有如下技术优势:
(1)本申请的组合物或脂肽可显著提高植物品质,与对照相比,施用脂肽组合物或脂肽的植物的叶绿素含量、总氮量、维生素含量、蛋白质含量、可溶性糖含量、脂肪酸含量、氨基酸含量、花青素含量、番茄红素含量、类胡萝卜素含量和/或果胶质含量更高,生长周期更短,和/或抗旱能力、耐寒能力和/或抗倒伏能力更强;
(2)本申请的组合物或脂肽在提高植物品质的同时促进植物生长的效果显著,与对照相比,施用脂肽组合物或脂肽的植物的出苗率、发芽数、株高、叶片数、叶片宽度、根长、总长、花(枝)数、花枝高度、花茎粗壮度、果数、根重、叶片重、干物质重、分蘖数、单株重、单果重和/或植物产量更高,叶片色泽、果形更好,和/或花期更长;
(3)本申请的组合物中使用的脂肽是生物表面活性剂,可生物降解,无污染,绿色环保,长期使用无危害;和
(4)本申请的组合物中使用的脂肽稳定性强,受温度和湿度影响较小,制备和使用方法简单、管理方便。
具体实施方式
下面将结合具体实施例对本申请作进一步说明,但这些具体实施例并不能被理解为是对本申请保护范围的限制。本领域技术人员在不脱离本申请技术方案范围内,可对这些具体实施例做出多种变更或修改,所述变更和修改后的实施方案仍落入本申请的保护范围。
仪器、材料与试剂
超净工作台、摇床、培养箱、摇瓶、基因工程菌THY-7(pJMP-yngH)、糖类、无机氮源、有机氮源、KH2PO4、Na2HPO4·12H2O、CaCl2、MnSO4·H2O、 FeSO4·7H2O等均为商购产品。
菌株
枯草芽孢杆菌(Bacillus subtilis)THY-7/Pg3-srfA获得自专利ZL 201510654218.3;枯草芽孢杆菌THY-7/Pg3-srfA(yngH)获得自专利ZL 2018108652957;枯草芽孢杆菌THY-7/Pg3-srfAΔspoIVA、THY-7/Pg3-srfAΔspoIVB、THY-7/Pg3-srfAΔspoIVC、THY-7/Pg3-srfAΔspoIVF、THY-7/Pg3-srfAΔspoVA、THY-7/Pg3-srfAΔspoVB、THY-7/Pg3-srfAΔspoVD和THY-7/Pg3-srfAΔspoVE获得自专利ZL 201811465067.7;枯草芽孢杆菌THY-7/Pg3-srfA(leuABCD-ilvK)获得自专利ZL 201910549289.5。
实施例1.脂肽组合物的获得
1.含表面活性素的组合物的获得
挑取枯草芽孢杆菌(B.subtilis)THY-7/Pg3-srfA单菌落,接种于LB液体培养基中,37℃、200rpm条件下培养16小时,得到种子液,以5%的比例接入发酵培养基摇瓶中,37℃、200rpm条件下培养2-6小时时加入1mM IPTG,继续培养至2天,即得到含表面活性素的发酵液。
所使用的发酵培养基的组成为:糖类30-100g/L、无机氮源10-50g/L、有机氮源0.5-3g/L、KH2PO4 0.1-1g/L、Na2HPO4·12H2O 0.5-0.3g/L、CaCl20.002-0.01g/L、MnSO4·H2O 0.002-0.01g/L、FeSO4·7H2O 0.002-0.01g/L,pH 6.5-7.5,发酵添加剂(硅类消泡剂、多糖、氨基酸或其衍生物、寡肽、磷脂、糖脂、和/或脂肪酸或其衍生物)0.01-20重量%。
发酵液中表面活性素含量检测采用CN105400784A中公开的方法。具体为:取1mL发酵液在12000rpm条件下离心1分钟,取100μL上清液加入1900μL去离子水,混匀,经0.22μm滤膜过滤后用HPLC分析。HPLC分析的流动相为甲醇和水,用量比例为85/15,流速为1mL/分钟,色谱柱为C18-ODS反相色谱柱,柱温40℃,紫外检测器,检测波长205nm。
通过检测可知,发酵液中的表面活性素的含量约为0.001-90g/L。所述发酵液即为本申请的含表面活性素的组合物1。从发酵液中提取出表面活性素,并通过冷冻干燥获得粉末产物(其也可以作为本申请的组合物直接施用),并将所述粉末配制成0.001-100g/L的水溶液,作为本申请的组合物2。
2.含伊枯草菌素、芬芥素和地衣素的组合物的获得
伊枯草菌素和芬芥素购自MedChemExpress,地衣素购自BOC Sciences。将其分别溶解于水中,配制成0.001-100g/L的水溶液,分别作为本申请的组合物3-5。
在组合物3-5中分别加入0.01-99.99重量%的多糖或其衍生物(肽聚糖、纤维素、糖原、淀粉、壳多糖、多聚果糖、多聚半乳糖和糖胺聚糖中的一种或多种)、氨基酸(常见α-氨基酸)、寡肽(寡肽-3、寡肽-4、寡肽-5和寡肽-6中的一种或多种)、类脂(酯类化合物、磷脂、糖脂和胆固醇及其酯中的一种或多种)、脂肪酸或其衍生物(硬脂酸、动物油脂和植物油脂中的一种或多种)、无机盐(Na2SO4、K2SO4、(NH4)2SO4、KH2PO4、K2HPO4、Na2HPO4、NaH2PO4、K3PO4、CO(NH2)2、NH4NO3、NaNO3、CaCl2、FeCl2、NH4Cl、MnSO4、FeSO4、Ca(H2PO4)2中的一种或多种)、分散剂(萘磺酸盐、木质素磺酸盐、聚羧酸盐及聚羧酸酯、淀粉、牛血清白蛋白、环糊精中的一种或多种)、润湿剂(十二烷基磺酸盐、辛基琥珀酸盐、醇醚硫酸盐聚合物中的一种或多种)、聚合物(聚乙二醇、聚丙烯酸乳液、聚丙烯酸聚乙烯醇乳液、黄原胶、聚谷氨酸中的一种或多种)、或者警戒色试剂作为本申请的组合物6-8(参见表1)(组合物1-8可直接作为农业肥料或农药使用,也可以组合物1-8为原料复配作为农业肥料、助剂或农药使用)(上述组合物1-8也可以粉末混合物形式作为本申请的组合物直接施用)。
表1.

其中用于以下实施例的组合物1-8的具体组成如下:
组合物1中表面活性素的含量为0.1g/L;
组合物2-1中表面活性素的含量为0.001g/L;
组合物2-2中表面活性素的含量为0.01g/L;
组合物2-3中表面活性素的含量为1g/L;
组合物2-4中表面活性素的含量为50g/L;
组合物2-5中表面活性素的含量为100g/L;
组合物3中伊枯草菌素的含量为0.1g/L,
组合物4中芬芥素的含量为0.1g/L;
组合物5中表地衣素的含量为0.1g/L;
组合物6中伊枯草菌素的含量为0.1g/L,
组合物7中芬芥素的含量为0.1g/L;
组合物8中表地衣素的含量为0.1g/L;
组合物6-8中的其他组分的含量如下表2所示。
表2

3.含制磷脂菌素、杀镰孢菌素,多粘菌素和八肽霉素组合物的获得
制磷脂菌素和多粘菌素购自MCE,八肽霉素和杀镰孢菌素购自浙江珲达。将其分别溶解于水中,配制成0.1g/L的水溶液,分别作为本申请的组合物9-12。
将上述各组合物(1、2-1、2-2、2-3、2-4、3、4、5、6、7、8、9、10、11、12)中的至少1种施用于以下作物种植。
实施例2.脂肽组合物用于提高玉米品质并促进玉米生长
田间播种甜糯玉米,出苗后用脂肽组合物浇灌处理,脂肽处理31天时,对照未串穗,而脂肽处理组已串穗(参见图7的小图面2,组合物1)。收获玉米,经测定,脂肽处理组玉米棒子直径和玉米粒行数与对照无明显差异,仅提高了1.41%和0.16%,而玉米棒子长度和每行粒数较对照分别提高了11.28%~18.47%(参见图1,组合物1)。调查玉米品质提高的情况,结果如表3所示。处理组玉米的可溶性糖含量为1.33%-1.80%,是对照组(0.66%)的1.99-2.73倍,处理组花青素含量为63.1-72.6mg/100g,比对照组52mg/100g,提高了21.3%-39.6%,处理组脂肪酸含量为1.05-1.19%,比对照组的0.8%提高了31.2%-48.8%。
表3
实施例3.脂肽组合物用于提高小麦品质并促进小麦生长
采取纸培方式观察脂肽对小麦出芽率与生长势的影响,用清水和组合物1、3-5充分润湿纸床,将种子均匀播种于纸床中,至于日光培养箱中,于第2、4、7天观察小麦的出芽率及生长势。从表4中,我们可以看出,处理组与对照相比,处理组小麦出芽提前,出苗率更高,长势更壮(参见图7的小图面4,组合物1),根系更壮且须根数量增加(参见图7的小图面5,组合物1)、苗期生长更茂盛(参见图7的小图面6,组合物1),可推断其生长期抗逆能力更强,产量更高。
表4.小麦纸培出芽率
田间播种小麦,土壤肥力均匀,土壤粘土,小麦长势均匀一致,试验区内栽培管理条件一致。用脂肽组合物1和3在分蘖期、孕穗期、齐穗期处理,收获期观察小麦品质提高的情况,结果如表5所示。结果显示,脂肽处理组小麦的蛋白质含量占总粒重的18-22%,比对照组(16%)提高了2-6%。处理组可溶性糖含量占总粒重的2.8-3.2%,是对照组(2.5%)的112%-128%(参见图2,组合物1)。
表5
实施例4.脂肽组合物用于提高披碱草品质并促进披碱草生长
披碱草作为我国西部、高原地带的优良牧草对当地的畜牧业发展有重要影响,但该地气候条件差、低温和干旱对早期披碱草的出芽率有显著影响,生长期间的干旱也是严峻的挑战。
用脂肽组合物1、3-5和9-12对披碱草种子进行包衣处理,盆栽土培,浇灌1-200mL清水,培养过程中不浇水,培养温度调整到5摄氏度左右,观察了披碱草品质提高的情况,结果如表6所示。播种9天,对照组出苗率 为10%,脂肽处理组出苗率16.7%-28.0%,可见,脂肽处理组的抗旱和耐寒能力比对照组提高了6.7-18.0%;播种14天,处理组的出苗率比对照组增加9.3-12.7%,分蘖数量比对照组增加了9.33~37.12%,可见,脂肽处理使披碱草的抗旱和耐寒能力与对照组相比进一步提高;播种一个月,脂肽处理组的叶片叶绿素含量比对照组增加20-38%。
表6
此外,还进一步观察了披碱草生长的情况,结果如表7所示。播种14天,脂肽处理组的地上部分鲜重比对照组增加了12.5-38.9%(参见图7的小图面7,组合物4)。播种1个月,处理组株高为9.8-11.5cm,比对照组8.7cm增高了12.6-32.2%,处理组地上部分鲜重1.2-1.7g,比对照组0.8g增加了50-112.5%。处理组的一年青贮饲料产量相对于对照组提高了46.77~80.52%。
表7

实施例5.脂肽组合物用于提高燕麦草品质并促进燕麦草生长
盆栽播种燕麦草,播种后浇灌脂肽组合物1-12,调查燕麦草品质提高的情况,结果如表8所示。播种1个月后,脂肽处理组的叶片叶绿素含量比对照组增加了13-22.4%。
此外,还进一步观察了燕麦草的生长情况,结果如表9所示。播种9天,对照组出苗率为44%,脂肽处理组出苗率58%-81.3%,比对照组提高了14-37.3%;播种14天时,处理组的出苗率高于对照组9.31-20.12%,处理组根系比对照组增加了24.0%-49%(参见图7的小图面8上图,组合物8),地上部分鲜重比对照组增加了13.52-56.73%,播种1个月,处理组株高为10.1-11cm,比对照组9.5cm增高了6.3-15.8%。处理组地上部分鲜重为3.2-4.1g,比对照组(2.9g)增加了10.3-41.4%(参见图7的小图面8下图,组合物8)。处理组的一年青贮饲料产量相对于对照组提高了11.89-51.25%。
表8
表9
实施例6.脂肽组合物用于提高甘蔗品质并促进甘蔗生长
田间播种甘蔗,土壤肥力均匀,土壤沙壤土至轻粘土,甘蔗长势均匀一致,试验区内栽培管理条件一致。用脂肽组合物1-12在分蘖期、拔节期、成熟期前10天用处理植物,收获期观察甘蔗品质提高的情况,结果如表10所示。脂肽处理组甘蔗的含糖量比对照组提高了7.19%~15.21%,维生素含量比对照组提高了5.2%~10.9%。
表10

实施例7.脂肽组合物用于提高双花草品质并促进双花草生长
用脂肽组合物1-12对双花草种子进行包衣处理,盆栽土培,浇灌1-200mL清水,调查了双花草品质提高的情况,结果如表11所示。播种10天,脂肽处理组的叶片叶绿素含量比对照组增加了10.3-19.6%;播种1个月后,脂肽处理组的双花草中的蛋白质含量为11.6-15.1%,比对照组增加了5.3-8.8%,脂肽处理组的双花草中的脂肪含量比对照组增加了2.3-4.5%。
表11
实施例8.脂肽组合物用于提高鸭嘴草品质并促进鸭嘴草生长
田间撒种鸭嘴草草种后浇灌脂肽组合物1-12,调查鸭嘴草品质提高的情况,结果如表12所示。播种2个月,脂肽处理组鸭嘴草的蛋白质含量比对照组增加了1.0-4.4%。
此外,还进一步观察了鸭嘴草的生长情况。播种1个月,处理组分蘖数平均为13-17个,比对照组10个分蘖数,提高了30%-70%,处理组的鸭嘴草苗高平均为75-93cm,对照组苗高为63cm,处理组比对照组增高了19.1%-50%;播种2个月,处理组地上部分鲜重比对照组增加了31-68%。处理组的一年青贮饲料产量相对于对照组提高了50-82.5%。
表12
实施例9.脂肽组合物用于提高牛鞭草品质并促进牛鞭草生长
田间撒种牛鞭草种子后浇灌脂肽组合物1-12,调查牛鞭草品质提高的情况,结果如表13所示。播种1个月,脂肽处理组牛鞭草的蛋白质和脂肪含量分别比对照组增加了3.0-6.9%和1.3-5.8%。
表13

此外,还进一步观察了牛鞭草的生长情况,结果如表14所示。播种5天,清水对照组出苗率为63%,脂肽处理组出苗率81.3%-92.7%,比对照组提高了18.3-29.7%;播种1个月,清水组牛鞭草仅1次分蘖,处理组平均分蘖次数为1.8,处理组牛鞭草平均高度为97-121cm,对照组高度为83cm,处理组比对照组提高了16.9%-45.8%,处理组地上部分鲜重比对照组增加了22.5-50.8%。对照组年收获5次,处理组平均年收获7次,处理组的一年青贮饲料产量相对于对照组提高了72-110%。
表14
实施例10.脂肽组合物用于提高菠菜品质并促进菠菜生长
田间播种菠菜,种植区20m2/小区,各小区中间设50cm保护行,出苗后3-4叶期叶面喷雾喷施脂肽组合物1-12,间隔7天左右,再次喷施脂肽组合物处理液,共施药2次。30天后,采收菠菜,测定菠菜品质提高的情况,结果如表15所示。脂肽处理组菠菜的平均叶绿素含量是37.4-44.5SPAD,比对照组增加了16.1%-38.2%;处理组总氮量是14.9-18.7mg/g,比对照组增加了34.7%-68.5%;处理组维生素含量是1.54-1.89mg/100g,比对照组增加了4.8%-28.6%(参见图3,组合物9)。处理组平均产量是7337.6-7968g,比对照组增加了1.7%-10.5%(参见图7的小图面9,组合物9)。
表15
实施例11.脂肽组合物用于提高小白菜品质并促进小白菜生长
田间种植小白菜,种植区20m2/小区。苗期、旺长期叶面喷雾喷施脂肽组合物1,共施药两次。采收小白菜,测定小白菜品质提高的情况。如表16所示,脂肽处理组小白菜的平均可溶性糖含量为3.8mg/g,为对照组的119.8%;脂肽处理组小白菜的平均维生素含量为0.94mg/g,为对照组的148.5%。
此外,还进一步观察了小白菜的生长情况。脂肽处理组平均株高是29.50cm,为对照组的103.8%。脂肽处理组产量比对照组平均增加了13.77%(参见表16和图7的小图面10,组合物1)。
表16
实施例12.脂肽组合物用于提高西红柿品质并促进西红柿生长
大棚内种植西红柿,种植区10m2/小区。对西红柿植株进行叶面喷雾喷施脂肽组合物1-12。西红柿苗期和开花期各施药一次,共施药两次,西红柿全株常规均匀喷雾施药。测定西红柿品质提高的情况,结果如表17所示。脂肽处理组西红柿的平均番茄红素12.8-14.1mg/100g,高出对照组7.6%-18.5%。
此外,还进一步观察了西红柿的生长情况。脂肽处理组平均株高是42.3-46.8cm,高出对照组5.8%-17%。脂肽处理组平均花数是14.6-16.9个,高出对照组12.3%-30%。脂肽处理组平均果数是12.5-15.6个,高出对照组8.7%-35.7%。脂肽处理组平均单个果重是234.1-256.6g,高出对照组6.4%-16.6%。
表17

实施例13.脂肽组合物用于提高辣椒品质并促进辣椒生长
大棚内种植辣椒,种植区10m2/小区。对辣椒植株进行叶面喷雾喷施脂肽组合物1-12。辣椒苗期和开花期各施药一次,共施药两次,辣椒全株常规均匀喷雾施药。测定辣椒品质提高的情况,结果如表18所示。脂肽处理组辣椒的维生素含量、脂肪酸含量和类胡萝卜素含量分别比对照组的相应含量增加15.6-27.1%、3.4-7.9%和11.8-14.6%。
此外,还进一步观察了辣椒的生长情况。脂肽处理组平均株高是45.8-47.2cm,高出对照组6.5%-9.8%。脂肽处理组平均花数是26.3-30.6个,高出对照组9.6%-27.5%。脂肽处理组平均果数是24.8-28.3个,高出对照组12.7%-28.6%。
表18

实施例14.脂肽组合物用于提高黄瓜品质并促进黄瓜生长
大棚内种植黄瓜,种植区10m2/小区。对黄瓜植株浇灌1-200mL脂肽组合物1-12。黄瓜定植缓苗后灌根1次,间隔10天后再灌根一次。测定黄瓜品质提高的情况,结果如表19所示。脂肽处理组黄瓜的可溶性糖含量为2.7-3.5%,高出对照组0.69-1.49%。脂肽处理组蛋白质含量为1.56-1.83%,比对照组增加了0.52-0.69%。脂肽处理组维生素C含量为173-196mg/kg,对照组为127mg/kg,比对照组增加了36.2-54.3%(参见图4,组合物2-1)。
此外,还进一步观察了黄瓜的生长情况。脂肽处理组平均株高是160.8-171.5cm,高出对照组3.7%-10.6%。脂肽处理组平均花数是8-10个,高出对照组14.3%-42.9%。脂肽处理组平均果数是6.5-7.6个,高出对照组22.6%-43.4%。脂肽处理组平均果重是312.1-350.6g,高出对照组4%-16.9%(参见图7的小图面11,组合物6)。
表19

实施例15.脂肽组合物用于提高苦瓜品质并促进苦瓜生长
大田移栽苦瓜,种植区10m2/小区。苦瓜定植缓苗后浇灌1-200mL脂肽组合物1。检测苦瓜品质提高的情况,结果如表20所示。脂肽处理组首雌花开花和首果结果均比对照提前了6天,脂肽处理2个月后,处理组每植株平均花蕾数为61个,比对照增加了56.4%,每株收获苦瓜3个,比对照增加了2倍。
表20
实施例16.脂肽组合物用于提高冬瓜品质并促进冬瓜生长
大田移栽冬瓜苗,缓苗1周后浇灌1-200mL脂肽组合物1-12。检测脂肽对冬瓜开花结果以及品质的影响,结果如表21所示。处理组冬瓜首首现雌花时间为2月7日,比对照组提前了6天,首果时间为2月10日,比对照组提前了14天(参见图5,组合物2-3)。处理组收获的冬瓜中氨基酸平均含量为0.61-0.68g/100g,比对照增加了35.6-51.1%,处理组冬瓜维生素C平均含量为14.5-15.1mg/100g,比对照组的13.3mg/100g,增加了9.0%-13.5%。
表21
实施例17.脂肽组合物用于提高草莓品质并促进草莓生长
大棚内种植草莓,种植区10m2/小区。对草莓植株进行叶面喷雾喷施脂肽组合物1-12,在草莓盛花初期、盛花期全株均匀喷雾施药。喷施脂肽溶液后,测定草莓品质提高的情况(参见图6,组合物7),结果如表22所示。脂肽处理组草莓的畸形果数是0.33-0.45个,正常果型的果数高出对照组10%-34%。脂肽处理组的平均可溶性糖含量是13.5-14.9g/100g,高出对照组 7%-18.3%。脂肽处理组的平均蛋白质含量是1.63-1.84g/100g,高出对照组19.8%-35.3%。脂肽处理组的平均果胶质含量是0.73-0.92g/100g,高出对照组25.8%-58.6%。
此外,还进一步观察了草莓的生长情况(参见图6,组合物7)。脂肽处理组初花和初果时间比对照组提前一周;处理组挂果数显著多于对照组;处理组果实成熟度均一。脂肽处理组的平均花数是12.9-15.35个,高出对照组2.5%-22%。脂肽处理组的平均果数是5.5-5.9个,高出对照组4.5%-12.4%。脂肽处理组总果重是150.1-202.6g,高出对照组11.3%-50.2%。
表22
实施例18.脂肽组合物用于提高苹果品质并促进苹果生长
苹果田间种植,将苹果树苗在清水和脂肽处理液中浸泡24小时后,栽植到坑穴中,缓苗生长1个月后,叶面喷雾喷施脂肽组合物1-8,间隔2周后再次喷施,第二年在果数抽叶初期、快速生长期、开花初期、盛花期喷施 脂肽处理液,测定苹果品质提高的情况,结果如表23所示。结果显示,对照组苹果的可溶性糖含量为12g/100g,脂肽处理组苹果的平均可溶性糖含量为14-16.1g/100g,为对照组的116.7-134.2%,脂肽处理组的平均蛋白质含量为对照组(0.2g/100g)的157%-178%,脂肽处理组的正常果型的果数高出对照组9%-20%。
表23
实施例19.脂肽组合物用于提高发财树品质并促进发财树生长
挑选长势相当的发财树,移植于自吸水花盆中,自吸花盆中装入脂肽组合物1-8,每七天更换一次新鲜脂肽处理液,施用脂肽处理液21天后观察发财树品质提高的情况,结果如表24所示。脂肽处理组发财树的叶绿素含量68.9-74mg/g,比对照组增加6%-15%。处理组总氮量是13.3-16.3mg/g,比对 照组增加了10.8%-35.8%。
此外,还进一步观察了发财树的生长情况。脂肽处理组叶片20-28片,新生叶片平均5-10片,比对照组新生叶片数量增加10%-50%(参见图7的小图面13,组合物2-1)。
表24
实施例20.脂肽组合物用于提高绿萝品质并促进绿萝生长
挑选长势相当的绿萝,扦插于花盆中,花盆中装入脂肽组合物1-8,每十五天浇灌一次新鲜脂肽处理液,施用脂肽处理液30天后,测定绿萝品质提高的情况,结果如表25所示。脂肽处理组绿萝的叶绿素含量为35.5-42.1mg/g,是对照组的111%-132%;处理组总氮量高于对照组24.2%-39.6%。
此外,还进一步观察了绿萝的生长情况。脂肽处理组绿萝的叶片数为15-20片,其中新生叶片数平均为3-5片,比对照组的新生叶片数增加50%-150%(参见图7的小图面14,组合物8)。
表25
实施例21.脂肽组合物用于提高大丽花品质并促进大丽花生长
将大丽花块茎干枯的根须剪掉,块茎放在0.1%多菌灵溶液中浸泡10分钟,用去离子水清洗一次并沥干水分。将培养用土壤杀菌后装入培养盘,种植种球,并覆土于块茎上。浇灌1-150ml脂肽组合物1-12,脂肽处理液培养45天后,观察大丽花品质提高的情况,结果如表26所示。脂肽处理组大丽花的叶绿素和总氮量分别比对照组增加了7.5-12.3%和12.1-17.4%。
此外,还进一步观察了大丽花的生长情况。脂肽处理组大丽花的出苗率平均为50%-100%,比对照组提高了40%-90%。脂肽处理组平均株高5.5-18.9cm,比对照组增加了10%-278%(参见图7的小图面15,组合物4)。
表26
实施例22.脂肽组合物用于提高水仙品质并促进水仙生长
选择大小一致的水仙鳞茎,将水仙鳞茎底部的护根泥、老根和干枯的老茎片去除,鳞茎放在清水中浸泡3小时,用清水冲洗干净。将鳞茎放在培养盘中,加入脂肽组合物1-12,脂肽处理液培养30天后,观察水仙品质提高的情况,结果如表27所示。脂肽处理组水仙叶片的总氮量比对照组增加了5.1-9.0%。
此外,还进一步观察了水仙的生长情况。脂肽处理组水仙的株高平均为9.9-24.7cm,比对照组增加了12.5%-180.7%。脂肽处理组水仙的叶片宽度平均宽度是1.1-1.3cm,比对照组增加了22%-44%(参见图7的小图面16a和16b,组合物2-2和组合物2-3)。
表27
实施例23.脂肽组合物用于提高小苍兰品质并促进小苍兰生长
选择大小一致的小苍兰种球,将种球外层的老茎片剥除,种球用清水冲洗干净。将种球放在培养瓶中,加入脂肽组合物1-12,脂肽处理液培养10天后,观察小苍兰品质提高的情况,结果如表28所示。脂肽处理组小苍兰的花期比对照组平均提前2-4天,平均延长3-5天。
此外,还进一步观察了小苍兰的生长情况。脂肽处理组小苍兰的发芽数平均为15-18个,比对照组增加了7%-28.6%。脂肽处理组小苍兰的平均株高是6.7-14.2cm,比对照组增加了5%-121.9%(参见图7的小图面17a和17b,组合物1和组合物2-3)。
表28

实施例24.脂肽组合物用于提高玫瑰品质并促进玫瑰生长
在田间玫瑰种植园中,玫瑰收获一茬后,叶面喷施脂肽组合物1-12,7天后,第二次喷施处理液,观察玫瑰品质提高的情况,结果如表29所示。脂肽处理组玫瑰的花期比对照组平均提前3-5天。
此外,还进一步观察了玫瑰的生长情况。脂肽处理组玫瑰的花枝平均高度比对照组增加了15%-31%,平均花茎粗壮度比对照组增加2mm。
表29

实施例25.脂肽组合物用于提高康乃馨品质并促进康乃馨生长
在康乃馨种植园中,叶面喷施脂肽组合物1-12,间隔1周再次喷施处理液,共喷施4次,观察康乃馨品质提高的情况,结果如表30所示。对照组花期4个月,脂肽处理组康乃馨的花期平均延长了1个月。
此外,还进一步观察了康乃馨的生长情况。对照组康乃馨的花枝数为4枝,处理组花枝数平均为5-7枝,比对照组多25-75%,处理组花枝高度比对照组增加14.2-21.6%。
表30

实施例26.脂肽组合物用于提高蕙兰品质并促进蕙兰生长
选用高脚盆盆栽种植蕙兰,缓苗后喷施清水和脂肽处理液1-12,7天后,进行第2次叶喷,共喷施4次,观察蕙兰品质提高的情况,结果如表31所示。对照组花期为3.5个月,处理组花期平均为4.5-5个月,平均延长了1-1.5个月。
此外,还进一步观察了蕙兰的生长情况。对照组蕙兰的平均叶片数为13片,处理组平均叶片数为16-22片,比对照组增加了23.1-69.2%;对照组花枝数为1枝/株,处理组平均花枝数为1.5-2.1枝/株,比对照组增加了50%-110%。
表31

实施例27.脂肽组合物用于提高紫苏品质并促进紫苏生长
用脂肽组合物1-12对紫苏种子拌种后种植于盆栽中,土培培养,浇灌1-200mL清水,播种28天,采摘紫苏叶并调查品质情况,结果如表32所示。脂肽处理组的紫苏叶片中可溶性还原糖含量为1242-1279mg/100g,比对照组增加了8-11.2%;脂肽处理组的叶片维生素C含量为5.1-5.6g/100g,比对照组增加了10.9-21.7%;脂肽处理组的叶片类胡萝卜素含量为10.4-12.0mg/100g,比对照组增加了15.6-33.3%。
此外,还进一步测定了紫苏的生长情况。脂肽处理组平均叶片数量和重量分别比对照组提高了2.2-10.1%和11.6-20.5%。
表32

实施例28.脂肽组合物用于提高荆芥品质并促进荆芥生长
用脂肽组合物1-12与荆芥种子拌种后种植于盆栽中,土培培养,浇灌1-200mL清水,播种4个月,收割荆芥并调查品质情况,结果如表33所示。脂肽处理组的荆芥叶片中维生素C含量为27.9-32.2mg/100g,比对照组增加了11.6-28.8%;脂肽处理组叶片蛋白质和胡萝卜素含量分别比对照组增加了4.3-10.5%和11.0-26.9%。
此外,还进一步测定了荆芥的生长情况。脂肽处理组平均株鲜重比对照组增加了7.2-30.2%。
表33

实施例29.脂肽组合物用于提高红薯品质并促进红薯生长
大田移栽红薯秧苗,种植区20m2/小区,缓苗后浇灌1-200mL脂肽组合物1-12,间隔2周叶面喷施,全株常规均匀喷雾,共喷施2次。种植4个月后,采收红薯,检测红薯品质提高的情况,结果如表34所示。脂肽处理组蛋白质含量为1.3-1.6g/100g,比对照组增加了11.1-36.8%;脂肽处理组维生素含量为25.1-27.8mg/100g,比对照组增加了21.8-34.9%。
此外,进一步测定红薯的收获情况。红薯的亩数量和亩重量分别比对照组增加了3.3-21.3%和2.0-9.8%。
表34

实施例30.脂肽组合物用于提高青稞品质并促进青稞生长
用脂肽组合物1-12与肥料、青稞种子拌种后田间播种,种植土壤肥力均匀,试验区内栽培管理条件一致,播种136天后,青稞成熟,收割并测定青稞品质提高的情况,结果如表35所示。结果显示,脂肽处理组青稞总膳食纤维含量为19.9-22.7g/100g,比对照组提高了20.6-37.6%;脂肽处理组青稞维生素含量为301-343mg/100g,比对照组增加了3.4-18.3%;脂肽处理组花青素含量比对照组提高了5.5-9.1%。
此外,进一步测定了青稞的生产情况,青稞的平均亩产量比对照组增加了9.1-21.5%。
表35

实施例31.脂肽组合物用于提高荞麦品质并促进荞麦生长
用脂肽组合物1-12、杀虫剂、杀菌剂和荞麦种子拌种后田间播种,种植田肥力均匀,试验区内栽培管理条件一致,播种95天后荞麦成熟,收割并测定荞麦品质,结果如表36所示。结果显示,脂肽处理组荞麦蛋白含量、维生素含量、胡萝卜素含量和膳食纤维含量分别比对照组提高了19.4-23.6%、10.0-13.7%、10.4-13.1%和8.5-9.7%。
此外,进一步测定了荞麦生产情况,平均亩产量比对照组增加了6.9-22.3%。
表36

以上所述,仅是本申请的优选实施例而已,并非对本申请作任何形式上的限制。虽然以上描述了本申请的具体实施方式,但是本领域技术人员应当理解,这仅是举例说明,本申请的保护范围由所附权利要求书限定。本领域的技术人员在不脱离本申请技术方案范围内,可对上述披露的技术内容做出多种变更或修改,这些变更和修改均落入本申请的保护范围。

Claims (27)

  1. 一种组合物用于提高植物品质的用途,其中所述组合物含有:
    (i)0.001-100g/L的脂肽;和
    (ii)助剂。
  2. 一种组合物用于提高植物品质同时促进根系和/或植物生长的用途,其中所述组合物含有:
    (i)0.001-100g/L的脂肽;和
    (ii)助剂。
  3. 一种组合物用于农业肥料、农用助剂或农药中的用途,其中所述组合物含有:
    (i)0.001-100g/L的脂肽;和
    (ii)助剂。
  4. 根据权利要求1-3中任一项所述的用途,其中所述脂肽为环状脂肽或线形脂肽,其中所述环状脂肽具有下式(I)-(III)之一:
    其中R表示脂肪酸链的碳链,A1、A2、A3…Am分别表示肽链上的第1、第2、第3…第m个氨基酸,脂肪酸的羧基与A1的N-端相连,Am的C-端羧基又与脂肪酸或者肽链上其他氨基酸的羟基或氨基相连形成环状结构;
    所述线形脂肽为所述环状脂肽开环后得到的线形产物。
  5. 根据权利要求1-4中任一项所述的用途,其中所述脂肽为选自下组的一种或多种:表面活性素家族、伊枯草菌素家族和芬芥素家族。
  6. 根据权利要求1-4中任一项所述的用途,其中所述脂肽为选自下组的一种或多种:表面活性素、伊枯草菌素、芬芥素、地衣素、巴比伦素、帕米拉素、芽孢菌霉素、抗霉枯草菌素、制磷脂菌素、杀镰孢菌素、库尔斯塔克素、类芽孢杆菌素、多粘菌素、八肽霉素、杆农素和多肽菌素。
  7. 根据权利要求1-6中任一项所述的用途,其中所述脂肽是由细菌、放线菌、真菌或蓝细菌产生的。
  8. 根据权利要求7所述的用途,所述细菌选自下组:芽孢杆菌属、假单胞菌属、链霉菌属、节杆菌属和伯克霍尔德菌属,所述放线菌选自以下组:链霉菌属、拟无枝菌酸菌属和微杆菌属,所述真菌选自以下组:曲霉属,微囊菌属,孢霉属,漆斑菌属,帚枝霉属,线孢小球腔菌属和冠芒孢霉属,更所述蓝细菌选自以下组:海洋蓝细菌属、石蕊属和青菌属。
  9. 根据权利要求7所述的用途,所述脂肽是通过培养芽孢杆菌或假单胞菌得到的。
  10. 根据权利要求7所述的用途,所述脂肽是通过培养芽孢杆菌并调控脂肽合成相关基因的表达而得到的脂肽,所述脂肽合成相关基因选自下组:脂肽合成基因、跨膜运输蛋白基因ycxA、生物素羧化酶基因yngH、芽孢合成基因spoIVA/B/C/F、spoVA/B/D/E和亮氨酸合成途径基因leuABCD/ilvK。
  11. 根据权利要求10所述的用途,其中所述脂肽合成基因选自下组:表面活性素合成基因srfA、芬芥素合成基因fen、地衣素合成基因lic、芽孢菌霉素合成基因bam、抗霉枯草菌素myc、伊枯草菌素合成基因itu、制磷脂菌素合成基因pps、杀镰孢菌素fus、库尔斯塔克素krs、多粘菌素pmx和八肽霉素oct。
  12. 根据权利要求1-11中任一项所述的用途,其中所述组合物进一步含有0.01-99.99重量%的选自下组的一种多种组分:多糖、寡糖、糊精、氨基酸、寡肽、类脂、蛋白质、和脂肪酸或其衍生物、无机盐、分散剂、润湿剂和聚合物等。
  13. 根据权利要求1-12中任一项所述的用途,其中所述组合物是含脂肽的发酵液、水溶液、浓缩液或部分纯化、干燥后的粉末。
  14. 根据权利要求1-13中任一项所述的用途,其中所述组合物为培养能够产生脂肽的细菌、放线菌、真菌和蓝细菌得到的培养液。
  15. 根据权利要求1-14中任一项所述的用途,所述植物是非豆科的植物,且选自下组:粮食或畜牧植物、蔬菜类植物、水果植物、园艺植物和花卉植物。
  16. 根据权利要求15所述的用途,其中所述粮食或畜牧植物为禾本科植物、所述蔬菜类植物选自下组:茄科植物、十字花科植物、藜科植物、菊科植物、伞形科植物、葫芦科植物、唇形科植物、锦葵科植物和旋花科植物,所述水果植物选自下组:草莓、蓝莓、红莓、蔓越莓、樱桃、桃、李子、枣、苹果、梨、柑橘、橙子、柚子和香蕉,所述园艺植物选自下组:发财树、吊兰、绿萝、鸭砣草、金钱树、富贵竹、元宝树、榕树、万年青和袖珍椰子,所述花卉植物选自下组:水仙、大丽花、小苍兰、鸢尾、芍药、牡丹、郁金香、风信子、百合、仙客来、菊花、玉簪、桔梗、铃兰、紫菀、萱草、兰花、玫瑰、月季、康乃馨、菊花、蔷薇和风铃花。
  17. 根据权利要求15或16所述的用途,其中所述蔬菜类植物选自下组:茄子、土豆、西红柿、辣椒、生菜、小白菜、大白菜、萝卜、油菜、菠菜、芹菜、黄瓜、丝瓜、苦瓜、南瓜、冬瓜、西瓜、甜瓜、哈密瓜、紫苏、荆芥、薄荷和秋葵。
  18. 根据权利要求15或16所述的用途,其中所述粮食或畜牧植物选自下组:小麦、水稻、旱稻、玉米、燕麦、黑麦、大麦、荞麦、谷子、高粱、青稞、茭白、苔麸、薏苡、甘蔗、甜菜、红薯、燕麦草、鹅观草属、冰草、沙芦草、羊草、披碱草、大麦草、新麦草、罗滋草、狗牙根、三芒草、须芒草属、鸭嘴草属、野古草属、双花草、蓝茎草、莠竹属、类蜀黍、牛鞭草、苜蓿和空轴茅。
  19. 脂肽用于提高植物品质的用途。
  20. 脂肽用于提高植物品质同时促进根系和/或植物生长的用途。
  21. 脂肽用于农业肥料、农用助剂或农药中的用途。
  22. 根据权利要求19-21中任一项所述的用途,其中所述脂肽为权利要求4-11中任一项所涉及的脂肽。
  23. 根据权利要求19-22中任一项所述的用途,其中植物品质的提高是通过如下表征的:
    使用所述组合物或脂肽培养的植物的品质参数是不添加所述组合物或脂肽的对照组的至少110%、至少120%、至少130%、至少140%或至少150%,
    其中所述品质参数选自下组的一项或多项:叶绿素含量、总氮量、维生素含量、蛋白质含量、可溶性糖含量、脂肪酸含量、氨基酸含量、花青素含量、番茄红素含量、类胡萝卜素含量、果胶质含量、生长周期、抗旱能力、耐寒能力和/或抗倒伏能力。
  24. 一种提高植物品质的方法,其包括:
    (1)将权利要求1-18中限定的组合物添加到所述植物的培养物中;
    (2)在(1)的培养物中培养并收获所述植物;
    (3)任选地测量所培养的植物和/或其果实的品质参数,并将其与在不含所述脂肽的培养物中培养的植物和/或其果实的品质参数进行比较,所述品质参数选自下组的一项或多项:叶绿素含量、总氮量、维生素含量、蛋白质含量、可溶性糖含量、脂肪酸含量、氨基酸含量、花青素含量、番茄红素含量、类胡萝卜素含量、果胶质含量、生长周期、抗旱能力、耐寒能力和/或抗倒伏能力。
  25. 根据权利要求24所述的方法,其中所述植物品质的提高是通过如下表征的:
    添加所述组合物培养的植物的品质参数是不添加所述组合物的对照组的至少110%、至少120%、至少130%、至少140%或至少150%。
  26. 根据权利要求24或25所述的方法,所述植物的生长同时被促进,所述生长的促进是通过选自下组的一项或多项表征的:出苗率、发芽数、株高、叶片数、叶片宽度、根长、总长、花(枝)数、花枝高度、花茎粗壮度、果数、果形、根重、叶片重、干物质重、分蘖数、单株重、单果重和植物产量。
  27. 根据权利要求26所述的方法,所述植物生长的促进是通过如下表征的:
    添加所述组合物培养的植物的生长参数是不添加所述组合物的对照组的至少110%、至少120%、至少130%、至少140%或至少150%。
PCT/CN2024/096291 2023-05-31 2024-05-30 脂肽用于提高植物品质的用途 WO2024245333A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202310635885.1 2023-05-31
CN202310635885.1A CN116584484A (zh) 2023-05-31 2023-05-31 脂肽用于提高植物品质的用途

Publications (1)

Publication Number Publication Date
WO2024245333A1 true WO2024245333A1 (zh) 2024-12-05

Family

ID=87599031

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2024/096291 WO2024245333A1 (zh) 2023-05-31 2024-05-30 脂肽用于提高植物品质的用途

Country Status (2)

Country Link
CN (1) CN116584484A (zh)
WO (1) WO2024245333A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116584484A (zh) * 2023-05-31 2023-08-15 北京衍微科技有限公司 脂肽用于提高植物品质的用途

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1335854A (zh) * 1998-11-12 2002-02-13 阿格拉奎斯特公司 控制植物病虫害的组合物及方法
CN107872955A (zh) * 2014-12-29 2018-04-03 Fmc有限公司 利于植物生长的地衣芽孢杆菌rti184组合物及其使用方法
CN110944626A (zh) * 2017-07-21 2020-03-31 利波法布里克公司 包含高浓度伊枯草菌素脂肽的组合物
CN113142213A (zh) * 2021-04-25 2021-07-23 河北省科学院生物研究所 表面活性素家族脂肽在防治害虫中的应用
CN114668009A (zh) * 2016-12-30 2022-06-28 利波法布里克公司 用于植物生长的包含脂肽的生物刺激剂组合物
CN114831120A (zh) * 2022-06-16 2022-08-02 河北省科学院生物研究所 一种含有脂肽的组合物及其在害虫防治中的应用
CN115404057A (zh) * 2022-11-01 2022-11-29 北京衍微科技有限公司 一种井液用消泡组合物及其制备方法
CN116584484A (zh) * 2023-05-31 2023-08-15 北京衍微科技有限公司 脂肽用于提高植物品质的用途

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1335854A (zh) * 1998-11-12 2002-02-13 阿格拉奎斯特公司 控制植物病虫害的组合物及方法
CN107872955A (zh) * 2014-12-29 2018-04-03 Fmc有限公司 利于植物生长的地衣芽孢杆菌rti184组合物及其使用方法
CN114668009A (zh) * 2016-12-30 2022-06-28 利波法布里克公司 用于植物生长的包含脂肽的生物刺激剂组合物
CN110944626A (zh) * 2017-07-21 2020-03-31 利波法布里克公司 包含高浓度伊枯草菌素脂肽的组合物
CN113142213A (zh) * 2021-04-25 2021-07-23 河北省科学院生物研究所 表面活性素家族脂肽在防治害虫中的应用
CN114831120A (zh) * 2022-06-16 2022-08-02 河北省科学院生物研究所 一种含有脂肽的组合物及其在害虫防治中的应用
CN115404057A (zh) * 2022-11-01 2022-11-29 北京衍微科技有限公司 一种井液用消泡组合物及其制备方法
CN116584484A (zh) * 2023-05-31 2023-08-15 北京衍微科技有限公司 脂肽用于提高植物品质的用途

Also Published As

Publication number Publication date
CN116584484A (zh) 2023-08-15

Similar Documents

Publication Publication Date Title
WO2023138678A1 (zh) 一种贝莱斯芽孢杆菌及其应用
ES3016752T3 (en) Method of preparing a mixotrophic chlorella-based composition
ES2381584T3 (es) Agente de biocontrol contra enfermedades transmitidas por el suelo
JP2015528296A (ja) 植物の非生物的ストレス抵抗性を高める方法
RU2356226C2 (ru) Применение липохитоолигосахаридов для инициирования раннего цветения и развития плодов у растений
CN110392529B (zh) 植物胁迫耐性诱导剂
US20240397956A1 (en) Use of a structural polypeptide for plant coating
WO2024245333A1 (zh) 脂肽用于提高植物品质的用途
CN1055198C (zh) 一种高效作物防病增产菌的选育方法
KR20020008829A (ko) 식물의 활성부여제, 그 제조방법과, 활성부여방법 및활성촉진제 및 그 시용방법
CN114521555B (zh) 一种高粱抗逆抗倒伏调节剂的制备及其应用
CN110637826A (zh) 一种植物生长调节剂及其制备方法和应用
CN113519523B (zh) 一种多肽在制备预防与治疗植物病害制剂中的用途
CN107087640A (zh) 一种含解淀粉芽孢杆菌和咪鲜胺的杀菌组合物及其应用
JP2008007474A (ja) 植物活力剤
CN104904719A (zh) 一种杀虫组合物及其控制有害生物的方法
US20230167036A1 (en) Compositions and methods for improving plant growth and abiotic stress tolerance
CN110358698A (zh) 巨大芽孢杆菌在增强植物抗干旱胁迫能力中的应用
CN111543434A (zh) 一种防治芋艿烂芋皮病的方法
CN114831129B (zh) 农药组合物及其悬浮种衣剂
CN104271592B (zh) 用于植物的抗微生物环肽组合物
KR102360511B1 (ko) 플라보박테리움 속 tch3-2 균주를 유효성분으로 함유하는 식물의 환경 스트레스 내성 증진용 미생물 제제 및 이의 용도
KR20030095006A (ko) 식물 병원체에 의한 병해로부터 작물을 보호하기 위한육계나무 수피 추출물
CN114711247A (zh) 一种包含卵磷脂和半叶素的农用组合物
CN1377579A (zh) 一种复合型植物抗逆诱导剂

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 24814530

Country of ref document: EP

Kind code of ref document: A1