WO2024244564A1 - 制动盘、制动盘的制备方法及车辆 - Google Patents
制动盘、制动盘的制备方法及车辆 Download PDFInfo
- Publication number
- WO2024244564A1 WO2024244564A1 PCT/CN2024/079183 CN2024079183W WO2024244564A1 WO 2024244564 A1 WO2024244564 A1 WO 2024244564A1 CN 2024079183 W CN2024079183 W CN 2024079183W WO 2024244564 A1 WO2024244564 A1 WO 2024244564A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- brake disc
- blank
- silicon carbide
- groove
- green body
- Prior art date
Links
- 238000002360 preparation method Methods 0.000 title abstract description 10
- 238000005087 graphitization Methods 0.000 claims abstract description 26
- 239000000919 ceramic Substances 0.000 claims abstract description 7
- 229910010271 silicon carbide Inorganic materials 0.000 claims description 95
- HBMJWWWQQXIZIP-UHFFFAOYSA-N silicon carbide Chemical compound [Si+]#[C-] HBMJWWWQQXIZIP-UHFFFAOYSA-N 0.000 claims description 94
- 238000000034 method Methods 0.000 claims description 76
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims description 63
- 229910052799 carbon Inorganic materials 0.000 claims description 57
- 239000002296 pyrolytic carbon Substances 0.000 claims description 35
- 229910052710 silicon Inorganic materials 0.000 claims description 31
- 239000010703 silicon Substances 0.000 claims description 31
- 238000003763 carbonization Methods 0.000 claims description 28
- 230000008569 process Effects 0.000 claims description 25
- 238000005530 etching Methods 0.000 claims description 21
- 238000005229 chemical vapour deposition Methods 0.000 claims description 20
- 238000010438 heat treatment Methods 0.000 claims description 19
- 239000007791 liquid phase Substances 0.000 claims description 15
- 238000004080 punching Methods 0.000 claims description 11
- 238000005475 siliconizing Methods 0.000 claims description 5
- 238000003475 lamination Methods 0.000 claims description 4
- 238000003754 machining Methods 0.000 claims 1
- 229920000049 Carbon (fiber) Polymers 0.000 description 38
- 239000004917 carbon fiber Substances 0.000 description 38
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 30
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 28
- 238000004519 manufacturing process Methods 0.000 description 27
- 239000004745 nonwoven fabric Substances 0.000 description 17
- 238000010586 diagram Methods 0.000 description 16
- 238000006243 chemical reaction Methods 0.000 description 12
- 239000012535 impurity Substances 0.000 description 7
- 230000000052 comparative effect Effects 0.000 description 6
- 239000013078 crystal Substances 0.000 description 6
- 125000004122 cyclic group Chemical group 0.000 description 6
- 229910002804 graphite Inorganic materials 0.000 description 6
- 239000010439 graphite Substances 0.000 description 6
- 125000004432 carbon atom Chemical group C* 0.000 description 4
- 230000000739 chaotic effect Effects 0.000 description 4
- 239000003795 chemical substances by application Substances 0.000 description 4
- 238000000151 deposition Methods 0.000 description 4
- 239000004744 fabric Substances 0.000 description 4
- 238000004513 sizing Methods 0.000 description 4
- 101001121408 Homo sapiens L-amino-acid oxidase Proteins 0.000 description 3
- 101000827703 Homo sapiens Polyphosphoinositide phosphatase Proteins 0.000 description 3
- 102100026388 L-amino-acid oxidase Human genes 0.000 description 3
- 102100023591 Polyphosphoinositide phosphatase Human genes 0.000 description 3
- 239000002131 composite material Substances 0.000 description 3
- 238000000280 densification Methods 0.000 description 3
- 230000008021 deposition Effects 0.000 description 3
- 238000009413 insulation Methods 0.000 description 3
- 238000010329 laser etching Methods 0.000 description 3
- 239000000463 material Substances 0.000 description 3
- 230000003647 oxidation Effects 0.000 description 3
- 238000007254 oxidation reaction Methods 0.000 description 3
- 101100012902 Saccharomyces cerevisiae (strain ATCC 204508 / S288c) FIG2 gene Proteins 0.000 description 2
- 230000009286 beneficial effect Effects 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- 230000007797 corrosion Effects 0.000 description 2
- 238000005260 corrosion Methods 0.000 description 2
- 230000008878 coupling Effects 0.000 description 2
- 238000010168 coupling process Methods 0.000 description 2
- 238000005859 coupling reaction Methods 0.000 description 2
- 239000007789 gas Substances 0.000 description 2
- 230000017525 heat dissipation Effects 0.000 description 2
- 239000011148 porous material Substances 0.000 description 2
- 239000002244 precipitate Substances 0.000 description 2
- 238000001556 precipitation Methods 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- 230000008646 thermal stress Effects 0.000 description 2
- 238000009941 weaving Methods 0.000 description 2
- 101100233916 Saccharomyces cerevisiae (strain ATCC 204508 / S288c) KAR5 gene Proteins 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 238000004891 communication Methods 0.000 description 1
- 230000007812 deficiency Effects 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 239000002783 friction material Substances 0.000 description 1
- 239000003345 natural gas Substances 0.000 description 1
- 238000002791 soaking Methods 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/515—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
- C04B35/56—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides
- C04B35/565—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides based on silicon carbide
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/622—Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/71—Ceramic products containing macroscopic reinforcing agents
- C04B35/78—Ceramic products containing macroscopic reinforcing agents containing non-metallic materials
- C04B35/80—Fibres, filaments, whiskers, platelets, or the like
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/71—Ceramic products containing macroscopic reinforcing agents
- C04B35/78—Ceramic products containing macroscopic reinforcing agents containing non-metallic materials
- C04B35/80—Fibres, filaments, whiskers, platelets, or the like
- C04B35/83—Carbon fibres in a carbon matrix
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16D—COUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
- F16D65/00—Parts or details
- F16D65/02—Braking members; Mounting thereof
- F16D65/12—Discs; Drums for disc brakes
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16D—COUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
- F16D65/00—Parts or details
- F16D65/02—Braking members; Mounting thereof
- F16D65/12—Discs; Drums for disc brakes
- F16D65/125—Discs; Drums for disc brakes characterised by the material used for the disc body
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16D—COUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
- F16D65/00—Parts or details
- F16D65/02—Braking members; Mounting thereof
- F16D65/12—Discs; Drums for disc brakes
- F16D65/128—Discs; Drums for disc brakes characterised by means for cooling
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/42—Non metallic elements added as constituents or additives, e.g. sulfur, phosphor, selenium or tellurium
- C04B2235/422—Carbon
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/42—Non metallic elements added as constituents or additives, e.g. sulfur, phosphor, selenium or tellurium
- C04B2235/428—Silicon
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/50—Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
- C04B2235/52—Constituents or additives characterised by their shapes
- C04B2235/5208—Fibers
- C04B2235/5216—Inorganic
- C04B2235/524—Non-oxidic, e.g. borides, carbides, silicides or nitrides
- C04B2235/5248—Carbon, e.g. graphite
Definitions
- the present application relates to the technical field of brake discs, and in particular to a brake disc, a method for preparing the brake disc, and a vehicle comprising the brake disc.
- carbon-ceramic composite materials have been widely used in the preparation of brake discs as a new generation of high-performance friction materials in the braking field due to their many advantages such as wear resistance, strong oxidation resistance, high temperature resistance, and light weight.
- the existing carbon-ceramic brake discs usually have a high-temperature treatment step in the preparation process to increase the porosity of the carbon-ceramic composite material, so as to facilitate the subsequent steps such as liquid phase siliconization to improve the overall hardness and wear resistance of the carbon-ceramic composite material.
- the high-temperature treatment temperature can reach 2200°C, which places high requirements on production equipment and process conditions, and is not conducive to the production cost control of the brake disc.
- the purpose of the present application is to provide a brake disc with lower production cost, and a method for preparing the brake disc.
- the present application provides a brake disc, which is a carbon-ceramic brake disc and is disc-shaped, and the overall graphitization degree of the brake disc is between 5% and 25%.
- the present application sets the overall graphitization degree of the brake disc between 5% and 25%, that is, during the preparation process, the conversion of carbon atoms from an amorphous chaotic layer structure to a three-dimensional ordered graphite crystal structure is set relatively small, so that the process has relatively low requirements for production equipment and production conditions, thereby reducing production costs.
- the overall graphitization degree of the brake disc is between 10% and 20%.
- the production cost is reduced while ensuring that the brake disc has a certain wear resistance and reliability.
- the brake disc comprises 50%-65% by mass of silicon carbide, 5%-10% by mass of silicon, and 25%-45% by mass of carbon.
- the mass content of silicon carbide in the brake disc is set between 50%-65%, the mass content of silicon is set between 5%-10%, and the mass content of carbon is set between 25%-45%, so as to ensure the mechanical properties and wear resistance of the brake disc.
- the brake disc includes two end surfaces facing each other along its thickness direction, and the mass content of silicon carbide on the end surfaces is higher than the mass content of silicon carbide inside the brake disc.
- the silicon carbide mass content of the end surface is set higher than the silicon carbide mass content inside the brake disc, thereby ensuring the wear resistance of the end surface.
- the mass content of silicon carbide on the end surface ranges from 70% to 90%; the mass content of silicon carbide inside the brake disc ranges from 50% to 65%.
- silicon carbide has excellent wear resistance and high strength characteristics
- the mass content of silicon carbide on the end surface is set to between 70% and 90%, the wear resistance of the end surface can be ensured, thereby ensuring the service life of the brake disc.
- the mass content of silicon carbide inside the brake disc is set to between 50% and 65%, the mechanical properties of the brake disc can be ensured.
- the end surface is provided with a groove
- the depth of the groove is between 0.5 mm and 2 mm
- the groove is filled with silicon carbide with a mass content of at least 90%.
- a groove is provided on the end face of the brake disc, and the depth of the groove is set between 0.5 mm and 2 mm, and at the same time, silicon carbide having a mass content of at least 90% is filled in the groove, so that the outer surface of the groove and the end face are on the same horizontal plane.
- the mass content of silicon carbide is set to at least 90%, which can increase the mass content of silicon carbide on the end face and improve the wear resistance of the end face.
- the width of the trench is between 20 ⁇ m and 50 ⁇ m.
- the groove is spiral-shaped.
- the distance between two adjacent circles of grooves is between 0.1 mm and 5 mm.
- the present application provides a method for preparing a brake disc, comprising the following steps:
- the brake disc is obtained by processing.
- the preparation method of the brake disc provided in the present application is to precipitate impurities in the first blank by low-temperature carbonization treatment, that is, to remove non-carbon components in the first blank by low-temperature carbonization treatment, so as to form a second blank, so that the second blank has a higher carbon content, so as to ensure the formation of a pyrolytic carbon film in the subsequent chemical vapor deposition, and to ensure the adhesion between the second blanks.
- the porosity of the second blank can also be increased.
- a pyrolytic carbon film is formed on the outer surface of the second blank to protect the carbon component in the second blank.
- chemical vapor deposition can achieve the densification of the second blank, thereby improving the mechanical properties of the brake disc.
- the carbon component in the second blank reacts with silicon to form silicon carbide to ensure the wear resistance of the end face of the brake disc.
- the present application not only ensures that the brake disc end face has reliable wear resistance, but also reduces the requirements for production equipment and process conditions during the preparation process and reduces production costs because no high-temperature treatment is required.
- grooves are etched on at least a portion of the surface of the third body.
- a groove is etched on at least part of the surface of the third body, for example, a groove is etched on two end faces of the third body, and the groove provides sufficient reaction space for the silicon component in the subsequent liquid phase siliconization process and the carbon component in the third body, so that the mass content of silicon carbide on the two end faces of the third body is increased. Since silicon carbide has excellent wear resistance, increasing the mass content of silicon carbide on the end face can improve the wear resistance of the end face.
- a small amount of silicon component enters the interior of the third body through the groove, reacts to form silicon carbide, and forms an "I"-shaped physical pinning structure, which can further improve the bonding strength between the interface of silicon carbide and the third body, thereby improving the reliability of the brake disc finally prepared.
- the temperature of the low temperature carbonization treatment is between 800°C and 1000°C.
- the temperature range of the low-temperature carbonization treatment is set between 800° C. and 1000° C. to precipitate impurities in the first green body, thereby ensuring that the mass content of the carbon component in the obtained second green body is relatively high.
- etching a groove on at least a portion of the surface of the third body comprises:
- the third blank is etched to form grooves on two opposite end surfaces of the third blank along the thickness direction thereof, and the depth of the grooves is between 0.5 mm and 2 mm.
- the etching groove depth range is set between 0.5 mm and 2 mm to ensure that the third The thickness of silicon carbide on the end face of the blank.
- the thickness of this interval can ensure the wear resistance of the end face of the final brake disc to ensure the service life of the brake disc.
- the thickness of this interval can avoid cracks between the surface silicon carbide and the interface of the third blank.
- etching a groove on at least a portion of the surface of the third body comprises:
- the third body is etched to form grooves on two opposite end surfaces of the third body along the thickness direction thereof, and the width of the grooves is between 20 ⁇ m and 50 ⁇ m.
- the etched groove width range between 20 ⁇ m and 50 ⁇ m, free silicon in the groove can be avoided, thereby ensuring that the end face of the third body has a higher silicon carbide mass content to ensure the wear resistance of the end face.
- etching a groove on at least a portion of the surface of the third body comprises:
- the third body is etched to form spiral grooves on two opposite end surfaces of the third body along the thickness direction of the third body.
- the shape of the groove by setting the shape of the groove to be spiral, on the one hand, it can be ensured that the wear debris generated by the friction between the brake disc and the brake pad during operation is not easy to overflow from the end surface, thereby affecting the wear rate.
- the spiral groove can effectively alleviate the thermal stress concentration inside the brake disc and improve the ability of the brake disc to resist crack propagation.
- etching the third body to form spiral grooves on two opposite end surfaces of the third body along its thickness direction, respectively comprises:
- the distance between two adjacent circles of grooves is between 0.1 mm and 5 mm.
- the distance between two adjacent circles of grooves is set between 0.1 mm and 5 mm to ensure that the end surface of the brake disc has a higher silicon carbide mass content and the bonding strength between the surface silicon carbide and the brake disc interface is ensured.
- the method before the first green body containing carbon components is subjected to low temperature carbonization treatment to obtain the second green body, the method further comprises:
- the first green body is manufactured by a unit lamination needling process.
- the carbon fiber web and the non-woven fabric are cyclically layered in sequence and needle-punched using a needle with a barb so that the carbon fiber web and the non-woven fabric are connected as a whole to form a first blank with certain strength and unique structure.
- the method further comprises:
- the third body is subjected to high temperature heat treatment.
- the third body is heat treated at high temperature to transform the carbon atoms on the end face from an amorphous chaotic layer structure to a three-dimensional ordered graphite crystal structure. Since graphite crystals have excellent chemical stability and corrosion resistance, high temperature heat treatment can improve the oxidation resistance and wear resistance of the brake disc end face. At the same time, high temperature heat treatment can precipitate non-carbon components in the third body to increase the porosity of the third body and improve the densification degree of the third body by subsequent liquid phase siliconization.
- the temperature of the high temperature heat treatment is between 2000°C and 2200°C.
- the temperature range of the high temperature heat treatment is set between 2000° C. and 2200° C. to ensure the graphitization degree and porosity of the brake disc finally manufactured.
- the present application provides a vehicle comprising the brake disc in any one of the above embodiments.
- the vehicle of the present application adopts the brake disc of the first aspect of the present application or the brake disc manufactured by the method of the second aspect of the present application, it has a lower production cost while also ensuring the service life of the vehicle.
- FIG1 is a schematic structural diagram of a brake disc 100 provided in an embodiment of the present application.
- FIG2 is a schematic structural diagram of a blank 10 provided in an embodiment of the present application.
- FIG3 is a schematic diagram of the process steps of the method for preparing the brake disc 100 provided in an embodiment of the present application;
- FIG4 is a schematic diagram of a partial cross-sectional structure of a blank before step S100 in the method for preparing the brake disc 100 provided in an embodiment of the present application;
- FIG5 is a schematic diagram of a partial cross-sectional structure of a blank after step S200 of the method for preparing the brake disc 100 provided in an embodiment of the present application is completed;
- FIG6 is a schematic diagram of a partial cross-sectional structure of a blank after step S210 is completed in the method for preparing the brake disc 100 provided in an embodiment of the present application;
- FIG. 7 is a schematic diagram of a partial cross-sectional structure of a blank after step S300 is completed in the method for preparing the brake disc 100 provided in an embodiment of the present application.
- Figure numerals 100 - brake disc; 110 - friction surface; 120 - heat dissipation hole; 10 - blank; 20 - end face; 21 - first end face; 22 - second end face; 30 - pyrolytic carbon film; 40 - groove; 50 - silicon carbide.
- connection and “coupling” mentioned in the present application, unless otherwise specified, include direct and indirect connections (couplings).
- the directional terms mentioned in the present application, such as “upper”, “lower”, “front”, “back”, “left”, “right”, “inside”, “outside”, “side”, etc., are only with reference to the directions of the attached drawings.
- the terms “include”, “may include”, “include”, or “may include” used in this application indicate the existence of the corresponding functions, operations, elements, etc. disclosed, and do not limit one or more other functions, operations, elements, etc.
- the terms “include” or “include” indicate the existence of the corresponding features, numbers, steps, operations, elements, components, or combinations thereof disclosed in the specification, and do not exclude the existence or addition of one or more other features, numbers, steps, operations, elements, components, or combinations thereof, and are intended to cover non-exclusive inclusions.
- the brake disc of the present application can be applied to vehicles such as cars.
- the brake disc of the present application can be an important component of the automobile brake system.
- the brake disc is fixed to the wheel and rotates with the wheel. Its working principle is to use the friction surface of the brake pad and the brake disc in the brake system to abut against each other to slow down or stop the rotating wheel, thereby achieving the purpose of braking.
- the vehicle involved in the vehicle of the present application can be a pure electric vehicle, Hybrid electric vehicle, or extended-range electric vehicle, etc.
- the transportation vehicle may also be an airplane, a high-speed train, etc., which is not particularly limited in this application.
- FIG. 1 is a schematic diagram of the structure of a brake disc 100 provided in an embodiment of the present application
- FIG. 2 is a schematic diagram of the structure of a blank 10 provided in an embodiment of the present application.
- the brake disc 100 provided in the present application is in the shape of a disc, and the brake disc 100 is processed and prepared by the blank 10 shown in FIG2 .
- the surfaces of the brake disc 100 on both sides along its own thickness direction are set as friction surfaces 110.
- the overall graphitization degree of the brake disc 100 of the present application is between 5% and 25%, and the overall thickness is between 30mm and 40mm.
- the overall graphitization degree of the brake disc 100 of the present application is between 5% and 25%, that is, during the preparation process, the conversion of carbon atoms from an amorphous chaotic layer structure to a three-dimensional ordered graphite crystal structure is relatively small, so that the process has relatively low requirements on production equipment and production conditions, thereby reducing production costs.
- the overall graphitization degree of the brake disc 100 is between 10% and 20%. It is understandable that setting the graphitization degree between 10% and 20% can reduce production costs while ensuring that the brake disc 100 has a certain wear resistance and reliability.
- the brake disc 100 is composed of silicon carbide, silicon, and carbon, wherein the mass content of silicon carbide is between 50%-65%, the mass content of silicon is between 5%-10%, and the mass content of carbon is between 25%-45%.
- silicon carbide has excellent wear resistance and carbon has high strength
- carbon is used as the skeleton, and the mass content of silicon carbide in the brake disc 100 is set between 50%-65%, the mass content of silicon is set between 5%-10%, and the mass content of carbon is set between 25%-45% to ensure the mechanical properties and wear resistance of the brake disc 100.
- the mass content of silicon carbide on the friction surface 110 is higher than the mass content of silicon carbide inside the brake disc 100. It can be understood that, based on the graphitization degree of the brake disc 100 being less than 25%, setting the mass content of silicon carbide on the friction surface 110 to be higher than the mass content of silicon carbide inside the brake disc 100 can ensure the wear resistance of the friction surface 110 of the brake disc 100.
- the mass content of silicon carbide on the friction surface 110 of the brake disc 100 is between 70% and 90%; the mass content of silicon carbide inside the brake disc 100 is between 50% and 65%. It can be understood that since silicon carbide has excellent wear resistance and high strength properties, the mass content of silicon carbide on the friction surface 110 of the brake disc 100 provided in the present application is between 70% and 90%, which can ensure the wear resistance of the friction surface 110 and the strength of the brake disc 100.
- the silicon carbide mass content of the brake disc 100 is set to be between 50% and 65% to ensure the mechanical properties of the brake disc 100 .
- the brake disc 100 further includes a heat dissipation hole 120, which is used to dissipate the heat generated by the friction between the brake disc 100 and the brake pad to avoid affecting the braking effect and service life of the brake disc 100.
- the brake disc 100 of the present application is not limited to being used in the brake system of an automobile, for example, it can also be used in the brake system of a high-speed train, an airplane and other transportation vehicles, and the present application does not specifically limit this.
- first blank, the second blank, and the third blank of the present application are all different forms or different states of the same blank in the process of preparing the brake disc 100 of the present application.
- the present application will use the blank 10 for introduction below.
- the present application provides a blank 10 for preparing the above-mentioned brake disc 100.
- the blank 10 includes two end faces 20.
- the two end faces 20 are respectively a first end face 21 and a second end face 22, and are located on opposite sides of the blank 10.
- the first end face 21 and the second end face 22 can be used as friction surfaces 110 of the brake disc 100 to achieve the braking function of the brake disc 100.
- FIG. 3 is a schematic diagram of the process steps of a method for preparing a brake disc 100 provided in an embodiment of the present application.
- the method for preparing the brake disc 100 specifically includes the following steps:
- FIG4 is a schematic diagram of a partial cross-sectional structure of a blank before step S100 in the method for preparing a brake disc 100 provided in an embodiment of the present application.
- the blank 10 shown in FIG4 is placed naked in a carbonization furnace, and a certain temperature and pressure are adjusted to allow some non-carbon components in the blank 10 to separate out, forming a second blank with a higher carbon content. That is, this process increases the carbon content of the blank 10 to ensure the formation of a pyrolytic carbon film 30 in the subsequent chemical vapor deposition, and to ensure the adhesion between the blanks 10.
- the porosity of the blank 10 can also be increased based on the precipitation of non-carbon components.
- FIG5 is a schematic diagram of a partial cross-sectional structure of a blank after step S200 is completed in the method for preparing a brake disc 100 provided in an embodiment of the present application.
- the blank 10 obtained in step S100 is loaded into a chemical vapor deposition device for deposition, and natural gas is introduced as a deposition gas to form a pyrolytic carbon film 30 on the outer surface of the blank 10 (as shown in FIG5 ).
- natural gas is introduced as a deposition gas to form a pyrolytic carbon film 30 on the outer surface of the blank 10 (as shown in FIG5 ).
- the pyrolytic carbon film 30 covers the outer surface of the blank 10, it can protect the carbon components in the blank 10 from being oxidized.
- the deposition gas can also form a pyrolytic carbon film 30 on the inner wall of some pores of the blank 10, which can also protect the carbon components in the blank 10 from being oxidized.
- the pyrolytic carbon film 30 is formed on the inner wall of the pores of the blank 10, the blank 10 is densified, thereby improving the mechanical properties of the brake disc 100.
- step S200 of "forming a pyrolytic carbon film 30 on the outer surface of the second body by chemical vapor deposition to obtain a third body the following steps may also be included:
- FIG6 is a schematic diagram of a partial cross-sectional structure of a blank after step S210 is completed in the method for preparing a brake disc 100 provided in an embodiment of the present application.
- a laser etching process is used to etch two opposite end faces 20 of the blank 10 along its thickness direction to form grooves 40 (as shown in FIG6 ) on the two end faces 20 . That is, a portion of the pyrolytic carbon film 30 covering the surface of the blank 10 is etched to provide sufficient reaction space between the silicon component in the subsequent liquid phase siliconization process and the carbon component in the blank 10 , so as to increase the mass content of the silicon carbide 50 on the two end faces 20 of the blank 10 .
- the sidewall of the groove 40 is composed of the pyrolytic carbon film 30 and part of the body of the blank 10.
- only the pyrolytic carbon film 30 may be etched, and at this time, the sidewall of the groove 40 is only composed of the pyrolytic carbon film 30, which is not particularly limited in the present application.
- laser etching due to the advantages of laser etching such as non-contact, high efficiency, and little impact on materials, laser etching can achieve good dimensional accuracy and processing quality, effectively improve processing efficiency and quality, and effectively control costs.
- the green body 10 is subjected to liquid phase siliconizing treatment so that the infiltrated silicon component reacts with the carbon component in the pyrolytic carbon film 30 and the carbon component in the sidewall and bottom wall of the groove 40 to generate silicon carbide 50 to improve the wear resistance of the two end surfaces 20 .
- FIG7 is a schematic diagram of a partial cross-sectional structure of a blank after step S300 is completed in the method for preparing a brake disc 100 provided in an embodiment of the present application.
- the blank 10 after etching the groove 40 is subjected to siliconization treatment, with silicon as a reaction melt, and at a certain temperature and holding time, the infiltrated silicon component reacts with the carbon component of the pyrolytic carbon film 30 on the surface of the blank 10 and the carbon component in the blank 10 to generate silicon carbide 50 (as shown in FIG7 ).
- the infiltrated silicon component reacts with the carbon component in the pyrolytic carbon film 30 and the carbon component in the sidewall and bottom wall of the groove 40 to generate silicon carbide 50, so that the groove 40 is filled with silicon carbide 50 with a mass content of at least 90%.
- silicon carbide 50 has excellent wear resistance
- increasing the mass content of silicon carbide 50 of the end face 20 can improve the wear resistance of the end face 20, thereby reducing the impact of low graphitization degree of the end face 20 due to lack of high-temperature treatment on the friction performance.
- a small amount of silicon component enters the interior of the blank 10 through the groove 40 to react and form silicon carbide 50, so as to form a physical pinning structure similar to the shape of an "I", which can improve the bonding strength between the interface of silicon carbide 50 and the blank 10, thereby improving the reliability of the blank 10.
- the present application ensures that the end face 20 of the blank 10 has reliable wear resistance.
- no high-temperature treatment is required, the requirements for production equipment and production conditions in the preparation process can be reduced, and the production cost can be reduced.
- the second body can be directly subjected to liquid phase siliconization treatment.
- silicon as the reaction melt, at a certain temperature and holding time, the infiltrated silicon component reacts with the carbon component of the pyrolytic carbon film 30 on the surface of the body 10 and the carbon component in the body 10 to generate silicon carbide 50, which can also make the mass content of the silicon carbide 50 of the end face 20 at least 70%, thereby also improving the wear resistance of the end face 20.
- the blank 10 may be subjected to surface processing. It is understandable that in this embodiment, for example, the surface of the blank 10 may be polished to make the surface of the blank 10 smooth, thereby preventing the uneven surface of the blank 10 from causing brake failure.
- step S100 of "carrying out low temperature carbonization treatment on the first green body containing carbon components to obtain the second green body” the following steps are also included:
- a carbon fiber mesh and a non-woven fabric are selected, and they are layered in a cyclic stacking manner of carbon fiber mesh-0° non-woven fabric-carbon fiber mesh-90° non-woven fabric-carbon fiber mesh, and then they are needle-punched and woven along a direction perpendicular to the stacking layer using a needle with a barb, so that each layer of the carbon fiber mesh and the non-woven fabric are connected together to form a blank 10 with a certain strength and a unique structure.
- step S10 of "using a unit needle punching process to make a first green body” the following steps are also included:
- step S100 of “carrying a first green body containing a carbon component under low temperature carbonization to obtain a second green body” further includes the following method:
- the temperature of low temperature carbonization treatment is between 800°C and 1000°C.
- the green body 10 prepared in S10 is placed in a carbonization furnace, and the low-temperature carbonization treatment temperature is set between 800°C and 1000°C, which can ensure that the non-carbon components in the green body 10 are partially analyzed, thereby ensuring the content of the carbon components in the green body 10, making the green body 10 more compact and harder.
- the low-temperature carbonization treatment temperature is set between 800°C and 1000°C, which can ensure that the non-carbon components in the green body 10 are partially analyzed, thereby ensuring the content of the carbon components in the green body 10, making the green body 10 more compact and harder.
- the power consumption at this temperature is relatively low, the production cost can be reduced.
- step S210 of "etching a groove 40 on at least a portion of the surface of the third body” further includes the following method:
- the depth range of the etched groove 40 is set between 0.5 mm and 2 mm, which can ensure the thickness of the silicon carbide 50 in the end face 20 of the blank 10.
- the thickness of this interval can ensure the wear resistance of the end face 20 of the blank 10 and ensure the service life of the blank 10.
- the thickness of this interval can avoid cracks at the interface between the surface silicon carbide 50 and the blank 10.
- step S210 of "etching a groove 40 on at least a portion of the surface of the third body” further includes the following method:
- the width of the etched groove 40 is set between 20 ⁇ m and 50 ⁇ m, which can avoid the presence of free silicon in the groove 40 and thus ensure the content of silicon carbide 50 in the end face 20 of the blank 10 to ensure the wear resistance of the end face 20.
- step S210 of "etching a groove 40 on at least a portion of the surface of the third body” further includes the following method:
- the shape of the groove 40 is set to be spiral, which can ensure that the wear debris generated by the friction between the brake disc 100 and the brake pad is not easy to overflow from the end surface 20 during operation, thereby affecting the wear rate.
- the spiral groove 40 can effectively alleviate the thermal stress concentration inside the blank 10 and improve the ability of the blank 10 to resist crack propagation.
- step S210c of "etching the blank 10 to form spiral grooves 40 on two opposite end surfaces 20 of the blank 10 along its thickness direction” also includes the following method:
- the distance between two adjacent circles of grooves 40 along the radial direction of the blank 10 is between 0.1 mm and 5 mm.
- the distance between two adjacent circles of grooves 40 is set between 0.1 mm and 5 mm, which can ensure the content of silicon carbide 50 on the end surface 20 of the blank 10 and the bonding strength between the silicon carbide 50 and the interface of the blank 10.
- step S210 of “etching a groove 40 on at least a portion of the surface of the third body” the following steps are also included:
- the green body 10 is heat treated at high temperature to transform the carbon atoms of the end face 20 from an amorphous chaotic layer structure to a three-dimensional ordered graphite crystal structure. Since graphite crystals have excellent chemical stability and corrosion resistance, high temperature heat treatment can improve the oxidation resistance and wear resistance of the end face 20 of the green body 10. At the same time, high temperature heat treatment can precipitate non-carbon components in the green body 10, increase the porosity of the green body 10, and improve the densification degree of the green body 10 by subsequent liquid phase siliconization.
- step S220 of "treating the third green body with high temperature” further includes the following method:
- the temperature of high temperature heat treatment is between 2000°C and 2200°C.
- the temperature range of the high temperature heat treatment is set between 2000° C. and 2200° C. to ensure the graphitization degree and porosity of the green body 10 .
- the graphitization degree is between 10% and 20%
- the mass content of silicon carbide 50 is between 50% and 65%
- the mass content of silicon is between 5% and 10%
- the mass content of carbon is between 25% and 45%
- the mass content of silicon carbide 50 on the end face 20 is between 70% and 90%
- the mass content of silicon carbide 50 inside the brake disc 100 is between 50% and 65%.
- a structure having a maximum of A brake disc 100 having at least one of the following features: the overall thickness of the brake disc 100 is between 30 and 40 mm, the end face 20 has a groove 40, and the depth of the groove 40 is between 0.5 mm and 2 mm, the groove 40 is filled with silicon carbide 50 with a mass content of at least 90% and a small amount of silicon, and the silicon carbide 50 and the small amount of silicon fill the groove 40 so that the surface of the groove 40 and the end face 20 of the brake disc 100 are located in the same plane; the width of the groove 40 is between 20 ⁇ m and 50 ⁇ m; the groove 40 is spiral; and the distance between two adjacent circles of grooves 40 along the radial direction of the brake disc 100 is between 0.1 mm and 5 mm.
- Embodiment 1 provides a method for preparing a brake disc 100, the method specifically comprising the following steps:
- a unit stacking needle punching process is used to manufacture the blank 10: a carbon fiber mesh and a weft-free cloth are selected and layered in a cyclic stacking manner of carbon fiber mesh-0° weft-free cloth-carbon fiber mesh-90° weft-free cloth-carbon fiber mesh, and then needle punching and weaving are performed along a direction perpendicular to the stacking layer using a needle with a barb, so that each layer of the carbon fiber mesh and the weft-free cloth are connected to form a blank 10 with a certain strength and a unique structure.
- Step (2) Low-temperature carbonization treatment is used to precipitate impurities in the green body 10:
- the green body 10 obtained in step (1) is subjected to low-temperature carbonization treatment, with the treatment temperature set to 1000° C. and the insulation time set to 2 hours.
- step (3) Forming a pyrolytic carbon film 30 on the outer surface of the blank 10 by chemical vapor deposition: chemical vapor deposition of pyrolytic carbon is performed on the blank 10 treated in step (2).
- step (3) Etching the blank 10 to form grooves 40 on the two end surfaces 20 of the blank 10: After the process in step (3), grooves 40 are etched on the two end surfaces 20 of the blank 10, respectively.
- the depth of the grooves 40 is set to 2 mm and the width is set to 50 ⁇ m.
- the blank 10 is subjected to liquid phase siliconization treatment so that the infiltrated silicon component reacts with the carbon component in the pyrolytic carbon film 30 and with the carbon component in the side wall and the bottom wall of the groove 40 to generate silicon carbide 50:
- the blank 10 treated by step (4) is subjected to siliconization treatment, and the reaction melt is silicon, which reacts with part of the carbon component in the blank 10 to generate silicon carbide 50, so that the obtained blank 10 has a graphitization degree of 12%, a mass content of silicon carbide 50 in the blank 10 is 50%, and a mass content of silicon carbide 50 on the two end faces 20 of the blank 10 is 70%.
- Embodiment 2 provides a method for preparing a brake disc 100, the method specifically comprising the following steps:
- a unit lamination needle punching process is used to manufacture a blank 10: a carbon fiber tire net and a flat cloth are selected, and the layers are stacked in a cyclic manner of carbon fiber tire net-0° flat cloth-carbon fiber tire net-90° flat cloth-carbon fiber tire net, and then a needle punching is performed along a direction perpendicular to the stacking layer using a needle with a barb, so that each layer of carbon fiber tire net is flat.
- the net and the non-woven fabric are connected together to form a blank 10 having a certain strength and a unique structure.
- Step (1) Low-temperature carbonization treatment is used to precipitate impurities in the green body 10:
- the green body 10 obtained in step (1) is subjected to low-temperature carbonization treatment, with the treatment temperature set to 1000° C. and the holding time set to 2 h.
- step (3) Forming a pyrolytic carbon film 30 on the outer surface of the blank 10 by chemical vapor deposition: chemical vapor deposition of pyrolytic carbon is performed on the blank 10 treated in step (2).
- step (3) Etching the blank 10 to form grooves 40 on the two end surfaces 20 of the blank 10: After the process in step (3), grooves 40 are etched on the two end surfaces 20 of the blank 10, respectively.
- the depth of the grooves 40 is set to 2 mm and the width is set to 50 ⁇ m.
- High-temperature heat treatment of the green body 10 to increase the porosity of the green body 10 The green body 10 obtained in step (4) is subjected to high-temperature heat treatment, the treatment temperature is set to 2200° C., and the insulation time is set to 1 hour.
- the blank 10 is subjected to liquid phase siliconization treatment so that the infiltrated silicon component reacts with the carbon component in the pyrolytic carbon film 30 and with the carbon component in the side wall and the bottom wall of the groove 40 to generate silicon carbide 50:
- the blank 10 treated by step (5) is subjected to siliconization treatment, and the reaction melt is silicon, which reacts with part of the carbon component in the blank 10 to generate silicon carbide 50, so that the obtained blank 10 has a graphitization degree of 18%, a mass content of silicon carbide 50 in the blank 10 is 60%, and a mass content of silicon carbide 50 on the two end faces 20 of the blank 10 is 80%.
- Embodiment 3 provides a method for preparing a brake disc 100, the method specifically comprising the following steps:
- a unit-layered needle punching process is used to manufacture the blank 10: a carbon fiber mesh and a non-woven fabric are selected and layered in a cyclic stacking manner of carbon fiber mesh-0° non-woven fabric-carbon fiber mesh-90° non-woven fabric-carbon fiber mesh, and then needle punching and weaving are performed along a direction perpendicular to the stacking layer using a needle with a barb, so that each layer of the carbon fiber mesh and the non-woven fabric are connected to form a blank 10 with a certain strength and a unique structure.
- Step (1) Low-temperature carbonization treatment is used to precipitate impurities in the green body 10:
- the green body 10 obtained in step (1) is subjected to low-temperature carbonization treatment, with the treatment temperature set to 900° C. and the holding time set to 2 h.
- step (3) Forming a pyrolytic carbon film 30 on the outer surface of the blank 10 by chemical vapor deposition: chemical vapor deposition of pyrolytic carbon is performed on the blank 10 treated in step (2).
- step (3) Etching the blank 10 to form grooves 40 on the two end surfaces 20 of the blank 10: After the process in step (3), grooves 40 are etched on the two end surfaces 20 of the blank 10, respectively.
- the depth of the grooves 40 is set to 2 mm and the width is set to 50 ⁇ m.
- step (4) High temperature heat treatment is carried out, the treatment temperature is set to 2200°C, and the holding time is set to 1h.
- the blank 10 is subjected to liquid phase siliconization treatment so that the infiltrated silicon component reacts with the carbon component in the pyrolytic carbon film 30 and with the carbon component in the side wall and the bottom wall of the groove 40 to generate silicon carbide 50:
- the blank 10 treated in step (5) is subjected to siliconization treatment, and the reaction melt is silicon, which reacts with part of the carbon component in the blank 10 to generate silicon carbide 50, so that the obtained blank 10 has a graphitization degree of 16%, a mass content of silicon carbide 50 in the blank 10 is 55%, and a mass content of silicon carbide 50 on the two end faces 20 of the blank 10 is 75%.
- Embodiment 4 provides a method for preparing a brake disc, the method specifically comprising the following steps:
- a unit-layered needle punching process is used to make a blank: a carbon fiber mesh and a non-woven fabric are selected and layered in a cyclic stacking manner of carbon fiber mesh-0° non-woven fabric-carbon fiber mesh-90° non-woven fabric-carbon fiber mesh, and then needle-punched and woven in a direction perpendicular to the stacking layer using a needle with a barb, so that each layer of the carbon fiber mesh and the non-woven fabric is connected to form a blank with a certain strength and a unique structure.
- Step (2) Low-temperature carbonization treatment is used to precipitate impurities in the green body: the green body obtained in step (1) is subjected to low-temperature carbonization treatment, the treatment temperature is set to 1000° C., and the holding time is set to 2 h.
- step (3) Forming a pyrolytic carbon film on the outer surface of the green body by chemical vapor deposition: chemical vapor deposition of pyrolytic carbon is performed on the green body treated in step (2).
- step (3) The green body obtained in step (3) is subjected to high-temperature heat treatment, the treatment temperature is set to 2200° C., and the insulation time is set to 1 h.
- the green body treated in step (4) is subjected to siliconization treatment, wherein the reaction melt is silicon, which reacts with part of the carbon components in the green body to generate silicon carbide, so that the obtained green body has a graphitization degree of 12%, a silicon carbide mass content inside the green body of 50%, and a silicon carbide mass content on both end faces of the green body of 63%.
- the reaction melt is silicon, which reacts with part of the carbon components in the green body to generate silicon carbide, so that the obtained green body has a graphitization degree of 12%, a silicon carbide mass content inside the green body of 50%, and a silicon carbide mass content on both end faces of the green body of 63%.
- Embodiment 5 A method for preparing a brake disc is provided, the method specifically comprising the following steps:
- a unit-layered needle punching process is used to make a blank: a carbon fiber mesh and a non-woven fabric are selected and layered in a cyclic stacking manner of carbon fiber mesh-0° non-woven fabric-carbon fiber mesh-90° non-woven fabric-carbon fiber mesh, and then needle-punched and woven in a direction perpendicular to the stacking layer using a needle with a barb, so that each layer of the carbon fiber mesh and the non-woven fabric is connected to form a blank with a certain strength and a unique structure.
- Step (2) Low-temperature carbonization treatment is used to precipitate impurities in the green body: the green body obtained in step (1) is subjected to low-temperature carbonization treatment, the treatment temperature is set to 750° C., and the holding time is set to 2 h.
- step (3) The green body treated in step (3) is subjected to siliconization treatment, wherein the reaction melt is silicon, which reacts with part of the carbon components in the green body to generate silicon carbide, so that the obtained green body has a graphitization degree of 10%, a silicon carbide mass content inside the green body of 50%, and a silicon carbide mass content on both end faces of the green body of 60%.
- the reaction melt is silicon, which reacts with part of the carbon components in the green body to generate silicon carbide, so that the obtained green body has a graphitization degree of 10%, a silicon carbide mass content inside the green body of 50%, and a silicon carbide mass content on both end faces of the green body of 60%.
- Comparative Example 1 provides a method for preparing a conventional brake disc, which specifically comprises the following steps:
- the green body is made by using a unit laminated needle punching process.
- step (2) High temperature treatment: The green body obtained in step (1) is subjected to high temperature treatment, the treatment temperature is set to 2200° C., and the holding time is set to 2 h.
- Liquid phase siliconization The green body treated in step (4) is siliconized, and the reaction melt is silicon, which reacts with part of the carbon components in the green body to generate silicon carbide, so that the obtained green body has a graphitization degree of 40%, a silicon carbide mass content inside the green body of 66%, and a silicon carbide mass content on both end faces of the green body of 68%.
- the present application adopts a low-temperature carbonization treatment and a scheme of etching grooves on the surface of the blank during the manufacturing process, so that the prepared brake disc has both excellent mechanical properties and good wear resistance, and its production cost is relatively low.
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Ceramic Engineering (AREA)
- Manufacturing & Machinery (AREA)
- Materials Engineering (AREA)
- Structural Engineering (AREA)
- Organic Chemistry (AREA)
- General Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Inorganic Chemistry (AREA)
- Composite Materials (AREA)
- Braking Arrangements (AREA)
Abstract
一种制动盘、制动盘的制备方法及车辆。该制动盘为碳陶制动盘,且呈圆盘状,制动盘整体的石墨化度介于5%~25%之间。
Description
本申请要求于2023年5月30日提交中国专利局、申请号为202310627448.5、申请名称为“制动盘、制动盘的制备方法及车辆”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
本申请涉及制动盘技术领域,尤其涉及一种制动盘、该制动盘的制备方法以及一种包含该制动盘的车辆。
近年来,碳陶复合材料由于具有耐磨损、抗氧化性强、耐高温、轻质等诸多优点,被作为新一代制动领域的高性能摩擦材料,广泛应用于制动盘的制备。
现有的碳陶制动盘,制备过程中通常含有高温处理步骤,用于增大碳陶复合材料的孔隙率,便于后续通过液相渗硅等步骤提升碳陶复合材料的整体硬度和耐磨度。但其高温处理的温度可达2200℃,这对生产设备和工艺条件的要求较高,不利于制动盘的生产成本控制。
发明内容
鉴于上述现有技术的不足,本申请的目的在于提供一种生产成本较低的制动盘,以及该制动盘的制备方法。
第一方面,本申请提供了一种制动盘,该制动盘为碳陶制动盘,且呈圆盘状,制动盘整体的石墨化度介于5%~25%之间。
可以理解的,本申请通过将制动盘整体的石墨化度设置在5%~25%之间,也即在制备过程中,设置碳原子由无定形乱层结构向三维有序的石墨晶体结构的转化相对较少,使得该过程对生产设备和生产条件的要求相对较低,进而降低了生产成本。
在一种实施例中,制动盘整体的石墨化度介于10%~20%之间。
在本实施例中,通过将制动盘的石墨化度设置在10%~20%之间,在降低生产成本的同时,保证制动盘具有一定的耐磨性和可靠性。
在一种实施例中,制动盘包括质量含量为50%-65%的碳化硅,质量含量为5%-10%的硅,质量含量为25%-45%的碳。
在本实施例中,基于制动盘的质量为100%,设置碳化硅在制动盘中的质量含量介于50%-65%之间,硅的质量含量介于5%-10%,碳的质量含量介于25%-45%之间,以保证制动盘的力学性能和耐磨性能。
在一种实施例中,制动盘沿自身厚度方向包括相背的两个端面,端面的碳化硅质量含量高于制动盘内部的碳化硅质量含量。
在本实施例中,基于制动盘整体的石墨化度介于5%~25%之间,通过设置端面的碳化硅质量含量高于制动盘内部的碳化硅质量含量,进而保证了端面的耐磨性。
在一种实施例中,端面的碳化硅质量含量范围介于70%~90%之间;制动盘内部的碳化硅质量含量范围介于50%~65%之间。
在本实施例中,由于碳化硅具有优良的耐磨性和高强度特性,通过将端面的碳化硅质量含量范围设置于70%~90%之间,可以保证端面的耐磨性,进而保证制动盘的使用寿命。通过设置制动盘内部的碳化硅质量含量范围介于50%~65%之间,以保证制动盘的力学性能。
在一种实施例中,端面设置有沟槽,沟槽的深度介于0.5mm~2mm之间,沟槽填充有质量含量至少为90%的碳化硅。
在本实施例中,通过在制动盘的端面设置沟槽,且设置沟槽的深度介于0.5mm~2mm之间,同时在沟槽内填充质量含量至少为90%的碳化硅,使沟槽外表面与端面处于同一水平面上。基于碳化硅具有优良的耐磨性,将碳化硅的质量含量设置为至少90%,可以增大端面的碳化硅质量含量,提升端面的耐磨性。
在一种实施例中,沟槽的宽度介于20μm~50μm之间。
在一种实施例中,沟槽呈螺旋状。
在一种实施例中,沿制动盘的径向,相邻两圈沟槽之间的距离介于0.1mm~5mm之间。
第二方面,本申请提供了一种制动盘的制备方法,包括以下步骤:
对含有碳组分的第一坯体进行低温碳化处理,得到第二坯体;
采用化学气相沉积在第二坯体的表面形成热解碳膜,得到第三坯体;
进行液相渗硅处理;
加工得到制动盘。
本申请提供的制动盘的制备方法,通过采用低温碳化处理析出第一坯体内的杂质,也即采用低温碳化处理去除第一坯体内的非碳组分,形成第二坯体,使得第二坯体具有较高的含碳量,以保证在后续化学气相沉积中形成热解碳膜,以及保证第二坯体之间的附着力。同时,基于非碳组分的析出,还可以增大第二坯体的孔隙率。通过采用化学气相沉积,在第二坯体的外表面形成热解碳膜,以保护第二坯体中的碳组分。同时化学气相沉积可以实现对第二坯体的致密化,从而改善制动盘的力学性能。通过渗硅工艺,以使第二坯体内的碳组分和硅反应生成碳化硅,以保证制动盘端面的耐磨性。
可以理解的,本申请既保证了制动盘端面具有可靠的耐磨性,同时还由于无需高温处理,从而可以降低制备过程中对生产设备和工艺条件的要求,并降低了生产成本。
在一种实施例中,在第三坯体的至少部分表面刻蚀出沟槽。
在本实施例中,通过在第三坯体的至少部分表面蚀刻出沟槽,例如在第三坯体的两个端面蚀刻出沟槽,该沟槽为后续液相渗硅工艺中的硅组分与第三坯体中的碳组分提供充分的反应空间,以使第三坯体两个端面的碳化硅质量含量增大。基于碳化硅具有优良的耐磨性,增大端面的碳化硅质量含量可以提升端面的耐磨性。同时,硅组分通过沟槽少量进入第三坯体内部,反应形成碳化硅,以形成“工”字形的物理钉扎结构,进而可以提高碳化硅与第三坯体界面间的结合强度,从而提高最终制备得到的制动盘的可靠性。
在一种实施例中,低温碳化处理的温度介于800℃~1000℃之间。
在本实施例中,通过将低温碳化处理的温度范围设置在800℃~1000℃之间,以析出第一坯体中的杂质,进而保证制得的第二坯体中碳组分的质量含量相对较高。
在一种实施例中,在第三坯体的至少部分表面蚀刻出沟槽,包括:
蚀刻第三坯体以分别在第三坯体沿自身厚度方向的相背的两个端面上形成沟槽,且沟槽的深度介于0.5mm~2mm之间。
在本实施例中,通过将蚀刻的沟槽深度范围设置在0.5mm~2mm之间,以保证第三
坯体端面碳化硅的厚度。一方面,该区间的厚度可以保证最终制得的制动盘端面的耐磨性能,以保证制动盘的使用寿命。另一方面,基于碳化硅的热膨胀系数与碳的热膨胀系数不同,该区间的厚度可以避免表层的碳化硅与第三坯体界面间产生裂纹。
在一种实施例中,在第三坯体的至少部分表面蚀刻出沟槽,包括:
蚀刻第三坯体以分别在第三坯体沿自身厚度方向的相背的两个端面上形成沟槽,且沟槽的宽度介于20μm~50μm之间。
在本实施例中,通过将蚀刻的沟槽宽度范围设置在20μm~50μm之间,可以避免沟槽内存在游离硅,进而保证第三坯体端面具有较高的碳化硅质量含量,以保证端面的耐磨性。
在一种实施例中,在第三坯体的至少部分表面蚀刻出沟槽,包括:
蚀刻第三坯体以分别在第三坯体沿自身厚度方向的相背的两个端面上形成螺旋形状的沟槽。
在本实施例中,通过将沟槽的形状设置为螺旋状,一方面可以保证制动盘在工作时,与刹车片摩擦产生的磨屑不容易从端面溢出,从而影响磨损率。另一方面,螺旋状的沟槽可以有效缓解制动盘内部的热应力集中,提高制动盘抗裂纹扩展的能力。
在一种实施例中,蚀刻第三坯体以分别在第三坯体沿自身厚度方向的相背的两个端面上形成螺旋形状的沟槽,包括:
沿第三坯体的径向,相邻两圈的沟槽之间的距离介于0.1mm~5mm之间。
在本实施例中,通过将相邻两圈的沟槽之间的距离范围设置在0.1mm~5mm之间,以保证制动盘端面具有较高的碳化硅质量含量,同时保证表层碳化硅与制动盘界面之间的结合强度。
在一种实施例中,对含有碳组分的第一坯体进行低温碳化处理,得到第二坯体之前,还包括:
采用单元叠层针刺工艺制作第一坯体。
在本实施例中,通过将碳纤维胎网与无纬布依次循环铺层,利用带有倒钩的针,对其进行针刺编织,使得碳纤维胎网与无纬布连成一体,以形成具有一定强度和独特结构的第一坯体。
在一种实施例中,在第三坯体的至少部分表面蚀刻出沟槽之后,还包括:
采用高温热处理第三坯体。
在本实施例中,通过采用高温热处理第三坯体,以使端面的碳原子实现由无定形乱层结构向三维有序的石墨晶体结构转化。由于石墨晶体具有优良的化学稳定性和耐腐蚀性,高温热处理可以提高制动盘端面的抗氧化性和耐磨性。同时,高温热处理可以析出第三坯体内的非碳组分,以增大第三坯体的孔隙率,提升后续液相渗硅对第三坯体的致密化程度。
在一种实施例中,高温热处理的温度介于2000℃~2200℃之间。
在本实施例中,通过将高温热处理的温度范围设置在2000℃~2200℃之间,以保证最终制得的制动盘的石墨化程度和孔隙率。
第三方面,本申请提供一种车辆,该车辆包含上述任一实施例中的制动盘。
可以理解的,由于本申请的车辆采用了本申请第一方面的制动盘或采用了本申请第二方面的方法制作出的制动盘,在具有较低生产成本的同时,也保证了车辆的使用寿命。
图1为本申请实施例提供的一种制动盘100的结构示意图;
图2为本申请实施例提供的一种坯体10的结构示意图;
图3为本申请实施例提供的制动盘100的制备方法的流程步骤示意图;
图4为本申请实施例提供的制动盘100的制备方法在步骤S100之前的坯体的局部截面结构示意图;
图5为本申请实施例提供的制动盘100的制备方法在步骤S200完成后坯体的局部截面结构示意图;
图6为本申请实施例提供的制动盘100的制备方法在步骤S210完成后坯体的局部截面结构示意图;
图7为本申请实施例提供的制动盘100的制备方法在步骤S300完成后坯体的局部截面结构示意图。
附图标记:100-制动盘;110-摩擦面;120-散热孔;10-坯体;20-端面;21-第一端面;22-第二端面;30-热解碳膜;40-沟槽;50-碳化硅。
为了便于理解本申请,下面将参照相关附图对本申请进行更全面的描述。附图中给出了本申请的较佳实施方式。但是,本申请可以以许多不同的形式来实现,并不限于本文所描述的实施方式。相反地,提供这些实施方式的目的是使对本申请的公开内容理解的更加透彻全面。
以下各实施例的说明是参考附加的图示,用以例示本申请可用以实施的特定实施例。本文中为部件所编序号本身,例如“第一”、“第二”等,仅用于区分所描述的对象,不具有任何顺序或技术含义。而本申请所说“连接”、“联接”,如无特别说明,均包括直接和间接连接(联接)。本申请中所提到的方向用语,例如,“上”、“下”、“前”、“后”、“左”、“右”、“内”、“外”、“侧面”等,仅是参考附加图式的方向,因此,使用的方向用语是为了更好、更清楚地说明及理解本申请,而不是指示或暗指所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本申请的限制。
在本申请的描述中,需要说明的是,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”应做广义理解,例如,可以是固定连接,也可以是可拆卸地连接,或者一体地连接;可以是机械连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通。对于本领域的普通技术人员而言,可以具体情况理解上述术语在本申请中的具体含义。需要说明的是,本申请的说明书和权利要求书及附图中的术语“第一”、“第二”等是用于区别不同对象,而不是用于描述特定顺序。此外,本申请中使用的术语“包括”、“可以包括”、“包含”、或“可以包含”表示公开的相应功能、操作、元件等的存在,并不限制其他的一个或多个更多功能、操作、元件等。此外,术语“包括”或“包含”表示存在说明书中公开的相应特征、数目、步骤、操作、元素、部件或其组合,而并不排除存在或添加一个或多个其他特征、数目、步骤、操作、元素、部件或其组合,意图在于覆盖不排他的包含。
可以理解的,本申请的制动盘可以应用于例如车辆等交通工具中。本申请制动盘可以为汽车刹车系统中的一个重要部件。制动盘固定在车轮上,并随车轮转动。其工作原理是利用刹车系统中的刹车片与制动盘的摩擦面相互抵持,以将旋转的车轮减速或停止,从而实现制动的目的。需要说明的,本申请交通工具所涉及的车辆可以是纯电动汽车、
混合动力汽车、或增程式汽车等。在另一些实施例中,交通工具还可以是飞机、高速列车等,本申请对此不作特别限定。
请配合参阅图1和图2,其中图1为本申请实施例提供的一种制动盘100的结构示意图,图2为本申请实施例提供的一种坯体10的结构示意图。
如图1所示,本申请提供的制动盘100呈圆盘状,该制动盘100由图2所示的坯体10加工制备所得。制动盘100沿自身厚度方向相对两侧的表面设置为摩擦面110。通过检测可知本申请制动盘100整体的石墨化度介于5%~25%之间,整体的厚度介于30mm~40mm之间。可以理解的,由于本申请制动盘100整体的石墨化度介于5%~25%之间,也即在制备过程中,设置碳原子由无定形乱层结构向三维有序的石墨晶体结构的转化相对较少,使得该过程对生产设备和生产条件的要求相对较低,进而降低了生产成本。
在一种实施例中,制动盘100整体的石墨化度介于10%~20%之间。可以理解的,将石墨化度设置在10%~20%之间,在降低生产成本的同时,保证制动盘100具有一定的耐磨性和可靠性。
在一种实施例中,通过检测可知,制动盘100的组成成分具有碳化硅、硅、和碳,且其中碳化硅的质量含量介于50%-65%之间,硅的质量含量介于5%-10%之间,碳的质量含量介于25%-45%之间。
可以理解的,由于碳化硅具有优良的耐磨性,碳具有较高的强度,以碳作为骨架,设置碳化硅在制动盘100中的质量含量介于50%-65%之间,硅的质量含量介于5%-10%,碳的质量含量介于25%-45%之间,以保证制动盘100的力学性能和耐磨性能。
在一种实施例中,摩擦面110上的碳化硅质量含量高于制动盘100内部的碳化硅质量含量。可以理解的,基于制动盘100的石墨化度小于25%,设置摩擦面110的碳化硅质量含量高于制动盘100内部的碳化硅质量含量,可以保证制动盘100的摩擦面110的耐磨性。
在一种实施例中,制动盘100的摩擦面110的碳化硅质量含量范围介于70%~90%之间;制动盘100内部的碳化硅质量含量范围介于50%~65%之间。可以理解的,由于碳化硅具有优良的耐磨性和高强度特性,本申请提供的制动盘100摩擦面110的碳化硅质量含量范围介于70%~90%之间,可以保证摩擦面110的耐磨性,保证制动盘100的
使用寿命。设置制动盘100内部的碳化硅质量含量范围介于50%~65%之间,以保证制动盘100的力学性能。
需要说明的,在图1的示意中,制动盘100还包括散热孔120,散热孔120用于使制动盘100与刹车片摩擦产生的热量散出,避免影响制动盘100的制动效果和使用寿命。可以理解的,本申请制动盘100不限于应用于汽车的刹车系统中,例如,还可以被应用于高速列车、飞机等交通工具的刹车系统中,本申请对此不作特别限定。
需要提前说明的是,本申请第一坯体、第二坯体、以及第三坯体均为同一坯体在制备本申请制动盘100过程中的不同形态或不同状态,为了便于介绍,本申请下文均使用坯体10展开介绍。
如图2所示,本申请提供一种坯体10,用于制备上述制动盘100。坯体10包括两个端面20。两个端面20分别为第一端面21和第二端面22,并位于坯体10的相对两侧。且第一端面21和第二端面22可作为制动盘100的摩擦面110,用于实现制动盘100的制动功能。
请参阅图3,图3为本申请实施例提供的制动盘100的制备方法的流程步骤示意图。
如图3所示,本申请实施例提供的制动盘100的制备方法具体包括如下步骤:
S100、对含有碳组分的第一坯体进行低温碳化处理,得到第二坯体;
图4为本申请实施例提供的制动盘100的制备方法在步骤S100之前的坯体的局部截面结构示意图。具体的,将如图4所示的坯体10裸体放入炭化炉,并调设一定的温度和压力,以使得坯体10中的部分非碳组分析出,形成具有较高含碳量的第二坯体,也即该过程提高了坯体10的含碳量,以保证在后续化学气相沉积中形成热解碳膜30,以及保证坯体10之间的附着力。同时,由于坯体10自身是多孔隙结构,基于非碳组分的析出,还可以增大坯体10的孔隙率。
S200、采用化学气相沉积在第二坯体的外表面形成热解碳膜30,得到第三坯体;
图5为本申请实施例提供的制动盘100的制备方法在步骤S200完成后坯体的局部截面结构示意图。具体的,将步骤S100中得到的坯体10装载于化学气相沉积设备中沉积,通入天然气作为沉积气体,以在坯体10的外表面形成热解碳膜30(如图5所示)。可以理解的,由于热解碳膜30覆盖于坯体10外表面,进而可以保护坯体10内的碳组分,避免其被氧化。
需要说明的,基于坯体10自身是多孔隙的结构,沉积气体也可以在坯体10的部分孔隙内壁形成热解碳膜30,同样也可以达到保护坯体10内的碳组分,避免其被氧化的作用。同时,由于在坯体10孔隙内壁形成了热解碳膜30,进而实现对坯体10的致密化,从而可以改善制动盘100的力学性能。
在一种实施例中,对于步骤S200“采用化学气相沉积在第二坯体的外表面形成热解碳膜30,得到第三坯体”之后,还可以包括如下步骤:
S210、在第三坯体至少部分表面蚀刻出沟槽40;
图6为本申请实施例提供的制动盘100的制备方法在步骤S210完成后坯体的局部截面结构示意图。具体的,采用激光刻蚀工艺分别蚀刻坯体10沿自身厚度方向的相背的两个端面20,以在两个端面20上分别形成沟槽40(如图6所示)。也即将覆盖于坯体10表面的部分热解碳膜30蚀刻,以为后续液相渗硅工艺中的硅组分与坯体10中的碳组分提供充分的反应空间,以使坯体10两个端面20的碳化硅50的质量含量增大。
可以理解的,在图6所示的实施例中,不仅蚀刻覆盖于坯体10表面的热解碳膜30,还部分蚀刻了坯体10的本体。此时,沟槽40的侧壁由热解碳膜30和部分坯体10的本体构成。而在其他的一些实施例中,可以仅刻蚀热解碳膜30,此时,沟槽40的侧壁仅由热解碳膜30构成,本申请对此不作特别限定。
同时,由于激光刻蚀具有无接触性、高效性、对材料影响小等优点,采用激光刻蚀可获得良好的尺寸精度和加工质量,并可有效提高加工的效率和质量,且有效地控制成本。
S300、进行液相渗硅处理;
对坯体10进行液相渗硅处理,以使渗入的硅组分与热解碳膜30中的碳组分以及与沟槽40的侧壁和底壁中的碳组分反应并生成碳化硅50,以提升两个端面20的耐磨性。
图7为本申请实施例提供的制动盘100的制备方法在步骤S300完成后坯体的局部截面结构示意图。具体的,对蚀刻沟槽40后的坯体10进行渗硅处理,以硅为反应熔体,在一定温度和保温时间下,渗入的硅组分与坯体10表面的热解碳膜30的碳组分以及坯体10内的碳组分反应并生成碳化硅50(如图7所示)。也即,渗入的硅组分与与热解碳膜30中的碳组分以及与沟槽40的侧壁和底壁中的碳组分反应并生成碳化硅50,以使得沟槽40内填充质量含量至少为90%的碳化硅50。
可以理解的,由于碳化硅50具有优良的耐磨性,增大端面20的碳化硅50的质量含量可以提升端面20的耐磨性,进而降低未经高温处理导致端面20石墨化度低对磨擦性能的影响。同时,硅组分通过沟槽40少量进入坯体10内部反应形成碳化硅50,以形成类似“工”字形的物理钉扎结构,可以提高碳化硅50与坯体10界面间的结合强度,从而提高坯体10的可靠性。本申请保证了坯体10的端面20具有可靠的耐磨性,同时,由于无需高温处理,可以降低制备过程中对生产设备和生产条件的要求,并降低生产成本。
需要说明的,在另一种实施例中,无需在第三坯体表面刻蚀沟槽40,也即可以直接对第二坯体进行液相渗硅处理。以硅为反应熔体,在一定温度和保温时间下,渗入的硅组分与坯体10表面的热解碳膜30的碳组分以及坯体10内的碳组分反应并生成碳化硅50,同样也能使端面20的碳化硅50的质量含量至少为70%,从而也可以提升端面20的耐磨性。
S400、加工得到制动盘100。
具体的,在液相渗硅处理后,可以采用表面加工处理坯体10。可以理解的,在本实施例中,例如可以对坯体10的表面进行打磨抛光,以使坯体10的表面光滑,可以避免坯体10表面凹凸不平使制动失灵。
在一种实施例中,对于步骤S100“对含有碳组分的第一坯体进行低温碳化处理,得到第二坯体”之前,还包括如下步骤:
S10、采用单元叠层针刺工艺制作第一坯体。
具体的,在本实施例中,选取碳纤维胎网与无纬布,将其按照碳纤维胎网-0°无纬布-碳纤维胎网-90°无纬布-碳纤维胎网依次循环堆叠的方式铺层,然后沿垂直于堆叠层面的方向,利用带有倒钩的针,对其进行针刺编织,使得各层碳纤维胎网与无纬布连成一体,以形成具有一定强度和独特结构的坯体10。
在一种实施例中,对于步骤S10“采用单元的针刺工艺制作第一坯体”之前,还包括如下步骤:
S20、采用上浆剂浸泡碳纤维胎网与无纬布,以使上浆剂包覆于碳纤维胎网与无纬布表面。可以理解的,在本实施例中,通过采用上浆剂碳纤维胎网与无纬布,并使上浆剂包覆于碳纤维胎网和无纬布表面,以保护碳纤维胎网和无纬布,保证碳纤维胎网和无
纬布整体的强度。
在一种实施例中,对于步骤S100“对含有碳组分的第一坯体进行低温碳化处理,得到第二坯体;”,还包括如下方式:
S100a、低温碳化处理的温度介于800℃~1000℃之间。
具体的,在本实施例中,将S10中制得的坯体10置于碳化炉中,将低温碳化处理温度设置在800℃~1000℃之间,可以保证坯体10中非碳组分部分析出,进而保证坯体10中碳组分的含量,使得坯体10更加紧密、更加坚硬。同时由于该温度下的耗电量相对较低,可以降低生产成本。
在一种实施例中,对于步骤S210“在第三坯体至少部分表面蚀刻出沟槽40”,还包括如下方式:
S210a、蚀刻坯体10以分别在坯体10沿自身厚度方向的相背的两个端面20上形成沟槽40,且沟槽40的深度介于0.5mm~2mm之间。
可以理解的,在本实施例中,将蚀刻的沟槽40深度范围设置在0.5mm~2mm之间,可以保证坯体10的端面20中碳化硅50的厚度。一方面,该区间的厚度可以保证坯体10的端面20的耐磨性能,保证坯体10的使用寿命。另一方面,基于碳化硅50的热膨胀系数与碳的热膨胀系数不同,该区间的厚度可以避免表层碳化硅50与坯体10界面间产生裂纹。
在一种实施例中,对于步骤S210“在第三坯体至少部分表面蚀刻出沟槽40”,还包括如下方式:
S210b、蚀刻坯体10以分别在坯体10沿自身厚度方向的相背的两个端面20上形成沟槽40,且沟槽40的宽度介于20μm~50μm之间。
可以理解的,在本实施例中,将蚀刻的沟槽40宽度范围设置在20μm~50μm之间,可以避免沟槽40内存在游离硅,进而保证坯体10的端面20中碳化硅50的含量,以保证端面20的耐磨性。
在一种实施例中,对于步骤S210“在第三坯体至少部分表面蚀刻出沟槽40”,还包括如下方式:
S210c、蚀刻坯体10以分别在坯体10沿自身厚度方向的相背的两个端面20上形成螺旋形状的沟槽40。
可以理解的,在本实施例中,将沟槽40的形状设置为螺旋状,一方面可以保证制动盘100在工作时,与刹车片摩擦产生的磨屑不容易从端面20溢出,从而影响磨损率。另一方面,螺旋状的沟槽40可以有效缓解坯体10内部的热应力集中,提高坯体10抗裂纹扩展的能力。
在一种实施例中,对于步骤S210c“蚀刻坯体10以分别在坯体10沿自身厚度方向的相背的两个端面20上形成螺旋形状的沟槽40”,还包括如下方式:
S211、沿坯体10的径向相邻两圈沟槽40之间的距离介于0.1mm~5mm之间。
可以理解的,在本实施例中,将相邻两圈沟槽40之间的距离范围设置在0.1mm~5mm之间,可以保证坯体10端面20的碳化硅50含量,同时保证碳化硅50与坯体10界面之间的结合强度。
在一种实施例中,对于步骤S210“在第三坯体至少部分表面蚀刻出沟槽40”之后,还包括如下步骤:
S220、采用高温热处理第三坯体。
具体的,在本实施例中,采用高温热处理坯体10,以使端面20的碳原子实现由无定形乱层结构向三维有序的石墨晶体结构转化。由于石墨晶体具有优良的化学稳定性和耐腐蚀性,高温热处理可以提高坯体10端面20的抗氧化性和耐磨性。同时高温热处理可以析出坯体10内的非碳组分,增大坯体10的孔隙率,提升后续液相渗硅对坯体10的致密化程度。
需要提出的是,在本实施例中,虽然采用了高温热处理的工艺,但是相较于现有技术,本实施例的高温热处理的步骤数量少,故本申请方法也具有一定的有益效果。
在一种实施例中,对于步骤S220“采用高温热处理第三坯体”,还包括如下方式:
S220a、高温热处理的温度介于2000℃~2200℃之间。
可以理解的,在本实施例中,将高温热处理的温度范围设置在2000℃~2200℃之间,以保证坯体10的石墨化程度和孔隙率。
需要说明的。经过上述的制备方法,可以得到石墨化度介于10%~20%之间、碳化硅50的质量含量介于50%-65%、硅的质量含量介于5%-10%、碳的质量含量介于25%-45%之间,同时端面20的碳化硅50的质量含量介于70%~90%之间、制动盘100的内部的碳化硅50的质量含量介于50%~65%之间的结构。在一种实施例中,还可以得到具有至
少以下特征之一的制动盘100:制动盘100整体厚度介于30~40mm之间,端面20有沟槽40,且沟槽40的深度介于0.5mm~2mm之间,沟槽40填充有质量含量至少为90%碳化硅50和少量的硅,碳化硅50和少量的硅填满沟槽40,以使沟槽40的表面与制动盘100的端面20位于同一平面;沟槽40的宽度介于20μm~50μm之间;沟槽40呈螺旋状;且沿制动盘100的径向相邻两圈沟槽40之间的距离介于0.1mm~5mm之间。
下面结合本申请方法可能采取的几种实施例以及现有技术中两种典型实施例(对比例1),对比阐述本申请方法可能取得的有益效果:
实施例1提供一种制动盘100的制备方法,该方法具体包括如下步骤:
(1)采用单元叠层针刺工艺制作坯体10:选取碳纤维胎网与无纬布,将其按照碳纤维胎网-0°无纬布-碳纤维胎网-90°无纬布-碳纤维胎网依次循环堆叠的方式铺层,然后沿垂直于堆叠层面的方向,利用带有倒钩的针,对其进行针刺编织,使得各层碳纤维胎网与无纬布连成一体,以形成具有一定强度和独特结构的坯体10。
(2)采用低温碳化处理,析出坯体10内的杂质:将步骤(1)得到的坯体10低温碳化处理,处理温度设置为1000℃,保温时间设置为2小时。
(3)采用化学气相沉积,在坯体10的外表面形成热解碳膜30:将经步骤(2)处理后的坯体10进行化学气相沉积热解碳。
(4)蚀刻坯体10以分别在坯体10的两个端面20上形成沟槽40:在步骤(3)处理后的坯体10的两个端面20分别蚀刻沟槽40,沟槽40的深度设置为2mm,宽度设置为50μm。
(5)对坯体10进行液相渗硅处理,以使渗入的硅组分与热解碳膜30中的碳组分、以及与沟槽40的侧壁和底壁中的碳组分反应并生成碳化硅50:将经步骤(4)处理后的坯体10进行渗硅处理,反应熔体为硅,与坯体10中的部分碳组分反应并生成碳化硅50,以使获得的坯体10石墨化度为12%、坯体10内部碳化硅50质量含量为50%、坯体10两个端面20的碳化硅50质量含量为70%。
实施例2提供一种制动盘100的制备方法,该方法具体包括如下步骤:
(1)采用单元叠层针刺工艺制作坯体10:选取碳纤维胎网与无纬布,将其按照碳纤维胎网-0°无纬布-碳纤维胎网-90°无纬布-碳纤维胎网依次循环堆叠的方式铺层,然后沿垂直于堆叠层面的方向,利用带有倒钩的针,对其进行针刺编织,使得各层碳纤维胎
网与无纬布连成一体,以形成具有一定强度和独特结构的坯体10。
(2)采用低温碳化处理,析出坯体10内的杂质:将步骤(1)得到的坯体10进行低温碳化处理,处理温度设置为1000℃,保温时间设置为2h。
(3)采用化学气相沉积,在坯体10的外表面形成热解碳膜30:将经步骤(2)处理后的坯体10进行化学气相沉积热解碳。
(4)蚀刻坯体10以分别在坯体10的两个端面20上形成沟槽40:在步骤(3)处理后的坯体10的两个端面20分别蚀刻沟槽40,沟槽40的深度设置为2mm,宽度设置为50μm。
(5)高温热处理坯体10,以增大坯体10的孔隙率:将步骤(4)得到的坯体10进行高温热处理,处理温度设置为2200℃,保温时间设置为1h。
(6)对坯体10进行液相渗硅处理,以使渗入的硅组分与热解碳膜30中的碳组分、以及与沟槽40的侧壁和底壁中的碳组分反应并生成碳化硅50:将经步骤(5)处理后的坯体10进行渗硅处理,反应熔体为硅,与坯体10中的部分碳组分反应并生成碳化硅50,以使获得的坯体10石墨化度为18%、坯体10内部碳化硅50质量含量为60%、坯体10两个端面20的碳化硅50质量含量为80%。
实施例3提供一种制动盘100的制备方法,该方法具体包括如下步骤:
(1)采用单元叠层针刺工艺制作坯体10:选取碳纤维胎网与无纬布,将其按照碳纤维胎网-0°无纬布-碳纤维胎网-90°无纬布-碳纤维胎网依次循环堆叠的方式铺层,然后沿垂直于堆叠层面的方向,利用带有倒钩的针,对其进行针刺编织,使得各层碳纤维胎网与无纬布连成一体,以形成具有一定强度和独特结构的坯体10。
(2)采用低温碳化处理,析出坯体10内的杂质:将步骤(1)得到的坯体10进行低温碳化处理,处理温度设置为900℃,保温时间设置为2h。
(3)采用化学气相沉积,在坯体10的外表面形成热解碳膜30:将经步骤(2)处理后的坯体10进行化学气相沉积热解碳。
(4)蚀刻坯体10以分别在坯体10的两个端面20上形成沟槽40:在步骤(3)处理后的坯体10的两个端面20分别蚀刻沟槽40,沟槽40的深度设置为2mm,宽度设置为50μm。
(5)高温热处理坯体10,以增大坯体10的孔隙率:将步骤(4)得到的坯体10
进行高温热处理,处理温度设置为2200℃,保温时间设置为1h。
(6)对坯体10进行液相渗硅处理,以使渗入的硅组分与热解碳膜30中的碳组分、以及与沟槽40的侧壁和底壁中的碳组分反应并生成碳化硅50:将经步骤(5)处理后的坯体10进行渗硅处理,反应熔体为硅,与坯体10中的部分碳组分反应并生成碳化硅50,以使获得的坯体10石墨化度为16%、坯体10内部碳化硅50质量含量为55%、坯体10两个端面20的碳化硅50质量含量为75%。
实施例4提供一种制动盘的制备方法,该方法具体包括如下步骤:
(1)采用单元叠层针刺工艺制作坯体:选取碳纤维胎网与无纬布,将其按照碳纤维胎网-0°无纬布-碳纤维胎网-90°无纬布-碳纤维胎网依次循环堆叠的方式铺层,然后沿垂直于堆叠层面的方向,利用带有倒钩的针,对其进行针刺编织,使得各层碳纤维胎网与无纬布连成一体,以形成具有一定强度和独特结构的坯体。
(2)采用低温碳化处理,析出坯体内的杂质:将步骤(1)得到的坯体低温碳化处理,处理温度设置为1000℃,保温时间设置为2h。
(3)采用化学气相沉积,在坯体的外表面形成热解碳膜:将经步骤(2)处理后的坯体进行化学气相沉积热解碳。
(4)将步骤(3)得到的坯体进行高温热处理,处理温度设置为2200℃,保温时间设置为1h。
(5)将经步骤(4)处理后的坯体进行渗硅处理,反应熔体为硅,与坯体中的部分碳组分反应并生成碳化硅,以使获得的坯体石墨化度为12%、坯体内部碳化硅质量含量为50%、坯体两个端面的碳化硅质量含量为63%。
实施例5:提供一种制动盘的制备方法,该方法具体包括如下步骤:
(1)采用单元叠层针刺工艺制作坯体:选取碳纤维胎网与无纬布,将其按照碳纤维胎网-0°无纬布-碳纤维胎网-90°无纬布-碳纤维胎网依次循环堆叠的方式铺层,然后沿垂直于堆叠层面的方向,利用带有倒钩的针,对其进行针刺编织,使得各层碳纤维胎网与无纬布连成一体,以形成具有一定强度和独特结构的坯体。
(2)采用低温碳化处理,析出坯体内的杂质:将步骤(1)得到的坯体低温碳化处理,处理温度设置为750℃,保温时间设置为2h。
(3)采用化学气相沉积,在坯体的外表面形成热解碳膜:将经步骤(2)处理后的
坯体进行化学气相沉积热解碳。
(4)将经步骤(3)处理后的坯体进行渗硅处理,反应熔体为硅,与坯体中的部分碳组分反应并生成碳化硅,以使获得的坯体石墨化度为10%、坯体内部碳化硅质量含量为50%、坯体两个端面的碳化硅质量含量为60%。
对比例1提供一种传统制动盘的制备方法,该方法具体包括如下步骤:
(1)采用单元叠层针刺工艺制作坯体。
(2)高温处理:对经步骤(1)获得的坯体进行高温处理,处理温度设置为2200℃,保温时间设置为2h。
(3)化学气相沉积:在坯体表面沉积热解碳膜。
(4)二次高温处理:对经步骤(3)处理后的坯体再次进行高温处理,处理温度设置为2200℃,保温时间设置为3h。
(5)液相渗硅:将经步骤(4)处理后的坯体进行渗硅处理,反应熔体为硅,与坯体中的部分碳组分反应并生成碳化硅,以使获得的坯体石墨化度为40%、坯体内部碳化硅质量含量为66%、坯体两个端面的碳化硅质量含量为68%。
分别对上述几种实施例和对比例1制备的制动盘的渗硅前的孔隙率、渗硅后的石墨化度、渗硅后的密度、渗硅后的孔隙率、坯体内部碳化硅质量含量、坯体端面碳化硅质量含量、和磨损量进行测试统计,结果见下表1。
表1:
由表1中的实施例1-4和对比例1的实验结果可以看出,本申请提供的制动盘均具有较低的石墨化度,其生产成本均低于现有技术中的制动盘的生产成本,同时还能保证制动盘具有一定的耐磨性能。
由表1中的实施例1-3与实施例4可以看出,通过控制制动盘的端面的碳化硅质量含量高于所述制动盘的内部的碳化硅质量含量,可以增强制动盘的耐磨性能。
由表1中的实施例4与实施例1的实验结果可以看出,当石墨化度一样,也即生产成本一样时,通过在制动盘的端面设置沟槽,可以增强制动盘的耐磨性能,提高制动盘的可靠性。
由表1中的实施例4与实施例5以及对比例1的实验结果可以看出,通过适当降低低温碳化处理的温度,可以在保证制动盘具有一定的耐磨性能的情况下,降低制动盘的生产成本。
综上可知,与现有技术中的制动盘相比,本申请因为在制作过程中采用低温碳化处理并配合对坯体表面刻蚀沟槽的方案,从而使得制备的制动盘既具备优良的力学性能,又拥有良好的耐磨性能,同时其生产成本还相对较低。
需要理解的是,术语“第一”、“第二”等仅用于描述目的,而不能理解为隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括一个或者更多个特征。
在本说明书的描述中,参考术语“一些实施方式”、“示意性实施方式”、“示例”等的描述意指结合实施方式或示例描述的具体特征、结构、材料或者特点包含于本申请的至少一个实施方式中。在本说明书中,对上述术语的示意性表述不一定指的是相同的实施方式或示例。而且,描述的具体特征、结构、材料或者特点可以在任何的一个或多个实施方式中以合适的方式结合。
应当理解的是,本申请的应用不限于上述的举例,对本领域普通技术人员来说,可以根据上述说明加以改进或变换,所有这些改进和变换都应属于本申请所附权利要求的保护范围。本领域的一般技术人员可以理解实现上述实施例的全部或部分流程,并依本申请权利要求所作的等同变化,仍属于本申请所涵盖的范围。
Claims (20)
- 一种制动盘(100),其特征在于,所述制动盘(100)为碳陶制动盘,且呈圆盘状,所述制动盘(100)整体的石墨化度介于5%~25%之间。
- 根据权利要求1所述的制动盘(100),其特征在于,所述制动盘(100)整体的石墨化度介于10%~20%之间。
- 根据权利要求1或2所述的制动盘(100),其特征在于,所述制动盘(100)包括质量含量为50%-65%的碳化硅,质量含量为5%-10%的硅,质量含量为25%-45%的碳。
- 根据权利要求1或2所述的制动盘(100),其特征在于,所述制动盘(100)沿自身厚度方向包括相背的两个端面(20),所述端面(20)的碳化硅质量含量高于所述制动盘(100)的内部的碳化硅质量含量。
- 根据权利要求4所述的制动盘(100),其特征在于,所述端面(20)的碳化硅质量含量介于70%~90%之间;所述制动盘(100)的内部的碳化硅质量含量介于50%~65%之间。
- 根据权利要求4或5所述的制动盘(100),其特征在于,所述端面(20)设置有沟槽(40),所述沟槽(40)的深度介于0.5mm~2mm之间,所述沟槽(40)填充有质量含量至少为90%的碳化硅。
- 根据权利要求6所述的制动盘(100),其特征在于,所述沟槽(40)的宽度介于20μm~50μm之间。
- 根据权利要求6所述的制动盘(100),其特征在于,所述沟槽(40)呈螺旋状。
- 根据权利要求8所述的制动盘(100),其特征在于,沿所述制动盘的径向,相邻两圈所述沟槽(40)之间的距离介于0.1mm~5mm之间。
- 一种制动盘(100)的制备方法,用于制备权利要求1-9任一项所述的制动盘(100),其特征在于,包括以下步骤:对含有碳组分的第一坯体进行低温碳化处理,得到第二坯体;采用化学气相沉积在所述第二坯体的表面形成热解碳膜(30),得到第三坯体;进行液相渗硅处理;加工得到所述制动盘(100)。
- 根据权利要求10所述的制动盘(100)的制备方法,其特征在于,在所述第三坯体的至少部分表面蚀刻出沟槽(40)。
- 根据权利要求10或11所述的制动盘(100)的制备方法,其特征在于,所述低温碳化处理的温度介于800℃~1000℃之间。
- 根据权利要求11所述的制动盘(100)的制备方法,其特征在于,所述沟槽(40)的深度介于0.5mm~2mm之间。
- 根据权利要求11所述的制动盘(100)的制备方法,其特征在于,所述沟槽(40)的宽度介于20μm~50μm之间。
- 根据权利要求11所述的制动盘(100)的制备方法,其特征在于,所述沟槽(40)呈螺旋状。
- 根据权利要求15所述的制动盘(100)的制备方法,其特征在于,沿所述第三坯体的径向,相邻两圈的所述沟槽(40)之间的距离介于0.1mm~5mm之间。
- 根据权利要求10-16任一项所述的制动盘(100)的制备方法,其特征在于,所述对含有碳组分的第一坯体进行低温碳化处理,得到第二坯体之前,还包括:采用单元叠层针刺工艺制作所述第一坯体。
- 根据权利要求11-16任一项所述的制动盘(100)的制备方法,其特征在于,所述在所述第三坯体的至少部分表面蚀刻出沟槽(40)之后,还包括:采用高温热处理所述第三坯体。
- 根据权利要求18所述的制动盘(100)的制备方法,其特征在于,所述高温热处理的温度介于2000℃~2200℃之间。
- 一种车辆,其特征在于,包括权利要求1-9任一项所述的制动盘(100)。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202310627448.5 | 2023-05-30 | ||
CN202310627448.5A CN119059820A (zh) | 2023-05-30 | 2023-05-30 | 制动盘、制动盘的制备方法及车辆 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2024244564A1 true WO2024244564A1 (zh) | 2024-12-05 |
Family
ID=93645708
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2024/079183 WO2024244564A1 (zh) | 2023-05-30 | 2024-02-29 | 制动盘、制动盘的制备方法及车辆 |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN119059820A (zh) |
WO (1) | WO2024244564A1 (zh) |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6221475B1 (en) * | 1996-10-14 | 2001-04-24 | Societe Nationale D'etude Et De Construction De Moteurs D'aviation - S.N.E.C.M.A. | Friction element in composite carbon/carbon-silicon carbide material and method for manufacturing same |
CN101445383A (zh) * | 2007-11-30 | 2009-06-03 | 马塞尔-布加蒂股份有限公司 | 碳纤维增强的复合材料零件的制造方法 |
CN103880461A (zh) * | 2014-03-26 | 2014-06-25 | 西安航空制动科技有限公司 | 高速列车碳/陶复合材料摩擦对偶的制备方法 |
CN106507783B (zh) * | 2005-05-27 | 2017-03-15 | 西北工业大学 | 碳/碳化硅陶瓷基复合材料刹车盘的制造方法 |
CN109133956A (zh) * | 2018-08-03 | 2019-01-04 | 深圳勒迈科技有限公司 | C/C-SiC复合材料汽车刹车盘的制备方法 |
CN110483086A (zh) * | 2019-08-28 | 2019-11-22 | 山东道普安制动材料有限公司 | 一种碳陶刹车盘的制备方法 |
CN112125689A (zh) * | 2020-08-28 | 2020-12-25 | 湖南东映碳材料科技有限公司 | 一种高导热C/C-SiC复合材料的制备方法 |
-
2023
- 2023-05-30 CN CN202310627448.5A patent/CN119059820A/zh active Pending
-
2024
- 2024-02-29 WO PCT/CN2024/079183 patent/WO2024244564A1/zh unknown
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6221475B1 (en) * | 1996-10-14 | 2001-04-24 | Societe Nationale D'etude Et De Construction De Moteurs D'aviation - S.N.E.C.M.A. | Friction element in composite carbon/carbon-silicon carbide material and method for manufacturing same |
CN106507783B (zh) * | 2005-05-27 | 2017-03-15 | 西北工业大学 | 碳/碳化硅陶瓷基复合材料刹车盘的制造方法 |
CN101445383A (zh) * | 2007-11-30 | 2009-06-03 | 马塞尔-布加蒂股份有限公司 | 碳纤维增强的复合材料零件的制造方法 |
CN103880461A (zh) * | 2014-03-26 | 2014-06-25 | 西安航空制动科技有限公司 | 高速列车碳/陶复合材料摩擦对偶的制备方法 |
CN109133956A (zh) * | 2018-08-03 | 2019-01-04 | 深圳勒迈科技有限公司 | C/C-SiC复合材料汽车刹车盘的制备方法 |
CN110483086A (zh) * | 2019-08-28 | 2019-11-22 | 山东道普安制动材料有限公司 | 一种碳陶刹车盘的制备方法 |
CN112125689A (zh) * | 2020-08-28 | 2020-12-25 | 湖南东映碳材料科技有限公司 | 一种高导热C/C-SiC复合材料的制备方法 |
Also Published As
Publication number | Publication date |
---|---|
CN119059820A (zh) | 2024-12-03 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN106966751B (zh) | 高性能低成本C/C-SiC复合材料制动盘及其制备方法与应用 | |
WO2020024973A1 (zh) | C/C-SiC复合材料汽车刹车盘的制备方法 | |
US20200010058A1 (en) | Thermal management composite heat shield | |
CN101628822B (zh) | 由碳/碳复合材料制造摩擦部件的方法 | |
US7497918B2 (en) | Method of siliciding thermostructural composite materials, and parts obtained by the method | |
CN110668838B (zh) | 一种碳陶刹车构件及其制备方法 | |
CN108046819B (zh) | 一种结构功能一体化C/C-SiC摩擦材料及制备方法 | |
JP4361636B2 (ja) | 複合炭素質断熱材及びその製造方法 | |
US11396483B2 (en) | Systems and methods for producing a carbon composite material | |
JP2011126776A (ja) | C/cコンポジットに基づく摩擦部材の作成方法 | |
CN115745617A (zh) | 一种具有高摩擦性能的C/SiC陶瓷基复合材料及其制备方法 | |
CN113045325A (zh) | 一种高强度碳/碳-碳化硅复合材料的制备方法 | |
CN112142470A (zh) | 一种碳纤维增强复合材料的制备方法 | |
WO2024244564A1 (zh) | 制动盘、制动盘的制备方法及车辆 | |
EP3015442A1 (en) | Method for ceramic doping of carbon fiber composite structures | |
CN115368141B (zh) | 一种α-SiC和无定形氮化硅复相陶瓷刹车材料及其制备方法 | |
CN117534494A (zh) | 一种航空碳陶刹车材料及其制备方法 | |
CN117902910A (zh) | 一种碳陶刹车盘 | |
US20160281268A1 (en) | Aircraft brake disc materials and methods | |
CN116624528A (zh) | 碳陶制动盘及其制备方法 | |
JP2002211980A (ja) | SiC又はC繊維/SiC複合材料及びその製造方法 | |
CN110357650A (zh) | 一种用于连接碳化硅材料的连接材料及其应用 | |
JP3853035B2 (ja) | 耐酸化性c/c複合材及びその製造方法 | |
CN116768643B (zh) | 一种低噪声航空用碳陶制动盘及其制备方法 | |
CN114232074B (zh) | 一种石英纤维/炭纤维增强炭基复合材料导流筒及其制备方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 24813770 Country of ref document: EP Kind code of ref document: A1 |