WO2024195327A1 - 冷凍機油組成物及び冷凍機用組成物 - Google Patents

冷凍機油組成物及び冷凍機用組成物 Download PDF

Info

Publication number
WO2024195327A1
WO2024195327A1 PCT/JP2024/003804 JP2024003804W WO2024195327A1 WO 2024195327 A1 WO2024195327 A1 WO 2024195327A1 JP 2024003804 W JP2024003804 W JP 2024003804W WO 2024195327 A1 WO2024195327 A1 WO 2024195327A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
carbon atoms
oil composition
acid
groups
Prior art date
Application number
PCT/JP2024/003804
Other languages
English (en)
French (fr)
Inventor
康平 吉田
聡 中島
Original Assignee
出光興産株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 出光興産株式会社 filed Critical 出光興産株式会社
Publication of WO2024195327A1 publication Critical patent/WO2024195327A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K5/00Heat-transfer, heat-exchange or heat-storage materials, e.g. refrigerants; Materials for the production of heat or cold by chemical reactions other than by combustion
    • C09K5/02Materials undergoing a change of physical state when used
    • C09K5/04Materials undergoing a change of physical state when used the change of state being from liquid to vapour or vice versa
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M107/00Lubricating compositions characterised by the base-material being a macromolecular compound
    • C10M107/20Lubricating compositions characterised by the base-material being a macromolecular compound containing oxygen
    • C10M107/22Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • C10M107/24Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds containing monomers having an unsaturated radical bound to an alcohol, aldehyde, ketonic, ether, ketal or acetal radical
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M107/00Lubricating compositions characterised by the base-material being a macromolecular compound
    • C10M107/20Lubricating compositions characterised by the base-material being a macromolecular compound containing oxygen
    • C10M107/30Macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • C10M107/32Condensation polymers of aldehydes or ketones; Polyesters; Polyethers
    • C10M107/34Polyoxyalkylenes
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M137/00Lubricating compositions characterised by the additive being an organic non-macromolecular compound containing phosphorus
    • C10M137/12Lubricating compositions characterised by the additive being an organic non-macromolecular compound containing phosphorus having a phosphorus-to-carbon bond
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M169/00Lubricating compositions characterised by containing as components a mixture of at least two types of ingredient selected from base-materials, thickeners or additives, covered by the preceding groups, each of these compounds being essential
    • C10M169/04Mixtures of base-materials and additives
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M101/00Lubricating compositions characterised by the base-material being a mineral or fatty oil
    • C10M101/02Petroleum fractions
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M105/00Lubricating compositions characterised by the base-material being a non-macromolecular organic compound
    • C10M105/08Lubricating compositions characterised by the base-material being a non-macromolecular organic compound containing oxygen
    • C10M105/32Esters
    • C10M105/38Esters of polyhydroxy compounds
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2030/00Specified physical or chemical properties which is improved by the additive characterising the lubricating composition, e.g. multifunctional additives
    • C10N2030/06Oiliness; Film-strength; Anti-wear; Resistance to extreme pressure
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2030/00Specified physical or chemical properties which is improved by the additive characterising the lubricating composition, e.g. multifunctional additives
    • C10N2030/08Resistance to extreme temperature
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2040/00Specified use or application for which the lubricating composition is intended
    • C10N2040/30Refrigerators lubricants or compressors lubricants

Definitions

  • the present invention relates to a refrigeration oil composition and a composition for refrigeration.
  • a refrigerator for example, a compression type refrigerator, is generally composed of at least a compressor, a condenser, an expansion mechanism (such as an expansion valve), an evaporator, etc., and has a structure in which a mixture of a refrigerant and a refrigerating machine oil (hereinafter also referred to as a "refrigerating machine composition") circulates within a sealed system.
  • refrigerants for compression-type refrigerators fluorohydrocarbon compounds, which have a low environmental impact, have begun to be used in place of the hydrochlorofluorocarbons (HCFCs) that have been widely used in the past.
  • HCFCs hydrochlorofluorocarbons
  • HFCs saturated fluorohydrocarbon compounds
  • R134a 1,1,1,2-tetrafluoroethane
  • R32 difluoromethane
  • R410A pentafluoroethane
  • HFOs unsaturated fluorinated hydrocarbon compounds
  • R1234ze 1,3,3,3-tetrafluoropropene
  • R1234yf 2,3,3,3-tetrafluoropropene
  • Patent Documents 1 and 2 disclose refrigeration oils containing a phosphonic acid ester as a phosphorus-based extreme pressure agent.
  • HFO unsaturated fluorohydrocarbon compounds
  • R1234ze 1,3,3,3-tetrafluoropropene
  • R1234yf 2,3,3,3-tetrafluoropropene
  • the present invention was made in consideration of the above problems, and the objective of the present invention is to provide a refrigeration oil composition that has excellent wear resistance, seizure resistance, and thermal stability.
  • a refrigerator oil composition comprising a base oil (A) and a phosphonic acid ester (B) represented by the following general formula (1): (In the formula, R1 and R2 each independently represent a hydrocarbon group having 1 to 8 carbon atoms, and R3 represents a hydrocarbon group having 9 to 40 carbon atoms which may have a hydroxyl group as a substituent.) [2]
  • the content of the phosphonate ester (B) is 200 to 4,000 mass ppm in terms of phosphorus atoms based on the total amount of the refrigerating machine oil composition.
  • the refrigerating machine oil composition according to [1] above.
  • R 1 and R 2 represent an alkyl group having 1 to 4 carbon atoms or an alkenyl group having 2 to 4 carbon atoms
  • R 3 represents a hydrocarbon group having 12 to 30 carbon atoms.
  • R 3 represents a linear or branched alkyl group or alkenyl group having 14 to 24 carbon atoms, or a group represented by the following general formula (2): The refrigerating machine oil composition according to any one of the above [1] to [3].
  • L 1 represents a single bond, -CH 2 - or -CH 2 CH 2 -, and R 4 and R 5 each independently represent a hydrocarbon group having 2 to 10 carbon atoms.
  • the base oil (A) comprises one or more selected from the group consisting of polyalkylene glycol (PAG), polyvinyl ether (PVE), polyol ester (POE) and mineral oil.
  • PAG polyalkylene glycol
  • PVE polyvinyl ether
  • POE polyol ester
  • C antioxidant
  • a composition for a refrigerator comprising the refrigerator oil composition according to any one of [1] to [8] above and a refrigerant.
  • the refrigerant contains an unsaturated fluorohydrocarbon compound.
  • a method for producing a refrigerating machine oil composition comprising the step of mixing a base oil (A) with a phosphonic acid ester (B) represented by the following general formula (1): (In the formula, R1 and R2 each independently represent a hydrocarbon group having 1 to 8 carbon atoms, and R3 represents a hydrocarbon group having 9 to 40 carbon atoms which may have a hydroxyl group as a substituent.)
  • the present invention provides a refrigeration oil composition that has excellent wear resistance, seizure resistance, and thermal stability.
  • the lower limit and upper limit values described in stages can be combined independently.
  • the “preferable lower limit (10)” can be combined with the “more preferred upper limit (60)” to give “10 to 60.”
  • the numerical values of "greater than or equal to,” “less than or equal to,” “less than,” and “more than” in the description of numerical ranges can be combined in any way.
  • hydrocarbon group means a group composed only of carbon atoms and hydrogen atoms.
  • Hydrocarbon group also includes “aliphatic groups” composed of straight or branched chains, “alicyclic groups” having one or more saturated or unsaturated carbon rings that do not have aromaticity, and “aromatic groups” having one or more aromatic rings that exhibit aromaticity, such as a benzene ring.
  • number of ring carbon atoms refers to the number of carbon atoms among the atoms constituting the ring itself of a compound having a structure in which atoms are bonded in a ring.
  • the carbon atoms contained in the substituent are not included in the number of ring carbon atoms.
  • the number of ring atoms refers to the number of atoms constituting the ring itself in a compound having a structure in which atoms are bonded in a ring, and does not include atoms not constituting the ring (e.g., hydrogen atoms terminating bonds of atoms constituting the ring) and atoms contained in the substituent when the ring is substituted with a substituent.
  • the "number of carbon atoms a to b" in the expression "a substituted or unsubstituted X group having a carbon number a to b" represents the number of carbon atoms when the X group is unsubstituted, and does not include the number of carbon atoms of the substituent when the X group is substituted.
  • the refrigerating machine oil composition of the present embodiment contains a base oil (A) and a phosphonic acid ester (B) represented by the following general formula (1).
  • R1 and R2 each independently represent a hydrocarbon group having 1 to 8 carbon atoms
  • R3 represents a hydrocarbon group having 9 to 40 carbon atoms which may have a hydroxyl group as a substituent.
  • the present inventors have conducted research into additives capable of improving the wear resistance of refrigerating machine oils, and as a result, have found that a refrigerating machine oil composition containing a phosphonic acid ester represented by the above general formula (1), in which R1 and R2 have groups with relatively few carbon atoms, and R3 has a group with a relatively large carbon number, exhibits excellent wear resistance and seizure resistance, as well as good thermal stability.
  • the phosphonic acid ester (B) represented by the above general formula (1) has the effect of improving the wear resistance, seizure resistance and thermal stability of a composition for a refrigerator.
  • the total content of components (A) and (B) is preferably 80 to 100 mass%, more preferably 85 to 100 mass%, even more preferably 90 to 100 mass%, and even more preferably 95 to 100 mass%, based on the total amount (100 mass%) of the refrigerator oil composition.
  • the refrigerating machine oil composition of the present embodiment contains a base oil (A).
  • the content of the base oil (A) is, based on the total amount (100 mass%) of the refrigerating machine oil composition, preferably 85.0 mass% or more, more preferably 90.0 mass% or more, even more preferably 95.0 mass% or more, and preferably 99.7 mass% or less, more preferably 99.3 mass% or less, even more preferably 99.0 mass% or less.
  • These lower and upper limits may be arbitrarily combined, and specifically, preferably 85.0 to 99.7 mass%, more preferably 90.0 to 99.3 mass%, even more preferably 95.0 to 99.0 mass%.
  • the base oil (A) can be, for example, one or more selected from the group consisting of synthetic oils and mineral oils.
  • the base oil (A) from the viewpoint of improving the thermal stability of the refrigerating machine oil composition, it is preferable to include one or more base oils selected from the group consisting of polyalkylene glycols (hereinafter also referred to as "PAG”), polyvinyl ethers (hereinafter also referred to as “PVE”), polyol esters (hereinafter also referred to as "POE”) and mineral oils (hereinafter also referred to as "base oil (A1)”).
  • PAG polyalkylene glycols
  • PVE polyvinyl ethers
  • POE polyol esters
  • base oil (A1) mineral oils
  • base oils selected from the group consisting of PVE and PAG (hereinafter also referred to as “base oil (A2)").
  • base oil (A3) base oil
  • PVE, PAG, POE and mineral oil will be described in detail below.
  • the PVE may be any polymer having at least one vinyl ether-derived structural unit.
  • the PVE may be used alone or in combination of two or more kinds.
  • the PVE is preferably a polymer having one or more structural units derived from vinyl ether and having an alkyl group having 1 to 4 carbon atoms in the side chain.
  • the alkyl group is preferably a methyl group or an ethyl group, and more preferably a methyl group.
  • the PVE is preferably a polymer (A-1) having one or more structural units represented by the following general formula (A-1).
  • R 1a , R 2a and R 3a each independently represent a hydrogen atom or a hydrocarbon group having 1 to 8 carbon atoms.
  • R 4a represents a divalent hydrocarbon group having 2 to 10 carbon atoms.
  • R 5a represents a hydrocarbon group having 1 to 10 carbon atoms.
  • r represents the number of repeating units of OR 4a and represents a number of 0 to 10, preferably a number of 0 to 5, more preferably a number of 0 to 3, and even more preferably 0.
  • the plurality of OR 4a may be the same or different.
  • Examples of the hydrocarbon group having 1 to 8 carbon atoms represented by R 1a , R 2a , and R 3a include alkyl groups such as methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, isobutyl group, sec-butyl group, tert-butyl group, various pentyl groups, various hexyl groups, various heptyl groups, and various octyl groups; cycloalkyl groups such as cyclopentyl group, cyclohexyl group, various methylcyclohexyl groups, various ethylcyclohexyl groups, and various dimethylcyclohexyl groups; aryl groups such as phenyl group, various methylphenyl groups, various ethylphenyl groups, and various dimethylphenyl groups; and arylalkyl groups such as benzyl group, various phenylethyl
  • variable types refers to “linear, branched or cyclic” hydrocarbon groups
  • variable butyl groups refers to various butyl groups such as “n-butyl group, sec-butyl group, isobutyl group, tert-butyl group, cyclobutyl group, etc.
  • positional isomers such as ortho-, meta- and para-isomers are included, and the same applies hereinafter.
  • the hydrocarbon groups represented by R 1a , R 2a and R 3a preferably have 1 to 6 carbon atoms, and more preferably 1 to 3 carbon atoms.
  • R 1a , R 2a and R 3a each independently preferably represent a hydrogen atom or an alkyl group having 1 to 8 carbon atoms, and more preferably a hydrogen atom or an alkyl group having 1 to 3 carbon atoms.
  • Examples of the divalent hydrocarbon group having 2 to 10 carbon atoms represented by R 4a include divalent aliphatic groups such as ethylene group, 1,2-propylene group, 1,3-propylene group, various butylene groups, various pentylene groups, various hexylene groups, various heptylene groups, various octylene groups, various nonylene groups, and various decylene groups; divalent alicyclic groups such as cyclohexane, methylcyclohexane, ethylcyclohexane, dimethylcyclohexane, and propylcyclohexane; divalent aromatic groups such as various phenylene groups, various methylphenylene groups, various ethylphenylene groups, various dimethylphenylene groups, and various naphthylenes; divalent alkyl aromatic groups having monovalent bonding sites at the alkyl group moiety and aromatic moiety of alkyl aromatic hydrocarbons such as toluene, xylene
  • the hydrocarbon group represented by R 4a preferably has 2 to 6 carbon atoms, and more preferably 2 to 4 carbon atoms.
  • R 4a is preferably a divalent aliphatic group having 2 to 10 carbon atoms, and more preferably a divalent aliphatic group having 2 to 4 carbon atoms.
  • Examples of the hydrocarbon group having 1 to 10 carbon atoms represented by R 5a include alkyl groups such as methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, isobutyl group, sec-butyl group, tert-butyl group, various pentyl groups, various hexyl groups, various heptyl groups, various octyl groups, various nonyl groups, and various decyl groups; cycloalkyl groups such as cyclopentyl group, cyclohexyl group, various methylcyclohexyl groups, various ethylcyclohexyl groups, various propylcyclohexyl groups, and various dimethylcyclohexyl groups; aryl groups such as phenyl group, various methylphenyl groups, various ethylphenyl groups, various dimethylphenyl groups, various propylphenyl groups, various tri
  • the hydrocarbon group represented by R 5a preferably has 1 to 8 carbon atoms, and more preferably 1 to 6 carbon atoms. From the viewpoint of further improving compatibility with the refrigerant, R 5a is preferably an alkyl group having 1 to 6 carbon atoms, more preferably an alkyl group having 1 to 4 carbon atoms, still more preferably a methyl group or an ethyl group, and still more preferably a methyl group.
  • the number of units (degree of polymerization) of the constituent units represented by the above general formula (A-1) is appropriately selected depending on the kinematic viscosity required for the base oil (A).
  • the polymer having the structural unit represented by the general formula (A-1) may be a homopolymer having only one type of the structural unit, or a copolymer having two or more types of the structural unit.
  • the form of the copolymerization is not particularly limited, and may be any of a block copolymer, a random copolymer, and a graft copolymer.
  • the PVE may contain a polyalkylene glycol structure in its structure, but it is preferable that it does not contain a polyalkylene glycol structure.
  • a monovalent group derived from a saturated hydrocarbon, ether, alcohol, ketone, amide, nitrile, etc. may be introduced into the terminal portion of the polymer (A-1).
  • one terminal portion of the polymer (A-1) is a group represented by the following general formula (A-1-i).
  • R 6a , R 7a and R 8a each independently represent a hydrogen atom or a hydrocarbon group having 1 to 8 carbon atoms, preferably a hydrogen atom or a hydrocarbon group having 1 to 6 carbon atoms, and more preferably a hydrogen atom or an alkyl group having 1 to 3 carbon atoms.
  • Examples of the hydrocarbon group having 1 to 8 carbon atoms represented by R 6a , R 7a , and R 8a include the same groups as those listed as the hydrocarbon group having 1 to 8 carbon atoms represented by R 1a , R 2a, and R 3a in general formula (A-1) above.
  • R 9a represents a divalent hydrocarbon group having 2 to 10 carbon atoms, preferably a divalent hydrocarbon group having 2 to 6 carbon atoms, and more preferably a divalent aliphatic group having 2 to 4 carbon atoms.
  • r1 is the number of repeating units of OR 9a and represents an integer of 0 to 10, preferably an integer of 0 to 5, more preferably an integer of 0 to 3, and even more preferably 0.
  • the plurality of OR 9a may be the same or different.
  • Examples of the divalent hydrocarbon group having 2 to 10 carbon atoms represented by R 9a include the same groups as those listed as the divalent hydrocarbon group having 2 to 10 carbon atoms represented by R 4a in general formula (A-1) above.
  • R 10a represents a hydrocarbon group having 1 to 10 carbon atoms, preferably a hydrocarbon group having 1 to 8 carbon atoms, and more preferably an alkyl group having 1 to 8 carbon atoms.
  • R 10a when r1 in the above general formula (A-1-i) is 0, an alkyl group having 1 to 6 carbon atoms is preferable, and when r1 is 1 or more, an alkyl group having 1 to 4 carbon atoms is preferable.
  • Examples of the hydrocarbon group having 1 to 10 carbon atoms represented by R 10a include the same groups as those listed as the hydrocarbon group having 1 to 10 carbon atoms represented by R 5a in the above general formula (A-1).
  • one end portion of the polymer (A-1) is a group represented by the above general formula (A-1-i)
  • the other end portion is preferably any one of a group represented by the above general formula (A-1-i), a group represented by the following general formula (A-1-ii), a group represented by the following general formula (A-1-iii), and a group having an olefinically unsaturated bond.
  • R 6a , R 7a , R 8a , R 9a , R 10a and r1 are the same as those defined in formula (A-1-i) above.
  • R 11a , R 12a and r2 are the same as those defined in formula ( A-1-i) above.
  • the PAG is preferably a polymer (A-2) represented by the following general formula (A-2). R 13a ⁇ [(OR 14a ) m ⁇ OR 15a ] n (A-2)
  • the PAG may be used alone or in combination of two or more kinds.
  • R 13a represents a hydrogen atom, a monovalent hydrocarbon group having 1 to 10 carbon atoms, an acyl group having 2 to 10 carbon atoms, a divalent to hexavalent hydrocarbon group having 1 to 10 carbon atoms, or a substituted or unsubstituted heterocyclic group having 3 to 10 ring atoms;
  • R 14a represents an alkylene group having 2 to 4 carbon atoms;
  • R 15a represents a hydrogen atom, a monovalent hydrocarbon group having 1 to 10 carbon atoms, an acyl group having 2 to 10 carbon atoms, or a substituted or unsubstituted heterocyclic group having 3 to 10 ring atoms.
  • heterocyclic group may have examples include an alkyl group having 1 to 10 carbon atoms (preferably 1 to 6, more preferably 1 to 3); a cycloalkyl group having 3 to 10 ring carbon atoms (preferably 3 to 8, more preferably 5 or 6); an aryl group having 6 to 18 ring carbon atoms (preferably 6 to 12); a halogen atom (a fluorine atom, a chlorine atom, a bromine atom, an iodine atom); a cyano group; a nitro group; a hydroxy group; and an amino group.
  • substituents may be further substituted with any of the above-mentioned substituents.
  • n is an integer of 1 to 6, preferably an integer of 1 to 3, and more preferably 1.
  • n is determined according to the number of bonding sites of R 13a in the above general formula (A-2). For example, when R 13a is an alkyl group or an acyl group, n is 1, and when R 13a is a hydrocarbon group or a heterocyclic group and the valence of the group is di-, tri-, tetra-, penta- or hexa-valent, n is 2, 3, 4, 5, or 6, respectively.
  • m is the number of repeating units of OR 14a and is a number equal to or greater than 1, and is preferably a number such that m ⁇ n is 6 to 80.
  • m is appropriately set so that the kinematic viscosity of base oil (A) at 100° C. falls within the range of 2 to 50 mm 2 /s, and is not particularly limited as long as the kinematic viscosity is adjusted to fall within the predetermined range.
  • multiple R 14a may be the same as or different from each other.
  • n is 2 or more, multiple R 15a in one molecule may be the same as or different from each other.
  • Examples of the monovalent hydrocarbon group represented by R 13a and R 15a include alkyl groups such as methyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl, sec-butyl, tert-butyl, various pentyl groups, various hexyl groups, various heptyl groups, various octyl groups, various nonyl groups, and various decyl groups; cycloalkyl groups such as cyclopentyl, cyclohexyl, various methylcyclohexyl groups, various ethylcyclohexyl groups, various propylcyclohexyl groups, and various dimethylcyclohexyl groups; aryl groups such as phenyl, various methylphenyl groups, various ethylphenyl groups, various dimethylphenyl groups, various propylphenyl groups, various trimethylphenyl groups, various butylphenyl
  • the alkyl groups may be either linear or branched.
  • the monovalent hydrocarbon group represented by R 13a and R 15a preferably has 1 to 10 carbon atoms, more preferably 1 to 6 carbon atoms, and even more preferably 1 to 3 carbon atoms, from the viewpoint of compatibility with the refrigerant.
  • the hydrocarbon group moiety of the acyl group having 2 to 10 carbon atoms represented by R 13a and R 15a may be linear, branched or cyclic.
  • the alkyl group moiety may be any of the hydrocarbon groups represented by R 13a and R 15a having 1 to 9 carbon atoms.
  • the number of carbon atoms in the acyl group represented by R 13a and R 15a is preferably 2 to 8, and more preferably 2 to 6, from the viewpoint of compatibility with the refrigerant.
  • Examples of the divalent to hexavalent hydrocarbon group represented by R 13a include residues in which 1 to 5 hydrogen atoms have been removed from the monovalent hydrocarbon group represented by R 13a described above, and residues in which hydroxyl groups have been removed from polyhydric alcohols such as trimethylolpropane, glycerin, pentaerythritol, sorbitol, 1,2,3-trihydroxycyclohexane, and 1,3,5-trihydroxycyclohexane.
  • the carbon number of the divalent to hexavalent acyl group represented by R 13a is preferably 2 to 10, and more preferably 2 to 6, from the viewpoint of compatibility with the refrigerant.
  • the heterocyclic group represented by R 13a and R 15a is preferably an oxygen atom-containing heterocyclic group or a sulfur atom-containing heterocyclic group.
  • the heterocyclic group may be a saturated or unsaturated ring.
  • the oxygen atom-containing heterocyclic group include oxygen atom-containing saturated heterocycles such as ethylene oxide, 1,3-propylene oxide, tetrahydrofuran, tetrahydropyran, and hexamethylene oxide; and residues in which 1 to 6 hydrogen atoms have been removed from oxygen atom-containing unsaturated heterocycles such as acetylene oxide, furan, pyran, oxycycloheptatriene, isobenzofuran, and isochromene.
  • sulfur atom-containing heterocyclic group examples include residues in which 1 to 6 hydrogen atoms have been removed from sulfur atom-containing saturated heterocycles such as ethylene sulfide, trimethylene sulfide, tetrahydrothiophene, tetrahydrothiopyran, and hexamethylene sulfide, and sulfur atom-containing unsaturated heterocycles such as acetylene sulfide, thiophene, thiapyran, and thiotripyridene.
  • sulfur atom-containing saturated heterocycles such as ethylene sulfide, trimethylene sulfide, tetrahydrothiophene, tetrahydrothiopyran, and hexamethylene sulfide
  • sulfur atom-containing unsaturated heterocycles such as acetylene sulfide, thiophene, thiapyran, and thiotripyridene.
  • the heterocyclic group represented by R 13a and R 15a may have a substituent, and the substituent may be bonded to the oxygen atom in the general formula (A-2).
  • the substituent as described above, an alkyl group having 1 to 6 carbon atoms is preferable, and an alkyl group having 1 to 3 carbon atoms is more preferable.
  • the heterocyclic group preferably has 3 to 10 ring atoms, more preferably 3 to 6 ring atoms, from the viewpoint of compatibility with the refrigerant.
  • the alkylene group represented by R 14a includes alkylene groups having two carbon atoms, such as a dimethylene group (-CH 2 CH 2 -) or an ethylene group (-CH(CH 3 )-); alkylene groups having three carbon atoms, such as a trimethylene group (-CH 2 CH 2 CH 2 -), a propylene group (-CH(CH 3 )CH 2 -), a propylidene group (-CHCH 2 CH 3 -) or an isopropylidene group (-C(CH 3 ) 2 -); tetramethylene group (-CH 2 CH 2 CH 2 CH 2 -), a 1-methyltrimethylene group (-CH(CH 3 )CH 2 CH 2 -), a 2-methyltrimethylene group (-CH 2 CH(CH 3 )CH 2 -), a butylene group (-C(CH 3 ) 2 CH 2 - ), Among these, R 14a is preferably a propylene group (-CH(CH 3 )CH 2
  • the content of oxypropylene units (-OCH( CH3 ) CH2- ) is preferably 50 mol% or more, more preferably 65 mol% or more, and even more preferably 80 mol% or more, based on the total amount (100 mol%) of oxyalkylene units ( OR14a) in the polymer (A-2 ).
  • polymers (A-2) represented by the above general formula (A-2) at least one selected from the group consisting of polyoxypropylene glycol dimethyl ether represented by the following general formula (A-2-i), polyoxyethylene polyoxypropylene glycol dimethyl ether represented by the following general formula (A-2-ii), polyoxypropylene glycol monobutyl ether represented by the following general formula (A-2-iii), and polyoxypropylene glycol diacetate are preferred.
  • m1 represents a number of 1 or more, and preferably a number of 6 to 80.
  • m2 and m3 each independently represent a number of 1 or more, and preferably a number such that the value of m2+m3 is 6 to 80.
  • m4 represents a number of 1 or more, and preferably a number of 6 to 80.
  • m1 in the above general formula (A-2-i), m2 and m3 in the above general formula (A-2-ii), and m4 in the above general formula (A-2-iii) may be appropriately selected according to the kinematic viscosity required for the base oil (A).
  • POE Polyol Esters
  • Examples of POE include esters of diols or polyols and fatty acids.
  • the POE is preferably an ester of a diol or a polyol having 3 to 20 hydroxyl groups and a fatty acid having 3 to 20 carbon atoms.
  • Diols include ethylene glycol, 1,3-propanediol, propylene glycol, 1,4-butanediol, 1,2-butanediol, 2-methyl-1,3-propanediol, 1,5-pentanediol, neopentyl glycol, 1,6-hexanediol, 2-ethyl-2-methyl-1,3-propanediol, 1,7-heptanediol, 2-methyl-2-propyl-1,3-propanediol, 2,2-diethyl-1,3-propanediol, 1,8-octanediol, 1,9-nonanediol, 1,10-decanediol, 1,11-undecanediol, and 1,12-dodecanediol.
  • polyols include polyhydric alcohols such as trimethylolethane, trimethylolpropane, trimethylolbutane, di-(trimethylolpropane), tri-(trimethylolpropane), pentaerythritol, di-(pentaerythritol), tri-(pentaerythritol), glycerin, polyglycerin (dimer to 20-mer of glycerin), 1,3,5-pentanetriol, sorbitol, sorbitan, sorbitol glycerin condensates, adonitol, arabitol, xylitol, and mannitol; sugars such as xylose, arabinose, ribose, rhamnose, glucose, fructose, galactose, mannose, sorbose, cellobiose, maltose, isomaltose, trehalose, sucrose,
  • hindered alcohols such as neopentyl glycol, trimethylolethane, trimethylolpropane, trimethylolbutane, di-(trimethylolpropane), tri-(trimethylolpropane), pentaerythritol, di-(pentaerythritol), tri-(pentaerythritol), etc.
  • hindered alcohol refers to an alcohol having a quaternary carbon atom bonded to four carbon atoms.
  • the number of carbon atoms in the fatty acid is preferably 3 or more, more preferably 4 or more, even more preferably 5 or more, and still more preferably 8 or more from the viewpoint of lubrication performance, and is preferably 20 or less, more preferably 16 or less, even more preferably 12 or less, and still more preferably 10 or less from the viewpoint of compatibility with the refrigerant.
  • the carbon number of the fatty acid includes the carbon atom of the carboxy group (-COOH) contained in the fatty acid.
  • the fatty acid may be either a linear or branched fatty acid, but from the viewpoint of lubrication performance, linear fatty acids are preferred, and from the viewpoint of hydrolysis stability, branched fatty acids are preferred. Furthermore, the fatty acid may be either a saturated or unsaturated fatty acid.
  • fatty acids include straight-chain or branched-chain fatty acids such as isobutyric acid, propionic acid, butanoic acid, pentanoic acid, hexanoic acid, heptanoic acid, octanoic acid, nonanoic acid, decanoic acid, undecanoic acid, dodecanoic acid, tridecanoic acid, tetradecanoic acid, pentadecanoic acid, hexadecanoic acid, heptadecanoic acid, octadecanoic acid, nonadecanoic acid, icosanoic acid, and oleic acid, as well as so-called neo acids in which the ⁇ carbon atom is quaternary.
  • the POE may be a partial ester in which some of the hydroxyl groups of the polyol remain unesterified, or a complete ester in which all of the hydroxyl groups are esterified.
  • the POE may also be a mixture of partial esters and complete esters, but a complete ester is preferred.
  • esters of hindered alcohols such as neopentyl glycol, trimethylolethane, trimethylolpropane, trimethylolbutane, di-(trimethylolpropane), tri-(trimethylolpropane), pentaerythritol, di-(pentaerythritol), and tri-(pentaerythritol) are preferred, and esters of neopentyl glycol, trimethylolethane, trimethylolpropane, trimethylolbutane, and pentaerythritol are more preferred, and esters of pentaerythritol are even more preferred from the viewpoint of particularly superior compatibility with the refrigerant and hydrolytic stability.
  • hindered alcohols such as neopentyl glycol, trimethylolethane, trimethylolpropane, trimethylolbutane, di-(trimethylolpropane), tri-(trimethylolpropan
  • preferred POE include diesters of neopentyl glycol and one or more fatty acids selected from the group consisting of isobutyric acid, valeric acid, caproic acid, enanthic acid, caprylic acid, pelargonic acid, capric acid, oleic acid, isopentanoic acid, 2-methylhexanoic acid, 2-ethylpentanoic acid, 2-ethylhexanoic acid, and 3,5,5-trimethylhexanoic acid; and diesters of trimethylolethane and isobutyric acid, valeric acid, caproic acid, , enanthic acid, caprylic acid, pelargonic acid, capric acid, oleic acid, isopentanoic acid, 2-methylhexanoic acid, 2-ethylpentanoic acid, 2-ethylhexanoic acid, and 3,5,5-trimethylhexanoic acid; triesters of trimethylo
  • the ester of two or more fatty acids may be a mixture of two or more esters of one fatty acid and a polyol.
  • esters of two or more mixed fatty acids and polyols are preferred from the viewpoints of improving low-temperature properties and compatibility with refrigerants.
  • mineral oils examples include oils obtained by distilling paraffinic, intermediate, or naphthenic crude oils at atmospheric pressure, or by vacuum distilling the atmospheric residual oil obtained by atmospheric distillation of crude oil, and then refining the lubricating oil fraction by subjecting it to one or more of the following treatments: solvent deasphalting, solvent extraction, hydrocracking, solvent dewaxing, catalytic dewaxing, hydrorefining, etc.; and oils produced by isomerizing mineral oil wax.
  • the base oil (A) contains a mineral oil
  • the mineral oil may be used alone or in combination of two or more kinds.
  • the main component of the base oil (A) is preferably the above-mentioned base oil (A1), more preferably the above-mentioned base oil (A2), and even more preferably the above-mentioned base oil (A3).
  • the "main component” means the component having the highest content.
  • the content of base oil (A1), base oil (A2) or base oil (A3) in base oil (A) is preferably 50 to 100 mass%, more preferably 60 to 100 mass%, even more preferably 70 to 100 mass%, still more preferably 80 to 100 mass%, and even more preferably 90 to 100 mass%, based on the total amount (100 mass%) of base oil (A).
  • the content of base oil (A3) in base oil (A) is preferably 50 to 100 mass%, more preferably 60 to 100 mass%, even more preferably 70 to 100 mass%, still more preferably 80 to 100 mass%, and even more preferably 90 to 100 mass%.
  • the base oil (A) may further contain other base oils in addition to the base oil (A1), the base oil (A2) or the base oil (A3).
  • Other base oils include synthetic oils such as polyesters, polycarbonates, hydrogenated ⁇ -olefin oligomers, alicyclic hydrocarbon compounds, alkylated aromatic hydrocarbon compounds, poly(oxy)alkylene glycols or copolymers of their monoethers with polyvinyl ethers (ECPs) that do not fall under the above-mentioned PVEs, PAGs, and POEs.
  • copolymer of poly(oxy)alkylene glycol or its monoether with polyvinyl ether refers to a copolymer having a structural unit derived from poly(oxy)alkylene glycol or its monoether, and a structural unit derived from polyvinyl ether
  • poly(oxy)alkylene glycol refers to both polyalkylene glycol and polyoxyalkylene glycol.
  • the 40° C. kinematic viscosity of the base oil (A) is preferably 5 to 120 mm 2 /s, more preferably 10 to 110 mm 2 /s, and even more preferably 30 to 100 mm 2 /s.
  • the 40° C. kinematic viscosity of the base oil (A) is within the above range, the wear resistance is improved.
  • the 40° C. kinematic viscosity is a value measured using a glass capillary viscometer in accordance with JIS K 2283:2000.
  • the refrigerating machine oil composition of the present embodiment contains a phosphonic acid ester (B) represented by the following general formula (1).
  • R1 and R2 each independently represent a hydrocarbon group having 1 to 8 carbon atoms
  • R3 represents a hydrocarbon group having 9 to 40 carbon atoms which may have a hydroxyl group as a substituent.
  • R1 and R2 bonded to oxygen atoms are relatively small groups and play a role of adsorbing to the metal surface, while R3 facing the inside of the oil film is a relatively bulky group, which is considered to impart good wear resistance. Also, it is presumed that the thermal stability of the refrigerating machine oil composition is not impaired because R1 , R2 and R3 are all hydrocarbon groups which may have a hydroxyl group as a substituent.
  • examples of the hydrocarbon group having 1 to 8 carbon atoms represented by R 1 and R 2 include an alkyl group having 1 to 8 carbon atoms, an alkenyl group having 2 to 8 carbon atoms, an alkynyl group having 2 to 8 carbon atoms, a cycloalkyl group having 6 to 8 carbon atoms, an alkylcycloalkyl group having 6 to 8 carbon atoms, and an aryl group having 6 to 8 carbon atoms.
  • a substituted or unsubstituted alkyl group having 1 to 8 carbon atoms is preferred, an alkyl group having 1 to 4 carbon atoms is more preferred, and a methyl group or an ethyl group is particularly preferred.
  • Examples of the alkyl group having 1 to 8 carbon atoms include a methyl group, an ethyl group, an n-propyl group, an isopropyl group, an n-butyl group, an isobutyl group, a sec-butyl group, a tert-butyl group, various pentyl groups, various hexyl groups, etc.
  • the alkyl group may be either linear or branched.
  • Examples of the cycloalkyl group having 6 to 8 carbon atoms include a cyclohexyl group, a cycloheptyl group, and a cyclooctyl group.
  • Examples of the alkylcycloalkyl group having 6 to 8 carbon atoms include various methylcyclohexyl groups, various ethylcyclohexyl groups, various dimethylcyclohexyl groups, and the like.
  • the aryl group having 6 to 8 carbon atoms includes substituted or unsubstituted phenyl groups, specifically phenyl groups, various methylphenyl groups, and various dimethylphenyl groups.
  • examples of the hydrocarbon group having 9 to 40 carbon atoms which may have a hydroxyl group as a substituent represented by R3 include a substituted or unsubstituted alkyl group having 9 to 40 carbon atoms, a substituted or unsubstituted alkenyl group having 9 to 40 carbon atoms, a substituted or unsubstituted alkynyl group having 9 to 40 carbon atoms, a substituted or unsubstituted cycloalkyl group having 9 to 40 carbon atoms, a substituted or unsubstituted alkylcycloalkyl group having 9 to 40 carbon atoms, and a substituted or unsubstituted aryl group having 9 to 40 carbon atoms.
  • a substituted or unsubstituted alkyl group having 9 to 40 carbon atoms and a substituted or unsubstituted aryl group having 9 to 40 carbon atoms are preferred.
  • the substituent that the various hydrocarbon groups may have is a hydroxyl group.
  • the above-mentioned substituted or unsubstituted alkyl groups having 9 to 40 carbon atoms include various alkyl groups such as nonyl groups and various decyl groups.
  • the above-mentioned alkyl groups may be either linear or branched.
  • Examples of the substituted or unsubstituted aryl group having 9 to 40 carbon atoms include a substituted or unsubstituted phenyl group, a substituted or unsubstituted naphthyl group, etc., and among these, a substituted or unsubstituted phenyl group is preferred.
  • R 1 and R 2 in the general formula (1) are each independently an alkyl group having 1 to 4 carbon atoms or an alkenyl group having 2 to 4 carbon atoms.
  • R3 in the general formula (1) is preferably a hydrocarbon group having 12 to 30 carbon atoms which may have a hydroxyl group as a substituent, and more specifically, is more preferably a linear or branched alkyl or alkenyl group having 14 to 24 carbon atoms, or a group represented by the following general formula (2):
  • L 1 represents a single bond, -CH 2 - or -CH 2 CH 2 -, and R 4 and R 5 each independently represent a hydrocarbon group having 2 to 10 carbon atoms.
  • R3 is a group represented by the general formula (2)
  • R4 and R5 adjacent to the hydroxyl group are groups having a certain degree of bulkiness.
  • R4 and R5 are more preferably hydrocarbon groups having 3 to 8 carbon atoms.
  • examples of the hydrocarbon group having 2 to 10 carbon atoms represented by R4 or R5 include an alkyl group having 2 to 10 carbon atoms, an alkenyl group having 2 to 10 carbon atoms, an alkynyl group having 2 to 10 carbon atoms, a cycloalkyl group having 6 to 10 carbon atoms, an alkylcycloalkyl group having 6 to 10 carbon atoms, and an aryl group having 6 to 10 carbon atoms.
  • a substituted or unsubstituted alkyl group having 2 to 10 carbon atoms is preferred, an alkyl group having 3 to 6 carbon atoms is more preferred, and a t-butyl group is particularly preferred.
  • alkyl group having 2 to 10 carbon atoms examples include alkyl groups such as ethyl group, n-propyl group, isopropyl group, n-butyl group, isobutyl group, sec-butyl group, tert-butyl group, various pentyl groups, various hexyl groups, various heptyl groups, various octyl groups, various nonyl groups, and various decyl groups; and cycloalkyl groups such as cyclopentyl group, cyclohexyl group, various methylcyclohexyl groups, various ethylcyclohexyl groups, various propylcyclohexyl groups, and various dimethylcyclohexyl groups.
  • the alkyl group may be either linear or branched.
  • the alkyl group preferably has 2 to 10 carbon atoms, and more preferably has 3 to 8 carbon atoms.
  • substituted or unsubstituted aryl group having 6 to 10 carbon atoms examples include substituted or unsubstituted phenyl groups, naphthyl groups, etc.
  • the content of component (B) is, from the viewpoint of improving wear resistance, based on the total amount of the refrigerator oil composition, in terms of phosphorus atoms derived from component (B), preferably 200 ppm by mass or more, more preferably 300 ppm by mass or more, even more preferably 400 ppm by mass or more, and particularly preferably 500 ppm by mass or more. Also, preferably 3,000 ppm by mass or less, more preferably 2,400 ppm by mass or less, even more preferably 2,000 ppm by mass or less, and particularly preferably 1,500 ppm by mass or less.
  • the component (B) used in the refrigerating machine oil composition of this embodiment has a hydrocarbon group which may have a hydroxyl group as a substituent, and therefore has excellent thermal stability, and therefore the content thereof can be relatively large.
  • the refrigerator oil composition of the present embodiment may further contain additives.
  • the additive preferably contains one or more selected from the group consisting of antioxidants, oiliness improvers, oxygen scavengers, acid scavengers, copper deactivators, rust inhibitors, antifoaming agents, and viscosity index improvers, and more preferably contains at least an antioxidant.
  • the refrigerating machine oil composition of the present embodiment may also contain an extreme pressure agent other than component (B). These additives may be used alone or in combination of two or more.
  • the total content of these additives is preferably 0 to 10 mass %, more preferably 0.01 to 8.0 mass %, and even more preferably 0.1 to 5.0 mass %, based on the total amount (100 mass %) of the refrigerating machine oil composition.
  • the antioxidant is preferably at least one selected from the group consisting of phenol-based antioxidants and amine-based antioxidants.
  • phenol-based antioxidant examples include 2,6-di-tert-butyl-4-methylphenol (DBPC), 2,6-di-tert-butyl-4-ethylphenol, and 2,2'-methylenebis(4-methyl-6-tert-butylphenol).
  • amine-based antioxidant examples include phenyl- ⁇ -naphthylamine and N,N'-diphenyl-p-phenylenediamine. Among these, 2,6-di-tert-butyl-4-methylphenol (DBPC) is more preferable.
  • the content of the antioxidant is preferably 0.01 to 5.0 mass%, more preferably 0.05 to 3.0 mass%, and even more preferably 0.10 to 1.50 mass%, based on the total amount (100 mass%) of the refrigerating machine oil composition.
  • oiliness improver examples include aliphatic saturated or unsaturated monocarboxylic acids such as stearic acid and oleic acid; polymerized fatty acids such as dimer acid and hydrogenated dimer acid; hydroxy fatty acids such as ricinoleic acid and 12-hydroxystearic acid; aliphatic saturated or unsaturated monoalcohols such as lauryl alcohol and oleyl alcohol; aliphatic saturated or unsaturated monoamines such as stearylamine and oleylamine; aliphatic saturated or unsaturated monocarboxylic acid amides such as lauric acid amide and oleic acid amide; partial esters of polyhydric alcohols such as glycerin and sorbitol with aliphatic saturated or unsaturated monocarboxylic acids; and the like.
  • aliphatic saturated or unsaturated monocarboxylic acids such as stearic acid and oleic acid
  • polymerized fatty acids such as dimer acid and hydrogenated dimer
  • oxygen scavengers examples include aliphatic unsaturated compounds and terpenes having a double bond.
  • the aliphatic unsaturated compound is preferably an unsaturated hydrocarbon, and specific examples thereof include olefins and polyenes such as dienes and trienes.
  • olefin from the viewpoint of reactivity with oxygen, ⁇ -olefins such as 1-tetradecene, 1-hexadecene, and 1-octadecene are preferred.
  • an unsaturated aliphatic alcohol having a conjugated double bond such as vitamin A ((2E,4E,6E,8E)-3,7-dimethyl-9-(2,6,6-trimethylcyclohex-1-yl)nona-2,4,6,8-tetraen-1-ol) represented by the molecular formula C20H30O , is preferred.
  • a terpene-based hydrocarbon having a double bond is preferred, and from the viewpoint of reactivity with oxygen, ⁇ -farnesene (C 15 H 24 : 3,7,11-trimethyldodeca-1,3,6,10-tetraene) and ⁇ -farnesene (C 15 H 24 : 7,11-dimethyl-3-methylidene-dodeca-1,6,10-triene) are more preferred.
  • the acid scavenger examples include epoxy compounds such as phenyl glycidyl ether, alkyl glycidyl ether, alkylene glycol glycidyl ether, cyclohexene oxide, ⁇ -olefin oxide, and epoxidized soybean oil.
  • epoxy compounds such as phenyl glycidyl ether, alkyl glycidyl ether, alkylene glycol glycidyl ether, cyclohexene oxide, ⁇ -olefin oxide, and epoxidized soybean oil.
  • at least one selected from glycidyl esters, glycidyl ethers, and ⁇ -olefin oxides is preferably used as the acid scavenger.
  • glycidyl ethers examples include glycidyl ethers derived from linear, branched or cyclic saturated or unsaturated aliphatic mono- or polyhydric alcohols or aromatic compounds containing one or more hydroxyl groups, each having a carbon number of usually 3 to 30, preferably 4 to 24, and more preferably 6 to 16.
  • aliphatic polyhydric alcohols or aromatic compounds containing two or more hydroxyl groups it is preferred that all of the hydroxyl groups are glycidyl etherified from the viewpoint of suppressing an increase in the hydroxyl value for the stability of the refrigerating machine oil composition.
  • glycidyl ethers derived from linear, branched or cyclic saturated aliphatic monoalcohols having 6 to 16 carbon atoms are particularly preferred.
  • examples of such glycidyl ethers include 2-ethylethyl glycidyl ether, 2-ethylhexyl glycidyl ether, isononyl glycidyl ether, caprinoyl glycidyl ether, lauryl glycidyl ether, and myristyl glycidyl ether.
  • the ⁇ -olefin oxide to be used generally has 4 to 50 carbon atoms, preferably 4 to 24 carbon atoms, and more preferably 6 to 16 carbon atoms.
  • the acid scavenger may be used alone or in combination of two or more kinds.
  • the content of the acid scavenger is preferably 0.01 to 5.0 mass %, more preferably 0.05 to 3.0 mass %, and even more preferably 0.10 to 2.0 mass %, based on the total amount (100 mass %) of the refrigerating machine oil composition.
  • Copper deactivators include N-[N,N'-dialkyl (alkyl group having 3 to 12 carbon atoms) aminomethyl]triazole and the like.
  • rust inhibitor examples include metal sulfonates, aliphatic amines, organic phosphites, organic phosphates, organic sulfonic acid metal salts, organic phosphate metal salts, alkenyl succinates, and polyhydric alcohol esters.
  • the antifoaming agent includes silicone-based antifoaming agents such as silicone oil and fluorinated silicone oil.
  • Viscosity index improvers include polymethacrylates, polyisobutylenes, ethylene-propylene copolymers, hydrogenated styrene-diene copolymers, and the like.
  • Examples of the extreme pressure agent other than component (B) include phosphorus-based extreme pressure agents other than component (B), metal salts of carboxylic acids, and sulfur-based extreme pressure agents.
  • Examples of phosphorus-based extreme pressure agents other than component (B) include phosphate esters, acid phosphate esters, phosphites, acid phosphites, and amine salts thereof. Specific examples include tricresyl phosphate (TCP), triphenyl phosphate, tri(nonylphenyl)phosphite, dioleylhydrogen phosphite, and 2-ethylhexyldiphenyl phosphite.
  • Examples of the metal salt of a carboxylic acid include metal salts of a carboxylic acid having 3 to 60 carbon atoms (preferably 3 to 30 carbon atoms). Among these, one or more selected from the group consisting of metal salts of fatty acids having 12 to 30 carbon atoms and dicarboxylic acids having 3 to 30 carbon atoms are preferred. As the metal constituting the metal salt, alkali metals and alkaline earth metals are preferred, and alkali metals are more preferred.
  • sulfur-based extreme pressure agents include sulfurized oils and fats, sulfurized fatty acids, sulfurized esters, sulfurized olefins, dihydrocarbyl polysulfides, thiocarbamates, thioterpenes, and dialkylthiodipropionates.
  • the refrigerating machine oil composition of the present embodiment since component (B) exerts an effect as an extreme pressure agent, the refrigerating machine oil composition may not contain any extreme pressure agent other than component (B).
  • the content thereof is, from the viewpoints of lubricity and stability, preferably 1 mass % or less, more preferably 0.5 mass % or less, and even more preferably 0.1 mass % or less, based on the total amount (100 mass %) of the refrigerant oil composition.
  • the content of the dithiophosphate ester in the refrigerating machine oil composition of the present embodiment is preferably 1 mass % or less, more preferably 0.5 mass % or less, even more preferably 0.1 mass % or less, based on the total amount (100 mass %) of the refrigerating machine oil composition, and it is most preferable that the refrigerating machine oil composition is not contained.
  • the refrigeration oil composition of the present embodiment is used in a refrigerator having a refrigeration cycle essentially consisting of a compressor, a condenser, an expansion mechanism (such as an expansion valve) and an evaporator, or a compressor, a condenser, an expansion mechanism, a dryer and an evaporator.
  • the refrigeration oil composition of the present embodiment is preferably used, for example, to lubricate sliding parts provided in the compressor, etc. Therefore, the present invention also provides a lubrication method in which the refrigerating machine oil composition of the present embodiment is used for lubricating parts inside a refrigerating machine.
  • the refrigerating machine oil composition of the present embodiment can be used, for example, in air conditioners, refrigerators, vending machines, showcases, refrigeration systems, hot water supply systems, or heating systems.
  • air conditioner examples include car air conditioners such as open-type car air conditioners and electric car air conditioners; gas heat pump (GHP) air conditioners; and the like.
  • GFP gas heat pump
  • the refrigeration composition of the present embodiment is a refrigeration composition containing the refrigeration oil composition of the present embodiment and a refrigerant.
  • the refrigerant examples include fluorohydrocarbon refrigerants such as unsaturated fluorohydrocarbon compounds and saturated fluorohydrocarbon compounds; and natural refrigerants such as hydrocarbon refrigerants, carbon dioxide, and ammonia. These may be used alone or in combination of two or more.
  • the refrigerant is preferably one containing one or more selected from the group consisting of unsaturated fluorohydrocarbon compounds, saturated fluorohydrocarbon compounds, hydrocarbons, carbon dioxide, and ammonia, and more preferably one containing an unsaturated fluorohydrocarbon compound. Each refrigerant will be described below.
  • the refrigerant is preferably a refrigerant containing an unsaturated fluorohydrocarbon compound (HFO).
  • the content of unsaturated fluorohydrocarbon compounds (HFOs) in the refrigerant, based on the total amount (100 mass%) of the refrigerant, is preferably 50 mass% or more, more preferably 70 mass% or more, and even more preferably 90 mass% or more. It is even more preferable that the refrigerant is a refrigerant consisting only of unsaturated fluorohydrocarbon compounds (HFOs).
  • unsaturated fluorinated hydrocarbon compound examples include those having a carbon-carbon double bond, such as fluorinated linear or branched chain olefins having 2 to 6 carbon atoms and cyclic olefins having 4 to 6 carbon atoms.
  • More specific examples include ethylene having 1 to 3 fluorine atoms introduced, propene having 1 to 5 fluorine atoms introduced, butene having 1 to 7 fluorine atoms introduced, pentene having 1 to 9 fluorine atoms introduced, hexene having 1 to 11 fluorine atoms introduced, cyclobutene having 1 to 5 fluorine atoms introduced, cyclopentene having 1 to 7 fluorine atoms introduced, and cyclohexene having 1 to 9 fluorine atoms introduced.
  • propene fluorides are preferred, propene having 3 to 5 fluorine atoms introduced is more preferred, and propene having 4 fluorine atoms introduced is even more preferred.
  • Specific examples of preferred compounds include 1,3,3,3-tetrafluoropropene (R1234ze) and 2,3,3,3-tetrafluoropropene (R1234yf).
  • R1234ze 1,3,3,3-tetrafluoropropene
  • R1234yf 2,3,3,3-tetrafluoropropene
  • These unsaturated fluorohydrocarbon compounds may be used alone or in combination of two or more, or may be used in combination with a refrigerant other than an unsaturated fluorohydrocarbon compound.
  • Examples of the refrigerant used in combination with a refrigerant other than an unsaturated fluorohydrocarbon compound include a mixed refrigerant of a saturated fluorohydrocarbon compound and an unsaturated fluorohydrocarbon compound.
  • Examples of the mixed refrigerant include a mixed refrigerant of R32 and R1234yf, a mixed refrigerant of R32, R1234ze, and R152a (AC5, mixing ratio is 13.23:76.20:9.96), and the like.
  • the saturated fluorinated hydrocarbon compound is preferably a fluoride of an alkane having 1 to 4 carbon atoms, more preferably a fluoride of an alkane having 1 to 3 carbon atoms, and even more preferably a fluoride of an alkane (methane or ethane) having 1 or 2 carbon atoms.
  • fluoride of methane or ethane examples include trifluoromethane (R23), difluoromethane (R32), 1,1-difluoroethane (R152a), 1,1,1-trifluoroethane (R143a), 1,1,2-trifluoroethane (R143), 1,1,1,2-tetrafluoroethane (R134a), 1,1,2,2-tetrafluoroethane (R134), 1,1,1,2,2-pentafluoroethane (R125), and the like.
  • difluoromethane and 1,1,1,2,2-pentafluoroethane are preferred.
  • These saturated fluorohydrocarbon compounds may be used alone or in combination of two or more.
  • Examples of the combination of two or more include a mixed refrigerant containing two or more saturated fluorohydrocarbon compounds having 1 to 3 carbon atoms, and a mixed refrigerant containing two or more saturated fluorohydrocarbon compounds having 1 to 2 carbon atoms.
  • Examples of the mixed refrigerant include a mixture of R32 and R125 (R410A), a mixture of R125, R143a and R134a (R404A), a mixture of R32, R125 and R134a (R407A, R407C, R407E, etc.), a mixture of R125 and R143a (R507A), and the like.
  • the natural refrigerant may be one or more selected from the group consisting of hydrocarbon refrigerants (HC), carbon dioxide (CO 2 ) and ammonia, and is preferably a hydrocarbon refrigerant. These refrigerants may be used alone or in combination of two or more, or may be combined with a refrigerant other than a natural refrigerant.
  • a refrigerant used in combination with a refrigerant other than a natural refrigerant may be a mixed refrigerant of a saturated fluorohydrocarbon compound and/or an unsaturated fluorohydrocarbon compound.
  • a specific example of a mixed refrigerant is a mixed refrigerant of carbon dioxide, R1234ze and R134a (AC6, blending ratio 5.15:79.02:15.41).
  • hydrocarbon refrigerant a hydrocarbon having 1 to 8 carbon atoms is preferable, a hydrocarbon having 1 to 5 carbon atoms is more preferable, and a hydrocarbon having 3 to 5 carbon atoms is even more preferable. If the number of carbon atoms is 8 or less, the boiling point of the refrigerant does not become too high, which is preferable as a refrigerant.
  • hydrocarbon refrigerant examples include methane, ethane, ethylene, propane (R290), cyclopropane, propylene, n-butane, isobutane (R600a), 2-methylbutane, n-pentane, isopentane, cyclopentane isobutane, and normal butane.
  • the hydrocarbon refrigerant may be used alone or in combination of two or more kinds.
  • the hydrocarbon refrigerant may be used alone or as a mixed refrigerant mixed with a refrigerant other than the hydrocarbon refrigerant, such as a fluorohydrocarbon refrigerant such as R134a or carbon dioxide.
  • the amounts of refrigerant and refrigerator oil composition used are preferably 1/99 to 90/10, more preferably 5/95 to 70/30, in terms of the mass ratio of refrigerator oil composition/refrigerant.
  • the mass ratio of refrigerator oil composition/refrigerant is within this range, lubricity and suitable freezing capacity in the refrigerator can be obtained.
  • the refrigeration composition of this embodiment is preferably used in, for example, air conditioners, refrigerators, vending machines, showcases, refrigeration systems, hot water supply systems, or heating systems.
  • air conditioners include car air conditioners such as open-type car air conditioners and electric car air conditioners; gas heat pump (GHP) air conditioners; and the like.
  • GFP gas heat pump
  • Phosphonic acid ester 1 Dimethylstearylphosphonate (manufactured by Solvay, DURAPHOS 100)
  • Phosphonic acid ester 2 Diethylstearylphosphonate (JC-390, manufactured by Johoku Chemical Industry Co., Ltd.)
  • Phosphonic acid ester 3 Diethyl-3,5-di-t-butyl-4-hydroxybenzylphosphonate (manufactured by Johoku Chemical Industry Co., Ltd., JC-356)
  • Phenol-based antioxidants DBPC: 2,6-di-t-butyl-4-methylphenol
  • Refrigerating machine oil compositions having the compositions shown in Table 1 were prepared and evaluated for wear resistance, seizure resistance and thermal stability by the methods described below. The evaluation results are shown in Table 1. The blending amounts of component (B) and component (B') in each refrigerating machine oil composition were adjusted so that the phosphorus atom content in the total amount of the composition was 840 ppm by mass.
  • the refrigerating machine oil compositions of Examples 1 to 3 using component (B) had low wear, high seizure load, and relatively low acid value after the thermal stability test.
  • R 3 in the general formula (1) is a phenyl group
  • R 3 in the phosphonic acid ester 2' used in Comparative Example 2 R 3 is a methylbenzyl group, neither of which has 9 or more carbon atoms, and as a result, the obtained refrigerating machine oil composition had a large amount of wear and an insufficient seizure load.
  • the refrigerating machine oil composition of Comparative Example 3 which used TCP, had a large amount of wear, an insufficient seizure load, and also had a relatively large acid value after the thermal stability test. From the above results, it is apparent that the refrigerating machine oil composition of the present embodiment is excellent in wear resistance and seizure resistance, and also in thermal stability.
  • the refrigeration oil composition of this embodiment has excellent wear resistance, seizure resistance, and thermal stability. Therefore, it can be suitably used in, for example, car air conditioners such as open-type car air conditioners and electric car air conditioners, air conditioners such as room air conditioners and packaged air conditioners, refrigeration systems such as gas heat pumps (GHPs), freezers, refrigerators, vending machines, and showcases, hot water systems such as water heaters and floor heating, and heating systems.
  • car air conditioners such as open-type car air conditioners and electric car air conditioners
  • air conditioners such as room air conditioners and packaged air conditioners
  • refrigeration systems such as gas heat pumps (GHPs), freezers, refrigerators, vending machines, and showcases
  • hot water systems such as water heaters and floor heating, and heating systems.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Emergency Medicine (AREA)
  • Combustion & Propulsion (AREA)
  • Thermal Sciences (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Lubricants (AREA)

Abstract

基油(A)と、下記一般式(1)で表されるホスホン酸エステル(B)とを含む冷凍機油組成物により、耐摩耗性、耐焼付き性及び熱安定性に優れる冷凍機油組成物を提供する。 (式中、R1及びR2は、それぞれ独立に、炭素数1~8の炭化水素基を示し、R3は、置換基として水酸基を有していてもよい炭素数9~40の炭化水素基を示す。)

Description

冷凍機油組成物及び冷凍機用組成物
 本発明は、冷凍機油組成物及び冷凍機用組成物に関する。
 冷凍機、例えば、圧縮型冷凍機は、一般に、少なくとも圧縮機、凝縮器、膨張機構(膨張弁等)、蒸発器等で構成されると共に、密閉された系内を、冷媒と冷凍機油との混合物(以下、「冷凍機用組成物」ともいう。)が循環する構造となっている。
 圧縮型冷凍機に用いられる冷媒としては、従来多く使用されていたハイドロクロロフルオロカーボン(HCFC)に代わり、環境負荷が低いフッ化炭化水素化合物が使用されるようになってきている。フッ化炭化水素化合物としては、1,1,1,2-テトラフルオロエタン(R134a)、ジフルオロメタン(R32)、ジフルオロメタンとペンタフルオロエタンとの混合物(R410A)等の飽和フッ化炭化水素化合物(Hydro-Fluoro-Carbon;以下、「HFC」ともいう。)が多く使用されている。
 また、地球温暖化係数が低い1,3,3,3-テトラフルオロプロペン(R1234ze)、2,3,3,3-テトラフルオロプロペン(R1234yf)等の不飽和フッ化炭化水素化合物(Hydro-Fluoro-Olefin;以下、「HFO」ともいう。)の使用も検討されている。
 冷凍機油の潤滑性能の向上を目的として、冷凍機油には種々の添加剤が配合されている。その中でも、トリクレジルホスフェート(以下、「TCP」ともいう)は、耐摩耗性や耐焼付き性を向上させるための添加剤として、従来から使用されてきた。
 また例えば、特許文献1及び2には、リン系極圧剤としてホスホン酸エステルを配合した冷凍機油が開示されている。
国際公開第2018/021533号 国際公開第2020/171135号
 しかしながら、冷凍機油に対する耐摩耗性向上効果の要求は益々高まりつつあり、TCPや前述の特許文献に具体的に記載されているホスホン酸エステルよりも耐摩耗性や耐焼付き性を向上させることができる添加剤が求められている。
 また、本発明者等は、TCPを含む潤滑油組成物を冷凍機油として用いた場合、高温下において、潤滑油組成物の酸価が上昇する問題が生じることを見出した。この問題は、特に冷媒として地球温暖化係数が低い1,3,3,3-テトラフルオロプロペン(R1234ze)、2,3,3,3-テトラフルオロプロペン(R1234yf)等の不飽和フッ化炭化水素化合物(Hydro-Fluoro-Olefin;以下、「HFO」ともいう。)を用いる場合に顕著であり、改善が望まれている。
 本発明は、以上の問題点に鑑みてなされたものであり、本発明の課題は、耐摩耗性、耐焼付き性及び熱安定性に優れる冷凍機油組成物を提供することである。
 本発明者は、鋭意検討の結果、基油と特定のホスホン酸エステルとを含む冷凍機油組成物が、上記の課題を解決し得ることを見出し、本発明を完成させた。本発明はかかる知見に基づいて完成したものである。すなわち、本発明の各実施形態によれば、以下の[1]~[10]が提供される。
[1]基油(A)と、下記一般式(1)で表されるホスホン酸エステル(B)とを含む冷凍機油組成物。
Figure JPOXMLDOC01-appb-C000004

(式中、R及びRは、それぞれ独立に、炭素数1~8の炭化水素基を示し、Rは、置換基として水酸基を有していてもよい炭素数9~40の炭化水素基を示す。)
[2]前記ホスホン酸エステル(B)の含有量が、前記冷凍機油組成物の全量を基準とするリン原子換算で、200~4,000質量ppmである、上記[1]に記載の冷凍機油組成物。
[3]前記一般式(1)中、R及びRが、炭素数1~4のアルキル基又は炭素数2~4のアルケニル基を示し、Rが、炭素数12~30の炭化水素基を示す、上記[1]又は[2]に記載の冷凍機油組成物。
[4]前記一般式(1)中、Rが、炭素数14~24の直鎖状若しくは分岐状のアルキル基又はアルケニル基、あるいは下記一般式(2)で表される基を示す、上記[1]~[3]のいずれか1に記載の冷凍機油組成物。
Figure JPOXMLDOC01-appb-C000005

(式中、Lは、単結合、-CH-又は-CHCH-を示し、R及びRは、それぞれ独立に、炭素数2~10の炭化水素基を示す。)
[5]基油(A)が、ポリアルキレングリコール(PAG)、ポリビニルエーテル(PVE)、ポリオールエステル(POE)及び鉱油からなる群から選択される1種以上を含む、上記[1]~[4]のいずれか1に記載の冷凍機油組成物。
[6]更に、酸化防止剤(C)を含む、上記[1]~[5]のいずれか1に記載の冷凍機油組成物。
[7]更に、酸捕捉剤(D)を含む、上記[1]~[6]のいずれか1に記載の冷凍機油組成物。
[8]更に、油性向上剤、銅不活性化剤、防錆剤、消泡剤及び粘度指数向上剤からなる群から選択される1種以上を含む、上記[1]~[7]のいずれか1に記載の冷凍機油組成物。
[9]上記[1]~[8]のいずれか1に記載の冷凍機油組成物と、冷媒と、を含む冷凍機用組成物。
[10]前記冷媒が、不飽和フッ化炭化水素冷媒、飽和フッ化炭化水素冷媒、炭化水素系冷媒、二酸化炭素及びアンモニアからなる群から選択される1種以上を含むものである、上記[9]に記載の冷凍機用組成物。
[11]前記冷媒が、不飽和フッ化炭化水素化合物を含むものである、上記[10]に記載の冷凍機用組成物。
[12] 基油(A)と、下記一般式(1)で表されるホスホン酸エステル(B)とを混合する工程を含む冷凍機油組成物の製造方法。
Figure JPOXMLDOC01-appb-C000006

(式中、R及びRは、それぞれ独立に、炭素数1~8の炭化水素基を示し、Rは、置換基として水酸基を有していてもよい炭素数9~40の炭化水素基を示す。)
 本発明によると、耐摩耗性、耐焼付き性及び熱安定性に優れる冷凍機油組成物を提供することができる。
 本明細書において、好ましい数値範囲(例えば、含有量等の範囲)について、段階的に記載された下限値及び上限値は、それぞれ独立して組み合わせることができる。例えば、「好ましくは10~90、より好ましくは30~60」という記載から、「好ましい下限値(10)」と「より好ましい上限値(60)」とを組み合わせて、「10~60」とすることもできる。同様に、本明細書中において、数値範囲の記載に関する「以上」、「以下」、「未満」、「超」の数値は任意に組み合わせできる数値である。
 本明細書において、「炭化水素基」とは、特にことわりのない限り、炭素原子及び水素原子のみから構成されている基を意味する。「炭化水素基」には、直鎖又は分岐鎖から構成される「脂肪族基」、芳香性を有しない飽和又は不飽和の炭素環を1以上有する「脂環式基」、ベンゼン環等の芳香性を示す芳香環を1以上有する「芳香族基」も含まれる。
 本明細書において、「環形成炭素数」とは、原子が環状に結合した構造の化合物の該環自体を構成する原子のうちの炭素原子の数を表す。環が置換基によって置換される場合、置換基に含まれる炭素は環形成炭素数には含まない。
 また、環形成原子数とは、原子が環状に結合した構造の化合物の、該環自体を構成する原子の数を表す。環を構成しない原子(例えば、環を構成する原子の結合手を終端する水素原子)、及び環が置換基によって置換される場合の置換基に含まれる原子は環形成原子数には含まない。
 なお、本明細書において、「置換又は無置換の炭素数a~bのX基」という表現における「炭素数a~b」は、X基が無置換である場合の炭素数を表すものであり、X基が置換されている場合の置換基の炭素数は含めない。
[冷凍機油組成物]
 本実施形態の冷凍機油組成物は、基油(A)と、下記一般式(1)で表されるホスホン酸エステル(B)とを含むものである。
Figure JPOXMLDOC01-appb-C000007

(式中、R及びRは、それぞれ独立に、炭素数1~8の炭化水素基を示し、Rは、置換基として水酸基を有していてもよい炭素数9~40の炭化水素基を示す。)
 本発明者は、冷凍機油の耐摩耗性を向上し得る添加剤について検討を行った結果、上記一般式(1)で表される、R及びRとして比較的炭素数の少ない基を有し、かつ、Rとして比較的炭素数の多い基を有するホスホン酸エステルを含有する冷凍機油組成物が、優れた耐摩耗性及び耐焼付き性を発揮すると共に、良好な熱安定性を示すことを見出した。
 一方で、Rとして炭素数が8以下の基を有するホスホン酸エステルを用いた場合には、十分な耐摩耗性及び耐焼付き性向上効果が得られなかった。
 以上より、本発明者は、上記一般式(1)で表されるホスホン酸エステル(B)が、冷凍機用組成物の耐摩耗性、耐焼付き性及び熱安定性向上効果を奏することを見出した。
 本実施形態の冷凍機油組成物において、成分(A)及び成分(B)の合計含有量は、該冷凍機油組成物の全量(100質量%)基準で、好ましくは80~100質量%、より好ましくは85~100質量%、更に好ましくは90~100質量%、より更に好ましくは95~100質量%である。
 以下、本実施形態の冷凍機油組成物に配合される各成分について説明する。
<基油(A)>
 本実施形態の冷凍機油組成物は、基油(A)を含有する。
 本実施形態の冷凍機油組成物において、基油(A)の含有量は、該冷凍機油組成物の全量(100質量%)基準で、好ましくは85.0質量%以上、より好ましくは90.0質量%以上、更に好ましくは95.0質量%以上であり、また、好ましくは99.7質量%以下、より好ましくは99.3質量%以下、更に好ましくは99.0質量%以下であり、これらの下限値及び上限値は任意に組み合わせてもよく、具体的には、好ましくは85.0~99.7質量%であり、より好ましくは90.0~99.3質量%であり、更に好ましくは95.0~99.0質量%である。
 基油(A)は、例えば、合成油及び鉱油からなる群から選択される1種以上を用いることができる。
 基油(A)としては、冷凍機油組成物の熱安定性向上の観点から、ポリアルキレングリコール類(以下、「PAG」ともいう)、ポリビニルエーテル類(以下、「PVE」ともいう)、ポリオールエステル類(以下、「POE」ともいう)及び鉱油からなる群から選択される1種以上の基油(以下、「基油(A1)」ともいう)を含むことが好ましく、冷媒との相溶性向上の観点、耐加水分解性向上の観点、及び冷凍機油組成物の熱安定性向上の観点から、PVE及びPAGからなる群から選択される1種以上の基油(以下、「基油(A2)」ともいう)を含むことがより好ましく、冷媒との相溶性向上の観点、耐加水分解性向上の観点、及び冷凍機油組成物のさらなる熱安定性向上の観点から、PAG(以下、「基油(A3)」ともいう)を含むことが更に好ましい。
 以下、PVE、PAG、POE及び鉱油について、詳細に説明する。
(ポリビニルエーテル類(PVE))
 PVEは、ビニルエーテル由来の構成単位を1種以上有する重合体であればよい。
 なお、基油(A)中にPVEが含まれる場合、PVEは、1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。
 PVEは、冷媒との相溶性の観点から、ビニルエーテル由来の構成単位を1種以上有し、側鎖に炭素数1~4のアルキル基を有する重合体が好ましい。該アルキル基としては、冷媒との相溶性をより向上させる観点から、メチル基又はエチル基が好ましく、メチル基がより好ましい。
 PVEは、下記一般式(A-1)で表される構成単位を1種以上有する重合体(A-1)であることが好ましい。
Figure JPOXMLDOC01-appb-C000008
 式(A-1)中、R1a、R2a及びR3aは、各々独立に、水素原子又は炭素数1~8の炭化水素基を示す。R4aは、炭素数2~10の2価の炭化水素基を示す。R5aは、炭素数1~10の炭化水素基を示す。rは、OR4aの繰り返し単位の数であって、0~10の数を示すが、好ましくは0~5の数、より好ましくは0~3の数、更に好ましくは0である。なお、上記一般式(A-1)で表される構成単位中にOR4aが複数存在する場合、複数のOR4aは、同一であってもよく、異なっていてもよい。
 R1a、R2a及びR3aで表される炭素数1~8の炭化水素基としては、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、イソブチル基、sec-ブチル基、tert-ブチル基、各種ペンチル基、各種ヘキシル基、各種ヘプチル基、各種オクチル基等のアルキル基;シクロペンチル基、シクロヘキシル基、各種メチルシクロヘキシル基、各種エチルシクロヘキシル基、各種ジメチルシクロヘキシル基等のシクロアルキル基;フェニル基、各種メチルフェニル基、各種エチルフェニル基、各種ジメチルフェニル基等のアリール基;ベンジル基、各種フェニルエチル基、各種メチルベンジル基等のアリールアルキル基;等が挙げられる。
 ここで、「各種」とは「直鎖状、分岐鎖状又は環状」の炭化水素基であることを表し、例えば、「各種ブチル基」とは、「n-ブチル基、sec-ブチル基、イソブチル基、tert-ブチル基、シクロブチル基」等の各種ブチル基を表す。また、環状構造を有する基については、オルト体、メタ体、パラ体等の位置異性体を含むことを示し、以下、同様である。
 R1a、R2a及びR3aで表される炭化水素基の炭素数は、好ましくは1~6、より好ましくは1~3である。
 R1a、R2a及びR3aは、各々独立に、水素原子又は炭素数1~8のアルキル基が好ましく、水素原子又は炭素数1~3のアルキル基がより好ましい。
 R4aで表される炭素数2~10の2価の炭化水素基としては、エチレン基、1,2-プロピレン基、1,3-プロピレン基、各種ブチレン基、各種ペンチレン基、各種ヘキシレン基、各種ヘプチレン基、各種オクチレン基、各種ノニレン基、各種デシレン基等の2価の脂肪族基;シクロヘキサン、メチルシクロヘキサン、エチルシクロヘキサン、ジメチルシクロヘキサン、プロピルシクロヘキサン等の二価の脂環式基;各種フェニレン基、各種メチルフェニレン基、各種エチルフェニレン基、各種ジメチルフェニレン基、各種ナフチレン等の2価の芳香族基;トルエン、キシレン、エチルベンゼン等のアルキル芳香族炭化水素のアルキル基部分と芳香族部分とにそれぞれ一価の結合部位を有する2価のアルキル芳香族基;キシレン、ジエチルベンゼン等のポリアルキル芳香族炭化水素のアルキル基部分に結合部位を有する2価のアルキル芳香族基;等が挙げられる。
 R4aで表される炭化水素基の炭素数は、好ましくは2~6、より好ましくは2~4である。
 R4aは、炭素数2~10の2価の脂肪族基が好ましく、炭素数2~4の2価の脂肪族基がより好ましい。
 R5aで表される炭素数1~10の炭化水素基としては、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、イソブチル基、sec-ブチル基、tert-ブチル基、各種ペンチル基、各種ヘキシル基、各種ヘプチル基、各種オクチル基、各種ノニル基、各種デシル基等のアルキル基;シクロペンチル基、シクロヘキシル基、各種メチルシクロヘキシル基、各種エチルシクロヘキシル基、各種プロピルシクロヘキシル基、各種ジメチルシクロヘキシル基等のシクロアルキル基;フェニル基、各種メチルフェニル基、各種エチルフェニル基、各種ジメチルフェニル基、各種プロピルフェニル基、各種トリメチルフェニル基、各種ブチルフェニル基、各種ナフチル基等のアリール基;ベンジル基、各種フェニルエチル基、各種メチルベンジル基、各種フェニルプロピル基、各種フェニルブチル基等のアリールアルキル基;等が挙げられる。
 R5aで表される炭化水素基の炭素数は、好ましくは1~8、より好ましくは1~6である。
 R5aは、冷媒との相溶性をより向上させる観点から、炭素数1~6のアルキル基が好ましく、炭素数1~4のアルキル基がより好ましく、メチル基又はエチル基が更に好ましく、メチル基がより更に好ましい。
 上記一般式(A-1)で表される構成単位の単位数(重合度数)は、基油(A)に要求される動粘度に応じて適宜選択される。
 また、上記一般式(A-1)で表される構成単位を有する重合体は、該構成単位を1種のみ有する単独重合体であってもよく、該構成単位を2種以上有する共重合体であってもよい。なお、重合体が共重合体である場合、共重合の形態としては、特に制限はなく、ブロック共重合体、ランダム共重合体又はグラフト共重合体のいずれであってもよい。
 また、PVEは、その構造中にポリアルキレングリコール構造を含んでいてもよいが、ポリアルキレングリコール構造を含まないものであることが好ましい。
 重合体(A-1)の末端部分には、飽和の炭化水素、エーテル、アルコール、ケトン、アミド、ニトリル等に由来する一価の基を導入してもよい。これらの中でも、重合体(A-1)は、一方の末端部分が下記一般式(A-1-i)で表される基であることが好ましい。
Figure JPOXMLDOC01-appb-C000009
 式(A-1-i)中、*は上記一般式(A-1)で表される構成単位中の炭素原子との結合位置を示す。
 式(A-1-i)中、R6a、R7a及びR8aは、各々独立に、水素原子又は炭素数1~8の炭化水素基を示し、水素原子又は炭素数1~6の炭化水素基が好ましく、水素原子又は炭素数1~3のアルキル基がより好ましい。
 R6a、R7a及びR8aで表される炭素数1~8の炭化水素基としては、上記一般式(A-1)中のR1a、R2a及びR3aで表される炭素数1~8の炭化水素基として列挙したものと同じものが挙げられる。
 上記式(A-1-i)中、R9aは、炭素数2~10の2価の炭化水素基を示し、炭素数2~6の2価の炭化水素基が好ましく、炭素数2~4の2価の脂肪族基がより好ましい。
 上記式(A-1-i)中、r1は、OR9aの繰り返し単位の数であって、0~10の整数を示し、好ましくは0~5の整数、より好ましくは0~3の整数、更に好ましくは0である。なお、上記一般式(A-1-i)で表される構成単位中にOR9aが複数存在する場合、複数のOR9aは、同一であってもよく、異なっていてもよい。
 R9aで表される炭素数2~10の2価の炭化水素基としては、上記一般式(A-1)中のR4aで表される炭素数2~10の2価の炭化水素基として列挙したものと同じものが挙げられる。
 式(A-1-i)中、R10aは、炭素数1~10の炭化水素基を示し、炭素数1~8の炭化水素基が好ましく、炭素数1~8のアルキル基がより好ましい。
 なお、R10aとしては、上記一般式(A-1-i)中のr1が0である場合には、炭素数1~6のアルキル基が好ましく、r1が1以上である場合には、炭素数1~4のアルキル基が好ましい。
 R10aで表される炭素数1~10の炭化水素基としては、上記一般式(A-1)中のR5aで表される炭素数1~10の炭化水素基として列挙したものと同じものが挙げられる。
 また、重合体(A-1)について、一方の末端部分が上記一般式(A-1-i)で表される基であるとき、他方の末端部分としては、上記一般式(A-1-i)で表される基、下記一般式(A-1-ii)で表される基、下記一般式(A-1-iii)で表される基、オレフィン性不飽和結合を有する基のいずれかであることが好ましい。
Figure JPOXMLDOC01-appb-C000010
 式(A-1-ii)及び(A-1-iii)中、R6a、R7a、R8a、R9a、R10a及びr1は、上記一般式(A-1-i)中の規定と同じである。また、式(A-1-ii)中、R11a、R12a及びr2は、それぞれ上記一般式(A-1-i)中のR9a、R10a及びr1の規定と同じである。
(ポリアルキレングリコール類(PAG))
 PAGとしては、下記一般式(A-2)で表される重合体(A-2)であることが好ましい。
  R13a-[(OR14a-OR15a   (A-2)
 なお、基油(A)中にPAGが含まれる場合、PAGは、1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。
 上記一般式(A-2)中、R13aは、水素原子、炭素数1~10の1価の炭化水素基、炭素数2~10のアシル基、炭素数1~10の2~6価の炭化水素基又は置換若しくは無置換の環形成原子数3~10の複素環基を示し、R14aは、炭素数2~4のアルキレン基を示し、R15aは、水素原子、炭素数1~10の1価の炭化水素基、炭素数2~10のアシル基又は置換若しくは無置換の環形成原子数3~10の複素環基を示す。
 複素環基が有していてもよい置換基としては、炭素数1~10(好ましくは1~6、より好ましくは1~3)のアルキル基;環形成炭素数3~10(好ましくは3~8、より好ましくは5又は6)のシクロアルキル基;環形成炭素数6~18(好ましくは6~12)のアリール基;ハロゲン原子(フッ素原子、塩素原子、臭素原子、ヨウ素原子);シアノ基;ニトロ基;ヒドロキシ基;アミノ基等が挙げられる。
 これらの置換基は、更に上述の任意の置換基により置換されていてもよい。
 nは、1~6の整数であり、好ましくは1~3の整数、より好ましくは1である。
 なお、nは、上記一般式(A-2)中のR13aの結合部位の数に応じて定められる。例えば、R13aがアルキル基又はアシル基の場合には、nは1となり、R13aが炭化水素基又は複素環基であり、該基の価数が2、3、4、5又は6価である場合、nはそれぞれ2、3、4、5又は6となる。
 mは、OR14aの繰り返し単位の数であって、1以上の数を示し、好ましくはm×nが6~80となる数である。なお、mの値は、基油(A)の100℃における動粘度が2~50mm/sの範囲に属するように適宜設定される値であり、該動粘度が所定の範囲内に属するように調整されていれば、特に制限はない。
 なお、複数のR14aは、互いに同一であってもよく、異なっていてもよい。また、nが2以上の場合、1分子中の複数のR15aは、互いに同一であってもよく、異なっていてもよい。
 R13a及びR15aで表される上記1価の炭化水素基としては、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、イソブチル基、sec-ブチル基、tert-ブチル基、各種ペンチル基、各種ヘキシル基、各種ヘプチル基、各種オクチル基、各種ノニル基、各種デシル基等のアルキル基;シクロペンチル基、シクロヘキシル基、各種メチルシクロヘキシル基、各種エチルシクロヘキシル基、各種プロピルシクロヘキシル基、各種ジメチルシクロヘキシル基等のシクロアルキル基;フェニル基、各種メチルフェニル基、各種エチルフェニル基、各種ジメチルフェニル基、各種プロピルフェニル基、各種トリメチルフェニル基、各種ブチルフェニル基、各種ナフチル基等のアリール基;ベンジル基、各種フェニルエチル基、各種メチルベンジル基、各種フェニルプロピル基、各種フェニルブチル基等のアリールアルキル基;等が挙げられる。なお、上記アルキル基は直鎖又は分岐鎖のいずれであってもよい。
 R13a及びR15aで表される1価の炭化水素基の炭素数は、冷媒との相溶性の観点から、好ましくは1~10、より好ましくは1~6、更に好ましくは1~3である。
 R13a及びR15aで表される上記炭素数2~10のアシル基が有する炭化水素基部分は、直鎖、分岐鎖又は環状のいずれであってもよい。該アルキル基部分としては、上述のR13a及びR15aで表される炭化水素基のうち炭素数1~9のものが挙げられる。
 R13a及びR15aで表されるアシル基の炭素数は、冷媒との相溶性の観点から、好ましくは2~8、より好ましくは2~6である。
 R13aで表される上記2~6価の炭化水素基としては、上述のR13aで表される1価の炭化水素基から更に水素原子を1~5個除いた残基、トリメチロールプロパン、グリセリン、ペンタエリスリトール、ソルビトール、1,2,3-トリヒドロキシシクロヘキサン、1,3,5-トリヒドロキシシクロヘキサン等の多価アルコールから水酸基を除いた残基等が挙げられる。
 R13aで表される2~6価のアシル基の炭素数は、冷媒との相溶性の観点から、好ましくは2~10、より好ましくは2~6である。
 R13a及びR15aで表される上記複素環基としては、酸素原子含有複素環基又は硫黄原子含有複素環基が好ましい。なお、該複素環基は、飽和環であってもよく不飽和環であってもよい。
 上記酸素原子含有複素環基としては、エチレンオキシド、1,3-プロピレンオキシド、テトラヒドロフラン、テトラヒドロピラン、ヘキサメチレンオキシド等の酸素原子含有飽和複素環;アセチレンオキシド、フラン、ピラン、オキシシクロヘプタトリエン、イソベンゾフラン、イソクロメン等の酸素原子含有不飽和複素環が有する水素原子を1~6個除いた残基等が挙げられる。
 また、上記硫黄原子含有複素環基としては、エチレンスルフィド、トリメチレンスルフィド、テトラヒドロチオフェン、テトラヒドロチオピラン、ヘキサメチレンスルフィド等の硫黄原子含有飽和複素環、アセチレンスルフィド、チオフェン、チアピラン、チオトリピリデン等の硫黄原子含有不飽和複素環等が有する水素原子を1~6個除いた残基が挙げられる。
 R13a及びR15aで表される上記複素環基は、置換基を有していてもよく、該置換基が上記一般式(A-2)中の酸素原子と結合してもよい。該置換基としては、上述のとおりであるが、炭素数1~6のアルキル基が好ましく、炭素数1~3のアルキル基がより好ましい。
 上記複素環基の環形成原子数は、冷媒との相溶性の観点から、好ましくは3~10、より好ましくは3~6である。
 R14aで表される上記アルキレン基としては、ジメチレン基(-CHCH-)、エチレン基(-CH(CH)-)等の炭素数2のアルキレン基;トリメチレン基(-CHCHCH-)、プロピレン基(-CH(CH)CH-)、プロピリデン基(-CHCHCH-)、イソプロピリデン基(-C(CH-)等の炭素数3のアルキレン基;テトラメチレン基(-CHCHCHCH-)、1-メチルトリメチレン基(-CH(CH)CHCH-)、2-メチルトリメチレン基(-CHCH(CH)CH-)、ブチレン基(-C(CHCH-)等の炭素数4のアルキレン基が挙げられる。これらの中でも、R14aとしては、プロピレン基(-CH(CH)CH-)が好ましい。
 なお、上記一般式(A-2)で表される重合体(A-2)において、オキシプロピレン単位(-OCH(CH)CH-)の含有量は、重合体(A-2)中のオキシアルキレン(OR14a)の全量(100モル%)基準で、好ましくは50モル%以上、より好ましくは65モル%以上、更に好ましくは80モル%以上である。
 上記一般式(A-2)で表される重合体(A-2)の中でも、下記一般式(A-2-i)で表されるポリオキシプロピレングリコールジメチルエーテル、下記一般式(A-2-ii)で表されるポリオキシエチレンポリオキシプロピレングリコールジメチルエーテル、下記一般式(A-2-iii)で表されるポリオキシプロピレングリコールモノブチルエーテル及びポリオキシプロピレングリコールジアセテートからなる群から選択される1種以上が好ましい。
Figure JPOXMLDOC01-appb-C000011

(式(A-2-i)中、m1は、1以上の数を示し、好ましくは6~80の数である。)
Figure JPOXMLDOC01-appb-C000012

(式(A-2-ii)中、m2及びm3は、各々独立に、1以上の数を示し、好ましくはm2+m3の値が6~80となる数である。)
Figure JPOXMLDOC01-appb-C000013

(式(A-2-iii)中、m4は、1以上の数を示し、好ましくは6~80の数である。)
 なお、上記一般式(A-2-i)中のm1、上記一般式(A-2-ii)中のm2及びm3、並びに上記一般式(A-2-iii)中のm4は、基油(A)に要求される動粘度に応じて適宜選択すればよい。
(ポリオールエステル類(POE))
 POEとしては、例えば、ジオール又はポリオールと、脂肪酸とのエステルが挙げられる。なお、基油(A)中にPOEが含まれる場合、POEは、1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。
 POEは、ジオール又は水酸基数が3~20のポリオールと、炭素数3~20の脂肪酸とのエステルが好ましい。
 ジオールとしては、エチレングリコール、1,3-プロパンジオール、プロピレングリコール、1,4-ブタンジオール、1,2-ブタンジオール、2-メチル-1,3-プロパンジオール、1,5-ペンタンジオール、ネオペンチルグリコール、1,6-ヘキサンジオール、2-エチル-2-メチル-1,3-プロパンジオール、1,7-ヘプタンジオール、2-メチル-2-プロピル-1,3-プロパンジオール、2,2-ジエチル-1,3-プロパンジオール、1,8-オクタンジオール、1,9-ノナンジオール、1,10-デカンジオール、1,11-ウンデカンジオール、1,12-ドデカンジオール等が挙げられる。
 ポリオールとしては、トリメチロールエタン、トリメチロールプロパン、トリメチロールブタン、ジ-(トリメチロールプロパン)、トリ-(トリメチロールプロパン)、ペンタエリスリトール、ジ-(ペンタエリスリトール)、トリ-(ペンタエリスリトール)、グリセリン、ポリグリセリン(グリセリンの2~20量体)、1,3,5-ペンタントリオール、ソルビトール、ソルビタン、ソルビトールグリセリン縮合物、アドニトール、アラビトール、キシリトール、マンニトール等の多価アルコール;キシロース、アラビノース、リボース、ラムノース、グルコース、フルクトース、ガラクトース、マンノース、ソルボース、セロビオース、マルトース、イソマルトース、トレハロース、シュクロース、ラフィノース、ゲンチアノース、メレンジトース等の糖類;並びに、これらの部分エーテル化物、メチルグルコシド(配糖体)等が挙げられる。
 これらの中でも、ネオペンチルグリコール、トリメチロールエタン、トリメチロールプロパン、トリメチロールブタン、ジ-(トリメチロールプロパン)、トリ-(トリメチロールプロパン)、ペンタエリスリトール、ジ-(ペンタエリスリトール)、トリ-(ペンタエリスリトール)等のヒンダードアルコールが好ましい。なお、ヒンダードアルコールとは、4つの炭素原子に結合する4級炭素原子を有するアルコールを意味する。
 脂肪酸の炭素数としては、潤滑性能の観点から、好ましくは3以上、より好ましくは4以上、更に好ましくは5以上、より更に好ましくは8以上であり、また、冷媒との相溶性の観点から、好ましくは20以下、より好ましくは16以下、更に好ましくは12以下、より更に好ましくは10以下である。
 なお、上記の脂肪酸の炭素数には、該脂肪酸が有するカルボキシ基(-COOH)の炭素原子も含まれる。
 また、脂肪酸としては、直鎖状脂肪酸又は分岐鎖状脂肪酸のいずれであってもよいが、潤滑性能の観点から、直鎖状脂肪酸が好ましく、加水分解安定性の観点から、分岐鎖状脂肪酸が好ましい。更に、脂肪酸は、飽和脂肪酸又は不飽和脂肪酸のいずれであってもよい。
 脂肪酸としては、イソ酪酸、プロピオン酸、ブタン酸、ペンタン酸、ヘキサン酸、ヘプタン酸、オクタン酸、ノナン酸、デカン酸、ウンデカン酸、ドデカン酸、トリデカン酸、テトラデカン酸、ペンタデカン酸、ヘキサデカン酸、ヘプタデカン酸、オクタデカン酸、ノナデカン酸、イコサン酸、オレイン酸等の直鎖又は分岐鎖のもの、あるいはα炭素原子が4級であるいわゆるネオ酸等が挙げられる。
 更に具体的には、イソ酪酸、吉草酸(n-ペンタン酸)、カプロン酸(n-ヘキサン酸)、エナント酸(n-ヘプタン酸)、カプリル酸(n-オクタン酸)、ペラルゴン酸(n-ノナン酸)、カプリン酸(n-デカン酸)、オレイン酸(cis-9-オクタデセン酸)、イソペンタン酸(3-メチルブタン酸)、2-メチルヘキサン酸、2-エチルペンタン酸、2-エチルヘキサン酸、3,5,5-トリメチルヘキサン酸等が好ましい。
 POEとしては、ポリオールが有する複数の水酸基の一部がエステル化されずに残った部分エステルであってもよく、全ての水酸基がエステル化された完全エステルであってもよい。また、POEは、部分エステルと完全エステルの混合物であってもよいが、完全エステルであることが好ましい。
 POEとしては、より加水分解安定性に優れる観点から、ネオペンチルグリコール、トリメチロールエタン、トリメチロールプロパン、トリメチロールブタン、ジ-(トリメチロールプロパン)、トリ-(トリメチロールプロパン)、ペンタエリスリトール、ジ-(ペンタエリスリトール)、トリ-(ペンタエリスリトール)等のヒンダードアルコールのエステルが好ましく、ネオペンチルグリコール、トリメチロールエタン、トリメチロールプロパン、トリメチロールブタン、ペンタエリスリトールのエステルがより好ましく、更に冷媒との相溶性及び加水分解安定性が特に優れる観点から、ペンタエリスリトールのエステルが更に好ましい。
 好ましいPOEの具体例としては、ネオペンチルグリコールと、イソ酪酸、吉草酸、カプロン酸、エナント酸、カプリル酸、ペラルゴン酸、カプリン酸、オレイン酸、イソペンタン酸、2-メチルヘキサン酸、2-エチルペンタン酸、2-エチルヘキサン酸及び3,5,5-トリメチルヘキサン酸からなる群から選択される一種又は二種以上の脂肪酸とのジエステル;トリメチロールエタンと、イソ酪酸、吉草酸、カプロン酸、エナント酸、カプリル酸、ペラルゴン酸、カプリン酸、オレイン酸、イソペンタン酸、2-メチルヘキサン酸、2-エチルペンタン酸、2-エチルヘキサン酸及び3,5,5-トリメチルヘキサン酸からなる群から選択される一種又は二種以上の脂肪酸とのトリエステル;トリメチロールプロパンと、イソ酪酸、吉草酸、カプロン酸、エナント酸、カプリル酸、ペラルゴン酸、カプリン酸、オレイン酸、イソペンタン酸、2-メチルヘキサン酸、2-エチルペンタン酸、2-エチルヘキサン酸及び3,5,5-トリメチルヘキサン酸からなる群から選択される一種又は二種以上の脂肪酸とのトリエステル;トリメチロールブタンと、イソ酪酸、吉草酸、カプロン酸、エナント酸、カプリル酸、ペラルゴン酸、カプリン酸、オレイン酸、イソペンタン酸、2-メチルヘキサン酸、2-エチルペンタン酸、2-エチルヘキサン酸及び3,5,5-トリメチルヘキサン酸からなる群から選択される一種又は二種以上の脂肪酸とのトリエステル;ペンタエリスリトールと、イソ酪酸、吉草酸、カプロン酸、エナント酸、カプリル酸、ペラルゴン酸、カプリン酸、オレイン酸、イソペンタン酸、2-メチルヘキサン酸、2-エチルペンタン酸、2-エチルヘキサン酸及び3,5,5-トリメチルヘキサン酸からなる群から選択される一種又は二種以上の脂肪酸とのテトラエステル等が挙げられる。
 なお、二種以上の脂肪酸とのエステルとは、一種の脂肪酸とポリオールのエステルを二種以上混合したものでもよい。POEの中でも、低温特性の向上、及び冷媒との相溶性の観点から、二種以上の混合脂肪酸とポリオールのエステルが好ましい。
(鉱油)
 鉱油としては、例えば、パラフィン系、中間基系、若しくはナフテン系原油を常圧蒸留するか、又は原油を常圧蒸留して得られる常圧残油を減圧蒸留して得られた潤滑油留分に対して、溶剤脱れき、溶剤抽出、水素化分解、溶剤脱ろう、接触脱ろう、水素化精製等のうちの1つ以上の処理を行って精製した油、鉱油系ワックスを異性化することによって製造される油等が挙げられる。
 なお、基油(A)中に鉱油が含まれる場合、鉱油は、1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。
 本実施形態の冷凍機油組成物において、基油(A)の主成分は、上記基油(A1)が好ましく、上記基油(A2)がより好ましく、上記基油(A3)が更に好ましい。なお、本明細書における「主成分」とは、最も含有率が多い成分を意味する。
 基油(A)中における、基油(A1)、基油(A2)又は基油(A3)の含有量は、基油(A)の全量(100質量%)基準で、好ましくは50~100質量%、より好ましくは60~100質量%、更に好ましくは70~100質量%、より更に好ましくは80~100質量%、更になお好ましくは90~100質量%である。
 特に、基油(A)中における基油(A3)の含有量は、好ましくは50~100質量%、より好ましくは60~100質量%、更に好ましくは70~100質量%、より更に好ましくは80~100質量%、更になお好ましくは90~100質量%である。
 基油(A)は、基油(A1)、基油(A2)又は基油(A3)に加えて、更に他の基油を含有してもよい。
 他の基油としては、前述のPVE、PAG及びPOEには該当しない、ポリエステル類、ポリカーボネート類、α-オレフィンオリゴマーの水素化物、脂環式炭化水素化合物、アルキル化芳香族炭化水素化合物、ポリ(オキシ)アルキレングリコール又はそのモノエーテルとポリビニルエーテルとの共重合体(ECP)等の合成油が挙げられる。
 なお、「ポリ(オキシ)アルキレングリコール又はそのモノエーテルとポリビニルエーテルとの共重合体(ECP)」とは、ポリ(オキシ)アルキレングリコール又はそのモノエーテルに由来の構成単位と、ポリビニルエーテルに由来の構成単位とを有する共重合体であり、「ポリ(オキシ)アルキレングリコール」とは、ポリアルキレングリコール及びポリオキシアルキレングリコールの両方を指す。
 基油(A)の40℃動粘度は、好ましくは5~120mm/s、より好ましくは10~110mm/s、更に好ましくは30~100mm/sである。基油(A)の40℃動粘度が上記範囲内であると、耐摩耗性がより良好となる。
 本明細書において、40℃動粘度は、JIS K 2283:2000に準拠し、ガラス製毛管式粘度計を用いて測定した値である。
<ホスホン酸エステル(B)>
 本実施形態の冷凍機油組成物は、下記一般式(1)で表されるホスホン酸エステル(B)を含む。
Figure JPOXMLDOC01-appb-C000014

(式中、R及びRは、それぞれ独立に、炭素数1~8の炭化水素基を示し、Rは、置換基として水酸基を有していてもよい炭素数9~40の炭化水素基を示す。)
 上記一般式(1)で表されるホスホン酸エステル(B)は、酸素原子に結合しているR及びRが比較的小さな基であり、金属表面に吸着する役割を果たす一方、油膜の内部に向けられるRが比較的嵩高い基であることで、良好な耐摩耗性を付与するものと考えられる。また、R、R及びRが、いずれも置換基として水酸基を有していてもよい炭化水素基であることで、冷凍機油組成物の熱安定性を損なうことがないものと推察される。
 上記一般式(1)中、R及びRで表される炭素数1~8の炭化水素基としては、炭素数1~8のアルキル基、炭素数2~8のアルケニル基、炭素数2~8のアルキニル基、炭素数6~8のシクロアルキル基、炭素数6~8のアルキルシクロアルキル基、炭素数6~8のアリール基等が挙げられ、これらの中でも、置換又は無置換の炭素数1~8のアルキル基が好ましく、炭素数1~4のアルキル基がより好ましく、メチル基又はエチル基が特に好ましい。
 前記炭素数1~8のアルキル基としては、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、イソブチル基、sec-ブチル基、tert-ブチル基、各種ペンチル基、各種ヘキシル基等が挙げられる。なお、上記アルキル基は直鎖状又は分岐状のいずれであってもよい。
 前記炭素数6~8のシクロアルキル基としては、シクロヘキシル基、シクロヘプチル基、シクロオクチル基が挙げられる。
 前記炭素数6~8のアルキルシクロアルキル基としては、各種メチルシクロヘキシル基、各種エチルシクロヘキシル基、各種ジメチルシクロヘキシル基等が挙げられる。
 上記炭素数6~8のアリール基としては、置換又は無置換のフェニル基が挙げられ、具体的には、フェニル基、各種メチルフェニル基、各種ジメチルフェニル基が挙げられる。
 上記一般式(1)中、Rで表される置換基として水酸基を有していてもよい炭素数9~40の炭化水素基としては、置換又は無置換の炭素数9~40のアルキル基、置換又は無置換の炭素数9~40のアルケニル基、置換又は無置換の炭素数9~40のアルキニル基、置換又は無置換の炭素数9~40のシクロアルキル基、置換又は無置換の炭素数9~40のアルキルシクロアルキル基、置換又は無置換の炭素数9~40のアリール基等が挙げられ、これらの中でも、置換又は無置換の炭素数9~40のアルキル基、置換又は無置換の炭素数9~40のアリール基が好ましい。
 前記各種炭化水素基が有していてもよい置換基は、水酸基である。
 上記置換又は無置換の炭素数9~40のアルキル基としては、各種ノニル基、各種デシル基等のアルキル基等が挙げられる。なお、上記アルキル基は直鎖状又は分岐状のいずれであってもよい。
 上記置換又は無置換の炭素数9~40のアリール基としては、置換又は無置換のフェニル基、置換又は無置換のナフチル基等が挙げられ、これらの中でも、置換又は無置換のフェニル基が好ましい。
 前述の観点から、前記一般式(1)中におけるR及びRは、それぞれ独立に、炭素数1~4のアルキル基又は炭素数2~4のアルケニル基であることが好ましい。
 一方、前記一般式(1)中におけるRは、置換基として水酸基を有していてもよい炭素数12~30の炭化水素基であることが好ましく、具体的には、炭素数14~24の直鎖状若しくは分岐状のアルキル基又はアルケニル基、あるいは下記一般式(2)で表される基であることがより好ましい。
Figure JPOXMLDOC01-appb-C000015

(式中、Lは、単結合、-CH-又は-CHCH-を示し、R及びRは、それぞれ独立に、炭素数2~10の炭化水素基を示す。)
 上記Rが、上記一般式(2)で表される基である場合、水酸基に隣接するR及びRがある程度嵩高い基であることが、熱安定性の観点から好ましい。これらのR及びRとしては、炭素数3~8の炭化水素基がより好ましい。
 上記一般式(2)中、R又はRで表される炭素数2~10の炭化水素基としては、炭素数2~10のアルキル基、炭素数2~10のアルケニル基、炭素数2~10のアルキニル基、炭素数6~10のシクロアルキル基、炭素数6~10のアルキルシクロアルキル基、炭素数6~10のアリール基等が挙げられ、これらの中でも、置換又は無置換の炭素数2~10のアルキル基が好ましく、炭素数3~6のアルキル基がより好ましく、t-ブチル基が特に好ましい。
 上記炭素数2~10のアルキル基としては、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、イソブチル基、sec-ブチル基、tert-ブチル基、各種ペンチル基、各種ヘキシル基、各種ヘプチル基、各種オクチル基、各種ノニル基、各種デシル基等のアルキル基;シクロペンチル基、シクロヘキシル基、各種メチルシクロヘキシル基、各種エチルシクロヘキシル基、各種プロピルシクロヘキシル基、各種ジメチルシクロヘキシル基等のシクロアルキル基等が挙げられる。なお、上記アルキル基は直鎖又は分岐鎖のいずれであってもよい。
 上記アルキル基の炭素数は、好ましくは2~10、より好ましくは3~8である。
 上記置換又は無置換の炭素数6~10のアリール基としては、置換又は無置換のフェニル基、ナフチル基等が挙げられる。
 本実施形態の冷凍機油組成物において、成分(B)の含有量は、耐摩耗性を向上させる観点から、成分(B)に由来するリン原子換算で、該冷凍機油組成物の全量を基準として、好ましくは200質量ppm以上、より好ましくは300質量ppm以上、さらに好ましくは400質量ppm以上、特に好ましくは500質量ppm以上であり、また、好ましくは3,000質量ppm以下、より好ましくは2,400質量ppm以下、さらに好ましくは2,000質量ppm以下、特に好ましくは1,500質量ppm以下であり、これらの上限値及び下限値は任意に組み合わせてもよく、具体的には、好ましくは200~3,000質量ppm、より好ましくは300~2,400質量ppm、更に好ましくは400~2,000質量ppm、特に好ましくは500~1,500質量ppmである。
 本実施形態の冷凍機油組成物において用いられる成分(B)は、置換基として水酸基を有していてもよい炭化水素基を有するものであるため、熱安定性に優れ、従ってその含有量を比較的多くすることができる。
<添加剤>
 本実施形態の冷凍機油組成物は、更に添加剤を含有してもよい。
 添加剤としては、冷凍機油組成物の安定性向上の観点から、酸化防止剤、油性向上剤、酸素捕捉剤、酸捕捉剤、銅不活性化剤、防錆剤、消泡剤及び粘度指数向上剤からなる群から選択される1種以上を含有することが好ましく、少なくとも酸化防止剤を含有することがより好ましい。また、本実施形態の冷凍機油組成物は、成分(B)以外の極圧剤を含んでいてもよい。
 これらの添加剤は、各々について、1種を単独で用いてよく、2種以上を組み合わせて用いてもよい。
 これらの添加剤の合計含有量は、冷凍機油組成物の全量(100質量%)基準で、好ましくは0~10質量%、より好ましくは0.01~8.0質量%、更に好ましくは0.1~5.0質量%である。
(酸化防止剤)
 酸化防止剤は、フェノール系酸化防止剤及びアミン系酸化防止剤からなる群から選択される1種以上が好ましい。
 フェノール系酸化防止剤としては、2,6-ジ-tert-ブチル-4-メチルフェノール(DBPC)、2,6-ジ-tert-ブチル-4-エチルフェノール、2,2’-メチレンビス(4-メチル-6-tert-ブチルフェノール)等が挙げられる。
 アミン系酸化防止剤としては、フェニル-α-ナフチルアミン、N,N’-ジフェニル-p-フェニレンジアミン等が挙げられる。
 これらの中でも、2,6-ジ-tert-ブチル-4-メチルフェノール(DBPC)がより好ましい。
 酸化防止剤の含有量は、安定性及び酸化防止性能の観点から、冷凍機油組成物の全量(100質量%)基準で、好ましくは0.01~5.0質量%、より好ましくは0.05~3.0質量%、さらに好ましくは0.10~1.50質量%である。
(油性向上剤)
 油性向上剤としては、ステアリン酸、オレイン酸等の脂肪族飽和又は不飽和モノカルボン酸;ダイマー酸、水添ダイマー酸等の重合脂肪酸;リシノレイン酸、12-ヒドロキシステアリン酸等のヒドロキシ脂肪酸;ラウリルアルコール、オレイルアルコール等の脂肪族飽和又は不飽和モノアルコール;ステアリルアミン、オレイルアミン等の脂肪族飽和又は不飽和モノアミン;ラウリン酸アミド、オレイン酸アミド等の脂肪族飽和又は不飽和モノカルボン酸アミド;グリセリン、ソルビトール等の多価アルコールと脂肪族飽和又は不飽和モノカルボン酸との部分エステル;等が挙げられる。
(酸素捕捉剤)
 酸素捕捉剤としては、脂肪族不飽和化合物、二重結合を有するテルペン類等が挙げられる。
 上記脂肪族不飽和化合物としては、不飽和炭化水素が好ましく、具体的には、オレフィン;ジエン、トリエン等のポリエン等が挙げられる。オレフィンとしては、酸素との反応性の観点から、1-テトラデセン、1-ヘキサデセン、1-オクタデセン等のα-オレフィンが好ましい。
 上記以外の脂肪族不飽和化合物としては、酸素との反応性の観点から、分子式C2030Oで表されるビタミンA((2E,4E,6E,8E)-3,7-ジメチル-9-(2,6,6-トリメチルシクロヘキセ-1-イル)ノナ-2,4,6,8-テトラエン-1-オール)等の共役二重結合を有する不飽和脂肪族アルコールが好ましい。
 二重結合を有するテルペン類としては、二重結合を有するテルペン系炭化水素が好ましく、酸素との反応性の観点から、α-ファルネセン(C1524:3,7,11-トリメチルドデカ-1,3,6,10-テトラエン)及びβ-ファルネセン(C1524:7,11-ジメチル-3-メチリデンドデカ-1,6,10-トリエン)がより好ましい。
(酸捕捉剤)
 酸捕捉剤としては、例えばフェニルグリシジルエーテル、アルキルグリシジルエーテル、アルキレングリコールグリシジルエーテル、シクロヘキセンオキシド、α-オレフィンオキシド、エポキシ化大豆油などのエポキシ化合物を挙げることができるが、酸捕捉剤としては、特にグリシジルエステル、グリシジルエーテル及びα-オレフィンオキシドの中から選ばれる少なくとも1種が好適に用いられる。
 グリシジルエーテルとしては、炭素数が、通常3~30、好ましくは4~24、より好ましくは6~16の直鎖状、分岐状、環状の飽和若しくは不飽和の脂肪族モノ又は多価アルコール、あるいは水酸基1個以上含有する芳香族化合物由来のグリシジルエーテルが挙げられる。脂肪族多価アルコールや水酸基2個以上含有する芳香族化合物の場合、冷凍機油組成物の安定性のために、水酸基価の上昇を抑える観点から、水酸基の全てがグリシジルエーテル化されていることが好ましい。
 これらの中でも、特に炭素数6~16の直鎖状、分岐状、環状の飽和脂肪族モノアルコール由来のグリシジルエーテルが好ましい。このようなグリシジルエーテルとしては、例えば2-エチルエチルグリシジルエーテル、2-エチルヘキシルグリシジルエーテル、イソノニルグリシジルエーテル、カプリノイルグリシジルエーテル、ラウリルグリシジルエーテル、ミリスチルグリシジルエーテルなどが挙げられる。
 一方、α-オレフィンオキシドとしては、炭素数が一般に4~50、好ましくは4~24、より好ましくは6~16のものが用いられる。
 酸捕捉剤は、1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。
 酸捕捉剤の含有量は、冷凍機油組成物の全量(100質量%)基準で、好ましくは0.01~5.0質量%、より好ましくは0.05~3.0質量%、さらに好ましくは0.10~2.0質量%である。
(銅不活性化剤)
 銅不活性化剤としては、N-[N,N’-ジアルキル(炭素数3~12のアルキル基)アミノメチル]トリアゾール等が挙げられる。
(防錆剤)
 防錆剤としては、金属スルホネート、脂肪族アミン類、有機亜リン酸エステル、有機リン酸エステル、有機スルフォン酸金属塩、有機リン酸金属塩、アルケニルコハク酸エステル、多価アルコールエステル等が挙げられる。
(消泡剤)
 消泡剤としては、シリコーン油、フッ素化シリコーン油等のシリコーン系消泡剤等が挙げられる。
(粘度指数向上剤)
 粘度指数向上剤としては、ポリメタクリレート、ポリイソブチレン、エチレン-プロピレン共重合体、スチレン-ジエン水素化共重合体等が挙げられる。
(成分(B)以外の極圧剤)
 成分(B)以外の極圧剤としては、成分(B)以外のリン系極圧剤、カルボン酸の金属塩、硫黄系極圧剤等が挙げられる。
 成分(B)以外のリン系極圧剤としては、リン酸エステル、酸性リン酸エステル、亜リン酸エステル、酸性亜リン酸エステル、これらのアミン塩等が挙げられる。具体的には、トリクレジルホスフェート(TCP)、トリフェニルホスフェート、トリ(ノニルフェニル)ホスファイト、ジオレイルハイドロゲンホスファイト、2-エチルヘキシルジフェニルホスファイト等が挙げられる。
 カルボン酸の金属塩としては、炭素数3~60(好ましくは3~30)のカルボン酸の金属塩等が挙げられる。これらの中でも、炭素数12~30の脂肪酸及び炭素数3~30のジカルボン酸の金属塩からなる群から選択される1種以上が好ましい。金属塩を構成する金属としては、アルカリ金属及びアルカリ土類金属が好ましく、アルカリ金属がより好ましい。
 硫黄系極圧剤としては、硫化油脂、硫化脂肪酸、硫化エステル、硫化オレフィン、ジヒドロカルビルポリサルファイド、チオカーバメート類、チオテルペン類、ジアルキルチオジプロピオネート類等が挙げられる。
 本実施形態の冷凍機油組成物は、成分(B)が極圧剤としての効果を奏するものであるため、成分(B)以外の極圧剤を含有しないものとしてもよい。
 本実施形態の冷凍機油組成物が成分(B)以外の極圧剤を含む場合、その含有量は、潤滑性及び安定性の観点から、冷凍機油組成物の全量(100質量%)基準で、好ましくは1質量%以下、より好ましくは0.5質量%以下、更に好ましくは0.1質量以下である。
 また、本実施形態の冷凍機油組成物におけるジチオリン酸エステルの含有量は、耐腐食性向上の観点から、冷凍機油組成物の全量(100質量%)基準で、好ましくは1質量%以下、より好ましくは0.5質量%以下、更に好ましくは0.1質量以下であり、含有しないことが最も好ましい。
<冷凍機油組成物の用途>
 本実施形態の冷凍機油組成物は、より具体的には、圧縮機、凝縮器、膨張機構(膨張弁等)及び蒸発器、又は圧縮機、凝縮器、膨張機構、乾燥器及び蒸発器を必須とする構成からなる冷凍サイクルを有する冷凍機に用いられる。本実施形態の冷凍機油組成物は、例えば、圧縮機等に設けられる摺動部分を潤滑するために使用されることが好ましい。
 したがって、本発明は、冷凍機内部の潤滑部分に、本実施形態の冷凍機油組成物を使用する潤滑方法も提供する。
 また、本実施形態の冷凍機油組成物は、例えば、空調機、冷蔵庫、自動販売機、ショーケース、冷凍システム、給湯システム又は暖房システムに用いることができる。
 なお、空調機としては、開放型カーエアコン、電動カーエアコン等のカーエアコン;ガスヒートポンプ(GHP)エアコン;等が挙げられる。
[冷凍機用組成物]
 本実施形態の冷凍機用組成物は、本実施形態の冷凍機油組成物と、冷媒と、を含む冷凍機用組成物である。
<冷媒>
 前記冷媒としては、不飽和フッ化炭化水素化合物、飽和フッ化炭化水素化合物等のフッ化炭化水素冷媒;炭化水素系冷媒、二酸化炭素、アンモニア等の自然系冷媒が挙げられる。これらは1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。これらの中でも、冷媒としては、不飽和フッ化炭化水素化合物、飽和フッ化炭化水素化合物、ハイドロカーボン、二酸化炭素及びアンモニアからなる群から選択される1種以上を含むものが好ましく、不飽和フッ化炭化水素化合物を含むものがより好ましい。
 以下、各冷媒について説明する。
<不飽和フッ化炭化水素化合物>
 不飽和フッ化炭化水素化合物は高温での熱安定性が低いため、冷媒として使用した場合、フッ化水素(HF)等の酸性物質が発生し、酸価が上昇しやすいという欠点があるが、本実施形態の冷凍機油組成物を用いることで、酸価が上昇しやすいという不飽和フッ化炭化水素化合物の欠点を解消し、不飽和フッ化炭化水素化合物を冷媒として用いた冷凍システム等の安定性を確保することができる。また、本実施形態の冷凍機油組成物は、フッ化炭化水素冷媒(特に不飽和フッ化炭化水素冷媒)との組合せにおいて、特に優れた耐摩耗性及び耐焼付き性を発揮する。
 したがって、本実施形態の冷凍機用組成物において、冷媒は、不飽和フッ化炭化水素化合物(HFO)を含む冷媒であることが好ましい。
 冷媒中における不飽和フッ化炭化水素化合物(HFO)の含有量は、冷媒の全量(100質量%)基準で、好ましくは50質量%以上、より好ましくは70質量%以上、更に好ましくは90質量%以上であり、冷媒は、不飽和フッ化炭化水素化合物(HFO)のみからなる冷媒であることがより更に好ましい。
 不飽和フッ化炭化水素化合物としては、直鎖状又は分岐鎖状の炭素数2~6の鎖状オレフィンや炭素数4以上6以下の環状オレフィンのフッ素化物等、炭素-炭素二重結合を有するものが挙げられる。
 より具体的には、1~3個のフッ素原子が導入されたエチレン、1~5個のフッ素原子が導入されたプロペン、1~7個のフッ素原子が導入されたブテン、1~9個のフッ素原子が導入されたペンテン、1~11個のフッ素原子が導入されたヘキセン、1~5個のフッ素原子が導入されたシクロブテン、1~7個のフッ素原子が導入されたシクロペンテン、1~9個のフッ素原子が導入されたシクロヘキセン等が挙げられる。
 これらの不飽和フッ化炭化水素化合物の中では、プロペンのフッ化物が好ましく、3~5個のフッ素原子が導入されたプロペンがより好ましく、4個のフッ素原子が導入されたプロペンが更に好ましい。具体的には、1,3,3,3-テトラフルオロプロペン(R1234ze)、2,3,3,3-テトラフルオロプロペン(R1234yf)等が好ましい化合物として挙げられる。
 これらの不飽和フッ化炭化水素化合物は、1種を単独で用いてよく、2種以上を組み合わせて用いてもよいし、不飽和フッ化炭化水素化合物以外の冷媒と組み合わせて使用してもよい。ここで、不飽和フッ化炭化水素化合物以外の冷媒と組み合わせて用いる場合の例として、飽和フッ化炭化水素化合物と不飽和フッ化炭化水素化合物の混合冷媒が挙げられる。該混合冷媒としては、R32とR1234yfの混合冷媒、R32とR1234zeとR152aの混合冷媒(AC5、混合比は13.23:76.20:9.96)等が挙げられる。
 飽和フッ化炭化水素化合物としては、好ましくは炭素数1~4のアルカンのフッ化物、より好ましくは炭素数1~3のアルカンのフッ化物、更に好ましくは炭素数1又は2のアルカン(メタン又はエタン)のフッ化物である。該メタン又はエタンのフッ化物としては、トリフルオロメタン(R23)、ジフルオロメタン(R32)、1,1-ジフルオロエタン(R152a)、1,1,1-トリフルオロエタン(R143a)、1,1,2-トリフルオロエタン(R143)、1,1,1,2-テトラフルオロエタン(R134a)、1,1,2,2-テトラフルオロエタン(R134)、1,1,1,2,2-ペンタフルオロエタン(R125)等が挙げられ、これらの中でも、ジフルオロメタン及び1,1,1,2,2-ペンタフルオロエタンが好ましい。
 これらの飽和フッ化炭化水素化合物は、1種を単独で用いてよく、2種以上組み合わせて用いてもよい。ここで、2種以上組み合わせて用いる場合の例として、炭素数1以上3以下の飽和フッ化炭化水素化合物を2種以上混合した混合冷媒や、炭素数1以上2以下の飽和フッ化炭化水素化合物を2種以上混合した混合冷媒が挙げられる。
 該混合冷媒としては、R32とR125の混合物(R410A)、R125とR143aとR134aの混合物(R404A)、R32とR125とR134aの混合物(R407A、R407C、R407E等)、R125とR143aの混合物(R507A)等が挙げられる。
<自然系冷媒>
 自然系冷媒としては、炭化水素系冷媒(HC)、二酸化炭素(CO)及びアンモニアからなる群から選択される1種以上が挙げられ、好ましくは炭化水素系冷媒である。これらの1種を単独で用いても、2種以上を組み合わせて用いてもよいし、自然系冷媒以外の冷媒と組み合わせてもよい。ここで、自然系冷媒以外の冷媒と組み合わせて用いる場合の例としては、飽和フッ化炭化水素化合物及び/又は不飽和フッ化炭化水素化合物との混合冷媒が挙げられる。具体的な混合冷媒としては、二酸化炭素とR1234zeとR134aの混合冷媒(AC6、配合比は5.15:79.02:15.41)等が挙げられる。
 炭化水素系冷媒としては、炭素数1~8の炭化水素が好ましく、炭素数1~5の炭化水素がより好ましく、炭素数3~5の炭化水素が更に好ましい。炭素数が8以下であると、冷媒の沸点が高くなり過ぎず冷媒として好ましい。該炭化水素系冷媒としては、メタン、エタン、エチレン、プロパン(R290)、シクロプロパン、プロピレン、n-ブタン、イソブタン(R600a)、2-メチルブタン、n-ペンタン、イソペンタン、シクロペンタンイソブタン、ノルマルブタン等が挙げられる。
 炭化水素系冷媒は、1種を単独で用いても、2種以上を組み合わせて用いてもよい。また、炭化水素系冷媒は、炭化水素系冷媒単独で使用してもよく、R134a等のフッ化炭化水素冷媒、二酸化炭素等の炭化水素系冷媒以外の冷媒と混合した混合冷媒として用いてもよい。
 本実施形態の冷凍機用組成物において、冷媒及び冷凍機油組成物の使用量は、冷凍機油組成物/冷媒の質量比で好ましくは1/99~90/10、より好ましくは5/95~70/30である。冷凍機油組成物/冷媒の質量比を該範囲内とすると、潤滑性及び冷凍機における好適な冷凍能力を得ることができる。
 本実施形態の冷凍機用組成物は、例えば、空調機、冷蔵庫、自動販売機、ショーケース、冷凍システム、給湯システム又は暖房システムに用いることが好ましい。なお、空調機としては、開放型カーエアコン、電動カーエアコン等のカーエアコン;ガスヒートポンプ(GHP)エアコン;等が挙げられる。
 本発明について、以下の実施例により具体的に説明する。但し、本発明は、以下の実施例に限定されるものではない。
 実施例及び比較例の冷凍機油組成物の調製に用いた各成分の種類を以下に示す。
(1)基油
 40℃動粘度47.0mm/sのポリアルキレングリコール類(PAG)を基油として使用した。
 なお、40℃動粘度は、JIS K2283:2000に準じ、ガラス製毛管式粘度計を用いて測定した。
(2)成分(B)
・ホスホン酸エステル1:ジメチルステアリルホスホナート(ソルベイ社製、DURAPHOS100)
・ホスホン酸エステル2:ジエチルステアリルホスホナート(城北化学工業株式会社製、JC-390)
・ホスホン酸エステル3:ジエチル-3,5-ジ-t-ブチル-4-ヒドロキシベンジルホスホナート(城北化学工業株式会社製、JC-356)
(3)比較用極圧剤(成分(B’))
・ホスホン酸エステル1’:ジエチルフェニルホスホナート(城北化学工業株式会社製、DEPP)
・ホスホン酸エステル2’:ジエチル-4-メチルベンジルホスホナート(城北化学工業株式会社製、JC-243)
・TCP:トリクレジルホスフェート
(4)フェノール系酸化防止剤
・DBPC:2,6-ジ-t-ブチル-4-メチルフェノール
(5)酸捕捉剤
・エポキシ系酸捕捉剤:2-エチルヘキシルグリシジルエーテル
(6)冷媒
・R1234yf:2,3,3,3-テトラフルオロプロペン
 以下、上記成分(B)及び成分(B’)の構造式を示す。
Figure JPOXMLDOC01-appb-C000016
[実施例1~3及び比較例1~3]
 表1に示す組成の冷凍機油組成物を調製し、後述する方法により耐摩耗性、耐焼き付き性及び熱安定性を評価した。評価結果を表1に示す。
 尚、各冷凍機油組成物中における成分(B)及び成分(B’)の配合量は、組成物全量基準でのリン原子含有量が840質量ppmとなる量に揃えた。
[リン原子含有量]
 リン原子の含有量は、JPI-5S-38-03に準拠して測定した。
[ファレックス試験]
(1)ピン及びブロックとして、次のものを準備した。
 ・ピン:SAE3135
 ・ブロック:AISIC1137
(2)摩耗量測定
 密閉型のファレックス試験機を用い、ASTM D2670に準拠して次の試験を行った。
 密閉型のファレックス試験機に、ピンとブロックとをセットし、試験容器内に、評価対象の冷凍機油組成物280gを導入し、一旦減圧した後、冷媒(R1234yf)を圧力0.3MPaGになるまで封入し、回転数290rpm、油温50℃、荷重1,779Nに設定して60分間運転し、ピン及びブロックの摩耗量(mg)を測定した。
(3)焼付荷重測定
 開放系のファレックス試験機を用い、ASTM D3233に準拠して次の試験を行った。
 ピンとブロックをセットし、試料油(冷凍機油組成物)の焼付荷重を、以下の条件で測定した。
馴らし荷重:1112N×1分間
回転数:290rpm
油温:室温
[熱安定性]
 オートクレーブ容器(容積:200ml)に、触媒としてFe、Cu及びAlを入れ、更に各例で得た冷凍機油組成物20gと冷媒(R1234yf)20gとの混合物をそれぞれ充填すると共に、水分2,000質量ppmを充填し、175℃で336時間保持した後、酸価(mgKOH/g)の評価を行った。
 酸価は、JIS K2501に準じ、指示薬光度滴定法(左記JIS規格における付属書1参照)により測定した。
Figure JPOXMLDOC01-appb-T000017
 表1から、成分(B)を使用した実施例1~3の冷凍機油組成物は、摩耗量が少なく、焼付荷重が高く、熱安定性試験後の酸価の値も比較的低く抑えられていた。
 一方、比較例1で使用したホスホン酸エステル1’は、一般式(1)におけるRがフェニル基であり、また比較例2で使用したホスホン酸エステル2’は、Rがメチルベンジル基であって、いずれも炭素数が9以上でなく、その結果、得られた冷凍機油組成物は、摩耗量が多く、焼付荷重が不十分であった。さらにTCPを使用した比較例3の冷凍機油組成物は、摩耗量が大きく、焼付荷重が不十分であり、かつ熱安定性試験後の酸価も比較的大きくなった。
 以上の結果により、本実施形態の冷凍機油組成物が耐摩耗性及び耐焼付き性に優れ、かつ熱安定性にも優れていることが分かる。
 本実施形態の冷凍機油組成物は、耐摩耗性、耐焼付き性及び熱安定性に優れるものである。よって、例えば、開放型カーエアコン、電動カーエアコン等のカーエアコン、ルームエアコン及びパッケージエアコン等の空調機、ガスヒートポンプ(GHP)、冷凍庫、冷蔵庫、自動販売機、ショーケース等の冷凍システム、給湯機、床暖房等の給湯システム、暖房システム等にも好適に使用することができる。

Claims (12)

  1.  基油(A)と、下記一般式(1)で表されるホスホン酸エステル(B)とを含む冷凍機油組成物。
    Figure JPOXMLDOC01-appb-C000001

    (式中、R及びRは、それぞれ独立に、炭素数1~8の炭化水素基を示し、Rは、置換基として水酸基を有していてもよい炭素数9~40の炭化水素基を示す。)
  2.  前記ホスホン酸エステル(B)の含有量が、前記冷凍機油組成物の全量を基準とするリン原子換算で、200~4,000質量ppmである、請求項1に記載の冷凍機油組成物。
  3.  前記一般式(1)中、R及びRが、それぞれ独立に、炭素数1~4のアルキル基又は炭素数2~4のアルケニル基を示し、Rが、置換基として水酸基を有していてもよい炭素数12~30の炭化水素基を示す、請求項1又は2に記載の冷凍機油組成物。
  4.  前記一般式(1)中、Rが、炭素数14~24の直鎖状若しくは分岐状のアルキル基又はアルケニル基、あるいは下記一般式(2)で表される基を示す、請求項1~3のいずれか1項に記載の冷凍機油組成物。
    Figure JPOXMLDOC01-appb-C000002

    (式中、Lは、単結合、-CH-又は-CHCH-を示し、R及びRは、それぞれ独立に、炭素数2~10の炭化水素基を示す。)
  5.  基油(A)が、ポリアルキレングリコール(PAG)、ポリビニルエーテル(PVE)、ポリオールエステル(POE)及び鉱油からなる群から選択される1種以上を含む、請求項1~4のいずれか1項に記載の冷凍機油組成物。
  6.  更に、酸化防止剤(C)を含む、請求項1~5のいずれか1項に記載の冷凍機油組成物。
  7.  更に、酸捕捉剤(D)を含む、請求項1~6のいずれか1項に記載の冷凍機油組成物。
  8.  更に、油性向上剤、銅不活性化剤、防錆剤、消泡剤及び粘度指数向上剤からなる群から選択される1種以上を含む、請求項1~7のいずれか1項に記載の冷凍機油組成物。
  9.  請求項1~8のいずれか1項に記載の冷凍機油組成物と、冷媒と、を含む冷凍機用組成物。
  10.  前記冷媒が、不飽和フッ化炭化水素冷媒、飽和フッ化炭化水素冷媒、炭化水素系冷媒、二酸化炭素及びアンモニアからなる群から選択される1種以上を含むものである、請求項9に記載の冷凍機用組成物。
  11.  前記冷媒が、不飽和フッ化炭化水素化合物を含むものである、請求項10に記載の冷凍機用組成物。
  12.  基油(A)と、下記一般式(1)で表されるホスホン酸エステル(B)とを混合する工程を含む冷凍機油組成物の製造方法。
    Figure JPOXMLDOC01-appb-C000003

    (式中、R及びRは、それぞれ独立に、炭素数1~8の炭化水素基を示し、Rは、置換基として水酸基を有していてもよい炭素数9~40の炭化水素基を示す。)

     
PCT/JP2024/003804 2023-03-23 2024-02-06 冷凍機油組成物及び冷凍機用組成物 WO2024195327A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2023-046886 2023-03-23
JP2023046886A JP2024135958A (ja) 2023-03-23 2023-03-23 冷凍機油組成物及び冷凍機用組成物

Publications (1)

Publication Number Publication Date
WO2024195327A1 true WO2024195327A1 (ja) 2024-09-26

Family

ID=92841301

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2024/003804 WO2024195327A1 (ja) 2023-03-23 2024-02-06 冷凍機油組成物及び冷凍機用組成物

Country Status (2)

Country Link
JP (1) JP2024135958A (ja)
WO (1) WO2024195327A1 (ja)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05148491A (ja) * 1991-04-24 1993-06-15 Nippon San Sekiyu Kk 冷凍機用潤滑油組成物
JPH05171174A (ja) * 1991-04-30 1993-07-09 Tonen Corp 潤滑油組成物
JPH05302093A (ja) * 1992-04-28 1993-11-16 Tonen Corp 潤滑油組成物
JPH06145688A (ja) * 1992-11-10 1994-05-27 Nippon San Sekiyu Kk 冷凍機用潤滑油組成物
JPH06184582A (ja) * 1992-12-21 1994-07-05 Mitsubishi Heavy Ind Ltd 冷凍機油
WO2019155739A1 (ja) * 2018-02-08 2019-08-15 Jxtgエネルギー株式会社 潤滑油用添加剤組成物及び潤滑油組成物
WO2020171135A1 (ja) * 2019-02-22 2020-08-27 Jxtgエネルギー株式会社 冷凍機油及び冷凍機用作動流体組成物
WO2021177441A1 (ja) * 2020-03-06 2021-09-10 出光興産株式会社 潤滑油組成物、及び潤滑油組成物の使用方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05148491A (ja) * 1991-04-24 1993-06-15 Nippon San Sekiyu Kk 冷凍機用潤滑油組成物
JPH05171174A (ja) * 1991-04-30 1993-07-09 Tonen Corp 潤滑油組成物
JPH05302093A (ja) * 1992-04-28 1993-11-16 Tonen Corp 潤滑油組成物
JPH06145688A (ja) * 1992-11-10 1994-05-27 Nippon San Sekiyu Kk 冷凍機用潤滑油組成物
JPH06184582A (ja) * 1992-12-21 1994-07-05 Mitsubishi Heavy Ind Ltd 冷凍機油
WO2019155739A1 (ja) * 2018-02-08 2019-08-15 Jxtgエネルギー株式会社 潤滑油用添加剤組成物及び潤滑油組成物
WO2020171135A1 (ja) * 2019-02-22 2020-08-27 Jxtgエネルギー株式会社 冷凍機油及び冷凍機用作動流体組成物
WO2021177441A1 (ja) * 2020-03-06 2021-09-10 出光興産株式会社 潤滑油組成物、及び潤滑油組成物の使用方法

Also Published As

Publication number Publication date
JP2024135958A (ja) 2024-10-04

Similar Documents

Publication Publication Date Title
JP6010492B2 (ja) 冷凍機油組成物及び冷凍機システム
JP6478202B2 (ja) 冷凍機用潤滑油組成物及び冷凍機
WO2016009884A1 (ja) 冷凍機油組成物、及び冷凍装置
KR102592444B1 (ko) 냉동기용 윤활유 조성물 및 냉동기
JP7095940B2 (ja) 冷凍機油、及び冷凍機用組成物
WO2018062099A1 (ja) 冷凍機油、及び冷凍機用組成物
KR102702055B1 (ko) 냉동기유 조성물
CN110914391B (zh) 润滑油组合物和冷冻机用组合物
JP6717446B2 (ja) 冷凍機油、及び冷凍機用組成物
JP6586722B2 (ja) 冷凍機油、冷凍機油組成物、及び冷凍機
WO2022209688A1 (ja) 冷凍機油組成物及び冷凍機用混合組成物
WO2024195327A1 (ja) 冷凍機油組成物及び冷凍機用組成物
WO2024190146A1 (ja) 冷凍機用組成物
JP7490385B2 (ja) 冷凍機油組成物及び冷凍機用混合組成物
WO2017122786A1 (ja) 冷凍機油、及び冷凍機用組成物
WO2024190147A1 (ja) 冷凍機用組成物