WO2024185521A1 - 非侵襲計測装置 - Google Patents

非侵襲計測装置 Download PDF

Info

Publication number
WO2024185521A1
WO2024185521A1 PCT/JP2024/006358 JP2024006358W WO2024185521A1 WO 2024185521 A1 WO2024185521 A1 WO 2024185521A1 JP 2024006358 W JP2024006358 W JP 2024006358W WO 2024185521 A1 WO2024185521 A1 WO 2024185521A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
optical fiber
scattered light
raman scattered
skin tissue
Prior art date
Application number
PCT/JP2024/006358
Other languages
English (en)
French (fr)
Inventor
若峰 郭
Original Assignee
株式会社ヘルスケアビジョン
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ヘルスケアビジョン filed Critical 株式会社ヘルスケアビジョン
Publication of WO2024185521A1 publication Critical patent/WO2024185521A1/ja

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/145Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue
    • A61B5/1455Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue using optical sensors, e.g. spectral photometrical oximeters
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/65Raman scattering

Definitions

  • the present invention relates to a non-invasive measurement device.
  • Raman spectroscopy blood glucose measurement is a non-invasive method that uses light to selectively detect the specific chemical structure of glucose.
  • the measurement principle is to detect light generated by the Raman scattering process, and the glucose concentration is estimated by the intensity of the light, but the intensity obtained is very weak, which is a major factor that prevents glucose measurement in interstitial fluid deep in the skin.
  • an excitation light source with a wavelength range of 700nm-1200nm, known as a biological window, has been used.
  • 800nm-1000nm is a band with a deep light penetration depth, and a method has been adopted to capture glucose signals generated in the 900nm-1000nm band using 785nm, 830nm, or 860nm as an excitation light source.
  • the blood measuring device used in the invention disclosed in Patent Document 1 irradiates a living body with 785 nm laser light and guides Raman scattered light from the living body to a spectroscope.
  • the spectrum of the Raman scattered light is detected by a detector using light of each wavelength dispersed by the spectroscope, and the multiple detected spectra are integrated, and the blood glucose concentration in the blood is calculated from the integrated spectrum.
  • the present invention has been made in consideration of the above, and aims to provide a measurement device suitable for non-invasive measurement that selectively excites interstitial fluid present in the dermis layer and does not capture autofluorescence generated in the melanin layer.
  • the non-invasive measurement device comprises: A light source unit that emits excitation light; a probe for irradiating skin tissue with the excitation light and collecting Raman scattered light from the skin tissue; a spectrometer that disperses the Raman scattered light and outputs a spectroscopic signal; an analysis device for analyzing the spectroscopic signal; Equipped with The probe comprises: a transmission optical fiber that transmits the excitation light from the light source unit; a detection optical fiber provided around the transmission optical fiber and configured to collect the Raman scattered light; a ball lens provided at a tip of the transmission optical fiber and the detection optical fiber, the ball lens abutting against the skin tissue to irradiate the dermis layer with the excitation light and to collect Raman scattered light from the dermis layer; Equipped with The detection optical fiber is provided at a position where the Raman scattered light is collected by the ball lens, but where autofluorescence from the melanin layer is not collected.
  • excitation light is irradiated onto the dermis layer by a ball lens, and the detection optical fiber is disposed at a position where the Raman scattered light is collected by the ball lens, but where the autofluorescence from the melanin layer is not collected.
  • 1 is a diagram illustrating a configuration of a non-invasive measurement device according to an embodiment of the present invention.
  • 2A to 2C are diagrams illustrating both ends of a probe of a non-invasive measuring device according to an embodiment of the present invention 1 is a cross-sectional view of a tip of a probe of a non-invasive measurement device according to an embodiment of the present invention.
  • the non-invasive measurement device selectively excites interstitial fluid present in the dermis layer by using a near-lens illumination method with a ball lens, and acquires signals with high efficiency. Furthermore, in addition to the ball lens, it is combined with a spatial offset detection method that creates a distance between the excitation position and the signal detection position. This makes it possible to remove autofluorescence from deep within the skin from the collected light, and selectively detect signals only from the dermis layer without significantly distorting the waveform of the Raman scattering signal.
  • FIG. 1 is a diagram showing the configuration of a non-invasive measurement device 1.
  • the non-invasive measurement device 1 analyzes the concentration of a substance contained in skin tissue 2 based on Raman scattered light generated in skin tissue 2 by irradiation with excitation light.
  • the non-invasive measurement device 1 includes a light source unit 10, a probe 11, a spectroscope 12, and an analysis device 13.
  • the light source unit 10 is a light source that emits excitation light. Since the Raman scattering light generated in the skin tissue 2 by irradiation with excitation light tends to be weak, it is preferable that the light source unit 10 be a light source that emits high-intensity excitation light. Furthermore, since the concentration of glucose contained in the skin tissue 2 is calculated based on the wavelength of the excitation light, it is preferable that the light source unit 10 be a light source that emits excitation light of a single wavelength. Examples of such light sources include semiconductor lasers and solid-state lasers. Furthermore, the light source unit 10 may be an LED (Light Emitting Diode). The wavelength of the excitation light is a single wavelength selected from, for example, 785 nm, 830 nm, and 860 nm.
  • the probe 11 is a spectroscopic probe used in spectroscopic analysis equipment, and is a fiber probe using multiple optical fibers.
  • a ball lens 110 is attached to the tip of the probe 11. When measuring blood glucose in interstitial fluid, the ball lens 110 attached to the tip of the probe 11 is placed in contact with the surface of the skin tissue 2.
  • the spectroscope 12 has a spectroscopic element that separates the incident light into wavelengths, and a photodetector 120.
  • the spectroscopic element separates the Raman scattered light supplied from the skin tissue 2 through the probe 11 into wavelengths, and guides the light to the light receiving surface of the photodetector 120.
  • Methods for separating light into wavelengths include, for example, a dispersive spectrometer that uses the diffraction of light, and a Fourier transform spectrometer that uses the coherence of light.
  • a dispersive spectrometer is composed of a collimating mirror, a collecting mirror, and a diffraction grating, and disperses light by using the diffraction and interference caused by the diffraction grating.
  • a Fourier transform spectrometer uses an interferometer to measure the interference waveform of light.
  • the measured interference waveform is Fourier transformed to measure the spectrum of light for each wavelength.
  • an interferometer a Michelson interferometer composed of a reference mirror, a sample mirror, and an optical branching filter is used.
  • the photodetector 120 has a plurality of light receiving elements on its light receiving surface. Raman scattered light is incident on the light receiving surface of the photodetector 120. When the photodetector 120 receives the Raman scattered light from the spectroscopic element, the light receiving elements convert the light of each wavelength into an electrical signal and output a light detection signal indicating the intensity distribution for each wavelength. For example, a photodiode, a CCD (Charge Coupled Device), a CMOS (Complementary Metal Oxide Semiconductor), etc. may be used as the photodetector 120. The spectroscopic signal output from the photodetector 120 is input to the analysis device 13.
  • the analysis device 13 is a computer such as a personal computer, and includes a processor that processes data according to a control program, a main memory that functions as a work area for the processor, and an auxiliary memory for storing data for a long period of time.
  • the analysis device calculates the concentration of glucose contained in the skin tissue 2 based on the spectroscopic signal input from the photodetector 120 of the spectrometer.
  • FIG. 2 is a diagram showing the details of both ends of the probe 11, with the middle part of the probe 11 omitted by a wavy line.
  • One end of the probe 11 is the tip of the probe 11 that contacts the detection target to irradiate and collect light, and shows the state in which the tip of the probe 11 is in contact with the surface of the skin tissue 2.
  • a ball lens 110 is provided at the tip of the probe 11 as a condensing lens that focuses the light emitted from the light source unit 10 from the excitation channel within the skin tissue 2 and directs the scattered light from the skin tissue 2 to the detection channel within the probe 11.
  • the other end of the probe 11 is the rear end of the probe 11 that is connected to the light source unit 10 and the spectrometer 12, and receives the light emitted from the light source unit 10 and outputs the detection light from the detection target to the spectrometer 12.
  • the probe 11 is composed of a bundle of multiple optical fibers.
  • Figure 3 shows a cross-sectional view of the tip of the probe 11.
  • one transmission optical fiber 111 is provided at the center as an excitation channel.
  • eight detection optical fibers 112 are provided in a ring shape at a predetermined radius around the excitation channel as detection channels, with the transmission optical fiber 111 at the center.
  • the light source unit 10 such as a laser
  • the transmission optical fiber 111 that constitutes the excitation channel, and excitation light from the light source unit 10 is transmitted.
  • a band-pass filter 113 is coupled to the rear end of the transmission optical fiber 111. This band-pass filter 113 is a filter that selectively transmits light of a specific wavelength.
  • the excitation light output from the light source unit 10 is band-passed by the band-pass filter 113 and introduced into the transmission optical fiber 111, which is the excitation channel of the probe 11.
  • the detection optical fiber 112 constituting the detection channel is positioned a predetermined radial distance away from the transmission optical fiber 111 so as to selectively detect signals only from the dermis layer 21 in the skin tissue 2.
  • the distance between the excitation position and the detection position i.e., the distance between the transmission optical fiber 111 and the detection optical fiber 112 is set to 100 ⁇ m-2000 ⁇ m.
  • An edge filter 114 is coupled to the rear end of the detection optical fiber 112. This edge filter 114 is a filter that removes Rayleigh scattered light. The light detected from the skin tissue 2 is collected, and the Raman scattered light from which the Rayleigh scattered light has been removed by the edge filter 114 is output to the spectroscope.
  • a ball lens 110 is attached to the tip of the probe 11.
  • the ball lens 110 has a shorter focal length than a convex lens and collects light over a large angle.
  • the ball lens 110 is abutted against the surface of the skin tissue 2 to focus the excitation light from the excitation channel and irradiate it into the skin tissue 2, while outputting the Raman scattered light from the skin tissue 2 toward the detection channel.
  • the diameter of the ball lens 110 is set to 3-15 mm in order to predominantly illuminate the dermis layer 21.
  • the skin tissue 2 of the living body with which the ball lens 110 abuts has an epidermis layer 20 on the surface, and a dermis layer 21 below the epidermis layer 20.
  • the epidermis layer 20 is about 0.1-0.3 mm thick, and does not contain nerves or blood vessels.
  • the dermis layer 21 is about 1-2 mm thick, and contains capillaries, nerves, and lymphatic vessels.
  • the dermis layer 21 contains interstitial fluid, which is a bodily fluid between cells. Glucose in the blood diffuses into the interstitial fluid through the capillary walls, and is transported from the interstitial fluid to the cells of the tissue. The blood glucose level can be determined by measuring the glucose contained in this interstitial fluid.
  • a melanin layer 22 that produces melanin pigment.
  • the excitation light output from transmission optical fiber 111 which is the excitation light channel of probe 11, is incident on skin tissue 2 via ball lens 110.
  • the incident excitation light is focused on dermis layer 21 in skin tissue 2 by ball lens 110.
  • dermis layer 21 components contained in interstitial fluid generate Raman scattered light with a wavelength different from that of the excitation light, and generate Rayleigh scattered light with the same wavelength as that of the excitation light.
  • the scattered light travels while diffusing inside the skin tissue 2, and returns to the surface of the skin tissue 2.
  • the light scattered to a deeper position in the skin tissue 2 returns to a position on the circumference of the surface of the skin tissue 2, a certain radius away on the surface of the skin tissue 2, which is a plane perpendicular to the incident direction with the incident position of the excitation light on the surface of the skin tissue 2 as its center.
  • the scattered light generated by interaction with components contained in the interstitial fluid of the dermis layer 21 is indicated by a solid arrow.
  • the scattered light generated by interaction with components contained in the interstitial fluid is emitted at a position away from the incident position of the excitation light in the x-axis direction.
  • the excitation light is irradiated to the dermis layer 21, but since the melanin layer 22 is provided immediately above the dermis layer 21, the excitation light is also irradiated to the melanin layer 22.
  • the melanin layer 22 absorbs the excitation light and generates autofluorescence.
  • the autofluorescence from the melanin layer 22 travels through the skin tissue 2 and is emitted from the surface of the skin tissue 2.
  • the autofluorescence from the melanin layer 22 is emitted from a position on the circumference of the surface of the skin tissue 2, which is a plane perpendicular to the incident direction with the incident position of the excitation light on the surface of the skin tissue 2 as the center, and is a predetermined radius away from the surface of the skin tissue 2.
  • the melanin layer 22 is located at a shallower position in the skin tissue 2 than the dermis layer 21, the circumference radius is shorter than that of the scattered light generated by interaction with the components contained in the interstitial fluid, and the excitation light is emitted from near the incident position.
  • the autofluorescence from the melanin layer 22 is indicated by a dashed arrow.
  • the autofluorescence from the melanin layer 22 is emitted from a position in the x-axis direction closer to the incident position of the excitation light than the scattered light generated by interaction with components contained in the interstitial fluid.
  • Light emitted from the surface of the skin tissue 2 is incident on the ball lens 110.
  • the incident light passes through the ball lens 110 and is focused toward the end of the probe 11.
  • the position of the light incident on the end of the probe 11 changes depending on the position of the light emitted from the surface of the skin tissue 2.
  • the scattered light generated by interaction with the components contained in the interstitial fluid is incident on the ball lens 110 from the surface of the skin tissue 2, where it is focused by the ball lens 110 and incident on the detection optical fiber 112 in the probe 11.
  • the distance between the position of the transmission optical fiber 111, which is the excitation position, and the position of the detection optical fiber 112, which is the detection position is set so that the scattered light is incident on the detection optical fiber 112.
  • the autofluorescence from the melanin layer 22 is emitted from a position on the surface of the skin tissue 2 closer to the incident position of the excitation light than the scattered light, and is incident on the ball lens 110 as shown by the optical path indicated by the dashed line in FIG. 2. Because the incident position of the autofluorescence on the ball lens 110 is inside the incident position of the scattered light, the autofluorescence focused by the ball lens 110 is directed inside the detection optical fiber 112 and is not incident on the detection optical fiber 112. In other words, the distance between the position of the transmission optical fiber 111, which is the excitation position, and the position of the detection optical fiber 112, which is the detection position, is set so that the autofluorescence does not enter the detection optical fiber 112. Therefore, the autofluorescence from the melanin layer 22 is removed from the collected light.
  • the scattered light incident on the detection optical fiber 112 has Rayleigh scattered light removed by an edge filter 114 connected to the rear end of the detection optical fiber 112, and only the Raman scattered light is input to the spectrometer 12.
  • the spectrometer 12 separates the supplied Raman scattered light by wavelength, guides it to the light receiving surface of the photodetector 120, and outputs a light detection signal indicating the intensity distribution for each wavelength.
  • the signal output from the photodetector 120 is input to the analysis device 13.
  • the analyzer 13 When the analyzer 13 receives a spectrum from the photodetector 120, it performs a determination process to determine whether or not the spectrum is a waveform specific to glucose based on the waveform pattern in the spectrum. If the determination process determines that the waveform is that of glucose, it acquires the glucose peak. It measures the glucose concentration based on the glucose peak in the acquired Raman spectrum.
  • the present invention can be widely applied to non-invasive measurement devices that irradiate a living body with excitation light and detect the transmitted light that passes through the body.
  • Non-invasive measurement device 2 Skin tissue, 10 Light source unit, 11 Probe, 12 Spectrometer, 13 Analysis device, 20 Epidermis layer, 21 Dermis layer, 22 Melanin layer, 110 Ball lens, 111 Transmission optical fiber, 112 Detection optical fiber, 113 Band pass filter, 114 Edge filter, 120 Photodetector.

Landscapes

  • Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Pathology (AREA)
  • General Health & Medical Sciences (AREA)
  • Surgery (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Medical Informatics (AREA)
  • Molecular Biology (AREA)
  • Optics & Photonics (AREA)
  • Animal Behavior & Ethology (AREA)
  • Biophysics (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Measurement Of The Respiration, Hearing Ability, Form, And Blood Characteristics Of Living Organisms (AREA)

Abstract

非侵襲計測装置は、光源部と、皮膚組織(2)に励起光を照射するとともにラマン散乱光を収集するプローブ(11)と、分光器と、分析装置とを備える。プローブ(11)は、光源部からの励起光を伝達する伝送用の光ファイバ(111)と、伝送用の光ファイバ(111)の周囲に設けられ、ラマン散乱光を収集する検出用の光ファイバ(112)と、先端部に設けられ、皮膚組織(2)に当接して励起光を真皮層(21)に照射するとともに、真皮層(21)からのラマン散乱光を集光するボールレンズ(110)とを備える。検出用の光ファイバ(112)は、ボールレンズ(110)によりラマン散乱光が集光される位置であって、かつ、メラニン層(22)からの自家蛍光が集光されない位置に設けられる。

Description

非侵襲計測装置
 本発明は、非侵襲計測装置に関する。
 血糖値を測定する方法として、採血を必要とする侵襲的な計測法に対して、採血を必要としない赤外光を用いた非侵襲な計測法が存在する。ラマン分光血糖計測法は、グルコースが持つ特異的な化学構造を選択的に検知する光を用いた非侵襲な計測法である。ラマン散乱過程によって生じる光を検知することを計測原理としており、その光の強度によってグルコースの濃度を推定するが、得られる強度はとても弱く、皮膚深部にある間質液中のグルコース計測を妨げる大きな要因となっていた。深部の信号を取り出す手法として、生体窓と呼ばれる700nm-1200nmの波長域の励起光源が使用されてきた。特に、800nm-1000nmは光の侵入長が深い帯域であり、785nm、830nmあるいは860nmを励起光源として、900nm-1000nm帯域で発生するグルコースの信号を捉える方式が採用されてきた。
 例えば特許文献1に開示された発明に使用されている血液測定装置は、785nmであるレーザー光を生体に照射し、生体からのラマン散乱光を分光器へ導く。分光器によって分光された各波長の光を用いてラマン散乱光のスペクトルが検出器によって検出され、検出された複数のスペクトルが積算され、積算スペクトルから血液中の血糖濃度が算出される。
特開2017-83433号公報
 しかしながら、信号の弱さだけでなく、皮膚、特に表皮と真皮層の間隙に存在するメラニン層から発せられる自家蛍光は、得られたラマン信号の波形を大きく歪める原因となっており、定量的にグルコースの濃度を評価することの妨げとなっている。自家蛍光の影響を少なくする為に、信号処理法や蛍光信号の相殺手法が提案されてきたが、蛍光自体を原信号から取り除く手法の提案は少なく、検出器のダイナミックレンジやショットノイズによる影響などの課題に応える根本的な提案はなされていない。
 本発明は、上記に鑑みてなされたものであって、真皮層に存在する間質液を選択的に励起し、かつメラニン層で発生する自家蛍光を捉えない、非侵襲計測に適した計測装置を提供することを目的とする。
 本発明に係る非侵襲計測装置は、
 励起光を出射する光源部と、
 皮膚組織に前記励起光を照射するとともに、前記皮膚組織からのラマン散乱光を収集するプローブと、
 前記ラマン散乱光を分光して分光信号を出力する分光器と、
 前記分光信号を分析する分析装置と、
 を備え、
 前記プローブは、
 前記光源部からの前記励起光を伝達する伝送用の光ファイバと、
 前記伝送用の光ファイバの周囲に設けられ、前記ラマン散乱光を収集する検出用の光ファイバと、
 前記伝送用の光ファイバと前記検出用の光ファイバの先端部に設けられ、前記皮膚組織に当接して前記励起光を真皮層に照射するとともに、前記真皮層からのラマン散乱光を集光するボールレンズと、
 を備え、
 前記検出用の光ファイバは、前記ボールレンズにより前記ラマン散乱光が集光される位置であって、かつ、メラニン層からの自家蛍光が集光されない位置に設けられる。
 本発明によれば、ボールレンズにより励起光を真皮層に照射し、検出用の光ファイバが、ボールレンズによりラマン散乱光が集光される位置であって、かつ、メラニン層からの自家蛍光が集光されない位置に設けられることにより、真皮層に存在する間質液を選択的に励起し、かつメラニン層で発生する自家蛍光を捉えない、非侵襲計測に適した計測装置を提供することができる。
本発明の実施の形態に係る非侵襲計測装置の構成を説明する図である。 本発明の実施の形態に係る非侵襲計測装置のプローブの両端部を説明する図である。 本発明の実施の形態に係る非侵襲計測装置のプローブの先端の断面図である。
 本発明の実施の形態に係る非侵襲計測装置は、ボールレンズを用いたレンズ近傍照明法により、真皮層に存在する間質液を選択的に励起し、信号を高い効率で取得する。さらに、ボールレンズに加え、励起位置と信号検知位置間に距離を持たせる空間オフセット検知法と組み合わせる。これにより、皮膚深部からの自家蛍光を収集光から除去し、ラマン散乱信号の波形を大きく歪めることとなく真皮層のみの信号を選択的に検知することが可能となる。
 図1は、非侵襲計測装置1の構成を示す図である。非侵襲計測装置1は、励起光の照射によって皮膚組織2で生じるラマン散乱光に基づいて、皮膚組織2に含まれる物質の濃度などを分析する。非侵襲計測装置1は、光源部10、プローブ11、分光器12及び分析装置13を備える。
 光源部10は、励起光を出射する光源である。励起光の照射によって皮膚組織2で生じるラマン散乱光は微弱になり易いことから、光源部10は強度の高い励起光を出射する光源とされることが好ましい。また、励起光の波長を基準として皮膚組織2に含まれるグルコースの濃度が演算されることから、光源部10は単波長の励起光を出射する光源とされることが好ましい。このような光源として、例えば半導体レーザ、固体レーザが挙げられる。また、光源部10は、LED(Light Emitting Diode)であってもよい。なお、励起光の波長は、例えば、785nm、830nm、860nmから選択される単一の波長とされる。
 プローブ11は、分光分析機器に用いる分光用プローブであり、複数の光ファイバを用いたファイバプローブである。プローブ11の先端には、ボールレンズ110が取り付けられている。間質液中の血糖を計測する際は、プローブ11の先端部に取り付けられたボールレンズ110を皮膚組織2の表面に当接して配置する。
 分光器12は、入射した光を波長ごとに分解する分光素子及び光検出器120を有する。分光素子は、皮膚組織2からプローブ11を介して供給されるラマン散乱光を波長ごとに分け、光検出器120の受光面に導く。光を波長に分解する方式として、例えば、光の回折性を利用した分散型分光器と光の干渉性を利用したフーリエ変換型分光器がある。分散型分光器は、コリメートミラー、集光ミラー、回折格子で構成されており、回折格子による回折と干渉を利用して分光する。フーリエ変換型分光器は、干渉計を用いて光の干渉波形を測定する。測定された干渉波形は、フーリエ変換されて波長ごとの光のスペクトルが測定される。干渉計として、参照用ミラー、サンプル用ミラーと光分岐フィルタで構成されるマイケルソン干渉計等が用いられる。
 光検出器120は、受光面上に複数の受光素子を備える。光検出器120の受光面にはラマン散乱光が入射する。光検出器120は、分光素子からラマン散乱光を受けると、受光素子が各波長の光を電気信号に変換し、波長ごとの強度分布を示す光検出信号を出力する。光検出器120として、例えば、フォトダイオード、CCD(Charge Coupled Device)、CMOS(Complementary Metal Oxide Semiconductor)等が用いられる。光検出器120から出力された分光信号は、分析装置13に入力される。
 分析装置13は、パーソナルコンピュータのようなコンピュータであり、制御プログラムにしたがってデータを処理するプロセッサと、プロセッサのワークエリアとして機能する主記憶部と、データを長期間にわたって記憶するための補助記憶部等を備える。分析装置は、分光器の光検出器120から入力された分光信号に基づいて皮膚組織2に含まれるグルコースの濃度を演算する。
 図2は、プローブ11の両端部の詳細を示した図であり、プローブ11の中間部分は、波線により省略されている。プローブ11の一方の端部は、検出対象に当接して光を照射・収集するプローブ11の先端部であり、プローブ11の先端部が皮膚組織2の表面に当接した状態を示している。プローブ11の先端部には、励起チャンネルから出射される光源部10からの出射光を皮膚組織2内で集束するとともに、皮膚組織2からの散乱光をプローブ11内の検出チャンネルに導く集光レンズとして、ボールレンズ110が設けられている。プローブ11の他方の端部は、光源部10及び分光器12に接続されるプローブ11の後端部であり、光源部10からの出射光が入力されるとともに、検出対象からの検出光を分光器12に出力する。プローブ11は複数の光ファイバの束によって構成されている。
 図3は、プローブ11の先端部の断面図を示す。図2及び図3に示すように、中心に励起チャンネルとして、1本の伝送用の光ファイバ111が設けられている。また、励起チャンネルの周囲には、伝送用の光ファイバ111を中心として検出チャンネルとして、所定の半径だけ離れて環状に8本の検出用の光ファイバ112が設けられている。
 励起チャンネルを構成する伝送用の光ファイバ111には、光源部10であるレーザ等が接続されており、光源部10からの励起光が伝送される。伝送用の光ファイバ111の後端部には、帯域通過フィルタ113が結合されている。この帯域通過フィルタ113は、特定波長の光を選択的に透過するフィルタである。光源部10から出力された励起光は、帯域通過フィルタ113により帯域通過されて、プローブ11の励起チャンネルである伝送用の光ファイバ111内へ導入される。
 検出チャンネルを構成する検出用の光ファイバ112は、皮膚組織2内の真皮層21のみの信号を選択的に検出するように、伝送用の光ファイバ111から所定の半径距離だけ離れて配置されている。具体的には、励起位置と検知位置の間隔、すなわち伝送用の光ファイバ111と検出用の光ファイバ112の間隔を100μm-2000μmとしている。検出用の光ファイバ112の後端部には、エッジフィルタ114が結合されている。このエッジフィルタ114は、レイリー散乱光を除去するフィルタである。皮膚組織2から検出された光を収集して、エッジフィルタ114によりレイリー散乱光が除去されたラマン散乱光を分光器に出力する。
 プローブ11の先端部には、ボールレンズ110が結合されている。ボールレンズ110は、凸レンズに比べて焦点距離が短く、大きな角度にわたって光を収集する。ボールレンズ110は、皮膚組織2の表面に当接されて励起チャンネルからの励起光を集束して皮膚組織2内に照射するとともに、皮膚組織2からのラマン散乱光を検出チャンネルに向けて出力する。真皮層21を支配的に照明するためにボールレンズ110の直径は、3-15mmとされる。
 ボールレンズ110が当接する生体の皮膚組織2は、表面に表皮層20が存在し、表皮層20の下部に真皮層21が存在する。表皮層20の厚みは、約0.1-0.3mmであり、神経や血管は通っていない。真皮層21は、約1-2mmの厚さを有し、毛細血管、神経、リンパ管が通っている。真皮層21には細胞と細胞の間の体液である間質液が存在する。血液中のグルコースは毛細血管壁を介して間質液へと拡散し、間質液から組織の細胞へと運ばれる。この間質液中に含まれるグルコースを計測することにより、血糖値を求めることができる。表皮層20と真皮層21に間には、メラニン色素を作り出すメラニン層22が存在する。
 以上の構成において、皮膚組織2からのラマン散乱光の検出動作を説明する。プローブ11の励起光チャンネルである伝送用の光ファイバ111から出力された励起光は、ボールレンズ110を介して皮膚組織2に入射する。入射された励起光は、ボールレンズ110により皮膚組織2内の真皮層21に集束される。真皮層21では、間質液中に含まれる成分から、励起光の波長と異なる波長のラマン散乱光が生じるとともに、励起光の波長と同じ波長のレイリー散乱光が生じる。
 散乱光は、皮膚組織2の内部を拡散しながら進行して、皮膚組織2の表面へと戻ってくる。ここで、皮膚組織2のより深い位置まで散乱した光は、励起光の皮膚組織2の表面への入射位置を中心として入射方向に垂直な面である皮膚組織2の表面上において所定半径離れた皮膚組織2の表面の円周上の位置へと戻ってくる。図2において、真皮層21の間質液中に含まれる成分との相互作用によって生じた散乱光が実線の矢印によって示されている。間質液中に含まれる成分との相互作用によって生じた散乱光は、x軸方向において、励起光の入射位置より離れた位置で出射されている。
 励起光は、真皮層21に照射されるが、真皮層21のすぐ上の層にはメラニン層22が設けられているため、励起光はメラニン層22にも照射される。メラニン層22では、励起光を吸収して自家蛍光を発生する。メラニン層22からの自家蛍光は、皮膚組織2内を進行して皮膚組織2の表面より出射される。ここで、メラニン層22からの自家蛍光は、励起光の皮膚組織2の表面への入射位置を中心として入射方向に垂直な面である皮膚組織2の表面上において所定半径離れた皮膚組織2の表面の円周上の位置から出射される。しかしながら、メラニン層22は、真皮層21に比べて皮膚組織2内において浅い位置に存在することから、円周の半径は、間質液中に含まれる成分との相互作用によって生じた散乱光の場合よりも短く、励起光の入射位置近傍より出射される。図2において、メラニン層22からの自家蛍光が破線の矢印によって示されている。メラニン層22からの自家蛍光は、間質液中に含まれる成分との相互作用によって生じた散乱光よりも、x軸方向において、励起光の入射位置に近い位置から出射されている。
 皮膚組織2の表面から出射された光は、ボールレンズ110に入射される。入射光はボールレンズ110内を通過してプローブ11の端部に向かって集束される。プローブ11の端部に入射される光の位置は、皮膚組織2の表面から出射される光の位置に応じて変化する。
 間質液中に含まれる成分との相互作用によって生じた散乱光は、図2の実線で示される光路に示すように、皮膚組織2の表面からボールレンズ110に入射されると、ボールレンズ110によって集束され、プローブ11内の検出用の光ファイバ112に入射される。すなわち、検出用の光ファイバ112に散乱光が入射するように、励起位置である伝送用の光ファイバ111の位置と検知位置である検出用の光ファイバ112の位置の間隔が設定される。
 これに対して、メラニン層22からの自家蛍光は、散乱光に比べて励起光の入射位置に近い皮膚組織2の表面の位置より出射され、図2の破線で示される光路に示すように、ボールレンズ110に入射される。自家蛍光のボールレンズ110への入射位置は散乱光の入射位置より内側であるため、ボールレンズ110によって集束された自家蛍光は、検出用の光ファイバ112より内側に向かい、検出用の光ファイバ112に入射されない。すなわち、検出用の光ファイバ112に自家蛍光が入射しないように、励起位置である伝送用の光ファイバ111の位置と検知位置である検出用の光ファイバ112の位置の間隔が設定される。したがって、メラニン層22からの自家蛍光は、収集光から除去される。
 検出用の光ファイバ112に入射された散乱光は、検出用の光ファイバ112の後端部に結合されたエッジフィルタ114によってレイリー散乱光が除去され、ラマン散乱光のみが分光器12に入力される。分光器12は、供給されるラマン散乱光を波長ごとに分け、光検出器120の受光面に導き、波長ごとの強度分布を示す光検出信号を出力する。光検出器120から出力された信号は、分析装置13に入力される。
 分析装置13は、光検出器120からスペクトルを受けると、スペクトルにおける波形パターンに基づいてグルコース固有の波形であるか否かを判定する判定処理を行う。判定処理により、グルコースの波形であると判定されると、グルコースのピークを取得する。取得したラマンスペクトルにおけるグルコースのピークに基づいてグルコースの濃度を測定する。
 なお、本発明は、本発明の広義の精神と範囲を逸脱することなく、様々な実施形態及び変形が可能とされているものである。また、上述した実施形態は、本発明の一実施例を説明するためのものであり、本発明の範囲を限定するものではない。上記実施例及び変形例は任意に組み合わせることができる。さらに、必要に応じて実施形態の構成要件の一部を除いても本発明の技術的思想の範囲内となる。
 なお、本願については、2023年3月3日に出願された日本国特許出願2023-32780号を基礎とする優先権を主張し、本明細書中に日本国特許出願2023-32780号の明細書、特許請求の範囲、図面全体を参照として取り込むものとする。
 本発明は、励起光を生体に照射し、生体内を透過する透過光を検出する非侵襲計測装置に広く適用することができる。
1 非侵襲計測装置、2 皮膚組織、10 光源部、11 プローブ、12 分光器、13 分析装置、20 表皮層、21 真皮層、22 メラニン層、110 ボールレンズ、111 伝送用の光ファイバ、112 検出用の光ファイバ、113 帯域通過フィルタ、114 エッジフィルタ、120 光検出器。

Claims (3)

  1.  励起光を出射する光源部と、
     皮膚組織に前記励起光を照射するとともに、前記皮膚組織からのラマン散乱光を収集するプローブと、
     前記ラマン散乱光を分光して分光信号を出力する分光器と、
     前記分光信号を分析する分析装置と、
     を備え、
     前記プローブは、
     前記光源部からの前記励起光を伝達する伝送用の光ファイバと、
     前記伝送用の光ファイバの周囲に設けられ、前記ラマン散乱光を収集する検出用の光ファイバと、
     前記伝送用の光ファイバと前記検出用の光ファイバの先端部に設けられ、前記皮膚組織に当接して前記励起光を真皮層に照射するとともに、前記真皮層からのラマン散乱光を集光するボールレンズと、
     を備え、
     前記検出用の光ファイバは、前記ボールレンズにより前記ラマン散乱光が集光される位置であって、かつ、メラニン層からの自家蛍光が集光されない位置に設けられる、
     非侵襲計測装置。
  2.  前記ボールレンズの直径は、3-15mmであり、
     前記伝送用の光ファイバと前記検出用の光ファイバの間隔は、100μm-2000μmである、
     請求項1に記載の非侵襲計測装置。
  3.  前記ラマン散乱光から前記真皮層の間質液中に含まれるグルコースを計測することにより、血糖値を求める、
     請求項1又は2に記載の非侵襲計測装置。
PCT/JP2024/006358 2023-03-03 2024-02-21 非侵襲計測装置 WO2024185521A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2023032780 2023-03-03
JP2023-032780 2023-03-03

Publications (1)

Publication Number Publication Date
WO2024185521A1 true WO2024185521A1 (ja) 2024-09-12

Family

ID=92674854

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2024/006358 WO2024185521A1 (ja) 2023-03-03 2024-02-21 非侵襲計測装置

Country Status (1)

Country Link
WO (1) WO2024185521A1 (ja)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003531357A (ja) * 1999-08-03 2003-10-21 アボット・ラボラトリーズ 被検体の決定のための選択可能なサンプリング距離を有する光センサ
JP2010249835A (ja) * 2002-04-05 2010-11-04 Massachusetts Inst Of Technol <Mit> 生物学的組織の分光法のための系および方法
JP2013103094A (ja) * 2011-11-16 2013-05-30 Sony Corp 測定装置、測定方法、プログラム及び記録媒体
WO2014087825A1 (ja) * 2012-12-06 2014-06-12 国立大学法人北海道大学 非侵襲型生体脂質濃度計測器、非侵襲型生体脂質代謝機能計測器、非侵襲による生体脂質濃度計測方法および非侵襲による生体脂質代謝機能検査方法
JP2015529100A (ja) * 2012-08-16 2015-10-05 ナショナル ユニヴァーシティー オブ シンガポール 診断用機器及びラマン分光法に関する方法
WO2019188304A1 (ja) * 2018-03-29 2019-10-03 パイオニア株式会社 検出装置
JP2020106535A (ja) * 2020-02-18 2020-07-09 日本板硝子株式会社 蛍光検出用光学装置

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003531357A (ja) * 1999-08-03 2003-10-21 アボット・ラボラトリーズ 被検体の決定のための選択可能なサンプリング距離を有する光センサ
JP2010249835A (ja) * 2002-04-05 2010-11-04 Massachusetts Inst Of Technol <Mit> 生物学的組織の分光法のための系および方法
JP2013103094A (ja) * 2011-11-16 2013-05-30 Sony Corp 測定装置、測定方法、プログラム及び記録媒体
JP2015529100A (ja) * 2012-08-16 2015-10-05 ナショナル ユニヴァーシティー オブ シンガポール 診断用機器及びラマン分光法に関する方法
WO2014087825A1 (ja) * 2012-12-06 2014-06-12 国立大学法人北海道大学 非侵襲型生体脂質濃度計測器、非侵襲型生体脂質代謝機能計測器、非侵襲による生体脂質濃度計測方法および非侵襲による生体脂質代謝機能検査方法
WO2019188304A1 (ja) * 2018-03-29 2019-10-03 パイオニア株式会社 検出装置
JP2020106535A (ja) * 2020-02-18 2020-07-09 日本板硝子株式会社 蛍光検出用光学装置

Similar Documents

Publication Publication Date Title
JP7079306B2 (ja) ラマン分光法による経皮インビボ測定方法および装置
CN109124649B (zh) 用于通过拉曼光谱进行无创伤性活体测量的设备
US6167290A (en) Method and apparatus of non-invasive measurement of human/animal blood glucose and other metabolites
US7330746B2 (en) Non-invasive biochemical analysis
JP5519711B2 (ja) 光信号を生体内測定するための光学プローブ
JP7253885B2 (ja) 分光器用集光光学系、及びそれを含むラマン分光システム
KR102372083B1 (ko) 생체 센서 및 이를 포함하는 생체 분석 시스템
KR20160102161A (ko) 생체정보 측정 장치
CN111562252A (zh) 一种基于同轴双波长消荧光的拉曼检测系统
US20070293766A1 (en) Transmission Based Imaging for Spectroscopic Analysis
KR20230121041A (ko) 라만 프로브 및 피분석물 존재 또는 농도의 비-침습적 생체 내 측정을 위한 장치 및 방법
US10478106B2 (en) Probe, system, and method for non-invasive measurement of blood analytes
WO2024185521A1 (ja) 非侵襲計測装置
US20080033261A1 (en) Measuring Blood Glucose Concentration
Golparvar et al. Single-band Raman Shift Detection for Spectroscopy-less Optical Biosensors
WO2024176940A1 (ja) 非侵襲計測装置
CN115120184A (zh) 一种信号收集组件
JP2003215033A (ja) 生体成分定量装置およびその方法
US11331011B2 (en) System for the transcutaneous determining of blood alcohol concentration
JP2003149145A (ja) 血糖値の無侵襲測定装置
WO2009081358A1 (en) Fibre-optic probe
JP2004163131A (ja) レーザー光を用いた歯のう蝕の検出装置
KR20180136663A (ko) 스펙클 저감기를 구비하는 다파장 레이저 영상 수집 장치 및 이의 영상 수집 방법
JP2004045096A (ja) 生体成分の定量装置
JP2014145773A (ja) 光信号を生体内測定するための光学プローブ