WO2024169540A1 - 一种cg传输时机的配置方法及通信装置 - Google Patents
一种cg传输时机的配置方法及通信装置 Download PDFInfo
- Publication number
- WO2024169540A1 WO2024169540A1 PCT/CN2024/073641 CN2024073641W WO2024169540A1 WO 2024169540 A1 WO2024169540 A1 WO 2024169540A1 CN 2024073641 W CN2024073641 W CN 2024073641W WO 2024169540 A1 WO2024169540 A1 WO 2024169540A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- num
- transmission opportunity
- time period
- time
- starting symbol
- Prior art date
Links
- 230000005540 biological transmission Effects 0.000 title claims abstract description 613
- 238000004891 communication Methods 0.000 title claims abstract description 177
- 238000000034 method Methods 0.000 title claims abstract description 124
- 238000004590 computer program Methods 0.000 claims description 16
- 238000013475 authorization Methods 0.000 claims description 12
- 230000001934 delay Effects 0.000 abstract description 3
- 238000013461 design Methods 0.000 description 95
- 230000006870 function Effects 0.000 description 45
- 238000012545 processing Methods 0.000 description 26
- 230000008569 process Effects 0.000 description 18
- 238000010586 diagram Methods 0.000 description 15
- 230000011664 signaling Effects 0.000 description 14
- 101001121408 Homo sapiens L-amino-acid oxidase Proteins 0.000 description 8
- 102100026388 L-amino-acid oxidase Human genes 0.000 description 8
- 230000009471 action Effects 0.000 description 8
- 238000010295 mobile communication Methods 0.000 description 6
- 239000013256 coordination polymer Substances 0.000 description 5
- 238000001228 spectrum Methods 0.000 description 5
- 238000005516 engineering process Methods 0.000 description 4
- 230000014509 gene expression Effects 0.000 description 4
- 230000000694 effects Effects 0.000 description 3
- 230000002452 interceptive effect Effects 0.000 description 3
- 238000012986 modification Methods 0.000 description 3
- 230000004048 modification Effects 0.000 description 3
- 230000004913 activation Effects 0.000 description 2
- 230000003190 augmentative effect Effects 0.000 description 2
- 230000008878 coupling Effects 0.000 description 2
- 238000010168 coupling process Methods 0.000 description 2
- 238000005859 coupling reaction Methods 0.000 description 2
- 230000007774 longterm Effects 0.000 description 2
- 239000002699 waste material Substances 0.000 description 2
- 101000827703 Homo sapiens Polyphosphoinositide phosphatase Proteins 0.000 description 1
- 102100023591 Polyphosphoinositide phosphatase Human genes 0.000 description 1
- 101100233916 Saccharomyces cerevisiae (strain ATCC 204508 / S288c) KAR5 gene Proteins 0.000 description 1
- 230000003213 activating effect Effects 0.000 description 1
- 238000004364 calculation method Methods 0.000 description 1
- 230000010267 cellular communication Effects 0.000 description 1
- 230000001413 cellular effect Effects 0.000 description 1
- 230000001427 coherent effect Effects 0.000 description 1
- 238000013500 data storage Methods 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 239000013307 optical fiber Substances 0.000 description 1
- 230000008447 perception Effects 0.000 description 1
- 230000000737 periodic effect Effects 0.000 description 1
- 230000002093 peripheral effect Effects 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- 230000000007 visual effect Effects 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W72/00—Local resource management
- H04W72/04—Wireless resource allocation
- H04W72/044—Wireless resource allocation based on the type of the allocated resource
- H04W72/0446—Resources in time domain, e.g. slots or frames
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W72/00—Local resource management
- H04W72/04—Wireless resource allocation
- H04W72/044—Wireless resource allocation based on the type of the allocated resource
- H04W72/0453—Resources in frequency domain, e.g. a carrier in FDMA
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W72/00—Local resource management
- H04W72/04—Wireless resource allocation
- H04W72/11—Semi-persistent scheduling
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W72/00—Local resource management
- H04W72/20—Control channels or signalling for resource management
- H04W72/21—Control channels or signalling for resource management in the uplink direction of a wireless link, i.e. towards the network
Definitions
- the present application relates to the field of communication technology, and in particular to a configuration method and a communication device for CG transmission timing.
- Wireless communication systems are gradually infiltrating some services with strong real-time requirements and large data capacity requirements, such as video transmission, cloud games, and extended reality (XR).
- XR refers to a combination of real and virtual, human-computer interactive environment generated by computer technology and wearable devices. It is a general term for various forms such as augmented reality (AR), virtual reality (VR), and mixed reality (MR).
- AR augmented reality
- VR virtual reality
- MR mixed reality
- video frames of XR services can be transmitted between access network devices and terminals through semi-static scheduling, and access network devices can configure transmission timing for terminals through semi-static scheduling. If the amount of data that can be carried by the transmission timing corresponding to the video frame is less than the amount of data in the video frame, additional scheduling delay will be introduced, thereby increasing the uplink transmission delay of the XR service.
- the present application provides a method and device for configuring CG transmission timing, which can reduce the uplink transmission delay of semi-statically scheduled services.
- an embodiment of the present application provides a method for configuring a CG transmission opportunity, which can be executed by a terminal; or, it can also be executed by a module applied to the terminal, such as a chip, a chip system or a circuit; or, it can also be implemented by a logical node, a logical module or software that can realize all or part of the terminal functions, without limitation.
- a terminal can be executed by a terminal; or, it can also be executed by a module applied to the terminal, such as a chip, a chip system or a circuit; or, it can also be implemented by a logical node, a logical module or software that can realize all or part of the terminal functions, without limitation.
- a terminal for configuring a CG transmission opportunity, which can be executed by a terminal; or, it can also be executed by a module applied to the terminal, such as a chip, a chip system or a circuit; or, it can also be implemented by a logical node, a logical module or software that
- the terminal obtains a first parameter set, the first parameter set includes M first parameters, the mth first parameter of the M first parameters is used to configure multiple configuration authorized CG transmission opportunities in the mth time period of M time periods, the mth first parameter indicates N m consecutive time units in the mth time period, and the multiple CG transmission opportunities in the mth time period include uplink time units in the N m time units; M is an integer greater than 1, 1 ⁇ m ⁇ M, and N m is an integer greater than 1; the terminal sends uplink information on at least one CG transmission opportunity in the mth time period.
- the configuration of multiple CG transmission opportunities within a certain time period can be achieved with less indication overhead, which is used for semi-static scheduling services and can reduce the uplink transmission delay.
- M time periods correspond to one CG cycle period, or one time period in the M time periods corresponds to one CG cycle period.
- Such a design enables the configuration of multiple CG transmission opportunities in the CG cycle period, which can periodically increase the resources of semi-static scheduling, reduce the uplink transmission delay, and help improve the stability of uplink transmission.
- the retransmission duration of the hybrid automatic repeat request HARQ corresponding to one CG transmission opportunity among N CG transmission opportunities is less than the duration of a CG cycle period.
- Such a design reduces the retransmission duration of HARQ, can support the reuse of HARQ resources by different CG transmission opportunities within a CG cycle period, can save HARQ resources, and improve the utilization rate of HARQ resources.
- the following describes the first CG transmission opportunity in at least one of the M time periods.
- SFN 1 is the number of the system frame where the starting symbol of the first CG transmission opportunity in the first time period is located
- TS 1 is the number of the time slot where the starting symbol of the first CG transmission opportunity in the first time period is located
- S 1 is the number of the starting symbol of the first CG transmission opportunity in the first time period
- RSFN is the number of the system frame where the starting symbol of the first reference CG transmission opportunity is located
- RTS is the number of the time slot where the starting symbol of the first reference CG transmission opportunity is located
- RS is the number of the starting symbol of the first reference CG transmission opportunity
- TS num is the number of time slots in a system frame
- S num is the number of symbols in a time slot
- Int[] is the integer operator
- modulo is the modulo operator.
- the design can be applied to a CG type 1 scene.
- SFN 2 is the number of the system frame where the starting symbol of the first CG transmission opportunity in the first time period is located, TS 2 is the number of the time slot where the starting symbol of the first CG transmission opportunity in the first time period is located, and S 2 is the number of the starting symbol of the first CG transmission opportunity in the first time period;
- SFN start is the number of the system frame where the starting symbol of the second reference CG transmission opportunity is located, TS start is the number of the time slot where the starting symbol of the second reference CG transmission opportunity is located, S start is the number of the starting symbol of the second reference CG transmission opportunity, and the starting symbol of the second reference CG transmission opportunity is determined based on the downlink control information DCI;
- TS num is the number of time slots in a system frame, S num is the number of symbols in a time slot, Int[] is the integer operator, and modulo is the modulo operator.
- this design can be applied to the CG type 2 scenario.
- the definition of the first period can be understood by referring to the following contents (1) or (2):
- the first time period is the first time period among the M time periods
- I is the number of a CG cycle time period
- P is the duration of a CG cycle time period
- the offset of the starting symbol of the first CG transmission opportunity in the mth time period relative to the starting symbol of the first CG transmission opportunity in the first time period is the rounded result of the duration of m-1 time periods in the M time periods.
- the position of the first CG transmission opportunity in each of the M time periods can be determined using the aforementioned relationship and offset.
- the first time period is the mth time period among the M time periods, I is the number of the mth time period, and P is the duration of the mth time period.
- the position of the first CG transmission opportunity of each time period among the M time periods can be determined by using the above relationship.
- the embodiment of the present application provides a method for configuring a CG transmission opportunity, which can be executed by a terminal; or, it can also be executed by a module applied to the terminal, such as a chip, a chip system or a circuit; or, it can also be implemented by a logical node, a logical module or software that can realize all or part of the terminal functions, without limitation.
- a terminal for the convenience of description, the following is an example of execution by a terminal.
- the terminal obtains a second parameter, which is used to configure K m configured authorized CG transmission opportunities in the mth time period of M time periods, and the K m CG transmission opportunities include the uplink time unit in the mth time period, and the second parameter indicates the value of K; wherein M is an integer greater than 1, 1 ⁇ m ⁇ M, K is an integer greater than or equal to K m , and K m is an integer greater than or equal to 1; the terminal sends uplink information on at least one CG transmission opportunity in the mth time period.
- the configuration of multiple CG transmission opportunities within a certain period of time can be achieved with less indication overhead, which can be used for semi-static scheduling services and reduce the uplink transmission delay.
- the M time periods correspond to one CG cycle period, or one time period among the M time periods corresponds to one CG cycle period.
- the retransmission duration of the hybrid automatic repeat request HARQ corresponding to one CG transmission opportunity among N CG transmission opportunities is less than the duration of a CG cycle period.
- SFN 1 is the number of the system frame where the starting symbol of the first CG transmission opportunity in the first time period is located
- TS 1 is the number of the time slot where the starting symbol of the first CG transmission opportunity in the first time period is located
- S 1 is the number of the starting symbol of the first CG transmission opportunity in the first time period
- RSFN is the number of the system frame where the starting symbol of the first reference CG transmission opportunity is located
- RTS is the number of the time slot where the starting symbol of the first reference CG transmission opportunity is located
- RS is the number of the starting symbol of the first reference CG transmission opportunity
- TS num is the number of time slots in a system frame
- S num is the number of symbols in a time slot
- Int[] is the integer operator
- modulo is the modulo operator.
- SFN 2 is the system frame number of the starting symbol of the first CG transmission opportunity in the first time period
- TS 2 is the time slot number of the starting symbol of the first CG transmission opportunity in the first time period
- S 2 is the starting symbol of the first CG transmission opportunity in the first time period.
- SFN start is the number of the system frame where the start symbol of the second reference CG transmission opportunity is located
- TS start is the number of the time slot where the start symbol of the second reference CG transmission opportunity is located
- S start is the number of the start symbol of the second reference CG transmission opportunity
- the start symbol of the second reference CG transmission opportunity is determined based on the downlink control information DCI
- TS num is the number of time slots in a system frame
- S num is the number of symbols in a time slot
- Int[] is the integer operator
- modulo is the modulo operator.
- the first time period is the first time period among the M time periods
- I is the number of a CG cycle time period
- P is the duration of a CG cycle time period
- the offset of the starting symbol of the first CG transmission opportunity in the mth time period relative to the starting symbol of the first CG transmission opportunity in the first time period is the rounded result of the duration of m-1 time periods in the M time periods.
- the first time period is the mth time period among the M time periods, I is the number of the mth time period, and P is the duration of the mth time period.
- an embodiment of the present application provides a method for configuring a CG transmission opportunity, which can be executed by a terminal; or, it can also be executed by a module applied to the terminal, such as a chip, a chip system or a circuit; or, it can also be implemented by a logical node, a logical module or software that can realize all or part of the terminal functions, without limitation.
- a module applied to the terminal such as a chip, a chip system or a circuit
- a logical node a logical module or software that can realize all or part of the terminal functions, without limitation.
- the following is an example of execution by a terminal.
- the terminal obtains a third parameter set, and the third parameter set includes N third parameters, and the nth third parameter of the N third parameters is used to configure the time offset of the nth CG transmission opportunity among the N CG transmission opportunities in the configuration authorization CG cycle period relative to the first CG transmission opportunity in the CG cycle period; N is an integer greater than 1, 1 ⁇ n ⁇ N; the terminal sends uplink information on at least one CG transmission opportunity in the CG cycle period.
- the configuration of multiple CG transmission opportunities in the CG cycle period can be achieved with less indication overhead. This can periodically increase the resources for semi-static scheduling, reduce the uplink transmission delay, and help improve the stability of the uplink transmission.
- the retransmission duration of the hybrid automatic repeat request HARQ corresponding to one CG transmission opportunity among N CG transmission opportunities is less than or equal to the duration of a CG cycle period.
- SFN n is the number of the system frame where the starting symbol of the nth CG transmission opportunity is located
- TS n is the number of the time slot where the starting symbol of the nth CG transmission opportunity is located
- S n is the number of the starting symbol of the nth CG transmission opportunity
- Co n-1 is the nth third parameter
- RSFN is the number of the system frame where the starting symbol of the first reference CG transmission opportunity is located
- RTS is the number of the time slot where the starting symbol of the first reference CG transmission opportunity is located
- RS is the number of the starting symbol of the first reference CG transmission opportunity
- I is the number of the CG cycle period
- P is the duration of the CG cycle period
- TS num is the number of time slots in a system frame
- S num is the number of symbols in a time slot
- Int[] is the integer operator
- modulo is the modulo operator.
- this design can be applied to the CG type 1 scenario.
- SFN n is the number of the system frame where the start symbol of the nth CG transmission opportunity is located
- TS n is the number of the time slot where the start symbol of the nth CG transmission opportunity is located
- S n is the number of the start symbol of the nth CG transmission opportunity
- Co n-1 is the nth third parameter
- SFN start is the number of the system frame where the start symbol of the second reference CG transmission opportunity is located
- TS start is the number of the time slot where the start symbol of the second reference CG transmission opportunity is located
- S start is the number of the start symbol of the second reference CG transmission opportunity
- the start symbol of the second reference CG transmission opportunity is determined based on the downlink control information DCI
- TS num is the number of time slots in a system frame
- S num is the number of symbols in a time slot
- Int[] is the integer operator
- modulo is the modulo operator.
- an embodiment of the present application provides a method for configuring CG transmission timing, which can be executed by an access network device; or, it can also be executed by a module applied to the access network device, such as a chip, a chip system or a circuit; or, it can also be implemented by a logical node, a logical module or software that can realize all or part of the functions of the access network device, without limitation.
- a module applied to the access network device such as a chip, a chip system or a circuit
- a logical node such as a chip, a chip system or a circuit
- the following is an example of execution by an access network device.
- the access network device sends a first parameter set, and the first parameter set includes M first parameters, and the mth first parameter of the M first parameters is used to configure multiple configured authorized CG transmission timings in the mth time period of M time periods.
- the mth first parameter indicates N m consecutive time units in the mth time period, and the multiple CG transmission opportunities in the mth time period include uplink time units in the N m time units; M is an integer greater than 1, 1 ⁇ m ⁇ M, and N m is an integer greater than 1.
- the access network device receives uplink information on at least one CG transmission opportunity in the mth time period.
- the M time periods correspond to one CG cycle period, or one time period among the M time periods corresponds to one CG cycle period.
- the retransmission duration of the hybrid automatic repeat request HARQ corresponding to one CG transmission opportunity among N CG transmission opportunities is less than the duration of a CG cycle period.
- the following describes the first CG transmission opportunity in at least one of the M time periods.
- SFN 1 is the number of the system frame where the starting symbol of the first CG transmission opportunity in the first time period is located
- TS 1 is the number of the time slot where the starting symbol of the first CG transmission opportunity in the first time period is located
- S 1 is the number of the starting symbol of the first CG transmission opportunity in the first time period
- RSFN is the number of the system frame where the starting symbol of the first reference CG transmission opportunity is located
- RTS is the number of the time slot where the starting symbol of the first reference CG transmission opportunity is located
- RS is the number of the starting symbol of the first reference CG transmission opportunity
- TS num is the number of time slots in a system frame
- S num is the number of symbols in a time slot
- Int[] is the integer operator
- modulo is the modulo operator.
- SFN 2 is the number of the system frame where the starting symbol of the first CG transmission opportunity in the first time period is located, TS 2 is the number of the time slot where the starting symbol of the first CG transmission opportunity in the first time period is located, and S 2 is the number of the starting symbol of the first CG transmission opportunity in the first time period;
- SFN start is the number of the system frame where the starting symbol of the second reference CG transmission opportunity is located, TS start is the number of the time slot where the starting symbol of the second reference CG transmission opportunity is located, S start is the number of the starting symbol of the second reference CG transmission opportunity, and the starting symbol of the second reference CG transmission opportunity is determined based on the downlink control information DCI;
- TS num is the number of time slots in a system frame, S num is the number of symbols in a time slot, Int[] is the integer operator, and modulo is the modulo operator.
- this design can be applied to the CG type 2 scenario.
- the definition of the first period can be understood by referring to the following contents (1) or (2):
- the first time period is the first time period among the M time periods
- I is the number of a CG cycle time period
- P is the duration of a CG cycle time period
- the offset of the starting symbol of the first CG transmission opportunity in the mth time period relative to the starting symbol of the first CG transmission opportunity in the first time period is the rounded result of the duration of m-1 time periods in the M time periods.
- the position of the first CG transmission opportunity in each of the M time periods can be determined using the aforementioned relationship and offset.
- the first time period is the mth time period among the M time periods, I is the number of the mth time period, and P is the duration of the mth time period.
- the position of the first CG transmission opportunity of each time period among the M time periods can be determined by using the above relationship.
- an embodiment of the present application provides a method for configuring a CG transmission opportunity, which can be executed by an access network device; or, it can also be executed by a module applied to the access network device, such as a chip, a chip system or a circuit; or, it can also be implemented by a logical node, a logical module or software that can realize all or part of the functions of the access network device, without limitation.
- a module applied to the access network device such as a chip, a chip system or a circuit
- a logical node such as a chip, a chip system or a circuit
- software can realize all or part of the functions of the access network device, without limitation.
- the following is an example of execution by an access network device.
- the access network device sends a second parameter, which is used to configure K m configured authorized CG transmission opportunities in the mth time period of M time periods, and the K m CG transmission opportunities include an uplink time unit in the mth time period, and the second parameter indicates the value of K; wherein M is an integer greater than 1, 1 ⁇ m ⁇ M, K is an integer greater than or equal to K m , and K m is an integer greater than or equal to 1.
- the access network device receives uplink information on at least one CG transmission opportunity in the mth time period.
- the M time periods correspond to one CG cycle period, or one time period among the M time periods corresponds to one CG cycle period.
- the retransmission duration of the hybrid automatic repeat request HARQ corresponding to one CG transmission opportunity among N CG transmission opportunities is less than the duration of a CG cycle period.
- the following describes the first CG transmission opportunity in at least one of the M time periods.
- SFN 1 is the number of the system frame where the starting symbol of the first CG transmission opportunity in the first time period is located
- TS 1 is the number of the time slot where the starting symbol of the first CG transmission opportunity in the first time period is located
- S 1 is the number of the starting symbol of the first CG transmission opportunity in the first time period
- RSFN is the number of the system frame where the starting symbol of the first reference CG transmission opportunity is located
- RTS is the number of the time slot where the starting symbol of the first reference CG transmission opportunity is located
- RS is the number of the starting symbol of the first reference CG transmission opportunity
- TS num is the number of time slots in a system frame
- S num is the number of symbols in a time slot
- Int[] is the integer operator
- modulo is the modulo operator.
- the first time period is the first time period among the M time periods
- I is the number of a CG cycle time period
- P is the duration of a CG cycle time period
- the offset of the starting symbol of the first CG transmission opportunity in the mth time period relative to the starting symbol of the first CG transmission opportunity in the first time period is the rounded result of the duration of m-1 time periods in the M time periods.
- the position of the first CG transmission opportunity in each of the M time periods can be determined using the aforementioned relationship and offset.
- an embodiment of the present application provides a method for configuring a CG transmission opportunity, which can be executed by an access network device; or, it can also be executed by a module applied to the access network device, such as a chip, a chip system or a circuit; or, it can also be implemented by a logical node, a logical module or software that can realize all or part of the functions of the access network device, without limitation.
- a module applied to the access network device such as a chip, a chip system or a circuit
- a logical node such as a chip, a chip system or a circuit
- software can realize all or part of the functions of the access network device, without limitation.
- the following is an example of execution by an access network device.
- SFN n is the number of the system frame where the starting symbol of the nth CG transmission opportunity is located
- TS n is the number of the time slot where the starting symbol of the nth CG transmission opportunity is located
- S n is the number of the starting symbol of the nth CG transmission opportunity
- Co n-1 is the nth third parameter
- RSFN is the number of the system frame where the starting symbol of the first reference CG transmission opportunity is located
- RTS is the number of the time slot where the starting symbol of the first reference CG transmission opportunity is located
- RS is the number of the starting symbol of the first reference CG transmission opportunity
- I is the number of the CG cycle period
- P is the duration of the CG cycle period
- TS num is the number of time slots in a system frame
- S num is the number of symbols in a time slot
- Int[] is the integer operator
- modulo is the modulo operator.
- SFN start is the number of the system frame where the starting symbol of the second reference CG transmission timing is located
- TS start is the number of the time slot where the starting symbol of the second reference CG transmission timing is located
- S start is the number of the starting symbol of the second reference CG transmission timing
- the starting symbol of the second reference CG transmission timing is determined based on the downlink control information DCI
- TS num is the number of time slots in a system frame
- S num is the number of symbols in a time slot
- Int[] is the integer operator
- modulo is the modulo operator.
- An interface module is used to obtain a first parameter set, the first parameter set includes M first parameters, the mth first parameter among the M first parameters is used to configure multiple configuration authorized CG transmission opportunities in the mth time period of M time periods, the mth first parameter indicates N m consecutive time units in the mth time period, and the multiple CG transmission opportunities in the mth time period include uplink time units in the N m time units; M is an integer greater than 1, 1 ⁇ m ⁇ M, and N m is an integer greater than 1.
- the interface module is also used to send uplink information on at least one CG transmission opportunity in the mth time period.
- the processing module is used to control the interface module to perform an acquisition (retrieval) or a sending operation.
- an embodiment of the present application provides a communication device, which may be a terminal, or a device, module, or chip applied to a terminal, or a device that can be used in conjunction with a terminal.
- the communication device may include a module that executes the method/operation/step/action described in the second aspect, and the module may be a hardware circuit, or software, or a combination of a hardware circuit and software.
- the communication device may include a processing module and an interface module.
- An interface module is used to obtain a first parameter set, the first parameter set includes M first parameters, the mth first parameter among the M first parameters is used to configure multiple configuration authorized CG transmission opportunities in the mth time period of M time periods, the mth first parameter indicates N m consecutive time units in the mth time period, and the multiple CG transmission opportunities in the mth time period include uplink time units in the N m time units; M is an integer greater than 1, 1 ⁇ m ⁇ M, and N m is an integer greater than 1.
- the interface module is also used to send uplink information on at least one CG transmission opportunity in the mth time period.
- the processing module is used to control the interface module to perform an acquisition (retrieval) or a sending operation.
- an embodiment of the present application provides a communication device, which may be a terminal, or a device, module, or chip applied to a terminal, or a device that can be used in conjunction with a terminal.
- the communication device may include a module that executes the method/operation/step/action described in the third aspect, and the module may be a hardware circuit, or software, or a combination of a hardware circuit and software.
- the communication device may include a processing module and an interface module.
- An interface module is used to obtain a third parameter set, the third parameter set including N third parameters, the nth third parameter among the N third parameters is used to configure the time offset of the nth CG transmission opportunity among N CG transmission opportunities in the authorized CG cycle period relative to the first CG transmission opportunity in the CG cycle period; N is an integer greater than 1, 1 ⁇ n ⁇ N.
- the interface module is also used to send uplink information on at least one CG transmission opportunity in the CG cycle period.
- the processing module is used to control the interface module to perform an acquisition (retrieval) or a sending operation.
- an embodiment of the present application provides a communication device, which may be an access network device, or a device, module or chip applied to an access network device, or a logical node, logical module or software that can realize all or part of the functions of the access network device, or a device that can be used in combination with the access network device.
- the communication device may include a module that corresponds to the method/operation/step/action described in the fourth aspect, and the module may be a hardware circuit, or software, or a combination of a hardware circuit and software.
- the communication device may include a processing module and an interface module.
- the interface module is configured to send a first parameter set, the first parameter set including M first parameters, the mth first parameter of the M first parameters is used to configure multiple configuration authorization CG transmission opportunities in the mth time period of the M time periods, and the mth first parameter indicates the There are N m consecutive time units in m time periods, and multiple CG transmission opportunities in the mth time period include uplink time units in the N m time units; M is an integer greater than 1, 1 ⁇ m ⁇ M, and N m is an integer greater than 1.
- the interface module is also used to receive uplink information at at least one CG transmission opportunity in the mth time period.
- the processing module is used to control the interface module to perform an acquisition (retrieval) or a sending operation.
- an embodiment of the present application provides a communication device, which may be an access network device, or a device, module or chip applied to an access network device, or a logical node, logical module or software that can realize all or part of the functions of the access network device, or a device that can be used in combination with the access network device.
- the communication device may include a module that corresponds to the method/operation/step/action described in the fifth aspect, and the module may be a hardware circuit, or software, or a combination of a hardware circuit and software.
- the communication device may include a processing module and an interface module.
- An interface module is used to send a second parameter, where the second parameter is used to configure K m configured authorized CG transmission opportunities in the mth time period of M time periods, where the K m CG transmission opportunities include an uplink time unit in the mth time period, and the second parameter indicates the value of K; wherein M is an integer greater than 1, 1 ⁇ m ⁇ M, K is an integer greater than or equal to K m , and K m is an integer greater than or equal to 1.
- the interface module is also used to receive uplink information at at least one CG transmission opportunity in the mth time period.
- the processing module is used to control the interface module to perform an acquisition (retrieval) or a sending operation.
- an embodiment of the present application provides a communication device, which may be an access network device, or a device, module or chip applied to the access network device, or a logical node, logical module or software that can realize all or part of the functions of the access network device, or a device that can be used in combination with the access network device.
- the communication device may include a module corresponding to the method/operation/step/action described in the sixth aspect, and the module may be a hardware circuit, or software, or a combination of a hardware circuit and software.
- the communication device may include a processing module and an interface module.
- An interface module is used to send a third parameter set, which includes N third parameters, and the nth third parameter among the N third parameters is used to configure the time offset of the nth CG transmission opportunity among N CG transmission opportunities in the authorized CG cycle period relative to the first CG transmission opportunity in the CG cycle period; N is an integer greater than 1, 1 ⁇ n ⁇ N.
- the interface module is also used to send uplink information on at least one CG transmission opportunity in the CG cycle period.
- the processing module is used to control the interface module to perform an acquisition (retrieval) or a sending operation.
- an embodiment of the present application provides a communication device, which includes a processor for implementing the method described in the first aspect above.
- the processor is coupled to a memory, and the memory is used to store instructions and data.
- the communication device may also include a memory; the communication device may also include a communication interface, and the communication interface is used for the communication device to communicate with other devices.
- the communication interface may be a transceiver, circuit, bus, module, pin or other type of communication interface.
- a processor is used to obtain a first parameter set using a communication interface, the first parameter set including M first parameters, the mth first parameter among the M first parameters is used to configure multiple configuration authorization CG transmission opportunities in the mth time period of M time periods, the mth first parameter indicates N m consecutive time units in the mth time period, and the multiple CG transmission opportunities in the mth time period include uplink time units among the N m time units; M is an integer greater than 1, 1 ⁇ m ⁇ M, and N m is an integer greater than 1.
- the processor is also used to send uplink information at at least one CG transmission opportunity in the mth time period using the communication interface.
- an embodiment of the present application provides a communication device, which includes a processor for implementing the method described in the second aspect above.
- the processor is coupled to a memory, and the memory is used to store instructions and data.
- the communication device may also include a memory; the communication device may also include a communication interface, and the communication interface is used for the communication device to communicate with other devices.
- the communication interface may be a transceiver, circuit, bus, module, pin or other type of communication interface.
- a processor is used to obtain a first parameter set using a communication interface, the first parameter set including M first parameters, the mth first parameter among the M first parameters is used to configure multiple configuration authorization CG transmission opportunities in the mth time period of M time periods, the mth first parameter indicates N m consecutive time units in the mth time period, and the multiple CG transmission opportunities in the mth time period include uplink time units among the N m time units; M is an integer greater than 1, 1 ⁇ m ⁇ M, and N m is an integer greater than 1.
- the processor is also used to send uplink information at at least one CG transmission opportunity in the mth time period using the communication interface.
- an embodiment of the present application provides a communication device, which includes a processor for implementing the method described in the third aspect above.
- the processor is coupled to a memory, and the memory is used to store instructions and data.
- the communication device may also include a memory; the communication device may also include a communication interface, and the communication interface is used for the communication device to communicate with other devices.
- the communication interface may be a transceiver, circuit, bus, module, pin or other type of communication interface.
- a processor is used to obtain a third parameter set using a communication interface, the third parameter set including N third parameters, the nth third parameter among the N third parameters being used to configure a time offset of an nth CG transmission opportunity among N CG transmission opportunities in an authorized CG cycle period relative to a first CG transmission opportunity in the CG cycle period; N is an integer greater than 1, 1 ⁇ n ⁇ N.
- the processor is also used to send uplink information at at least one CG transmission opportunity in the CG cycle period using the communication interface.
- an embodiment of the present application provides a communication device, the communication device includes a processor, and is used to implement the method described in the fourth aspect above.
- the processor is coupled to a memory, and the memory is used to store instructions and data.
- the communication device may also include a memory; the communication device may also include a communication interface, and the communication interface is used for the communication device to communicate with other devices.
- the communication interface may be a transceiver, circuit, bus, module, pin or other type of communication interface.
- a processor is used to send a first parameter set using a communication interface, where the first parameter set includes M first parameters, where the mth first parameter among the M first parameters is used to configure multiple configuration authorized CG transmission opportunities in the mth time period of M time periods, and the mth first parameter indicates N m consecutive time units in the mth time period, where the multiple CG transmission opportunities in the mth time period include uplink time units among the N m time units; M is an integer greater than 1, 1 ⁇ m ⁇ M, and N m is an integer greater than 1.
- the processor is also used to receive uplink information at at least one CG transmission opportunity in the mth time period using the communication interface.
- an embodiment of the present application provides a communication device, which includes a processor for implementing the method described in the fifth aspect above.
- the processor is coupled to a memory, and the memory is used to store instructions and data.
- the communication device may also include a memory; the communication device may also include a communication interface, and the communication interface is used for the communication device to communicate with other devices.
- the communication interface may be a transceiver, circuit, bus, module, pin or other type of communication interface.
- a processor is used to send a second parameter using a communication interface, where the second parameter is used to configure K m configured authorized CG transmission opportunities in the mth time period of M time periods, where the K m CG transmission opportunities include an uplink time unit in the mth time period, and the second parameter indicates a value of K; wherein M is an integer greater than 1, 1 ⁇ m ⁇ M, K is an integer greater than or equal to K m , and K m is an integer greater than or equal to 1.
- the processor is also used to receive uplink information at at least one CG transmission opportunity in the mth time period using the communication interface.
- an embodiment of the present application provides a communication device, which includes a processor for implementing the method described in the sixth aspect above.
- the processor is coupled to a memory, and the memory is used to store instructions and data.
- the communication device may also include a memory; the communication device may also include a communication interface, and the communication interface is used for the communication device to communicate with other devices.
- the communication interface may be a transceiver, circuit, bus, module, pin or other type of communication interface.
- a processor is used to send a third parameter set using a communication interface, the third parameter set including N third parameters, the nth third parameter among the N third parameters is used to configure the time offset of the nth CG transmission opportunity among N CG transmission opportunities in the authorized CG cycle period relative to the first CG transmission opportunity in the CG cycle period; N is an integer greater than 1, 1 ⁇ n ⁇ N.
- the processor is also used to send uplink information at at least one CG transmission opportunity in the CG cycle period using the communication interface.
- an embodiment of the present application provides a communication system, including a communication device as described in the seventh aspect or the thirteenth aspect; and a communication device as described in the tenth aspect or the sixteenth aspect; or, including a communication device as described in the eighth aspect or the fourteenth aspect; and a communication device as described in the eleventh aspect or the seventeenth aspect; or, including a communication device as described in the ninth aspect or the fifteenth aspect; and a communication device as described in the twelfth aspect or the eighteenth aspect.
- an embodiment of the present application further provides a computer program, which, when executed on a computer, enables the computer to execute the method provided in any one of the first to sixth aspects above.
- an embodiment of the present application further provides a computer program product, comprising instructions, which, when executed on a computer, enable the computer to execute the method provided in any one of the first to sixth aspects above.
- an embodiment of the present application further provides a computer-readable storage medium, in which a computer program or instruction is stored.
- a computer program or instruction is stored.
- the computer program or instruction is executed on a computer, the computer executes the method provided in any one of the first to sixth aspects above.
- an embodiment of the present application further provides a chip, which is used to read a computer program or instruction stored in a memory and execute the method provided in any one of the first to sixth aspects above, or the chip includes a circuit for executing the method provided in any one of the first to sixth aspects above.
- an embodiment of the present application further provides a chip system, the chip system comprising a processor for supporting a device to implement the method provided in any one of aspects 1 to 6 above.
- the chip system further comprises a memory for storing programs and data necessary for the communication device.
- the chip system may be composed of a chip, or may include a chip and other discrete devices.
- FIG1 is a schematic diagram of the architecture of a communication system
- FIG2A is a schematic diagram of resource configuration of CG type 1;
- FIG2B is a schematic diagram of resource configuration of CG type 1;
- FIG3 is a schematic diagram of transmission of multiple video frames
- FIG4 is a schematic diagram of the configuration of CG transmission opportunities in unlicensed spectrum
- FIG5 is a flow chart of a communication method according to an embodiment of the present application.
- FIG6 is a schematic diagram of a ratio of an uplink time unit/downlink time unit provided in an embodiment of the present application.
- FIG7A is a schematic diagram of one of the order of determining the CG transmission timing provided in an embodiment of the present application.
- FIG7B is a schematic diagram of one of the order of determining the CG transmission timings provided in an embodiment of the present application.
- FIG8 is a flow chart of a communication method according to an embodiment of the present application.
- FIG9 is a flow chart of a communication method according to an embodiment of the present application.
- FIG10 is a flow chart of a communication method according to an embodiment of the present application.
- FIG11 is a flow chart of a communication method according to an embodiment of the present application.
- FIG12A is a schematic diagram of one of the configurations of retransmission resources provided in an embodiment of the present application.
- FIG12B is a schematic diagram of one of the configurations of retransmission resources provided in an embodiment of the present application.
- FIG13 is a schematic diagram of a structure of a communication device according to an embodiment of the present application.
- FIG. 14 is one of the structural schematic diagrams of the communication device provided in an embodiment of the present application.
- the embodiments of the present application relate to at least one (item) as follows, indicating one (item) or more (items). Among them, more than one (item) refers to two (items) or more than two (items).
- “And/or” describes the association relationship of associated objects, indicating that three relationships may exist. For example, A and/or B can represent: A exists alone, A and B exist at the same time, and B exists alone.
- the character "/" generally indicates that the objects associated before and after are in an "or” relationship.
- first, second, etc. may be used to describe each object in the embodiments of the present application, these objects should not be limited to these terms. These terms are only used to distinguish each object from each other.
- FIG1 is a schematic diagram showing a possible, non-restrictive communication system.
- the communication system 1000 includes a radio access network (RAN) 100 and a core network (CN) 200.
- the RAN 100 includes at least one RAN node (such as 110a and 110b in FIG1 , collectively referred to as 110) and at least one terminal (such as 120a-120j in FIG1 , collectively referred to as 120).
- the RAN 100 may also include other RAN nodes, such as wireless relay equipment and/or wireless backhaul equipment (not shown in FIG1 ).
- the terminal 120 is connected to the RAN node 110 in a wireless manner.
- a RAN node may also be a server, a wearable device, a vehicle or an onboard device, etc.
- an access network device in a vehicle to everything (V2X) technology may be a road side unit (RSU).
- All or part of the functions of the RAN node in this application may also be implemented by software functions running on hardware, or by virtualized functions instantiated on a platform (e.g., a cloud platform).
- the RAN node in this application may also be a logical node, logical module, or software that can implement all or part of the RAN node functions.
- the access network equipment includes a central unit (CU), a distributed unit (DU) and a radio unit (RU).
- the CU and DU can be set separately, or they can be included in the same network element, such as a baseband unit (BBU).
- BBU baseband unit
- the RU can be included in a radio frequency device or a radio frequency unit, such as a remote radio unit (RRU), an active antenna unit (AAU) or a remote radio head (RRH).
- the device for implementing the function of the access network device may be the access network device; or it may be a device capable of supporting the access network device to implement the function, such as a chip system, which may be installed in the access network device.
- the access network device is described as an access network device.
- sending information to... (access network device) can be understood as the destination of the information being the access network device, and can include directly or indirectly sending information to the access network device.
- receiving information from... (access network device) can be understood as the source of the information being the access network device, and can include directly or indirectly receiving information from the access network device.
- the information may be processed as necessary between the source and destination of the information transmission, such as format changes, etc., but the destination can understand the valid information from the source. Similar expressions in the present application can be understood similarly and will not be repeated here.
- Terminals can also be called terminal devices, user equipment (UE), mobile stations, mobile terminals, etc.
- a terminal can be an entity on the user side for receiving or transmitting signals.
- a terminal can communicate with one or more core networks through RAN.
- Terminals include handheld devices with wireless connection functions, other processing devices connected to wireless modems, or vehicle-mounted devices.
- Communication devices can be portable, pocket-sized, handheld, built-in computer, or vehicle-mounted mobile devices.
- the terminal can be widely used in various scenarios, such as cellular communication, device-to-device (D2D), vehicle to everything (V2X) communication, end-to-end P2P, machine-to-machine M2M, machine-type communication (MTC), Internet of Things (IOT), virtual reality (VR), augmented reality (AR), industrial control, automatic driving, remote medical, smart grid, smart furniture, smart office, smart wear, smart transportation, smart city, mobile phone, tablet computer, computer with wireless transceiver function, wearable device, vehicle, drone, helicopter, airplane, ship, robot, mechanical arm, smart home equipment, etc.
- the embodiments of the present application do not limit the device form of the terminal.
- the device for realizing the function of the terminal may be a terminal; or it may be a device capable of supporting the terminal to realize the function, such as a chip system, a hardware circuit, a software module, or a hardware circuit plus a software module, which may be installed in the terminal or used in combination with the terminal.
- the chip system may be composed of a chip, or may include a chip and other discrete devices.
- sending information to...(terminal) can be understood as the destination of the information being the terminal, and can include directly or indirectly sending information to the terminal.
- Receiviving information from...(terminal) can be understood as the source of the information being the terminal, and can include directly or indirectly receiving information from the terminal.
- the information may be processed as necessary between the source and destination of the information, such as format changes, but the destination can understand the valid information from the source. Similar expressions in the present application can be understood similarly and will not be repeated here.
- the access network device can send control information to the terminal through the control channel, thereby allocating transmission parameters of the data channel to the terminal.
- the control channel is, for example, a physical downlink control channel (physical downlink control channel, PDCCH), and the control information can be, for example, downlink control information (downlink control information, DCI);
- the data channel can be, for example, a physical downlink shared channel (physical downlink shared channel, PDSCH) or a physical uplink shared channel (physical uplink shared channel, PUSCH).
- control information can indicate the time-frequency position mapped by the data channel (for example, the time domain symbol and frequency domain resource block (RB) mapped by the data channel), and then the access network device and the terminal can transmit downlink information (such as data carried by PDSCH) and/or uplink information (such as data carried by PUSCH) through the data channel at this time-frequency position.
- data channel for example, the time domain symbol and frequency domain resource block (RB) mapped by the data channel
- RB resource block
- the access network device can allocate periodic uplink and downlink transmission resources to the terminal.
- the semi-static scheduling used to allocate uplink transmission resources can be called configured grant (CG)
- the semi-static scheduling used to allocate downlink transmission resources can be called semi-persistent scheduling (SPS).
- CG configured grant
- SPS semi-persistent scheduling
- the transmission resources used for an uplink transmission can be called an uplink transmission opportunity (or simply a transmission opportunity)
- the uplink transmission opportunity can also be replaced by other possible descriptions, such as CG transmission opportunity, CG transmission opportunity, CG-based PUSCH opportunity, CG-based PUSCH opportunity, or CG PUSCH.
- the transmission resources used for a downlink transmission can be called a downlink transmission opportunity (or simply a transmission opportunity), and the downlink transmission opportunity can also be replaced by other possible descriptions, such as SPS transmission opportunity, SPS resources, PDSCH resources, PDSCH opportunities, Or PDSCH timing.
- a transmission opportunity may include one symbol or multiple consecutive symbols.
- the multiple symbols may be located in the same time slot or in multiple time slots; similarly, when multiple symbols included in a transmission opportunity are located in multiple time slots, the multiple time slots may be located in the same system frame or in multiple system frames.
- CG can support two types, namely CG type 1 (CG type 1) and CG type 2 (CG type 2).
- RRC radio resource control
- CG type 1 CG type 1
- CG type 2 CG type 2
- the difference between CG type 1 and CG type 2 is the different ways of activating transmission timing.
- CG type 1 means that the network device configures the CG period (or CG period period), time domain resources and frequency domain resources of each CG transmission opportunity in at least one set of CG transmission opportunities through RRC messages.
- the period parameters and the parameters used to indicate the specific time-frequency position are carried in the RRC message.
- the CG period can be an integer multiple of 2 symbols, 7 symbols or 14 symbols supported by NR.
- the length of the symbol is related to the subcarrier spacing. For example, when the subcarrier spacing is 30kHz, the length of the time slot is 0.5ms, and a time slot includes 14 symbols.
- the CG period can be 2 symbols, 7 symbols or (1 to 1280)*14 symbols, that is, the minimum CG period is 0.5/7ms and the maximum CG period is 640ms.
- the RRC message sent by the network device may include a CG period (periodicity); time domain resources (timeDomainAllocation) of a CG transmission opportunity in a time slot, such as the number of symbols included in a CG transmission opportunity; frequency domain resources (frequencyDomainAllocation) of a CG transmission opportunity in a time slot; mcsAndTBS, which indicates the modulation and coding rate (modulation and code scheme, MCS) and the transport block size (transport Block size, TBS) used to transmit uplink information on the CG transmission opportunity.
- CG period periodicity
- timeDomainAllocation timeDomainAllocation
- frequencyDomainAllocation frequency Domain resources
- TBS transport Block size
- the RRC message may also include possible parameters, such as timeReferenceSFN, timeDomainOffset, S, etc.
- timeReferenceSFN is used to indicate the SFN corresponding to the start time of the first CG transmission opportunity
- timeDomainOffset is used to indicate the time slot number corresponding to the start time of the first CG transmission opportunity
- S is used to indicate the symbol number corresponding to the start time of the first CG transmission opportunity.
- CG type 2 is similar to SPS, that is, the network device can configure the CG period, time domain resource assignment, frequency domain resource assignment and other parameters corresponding to at least one set of CG transmission opportunities through RRC messages. Then, for each transmission opportunity in at least one set of transmission opportunities, the network device can activate and indicate the time-frequency position of the first transmission opportunity in the set of transmission opportunities through DCI (carried on PDCCH).
- DCI can also be called activation DCI, which is carried on PDCCH.
- the DCI includes the CG period corresponding to the set of CG transmission opportunities, the time domain resource assignment (TDRA) field and the frequency domain resource assignment (FDRA) field, and the MCS.
- the TDRA field indicates the time domain resources (timeDomainAllocation) of a CG transmission opportunity in a time slot
- the FDAR field indicates the time and frequency domain resources (timeDomainAllocation) of a CG transmission opportunity in a time slot.
- the TDRA field includes a scheduling offset K2 (hereinafter referred to as K2), a start and length indicator value (SLIV).
- SLIV indicates the starting symbol position and duration of the first CG transmission opportunity.
- MCS indicates the modulation and coding rate used to transmit uplink information on the CG transmission opportunity.
- the network device can determine the period and data volume of the service according to the service information, and then determine the CG period, time-frequency domain resource configuration and other parameters corresponding to the aforementioned at least one set of CG transmission opportunities.
- the service information may include a service request of the terminal, a quality of service (QoS) flow establishment request, or auxiliary information reported by the terminal.
- QoS quality of service
- a data frame may also be called a data slice or a data tile.
- the service may include at least one data frame, or at least one data slice, or at least one data tile, or at least one protocol data unit (PDU) set (PDU set).
- PDU set includes one or more of at least one data frame, at least one data slice, or at least one data tile.
- the data frame may be a video frame, an audio frame or other possible frames, which are not specifically limited.
- the description is made by taking a video frame as an example.
- Video can be composed of a series of coherent images (or pictures, photos, etc.) played continuously. When 24 images are played quickly in one second, the human eye will think that this is a continuous picture (i.e., video).
- Frame rate refers to the number of images played per second. For example, when the frame rate is 30 frames per second (30fps), it means that 30 images are played per second. When the frame rate is 60 (frame per second, FPS), it means that 60 images are played per second, and so on.
- a video frame can be understood as an image, that is, a video frame can include multiple data packets corresponding to an image, and the data volume of a video frame is the sum of the data volumes of multiple data packets included in the video frame. The frame rate and period are reciprocal to each other.
- ms milliseconds
- Figure 3 is a schematic diagram of the transmission of multiple video frames.
- Video frames 1 to 4 in Figure 3 are 4 consecutive video frames.
- the transmission period (16.67 ms) of a video frame may also be understood as a service period of an XR service.
- the video frames of XR service can be transmitted between the access network device and the terminal through semi-static scheduling.
- the terminal sends the uplink information of XR service to the access network device at the CG transmission time, and the access network device sends the downlink information of XR service to the terminal at the SPS transmission time.
- the uplink and downlink business models are usually different.
- the changes in the scene content display of VR are caused by posture or position (action).
- the uplink information of VR is mainly position and posture information, and the data volume is usually tens of kbps.
- the downlink information is mainly the rendered video stream, and the data volume is relatively large, reaching tens to hundreds of Mbps.
- the changes in the scene content display of AR are caused by changes in the focus target and changes in the spatial relationship between the position and the gaze point (action).
- the uplink information of AR includes the visual information required for perception, such as clear and stable pictures or video streams (video frames), or some extracted environmental feature information, and the data volume is large. From the above content, it can be seen that XR services, especially AR services, have high requirements for uplink transmission rates.
- the data volume of the video frame is greater than the data volume that can be carried by one CG transmission opportunity.
- BSR buffer status report
- the parsing, scheduling, and packetization operations involved in the BSR will cause greater delays, affecting the normal transmission of the video frame, and unable to meet the AR service's uplink transmission rate requirements; if the terminal does not send the BSR, the access network device side cannot perceive the data volume exceeding the CG transmission opportunity, resulting in video frame transmission errors.
- an embodiment of the present application provides a configuration scheme for CG transmission opportunities, which can realize the configuration of multiple CG transmission opportunities in one CG cycle.
- the time slots where two adjacent CG transmission opportunities are located can be continuous or discontinuous, and the number of CG transmission opportunities in multiple CG cycles is the same.
- This scheme can be applied to scenarios of licensed spectrum or unlicensed spectrum, and can reduce the uplink transmission delay of semi-statically scheduled services such as XR services, and improve the accuracy of uplink transmission.
- the following is further combined with the embodiments to explain the scheme in detail by taking the interaction between an access network device and a terminal as an example.
- the access network device in this application can also be a module (such as a chip, a chip system, or a processor) applied to the access network device, and can also be a logical node, a logical module or software that can realize all or part of the functions of the access network device;
- the terminal device in this application can also be a module (such as a chip, a chip system, or a processor) applied to the terminal device, and can also be a logical node, a logical module or software that can realize all or part of the functions of the terminal device.
- FIG5 illustrates a communication method, which may also be replaced by a configuration method described as a CG transmission timing.
- the communication method mainly includes the following steps.
- S501 An access network device sends a first parameter set to a terminal.
- the first parameter set includes M first parameters, the mth first parameter of the M first parameters is used to configure multiple configuration authorization CG transmission opportunities in the mth time period of the M time periods, and the mth first parameter indicates N m consecutive time units in the mth time period.
- multiple CG transmission opportunities in the mth time period include uplink time units in Nm time units; M is an integer greater than 1, Nm is an integer greater than 1, 1 ⁇ m ⁇ M, or it can also be understood that m is an integer from 1 to M.
- the aforementioned uplink time unit refers to a time unit used for uplink transmission, which can be an uplink subframe, an uplink time slot, an uplink symbol, or a time unit that can be flexibly configured for uplink or downlink, such as a time unit in a flexible time slot or a flexible subframe.
- the value of m is different, and the corresponding value of Nm may be the same or different, and the number of uplink time units in the Nm time units is the same.
- the number of CG transmission opportunities in each of the M time periods can be the same.
- one of the M time periods can be the transmission period of a video frame (16.67ms).
- such a design increases the number of CG transmission opportunities corresponding to a video frame, which can avoid or reduce additional scheduling delays and improve the uplink transmission rate of the XR service.
- such a design can ensure that the transmission period of each video frame corresponds to the same number of CG transmission opportunities, which is conducive to the stable transmission of the XR service.
- the access network device may determine the value of N m according to the TDD format and the starting positions of the M time periods, wherein the TDD format refers to the ratio of uplink time unit/downlink time unit in the time-division duplex (TDD) format.
- TDD time-division duplex
- FIG6 illustrates a ratio of uplink time unit/downlink time unit, "U" represents the uplink time unit, and “D” represents the downlink time unit.
- the starting position of the M time periods is time unit 0
- one of the M time periods is 16.67ms
- M is 3
- the total length of the M time periods is 50ms
- 1ms corresponds to one uplink time unit or downlink time unit.
- time units 2, 3, 7, 8, 12, and 13 in the first time period (0 to 16.67ms) are uplink time units
- time units 17, 18, 22, 23, 27, and 28 in the second time period (16.67ms to 33.33ms) are uplink time units
- time units 37, 38, 42, 43, 47, and 48 in the third time period (33.33 to 50ms) are uplink time units.
- the access network device can determine N1 to be 8, indicating that the CG transmission opportunity of the first time period is located in the first 8 time units, or it can also be understood as: there are 3 valid CG transmission opportunities within 0-16.67ms, including time units 2, 3, and 7.
- the access network device can determine N2 to be 6, indicating that the CG transmission opportunity of the second time period is located in the first 6 time units, or it can also be understood as: there are 3 valid CG transmission opportunities within 16.67ms-33.3ms, including time units 17, 18, and 22.
- the access network device can determine N3 to be 9, indicating that the CG transmission opportunity of the third time period is located in the first 6 time units, or it can also be understood as: there are 3 valid CG transmission opportunities within 16.67ms-33.3ms, including time units 37, 38, and 42.
- the access network device may determine a method for sending the first parameter set based on the CG type.
- the access network device can send an RRC message including a first parameter set to the terminal.
- the RRC message can be a signaling used alone to transmit the first parameter set; or, the RRC message can be the aforementioned signaling used to configure at least one set of CG transmission opportunities, that is, it can also be understood as: the access network device adds a new first parameter set to the RRC message containing at least one set of CG transmission opportunities.
- a field (such as cg-nrofSlot-List) can also be defined in the RRC message to indicate the first parameter set.
- the terminal side can determine multiple CG transmission opportunities in each of the M time periods based on a set of CG transmission opportunities and the first parameter set activated in the RRC message.
- the access network device may send a DCI or PDCCH including a first parameter set to the terminal.
- the DCI may be a signaling used alone to transmit the first parameter set; or, the DCI may be the aforementioned signaling used to activate a set of CG transmission opportunities, that is, it can also be understood as: the access network device has newly added a first parameter set to the DCI used to activate a set of CG transmission opportunities.
- a field (such as cg-nrofSlot-List) may also be defined in the DCI to indicate the first parameter set.
- the terminal side may determine a plurality of CG transmission opportunities in each of the M time periods based on a set of CG transmission opportunities activated in the DCI and the first parameter set.
- the access network device may send an RRC including a first parameter set to the terminal, for example, the RRC may be a signaling used alone to transmit the first parameter set; or, the RRC is a signaling used to configure at least one set of CG transmission opportunities, and the access network device adds the corresponding first parameter set (cg-nrofSlot-List) to the configuration parameters of each set of CG transmission opportunities.
- the terminal side can determine multiple CG transmission opportunities in each of the M time periods based on a set of CG transmission opportunity configuration parameters activated in the RRC message.
- the M first parameters in the first parameter set are numbered from 0, and the mth first parameter in cg-nrofSlot-List can be represented as cg-nrofSlot-List[m-1], and the corresponding N m can also be replaced as cg-nrofSlot-List[m-1].
- the M first parameters in the first parameter set are numbered from 1, and the mth first parameter in cg-nrofSlot-List can be represented as cg-nrofSlot-List[m], and the corresponding N m can also be replaced as cg-nrofSlot-List[m].
- one of the M time periods corresponds to a CG cycle period.
- the access network device can simultaneously configure the CG transmission opportunities in the M CG cycle time periods through the first parameter set.
- the CG cycle period can also be replaced with the description of the CG cycle, that is, it can also be understood that: one of the M time periods is a CG cycle, and the embodiments of the present application are not limited to this.
- the configuration of the CG transmission opportunity in each of the M CG cycle time periods can be understood by referring to the configuration of the CG transmission opportunity in the aforementioned M CG cycle time periods indicated by the access network device, and the embodiments of the present application will not elaborate on this. Taking the uplink transmission of the XR service as an example, one of the M time periods can be the transmission period of a video frame (16.67ms), and then a CG cycle period can be 16.67ms.
- M time periods correspond to one CG cycle period.
- the access network device can configure multiple CG transmission opportunities in a CG cycle period through a first parameter set.
- the configuration of the CG transmission opportunities in the remaining CG cycle periods can be understood by referring to the configuration of the CG transmission opportunities in this one CG cycle period, and the embodiments of the present application will not go into details.
- one of the M time periods can be the transmission period of a video frame (16.67ms)
- one CG cycle period can be M*16.67ms.
- M is 3
- a CG cycle period is 50ms
- a CG cycle period includes 3 XR service cycles.
- S502 The terminal determines multiple CG transmission opportunities in the mth time period according to the first parameter set.
- the terminal can use the following relationship (1) to determine the starting symbol of the first CG transmission opportunity in at least one of the M time periods; further, the terminal can determine the starting symbol of each CG transmission opportunity in each of the M time periods based on the first parameter set and the starting symbol of the first CG transmission opportunity in at least one time period; and the terminal can also obtain the time domain resources and frequency domain resources of the CG transmission opportunity from the RRC message sent by the access network device.
- the first time period is the first time period among the M time periods
- I is the number of a CG cycle time period
- P is the duration of a CG cycle time period.
- the offset of the starting symbol of the first CG transmission opportunity in the mth time period relative to the starting symbol of the first CG transmission opportunity in the first time period is the rounded result of the duration of m-1 time periods among the M time periods.
- the first time period is the mth time period among M time periods, I is the number of the mth time period, and P is the duration of the mth time period.
- SFN 1 , TS 1 , S 1 correspond to the first CG transmission opportunity in the first time period.
- SFN 1 is the number of the system frame where the starting symbol of the first CG transmission opportunity in the first time period is located.
- TS 1 is the number of the time slot where the starting symbol of the first CG transmission opportunity in the first time period is located.
- TS 1 can also be replaced by slot number in the frame, that is, TS 1 is the time slot number in a system frame.
- S 1 is the number of the starting symbol of the first CG transmission opportunity in the first time period.
- S 1 can also be replaced by symbol number in the slot, that is, S 1 is the symbol number in a time slot.
- RSFN, RTS, and RS correspond to the first reference CG transmission opportunity.
- the first reference CG transmission opportunity is the first CG transmission opportunity configured in a set of CG transmission opportunities activated by the RRC message, that is, RSFN, RTS, and RS are configured by the access network device through the RRC message.
- RSFN can also be replaced by timeReferenceSFN, indicating the SFN corresponding to the start time of the first CG transmission opportunity.
- RTS can also be replaced by timeDomainOffset, which is the time slot number corresponding to the start time of the first CG transmission opportunity.
- RS indicates the symbol number corresponding to the start time of the first CG transmission opportunity.
- TS num is the number of time slots in a system frame, which can also be replaced by numberOfSlotsPerFrame or other characters.
- S num is the number of symbols in a time slot, which can also be replaced by numberOfSymbolsPerSlot or other characters.
- Int[] is a rounding operator. For example, it can be rounding up, rounding down, or rounding off, etc., which is an operator used to round the calculation result in [].
- the value of P is an integer
- the Int[] operation in equation (1) may not be performed, that is, the original item "Int[RSFN ⁇ TS num ⁇ S num +RTS ⁇ S num +RS+I ⁇ P]" in equation (1) is replaced by "RSFN ⁇ TS num ⁇ S num +RTS ⁇ S num +RS+I ⁇ P".
- modulo means modulo operation.
- (1024 ⁇ TS num ⁇ S num ) means 1024 system frames, or the time length of 1024 system frames in symbols.
- the value range of the parameters involved in (1-a) to (1-e) above is 1024 system frames.
- the value range of SFN 1 and RSFN numbers may be 0 to 1023.
- the 1024 system frames mentioned in the embodiment of the present application may also be regarded as a superframe, that is, as an example, a superframe includes 1024 system frames. It is understandable that if the definition of a superframe in the future does not include 1024 system frames, "1024" in the above relationship may also be replaced by other fixed values or variables, and the embodiment of the present application is not limited to this.
- the range of the system frame number, time slot number, symbol number, time period number, CG cycle period number, etc. in the embodiment of the present application can all start from 0 or other positive integers.
- the embodiment of the present application is not limited to this.
- one time period in the M time periods is a service cycle (16.67ms).
- the subcarrier spacing is 30kHz
- RFS 0
- RTS 0
- Int[] indicates rounding up.
- a CG cycle period is 3 service cycles (50ms) and the first period is the first period of M periods
- M 3.
- the terminal can determine the remaining CG transmission opportunities in each period based on the first parameter set.
- the embodiment of the present application uses different pattern fillings in Figure 7A to distinguish and determine the order of different CG transmission opportunities.
- the starting position of the first CG transmission opportunity in the second time period is 17ms
- the starting position of the first CG transmission opportunity in the third time period is 34ms.
- the terminal can determine the remaining CG transmission opportunities in each time period based on the first parameter set.
- the embodiment of the present application uses different pattern fillings in FIG. 7B to distinguish and determine the order of different CG transmission opportunities.
- the terminal can use the following relationship (2) to determine the starting symbol of the first CG transmission opportunity in at least one of the M time periods; further, the terminal can determine the starting symbol of each CG transmission opportunity in each of the M time periods based on the first parameter set and the starting symbol of the first CG transmission opportunity in at least one time period; and the terminal can also obtain the time domain resources and frequency domain resources of the activated CG transmission opportunity from the DCI sent by the access network device.
- SFN 2 corresponds to the first CG transmission opportunity in the first time period.
- SFN 2 is the number of the system frame where the starting symbol of the first CG transmission opportunity in the first time period is located.
- TS 2 is the number of the time slot where the starting symbol of the first CG transmission opportunity in the first time period is located.
- TS 1 can also be replaced by slot number in the frame, that is, TS 1 is the time slot number in a system frame.
- SFN start , TS start , S start correspond to the second reference CG transmission timing.
- the second reference CG transmission timing is determined based on DCI, and the DCI is used to activate a set of configuration parameters in a CG transmission timing.
- the terminal can determine SFN start and TS start based on the sending time of the DCI and the value of K2 in the DCI.
- the SFN start can also be replaced by SFN start time, indicating the number of the system frame where the PUSCH starts to be sent.
- the TS start can also be replaced by slot start time, indicating the time slot number where the PUSCH starts to be sent.
- S503 The terminal sends uplink information at at least one CG transmission opportunity in the mth time period.
- the uplink information may include uplink data carried on the PDSCH.
- the uplink information may include a data frame, such as a video frame.
- the above-mentioned embodiment 1 provided in the embodiments of the present application introduces the configuration of the first parameter set (cg-nrofSlot-List), which can speed up the determination of the time domain positions of multiple CG transmission opportunities within a CG cycle and reduce the uplink transmission delay; and can achieve that different CG cycles contain the same number of CG transmission opportunities, which is conducive to the stable transmission of services.
- the first parameter set cg-nrofSlot-List
- FIG8 illustrates a communication method, which may also be replaced by a configuration method described as a CG transmission timing.
- the communication method mainly includes the following steps.
- the access network device sends a second parameter to the terminal.
- the second parameter indicates the value of K, which means that the access network device expects the terminal to have K CG transmission opportunities in each of the M time periods.
- M is an integer greater than 1
- K is a positive integer greater than or equal to 1.
- the second parameter actually configures Km CG transmission opportunities in the mth time period of the M time periods, and the Km CG transmission opportunities include the uplink time unit in the mth time period.
- K is an integer greater than or equal to Km
- Km is an integer greater than or equal to 1.
- Different values of m may have the same or different corresponding values of Km .
- the access network device may determine the method for sending the second parameter based on the CG type.
- the access network device can send an RRC message including a second parameter to the terminal.
- the RRC message can be a signaling used alone to transmit the second parameter; or, the RRC message can be the aforementioned signaling used to configure at least one set of CG transmission opportunities, that is, it can also be understood as: the access network device adds a new second parameter to the RRC message containing at least one set of CG transmission opportunities.
- a field (such as cg-nrofvalidSlots) can also be defined in the RRC message to indicate the second parameter.
- the terminal side can determine multiple CG transmission opportunities in each of the M time periods based on a set of CG transmission opportunities activated in the RRC message and the second parameter.
- the access network device can send a DCI or PDCCH including a second parameter to the terminal.
- the DCI can be a signaling used alone to transmit the second parameter; or, the DCI can be the aforementioned signaling used to activate a set of CG transmission opportunities, that is, it can also be understood as: the access network device adds a new second parameter to the DCI used to activate a set of CG transmission opportunities.
- a field (such as cg-nrofvalidSlots) can also be defined in the DCI to indicate the second parameter.
- the terminal side can determine multiple CG transmission opportunities in each of the M time periods based on a set of CG transmission opportunities and the second parameters activated in the DCI.
- the definition of the uplink time unit and the correspondence between the M time periods and the CG cycle time periods can be understood by referring to the description in S501. This embodiment of the present application will not be elaborated on this.
- S802 The terminal determines multiple CG transmission opportunities in the mth time period according to the second parameter.
- the terminal can use the above-mentioned relationship (1) to determine the starting symbol of the first CG transmission opportunity in at least one of the M time periods.
- the specific implementation can be understood by referring to the content described in A1 in S502, and the embodiments of the present application will not go into details about this; further, the terminal can determine the starting symbol of each CG transmission opportunity in each of the M time periods based on the first parameter set and the starting symbol of the first CG transmission opportunity in at least one time period; and the terminal can also obtain the time domain resources and frequency domain resources of the CG transmission opportunity from the RRC message sent by the access network device.
- the terminal can use the above-mentioned relationship (2) to determine the starting symbol of the first CG transmission opportunity in at least one of the M time periods.
- the specific implementation can be understood by referring to the content described in A1 in S502, and the embodiments of the present application will not go into details about this; further, the terminal can determine the starting symbol of each CG transmission opportunity in each of the M time periods based on the first parameter set and the starting symbol of the first CG transmission opportunity in at least one time period; and the terminal can also obtain the time domain resources and frequency domain resources of the activated CG transmission opportunity from the DCI sent by the access network device.
- S803 The terminal sends uplink information at at least one CG transmission opportunity in the mth time period.
- the uplink information may include uplink data carried on the PDSCH.
- the uplink information may include a data frame, such as a video frame.
- the above-mentioned embodiment 2 provided in the embodiment of the present application introduces the configuration of the second parameter (cg-nrofvalidSlots), which can speed up the determination of the time domain positions of multiple CG transmission opportunities within a CG cycle and reduce the uplink transmission delay.
- the second parameter cg-nrofvalidSlots
- FIG9 shows a communication method, which can also be replaced by the configuration method described as the CG transmission timing.
- the communication method mainly includes the following steps.
- S901 The access network device sends a third parameter set to the terminal.
- the third parameter set includes N third parameters, and the nth third parameter among the N third parameters is used to configure the time offset of the nth CG transmission opportunity among the N CG transmission opportunities in the CG cycle period relative to the first CG transmission opportunity in the CG cycle period; N is an integer greater than 1, 1 ⁇ n ⁇ N;
- the total number of CG opportunities included in the CG cycle period is N.
- the N third parameters The first third parameter corresponds to the first CG transmission opportunity in the CG cycle period, that is, the first CG transmission opportunity among N CG transmission opportunities is the first CG transmission opportunity in the CG cycle period itself, and the time offset between the two is 0.
- the total number of CG opportunities included in the CG cycle period is N+1.
- the first CG transmission opportunity among the N CG transmission opportunities is the second CG transmission opportunity in the CG cycle period, and so on.
- the Nth CG transmission opportunity among the N CG transmission opportunities is the N+1th CG transmission opportunity in the CG cycle period.
- the access network device may send an RRC message including a third parameter set to the terminal.
- the RRC message may be a separate signaling for transmitting the third parameter set; or, the RRC message may be the aforementioned signaling for configuring at least one set of CG transmission opportunities, that is, it can also be understood as: the access network device newly adds a third parameter set to the RRC message containing at least one set of CG transmission opportunities.
- the RRC message includes cg-offset[n-1], and cg-offset[n-1] indicates the time offset of the nth CG transmission opportunity relative to the first CG transmission opportunity in a CG cycle.
- the terminal side can determine multiple CG transmission opportunities in each of the M time periods based on a set of CG transmission opportunities activated in the RRC message and the third parameter set.
- S902 The terminal determines multiple CG transmission opportunities in the CG cycle period according to the third parameter set.
- the terminal can use the following relationship (3) to determine the starting symbol of the nth CG transmission opportunity, and the terminal can also obtain the time domain resources and frequency domain resources of the CG transmission opportunity from the RRC message sent by the access network device.
- SFN n , TS n , Sn correspond to the nth CG transmission opportunity.
- SFN n is the number of the system frame where the starting symbol of the nth CG transmission opportunity is located.
- TS n is the number of the time slot where the starting symbol of the nth CG transmission opportunity is located.
- TS n can also be replaced by the description of slot number in the frame, that is, TS n is the time slot number in a system frame.
- Sn is the number of the starting symbol of the nth CG transmission opportunity.
- Sn can also be replaced by the description of symbol number in the slot, that is, Sn is the symbol number in a time slot.
- I is the number of the CG cycle
- P is the duration of the CG cycle period.
- Con -1 is the nth third parameter, which can be replaced by cg-offset[n-1].
- Con-1 is an integer, such as 0 or a positive integer, indicating that the aforementioned time offset of the nth CG transmission opportunity relative to the first CG transmission opportunity in the CG cycle period includes Con -1 time units. It can be understood that Con -1 time units are less than the duration of the CG cycle period.
- RSFN, RTS, RS, TS num , S num , Int[], modulo, etc. can all be understood by referring to the description in S502 , and will not be elaborated in the embodiment of the present application.
- the terminal can use the following relationship (4) to determine the starting symbol of the nth CG transmission opportunity, and the terminal can also obtain the time domain resources and frequency domain resources of the activated CG transmission opportunity from the DCI sent by the access network device.
- SFNn , TSn , Sn , I, P, and Co n-1 can be understood by referring to the description in equation (3);
- SFNstart , TSstart , Sstart , TSnum , Snum , Int[], modulo, and (1024 ⁇ TSnum ⁇ Snum ) can be understood by referring to the description in S502. This embodiment of the present application will not be elaborated on this.
- S903 The terminal sends uplink information at at least one CG transmission opportunity in the CG cycle period.
- the uplink information may include uplink data carried on the PDSCH.
- the uplink information may include a data frame, such as a video frame.
- FIG10 illustrates a communication method, which may also be replaced by a configuration method described as a CG transmission timing.
- the communication method mainly includes the following steps.
- S1001 An access network device sends a fourth parameter set to a terminal.
- the fourth parameter set includes resource parameters of N fourth reference CG transmission opportunities, and the resource parameters of the nth fourth reference CG transmission opportunity among the N fourth reference CG transmission opportunities are used to configure the nth CG transmission opportunity among the N CG transmission opportunities in the CG cycle period.
- Input opportunity; N is an integer greater than 1, 1 ⁇ n ⁇ N.
- the N fourth reference CG transmission opportunities are located in a reference CG cycle period, and the reference CG cycle period has the same duration as the CG cycle period to be configured.
- the resource parameters of the N fourth reference CG transmission opportunities in the reference CG cycle period correspond one-to-one to the N CG transmission opportunities in the CG cycle period to be configured.
- the access network device may send an RRC message including a fourth parameter set to the terminal.
- the RRC message may be a signaling used alone to transmit the fourth parameter set; or, the RRC message may be a signaling used to configure at least one set of CG transmission opportunities, and the RRC message may include a fourth parameter set.
- the terminal side may determine multiple CG transmission opportunities in each of the M time periods based on a set of CG transmission opportunities and the fourth parameter set activated in the RRC message.
- the resource parameters of the nth fourth reference CG transmission opportunity indicate the starting symbol of the nth fourth reference CG transmission opportunity, and the starting symbol of the nth fourth reference CG transmission opportunity can be used to configure the starting symbol of the nth CG transmission opportunity among N CG transmission opportunities in the CG cycle period.
- S1002 The terminal determines N CG transmission opportunities in the CG cycle period according to the fourth parameter set.
- the terminal can use the following relationship (5) to determine the starting symbol of the nth CG transmission opportunity, and the terminal can also obtain the time domain resources and frequency domain resources of the CG transmission opportunity from the RRC message sent by the access network device.
- RSFNn , RTSn , RSn correspond to the nth fourth reference CG transmission opportunity.
- RSFNn is the number of the system frame where the starting symbol of the nth fourth reference CG transmission opportunity is located, which can also be replaced by timeReferenceSFN[n];
- RTSn is the number of the time slot where the starting symbol of the nth fourth reference CG transmission opportunity is located, which can also be replaced by timeDomainOffset[n];
- RSn is the number of the starting symbol of the nth fourth reference CG transmission opportunity.
- SFNn , TSn , Sn correspond to the nth CG transmission opportunity.
- SFNn , TSn , Sn , TSnum , Snum , Int[], I, P, modulo, etc. can all be understood with reference to the description in S902, and this embodiment of the present application will not be elaborated on.
- the embodiments of the present application are not limited to this.
- the subscripts of some parameters in equation (5) can be uniformly replaced from n to n-1. For example, replace SFN n with SFN n-1 .
- the terminal can use the following relationship (6) to determine the starting symbol of the nth CG transmission opportunity, and the terminal can also obtain the time domain resources and frequency domain resources of the activated CG transmission opportunity from the DCI sent by the access network device.
- SFN start [n], TS start [n], and S start [n] correspond to the nth fourth reference CG transmission opportunity.
- SFN start [n] is the number of the system frame where the starting symbol of the nth fourth reference CG transmission opportunity is located, and can also be replaced by timeReferenceSFN[n].
- TS start [n] is the number of the time slot where the starting symbol of the nth fourth reference CG transmission opportunity is located.
- TS start [n] can also be replaced by slot number in the frame[n], that is, TS start [n] is the time slot number in a system frame.
- S start [n] is the number of the starting symbol of the nth fourth reference CG transmission opportunity.
- S start [n] can also be replaced by symbol number in the slot[n], that is, S start [n] is the symbol number in a time slot.
- SFNn , TSn , Sn correspond to the nth CG transmission opportunity.
- SFNn , TSn , Sn , TSnum , Snum , Int[], I, P, modulo, etc. can all be understood with reference to the description in S902, and this embodiment of the present application will not be elaborated on.
- the embodiments of the present application are not limited to this.
- the [n] of some parameters in equation (6) can be uniformly replaced with [n-1], for example, TS start [n] can be replaced with TS start [n-1]; and the subscripts of some parameters in equation (6) can be replaced from n to n-1.
- replace SFN n with is SFN n-1 .
- S1003 The terminal sends uplink information at at least one CG transmission opportunity in the CG cycle period.
- the uplink information may include uplink data carried on the PDSCH.
- the uplink information may include a data frame, such as a video frame.
- the above-mentioned embodiment three provided in the embodiments of the present application introduces resource parameter configurations of multiple reference CG transmission opportunities, which can speed up the determination of the time domain positions of multiple CG transmission opportunities within a CG cycle and reduce the uplink transmission delay.
- the embodiment of the present application further provides a retransmission method, which can be applied to any one of the above-mentioned embodiments 1 to 4.
- the retransmission method mainly includes the following steps.
- the access network device sends the first retransmission configuration information to the terminal, the first retransmission configuration information is used to configure the occupation duration of the retransmission resources corresponding to N CG transmission opportunities in a CG cycle period, the first retransmission configuration information indicates at least one duration; the occupation duration of the retransmission resources corresponding to a CG transmission opportunity among the N CG transmission opportunities is one of at least one duration, and any one of the at least one duration is less than the duration of a CG cycle period.
- the retransmission resources corresponding to at least two CG transmission opportunities in a CG cycle period are the same, and the interval between two adjacent CG transmission opportunities in the at least two CG transmission opportunities is greater than or equal to the occupation time of the retransmission resources.
- Such a design can reduce the number of retransmission resources required for CG transmission opportunities and avoid unnecessary waste of resources caused by occupying retransmission resources for a long time.
- the aforementioned retransmission resource may be a hybrid automatic repeat request HARQ process, and the occupation duration of the retransmission resource may also be replaced by the retransmission duration described as HARQ.
- the occupation duration of a retransmission resource may be the duration of one time period in the M time periods.
- one time period in the M time periods corresponds to a service cycle (the cycle of a video frame). It can be understood that a CG cycle includes M service cycles, and the occupation duration of a retransmission resource may be the duration of one service cycle, for example, 16.67ms.
- FIG12A illustrates that a CG cycle is 50ms, there are 3 CG transmission opportunities in each 16.67ms, and a CG cycle includes a total of 9 CG transmission opportunities. Assuming that the first CG transmission opportunity in the first 16.67ms corresponds to HARQ process 0, when the occupancy duration of a retransmission resource is 16.67ms, the first CG transmission opportunity in the second 16.67ms can also correspond to HARQ process 0. Similarly, for the 9 CG transmission opportunities in a CG cycle period, only 3 HARQ processes need to be configured.
- FIG12B shows that in the case where the occupancy duration of the HARQ process is configured to be greater than the CG cycle period (50ms), 9 HARQ processes (0 to 8) need to be configured.
- the occupancy time of a retransmission resource can be 15ms.
- the access network device when the data transmission corresponding to the first CG transmission opportunity is erroneous, the access network device sends a first retransmission indication message to the terminal, and the first retransmission indication message is used to indicate that the data corresponding to the first CG transmission opportunity is erroneous, or to instruct the terminal to retransmit the data corresponding to the first CG transmission opportunity.
- the first retransmission indication information includes scheduling information of retransmission resources corresponding to the first CG transmission opportunity.
- the retransmission resource may be a HARQ process
- the first retransmission indication information may include the HARQ process ID corresponding to the first CG transmission opportunity.
- the access network device may add the aforementioned first retransmission indication information in the HARQ process ID indication field in the DCI.
- the terminal retransmits the uplink information of the corresponding CG transmission opportunity on the retransmission resources indicated by the first retransmission indication information.
- the first retransmission indication information is the HARQ process ID corresponding to the first CG transmission opportunity, then the terminal can retransmit the uplink information on the HARQ process indicated by the HARQ process ID.
- an embodiment of the present application provides a communication device 1300, which includes a processing module 1301 and an interface module 1302.
- the communication device 1300 may be a terminal, or a communication device applied to a terminal or used in combination with a terminal, capable of implementing a method executed on the terminal side; or, the communication device 1300 may be an access network device, or a communication device applied to an access network device or used in combination with an access network device, capable of implementing a method executed on the access network device side.
- the interface module may also be referred to as a communication module, a transceiver module, a transceiver, a transceiver, or a transceiver device.
- the processing module may also be referred to as a processor, a processing board, a processing unit, or a processing device.
- the interface module is used to perform the sending operation and the receiving operation on the terminal side or the access network device side in the above method.
- the device used to implement the receiving function in the interface module may be regarded as a receiving unit.
- the device used to realize the sending function in the interface module is regarded as a sending unit, that is, the interface module includes a receiving unit and a sending unit.
- the processing module 1301 can be used to implement the processing function of the terminal in the examples of Figures 5, 8, 9, 10, or 11, and the interface module 1302 can be used to implement the transceiver function of the terminal in the examples of Figures 5, 8, 9, 10, or 11.
- the communication device can also be understood by referring to the description and possible designs in the content of the invention.
- the processing module 1301 can be used to implement the processing function of the access network device in the examples of Figure 5, Figure 8, Figure 9, Figure 10, or Figure 11, and the interface module 1302 can be used to implement the transceiver function of the access network device in the examples of Figure 5, Figure 8, Figure 9, Figure 10, or Figure 11.
- the communication device can also be understood by referring to the description and possible designs in the content of the invention.
- the aforementioned interface module and/or processing module can be implemented through a virtual module, for example, the processing module can be implemented through a software function unit or a virtual device, and the interface module can be implemented through a software function or a virtual device.
- the processing module or the interface module can also be implemented through a physical device, for example, if the communication device is implemented using a chip/chip circuit, the interface module can be an input-output circuit and/or a communication interface, performing input operations (corresponding to the aforementioned receiving operations) and output operations (corresponding to the aforementioned sending operations); the processing module is an integrated processor or microprocessor or integrated circuit.
- each functional module in each example of the embodiments of the present application may be integrated into one processor, or may exist physically separately, or two or more modules may be integrated into one module.
- the above-mentioned integrated modules may be implemented in the form of hardware or in the form of software functional modules.
- the embodiment of the present application also provides a communication device 1400.
- the communication device 1400 can be a chip or a chip system.
- the chip system can be composed of a chip, or can include a chip and other discrete devices.
- the communication device 1400 can be used to implement the functions of any network element in the communication system described in the above examples.
- the communication device 1400 may include at least one processor 1410.
- the processor 1410 is coupled to a memory, and the memory may be located within the communication device, or the memory may be integrated with the processor, or the memory may be located outside the communication device.
- the communication device 1400 may also include at least one memory 1420.
- the memory 1420 stores the necessary computer programs, computer programs or instructions and/or data for implementing any of the above examples; the processor 1410 may execute the computer program stored in the memory 1420 to complete the method in any of the above examples.
- the communication device 1400 may also include a communication interface 1430, and the communication device 1400 may exchange information with other devices through the communication interface 1430.
- the communication interface 1430 may be a transceiver, a circuit, a bus, a module, a pin, or other types of communication interfaces.
- the communication interface 1430 in the communication device 1400 may also be an input-output circuit, which may input information (or receive information) and output information (or send information)
- the processor may be an integrated processor or a microprocessor or an integrated circuit or a logic circuit, and the processor may determine the output information based on the input information.
- the coupling in the embodiment of the present application is an indirect coupling or communication connection between devices, units or modules, which can be electrical, mechanical or other forms, and is used for information exchange between devices, units or modules.
- the processor 1410 may cooperate with the memory 1420 and the communication interface 1430.
- the specific connection medium between the above-mentioned processor 1410, the memory 1420 and the communication interface 1430 is not limited in the embodiment of the present application.
- the bus 1440 may be a peripheral component interconnect (PCI) bus or an extended industry standard architecture (EISA) bus.
- PCI peripheral component interconnect
- EISA extended industry standard architecture
- the bus may be divided into an address bus, a data bus, a control bus, and the like.
- FIG. 14 is represented by only one thick line, but this does not mean that there is only one bus or one type of bus.
- the processor may be a general-purpose processor, a digital signal processor, an application-specific integrated circuit, a field programmable gate array or other programmable logic device, a discrete gate or transistor logic device, or a discrete hardware component, and may implement or execute the methods, steps, and logic block diagrams disclosed in the embodiments of the present application.
- the general-purpose processor may be a microprocessor or any conventional processor, etc.
- the steps of the method disclosed in the embodiments of the present application may be directly embodied as being executed by a hardware processor, or may be executed by a combination of hardware and software modules in the processor.
- the memory may be a non-volatile memory, such as a hard disk drive (HDD) or a solid-state drive (SSD), etc., or a volatile memory (volatile memory), such as a random-access memory (RAM).
- the memory is any other medium that can be used to carry or store the desired program code in the form of instructions or data structures and can be accessed by a computer, but is not limited thereto.
- the memory in the embodiments of the present application may also be a circuit or any other device that can realize a storage function, for storing program instructions and/or data.
- the communication device 1400 may be applied to an access network device.
- the communication device 1400 may be an access network device.
- the network access device may also be a device that can support the access network device and implement the functions of the access network device in any of the above-mentioned examples.
- the memory 1420 stores a computer program (or instruction) and/or data that implements the functions of the access network device in any of the above-mentioned examples.
- the processor 1410 can execute the computer program stored in the memory 1420 to complete the method performed by the access network device in any of the above-mentioned examples.
- the communication interface in the communication device 1400 can be used to interact with the terminal, send information to the terminal, or receive information from the terminal.
- the communication device 1400 can be applied to a terminal.
- the communication device 1400 can be a terminal, or a device that can support a terminal and implement the functions of the terminal in any of the above-mentioned examples.
- the memory 1420 stores a computer program (or instruction) and/or data that implements the functions of the terminal in any of the above-mentioned examples.
- the processor 1410 can execute the computer program stored in the memory 1420 to complete the method executed by the terminal in any of the above-mentioned examples.
- the communication interface in the communication device 1400 can be used to interact with an access network device, send information to the access network device, or receive information from the access network device.
- the communication device 1400 provided in this example can be applied to an access network device to complete the method executed by the access network device, or applied to a terminal to complete the method executed by the terminal, the technical effects that can be obtained can refer to the above method examples and will not be repeated here.
- an embodiment of the present application provides a communication system, including an access network device and a terminal, wherein the access network device and the terminal can implement the method provided in the examples shown in Figures 5, 8, 9, 10, or 11.
- the technical solution provided in the embodiment of the present application can be implemented in whole or in part by software, hardware, firmware or any combination thereof.
- software When implemented using software, it can be implemented in whole or in part in the form of a computer program product.
- the computer program product includes one or more computer instructions.
- the computer program instructions When the computer program instructions are loaded and executed on a computer, the process or function according to the embodiment of the present application is generated in whole or in part.
- the computer can be a general-purpose computer, a special-purpose computer, a computer network, an access network device, a terminal or other programmable device.
- the computer instructions can be stored in a computer-readable storage medium, or transmitted from one computer-readable storage medium to another computer-readable storage medium.
- the computer instructions can be transmitted from a website site, a computer, a server or a data center by wired (e.g., coaxial cable, optical fiber, digital subscriber line (digital subscriber line, DSL)) or wireless (e.g., infrared, wireless, microwave, etc.) mode to another website site, computer, server or data center.
- the computer-readable storage medium can be any available medium that can be accessed by a computer or a data storage device such as a server or a data center that includes one or more available media integrated. Available media can be magnetic media (e.g., floppy disks, hard disks, magnetic tapes), optical media (e.g., digital video discs (DVD)), or semiconductor media, etc.
- the examples may reference each other, for example, the methods and/or terms between method embodiments may reference each other, for example, the functions and/or terms between device embodiments may reference each other, for example, the functions and/or terms between device examples and method examples may reference each other.
Landscapes
- Engineering & Computer Science (AREA)
- Computer Networks & Wireless Communication (AREA)
- Signal Processing (AREA)
- Mobile Radio Communication Systems (AREA)
Abstract
一种CG传输时机的配置方法及通信装置,应用于通信技术领域。终端侧获得第一参数集合,所述第一参数集合包括M个第一参数,所述M个第一参数中第m个第一参数用于配置M个时段的第m个时段中的多个配置授权CG传输时机,所述第m个第一参数指示所述第m个时段中连续的Nm个时间单元,所述第m个时段中的多个CG传输时机包括所述Nm个时间单元中的上行时间单元;M为大于1的整数,1≤m≤M,Nm为大于1的整数;在所述第m个时段中的至少一个CG传输时机上,发送上行信息。本申请能够给降低半静态调度的业务的上行传输时延。
Description
相关申请的交叉引用
本申请要求在2023年02月17日提交中华人民共和国国家知识产权局、申请号为202310157021.3、申请名称为“一种CG传输时机的配置方法及通信装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
本申请涉及通信技术领域,尤其涉及一种CG传输时机的配置方法及通信装置。
随着无线通信系统的不断发展,数据传输时延不断降低,传输容量越来越大。无线通信系统逐渐渗入一些实时性强、数据容量要求大的业务,比如视频传输、云游戏、扩展现实(extended reality,XR)等。其中,XR是指通过计算机技术和可穿戴设备产生的一个真实与虚拟组合、可人机交互的环境,是增强现实(augmented reality,AR)、虚拟现实(virtual reality,VR)、混合现实(mixed reality,MR)等多种形式的统称。
以XR业务为例,接入网设备和终端之间可以通过半静态调度的方式传输XR业务的视频帧,接入网设备可以通过半静态调度为终端配置传输时机。如果视频帧对应的传输时机所能承载的数据量小于视频帧的数据量,会引入额外的调度时延,进而增加XR业务的上行传输时延。
发明内容
本申请提供一种CG传输时机的配置方法及装置,能够降低半静态调度的业务的上行传输时延。
第一方面,本申请实施例提供一种CG传输时机的配置方法,该方法可以由终端执行;或者,也可以由应用于终端中的模块,例如芯片、芯片系统或电路执行;或者,还可以由能实现全部或部分终端功能的逻辑节点、逻辑模块或软件实现,对此不作限定。为了便于描述,下面以由终端执行为例进行说明。终端获得第一参数集合,该第一参数集合包括M个第一参数,M个第一参数中第m个第一参数用于配置M个时段的第m个时段中的多个配置授权CG传输时机,第m个第一参数指示第m个时段中连续的Nm个时间单元,第m个时段中的多个CG传输时机包括Nm个时间单元中的上行时间单元;M为大于1的整数,1≤m≤M,Nm为大于1的整数;终端在第m个时段中的至少一个CG传输时机上,发送上行信息。
通过设计第一参数集合指示多个CG传输时机所在的时间单元,以较少的指示开销,实现对一定时间段内多个CG传输时机的配置,用于半静态调度的业务,能够减少上行传输时延。
在一种可能的设计中,M个时段对应于一个CG周期时段,或者,M个时段中的一个时段对应于一个CG周期时段。这样的设计实现了在CG周期时段中配置多个CG传输时机,可以周期性地增加半静态调度的资源,能够减少上行传输时延,有助于提升上行传输的稳定性。
在一种可能的设计中,N个CG传输时机中一个CG传输时机对应的混合自动重传请求HARQ的重传时长小于一个CG周期时段的时长。这样的设计减少了HARQ的重传时长,可以支持一个CG周期时段内不同CG传输时机对HARQ资源的重复利用,能够节省HARQ资源,提升HARQ资源的利用率。
下面对M个时段的至少一个时段中的第一个CG传输时机进行说明。
在一种可能的设计中,M个时段的第一时段中的第一个CG传输时机的起始符号满足:
SFN1×TSnum×Snum+TS1×Snum+S1=Int[RSFN×TSnum×Snum+RTS×Snum+RS+I×P]modulo
(1024×TSnum×Snum);
SFN1×TSnum×Snum+TS1×Snum+S1=Int[RSFN×TSnum×Snum+RTS×Snum+RS+I×P]modulo
(1024×TSnum×Snum);
其中,SFN1为第一时段中的第一个CG传输时机的起始符号所在的系统帧的编号,TS1为第一时段中的第一个CG传输时机的起始符号所在的时隙的编号,S1为第一时段中的第一个CG传输时机的起始符号的编号;RSFN为第一参考CG传输时机的起始符号所在的系统帧的编号,RTS为第一参考CG传输时机的起始符号所在的时隙的编号,RS为第一参考CG传输时机的起始符号的编号;TSnum为一个系统帧中的时隙的数量,Snum为一个时隙中的符号的数量,Int[]为取整符,modulo为取模运算符。
示例性地,该设计可以应用于CG类型1的场景。
在另一种可能的设计中,M个时段的第一时段中的第一个CG传输时机的起始时隙满足:
SFN2×TSnum×Snum+TS2×Snum+S2=Int[SFNstart×TSnum×Snum+TSstart×Snum+Sstart+I×P]
modulo(1024×TSnum×Snum);
SFN2×TSnum×Snum+TS2×Snum+S2=Int[SFNstart×TSnum×Snum+TSstart×Snum+Sstart+I×P]
modulo(1024×TSnum×Snum);
其中,SFN2为第一时段中的第一个CG传输时机的起始符号所在的系统帧的编号,TS2为第一时段中的第一个CG传输时机的起始符号所在的时隙的编号,S2为第一时段中的第一个CG传输时机的起始符号的编号;SFNstart为第二参考CG传输时机的起始符号所在的系统帧的编号,TSstart为第二参考CG传输时机的起始符号所在的时隙的编号,Sstart为第二参考CG传输时机的起始符号的编号,第二参考CG传输时机的起始符号是基于下行控制信息DCI确定的;TSnum为一个系统帧中的时隙的数量,Snum为一个时隙中的符号的数量,Int[]为取整符,modulo为取模运算符。示例性地,该设计可以应用于CG类型2的场景。
针对上述两种设计,有关第一时段的定义可以参照如下内容(1)或(2)理解:
(1)在M个时段对应于一个CG周期时段的情况下,第一时段为M个时段中的第一个时段,I为一个CG周期时段的编号,P为一个CG周期时段的时长,第m个时段中的第一个CG传输时机的起始符号相对于第一时段中的第一个CG传输时机的起始符号的偏移量为M个时段中m-1个时段的时长的取整结果。这样的设计中,利用前述关系式和偏移量,能够确定M个时段中每个时段的第一个CG传输时机的位置。
(2)第一时段为M个时段中第m个时段,I为第m个时段的编号,P为第m个时段的时长。这样的设计中,利用前述关系式,能够确定M个时段中每个时段的第一个CG传输时机的位置。
第二方面,本申请实施例提供一种CG传输时机的配置方法,该方法可以由终端执行;或者,也可以由应用于终端中的模块,例如芯片、芯片系统或电路执行;或者,还可以由能实现全部或部分终端功能的逻辑节点、逻辑模块或软件实现,对此不作限定。为了便于描述,下面以由终端执行为例进行说明。终端获得第二参数,该第二参数用于配置M个时段的第m个时段中的Km个配置授权CG传输时机,Km个CG传输时机包括第m个时段中的上行时间单元,第二参数指示K的取值;其中,M为大于1的整数,1≤m≤M,K为大于或等于Km的整数,Km为大于或等于1的整数;终端在第m个时段中的至少一个CG传输时机上,发送上行信息。
通过设计第二参数指示CG传输时机的数量,以较少的指示开销,实现一定时段内多个CG传输时机的配置,用于半静态调度的业务,能够减少上行传输时延。
在一种可能的设计中,M个时段对应于一个CG周期时段,或者,M个时段中的一个时段对应于一个CG周期时段。
在一种可能的设计中,N个CG传输时机中一个CG传输时机对应的混合自动重传请求HARQ的重传时长小于一个CG周期时段的时长。
下面对M个时段的至少一个时段中的第一个CG传输时机进行说明。
在一种可能的设计中,M个时段的第一时段中的第一个CG传输时机的起始符号满足:
SFN1×TSnum×Snum+TS1×Snum+S1=Int[RSFN×TSnum×Snum+RTS×Snum+RS+I×P]modulo
(1024×TSnum×Snum);
SFN1×TSnum×Snum+TS1×Snum+S1=Int[RSFN×TSnum×Snum+RTS×Snum+RS+I×P]modulo
(1024×TSnum×Snum);
其中,SFN1为第一时段中的第一个CG传输时机的起始符号所在的系统帧的编号,TS1为第一时段中的第一个CG传输时机的起始符号所在的时隙的编号,S1为第一时段中的第一个CG传输时机的起始符号的编号;RSFN为第一参考CG传输时机的起始符号所在的系统帧的编号,RTS为第一参考CG传输时机的起始符号所在的时隙的编号,RS为第一参考CG传输时机的起始符号的编号;TSnum为一个系统帧中的时隙的数量,Snum为一个时隙中的符号的数量,Int[]为取整符,modulo为取模运算符。示例性地,该设计可以应用于CG类型1的场景。
在另一种可能的设计中,M个时段的第一时段中的第一个CG传输时机的起始时隙满足:
SFN2×TSnum×Snum+TS2×Snum+S2=Int[SFNstart×TSnum×Snum+TSstart×Snum+Sstart+I×P]
modulo(1024×TSnum×Snum);
SFN2×TSnum×Snum+TS2×Snum+S2=Int[SFNstart×TSnum×Snum+TSstart×Snum+Sstart+I×P]
modulo(1024×TSnum×Snum);
其中,SFN2为第一时段中的第一个CG传输时机的起始符号所在的系统帧的编号,TS2为第一时段中的第一个CG传输时机的起始符号所在的时隙的编号,S2为第一时段中的第一个CG传输时机的起
始符号的编号;SFNstart为第二参考CG传输时机的起始符号所在的系统帧的编号,TSstart为第二参考CG传输时机的起始符号所在的时隙的编号,Sstart为第二参考CG传输时机的起始符号的编号,第二参考CG传输时机的起始符号是基于下行控制信息DCI确定的;TSnum为一个系统帧中的时隙的数量,Snum为一个时隙中的符号的数量,Int[]为取整符,modulo为取模运算符。示例性地,该设计可以应用于CG类型2的场景。
针对上述两种设计,有关第一时段的定义可以参照如下内容(1)或(2)理解:
(1)在M个时段对应于一个CG周期时段的情况下,第一时段为M个时段中的第一个时段,I为一个CG周期时段的编号,P为一个CG周期时段的时长,第m个时段中的第一个CG传输时机的起始符号相对于第一时段中的第一个CG传输时机的起始符号的偏移量为M个时段中m-1个时段的时长的取整结果。
(2)第一时段为M个时段中第m个时段,I为第m个时段的编号,P为第m个时段的时长。
第三方面,本申请实施例提供一种CG传输时机的配置方法,该方法可以由终端执行;或者,也可以由应用于终端中的模块,例如芯片、芯片系统或电路执行;或者,还可以由能实现全部或部分终端功能的逻辑节点、逻辑模块或软件实现,对此不作限定。为了便于描述,下面以由终端执行为例进行说明。终端获得第三参数集合,该第三参数集合包括N个第三参数,N个第三参数中第n个第三参数用于配置配置授权CG周期时段中,N个CG传输时机中的第n个CG传输时机相对于CG周期时段中第一个CG传输时机的时间偏移量;N为大于1的整数,1≤n≤N;终端在CG周期时段中的至少一个CG传输时机上,发送上行信息。
通过设计第三参数集合指示CG周期时段中不同CG传输时机之间的偏移,以较少的指示开销,实现CG周期时段中多个CG传输时机的配置,可以周期性地增加半静态调度的资源,能够减少上行传输时延,有助于提升上行传输的稳定性。
在一种可能的设计中,N个CG传输时机中的一个CG传输时机对应的混合自动重传请求HARQ的重传时长小于或等于一个CG周期时段的时长。
下面对CG周期时段中第n个CG传输时机进行说明。
在一种可能的设计中,第n个CG传输时机的起始符号满足:
SFNn×TSnum×Snum+TSn×Snum+Sn=Int[RSFN×TSnum×Snum+RTS×Snum+RS+I×P+
Con-1×Snum]modulo(1024×TSnum×Snum);
SFNn×TSnum×Snum+TSn×Snum+Sn=Int[RSFN×TSnum×Snum+RTS×Snum+RS+I×P+
Con-1×Snum]modulo(1024×TSnum×Snum);
其中,SFNn为第n个CG传输时机的起始符号所在的系统帧的编号,TSn为第n个CG传输时机的起始符号所在的时隙的编号,Sn为第n个CG传输时机的起始符号的编号,Con-1为第n个第三参数;RSFN为第一参考CG传输时机的起始符号所在的系统帧的编号,RTS为第一参考CG传输时机的起始符号所在的时隙的编号,RS为第一参考CG传输时机的起始符号的编号;I为CG周期时段的编号,P为CG周期时段的时长;TSnum为一个系统帧中的时隙的数量,Snum为一个时隙中的符号的数量,Int[]为取整符,modulo为取模运算符。示例性地,该设计可以应用于CG类型1的场景。
在另一种可能的设计中,第n个CG传输时机的起始符号满足:
SFNn×TSnum×Snum+TSn×Snum+Sn=Int[SFNstart×TSnum×Snum+TSstart×Snum+Sstart+I×
P+Con-1×Snum]modulo(1024×TSnum×Snum);
SFNn×TSnum×Snum+TSn×Snum+Sn=Int[SFNstart×TSnum×Snum+TSstart×Snum+Sstart+I×
P+Con-1×Snum]modulo(1024×TSnum×Snum);
其中,SFNn为第n个CG传输时机的起始符号所在的系统帧的编号,TSn为第n个CG传输时机的起始符号所在的时隙的编号,Sn为第n个CG传输时机的起始符号的编号,Con-1为第n个第三参数;SFNstart为第二参考CG传输时机的起始符号所在的系统帧的编号,TSstart为第二参考CG传输时机的起始符号所在的时隙的编号,Sstart为第二参考CG传输时机的起始符号的编号,第二参考CG传输时机的起始符号是基于下行控制信息DCI确定的;TSnum为一个系统帧中的时隙的数量,Snum为一个时隙中的符号的数量,Int[]为取整符,modulo为取模运算符。示例性地,该设计可以应用于CG类型2的场景。
第四方面,本申请实施例提供一种CG传输时机的配置方法,该方法可以由接入网设备执行;或者,也可以由应用于接入网设备中的模块,例如芯片、芯片系统或电路执行;或者,还可以由能实现全部或部分接入网设备功能的逻辑节点、逻辑模块或软件实现,对此不作限定。为了便于描述,下面以由接入网设备执行为例进行说明。接入网设备发送第一参数集合,该第一参数集合包括M个第一参数,M个第一参数中第m个第一参数用于配置M个时段的第m个时段中的多个配置授权CG传输时机,
第m个第一参数指示第m个时段中连续的Nm个时间单元,第m个时段中的多个CG传输时机包括Nm个时间单元中的上行时间单元;M为大于1的整数,1≤m≤M,Nm为大于1的整数。接入网设备在第m个时段中的至少一个CG传输时机上,接收上行信息。
在一种可能的设计中,M个时段对应于一个CG周期时段,或者,M个时段中的一个时段对应于一个CG周期时段。
在一种可能的设计中,N个CG传输时机中一个CG传输时机对应的混合自动重传请求HARQ的重传时长小于一个CG周期时段的时长。
下面对M个时段的至少一个时段中的第一个CG传输时机进行说明。
在一种可能的设计中,M个时段的第一时段中的第一个CG传输时机的起始符号满足:
SFN1×TSnum×Snum+TS1×Snum+S1=Int[RSFN×TSnum×Snum+RTS×Snum+RS+I×P]modulo
(1024×TSnum×Snum);
SFN1×TSnum×Snum+TS1×Snum+S1=Int[RSFN×TSnum×Snum+RTS×Snum+RS+I×P]modulo
(1024×TSnum×Snum);
其中,SFN1为第一时段中的第一个CG传输时机的起始符号所在的系统帧的编号,TS1为第一时段中的第一个CG传输时机的起始符号所在的时隙的编号,S1为第一时段中的第一个CG传输时机的起始符号的编号;RSFN为第一参考CG传输时机的起始符号所在的系统帧的编号,RTS为第一参考CG传输时机的起始符号所在的时隙的编号,RS为第一参考CG传输时机的起始符号的编号;TSnum为一个系统帧中的时隙的数量,Snum为一个时隙中的符号的数量,Int[]为取整符,modulo为取模运算符。示例性地,该设计可以应用于CG类型1的场景。
在另一种可能的设计中,M个时段的第一时段中的第一个CG传输时机的起始时隙满足:
SFN2×TSnum×Snum+TS2×Snum+S2=Int[SFNstart×TSnum×Snum+TSstart×Snum+Sstart+I×P]
modulo(1024×TSnum×Snum);
SFN2×TSnum×Snum+TS2×Snum+S2=Int[SFNstart×TSnum×Snum+TSstart×Snum+Sstart+I×P]
modulo(1024×TSnum×Snum);
其中,SFN2为第一时段中的第一个CG传输时机的起始符号所在的系统帧的编号,TS2为第一时段中的第一个CG传输时机的起始符号所在的时隙的编号,S2为第一时段中的第一个CG传输时机的起始符号的编号;SFNstart为第二参考CG传输时机的起始符号所在的系统帧的编号,TSstart为第二参考CG传输时机的起始符号所在的时隙的编号,Sstart为第二参考CG传输时机的起始符号的编号,第二参考CG传输时机的起始符号是基于下行控制信息DCI确定的;TSnum为一个系统帧中的时隙的数量,Snum为一个时隙中的符号的数量,Int[]为取整符,modulo为取模运算符。示例性地,该设计可以应用于CG类型2的场景。
针对上述两种设计,有关第一时段的定义可以参照如下内容(1)或(2)理解:
(1)在M个时段对应于一个CG周期时段的情况下,第一时段为M个时段中的第一个时段,I为一个CG周期时段的编号,P为一个CG周期时段的时长,第m个时段中的第一个CG传输时机的起始符号相对于第一时段中的第一个CG传输时机的起始符号的偏移量为M个时段中m-1个时段的时长的取整结果。这样的设计中,利用前述关系式和偏移量,能够确定M个时段中每个时段的第一个CG传输时机的位置。
(2)第一时段为M个时段中第m个时段,I为第m个时段的编号,P为第m个时段的时长。这样的设计中,利用前述关系式,能够确定M个时段中每个时段的第一个CG传输时机的位置。
第五方面,本申请实施例提供一种CG传输时机的配置方法,该方法可以由接入网设备执行;或者,也可以由应用于接入网设备中的模块,例如芯片、芯片系统或电路执行;或者,还可以由能实现全部或部分接入网设备功能的逻辑节点、逻辑模块或软件实现,对此不作限定。为了便于描述,下面以由接入网设备执行为例进行说明。接入网设备发送第二参数,该第二参数用于配置M个时段的第m个时段中的Km个配置授权CG传输时机,Km个CG传输时机包括第m个时段中的上行时间单元,第二参数指示K的取值;其中,M为大于1的整数,1≤m≤M,K为大于或等于Km的整数,Km为大于或等于1的整数。接入网设备在第m个时段中的至少一个CG传输时机上,接收上行信息。
在一种可能的设计中,M个时段对应于一个CG周期时段,或者,M个时段中的一个时段对应于一个CG周期时段。
在一种可能的设计中,N个CG传输时机中一个CG传输时机对应的混合自动重传请求HARQ的重传时长小于一个CG周期时段的时长。
下面对M个时段的至少一个时段中的第一个CG传输时机进行说明。
在一种可能的设计中,M个时段的第一时段中的第一个CG传输时机的起始符号满足:
SFN1×TSnum×Snum+TS1×Snum+S1=Int[RSFN×TSnum×Snum+RTS×Snum+RS+I×P]modulo
(1024×TSnum×Snum);
SFN1×TSnum×Snum+TS1×Snum+S1=Int[RSFN×TSnum×Snum+RTS×Snum+RS+I×P]modulo
(1024×TSnum×Snum);
其中,SFN1为第一时段中的第一个CG传输时机的起始符号所在的系统帧的编号,TS1为第一时段中的第一个CG传输时机的起始符号所在的时隙的编号,S1为第一时段中的第一个CG传输时机的起始符号的编号;RSFN为第一参考CG传输时机的起始符号所在的系统帧的编号,RTS为第一参考CG传输时机的起始符号所在的时隙的编号,RS为第一参考CG传输时机的起始符号的编号;TSnum为一个系统帧中的时隙的数量,Snum为一个时隙中的符号的数量,Int[]为取整符,modulo为取模运算符。示例性地,该设计可以应用于CG类型1的场景。
在另一种可能的设计中,M个时段的第一时段中的第一个CG传输时机的起始时隙满足:
SFN2×TSnum×Snum+TS2×Snum+S2=Int[SFNstart×TSnum×Snum+TSstart×Snum+Sstart+I×P]
modulo(1024×TSnum×Snum);
SFN2×TSnum×Snum+TS2×Snum+S2=Int[SFNstart×TSnum×Snum+TSstart×Snum+Sstart+I×P]
modulo(1024×TSnum×Snum);
其中,SFN2为第一时段中的第一个CG传输时机的起始符号所在的系统帧的编号,TS2为第一时段中的第一个CG传输时机的起始符号所在的时隙的编号,S2为第一时段中的第一个CG传输时机的起始符号的编号;SFNstart为第二参考CG传输时机的起始符号所在的系统帧的编号,TSstart为第二参考CG传输时机的起始符号所在的时隙的编号,Sstart为第二参考CG传输时机的起始符号的编号,第二参考CG传输时机的起始符号是基于下行控制信息DCI确定的;TSnum为一个系统帧中的时隙的数量,Snum为一个时隙中的符号的数量,Int[]为取整符,modulo为取模运算符。示例性地,该设计可以应用于CG类型2的场景。
针对上述两种设计,有关第一时段的定义可以参照如下内容(1)或(2)理解:
(1)在M个时段对应于一个CG周期时段的情况下,第一时段为M个时段中的第一个时段,I为一个CG周期时段的编号,P为一个CG周期时段的时长,第m个时段中的第一个CG传输时机的起始符号相对于第一时段中的第一个CG传输时机的起始符号的偏移量为M个时段中m-1个时段的时长的取整结果。这样的设计中,利用前述关系式和偏移量,能够确定M个时段中每个时段的第一个CG传输时机的位置。
(2)第一时段为M个时段中第m个时段,I为第m个时段的编号,P为第m个时段的时长。这样的设计中,利用前述关系式,能够确定M个时段中每个时段的第一个CG传输时机的位置。
第六方面,本申请实施例提供一种CG传输时机的配置方法,该方法可以由接入网设备执行;或者,也可以由应用于接入网设备中的模块,例如芯片、芯片系统或电路执行;或者,还可以由能实现全部或部分接入网设备功能的逻辑节点、逻辑模块或软件实现,对此不作限定。为了便于描述,下面以由接入网设备执行为例进行说明。接入网设备发送第三参数集合,该第三参数集合包括N个第三参数,N个第三参数中第n个第三参数用于配置配置授权CG周期时段中,N个CG传输时机中的第n个CG传输时机相对于CG周期时段中第一个CG传输时机的时间偏移量;N为大于1的整数,1≤n≤N;接入网设备在CG周期时段中的至少一个CG传输时机上,发送上行信息。
在一种可能的设计中,N个CG传输时机中的一个CG传输时机对应的混合自动重传请求HARQ的重传时长小于一个CG周期时段的时长。
下面对CG周期时段中第n个CG传输时机进行说明。
在一种可能的设计中,第n个CG传输时机的起始符号满足:
SFNn×TSnum×Snum+TSn×Snum+Sn=Int[RSFN×TSnum×Snum+RTS×Snum+RS+I×P+
Con-1×Snum]modulo(1024×TSnum×Snum);
SFNn×TSnum×Snum+TSn×Snum+Sn=Int[RSFN×TSnum×Snum+RTS×Snum+RS+I×P+
Con-1×Snum]modulo(1024×TSnum×Snum);
其中,SFNn为第n个CG传输时机的起始符号所在的系统帧的编号,TSn为第n个CG传输时机的起始符号所在的时隙的编号,Sn为第n个CG传输时机的起始符号的编号,Con-1为第n个第三参数;
RSFN为第一参考CG传输时机的起始符号所在的系统帧的编号,RTS为第一参考CG传输时机的起始符号所在的时隙的编号,RS为第一参考CG传输时机的起始符号的编号;I为CG周期时段的编号,P为CG周期时段的时长;TSnum为一个系统帧中的时隙的数量,Snum为一个时隙中的符号的数量,Int[]为取整符;modulo为取模运算符。
在另一种可能的设计中,第n个CG传输时机的起始符号满足:
SFNn×TSnum×Snum+TSn×Snum+Sn=Int[SFNstart×TSnum×Snum+TSstart×Snum+Sstart+I×
P+Con-1×Snum]modulo(1024×TSnum×Snum);
SFNn×TSnum×Snum+TSn×Snum+Sn=Int[SFNstart×TSnum×Snum+TSstart×Snum+Sstart+I×
P+Con-1×Snum]modulo(1024×TSnum×Snum);
其中,SFNn为第n个CG传输时机的起始符号所在的系统帧的编号,TSn为第n个CG传输时机的起始符号所在的时隙的编号,Sn为第n个CG传输时机的起始符号的编号,Con-1为第n个第三参数;
SFNstart为第二参考CG传输时机的起始符号所在的系统帧的编号,TSstart为第二参考CG传输时机的起始符号所在的时隙的编号,Sstart为第二参考CG传输时机的起始符号的编号,第二参考CG传输时机的起始符号是基于下行控制信息DCI确定的;TSnum为一个系统帧中的时隙的数量,Snum为一个时隙中的符号的数量,Int[]为取整符,modulo为取模运算符。
第七方面,本申请实施例提供一种通信装置,该通信装置可以是终端,也可以是应用于终端的装置、模块或芯片等,或者是能够和终端匹配使用的装置。一种设计中,该通信装置可以包括执行第一方面中所描述的方法/操作/步骤/动作所一一对应的模块,该模块可以是硬件电路,也可是软件,也可以是硬件电路结合软件实现。一种设计中,该通信装置可以包括处理模块和接口模块。
接口模块,用于获得第一参数集合,第一参数集合包括M个第一参数,该M个第一参数中第m个第一参数用于配置M个时段的第m个时段中的多个配置授权CG传输时机,第m个第一参数指示第m个时段中连续的Nm个时间单元,第m个时段中的多个CG传输时机包括Nm个时间单元中的上行时间单元;M为大于1的整数,1≤m≤M,Nm为大于1的整数。
接口模块,还用于在第m个时段中的至少一个CG传输时机上,发送上行信息。
处理模块,用于控制接口模块执行获得(获取)或发送操作。
一些可能的设计可参照第一方面中可能的设计理解和实现,本申请实施例对此不进行赘述。
第八方面,本申请实施例提供一种通信装置,该通信装置可以是终端,也可以是应用于终端的装置、模块或芯片等,或者是能够和终端匹配使用的装置。一种设计中,该通信装置可以包括执行第二方面中所描述的方法/操作/步骤/动作所一一对应的模块,该模块可以是硬件电路,也可是软件,也可以是硬件电路结合软件实现。一种设计中,该通信装置可以包括处理模块和接口模块。
接口模块,用于获得第一参数集合,第一参数集合包括M个第一参数,该M个第一参数中第m个第一参数用于配置M个时段的第m个时段中的多个配置授权CG传输时机,第m个第一参数指示第m个时段中连续的Nm个时间单元,第m个时段中的多个CG传输时机包括Nm个时间单元中的上行时间单元;M为大于1的整数,1≤m≤M,Nm为大于1的整数。
接口模块,还用于在第m个时段中的至少一个CG传输时机上,发送上行信息。
处理模块,用于控制接口模块执行获得(获取)或发送操作。
一些可能的设计可参照第二方面中可能的设计理解和实现,本申请实施例对此不进行赘述。
第九方面,本申请实施例提供一种通信装置,该通信装置可以是终端,也可以是应用于终端的装置、模块或芯片等,或者是能够和终端匹配使用的装置。一种设计中,该通信装置可以包括执行第三方面中所描述的方法/操作/步骤/动作所一一对应的模块,该模块可以是硬件电路,也可是软件,也可以是硬件电路结合软件实现。一种设计中,该通信装置可以包括处理模块和接口模块。
接口模块,用于获得第三参数集合,第三参数集合包括N个第三参数,该N个第三参数中第n个第三参数用于配置配置授权CG周期时段中,N个CG传输时机中的第n个CG传输时机相对于CG周期时段中第一个CG传输时机的时间偏移量;N为大于1的整数,1≤n≤N。
接口模块,还用于在CG周期时段中的至少一个CG传输时机上,发送上行信息。
处理模块,用于控制接口模块执行获得(获取)或发送操作。
一些可能的设计可参照第三方面中可能的设计理解和实现,本申请实施例对此不进行赘述。
第十方面,本申请实施例提供一种通信装置,该通信装置可以是接入网设备,也可以是应用于接入网设备的装置、模块或芯片等,还可以是能实现全部或部分接入网设备功能的逻辑节点、逻辑模块或软件,或者是能够和接入网设备匹配使用的装置。一种设计中,该通信装置可以包括执行第四方面中所描述的方法/操作/步骤/动作所一一对应的模块,该模块可以是硬件电路,也可是软件,也可以是硬件电路结合软件实现。一种设计中,该通信装置可以包括处理模块和接口模块。
接口模块,用于发送第一参数集合,第一参数集合包括M个第一参数,该M个第一参数中第m个第一参数用于配置M个时段的第m个时段中的多个配置授权CG传输时机,第m个第一参数指示第
m个时段中连续的Nm个时间单元,第m个时段中的多个CG传输时机包括Nm个时间单元中的上行时间单元;M为大于1的整数,1≤m≤M,Nm为大于1的整数。
接口模块,还用于在第m个时段中的至少一个CG传输时机上,接收上行信息。
处理模块,用于控制接口模块执行获得(获取)或发送操作。
一些可能的设计可参照第四方面中可能的设计理解和实现,本申请实施例对此不进行赘述。
第十一方面,本申请实施例提供一种通信装置,该通信装置可以是接入网设备,也可以是应用于接入网设备的装置、模块或芯片等,还可以是能实现全部或部分接入网设备功能的逻辑节点、逻辑模块或软件,或者是能够和接入网设备匹配使用的装置。一种设计中,该通信装置可以包括执行第五方面中所描述的方法/操作/步骤/动作所一一对应的模块,该模块可以是硬件电路,也可是软件,也可以是硬件电路结合软件实现。一种设计中,该通信装置可以包括处理模块和接口模块。
接口模块,用于发送第二参数,该第二参数用于配置M个时段的第m个时段中的Km个配置授权CG传输时机,Km个CG传输时机包括第m个时段中的上行时间单元,第二参数指示K的取值;其中,M为大于1的整数,1≤m≤M,K为大于或等于Km的整数,Km为大于或等于1的整数。
接口模块,还用于在第m个时段中的至少一个CG传输时机上,接收上行信息。
处理模块,用于控制接口模块执行获得(获取)或发送操作。
一些可能的设计可参照第五方面中可能的设计理解和实现,本申请实施例对此不进行赘述。
第十二方面,本申请实施例提供一种通信装置,该通信装置可以是接入网设备,也可以是应用于接入网设备的装置、模块或芯片等,还可以是能实现全部或部分接入网设备功能的逻辑节点、逻辑模块或软件,或者是能够和接入网设备匹配使用的装置。一种设计中,该通信装置可以包括执行第六方面中所描述的方法/操作/步骤/动作所一一对应的模块,该模块可以是硬件电路,也可是软件,也可以是硬件电路结合软件实现。一种设计中,该通信装置可以包括处理模块和接口模块。
接口模块,用于发送第三参数集合,该第三参数集合包括N个第三参数,N个第三参数中第n个第三参数用于配置配置授权CG周期时段中,N个CG传输时机中的第n个CG传输时机相对于CG周期时段中第一个CG传输时机的时间偏移量;N为大于1的整数,1≤n≤N。
接口模块,还用于在CG周期时段中的至少一个CG传输时机上,发送上行信息。
处理模块,用于控制接口模块执行获得(获取)或发送操作。
一些可能的设计可参照第六方面中可能的设计理解和实现,本申请实施例对此不进行赘述。
第十三方面,本申请实施例提供一种通信装置,该通信装置包括处理器,用于实现上述第一方面所描述的方法。处理器与存储器耦合,存储器用于存储指令和数据,处理器执行存储器中存储的指令时,可以实现上述第一方面描述的方法。可选的,通信装置还可以包括存储器;通信装置还可以包括通信接口,通信接口用于该通信装置与其它设备进行通信,示例性的,通信接口可以是收发器、电路、总线、模块、管脚或其它类型的通信接口。一种示例如下:
处理器,用于利用通信接口获得第一参数集合,该第一参数集合包括M个第一参数,M个第一参数中第m个第一参数用于配置M个时段的第m个时段中的多个配置授权CG传输时机,第m个第一参数指示第m个时段中连续的Nm个时间单元,第m个时段中的多个CG传输时机包括Nm个时间单元中的上行时间单元;M为大于1的整数,1≤m≤M,Nm为大于1的整数。
处理器,还用于利用通信接口在第m个时段中的至少一个CG传输时机上,发送上行信息。
一些可能的设计可参照第一方面中可能的设计理解和实现,本申请实施例对此不进行赘述。
第十四方面,本申请实施例提供一种通信装置,该通信装置包括处理器,用于实现上述第二方面所描述的方法。处理器与存储器耦合,存储器用于存储指令和数据,处理器执行存储器中存储的指令时,可以实现上述第二方面描述的方法。可选的,通信装置还可以包括存储器;通信装置还可以包括通信接口,通信接口用于该通信装置与其它设备进行通信,示例性的,通信接口可以是收发器、电路、总线、模块、管脚或其它类型的通信接口。一种示例如下:
处理器,用于利用通信接口获得第一参数集合,该第一参数集合包括M个第一参数,M个第一参数中第m个第一参数用于配置M个时段的第m个时段中的多个配置授权CG传输时机,第m个第一参数指示第m个时段中连续的Nm个时间单元,第m个时段中的多个CG传输时机包括Nm个时间单元中的上行时间单元;M为大于1的整数,1≤m≤M,Nm为大于1的整数。
处理器,还用于利用通信接口在第m个时段中的至少一个CG传输时机上,发送上行信息。
一些可能的设计可参照第二方面中可能的设计理解和实现,本申请实施例对此不进行赘述。
第十五方面,本申请实施例提供一种通信装置,该通信装置包括处理器,用于实现上述第三方面所描述的方法。处理器与存储器耦合,存储器用于存储指令和数据,处理器执行存储器中存储的指令时,可以实现上述第三方面描述的方法。可选的,通信装置还可以包括存储器;通信装置还可以包括通信接口,通信接口用于该通信装置与其它设备进行通信,示例性的,通信接口可以是收发器、电路、总线、模块、管脚或其它类型的通信接口。一种示例如下:
处理器,用于利用通信接口获得第三参数集合,第三参数集合包括N个第三参数,N个第三参数中第n个第三参数用于配置配置授权CG周期时段中,N个CG传输时机中的第n个CG传输时机相对于CG周期时段中第一个CG传输时机的时间偏移量;N为大于1的整数,1≤n≤N。
处理器,还用于利用通信接口在CG周期时段中的至少一个CG传输时机上,发送上行信息。
一些可能的设计可参照第三方面中可能的设计理解和实现,本申请实施例对此不进行赘述。
第十六方面,本申请实施例提供一种通信装置,通信装置包括处理器,用于实现上述第四方面所描述的方法。处理器与存储器耦合,存储器用于存储指令和数据,处理器执行存储器中存储的指令时,可以实现上述第四方面描述的方法。可选的,通信装置还可以包括存储器;通信装置还可以包括通信接口,通信接口用于该通信装置与其它设备进行通信,示例性的,通信接口可以是收发器、电路、总线、模块、管脚或其它类型的通信接口。一种示例如下:
处理器,用于利用通信接口发送第一参数集合,第一参数集合包括M个第一参数,M个第一参数中第m个第一参数用于配置M个时段的第m个时段中的多个配置授权CG传输时机,第m个第一参数指示第m个时段中连续的Nm个时间单元,第m个时段中的多个CG传输时机包括Nm个时间单元中的上行时间单元;M为大于1的整数,1≤m≤M,Nm为大于1的整数。
处理器,还用于利用通信接口在第m个时段中的至少一个CG传输时机上,接收上行信息。
一些可能的设计可参照第四方面中可能的设计理解和实现,本申请实施例对此不进行赘述。
第十七方面,本申请实施例提供一种通信装置,该通信装置包括处理器,用于实现上述第五方面所描述的方法。处理器与存储器耦合,存储器用于存储指令和数据,处理器执行存储器中存储的指令时,可以实现上述第五方面描述的方法。可选的,通信装置还可以包括存储器;通信装置还可以包括通信接口,通信接口用于该通信装置与其它设备进行通信,示例性的,通信接口可以是收发器、电路、总线、模块、管脚或其它类型的通信接口。一种示例如下:
处理器,用于利用通信接口发送第二参数,该第二参数用于配置M个时段的第m个时段中的Km个配置授权CG传输时机,Km个CG传输时机包括第m个时段中的上行时间单元,第二参数指示K的取值;其中,M为大于1的整数,1≤m≤M,K为大于或等于Km的整数,Km为大于或等于1的整数。
处理器,还用于利用通信接口在第m个时段中的至少一个CG传输时机上,接收上行信息。
一些可能的设计可参照第五方面中可能的设计理解和实现,本申请实施例对此不进行赘述。
第十八方面,本申请实施例提供一种通信装置,该通信装置包括处理器,用于实现上述第六方面所描述的方法。处理器与存储器耦合,存储器用于存储指令和数据,处理器执行存储器中存储的指令时,可以实现上述第六方面描述的方法。可选的,通信装置还可以包括存储器;通信装置还可以包括通信接口,通信接口用于该通信装置与其它设备进行通信,示例性的,通信接口可以是收发器、电路、总线、模块、管脚或其它类型的通信接口。一种示例如下:
处理器,用于利用通信接口发送第三参数集合,该第三参数集合包括N个第三参数,N个第三参数中第n个第三参数用于配置配置授权CG周期时段中,N个CG传输时机中的第n个CG传输时机相对于CG周期时段中第一个CG传输时机的时间偏移量;N为大于1的整数,1≤n≤N。
处理器,还用于利用通信接口在CG周期时段中的至少一个CG传输时机上,发送上行信息。
一些可能的设计可参照第六方面中可能的设计理解和实现,本申请实施例对此不进行赘述。
第十九方面,本申请实施例提供了一种通信系统,包括如第七方面或第十三方面中所描述的通信装置;以及如第十方面或第十六方面所描述的通信装置;或者,包括如第八方面或第十四方面中所描述的通信装置;以及如第十一方面或第十七方面所描述的通信装置;或者,包括如第九方面或第十五方面中所描述的通信装置;以及如第十二方面或第十八方面所描述的通信装置。
第二十方面,本申请实施例还提供了一种计算机程序,当计算机程序在计算机上运行时,使得计算机执行上述第一方面至第六方面中任一方面提供的方法。
第二十一方面,本申请实施例还提供了一种计算机程序产品,包括指令,当指令在计算机上运行时,使得计算机执行上述第一方面至第六方面中任一方面提供的方法。
第二十三方面,本申请实施例还提供了一种计算机可读存储介质,计算机可读存储介质中存储有计算机程序或指令,当计算机程序或者指令在计算机上运行时,使得计算机执行上述第一方面至第六方面中任一方面提供的方法。
第二十四方面,本申请实施例还提供了一种芯片,芯片用于读取存储器中存储的计算机程序或指令,执行上述第一方面至第六方面中任一方面提供的方法,或者,芯片包括用于执行上述第一方面至第六方面中任一方面提供的方法的电路。
第二十五方面,本申请实施例还提供了一种芯片系统,该芯片系统包括处理器,用于支持装置实现上述第一方面至第六方面中任一方面提供的方法。在一种可能的设计中,芯片系统还包括存储器,存储器用于保存该通信装置必要的程序和数据。该芯片系统可以由芯片构成,也可以包含芯片和其他分立器件。
如上第二方面至第二十五方面的任一方面所提供的方案的效果,可参考第一方面中的相应描述。
图1为一种通信系统的架构示意图;
图2A为CG类型1的资源配置示意图;
图2B为CG类型1的资源配置示意图;
图3为多个视频帧的传输示意图;
图4为非授权频谱中CG传输时机配置示意图;
图5为本申请实施例提供的通信方法的流程示意图之一;
图6为本申请实施例提供的一种上行时间单元/下行时间单元的配比示意图;
图7A为本申请实施例提供的CG传输时机的确定顺序的示意图之一;
图7B为本申请实施例提供的CG传输时机的确定顺序的示意图之一;
图8为本申请实施例提供的通信方法的流程示意图之一;
图9为本申请实施例提供的通信方法的流程示意图之一;
图10为本申请实施例提供的通信方法的流程示意图之一;
图11为本申请实施例提供的通信方法的流程示意图之一;
图12A为本申请实施例提供的重传资源的配置示意图之一;
图12B为本申请实施例提供的重传资源的配置示意图之一;
图13为本申请实施例提供的通信装置的结构示意图之一;
图14为本申请实施例提供的通信装置的结构示意图之一。
为了使本申请实施例的目的、技术方案和优点更加清楚,下面将结合附图对本申请实施例作进一步地详细描述。
本申请实施例涉及如下的至少一个(项),指示一个(项)或多个(项)。其中,多个(项),是指两个(项)或两个(项)以上。“和/或”,描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。字符“/”一般表示前后关联对象是一种“或”的关系。另外,应当理解,尽管在本申请实施例中可能采用术语第一、第二等来描述各对象、但这些对象不应限于这些术语。这些术语仅用来将各对象彼此区分开。
本申请实施例如下描述中所提到的术语“包括”和“具有”以及它们的任何变形,意图在于覆盖不排他的包含。例如包含了一系列步骤或单元的过程、方法、系统、产品或设备没有限定于已列出的步骤或单元,而是可选地还包括其他没有列出的步骤或单元,或可选地还包括对于这些过程、方法、产品或设备固有的其它步骤或单元。需要说明的是,本申请实施例中,“示例性的”或者“例如”等词用于表示作例子、例证或说明。本申请实施例中被描述为“示例性的”或者“例如”的任何方法或设计方案不应被解释为比其
它方法或设计方案更优选或更具优势。确切而言,使用“示例性的”或者“例如”等词旨在以具体方式呈现相关概念。
本申请实施例提供的技术可以应用于各种通信系统,图1为示出了一种可能的、非限制性的通信系统示意图。如图1所示,通信系统1000包括无线接入网(radio access network,RAN)100和核心网(core network,CN)200。RAN 100包括至少一个RAN节点(如图1中的110a和110b,统称为110)和至少一个终端(如图1中的120a-120j,统称为120)。RAN100中还可以包括其它RAN节点,例如,无线中继设备和/或无线回传设备(图1中未示出)等。终端120通过无线的方式与RAN节点110相连。RAN节点110通过无线或有线方式与核心网200连接。RAN节点110用于帮助终端实现无线接入。核心网200中的核心网设备与RAN 100中的RAN节点110可以分别是不同的物理设备,也可以是集成了核心网逻辑功能和无线接入网逻辑功能的同一个物理设备。可选的,RAN节点110还可以连接互联网300,或通过核心网200与互联网300连接。
RAN 100可以为第三代合作伙伴计划(3rd generation partnership project,3GPP)相关的蜂窝系统,例如,第四代(4th generation,4G)、第五代(5th generation,5G)移动通信系统、或面向未来的演进系统(例如6G移动通信系统)。RAN 100还可以是开放式接入网(open RAN,O-RAN或ORAN)、云无线接入网络(cloud radio access network,CRAN)或者无线保真(wireless fidelity,WiFi)系统。RAN100还可以是以上两种或两种以上系统融合的通信系统。其中,4G移动通信系统包括长期演进(long term evolution,LTE)系统、5G移动通信系统包括新无线(new radio,NR)系统。
通信系统1000中的多个RAN节点110可以为同一类型的节点,也可以为不同类型的节点。在一些场景下,RAN节点110和终端120的角色是相对的,例如,图1中网元120i可以是直升机或无人机,其可以被配置成移动基站,对于那些通过网元120i接入到RAN 100的终端120j来说,网元120i是基站;但对于基站110a来说,网元120i是终端。RAN节点110和终端120有时都称为通信装置,例如图1中网元110a和110b可以理解为具有基站功能的通信装置,网元120a-120j可以理解为具有终端功能的通信装置。
下面对RAN节点和终端进行详细说明。
(1)RAN节点
在一种可能的场景中,RAN节点,也可以称为接入网设备,RAN实体或接入节点或网络设备等,构成通信系统的一部分,用以帮助终端实现无线接入。RAN节点可以是基站(base station,BS)、演进型基站(evolved NodeB,eNB)、接入点(access point,AP)、发送接收点(transmission reception point,TRP)、下一代基站(next generation NodeB,gNB)、第六代(6th generation,6G)移动通信系统中的下一代基站或未来移动通信系统中的基站、或WiFi系统中的接入节点等。RAN节点可以是宏基站(如图1中的110a)、微基站或室内站(如图1中的110b)、中继节点或施主节点、或者是CRAN场景下的无线控制器。可选的,RAN节点还可以是服务器,可穿戴设备,车辆或车载设备等。例如,车辆外联(vehicle to everything,V2X)技术中的接入网设备可以为路侧单元(road side unit,RSU)。本申请中的RAN节点的全部或部分功能也可以通过在硬件上运行的软件功能来实现,或者通过平台(例如云平台)上实例化的虚拟化功能来实现。本申请中的RAN节点还可以是能实现全部或部分RAN节点功能的逻辑节点、逻辑模块或软件。
在另一种可能的场景中,由多个RAN节点协作协助终端实现无线接入,不同RAN节点分别实现接入网设备的部分功能。接入网设备包括集中式单元(central unit,CU)、分布式单元(distributed unit,DU)和无线单元(radio unit,RU)。CU和DU可以是单独设置,或者也可以包括在同一个网元中,例如基带单元(baseband unit,BBU)中。RU可以包括在射频设备或者射频单元中,例如包括在射频拉远单元(remote radio unit,RRU)、有源天线处理单元(active antenna unit,AAU)或远程射频头(remote radio head,RRH)中。
可以理解,在不同系统中,CU(或CU-CP和CU-UP)、DU或RU也可以有不同的名称,但是本领域的技术人员可以理解其含义。例如,在ORAN系统中,CU也可以称为O-CU(开放式CU),DU也可以称为O-DU,CU-CP也可以称为O-CU-CP,CU-UP也可以称为O-CU-UP,RU也可以称为O-RU。为描述方便,本申请中以CU,CU-CP,CU-UP、DU和RU为例进行描述。本申请中的CU(或CU-CP、CU-UP)、DU和RU中的任一单元,可以是通过软件模块、硬件模块、或者软件模块与硬件模块结合来实现。
以RAN节点是接入网设备为例,在本申请实施例中,用于实现接入网设备的功能的装置可以是接入网设备;也可以是能够支持接入网设备实现该功能的装置,例如芯片系统,该装置可以被安装在接入网设备中。以下描述本申请实施例提供的技术方案时,以接入网设备是接入网设备为例进行描述。
本申请实施例中“向…(接入网设备)发送信息”可以理解为该信息的目的端是接入网设备,可以包括直接或间接的向接入网设备发送信息。“从…(接入网设备)接收信息”可以理解为该信息的源端是接入网设备,可以包括直接或间接的从接入网设备接收信息。信息在信息发送的源端和目的端之间可能会被进行必要的处理,例如格式变化等,但目的端可以理解来自源端的有效信息。本申请中类似的表述可以做类似的理解,在此不再赘述。
(2)终端
终端也可以称为终端设备、用户设备(user equipment,UE)、移动台、移动终端等。终端可以是用户侧的一种用于接收或发射信号的实体。终端可通过RAN与一个或多个核心网进行通信。终端包括具有无线连接功能的手持式设备、连接到无线调制解调器的其他处理设备或车载设备等。通信设备可以是便携式、袖珍式、手持式、计算机内置的或者车载的移动装置。终端可以广泛应用于各种场景,例如蜂窝通信、设备到设备(device-to-device,D2D)、车物(vehicle to everything,V2X)通信、端到端P2P、机器到机器M2M、机器类型通信(machine-type communication,MTC)、物联网(internet of things,IOT)、虚拟现实(virtual reality,VR)、增强现实(augmented reality,AR)、工业控制、自动驾驶、远程医疗(remote medical)、智能电网(smart grid)、智能家具、智能办公、智能穿戴、智能交通、智慧城市、手机、平板电脑、带无线收发功能的电脑、可穿戴设备、车辆、无人机、直升机、飞机、轮船、机器人、机械臂、智能家居设备等。本申请的实施例对终端的设备形态不做限定。
本申请实施例中,用于实现终端的功能的装置可以是终端;也可以是能够支持终端实现该功能的装置,例如芯片系统,硬件电路、软件模块、或硬件电路加软件模块,该装置可以被安装在终端中或者和终端匹配使用。本申请实施例中,芯片系统可以由芯片构成,也可以包括芯片和其他分立器件。以下描述本申请实施例提供的技术方案时,以用于实现终端的功能的装置是终端为例进行描述。
本申请实施例中“向…(终端)发送信息”可以理解为该信息的目的端是终端,可以包括直接或间接的向终端发送信息。“从…(终端)接收信息”可以理解为该信息的源端是终端,可以包括直接或间接的从终端接收信息。信息在信息发送的源端和目的端之间可能会被进行必要的处理,例如格式变化等,但目的端可以理解来自源端的有效信息。本申请中类似的表述可以做类似的理解,在此不再赘述。
本申请实施例描述的通信系统以及业务场景是为了更加清楚的说明本申请实施例的技术方案,并不构成对于本申请实施例提供的技术方案的限定,本领域普通技术人员可知,随着网络架构的演变和新业务场景的出现,本申请实施例提供的技术方案对于类似的技术问题,同样适用。
下面先对本申请实施例所涉及的相关术语进行解释说明。需要说明的是,这些解释是为了让本申请实施例更容易被理解,而不应该视为对本申请所要求的保护范围的限定。
(1)半静态调度
接入网设备为终端调度上下行传输资源的方式可以有两种,即动态调度和半静态调度。在动态调度中,接入网设备可以通过控制信道向终端发送控制信息,从而为终端分配数据信道的传输参数。其中,控制信道比如为物理下行控制信道(physical downlink control channel,PDCCH),控制信息比如可以为下行控制信息(downlink control information,DCI);数据信道比如可以为物理下行共享信道(physical downlink shared channel,PDSCH)或物理上行共享信道(physical uplink shared channel,PUSCH)。示例性地,控制信息可以指示数据信道所映射的时频位置(比如,数据信道所映射的时域符号、频域资源块(resource block,RB)),进而接入网设备和终端在该时频位置上,可以通过数据信道传输下行信息(比如PDSCH携带的数据)和/或上行信息(比如PUSCH携带的数据)。
在半静态调度中,接入网设备可以为终端分配周期性的上下行传输资源。其中,用于分配上行传输资源的半静态调度可以称为配置授权(configured grant,CG),用于分配下行传输资源的半静态调度可以称为半持续调度(semi-persistent scheduling,SPS)。进一步地,针对于上行:用于进行一次上行传输的传输资源可以称为一个上行传输时机(或简称传输时机),上行传输时机也可以替换为其它可能的描述,比如CG传输时机、CG传输机会、基于CG的PUSCH机会、基于CG的PUSCH时机、或CG PUSCH。针对于下行:用于进行一次下行传输的传输资源可以称为一个下行传输时机(或简称传输时机),下行传输时机也可以替换为其它可能的描述,比如SPS传输时机、SPS资源、PDSCH资源、PDSCH机会、
或PDSCH时机。
从时域上看,传输时机可以包括一个符号或连续的多个符号。当传输时机包括多个符号时,这多个符号可以位于同一个时隙,或者也可以位于多个时隙;类似地,当传输时机所包括的多个符号位于多个时隙时,这多个时隙可以位于同一个系统帧,或者也可以位于多个系统帧。
(2)CG
在CG机制中,网络设备通过只需要通过无线资源控制(radio resource control,RRC)消息或者PDCCH分配或指定一次上行传输资源,而后就可以周期性地重复使用相同的时频资源。具体来说,CG可以支持两种类型,分别为CG类型1(CG type1)和CG类型2(CG type 2),CG类型1和CG类型2的区别在于激活传输时机的方式不同。
CG类型1是指,网络设备通过RRC消息配置至少一套CG传输时机中每套CG传输时机对应的CG周期(或称为CG周期时段)、CG时机的时域资源和频域资源。也就是说,周期参数和用于指示具体的时频位置的参数均承载于RRC消息。终端一旦正确接收到RRC消息,配置就立即生效(也就是说,配置即激活)。
CG周期可以是NR支持的2个符号,7个符号或者14个符号的整数倍。符号的长度与子载波间隔有关,比如当子载波间隔为30kHz时,时隙的长度为0.5ms,一个时隙包括14个符号,此种情形下,CG周期可以为2个符号,7个符号或者(1~1280)*14个符号,即最小的CG周期为0.5/7ms,最大的CG周期为640ms。
如图2A示意,针对CG类型1的一套CG传输时机,网络设备发送的RRC消息中可以包括CG周期(periodicity);一个CG传输时机在一个时隙内的时域资源(timeDomainAllocation),如一个CG传输时机包括的符号数量;一个CG传输时机在一个时隙内的频域资源(frequencyDomainAllocation);mcsAndTBS,该mcsAndTBS指示在CG传输时机上传输上行信息采用的调制和编码速率(modulation and code scheme,MCS)以及传输块的大小(transport Block size,TBS)。
示例性地,RRC消息还可以包括它可能的参数,比如timeReferenceSFN、timeDomainOffset、S等。其中,timeReferenceSFN用于指示首个CG传输时机的起始时间对应的SFN,timeDomainOffset用于指示首个CG传输时机的起始时间对应的时隙编号,S用于指示首个CG传输时机的起始时间对应的符号编号。
CG类型2类似于SPS,即网络设备可以通过RRC消息配置至少一套CG传输时机对应的CG周期、时域资源分配(time domain resource assignment)、频域资源分配(frequency domain resource assignment)等参数,然后,针对至少一套传输时机中的每套传输时机,网络设备可以通过DCI(承载于PDCCH)激活并指示该套传输时机中首个传输时机的时频位置,该DCI也可以称为激活DCI,承载于PDCCH。
如图2B示意,针对CG类型2的一套CG传输时机,DCI中包括该套CG传输时机对应的CG周期,时域资源分配(time domain resource assignment,TDRA)字段和频域资源分配(frequency domain resource assignment,FDRA)字段,以及MCS。其中,TDRA字段指示一个CG传输时机在一个时隙内的时域资源(timeDomainAllocation),FDAR字段指示一个CG传输时机在一个时隙内的时频域资源(timeDomainAllocation)。可选的,TDRA字段中包括scheduling offset K2(如下简称为K2)、起始和长度指示值(start and length indicator value,SLIV)。其中,K2指示激活DCI和该套CG传输时机中的首个CG传输时机之间的时隙(slot)偏移值,例如,K2=0时,表示首个CG传输时机与PDCCH在同一个时隙上,K2=1时,表示首个CG传输时机位于PDCCH后面一个时隙上。SLIV指示首个CG传输时机的起始符号位置和时间长度。MCS指示在CG传输时机上传输上行信息采用的调制和编码速率。
另外,对应于业务的上行传输场景,网络设备可以根据业务信息,确定业务的周期和数据量大小,进而确定前述至少一套CG传输时机对应的CG周期、时频域资源配置等参数。示例性地,业务信息可以包括终端的服务请求,服务质量(quality of service,QoS)流建立请求,或终端上报的辅助信息等。
(3)数据帧
数据帧也可以称为数据片(slice)、数据块(tile)。针对于某一业务(比如XR业务),该业务可以包括至少一个数据帧,或者至少一个数据片,或者至少一个数据块,或者至少一个协议数据单元(protocol data unit,PDU)集合(PDU set),一个PDU set中包含至少一个数据帧、至少一个数据片或至少一个数据块中的一项或多项。
本申请实施例中,数据帧可以为视频帧、音频帧或者其它可能的帧,具体不做限定。下文中将以数
据帧为视频帧为例进行描述。
视频可以是由一张张连贯起来的图像(或者说图片、照片等)连续播放组成的,当一秒钟有24张图像快速播放,人眼就会认为这是连续的画面(即视频)。帧率是指每秒钟播放的图像数量,比如当帧率为30帧每秒钟(30fps)时,表示每秒钟播放30张图像,当帧率为60(frame per second,FPS)时,表示每秒钟播放60张图像,以此类推。一个视频帧可以理解为一张图像,即一个视频帧可以包括一张图像对应的多个数据包,一个视频帧的数据量即为该视频帧所包括的多个数据包的数据量之和。帧率和周期互为倒数,当帧率为60帧时,视频帧的传输周期为1000/60=50/3毫秒(ms),约等于16.67ms。以帧率为60帧为例,参见图3所示,为多个视频帧的传输示意图,图3中的视频帧1至视频帧4为连续的4个视频帧。可选的,视频帧的传输周期(16.67ms)也可以理解为XR业务的一种业务周期。
以XR业务为例,接入网设备和终端之间可以通过半静态调度的方式传输XR业务的视频帧。终端在CG传输时机上向接入网设备发送XR业务的上行信息,接入网设备在SPS传输时机上向终端发送XR业务的下行信息。
对于不同的XR业务,其上行和下行的业务模型通常也不相同。例如VR的场景内容显示的变化是由姿态或位置(动作)引发的,VR的上行信息的主要是位置和姿态信息,数据量通常为几十kbps。下行信息的主要是渲染后的视频流,数据量比较大,可达几十到上百Mbps。与VR不同的是,AR的场景内容显示的变化是由注视聚焦目标的变化以及位置和注视点之间空间关系变化(动作)引发的,AR的上行信息包括感知所需要的视觉信息,例如清晰和稳定的图片或者视频流(视频帧),或者一些抽取出的环境特征信息,数据量较大。由上述内容可知,XR业务尤其是AR业务对上行传输的速率需求较高。
目前在授权频谱中,一个CG周期内只能配置一个CG传输时机,视频帧的数据量大于一个CG传输时机所能承载的数据量。对于超出CG传输时机的数据量,如果终端需要向接入网设备发送缓存状态报告(buffer status report,BSR)以请求更多的上行传输资源,BSR涉及的解析、调度和组包等操作会造成更大的时延,影响视频帧的正常传输,无法满足AR业务对上行传输的速率需求;如果终端不发送BSR,接入网设备侧无法感知超出CG传输时机的数据量,导致视频帧传输出错。
而在非授权频谱中,虽然支持一个CG周期内配置一个或多个CG传输时机,但要求多个CG传输时机占用连续的时续,导致不同CG周期中包括的CG传输时机的数量可能不同。如图4示意,以U表示上行时隙,D表示下行时隙。在第一CG周期中,假设第一个CG传输时机为上行时隙2,由于上行时隙7和上行时隙2之间不连续,因此,CG传输时机只包括上行时隙2。在第二CG周期中,假设第一个CG传输时机为上行时隙2,由于上行时隙3和上行时隙7之间不连续,因此,CG传输时机只包括上行时隙2和上行时隙3。在视频帧的上行传输场景中,这样的设计可能出现部分CG周期中的CG传输时机的数据量小于视频帧,而导致视频帧的传输时延变大或传输出错。
基于此,本申请实施例提供一种CG传输时机的配置方案,可以实现在一个CG周期中配置多个CG传输时机,两个相邻CG传输时机所在的时隙可以连续或者不连续,多个CG周期中的CG传输时机的数量相同。该方案能够应用于授权频谱或者非授权频谱的场景中,可以降低例如XR业务等半静态调度业务的上行传输时延,以及提升上行传输的准确性。下面进一步结合实施例,以接入网设备与终端之间的交互为例对该方案进行详细说明。
可以理解,本申请下述提供的方法中是以接入网设备和终端设备作为交互示意的执行主体为例来示意,但本申请并不限制交互示意的执行主体。例如,本申请中的接入网设备也可以是应用于接入网设备的模块(例如芯片、芯片系统、或处理器),还可以是能实现全部或部分接入网设备功能的逻辑节点、逻辑模块或软件;本申请中的终端设备也可以是应用于终端设备的模块(例如芯片、芯片系统、或处理器),还可以是能实现全部或部分终端设备功能的逻辑节点、逻辑模块或软件。
实施例一
如图5示意一种通信方法,该通信方法也可以替换描述为CG传输时机的配置方法,该通信方法主要包括如下步骤。
S501,接入网设备向终端发送第一参数集合。
其中,第一参数集合包括M个第一参数,M个第一参数中第m个第一参数用于配置M个时段的第m个时段中的多个配置授权CG传输时机,第m个第一参数指示第m个时段中连续的Nm个时间单
元,第m个时段中的多个CG传输时机包括Nm个时间单元中的上行时间单元;M为大于1的整数,Nm为大于1的整数,1≤m≤M,或者也可以理解为m取1到M的整数。
可以理解的是,前述上行时间单元指的是用于上行传输的时间单元,该时间单元可以是上行子帧、上行时隙、上行符号、或者可灵活配置上行或下行的时间单元,如灵活时隙或灵活子帧中的时间单元。
可选的,m的取值不同,对应的Nm的取值可以相同或者不相同,Nm个时间单元中的上行时间单元的数量相同。通过这样的设计,可以实现M个时段的每个时段中的CG传输时机的数量相同。示例性的,M个时段中一个时段可以为一个视频帧的传输周期(16.67ms),一方面,这样的设计增加了一个视频帧对应的CG传输时机的数量,能够避免或减少额外的调度时延,提升XR业务的上行传输速率。另一方面,这样的设计可以保证每个视频帧的传输周期对应相同数量的CG传输时机,有利于XR业务的稳定传输。
在一种可能的实现中,接入网设备可以根据TDD format和M个时段的起始位置确定Nm的取值。其中,TDD format指的是时分双工(time-division fuplex,TDD)格式(format)中的上行时间单元/下行时间单元的配比。
例如,图6示意一种上行时间单元/下行时间单元的配比方式,“U”表示上行时间单元,“D”表示下行时间单元。M个时段的起始位置为时间单元0,M个时段中的一个时段为16.67ms,M为3,M个时段总长50ms,1ms对应一个上行时间单元或下行时间单元。其中,第1个时段(0~16.67ms)中的时间单元2、3、7、8、12、13为上行时间单元,第2个时段(16.67ms~33.33ms)中的时间单元17、18、22、23、27、28为上行时间单元,第3个时段(33.33~50ms)中的时间单元37、38、42、43、47、48为上行时间单元。为保证每个时段中的CG传输时机数量相同,接入网设备可以确定N1为8,表示第1个时段的CG传输时机位于前8个时间单元,或者也可以理解为:第0~16.67ms内有3个有效(valid)的CG传输时机,包括时间单元2、3、7。类似地,接入网设备可以确定N2为6,表示第2个时段的CG传输时机位于前6个时间单元,或者也可以理解为:第16.67ms~33.3ms内有3个有效(valid)的CG传输时机,包括时间单元17、18、22。接入网设备可以确定N3为9,表示第3个时段的CG传输时机位于前6个时间单元,或者也可以理解为:第16.67ms~33.3ms内有3个有效(valid)的CG传输时机,包括时间单元37、38、42。
可选的,接入网设备可以根据CG类型,确定第一参数集合的发送方式。
例如,在CG类型1的场景中,接入网设备可以向终端发送包括第一参数集合的RRC消息。该RRC消息可以是一条单独用于传输第一参数集合的信令;或者,该RRC消息可以是前述用于配置至少一套CG传输时机的信令,即也可以理解为:接入网设备在包含至少一套CG传输时机的RRC消息中,新增加了第一参数集合。实际应用时,还可以在RRC消息中定义一个字段(如cg-nrofSlot-List)来指示第一参数集合。终端侧可以根据RRC消息中激活的一套CG传输时机和第一参数集合,确定M个时段的每个时段中的多个CG传输时机。
又如,在CG类型2的场景中,接入网设备可以向终端发送包括第一参数集合的DCI或称PDCCH。该DCI可以是一条单独用于传输第一参数集合的信令;或者,该DCI可以是前述用于激活一套CG传输时机的信令,即也可以理解为:接入网设备在用于激活一套CG传输时机的DCI中,新增加了第一参数集合。实际应用时,还可以在DCI中定义一个字段(如cg-nrofSlot-List)来指示第一参数集合。终端侧可以根据DCI中激活的一套CG传输时机和第一参数集合,确定M个时段的每个时段中的多个CG传输时机。或者可选的,接入网设备可以向终端发送包括第一参数集合的RRC,例如该RRC可以是一条单独用于传输第一参数集合的信令;或者,该RRC是用于配置至少一套CG传输时机的信令,接入网设备在每套CG传输时机的配置参数中添加对应的第一参数集合(cg-nrofSlot-List)。终端侧可以根据RRC消息中激活的一套CG传输时机的配置参数,确定M个时段的每个时段中的多个CG传输时机。
可以理解的是,在第一参数集合表示为cg-nrofSlot-List的情况下。一种可能的设计中,第一参数集合中的M个第一参数从0开始编号,cg-nrofSlot-List中的第m个第一参数可以表示为cg-nrofSlot-List[m-1],对应的Nm也可以替换描述为cg-nrofSlot-List[m-1]。另一种可能的设计中,第一参数集合中的M个第一参数从1开始编号,cg-nrofSlot-List中的第m个第一参数可以表示为cg-nrofSlot-List[m],对应的Nm也可以替换描述为cg-nrofSlot-List[m]。此外可以理解的是,上述M个时段和CG周期时段存在一定的对应关系。
在一种可能的设计中,M个时段中的一个时段对应于一个CG周期时段。接入网设备通过第一参数集合,可以同时配置M个CG周期时段中的CG传输时机。可选的,CG周期时段也可以替换描述为CG周期,即也可以理解为:M个时段中的一个时段为一个CG周期,本申请实施例对此不予限制。类似地,每M个CG周期时段中CG传输时机的配置均可参照接入网设备指示的前述M个CG周期时段中CG传输时机的配置理解,本申请实施例对此不进行赘述。以XR业务的上行传输为例,M个时段中一个时段可以是一个视频帧的传输周期(16.67ms),则一个CG周期时段可以为16.67ms。
在另一种可能的设计中,M个时段对应于一个CG周期时段。接入网设备通过第一参数集合,可以配置一个CG周期时段中的多个CG传输时机。其余的CG周期时段中CG传输时机的配置均可参照该一个CG周期时段中CG传输时机的配置理解,本申请实施例对此不进行赘述。以XR业务的上行传输为例,M个时段中一个时段可以是一个视频帧的传输周期(16.67ms),则一个CG周期时段可以为M*16.67ms。例如M为3时,一个CG周期时段为50ms,一个CG周期时段包括3个XR业务周期。
S502,终端根据第一参数集合,确定第m个时段中的多个CG传输时机。
A1,在CG类型1的场景中,终端可以利用如下关系式(1)确定M个时段中至少一个时段中的第一个CG传输时机的起始符号;进而,终端根据第一参数集合和至少一个时段中的第一个CG传输时机的起始符号,可以确定M个时段的每个时段中的每个CG传输时机的起始符号;并且,终端也可以从接入网设备下发的RRC消息中获取CG传输时机的时域资源、频域资源。
例如,以第一时段指示M个时段中的第一个时段或者第n个时段,可以理解的是,第一时段中的第一个CG传输时机的起始符号满足关系式(1):
SFN1×TSnum×Snum+TS1×Snum+S1=Int[RSFN×TSnum×Snum+RTS×Snum+RS+I×P]
modulo(1024×TSnum×Snum);(1)
SFN1×TSnum×Snum+TS1×Snum+S1=Int[RSFN×TSnum×Snum+RTS×Snum+RS+I×P]
modulo(1024×TSnum×Snum);(1)
下面结合(1-a)~(1-f)对关系式(1)中的参数进行详细说明。
(1-a):I、P的取值与第一时段具体指示的时段有关。
例如,在M个时段对应于一个CG周期时段的情况下,第一时段为M个时段中的第一个时段,I为一个CG周期时段的编号,P为一个CG周期时段的时长。此情况下,第m个时段中的第一个CG传输时机的起始符号相对于第一时段中的第一个CG传输时机的起始符号的偏移量为M个时段中m-1个时段的时长的取整结果。例如将前述偏移量表示为offset,第m个时段中的第一个CG传输时机的起始符号对应的offsetm=int[(m-1)*L],L表示一个时段的时间长度,简称该时段的时长。
又如,第一时段为M个时段中第m个时段,I为第m个时段的编号,P为第m个时段的时长。
(1-b):SFN1、TS1、S1对应于第一时段中第一个CG传输时机。其中,SFN1为第一时段中的第一个CG传输时机的起始符号所在的系统帧的编号。TS1为第一时段中的第一个CG传输时机的起始符号所在的时隙的编号,TS1也可以替换描述为slot number in the frame,即TS1是在一个系统帧内的时隙编号。S1为第一时段中的第一个CG传输时机的起始符号的编号,S1也可以替换描述为symbol number in the slot,即S1是在一个时隙内的符号编号。
(1-c):RSFN、RTS、RS对应于第一参考CG传输时机。例如,该第一参考CG传输时机是RRC消息激活的一套CG传输时机中配置的首个CG传输时机,即RSFN、RTS、RS是由接入网设备通过RRC消息配置的。RSFN也可以被替换描述为timeReferenceSFN,指示首个CG传输时机的起始时间对应的SFN。RTS也可以被替换描述为timeDomainOffset,首个CG传输时机的起始时间对应的时隙编号。RS指示首个CG传输时机的起始时间对应的符号编号。
(1-d):TSnum为一个系统帧中的时隙的数量,也可以被替换描述为numberOfSlotsPerFrame或者其他字符。Snum为一个时隙中的符号的数量,也可以被替换描述为numberOfSymbolsPerSlot或者其他字符。
(1-e):Int[]为取整符。例如,可以是向上取整、向下取整或者四舍五入等,用于对[]内的计算结果进行取整的运算符。可选的,当P的取值为整数时,也可以不执行关系式(1)中的Int[]运算,即将关系式(1)中原有的一项“Int[RSFN×TSnum×Snum+RTS×Snum+RS+I×P]”替换为“RSFN×TSnum×Snum+RTS×Snum+RS+I×P”。
(1-f):modulo表示取模运算。(1024×TSnum×Snum)表示的是1024个系统帧,或者是以符号为单位的1024个系统帧的时间长度。前述(1-a)~(1~e)中涉及的参数的取值范围为1024个系统帧,
例如SFN1、RSFN的编号的取值范围可以是0~1023。
可选的,本申请实施例中提到的1024个系统帧也可以被看作一个超帧,也即作为一种示例,一个超帧包括1024个系统帧。可以理解的是,如果未来对于超帧的定义不是包括1024个系统帧,上述关系式中的“1024”也可以被替换为其他的固定值或者变量,本申请实施例对此不予限定。
此外可以理解的是,本申请实施例中的系统帧的编号、时隙编号、符号编号、时段的编号、CG周期时段的编号等编号的范围均可以统一从0或其他的正整数开始。本申请实施例对此不予限制。
以XR业务场景为例,M个时段中的一个时段为一个业务周期(16.67ms)。假设子载波间隔为30kHz,RFS=0,RTS=0,Int[]表示向上取整。
一种可能的实现中,在一个CG周期时段为3个业务周期(50ms),第一时段为M个时段中的第一个时段的情况下,M=3。首先将I=0,P=50ms,代入关系式(1)确定M个时段中第1个时段中的第一个CG传输时机的起始位置为0ms。然后,结合前述offsetm可以确定第2个时段中的第一个CG传输时机的起始位置为17ms,以及第3个时段中的第一个CG传输时机的起始位置为34ms。最后,终端可以根据第一参数集合,确定每个时段中其余的CG传输时机。为便于理解,本申请实施例在图7A中以不同的图案填充区分确定不同CG传输时机的先后顺序。
另一种可能的实现中,第一时段为M个时段中的第m个时段的情况下,以M=3,一个CG周期时段为三个业务周期(50ms)为例,首先将I=0,P=16.67ms,代入关系式(1)可以得到M个时段中第1个时段中的第一个CG传输时机的起始位置为0ms,第2个时段中的第一个CG传输时机的起始位置为17ms,以及第3个时段中的第一个CG传输时机的起始位置为34ms。然后,终端可以根据第一参数集合,确定每个时段中其余的CG传输时机。为便于理解,本申请实施例在图7B中以不同的图案填充区分确定不同CG传输时机的先后顺序。
A2,在CG类型2的场景中,终端可以利用如下关系式(2)确定M个时段中至少一个时段中的第一个CG传输时机的起始符号;进而,终端根据第一参数集合和至少一个时段中的第一个CG传输时机的起始符号,可以确定M个时段的每个时段中的每个CG传输时机的起始符号;并且,终端也可以从接入网设备下发的DCI中获取激活的CG传输时机的时域资源、频域资源。
例如,以第一时段指示M个时段中的第一个时段或者第n个时段,可以理解的是,第一时段中的第一个CG传输时机的起始符号满足关系式(2):
SFN2×TSnum×Snum+TS2×Snum+S2=Int[SFNstart×TSnum×Snum+TSstart×Snum+Sstart+I×P]
modulo(1024×TSnum×Snum);其中,有关I、P、TSnum、Snum、Int[]、modulo以及(1024×TSnum×Snum)这部分参数的定义可参照关系式(1)中的描述理解,本申请实施例对此不进行赘述。下面结合(2-a)~(2-b)对关系式(2)中的其余参数进行详细说明。
SFN2×TSnum×Snum+TS2×Snum+S2=Int[SFNstart×TSnum×Snum+TSstart×Snum+Sstart+I×P]
modulo(1024×TSnum×Snum);其中,有关I、P、TSnum、Snum、Int[]、modulo以及(1024×TSnum×Snum)这部分参数的定义可参照关系式(1)中的描述理解,本申请实施例对此不进行赘述。下面结合(2-a)~(2-b)对关系式(2)中的其余参数进行详细说明。
(2-a):SFN2、TS2对应于第一时段中第一个CG传输时机。其中,SFN2为第一时段中的第一个CG传输时机的起始符号所在的系统帧的编号。TS2为第一时段中的第一个CG传输时机的起始符号所在的时隙的编号,TS1也可以替换描述为slot number in the frame,即TS1是在一个系统帧内的时隙编号。
(2-b):SFNstart、TSstart、Sstart对应于第二参考CG传输时机。例如,该第二参考CG传输时机是根据DCI确定的,该DCI用于激活一套CG传输时机中的配置参数。具体地,终端可以根据该DCI的发送时间和DCI中K2的取值,确定SFNstart和TSstart,该SFNstart也可以被替换描述为SFNstart time,指示PUSCH起始发送的系统帧的编号。该TSstart也可以被替换描述为slotstart time,指示PUSCH起始发送的时隙编号。
在使用CG类型2的情况下,有关XR业务场景的示例也可参照图7A或图7B理解,本申请实施例对此不进行赘述。
S503,终端在第m个时段中的至少一个CG传输时机上,发送上行信息。
其中,该上行信息可以包括承载于PDSCH的上行数据。示例性地,在XR业务场景中,该上行信息可以包括数据帧,如视频帧。
本申请实施例提供的上述实施例一,引入第一参数集合(cg-nrofSlot-List)的配置,能够加快确定一个CG周期内的多个CG传输时机的时域位置,降低上行传输时延;并且能够实现不同CG周期均包含相同数量的CG传输时机,有利于业务的稳定传输。
实施例二
如图8示意一种通信方法,该通信方法也可以替换描述为CG传输时机的配置方法,该通信方法主要包括如下步骤。
S801,接入网设备向终端发送第二参数。
其中,第二参数指示K的取值,表示接入网设备期望终端在M个时段的每个时段中有K个CG传输时机。M为大于1的整数,K为大于或大于1的正整数。在一些特别的情况例如,M个时段中至少一个时段中的上行时间单元的数量小于K,则无法达到接入网设备的预期。对于1≤m≤M而言,第二参数实际配置出M个时段的第m个时段中Km个CG传输时机,Km个CG传输时机包括第m个时段中的上行时间单元。可以理解,K为大于或等于Km的整数,Km为大于或等于1的整数。m的取值不同,对应的Km的取值可以相同或者不相同。
可选的,接入网设备可以根据CG类型,确定第二参数的发送方式。
例如,在CG类型1的场景中,接入网设备可以向终端发送包括第二参数的RRC消息。该RRC消息可以是一条单独用于传输第二参数的信令;或者,该RRC消息可以是前述用于配置至少一套CG传输时机的信令,即也可以理解为:接入网设备在包含至少一套CG传输时机的RRC消息中,新增加了第二参数。实际应用时,还可以在RRC消息中定义一个字段(如cg-nrofvalidSlots)来指示第二参数。终端侧可以根据RRC消息中激活的一套CG传输时机和第二参数,确定M个时段的每个时段中的多个CG传输时机。
又如,在CG类型2的场景中,接入网设备可以向终端发送包括第二参数的DCI或称PDCCH。该DCI可以是一条单独用于传输第二参数的信令;或者,该DCI可以是前述用于激活一套CG传输时机的信令,即也可以理解为:接入网设备在用于激活一套CG传输时机的DCI中,新增加了第二参数。实际应用时,还可以在DCI中定义一个字段(如cg-nrofvalidSlots)来指示第二参数。终端侧可以根据DCI中激活的一套CG传输时机和第二参数,确定M个时段的每个时段中的多个CG传输时机。
此外,有关上行时间单元的定义,M个时段和CG周期时段之间的对应关系可参照S501中的描述理解。本申请实施例对此不进行赘述。
S802,终端根据第二参数,确定第m个时段中的多个CG传输时机。
B1,在CG类型1的场景中,终端可以利用上述关系式(1)确定M个时段中至少一个时段中的第一个CG传输时机的起始符号,具体实施可参照S502中A1中描述的内容理解,本申请实施例对此不进行赘述;进而,终端根据第一参数集合和至少一个时段中的第一个CG传输时机的起始符号,可以确定M个时段的每个时段中的每个CG传输时机的起始符号;并且,终端也可以从接入网设备下发的RRC消息中获取CG传输时机的时域资源、频域资源。
B2,在CG类型2的场景中,终端可以利用上述关系式(2)确定M个时段中至少一个时段中的第一个CG传输时机的起始符号,具体实施可参照S502中A1中描述的内容理解,本申请实施例对此不进行赘述;进而,终端根据第一参数集合和至少一个时段中的第一个CG传输时机的起始符号,可以确定M个时段的每个时段中的每个CG传输时机的起始符号;并且,终端也可以从接入网设备下发的DCI中获取激活的CG传输时机的时域资源、频域资源。
S803,终端在第m个时段中的至少一个CG传输时机上,发送上行信息。
其中,该上行信息可以包括承载于PDSCH的上行数据。示例性地,在XR业务场景中,该上行信息可以包括数据帧,如视频帧。
本申请实施例提供的上述实施例二,引入第二参数(cg-nrofvalidSlots)的配置,能够加快确定一个CG周期内的多个CG传输时机的时域位置,降低上行传输时延。
实施例三
如图9示意一种通信方法,该通信方法也可以替换描述为CG传输时机的配置方法该通信方法主要包括如下步骤。
S901,接入网设备向终端发送第三参数集合。
其中,第三参数集合包括N个第三参数,N个第三参数中第n个第三参数用于配置CG周期时段中,N个CG传输时机中的第n个CG传输时机相对于CG周期时段中第一个CG传输时机的时间偏移量;N为大于1的整数,1≤n≤N;
在一种可能的实现中,CG周期时段中包括的CG时机的总数量为N,此情况下,N个第三参数中
第一个第三参数对应的是CG周期时段中的第一个CG传输时机,即N个CG传输时机中的第一个CG传输时机是CG周期时段中第一个CG传输时机自身,两者之间的时间偏移量为0。
在另一种可能的实现中,CG周期时段中包括的CG时机的总数量为N+1,此情况下,N个CG传输时机中的第1个CG传输时机是CG周期时段中的第2个CG传输时机,依次类推,N个CG传输时机中的第N个CG传输时机是CG周期时段中的第N+1个CG传输时机。
可选的,接入网设备可以向终端发送包括第三参数集合的RRC消息。该RRC消息可以是一条单独用于传输第三参数集合的信令;或者,该RRC消息可以是前述用于配置至少一套CG传输时机的信令,即也可以理解为:接入网设备在包含至少一套CG传输时机的RRC消息中,新增加了第三参数集合。例如,RRC消息中包括cg-offset[n-1],cg-offset[n-1]指示一个CG周期内第n个CG传输时机相对第一个CG传输时机的时间偏移量。终端侧可以根据RRC消息中激活的一套CG传输时机和第三参数集合,确定M个时段的每个时段中的多个CG传输时机。
S902,终端根据第三参数集合,确定CG周期时段中的多个CG传输时机。
例如,在CG类型1的场景中,终端可以利用如下关系式(3)确定第n个CG传输时机的起始符号,并且,终端也可以从接入网设备下发的RRC消息中获取CG传输时机的时域资源、频域资源。
可选的,CG周期时段中包括N个CG传输时机,第n个CG传输时机的起始符号满足关系式(3):
SFNn×TSnum×Snum+TSn×Snum+Sn=Int[RSFN×TSnum×Snum+RTS×Snum+RS+I×P+
Con-1×Snum]modulo(1024×TSnum×Snum);(3)
SFNn×TSnum×Snum+TSn×Snum+Sn=Int[RSFN×TSnum×Snum+RTS×Snum+RS+I×P+
Con-1×Snum]modulo(1024×TSnum×Snum);(3)
其中,SFNn、TSn、Sn对应于第n个CG传输时机。其中,SFNn为第n个CG传输时机的起始符号所在的系统帧的编号。TSn为第n个CG传输时机的起始符号所在的时隙的编号,TSn也可以替换描述为slot number in the frame,即TSn是在一个系统帧内的时隙编号。Sn为第n个CG传输时机的起始符号的编号,Sn也可以替换描述为symbol number in the slot,即Sn是在一个时隙内的符号编号。
I为CG周期的编号,P为CG周期时段的时长。
Con-1为第n个第三参数,可以替换描述为cg-offset[n-1]。Con-1为整数,如0或者正整数,表示第n个CG传输时机相对于CG周期时段中第一个CG传输时机的前述时间偏移量包括Con-1个时间单元,可以理解Con-1个时间单元小于CG周期时段的时长。例如,CG周期时段为50ms,cg-offset[0]=0,cg-offset[1]=1,cg-offset[2]=5,cg-offset[3]=15,以此类推。
此外,RSFN、RTS、RS、TSnum、Snum、Int[]、modulo等均可参照S502中的描述理解,本申请实施例对此不进行赘述。
又如,在CG类型2的场景中,终端可以利用如下关系式(4)确定第n个CG传输时机的起始符号,并且终端也可以从接入网设备下发的DCI中获取激活的CG传输时机的时域资源、频域资源。可选的,CG周期时段中包括N个CG传输时机,第n个CG传输时机的起始符号满足关系式(4):
SFNn×TSnum×Snum+TSn×Snum+Sn=Int[SFNstart×TSnum×Snum+TSstart×Snum+Sstart+I×
P+Con-1×Snum]modulo(1024×TSnum×Snum);(4)
SFNn×TSnum×Snum+TSn×Snum+Sn=Int[SFNstart×TSnum×Snum+TSstart×Snum+Sstart+I×
P+Con-1×Snum]modulo(1024×TSnum×Snum);(4)
其中,SFNn、TSn、Sn、I、P、Con-1可参照关系式(3)中的描述理解;SFNstart、TSstart、Sstart、TSnum、Snum、Int[]、modulo、(1024×TSnum×Snum)可参照S502中的描述理解。本申请实施例对此不进行赘述。
S903,终端在CG周期时段中的至少一个CG传输时机上,发送上行信息。
其中,该上行信息可以包括承载于PDSCH的上行数据。示例性地,在XR业务场景中,该上行信息可以包括数据帧,如视频帧。
本申请实施例提供的上述实施例三,引入第二参数(cg-nrofvalidSlots)的配置,能够加快确定一个CG周期内的多个CG传输时机的时域位置,降低上行传输时延。
实施例四
如图10示意一种通信方法,该通信方法也可以替换描述为CG传输时机的配置方法,该通信方法主要包括如下步骤。
S1001,接入网设备向终端发送第四参数集合。
其中,第四参数集合包括N个第四参考CG传输时机的资源参数,N个第四参考CG传输时机中第n个第四参考CG传输时机的资源参数用于配置CG周期时段中,N个CG传输时机中的第n个CG传
输时机;N为大于1的整数,1≤n≤N。
可选的,N个第四参考CG传输时机位于一个参考CG周期时段中,该参考CG周期时段与待配置的CG周期时段的时长相同。参考CG周期时段中的N个第四参考CG传输时机的资源参数与待配置的CG周期时段中N个CG传输时机一一对应。
可选的,接入网设备可以向终端发送包括第四参数集合的RRC消息。该RRC消息可以是一条单独用于传输第四参数集合的信令;或者,该RRC消息可以是用于配置至少一套CG传输时机的信令,该RRC消息中可以包括第四参数集合。终端侧可以根据RRC消息中激活的一套CG传输时机和第四参数集合,确定M个时段的每个时段中的多个CG传输时机。
示例性地,第n个第四参考CG传输时机的资源参数指示第n个第四参考CG传输时机的起始符号,第n个第四参考CG传输时机的起始符号可以用于配置CG周期时段中,N个CG传输时机中的第n个CG传输时机的起始符号。
S1002,终端根据第四参数集合,确定CG周期时段中的N个CG传输时机。
例如,在CG类型1的场景中,终端可以利用如下关系式(5)确定第n个CG传输时机的起始符号,并且,终端也可以从接入网设备下发的RRC消息中获取CG传输时机的时域资源、频域资源。可选的,CG周期时段中包括N个CG传输时机,第n个CG传输时机的起始符号满足关系式(5):
SFNn×TSnum×Snum+TSn×Snum+Sn=Int[RSFNn×TSnum×Snum+RTSn×Snum+RSn+I×P]
modulo(1024×TSnum×Snum);(5)
SFNn×TSnum×Snum+TSn×Snum+Sn=Int[RSFNn×TSnum×Snum+RTSn×Snum+RSn+I×P]
modulo(1024×TSnum×Snum);(5)
其中,RSFNn、RTSn、RSn对应于第n个第四参考CG传输时机。RSFNn为第n个第四参考CG传输时机的起始符号所在的系统帧的编号,也可以被替换描述为timeReferenceSFN[n];RTSn为第n个第四参考CG传输时机的起始符号所在的时隙的编号,也可以被替换描述为timeDomainOffset[n];RSn为第n个第四参考CG传输时机的起始符号的编号。
SFNn、TSn、Sn对应于第n个CG传输时机。SFNn、TSn、Sn、TSnum、Snum、Int[]、I、P、modulo等均可参照S902中的描述理解,本申请实施例对此不进行赘述。
此外可以理解的是,系统帧、时隙、符号可以从0开始编号,如n=1,第1个第四参考CG传输时机的起始符号所在的系统帧的编号表示为RSFN1=0,或者timeReferenceSFN[1]=0。或者,系统帧、时隙、符号也可以从1开始编号,如n=1,第1个第四参考CG传输时机的起始符号所在的系统帧的编号表示为RSFN1=1,或者timeReferenceSFN[1]=1。本申请实施例对此不予限制。可选的,在系统帧、时隙、符号从0开始编号的情况下,可以统一将关系式(5)中部分参数的下角标从n替换为n-1。例如,将SFNn替换为SFNn-1。
又如,在CG类型2的场景中,终端可以利用如下关系式(6)确定第n个CG传输时机的起始符号,并且,终端也可以从接入网设备下发的DCI中获取激活的CG传输时机的时域资源、频域资源。可选的,CG周期时段中包括N个CG传输时机,第n个CG传输时机的起始符号满足关系式(6):
SFNn×TSnum×Snum+TSn×Snum+Sn=Int[SFNstart[n]×TSnum×Snum+TSstart[n]×Snum+
Sstart[n]+I×P]modulo(1024×TSnum×Snum);(6)
SFNn×TSnum×Snum+TSn×Snum+Sn=Int[SFNstart[n]×TSnum×Snum+TSstart[n]×Snum+
Sstart[n]+I×P]modulo(1024×TSnum×Snum);(6)
其中,SFNstart[n]、TSstart[n]、Sstart[n]对应于第n个第四参考CG传输时机。其中,SFNstart[n]为第n个第四参考CG传输时机的起始符号所在的系统帧的编号,也可以替换描述为timeReferenceSFN[n]。TSstart[n]为第n个第四参考CG传输时机的起始符号所在的时隙的编号,TSstart[n]也可以替换描述为slot number in the frame[n],即TSstart[n]是在一个系统帧内的时隙编号。Sstart[n]为第n个第四参考CG传输时机的起始符号的编号,Sstart[n]也可以替换描述为symbol number in the slot[n],即Sstart[n]是在一个时隙内的符号编号。
SFNn、TSn、Sn对应于第n个CG传输时机。SFNn、TSn、Sn、TSnum、Snum、Int[]、I、P、modulo等均可参照S902中的描述理解,本申请实施例对此不进行赘述。
此外可以理解的是,系统帧、时隙、符号可以从0开始编号,如n=1,第1个第四参考CG传输时机的起始符号所在的系统帧的编号表示为SFNstart[1]=0,或者timeReferenceSFN[1]=0。或者,系统帧、时隙、符号也可以从1开始编号,如n=1,第1个第四参考CG传输时机的起始符号所在的系统帧的编号表示为SFNstart[1]=1,或者timeReferenceSFN[1]=1。本申请实施例对此不予限制。可选的,在系统帧、时隙、符号从0开始编号的情况下,可以统一将关系式(6)中部分参数的[n]替换为[n-1],例如将TSstart[n]替换为TSstart[n-1];以及将关系式(6)中部分参数的下角标从n替换为n-1。例如,将SFNn替换
为SFNn-1。
S1003,终端在CG周期时段中的至少一个CG传输时机上,发送上行信息。
其中,该上行信息可以包括承载于PDSCH的上行数据。示例性地,在XR业务场景中,该上行信息可以包括数据帧,如视频帧。
本申请实施例提供的上述实施例三,引入多个参考CG传输时机的资源参数配置,能够加快确定一个CG周期内的多个CG传输时机的时域位置,降低上行传输时延。
此外,本申请实施例还提供一种重传方法,该重传方法可以应用于上述实施例一至实施例四中的任意一个实施例。如图11示意,该重传方法主要包括如下步骤。
S1101,接入网设备向终端发送第一重传配置信息,第一重传配置信息用于配置一个CG周期时段中N个CG传输时机对应的重传资源的占用时长,第一重传配置信息指示至少一种时长;N个CG传输时机中的一个CG传输时机对应的重传资源的占用时长为至少一种时长中的一种时长,至少一种时长中任意一种时长小于一个CG周期时段的时长。
可以理解的是,一个CG周期时段中的至少两个CG传输时机对应的重传资源相同,该至少两个CG传输时机中相邻两个CG传输时机之间的间隔大于或等于重传资源的占用时长。这样的设计可以减少CG传输时机所需占用的重传资源的数量,避免长时间占用重传资源而导致不必要的资源浪费。
可选的,前述重传资源可以是混合自动重传请求HARQ进程(process),重传资源的占用时长也可以替换描述为HARQ的重传时长。
可选的,对应于上述实施例,当一个CG周期包括M个时段时,一个重传资源的占用时长可以为M个时段中一个时段的时长。以XR业务场景为例,M个时段中一个时段对应于一个业务周期(视频帧的周期),可以理解一个CG周期包括M个业务周期,一个重传资源的占用时长可以为一个业务周期的时长,例如16.67ms。
作为示例,图12A示意出,一个CG周期为50ms,每个16.67ms内有3个CG传输时机,一个CG周期总共包括9个CG传输时机。假设第一个16.67ms中的第一个CG传输时机对应HARQ进程0,在一个重传资源的占用时长为16.67ms的情况下,第二个16.67ms中的第一个CG传输时机也可以对应HARQ进程0。以此类推,一个CG周期时段中的9个CG传输时机,只需要配置3个HARQ进程。这样的设计相较于配置HARQ进程的占用时长大于CG周期时段的情况,减少了HARQ进程的占用数量,避免长时间占用HARQ进程而导致不必要的资源浪费。示例性地,图12B中示出了配置HARQ进程的占用时长大于CG周期时段(50ms)的情况中,需要配置9个HARQ进程(0~8)。
类似地,在一个CG周期为16.67ms的情况下,一个重传资源的占用时长可以是15ms。
S1102,当第一CG传输时机对应的数据传输出错时,接入网设备向终端发送第一重传指示信息,该第一重传指示信息用于指示第一CG传输时机对应的数据出错,或者用于指示终端重传第一CG传输时机对应的数据。
可选的,第一重传指示信息中包括第一CG传输时机对应的重传资源的调度信息。示例性地,在重传资源可以是HARQ进程的情况下,第一重传指示信息可以包括第一CG传输时机对应的HARQ process ID。例如,接入网设备可以在DCI中的HARQ process ID指示域中添加前述第一重传指示信息。
S1103,终端在第一重传指示信息指示的重传资源上,重传对应的CG传输时机的上行信息。
例如,第一重传指示信息为中第一CG传输时机对应的HARQ process ID,那么终端可以在该HARQ process ID所指示的HRAQ进程上重传上行信息。
参见图13,本申请实施例提供了一种通信装置1300,该通信装置1300包括处理模块1301和接口模块1302。该通信装置1300可以是终端,也可以是应用于终端或者和终端匹配使用,能够实现终端侧执行的方法的通信装置;或者,该通信装置1300可以是接入网设备,也可以是应用于接入网设备或者和接入网设备匹配使用,能够实现接入网设备侧执行的方法的通信装置。
其中,接口模块也可以称为通信模块、收发模块、收发器、收发机、或收发装置等。处理模块也可以称为处理器,处理单板,处理单元、或处理装置等。可选的,接口模块用于执行上述方法中终端侧或接入网设备侧的发送操作和接收操作,可以将接口模块中用于实现接收功能的器件视为接收单元,将接
口模块中用于实现发送功能的器件视为发送单元,即接口模块包括接收单元和发送单元。
该通信装置1300应用于终端时,处理模块1301可用于实现图5、图8、图9、图10、或图11示例中终端的处理功能,接口模块1302可用于实现图5、图8、图9、图10、或图11示例中终端的收发功能。或者也可以参照发明内容中的描述和可能的设计理解该通信装置。
该通信装置1300应用于接入网设备时,处理模块1301可用于实现图5、图8、图9、图10、或图11述示例中接入网设备的处理功能,接口模块1302可用于实现图5、图8、图9、图10、或图11示例中接入网设备的收发功能。或者也可以参照发明内容中的描述和可能的设计理解该通信装置。
此外需要说明的是,前述接口模块和/或处理模块可通过虚拟模块实现,例如处理模块可通过软件功能单元或虚拟装置实现,接口模块可以通过软件功能或虚拟装置实现。或者,处理模块或接口模块也可以通过实体装置实现,例如若该通信装置采用芯片/芯片电路实现,接口模块可以是输入输出电路和/或通信接口,执行输入操作(对应前述接收操作)、输出操作(对应前述发送操作);处理模块为集成的处理器或者微处理器或者集成电路。
本申请实施例中对模块的划分是示意性的,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,另外,在本申请实施例各个示例中的各功能模块可以集成在一个处理器中,也可以是单独物理存在,也可以两个或两个以上模块集成在一个模块中。上述集成的模块既可以采用硬件的形式实现,也可以采用软件功能模块的形式实现。
基于相同的技术构思,本申请实施例还提供了一种通信装置1400。例如,该通信装置1400可以是芯片或者芯片系统。可选的,在本申请实施例中芯片系统可以由芯片构成,也可以包含芯片和其他分立器件。
通信装置1400可用于实现前述示例描述的通信系统中任一网元的功能。通信装置1400可以包括至少一个处理器1410。可选的,该处理器1410与存储器耦合,存储器可以位于该通信装置之内,或,存储器可以和处理器集成在一起,或,存储器也可以位于该通信装置之外。例如,通信装置1400还可以包括至少一个存储器1420。存储器1420保存实施上述任一示例中必要计算机程序、计算机程序或指令和/或数据;处理器1410可能执行存储器1420中存储的计算机程序,完成上述任一示例中的方法。
通信装置1400中还可以包括通信接口1430,通信装置1400可以通过通信接口1430和其它设备进行信息交互。示例性的,通信接口1430可以是收发器、电路、总线、模块、管脚或其它类型的通信接口。当该通信装置1400为芯片类的装置或者电路时,该通信装置1400中的通信接口1430也可以是输入输出电路,可以输入信息(或称,接收信息)和输出信息(或称,发送信息),处理器为集成的处理器或者微处理器或者集成电路或则逻辑电路,处理器可以根据输入信息确定输出信息。
本申请实施例中的耦合是装置、单元或模块之间的间接耦合或通信连接,可以是电性,机械或其它的形式,用于装置、单元或模块之间的信息交互。处理器1410可能和存储器1420、通信接口1430协同操作。本申请实施例中不限定上述处理器1410、存储器1420以及通信接口1430之间的具体连接介质。
可选的,参见图14,处理器1410、存储器1420以及通信接口1430之间通过总线1440相互连接。总线1440可以是外设部件互连标准(peripheral component interconnect,PCI)总线或扩展工业标准结构(extended industry standard architecture,EISA)总线等。总线可以分为地址总线、数据总线、控制总线等。为便于表示,图14中仅用一条粗线表示,但并不表示仅有一根总线或一种类型的总线。
在本申请实施例中,处理器可以是通用处理器、数字信号处理器、专用集成电路、现场可编程门阵列或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件,可以实现或者执行本申请实施例中的公开的各方法、步骤及逻辑框图。通用处理器可以是微处理器或者任何常规的处理器等。结合本申请实施例所公开的方法的步骤可以直接体现为硬件处理器执行完成,或者用处理器中的硬件及软件模块组合执行完成。
在本申请实施例中,存储器可以是非易失性存储器,比如硬盘(hard disk drive,HDD)或固态硬盘(solid-state drive,SSD)等,还可以是易失性存储器(volatile memory),例如随机存取存储器(random-access memory,RAM)。存储器是能够用于携带或存储具有指令或数据结构形式的期望的程序代码并能够由计算机存取的任何其他介质,但不限于此。本申请实施例中的存储器还可以是电路或者其它任意能够实现存储功能的装置,用于存储程序指令和/或数据。
在一种可能的实施方式中,该通信装置1400可以应用于接入网设备,具体通信装置1400可以是接
入网设备,也可以是能够支持接入网设备,实现上述涉及的任一示例中接入网设备的功能的装置。存储器1420保存实现上述任一示例中的接入网设备的功能的计算机程序(或指令)和/或数据。处理器1410可执行存储器1420存储的计算机程序,完成上述任一示例中接入网设备执行的方法。应用于接入网设备,该通信装置1400中的通信接口可用于与终端进行交互,向终端发送信息或者接收来自终端的信息。
在另一种可能的实施方式中,该通信装置1400可以应用于终端,具体通信装置1400可以是终端,也可以是能够支持终端,实现上述涉及的任一示例中终端的功能的装置。存储器1420保存实现上述任一示例中的终端的功能的计算机程序(或指令)和/或数据。处理器1410可执行存储器1420存储的计算机程序,完成上述任一示例中终端执行的方法。应用于终端,该通信装置1400中的通信接口可用于与接入网设备进行交互,向接入网设备发送信息或者接收来自接入网设备的信息。
由于本示例提供的通信装置1400可应用于接入网设备,完成上述接入网设备执行的方法,或者应用于终端,完成终端执行的方法。因此其所能获得的技术效果可参考上述方法示例,在此不再赘述。
基于以上示例,本申请实施例提供了一种通信系统,包括接入网设备和终端,其中,接入网设备和终端可以实现图5、图8、图9、图10、或图11所示的示例中所提供的方法。
本申请实施例提供的技术方案可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。计算机程序产品包括一个或多个计算机指令。在计算机上加载和执行计算机程序指令时,全部或部分地产生按照本申请实施例的流程或功能。计算机可以是通用计算机、专用计算机、计算机网络、接入网设备、终端或者其他可编程装置。计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,计算机指令可以从一个网站站点、计算机、服务器或数据中心通过有线(例如同轴电缆、光纤、数字用户线(digital subscriber line,DSL))或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。计算机可读存储介质可以是计算机可以存取的任何可用介质或者是包含一个或多个可用介质集成的服务器、数据中心等数据存储设备。可用介质可以是磁性介质(例如,软盘、硬盘、磁带)、光介质(例如,数字视频光盘(digital video disc,DVD))、或者半导体介质等。
在本申请实施例中,在无逻辑矛盾的前提下,各示例之间可以相互引用,例如方法实施例之间的方法和/或术语可以相互引用,例如装置实施例之间的功能和/或术语可以相互引用,例如装置示例和方法示例之间的功能和/或术语可以相互引用。
显然,本领域的技术人员可以对本申请实施例进行各种改动和变型而不脱离本申请实施例的范围。这样,倘若本申请实施例的这些修改和变型属于本申请实施例权利要求及其等同技术的范围之内,则本申请实施例也意图包含这些改动和变型在内。
Claims (26)
- 一种通信方法,其特征在于,包括:获得第一参数集合,所述第一参数集合包括M个第一参数,所述M个第一参数中第m个第一参数用于配置M个时段的第m个时段中的多个配置授权CG传输时机,所述第m个第一参数指示所述第m个时段中连续的Nm个时间单元,所述第m个时段中的多个CG传输时机包括所述Nm个时间单元中的上行时间单元;M为大于1的整数,1≤m≤M,Nm为大于1的整数;在所述第m个时段中的至少一个CG传输时机上,发送上行信息。
- 一种通信方法,其特征在于,包括:获得第二参数,所述第二参数用于配置M个时段的第m个时段中的Km个配置授权CG传输时机,所述Km个CG传输时机包括所述第m个时段中的上行时间单元,所述第二参数指示K的取值;其中,M为大于1的整数,1≤m≤M,K为大于或等于Km的整数,Km为大于或等于1的整数;在所述第m个时段中的至少一个CG传输时机上,发送上行信息。
- 如权利要求1或2所述的方法,其特征在于,所述M个时段对应于一个CG周期时段,或者,所述M个时段中的一个时段对应于一个CG周期时段。
- 如权利要求3所述的方法,其特征在于,所述N个CG传输时机中一个CG传输时机对应的混合自动重传请求HARQ的重传时长小于所述一个CG周期时段的时长。
- 如权利要求1-4任一项所述的方法,其特征在于,所述M个时段的第一时段中的第一个CG传输时机的起始符号满足:
SFN1×TSnum×Snum+TS1×Snum+S1=Int[RSFN×TSnum×Snum+RTS×Snum+RS+I×P]modulo
(1024×TSnum×Snum);其中,SFN1为所述第一时段中的第一个CG传输时机的起始符号所在的系统帧的编号,TS1为所述第一时段中的第一个CG传输时机的起始符号所在的时隙的编号,S1为所述第一时段中的第一个CG传输时机的起始符号的编号;RSFN为第一参考CG传输时机的起始符号所在的系统帧的编号,RTS为所述第一参考CG传输时机的起始符号所在的时隙的编号,RS为所述第一参考CG传输时机的起始符号的编号;TSnum为一个系统帧中的时隙的数量,Snum为一个时隙中的符号的数量,Int[]为取整符,modulo为取模运算符;在所述M个时段对应于一个CG周期时段的情况下,所述第一时段为所述M个时段中的第一个时段,I为所述一个CG周期时段的编号,P为所述一个CG周期时段的时长,所述第m个时段中的第一个CG传输时机的起始符号相对于所述第一时段中的第一个CG传输时机的起始符号的偏移量为所述M个时段中m-1个时段的时长的取整结果;或者,所述第一时段为所述M个时段中第m个时段,I为所述第m个时段的编号,P为所述第m个时段的时长。 - 如权利要求1-4任一项所述的方法,其特征在于,所述M个时段的第一时段中的第一个CG传输时机的起始时隙满足:
SFN2×TSnum×Snum+TS2×Snum+S2=Int[SFNstart×TSnum×Snum+TSstart×Snum+Sstart+I×P]
modulo(1024×TSnum×Snum);其中,SFN2为所述第一时段中的第一个CG传输时机的起始符号所在的系统帧的编号,TS2为所述第一时段中的第一个CG传输时机的起始符号所在的时隙的编号,S2为所述第一时段中的第一个CG传输时机的起始符号的编号;SFNstart为第二参考CG传输时机的起始符号所在的系统帧的编号,TSstart为所述第二参考CG传输时机的起始符号所在的时隙的编号,Sstart为所述第二参考CG传输时机的起始符号的编号,所述第二参考CG传输时机的起始符号是基于下行控制信息DCI确定的;TSnum为一个系统帧中的时隙的数量,Snum为一个时隙中的符号的数量,Int[]为取整符,modulo为取模运算符;所述第一时段为所述M个时段中的第一个时段,所述M个时段对应于一个CG周期时段,I为所述一个CG周期时段的编号,P为所述一个CG周期时段的时长,所述第m个时段中的第一个CG传输时机的起始符号相对于所述第一时段中的第一个CG传输时机的起始符号的偏移量为m-1个时段的时长的取整结果;或者,所述第一时段为所述M个时段中第n个时段,I为所述第m个时段的编号,P为所述第m个时段的时长。 - 一种通信方法,其特征在于,包括:获得第三参数集合,所述第三参数集合包括N个第三参数,所述N个第三参数中第n个第三参数用于配置配置授权CG周期时段中,N个CG传输时机中的第n个CG传输时机相对于所述CG周期时段中第一个CG传输时机的时间偏移量;N为大于1的整数,1≤n≤N;在所述CG周期时段中的至少一个CG传输时机上,发送上行信息。
- 如权利要求7所述的方法,其特征在于,所述第n个CG传输时机的起始符号满足:
SFNn×TSnum×Snum+TSn×Snum+Sn=Int[RSFN×TSnum×Snum+RTS×Snum+RS+I×P+
Con-1×Snum]modulo(1024×TSnum×Snum);其中,SFNn为所述第n个CG传输时机的起始符号所在的系统帧的编号,TSn为所述第n个CG传输时机的起始符号所在的时隙的编号,Sn为所述第n个CG传输时机的起始符号的编号,Con-1为所述第n个第三参数;RSFN为第一参考CG传输时机的起始符号所在的系统帧的编号,RTS为所述第一参考CG传输时机的起始符号所在的时隙的编号,RS为所述第一参考CG传输时机的起始符号的编号;I为所述CG周期时段的编号,P为所述CG周期时段的时长;TSnum为一个系统帧中的时隙的数量,Snum为一个时隙中的符号的数量,Int[]为取整符,modulo为取模运算符。 - 如权利要求7所述的方法,其特征在于,所述第n个CG传输时机的起始符号满足:
SFNn×TSnum×Snum+TSn×Snum+Sn=Int[SFNstart×TSnum×Snum+TSstart×Snum+Sstart+I×
P+Con-1×Snum]modulo(1024×TSnum×Snum);其中,SFNn为所述第n个CG传输时机的起始符号所在的系统帧的编号,TSn为所述第n个CG传输时机的起始符号所在的时隙的编号,Sn为所述第n个CG传输时机的起始符号的编号,Con-1为所述第n个第三参数;SFNstart为第二参考CG传输时机的起始符号所在的系统帧的编号,TSstart为所述第二参考CG传输时机的起始符号所在的时隙的编号,Sstart为所述第二参考CG传输时机的起始符号的编号,所述第二参考CG传输时机的起始符号是基于下行控制信息DCI确定的;TSnum为一个系统帧中的时隙的数量,Snum为一个时隙中的符号的数量,Int[]为取整符,modulo为取模运算符。 - 如权利要求7-9任一项所述的方法,其特征在于,所述N个CG传输时机中的一个CG传输时机对应的混合自动重传请求HARQ的重传时长小于或等于所述一个CG周期时段的时长。
- 一种通信方法,其特征在于,包括:发送第一参数集合,所述第一参数集合包括M个第一参数,所述M个第一参数中第m个第一参数用于配置M个时段的第m个时段中的多个配置授权CG传输时机,所述第m个第一参数指示所述第m个时段中连续的Nm个时间单元,所述第m个时段中的多个CG传输时机包括所述Nm个时间单元中的上行时间单元;M为大于1的整数,1≤m≤M,Nm为大于1的整数;在所述第m个时段中的至少一个CG传输时机上,接收上行信息。
- 一种通信方法,其特征在于,包括:发送第二参数,所述第二参数用于配置M个时段的第m个时段中的Km个配置授权CG传输时机,所述Km个CG传输时机包括所述第m个时段中的上行时间单元,所述第二参数指示K的取值;其中,M为大于1的整数,1≤m≤M,K为大于或等于Km的整数,Km为大于或等于1的整数;在所述第m个时段中的至少一个CG传输时机上,接收上行信息。
- 如权利要求11或12所述的方法,其特征在于,所述M个时段对应于一个CG周期时段,或者,所述M个时段中的一个时段对应于一个CG周期时段。
- 如权利要求13所述的方法,其特征在于,所述N个CG传输时机中一个CG传输时机对应的混合自动重传请求HARQ的重传时长小于所述一个CG周期时段的时长。
- 如权利要求11-14任一项所述的方法,其特征在于,所述M个时段的第一时段中的第一个CG传输时机的起始符号满足:
SFN1×TSnum×Snum+TS1×Snum+S1=Int[RSFN×TSnum×Snum+RTS×Snum+RS+I×P]modulo
(1024×TSnum×Snum);其中,SFN1为所述第一时段中的第一个CG传输时机的起始符号所在的系统帧的编号,TS1为所述第一时段中的第一个CG传输时机的起始符号所在的时隙的编号,S1为所述第一时段中的第一个CG传输时机的起始符号的编号;RSFN为第一参考CG传输时机的起始符号所在的系统帧的编号,RTS为 所述第一参考CG传输时机的起始符号所在的时隙的编号,RS为所述第一参考CG传输时机的起始符号的编号;TSnum为一个系统帧中的时隙的数量,Snum为一个时隙中的符号的数量,Int[]为取整符,modulo为取模运算符;在所述M个时段对应于一个CG周期时段的情况下,所述第一时段为所述M个时段中的第一个时段,I为所述一个CG周期时段的编号,P为所述一个CG周期时段的时长,所述第m个时段中的第一个CG传输时机的起始符号相对于所述第一时段中的第一个CG传输时机的起始符号的偏移量为所述M个时段中m-1个时段的时长的取整结果;或者,所述第一时段为所述M个时段中第m个时段,I为所述第m个时段的编号,P为所述第m个时段的时长。 - 如权利要求11-14任一项所述的方法,其特征在于,所述M个时段的第一时段中的第一个CG传输时机的起始时隙满足:
SFN2×TSnum×Snum+TS2×Snum+S2=Int[SFNstart×TSnum×Snum+TSstart×Snum+Sstart+I×P]
modulo(1024×TSnum×Snum);其中,SFN2为所述第一时段中的第一个CG传输时机的起始符号所在的系统帧的编号,TS2为所述第一时段中的第一个CG传输时机的起始符号所在的时隙的编号,S2为所述第一时段中的第一个CG传输时机的起始符号的编号;SFNstart为第二参考CG传输时机的起始符号所在的系统帧的编号,TSstart为所述第二参考CG传输时机的起始符号所在的时隙的编号,Sstart为所述第二参考CG传输时机的起始符号的编号,所述第二参考CG传输时机的起始符号是基于下行控制信息DCI确定的;TSnum为一个系统帧中的时隙的数量,Snum为一个时隙中的符号的数量,Int[]为取整符,modulo为取模运算符;所述第一时段为所述M个时段中的第一个时段,所述M个时段对应于一个CG周期时段,I为所述一个CG周期时段的编号,P为所述一个CG周期时段的时长,所述第m个时段中的第一个CG传输时机的起始符号相对于所述第一时段中的第一个CG传输时机的起始符号的偏移量为m-1个时段的时长的取整结果;或者,所述第一时段为所述M个时段中第n个时段,I为所述第m个时段的编号,P为所述第m个时段的时长。 - 一种通信方法,其特征在于,包括:发送第三参数集合,所述第三参数集合包括N个第三参数,所述N个第三参数中第n个第三参数用于配置配置授权CG周期时段中,N个CG传输时机中的第n个CG传输时机相对于所述CG周期时段中第一个CG传输时机的时间偏移量;N为大于1的整数,1≤n≤N;在所述CG周期时段中的至少一个CG传输时机上,发送上行信息。
- 如权利要求17所述的方法,其特征在于,所述第n个CG传输时机的起始符号满足:
SFNn×TSnum×Snum+TSn×Snum+Sn=Int[RSFN×TSnum×Snum+RTS×Snum+RS+I×P+
Con-1×Snum]modulo(1024×TSnum×Snum);其中,SFNn为所述第n个CG传输时机的起始符号所在的系统帧的编号,TSn为所述第n个CG传输时机的起始符号所在的时隙的编号,Sn为所述第n个CG传输时机的起始符号的编号,Con-1为所述第n个第三参数;RSFN为第一参考CG传输时机的起始符号所在的系统帧的编号,RTS为所述第一参考CG传输时机的起始符号所在的时隙的编号,RS为所述第一参考CG传输时机的起始符号的编号;I为所述CG周期时段的编号,P为所述CG周期时段的时长;TSnum为一个系统帧中的时隙的数量,Snum为一个时隙中的符号的数量,Int[]为取整符;modulo为取模运算符。 - 如权利要求17所述的方法,其特征在于,所述第n个CG传输时机的起始符号满足:
SFNn×TSnum×Snum+TSn×Snum+Sn=Int[SFNstart×TSnum×Snum+TSstart×Snum+Sstart+I×
P+Con-1×Snum]modulo(1024×TSnum×Snum);其中,SFNn为所述第n个CG传输时机的起始符号所在的系统帧的编号,TSn为所述第n个CG传输时机的起始符号所在的时隙的编号,Sn为所述第n个CG传输时机的起始符号的编号,Con-1为所述第n个第三参数;SFNstart为第二参考CG传输时机的起始符号所在的系统帧的编号,TSstart为所述第二参考CG传输时机的起始符号所在的时隙的编号,Sstart为所述第二参考CG传输时机的起始符号的编号,所述第二参考CG传输时机的起始符号是基于下行控制信息DCI确定的;TSnum为一个系统帧中的时隙的数量, Snum为一个时隙中的符号的数量,Int[]为取整符,modulo为取模运算符。 - 如权利要求17-19任一项所述的方法,其特征在于,所述N个CG传输时机中的一个CG传输时机对应的混合自动重传请求HARQ的重传时长小于所述一个CG周期时段的时长。
- 一种通信装置,其特征在于,包括:至少一个处理器,所述至少一个处理器和存储器耦合,所述处理器用于调用所述存储器存储的指令,以执行权利要求1-10任一项所述的方法。
- 一种通信装置,其特征在于,包括:至少一个处理器,所述至少一个处理器和存储器耦合,所述处理器用于调用所述存储器存储的指令,以执行权利要求11-20任一项所述的方法。
- 一种计算机可读存储介质,其特征在于,所述计算机可读存储介质上存储有指令,当所述指令在计算机上运行时,使得计算机执行如权利要求1-10任一项所述的方法,或执行如权利要求11-20任一项所述的方法。
- 一种计算机程序产品,其特征在于,包括指令,当所述指令在计算机上运行时,使得计算机执行如权利要求1-10任一项所述的方法,或执行如权利要求11-20任一项所述的方法。
- 一种通信装置,其特征在于,包括用于执行如权利要求1-10中任一项所述方法的模块。
- 一种通信装置,其特征在于,包括用于执行如权利要求11-20中任一项所述方法的模块。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202310157021.3A CN118524531A (zh) | 2023-02-17 | 2023-02-17 | 一种cg传输时机的配置方法及通信装置 |
CN202310157021.3 | 2023-02-17 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2024169540A1 true WO2024169540A1 (zh) | 2024-08-22 |
Family
ID=92276098
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2024/073641 WO2024169540A1 (zh) | 2023-02-17 | 2024-01-23 | 一种cg传输时机的配置方法及通信装置 |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN118524531A (zh) |
WO (1) | WO2024169540A1 (zh) |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2022031102A1 (ko) * | 2020-08-06 | 2022-02-10 | 엘지전자 주식회사 | 상향링크 채널을 전송하는 방법, 사용자기기, 프로세싱 장치, 저장 매체 및 컴퓨터 프로그램, 그리고 상향링크 채널을 수신하는 방법 및 기지국 |
US20220149997A1 (en) * | 2019-03-29 | 2022-05-12 | Samsung Electronics Co., Ltd. | Apparatus and method for semi-persistent scheduling |
WO2023010951A1 (zh) * | 2021-08-02 | 2023-02-09 | 华为技术有限公司 | 资源配置方法和通信装置 |
-
2023
- 2023-02-17 CN CN202310157021.3A patent/CN118524531A/zh active Pending
-
2024
- 2024-01-23 WO PCT/CN2024/073641 patent/WO2024169540A1/zh unknown
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20220149997A1 (en) * | 2019-03-29 | 2022-05-12 | Samsung Electronics Co., Ltd. | Apparatus and method for semi-persistent scheduling |
WO2022031102A1 (ko) * | 2020-08-06 | 2022-02-10 | 엘지전자 주식회사 | 상향링크 채널을 전송하는 방법, 사용자기기, 프로세싱 장치, 저장 매체 및 컴퓨터 프로그램, 그리고 상향링크 채널을 수신하는 방법 및 기지국 |
WO2023010951A1 (zh) * | 2021-08-02 | 2023-02-09 | 华为技术有限公司 | 资源配置方法和通信装置 |
Also Published As
Publication number | Publication date |
---|---|
CN118524531A (zh) | 2024-08-20 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN111181694B (zh) | 一种上行控制信息的传输方法及装置 | |
CA3077132A1 (en) | Method and apparatus for wireless communication | |
WO2019029463A1 (zh) | 一种接收控制信息、发送控制信息的方法及设备 | |
WO2022237527A1 (zh) | 一种非连续接收的通信方法及装置 | |
WO2023035909A1 (zh) | 数据传输方法及装置 | |
WO2024169540A1 (zh) | 一种cg传输时机的配置方法及通信装置 | |
WO2024207995A1 (zh) | 一种基于配置授权的通信方法及装置 | |
WO2024067064A1 (zh) | 数据传输方法及装置 | |
WO2024174665A1 (zh) | 通信方法和通信装置 | |
WO2024032276A1 (zh) | 一种通信方法及装置 | |
WO2024207963A1 (zh) | 一种配置授权传输方法和装置 | |
WO2024169349A1 (zh) | 一种数据传输方法及相关设备 | |
WO2024169477A1 (zh) | 上行链路控制信息的发送方法及装置 | |
WO2023109431A1 (zh) | 数据传输方法及装置 | |
WO2024152989A1 (zh) | 通信方法及装置 | |
WO2024169550A1 (zh) | 一种缓存状态报告确定方法、通信方法及装置 | |
WO2023165247A1 (zh) | 半静态调度方法、用户设备、基站及通信系统 | |
WO2024140257A1 (zh) | 一种基于配置授权的通信方法及装置 | |
WO2023246744A1 (zh) | 一种通信方法及装置 | |
WO2024188113A1 (zh) | 通信方法及装置 | |
WO2024140655A1 (zh) | 一种配置授权的处理方法、装置及计算机可读存储介质 | |
WO2023207506A1 (zh) | 共享资源分配方法及装置 | |
WO2024067189A1 (zh) | 一种通信方法及装置 | |
WO2024207943A1 (zh) | 基于配置授权cg的通信方法和装置 | |
WO2024060970A1 (zh) | 通信方法及装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 24755915 Country of ref document: EP Kind code of ref document: A1 |