WO2024060970A1 - 通信方法及装置 - Google Patents

通信方法及装置 Download PDF

Info

Publication number
WO2024060970A1
WO2024060970A1 PCT/CN2023/116551 CN2023116551W WO2024060970A1 WO 2024060970 A1 WO2024060970 A1 WO 2024060970A1 CN 2023116551 W CN2023116551 W CN 2023116551W WO 2024060970 A1 WO2024060970 A1 WO 2024060970A1
Authority
WO
WIPO (PCT)
Prior art keywords
bit
bits
group
rate matching
physical shared
Prior art date
Application number
PCT/CN2023/116551
Other languages
English (en)
French (fr)
Inventor
张彦清
李雪茹
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2024060970A1 publication Critical patent/WO2024060970A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/25Control channels or signalling for resource management between terminals via a wireless link, e.g. sidelink

Definitions

  • the present application relates to the field of wireless communications, and in particular, to a communication method and device.
  • the same control information can schedule at least two physical shared channels to increase the capacity of the physical shared channels. Furthermore, all physical shared channels scheduled by the control information have the same rate matching indicator (rate matching indicator) field indicating the rate match pattern group (rate match pattern group). Among them, the rate match pattern group covers the area where time-frequency resource overlap may occur in the time unit of each physical shared channel scheduled by the control information to ensure that the physical shared channel does not conflict with the physical control channel. Time-frequency resource overlap means that the time-frequency resources of the physical shared channel overlap with the time-frequency resources of the physical control channels of other terminal devices.
  • the physical shared channel avoids occupying the rate match pattern group.
  • the corresponding time-frequency resources result in a waste of time-frequency resources and the capacity of the physical shared channel is low.
  • This application provides a communication method and device that can flexibly indicate rate matching pattern groups for different physical shared channels scheduled by itself, thereby increasing the capacity of the physical shared channel and reducing the waste of time-frequency resources.
  • this application adopts the following technical solutions:
  • the first aspect is to provide a communication method.
  • the execution subject of the method may be the first device or a chip applied to the first device.
  • the following description takes the execution subject being the first device as an example.
  • the method includes: a first device sending control information and L physical shared channels to a second device.
  • the control information indicates L physical shared channels and L first resources.
  • the i-th first resource among the L first resources is the time-frequency resource allocated to the i-th physical shared channel among the L physical shared channels.
  • the control information includes a first field, the first field includes G bits, the G bits indicate L rate matching pattern groups, the G bits include a plurality of bit groups, and each of the plurality of bit groups is shared by at most M physical
  • the channel indicates a rate matching pattern group, the M physical shared channels are part of the L physical shared channels, and the rate matching pattern group indicated by each bit group in the plurality of bit groups is part of the L rate matching pattern groups.
  • M is a positive integer less than L
  • G is a positive integer greater than or equal to 2.
  • the i-th rate matching pattern group among the L rate matching pattern groups indicates the i-th second resource, and the i-th second resource is the unoccupied time-frequency resource of the i-th physical shared channel indicated by the control information.
  • the i-th physical shared channel among the L physical shared channels occupies the i-th third resource.
  • the i-th third resource is a resource in the i-th first resource other than the overlapping resource
  • Overlapping resources are resources in which the i-th second resource overlaps with the i-th first resource.
  • the i-th third resource is the i-th first resource.
  • L is a positive integer greater than 1, and i is any positive integer less than or equal to L.
  • the i-th third resource is the i-th first resource.
  • the rate matching pattern groups indicated by different bits in the first field are suitable for different physical shared channels, which improves the flexibility of the control information indicating the rate matching pattern group.
  • the control information can indicate different rate matching pattern groups for the two physical shared channels, so that the two physical shared channels can Each physical shared channel avoids different resources to increase the capacity of the physical shared channel and reduce the waste of time and frequency resources.
  • the method before the first device sends the control information to the second device, the method further includes: the first device sends the first configuration information to the second device.
  • the first configuration information configures P rate matching pattern groups, any rate matching pattern group among the L rate matching pattern groups is at most one of the P rate matching pattern groups, and P is a positive integer greater than 1.
  • the rate matching pattern group is one of the P rate matching pattern groups. Conversely, when the i-th rate matching pattern group among the L rate matching pattern groups is empty, the rate matching pattern group does not exist.
  • the first device can configure P rate matching pattern groups for the second device through the first configuration information.
  • the first bit group is one bit group among multiple bit groups, and the first bit group includes one bit among G bits.
  • the rate matching pattern group indicated by the first bit group does not exist. That is to say, the actual transmission resources of the physical shared channel corresponding to the first bit group do not need to exclude any resource reservation area.
  • the rate matching pattern group indicated by the first bit group is one of P rate matching pattern groups. That is to say, the actual transmission resources of the physical shared channel corresponding to the first bit group need to exclude the resource reservation area of a certain rate matching pattern group.
  • the first bit group may be any one of the plurality of bit groups.
  • the first bit group is one bit group among multiple bit groups, and the first bit group includes one bit among G bits.
  • the rate matching pattern group indicated by the first bit group is the first rate matching pattern group. That is to say, the actual transmission resources of the physical shared channel corresponding to the first bit group need to exclude the resource reservation area of the first rate matching pattern group.
  • the rate matching pattern group indicated by the first bit group is the second rate matching pattern group. That is to say, the actual transmission resources of the physical shared channel corresponding to the first bit group need to exclude the resource reservation area of the second rate matching pattern group.
  • the first rate matching pattern group is one of the P rate matching pattern groups
  • the second rate matching pattern group is another of the P rate matching pattern groups.
  • the first bit group may be any one of the plurality of bit groups.
  • G ceil(X/M), where ceil( ⁇ ) denotes a ceiling operator, and X denotes the maximum number of physical shared channels that can be scheduled by the control information.
  • the number of bits in the first field is determined based on X and M.
  • the method before the first device sends the control information to the second device, the method further includes: the first device sends the second configuration information to the second device.
  • the second configuration information is used to configure the size of M, where M is a positive integer less than or equal to X. In this way, the second device can learn the size of M.
  • the first bit group is one bit group among multiple bit groups, and the first bit group includes the g-th bit among the G bits, or the first bit group includes the g+th bit among the G bits.
  • the M physical shared channels are the (g-1)*M+1 to g*Mth physical shared channels among the L physical shared channels.
  • the 1st bit among the G bits is the most significant bit MSB, and the Gth bit among the G bits is the least significant bit LSB.
  • the 1st bit among G bits is the LSB, and the Gth bit among the G bits is the MSB.
  • g is a positive integer less than floor(L/M), floor( ⁇ ) represents the downward rounding operator, ceil( ⁇ ) represents the upward rounding operator, and / represents the division operator.
  • the first bit of the G bits is the MSB, and the Gth bit of the G bits is the LSB.
  • the first bit group includes the gth bit of the G bits, which means the gth bit of the G bits calculated from MSB to LSB.
  • the first bit group includes the g+G-ceil(L/M)th bit of the G bits, which means the g+G-ceil(L/M)th bit of the G bits calculated from MSB to LSB.
  • the first bit among G bits is the LSB, and the G-th bit among the G bits is the MSB.
  • the first bit group includes the g-th bit among the G bits, which refers to the g-th bit counted from the LSB to the MSB among the G bits.
  • the first bit group includes the g+G-ceil(L/M)th bit among the G bits, which refers to the g+G-ceil(L/M)th bit calculated from LSB to MSB among the G bits. .
  • the first bit group is M physical shared channel indication rate matching pattern groups.
  • the first bit group is one bit group among multiple bit groups.
  • the first bit group includes the ceil(L/M)th bit among the G bits, or , the first bit group includes the G-th bit among the G bits.
  • the M physical shared channels are the (ceil(L/M)-1)*M+1 to L-th physical shared channels among the L physical shared channels.
  • the 1st bit among the G bits is the most significant bit MSB
  • the Gth bit among the G bits is the least significant bit LSB.
  • the 1st bit among G bits is the LSB
  • the Gth bit among the G bits is the MSB.
  • ceil( ⁇ ) represents the rounding up operator, and / represents the division operator.
  • the 1st bit of G bits is the MSB
  • the Gth bit of G bits is the LSB.
  • the first bit group includes the ceil(L/M)th bit of G bits, which means, the ceil(L/M)th bit of G bits is calculated from MSB to LSB.
  • the first bit group includes the Gth bit of G bits, which means, the ceil(L/M)th bit of G bits is calculated from MSB to LSB.
  • the Gth bit is counted starting from MSB to LSB.
  • the first bit of the G bits is the LSB, and the Gth bit of the G bits is the MSB.
  • the first bit group includes the ceil(L/M)th bit of the G bits, which means the ceil(L/M)th bit of the G bits calculated from LSB to MSB.
  • the first bit group includes the Gth bit of the G bits, which means the Gth bit of the G bits calculated from LSB to MSB.
  • the number of physical shared channels corresponding to the first bit group is less than M, that is, the first bit group is less than M physical shared channel indication rate matching pattern groups.
  • the first bit group is one bit group among multiple bit groups, and the first bit group includes the g-th bit among the G bits, or the first bit group includes the g+th bit among the G bits.
  • the M physical shared channels are the g-th physical shared channels among the L physical shared channels.
  • the 1st bit among G bits is the LSB
  • the Gth bit among the G bits is the MSB.
  • the 1st bit among the G bits is the most significant bit MSB
  • the Gth bit among the G bits is the least significant bit LSB.
  • the 1st bit among G bits is the LSB
  • the Gth bit among the G bits is the MSB.
  • the first bit among G bits is MSB, and the G-th bit among G bits is LSB.
  • the first bit group includes the g-th bit among the G bits, which refers to the g-th bit counted from the MSB to the LSB among the G bits.
  • the first bit group includes the g+G-L-th bit among the G bits, which refers to the g+G-L-th bit counted from the MSB to the LSB among the G bits.
  • the first bit among G bits is the LSB, and the G-th bit among the G bits is the MSB.
  • the first bit group includes the g-th bit among the G bits, which refers to the g-th bit counting from LSB to MSB among the G bits.
  • the first bit group includes the g+G-L-th bit among the G bits, which refers to the g+G-L-th bit counted from LSB to MSB among the G bits.
  • the first bit group is a physical shared channel indication rate matching pattern group, or each of the G bits is a physical shared channel indication rate matching pattern group.
  • the first bit group is one bit group among multiple bit groups, and the first bit group includes the g-th bit among the G bits, or the first bit group includes the g+th bit among the G bits.
  • the M physical shared channels are the (g-1)*V 1 +1 to g*V 1th physical shared channels among the L physical shared channels.
  • the 1st bit among the G bits is the most significant bit MSB
  • the Gth bit among the G bits is the least significant bit LSB.
  • the 1st bit among G bits is the LSB
  • the Gth bit among the G bits is the MSB.
  • the first bit among G bits is MSB, and the G-th bit among G bits is LSB.
  • the first bit group includes the g-th bit among the G bits, which refers to the g-th bit counted from the MSB to the LSB among the G bits.
  • the first bit group includes the g+GN-th bit among the G bits, which refers to the g+GN-th bit counted from the MSB to the LSB among the G bits.
  • the first bit among G bits is the LSB, and the G-th bit among the G bits is the MSB.
  • the first bit group includes the g-th bit among the G bits, which refers to the g-th bit counted from the LSB to the MSB among the G bits.
  • the first bit group includes the g+GN-th bit among the G bits, which refers to the g+GN-th bit counted from LSB to MSB among the G bits.
  • the first bit group is the V 1 physical shared channel indication rate matching pattern group.
  • the first bit group is one bit group among multiple bit groups, and the first bit group includes the g-th bit among the G bits, or the first bit group includes the g+th bit among the G bits.
  • the M physical shared channels are the N 1 *V 1 +(gN 1 -1)*V 2 +1 to the N 1 *V 1 +(gN 1 -1)*V 2 +V 2 among the L physical shared channels physical shared channel.
  • the 1st bit among the G bits is the most significant bit MSB
  • the Gth bit among the G bits is the least significant bit LSB.
  • the 1st bit among G bits is the LSB
  • the Gth bit among the G bits is the MSB.
  • the 1st bit of the G bits is the MSB
  • the Gth bit of the G bits is the LSB.
  • the first bit group includes the gth bit of the G bits, which means the gth bit of the G bits calculated from MSB to LSB.
  • the first bit group includes the g+GNth bit of the G bits, which means the g+GNth bit of the G bits calculated from MSB to LSB.
  • the first bit among G bits is the LSB, and the G-th bit among the G bits is the MSB.
  • the first bit group includes the g-th bit among the G bits, which refers to the g-th bit from the LSB to the MSB among the G bits. bits.
  • the first bit group includes the g+GN-th bit among the G bits, which refers to the g+GN-th bit counted from LSB to MSB among the G bits.
  • the first bit group is the V 2 physical shared channel indication rate matching pattern group.
  • G X.
  • X represents the maximum number of physical shared channels that the control information can schedule.
  • the G bits of the first field can indicate each physical shared channel that can be scheduled by the control information.
  • the method before the first device sends the control information to the second device, the method further includes: the first device sends third configuration information to the second device.
  • the third configuration information is used to configure the size of G.
  • the first device configures the size of G for the second device.
  • the first bit group may be any one of the plurality of bit groups. That is to say, the first bit group is a physical shared channel indication rate matching pattern group.
  • the first bit group includes the 2*g-1 bit and the 2*g bit among the G bits, or the first bit group includes the 2*(X- L+g)-1 bit and 2*(X-L+g) bit.
  • the M physical shared channels are the g-th physical shared channels among the L physical shared channels.
  • the 1st bit among the G bits is the most significant bit MSB
  • the Gth bit among the G bits is the least significant bit LSB.
  • the 1st bit among G bits is the LSB
  • the Gth bit among the G bits is the MSB.
  • G is a positive integer greater than or equal to 2L
  • g is any positive integer less than or equal to L
  • X represents the maximum number of physical shared channels that the control information can schedule.
  • the first bit among G bits is MSB, and the G-th bit among G bits is LSB.
  • the 2*g-1 bit among the G bits refers to the 2*g-1 bit among the G bits counted from MSB to LSB.
  • the 2*g bit among the G bits refers to the 2*g bit among the G bits, counting from MSB to LSB.
  • the 2*(X-L+g)-1 bit among the G bits refers to the 2*(X-L+g)-1 bit among the G bits calculated from MSB to LSB.
  • the 2*(X-L+g) bit among the G bits refers to the 2*(X-L+g) bit among the G bits calculated from MSB to LSB.
  • the first bit among G bits is the LSB, and the G-th bit among the G bits is the MSB.
  • the 2*g-1 bit among the G bits refers to the 2*g-1 bit among the G bits calculated from LSB to MSB.
  • the 2*g bit among the G bits refers to the 2*g bit among the G bits calculated from LSB to MSB.
  • the 2*(X-L+g)-1 bit among the G bits refers to the 2*(X-L+g)-1 bit among the G bits calculated from LSB to MSB.
  • the 2*(X-L+g) bit among the G bits refers to the 2*(X-L+g) bit among the G bits calculated from LSB to MSB.
  • the first bit group is a physical shared channel indication rate matching pattern group.
  • G 2X.
  • the G bits of the first field can indicate each physical shared channel that can be scheduled by the control information.
  • the first bit group includes the 2*g-1th bit and the 2*gth bit of the G bits.
  • the rate matching pattern group indicated by the first bit group does not exist. That is, the actual transmission resources of the physical shared channel corresponding to the first bit group do not need to remove any resource reserved area.
  • the rate matching pattern group indicated by the first bit group is the first rate matching pattern group. That is to say, the actual transmission resources of the physical shared channel corresponding to the first bit group need to exclude the resource reservation area of the first rate matching pattern group.
  • the rate matching pattern group indicated by the first bit group is the second rate matching pattern group. That is to say, the actual transmission resources of the physical shared channel corresponding to the first bit group need to exclude the resource reservation area of the second rate matching pattern group.
  • the rate matching pattern group indicated by the first bit group is the first rate matching pattern group and the Two rate matching pattern sets. That is to say, the actual transmission resources of the physical shared channel corresponding to the first bit group need to exclude the resource reservation areas of the first rate matching pattern group and the second rate matching pattern group.
  • the 1st bit among the G bits is the most significant bit MSB, and the Gth bit among the G bits is the least significant bit LSB. Or, the 1st bit among G bits is the LSB, and the Gth bit among the G bits is the MSB.
  • g is any positive integer less than or equal to L.
  • the first rate matching pattern group is one of the P rate matching pattern groups, and the second rate matching pattern group is another of the P rate matching pattern groups.
  • P is 2.
  • the method before the first device sends the control information to the second device, the method further includes: the first device sends fourth configuration information to the second device.
  • the fourth configuration information is used to configure the size of X, where X represents the maximum number of physical shared channels that can be scheduled by the control information, and X is a positive integer greater than or equal to L.
  • the first device configures the size of X for the second device.
  • the control information is downlink control information DCI
  • the L physical shared channels are L physical downlink shared channels PDSCH
  • the first field is a rate matching indicator field.
  • the control information is side link control information SCI
  • the L physical shared channels are L physical Sidelink shared channel PSSCH.
  • the second aspect is to provide a communication method.
  • the execution subject of the method may be the second device or a chip applied to the second device.
  • the following description takes the execution subject being the second device as an example.
  • the method includes: the second device receives control information from the first device.
  • the control information indicates L physical shared channels and L first resources.
  • the i-th first resource among the L first resources is the time-frequency resource allocated to the i-th physical shared channel among the L physical shared channels.
  • the control information includes a first field, the first field includes G bits, the G bits indicate L rate matching pattern groups, the G bits include a plurality of bit groups, and each of the plurality of bit groups is shared by at most M physical
  • the channel indicates a rate matching pattern group, the M physical shared channels are part of the L physical shared channels, and the rate matching pattern group indicated by each bit group in the plurality of bit groups is part of the L rate matching pattern groups.
  • M is a positive integer less than L
  • G is a positive integer greater than or equal to 2.
  • the i-th rate matching pattern group among the L rate matching pattern groups indicates the i-th second resource, and the i-th second resource is the unoccupied time-frequency resource of the i-th physical shared channel indicated by the control information.
  • the second device receives L physical shared channels from the first device according to the control information.
  • the i-th physical shared channel among the L physical shared channels occupies the i-th third resource.
  • the i-th third resource is a resource in the i-th first resource other than the overlapping resource
  • Overlapping resources are resources in which the i-th second resource overlaps with the i-th first resource.
  • the i-th third resource is the i-th first resource.
  • L is a positive integer greater than 1, and i is any positive integer less than or equal to L.
  • the method before the second device receives the control information from the first device, the method further includes: the second device receives the first configuration information from the first device.
  • the first configuration information configures P rate matching pattern groups, any rate matching pattern group among the L rate matching pattern groups is at most one of the P rate matching pattern groups, and P is a positive integer greater than 1.
  • the first bit group is one bit group among multiple bit groups, and the first bit group includes one bit among G bits.
  • the rate matching pattern group indicated by the first bit group does not exist.
  • the rate matching pattern group indicated by the first bit group is one of P rate matching pattern groups.
  • the first bit group is one bit group among multiple bit groups, and the first bit group includes one bit among G bits.
  • the rate matching pattern group indicated by the first bit group is the first rate matching pattern group.
  • the rate matching pattern group indicated by the first bit group is the second rate matching pattern group.
  • the first rate matching pattern group is one of the P rate matching pattern groups
  • the second rate matching pattern group is another of the P rate matching pattern groups.
  • G ceil(X/M). ceil( ⁇ ) represents the rounding up operator, and X represents the maximum number of physical shared channels that the control information can schedule.
  • the method before the second device receives the control information from the first device, the method further includes: the second device receives second configuration information from the first device.
  • the second configuration information is used to configure the size of M, where M is a positive integer less than or equal to X.
  • the first bit group is one bit group among multiple bit groups, and the first bit group includes the g-th bit among the G bits, or the first bit group includes the g+th bit among the G bits.
  • G-ceil(L/M) bits The M physical shared channels are the (g-1)*M+1 to g*Mth physical shared channels among the L physical shared channels.
  • the first bit among the G bits is the most significant bit MSB, and the G bits
  • the G-th bit among the bits is the least significant bit LSB.
  • the 1st bit among G bits is the LSB
  • the Gth bit among the G bits is the MSB.
  • g is a positive integer less than floor(L/M)
  • floor( ⁇ ) represents the downward rounding operator
  • ceil( ⁇ ) represents the upward rounding operator
  • / represents the division operator.
  • the first bit group is one bit group among multiple bit groups.
  • the first bit group includes the ceil(L/M)th bit among the G bits, or , the first bit group includes the G-th bit among the G bits.
  • the M physical shared channels are the (ceil(L/M)-1)*M+1 to L-th physical shared channels among the L physical shared channels.
  • the 1st bit among the G bits is the most significant bit MSB
  • the Gth bit among the G bits is the least significant bit LSB.
  • the 1st bit among G bits is the LSB
  • the Gth bit among the G bits is the MSB.
  • ceil( ⁇ ) represents the rounding up operator, and / represents the division operator.
  • the first bit group is one bit group among multiple bit groups, and the first bit group includes the g-th bit among the G bits, or the first bit group includes the g+th bit among the G bits.
  • the M physical shared channels are the g-th physical shared channels among the L physical shared channels.
  • the 1st bit among the G bits is the most significant bit MSB
  • the Gth bit among the G bits is the least significant bit LSB.
  • the 1st bit among G bits is the LSB
  • the Gth bit among the G bits is the MSB.
  • g is any positive integer less than or equal to L
  • M 1.
  • the first bit group is one bit group among multiple bit groups, and the first bit group includes the g-th bit among the G bits, or the first bit group includes the g+th bit among the G bits.
  • the M physical shared channels are the (g-1)*V 1 +1 to g*V 1th physical shared channels among the L physical shared channels.
  • the 1st bit among the G bits is the most significant bit MSB
  • the Gth bit among the G bits is the least significant bit LSB.
  • the 1st bit among G bits is the LSB
  • the Gth bit among the G bits is the MSB.
  • the first bit group is a bit group among multiple bit groups, and the first bit group includes the gth bit among G bits, or the first bit group includes the g+GNth bit among G bits.
  • the M physical shared channels are the N 1 *V 1 +(gN 1 -1)*V 2 +1th to the N 1 *V 1 +(gN 1 -1)* V 2 + V 2th physical shared channels among the L physical shared channels.
  • the first bit among the G bits is the most significant bit (MSB), and the Gth bit among the G bits is the least significant bit (LSB).
  • the first bit among the G bits is the LSB, and the Gth bit among the G bits is the MSB.
  • G X.
  • X represents the maximum number of physical shared channels that the control information can schedule.
  • the method before the second device receives the control information from the first device, the method further includes: the second device receives third configuration information from the first device.
  • the third configuration information is used to configure the size of G.
  • the first bit group includes the 2*g-1th bit and the 2*gth bit among the G bits, or the first bit group includes the 2*(X-L+g)-1th bit and the 2*(X-L+g)th bit among the G bits.
  • the M physical shared channels are the g-th physical shared channels among the L physical shared channels.
  • the 1st bit among the G bits is the most significant bit MSB
  • the G-th bit among the G bits is the least significant bit LSB.
  • the 1st bit among the G bits is the LSB
  • the G-th bit among the G bits is the MSB.
  • G is a positive integer greater than or equal to 2L
  • g is any positive integer less than or equal to L
  • X represents the maximum number of physical shared channels that can be scheduled by the control information.
  • G 2X.
  • the first bit group includes the 2*g-1 bit and the 2*g bit among the G bits.
  • the rate matching pattern group indicated by the first bit group does not exist.
  • the rate matching pattern group indicated by the first bit group is the first rate matching pattern group.
  • the rate matching pattern group indicated by the first bit group is the second rate matching pattern group.
  • the rate matching pattern group indicated by the first bit group is the first rate matching pattern group. and a second rate matching pattern set.
  • the 1st bit among the G bits is the most significant bit MSB
  • the Gth bit among the G bits is the least significant bit LSB.
  • the 1st bit among G bits is the LSB
  • the Gth bit among the G bits is the MSB.
  • g is any positive integer less than or equal to L.
  • the first rate matching pattern group is one of the P rate matching pattern groups
  • the second rate matching pattern group is another of the P rate matching pattern groups.
  • P is 2.
  • the method before the second device receives the control information from the first device, the method further includes: the second device receives fourth configuration information from the first device.
  • the fourth configuration information is used to configure the size of X, where X represents the maximum number of physical shared channels that can be scheduled by the control information, and X is a positive integer greater than or equal to L.
  • the control information is downlink control information DCI
  • the L physical shared channels are L physical downlink shared channels.
  • the first field is the rate matching indicator field.
  • the control information is side link control information SCI
  • the L physical shared channels are L physical Sidelink shared channel PSSCH.
  • a communication device in a third aspect, includes: a processor; the processor is coupled to a memory, and is used to read instructions in the memory and execute them, so that the communication device performs any of the above aspects or any possible design of any aspect.
  • the method executed by the first device may be the first device in the above-mentioned first aspect or any possible design of the first aspect, or a chip that implements the function of the above-mentioned first device.
  • a fourth aspect provides a chip.
  • the chip includes processing circuits and input and output interfaces. Among them, the input and output interfaces are used to communicate with modules outside the chip.
  • the chip may be a chip that implements the first device function in the above-mentioned first aspect or any possible design of the first aspect.
  • the processing circuit is used to run computer programs or instructions to implement the method in the above first aspect or any possible design of the first aspect.
  • a communication device in a fifth aspect, includes: a processor; the processor is coupled to a memory, and is used to read instructions in the memory and execute them, so that the communication device performs any of the above aspects or any possible design of any aspect.
  • the method executed by the second device may be the second device in the above-mentioned second aspect or any possible design of the second aspect, or a chip that implements the function of the above-mentioned second device.
  • a sixth aspect provides a chip.
  • the chip includes processing circuits and input and output interfaces. Among them, the input and output interfaces are used to communicate with modules outside the chip.
  • the chip may be a chip that implements the second device function in the above second aspect or any possible design of the second aspect.
  • the processing circuit is used to run computer programs or instructions to implement the above second aspect or any method in the possible design of the second aspect.
  • a computer-readable storage medium stores instructions, which when run on a computer, enable the computer to perform any of the methods in any of the above aspects.
  • An eighth aspect provides a computer program product containing instructions that, when run on a computer, enable the computer to perform any of the methods of any of the above aspects.
  • a circuit system configured to execute any method as described in any of the above aspects.
  • a communication system including: a first device and a second device.
  • the first device is used to perform the method in the first aspect and any possible design of the first aspect
  • the second device is used to perform the method described in the second aspect and any possible design of the second aspect.
  • Figure 1 is a schematic architectural diagram of a communication system provided by an embodiment of the present application.
  • Figure 2 is a schematic diagram of a scheduling scenario provided by an embodiment of the present application.
  • FIG. 3 is a schematic diagram of yet another scheduling scenario provided by the embodiment of the present application.
  • Figure 4 is a schematic diagram of another scheduling scenario provided by the embodiment of the present application.
  • Figure 5 is a schematic diagram of resource distribution of a rate matching pattern provided by an embodiment of the present application.
  • Figure 6 is a schematic diagram of resource distribution of a rate matching pattern group provided by an embodiment of the present application.
  • FIG. 7 is a schematic diagram of another scheduling scenario provided by the embodiment of the present application.
  • Figure 8 is a schematic flow chart of a communication method provided by an embodiment of the present application.
  • Figure 9 is a schematic diagram of resource distribution of yet another rate matching pattern group provided by an embodiment of the present application.
  • FIG10 is a schematic diagram of another scheduling scenario provided in an embodiment of the present application.
  • Figure 11 is a schematic diagram of a first field provided by an embodiment of the present application.
  • Figure 12 is a schematic diagram of yet another first field provided by an embodiment of the present application.
  • Figure 13 is a schematic diagram of another first field provided by the embodiment of the present application.
  • Figure 14 is a schematic diagram of another first field provided by the embodiment of the present application.
  • Figure 15 is a schematic diagram of another first field provided by the embodiment of the present application.
  • Figure 16 is a schematic flowchart of yet another communication method provided by an embodiment of the present application.
  • Figure 17 is a schematic structural diagram of a communication device provided by an embodiment of the present application.
  • the technical solutions of the embodiments of the present application can be applied to various communication systems, such as universal mobile telecommunications system (UMTS), wireless local area network (WLAN), wireless fidelity (wireless fidelity, Wi-Fi) ) system, wired network, vehicle to everything (V2X) communication system, device-to-device (D2D) communication system, Internet of Vehicles communication system, 4th generation (4G) mobile communication Systems, such as long term evolution (LTE) systems, worldwide interoperability for microwave access (WiMAX) communication systems, fifth generation (5th generation, 5G) mobile communication systems, such as new radio , NR) system, sixth generation (6th generation, 6G) mobile communication system, etc.
  • UMTS universal mobile telecommunications system
  • WLAN wireless local area network
  • Wi-Fi wireless fidelity
  • V2X vehicle to everything
  • D2D device-to-device
  • Internet of Vehicles communication system Internet of Vehicles communication system
  • 4G 4th generation
  • 4G mobile communication Systems
  • LTE long term evolution
  • FIG. 1 is an architectural schematic diagram of a communication system to which the method provided by the embodiment of the present application is applicable.
  • the communication system 1000 includes a first device 100 and a second device 200 .
  • both the first device 100 and the second device 200 may be terminal devices.
  • the communication system 1000 also includes network equipment (not shown in Figure 1).
  • the first device 100 and the second device 200 communicate through a side link (or PC5 interface), and the second device 200 can communicate with the network device through the first device 100 .
  • Both the first device 100 and the second device 200 may be within network coverage, or one may be within network coverage and the other may be outside network coverage, or both may be outside network coverage.
  • the serving base station of the first device 100 and the serving base station of the second device 200 may be the same or different.
  • the first device 100 is a terminal device, and the second device 200 is a network device.
  • the first device 100 is a network device, and the second device 200 is a terminal device.
  • the terminal device is a terminal with wireless transceiver function.
  • the terminal equipment in this application may also be called terminal, user equipment (UE), access terminal, user unit, user station, mobile station, mobile station, remote station, remote terminal, mobile equipment, user terminal, wireless Communication equipment, user agent or user device.
  • the terminal in the embodiment of the present application may be a road side unit (RSU), a mobile phone, a tablet, a drone, a computer with wireless transceiver functions, or a customer front-end equipment (customer equipment).
  • RSU road side unit
  • a mobile phone a tablet
  • a drone a computer with wireless transceiver functions
  • customer front-end equipment customer front-end equipment
  • CPE premise equipment
  • VR virtual reality
  • AR augmented reality
  • Internet of Things terminals wireless terminals in industrial control (industrial control), and self-driving (self driving)
  • Wireless terminals wireless terminals in remote medical
  • smart grid Wireless terminals in transportation safety wireless terminals in smart cities, wireless terminals in smart homes, cellular phones, cordless phones, session initiation protocols protocol (SIP) telephone, wireless local loop (WLL) station, personal digital assistant (PDA), handheld device with wireless communication capabilities, computing device or other processing device connected to a wireless modem
  • Vehicle-mounted devices wearable devices, terminals in 5G networks or terminals in future evolution networks, etc.
  • the terminal device in this application can be an express delivery terminal in smart logistics (such as a device that can monitor the location of cargo vehicles, a device that can monitor the temperature and humidity of cargo, etc.), a wireless terminal in smart agriculture (such as a device that can collect livestock related data wearable devices, etc.), wireless terminals in smart buildings (such as smart elevators, fire monitoring equipment, and smart meters, etc.), wireless terminals in smart medical care (such as wearable devices that can monitor the physiological status of people or animals) ), wireless terminals in smart transportation (such as smart buses, smart vehicles, shared bicycles, charging pile monitoring equipment, smart traffic lights, smart monitoring and smart parking equipment, etc.), wireless terminals in smart retail (such as vending machines, Self-service checkout machines, unmanned convenience stores, etc.).
  • smart logistics such as a device that can monitor the location of cargo vehicles, a device that can monitor the temperature and humidity of cargo, etc.
  • a wireless terminal in smart agriculture such as a device that can collect livestock related data wearable devices, etc.
  • wireless terminals in smart buildings
  • the terminal device in this application may be a vehicle-mounted module, vehicle-mounted module, vehicle-mounted component, vehicle-mounted chip or vehicle-mounted unit built into the vehicle as one or more components or units.
  • vehicle uses the built-in vehicle-mounted module, vehicle-mounted unit Modules, vehicle components, vehicle chips or vehicle units can implement the method provided by this application.
  • the network device can communicate with the terminal device, for example, through the Uu port.
  • the above network equipment may also be called access network equipment, access equipment or wireless access network equipment.
  • the network equipment can manage wireless resources, provide access services for terminal equipment, and complete data transfer between the terminal equipment and the core network. Forwarding between networks, network equipment can also be understood as a base station in the network.
  • the network device in the embodiment of the present application may be any communication device with wireless transceiver function used to communicate with the terminal device.
  • the network equipment includes but is not limited to: RSU, evolved Node B (evolved Node B, eNB), wireless network controller (radio network controller, RNC), Node B (Node B, NB), base station controller (base station controller) , BSC), base transceiver station (base transceiver station, BTS), home base station (home evolved NodeB, HeNB, or home Node B, HNB), baseband unit (baseBand unit, BBU), wireless fidelity (wireless fidelity, WIFI)
  • 5G can also be 5G, Such as gNB in the NR system, or transmission point (TRP or TP), one or a group (including multiple antenna panels) antenna panels of the base station in the 5G system, or it can also be the network node that constitutes the gNB or transmission point, Such as baseband unit (BBU), or distributed unit (DU), etc. It can also be a satellite, a drone, etc.
  • gNB may include centralized units (CUs) and DUs.
  • the gNB may also include an active antenna unit (AAU).
  • CU implements some functions of gNB
  • DU implements some functions of gNB.
  • CU is responsible for processing non-real-time protocols and services, implementing radio resource control (RRC), and packet data convergence protocol (PDCP) layer functions.
  • RRC radio resource control
  • PDCP packet data convergence protocol
  • DU is responsible for processing physical layer protocols and real-time services, and implementing the functions of the radio link control (RLC) layer, media access control (MAC) layer and physical (physical, PHY) layer.
  • RLC radio link control
  • MAC media access control
  • PHY physical layer
  • the RRC layer information is generated by the CU, and will eventually be encapsulated by the PHY layer of the DU into PHY layer information, or converted from the PHY layer information. Therefore, under this architecture, high-level signaling, such as RRC layer signaling, can also be considered to be sent by DU, or sent by DU+AAU.
  • the network device may be a device including one or more of a CU node, a DU node, and an AAU node.
  • the CU can be divided into access network equipment in the access network (radio access network, RAN), or the CU can be divided into access network equipment in the core network (core network, CN). This application does not Make limitations.
  • the communication system shown in Figure 1 may be applicable to the communication network currently being discussed, or may be applicable to other networks in the future, etc. This is not specifically limited in the embodiment of the present application.
  • XR refers to a human-computer interaction environment that is a combination of real and virtual, generated through computer technology and wearable devices.
  • XR is proposed based on augmented reality (AR), virtual reality (VR) and mixed reality (MR).
  • AR augmented reality
  • VR virtual reality
  • MR mixed reality
  • AR augmented reality
  • XR is actually a general term that includes AR, VR and MR.
  • the purpose of XR business is to use high-speed networks and 360-degree imaging and other technologies to achieve an interactive and immersive experience.
  • XR business has the following characteristics: large business volume, high transmission delay requirements (that is, the transmission delay needs to be reduced as much as possible), short arrival intervals of data frames, or obvious business periodicity, etc.
  • An XR video frame usually requires several physical downlink shared channels (PDSCH) to complete transmission.
  • PDSCH physical downlink shared channels
  • the amount of data that each PDSCH can carry is limited and usually depends on the channel quality, number of symbols, number of subcarriers, etc.
  • Figure 2 shows a scenario in which a server sends an XR video frame to a terminal device through a network device.
  • An XR video frame can be transmitted through 6 PDSCHs.
  • the time division duplex (TDD) ratio is 4:1, and each TDD cycle includes 4 downlink time slots and 1 uplink time slot.
  • Dynamic scheduling is a common way for network equipment to schedule terminal equipment. That is, the network equipment schedules PDSCH for terminal equipment by sending downlink control information (DCI).
  • DCI downlink control information
  • the network device notifies the terminal device through DCI of the parameters of the PDSCH scheduled by the DCI. For example, the terminal device obtains the time domain resource location of the PDSCH (such as which time slot the PDSCH is on and which symbols of this time slot it is on) through the time domain resource allocation (TDRA) field in DCI. .
  • the terminal equipment obtains the frequency domain resource location of the PDSCH (such as which resource block (RB) the PDSCH is on) through the frequency domain resource allocation (FDRA) field in DCI.
  • Table 1 shows a TDRA indication method. Specifically, Table 1 includes row index (Row index), type A demodulation reference signal (demodulation reference signal, DMRS) position (dmrs-TypeA-Position), PDSCH mapping type (PDSCH mapping type), K 0 , S , and L and other information.
  • DMRS is the demodulation reference signal, which is used by the receiving end device to evaluate the channel in order to demodulate the signal.
  • dmrs-TypeA-Position is the position of DMRS when the PDSCH mapping type is typeA.
  • the number 2 represents the DMRS on the second symbol of the PDSCH time slot
  • the number 3 represents the DMRS on the third symbol of the PDSCH time slot.
  • PDSCH mapping type indicates the mapping type of PDSCH. For example, when the PDSCH mapping type is A, the starting symbols of the PDSCH are 0 to 3, that is, any one of the first to fourth symbols.
  • the starting symbols of the PDSCH are 0 to 12, that is, one of the first to thirteenth symbols.
  • K 0 represents the time offset of PDSCH compared to the corresponding DCI, and the unit is a time slot.
  • S represents the starting symbol position of PDSCH, counting from 0.
  • L represents the total number of symbols occupied by PDSCH, counting from 1.
  • the terminal device can learn the mapping type, time offset, time domain starting symbol and total number of symbols of the PDSCH, as well as the position of the DMRS when the PDSCH mapping type is A.
  • the terminal equipment determines the modulation order and channel coding rate of the PDSCH through the modulation and coding scheme (MCS) field in the DCI, so as to correctly decode the received data carried by the PDSCH. data.
  • MCS modulation and coding scheme
  • an XR video frame is transmitted through 6 PDSCHs, and each PDSCH corresponds to a DCI to indicate, that is, 6 PDSCHs are indicated by 6 separate DCIs.
  • the PDSCH of the first D time slot (that is, the downlink time slot) is indicated by DCI1
  • the PDSCH of the second D time slot is indicated by DCI2.
  • the relationship between other PDSCHs and DCI can be deduced in this way, and will not be described again.
  • the PDSCH and DCI shown in Figure 3 are located in the same time slot.
  • the first 2 (or 3) symbols of the 14 symbols in a time slot are physical downlink control channel (PDCCH), and the PDCCH is used to carry DCI, the remaining 12 (or 11) symbols are the PDSCH indicated by the DCI.
  • PDCH physical downlink control channel
  • DCI1 and DCI2 can be in the same format.
  • DCI1 is DCI format 1_1, and DCI2 is also DCI format 1_1.
  • the parameter types they contain are the same, but the parameter values can be different.
  • DCI1 and DCI2 can also be in different DCI formats, for example, DCI1 is DCI format 1_1, and DCI2 is DCI format 1_0.
  • one DCI may indicate multiple PDSCHs. As shown in Figure 4, 6 PDSCHs are indicated by DCI1.
  • each DCI in Figure 3 indicates the MCS parameters corresponding to the PDSCH, so as to adapt to the changing channel in a timely and reasonable manner.
  • the MSC needs to be The field is expanded 6 times, that is, the overhead is 6 times that of the original MCS field.
  • the multiple PDSCHs scheduled by the DCI need to sacrifice a certain degree of scheduling flexibility. For example, a field in the DCI (such as the MCS field) will be applicable All PDSCHs scheduled on this DCI.
  • the time domain resources of these 6 PDSCHs can be indicated by a TDRA field.
  • the network device may configure multiple PDSCH resources for the terminal device through RRC signaling.
  • each row in Table 1 represents 1 PDSCH resource configuration, and each row of the table is expanded to more columns, such as 2 K 0 , 2 PDSCH mapping types, 2 S and 2 L, etc., that is, One DCI can be used to schedule 2 PDSCHs.
  • the way one DCI schedules multiple PDSCHs in Figure 4 can reduce the transmission of DCI, that is, some time slots do not require PDCCH, such as the 2nd to 6th ones in Figure 4 D time slot, then the saved time-frequency domain resources of PDCCH can be used for PDSCH transmission to improve the capacity of PDSCH.
  • the multiplexing problem of PDCCH and PDSCH is not simple.
  • the time-frequency resources occupied by the PDSCH of one terminal equipment need to avoid overlapping with the PDCCH of other terminal equipment, so as to avoid affecting the decoding performance of the PDCCH of other terminal equipment.
  • relevant standards set a rate match pattern for a time slot.
  • a part of the time-frequency domain resources is divided (or reserved) from the resources in the network.
  • the network device maps PDSCH to time-frequency domain resources, it needs to avoid this part of the reserved resources, that is, the reserved resources are not used to transmit PDSCH.
  • Figure 5 shows a schematic diagram of resource distribution of a rate match pattern.
  • the slashed area is the resources corresponding to the rate match pattern, that is, PDSCH does not occupy the resources in this area.
  • the rate match pattern may be indicated by a bit map.
  • the network device configures the rate match pattern for the terminal device through the RateMatchPattern information element (IE) in radio resource control (RRC) signaling.
  • IE RateMatchPattern information element
  • RRC radio resource control
  • the network device can indicate the time domain position of the rate match pattern through the symbolsInResourceBlock signaling in the RateMatchPattern IE, and the frequency domain position of the rate match pattern through the resourceBlocks signaling in the RateMatchPattern IE.
  • symbolsInResourceBlock is a 14-bit bitmap
  • resourceBlocks is a 275-bit bitmap.
  • symbolsInResourceBlock is 00001111111000, which indicates that the rate match pattern includes time domain symbols 4 to 10.
  • the value of resourceBlocks is 0011110000...000 (275 bits,...represents all bits 0), which is used to indicate that the rate match pattern includes RB2-RB5 in frequency domain.
  • the network device can also configure a rate match pattern through the control resource set (controlResourceSet, CORESET) signaling of the RateMatchPattern IE in RRC signaling.
  • the network device indicates a control resource set index (controlResourceSetId) through controlResourceSet signaling, and the index is configured with a corresponding CORESET.
  • the CORESET is configured by the network device through the ControlResourceSet IE in RRC.
  • the network device configures frequency domain parameters for the CORESET through the frequencyDomainResources signaling in the controlResourceSet signaling.
  • the parameter is a 45-bit bitmap, and each bit indicates 6 RBs.
  • the network device configures the time domain length, such as 7 symbols, for the CORESET through duration signaling.
  • the specific starting position of the CORESET in the time domain is determined by its corresponding search space set (SSS).
  • the network device configures SSS for the terminal device through RRC's SearchSpace IE, and associates a corresponding CORESET for the SSS through controlResourceSetId in SearchSpace IE.
  • the network device can determine the time domain position of its configured SSS within a time slot through monitoringSymbolsWithinSlot signaling in the SearchSpace IE.
  • the monitoringSymbolsWithinSlot signaling also indicates a 14-bit bitmap.
  • the terminal device combines the ControlResourceSet IE and the SearchSpace IE to determine the time-frequency domain position of the CORESET configured in the ControlResourceSet IE, and further determines the rate match pattern based on the controlResourceSet signaling.
  • FIG 5 only shows the resource distribution of one rate match pattern.
  • network equipment can configure 2 rate match pattern groups (rate match pattern groups) for terminal devices through RRC signaling.
  • Each rate match pattern group can contain up to 8 rate match patterns.
  • Each rate match pattern can Obtained by the above two methods.
  • the rate match pattern group includes multiple rate match patterns, the final reserved area is the union of multiple rate match patterns.
  • rateMatchPatternGroup1 contains two rate match patterns, namely rateMatchPattern1 and rateMatchPattern2, and the two rate match patterns appear in the same time slot.
  • each large rectangular box can be understood as a time slot
  • each small rectangular box filled with diagonals can be understood as a rate match pattern
  • rateMatchPatternGroup1 is the union of two rate match patterns.
  • the originating device needs to avoid these reserved parts when mapping data to the time-frequency resources of the PDSCH. In the same way, when the receiving device receives data, it will also process this part of the data separately.
  • the rate match pattern group may not be activated directly, but the DCI may be used to dynamically indicate whether the PDSCH scheduled by the DCI enables the rate match pattern group.
  • the network device configures PDSCH-config IE (or physical downlink shared channel (PUSCH) configuration (PUSCH-config)) through the physical downlink shared channel in RRC signaling.
  • PDSCH-config IE or physical downlink shared channel (PUSCH) configuration (PUSCH-config)
  • the rateMatchPatternGroup1 and rateMatchPatternGroup2 signaling configures two rate match pattern groups for the terminal device. Each group contains 8 different rate match patterns.
  • the DCI can be used to explicitly indicate the rate match pattern group to be avoided.
  • the DCI contains a 2-bit rate matching indicator field, and the rate matching indicator field is used to indicate the rate match pattern group bypassed by all PDSCHs scheduled by the DCI.
  • '00' means that the PDSCH scheduled by the DCI does not need to bypass any rate match pattern group
  • '10' means that the PDSCH scheduled by the DCI bypasses the rate match pattern group1
  • '01' means that the PDSCH scheduled by the DCI bypasses the rate match pattern group1.
  • Rate match pattern group2 is enabled, and '11' means that the PDSCH scheduled by the DCI bypasses the union reserved resources of rate match pattern group1 and rate match pattern group2.
  • rate match Group 1 is shown in Figure 6, and the rate matching indicator field of DCI format 1_1 indicates '01', the PDSCH indicated by the DCI will not cover the rate match pattern group1, that is, the PDSCH will not be mapped to the slash The populated resource area.
  • the rate matching indicator field will take effect for all PDSCHs indicated by it. Still taking the rate match pattern group1 as shown in Figure 6 as an example, one DCI schedules 6 PDSCHs, and the rate matching indicator field of the DCI is '01', that is, these 6 PDSCHs must be avoided as shown on the right side of Figure 6 H.
  • Figure 7 shows a scenario where one DCI schedules multiple PDSCHs.
  • the terminal equipment receives a DCI that schedules 6 PDSCHs, as shown in the thick solid line box.
  • the time-frequency resources configured for each PDSCH occupy the entire time slot, such as 14 symbols and 275 RBs, but at the same time, in order to avoid the impact of PDSCH on other terminal equipment (UE2 and UE3 in Figure 7 ), the DCI of terminal device 1 (UE1 in Figure 7) indicates a rate match pattern group. Since the rate match pattern group indicated by the DCI needs to be effective for all PDSCHs scheduled by itself, the rate match pattern within the group needs to consider the conditions of all terminal devices, thus inevitably causing a waste of resources.
  • the rate match pattern group indicated by the DCI needs to cover all areas where PDCCH and PDSCH time-frequency resource multiplexing overlap may occur. For the time unit (such as time slot) where the PDSCH is located, there is no PDCCH or CORESET. This PDSCH will also avoid using the time-frequency resources of the rate match pattern group, resulting in resource waste and reduced system capacity.
  • embodiments of the present application provide a communication method, which can be applied to the communication system in Figure 1 .
  • the originating device is described as the first device
  • the receiving device is described as the second device.
  • a unified explanation is given here and will not be repeated in the following paragraphs.
  • the first device sends control information and L physical shared channels to the second device.
  • the control information indicates L physical shared channels and L first resources.
  • the i-th first resource among the L first resources is the time-frequency resource allocated to the i-th physical shared channel among the L physical shared channels.
  • the control information includes a first field, the first field includes G bits, the G bits indicate L rate matching pattern groups, the G bits include a plurality of bit groups, and each of the plurality of bit groups is shared by at most M physical
  • the channel indicates a rate matching pattern group, the M physical shared channels are part of the L physical shared channels, and the rate matching pattern group indicated by each bit group in the plurality of bit groups is part of the L rate matching pattern groups.
  • M is a positive integer less than L
  • G is a positive integer greater than or equal to 2.
  • the i-th rate matching pattern group among the L rate matching pattern groups indicates the i-th second resource
  • the i-th second resource is the unoccupied time-frequency resource of the i-th physical shared channel indicated by the control information.
  • the i-th physical shared channel among the L physical shared channels occupies the i-th third resource.
  • the i-th third resource is a resource in the i-th first resource other than the overlapping resource
  • Overlapping resources are resources in which the i-th second resource overlaps with the i-th first resource.
  • the i-th third resource is the i-th first resource.
  • L is a positive integer greater than 1, and i is any positive integer less than or equal to L. That is to say, the control information indicates the rate matching pattern group for different physical shared channels through different bits to avoid the situation that the rate matching pattern group indicated by the first field is applicable to all physical shared channels scheduled by the control information. That is to say, the rate matching pattern groups indicated by different bits in the first field are suitable for different physical shared channels, which improves the flexibility of the control information indicating the rate matching pattern group.
  • the control information can indicate different rate matching pattern groups for the two physical shared channels, so that the two physical shared channels can Each physical shared channel avoids different resources to increase the capacity of the physical shared channel and reduce the waste of time and frequency resources.
  • the communication method 800 proposed in the embodiment of this application includes the following steps:
  • the first device sends the first configuration information to the second device.
  • the second device receives the first configuration information from the first device.
  • the first configuration information configures P rate matching pattern groups, and P is a positive integer greater than 1.
  • the P rate matching pattern groups configured in the first configuration information can be recorded as rate matching pattern group 1 and rate matching pattern group 2, as shown in Figure 9 .
  • the first configuration information may be the PDSCH-config IE in RRC signaling.
  • the first configuration information may be PUSCH-config information in RRC signaling.
  • the first device After executing S801, the first device also executes S802:
  • the first device sends control information to the second device.
  • the second device receives the control information from the first device.
  • control information indicates the following three items:
  • the first item is L physical shared channels.
  • L is a positive integer greater than 1.
  • the physical shared channel is introduced as follows: in the case of downlink transmission, the physical shared channel may be PDSCH. In the case of uplink transmission, the physical shared channel may be PUSCH. In the above two cases (downlink transmission and uplink transmission), the control information may be DCI.
  • the first device is a network device, and the second device is a terminal device.
  • the physical shared channel may be a physical sidelink shared channel (PSSCH).
  • the control information may be sidelink control information (SCI).
  • the first device is the originating terminal device, such as terminal device 1, and the second device is the receiving terminal device, such as terminal device 2.
  • L represents the number of physical shared channels actually scheduled by the control information.
  • L may be determined according to the number of columns of the PDSCH mapping type (or S, or L, or K 0 ) in Table 2.
  • the row index is 1, the row includes 3 groups of PDSCH mapping types, 3 groups of S, 3 groups of L, and 3 groups of K 0 to respectively indicate the time domain resources of 3 PDSCHs.
  • the row index is 2
  • the row includes 5 groups of PDSCH mapping types, 5 groups of S, 5 groups of L, and 5 groups of K 0 , to respectively indicate the time domain resources of 5 PDSCHs (not shown in Table 2).
  • the TDRA field of the DCI indicates '0000'
  • the parameters x 1 , x 2 , x 3 , y 1 , y 2 , y 3 , z 1 , z 2 , z 3 are integers.
  • K 0 in Table 2 can be replaced by K 2 , and the unit is still a time slot, indicating the time offset of the PDSCH compared to the corresponding DCI.
  • the second item, L first resources is a positive integer greater than 1.
  • the first resource is introduced as follows: the i-th first resource among the L first resources is the time-frequency resource allocated to the i-th physical shared channel among the L physical shared channels, and i is less than or equal to L. Any positive integer.
  • the control information is DCI
  • the DCI includes a TDRA field and an FDRA field.
  • the first resource in the time domain may include time domain resources indicated by the TDRA field
  • the first resource in the frequency domain may include frequency domain resources indicated by the FDRA field.
  • L is a positive integer greater than 1.
  • the i-th rate matching pattern group among the L rate matching pattern groups indicates the i-th second resource
  • the i-th second resource is the unoccupied time-frequency resource of the i-th physical shared channel indicated by the control information, i is Any positive integer less than or equal to L.
  • any one of the L rate matching pattern groups is at most one of the P rate matching pattern groups.
  • at most one can be understood as: when the i-th rate matching pattern group among the L rate matching pattern groups is non-empty, the rate matching pattern group is one of the P rate matching pattern groups. On the contrary, when the i-th rate matching pattern group among the L rate matching pattern groups is empty, this rate matching pattern group does not exist.
  • the i-th rate matching pattern group among the L rate matching pattern groups is non-empty, the i-th rate matching pattern group exists, and the i-th second resource exists.
  • the expressions have the same meaning, and the three can be Identical replacement.
  • the i-th rate matching pattern group is empty, the i-th rate matching pattern group does not exist, and the i-th second resource does not exist.
  • the expressions have the same meaning, and the three can be replaced by the same. A unified explanation is given here and will not be repeated in the following paragraphs.
  • the first rate matching pattern group among the L rate matching pattern groups is the rate matching pattern group corresponding to PDSCH1, and the rate matching pattern group is empty.
  • the second rate matching pattern group among the L rate matching pattern groups is the rate matching pattern group corresponding to PDSCH2, the rate matching pattern group is not empty, and corresponds to rate matching pattern group 2 among the P rate matching pattern groups.
  • the third rate matching pattern group among the L rate matching pattern groups is the rate matching pattern group corresponding to PDSCH3, the rate matching pattern group is not empty, and corresponds to rate matching pattern group 1 among the P rate matching pattern groups. 1.
  • the 4th rate matching pattern group among the L rate matching pattern groups is the rate matching pattern group corresponding to PDSCH4, which is not empty and corresponds to rate matching pattern group 2 among the P rate matching pattern groups.
  • the 5th rate matching pattern group among the L rate matching pattern groups is the rate matching pattern group corresponding to PDSCH5, which is empty.
  • the 6th rate matching pattern group among the L rate matching pattern groups is the rate matching pattern group corresponding to PDSCH6, which is empty.
  • the control information includes a first field.
  • the first field includes G bits, and the G bits indicate L rate matching pattern groups.
  • the G bits include multiple bit groups, and each of the multiple bit groups is at most M physical shared channel indication rate matching pattern groups.
  • the M physical shared channels are part of the L physical shared channels, and the rate matching pattern group indicated by each bit group in the plurality of bit groups is part of the L rate matching pattern groups.
  • M is a positive integer less than L
  • G is a positive integer greater than or equal to 2.
  • Each of the plurality of bit groups includes one or more of the G bits.
  • control information is DCI
  • the first field is the rate matching indicator field
  • G represents the size (bit width) of the rate matching indicator field.
  • bit group can also be replaced by other descriptions, such as bit set, bit segment, etc.
  • bit set such as bit set, bit segment, etc.
  • bit segment such as bit set, bit segment, etc.
  • the following introduction takes a bit group as an example, which should not be understood as a limitation on the embodiments of the present application.
  • bit group is introduced through four methods (method 1 to method 4 below):
  • the calculation starts from the MSB to the LSB of the G bits, that is, the calculation starts from the leftmost bit to the rightmost bit of the G bits.
  • the 1st bit among the G bits is the leftmost bit among the above G bits, that is, the MSB;
  • the Gth bit among the G bits is the rightmost bit among the above G bits, that is, the LSB .
  • Case B The calculation starts from LSB to MSB among the G bits, that is, from the rightmost bit to the leftmost bit among the G bits.
  • the first bit among the G bits is the rightmost bit among the above G bits, that is, the LSB
  • the Gth bit among the G bits is the leftmost bit among the above G bits, that is, the MSB.
  • any one of the plurality of bit groups is recorded as the first bit group.
  • the first bit group includes the 2*g-1 bit and the 2*g bit among the G bits, or the first bit group includes the 2*(X-L+g)-1 bit among the G bits.
  • bits and the 2*(X-L+g) bits, the M physical shared channels corresponding to the first bit group are: the g-th physical shared channel among the L physical shared channels.
  • G is a positive integer greater than or equal to 2L
  • g is any positive integer less than or equal to L
  • X represents the maximum number of physical shared channels that can be scheduled by the control information.
  • the 2*g-1 bit among the G bits refers to the 2*g-1 bit among the G bits counted from MSB to LSB.
  • the 2*g bit among the G bits refers to the 2*g bit among the G bits, counting from MSB to LSB.
  • the 2*(X-L+g)-1 bit among the G bits refers to the 2*(X-L+g)-1 bit among the G bits calculated from MSB to LSB.
  • the 2*(X-L+g) bit among the G bits refers to the 2*(X-L+g) bit among the G bits calculated from MSB to LSB.
  • the first field includes 14 bits, and the bit numbers are 1 to 14.
  • the MSB is the bit numbered 1
  • the LSB is the bit numbered 14.
  • the first 2 bits starting from MSB to LSB of the 14 bits indicates the rate match pattern group of the first physical shared channel (such as PDSCH1) scheduled by the control information.
  • the 3rd and 4th bits starting from MSB to LSB of the 14 bits (or described as bits numbered 3 and bits numbered 4) indicate the second physical shared channel scheduled by the control information ( Such as the rate match pattern group recorded as PDSCH2).
  • Other bits can be deduced in this way and will not be described again.
  • the rate matching indicator field actually has 10 bits. Valid, as shown in the diagonally filled box in Figure 11. These 10 bits are counted starting from the MSB, and the 11th to 14th bits counted from the MSB (or described as bits numbered 11 to 14) will be ignored by the second device, that is, the rate match pattern does not indicate any physical shared channel group.
  • the 5th bit and the 6th bit (or the bit numbered 5) of the 14 bits are The 7th bit and the 8th bit (or described as the bit numbered 7 and the bit numbered 6) of the 14 bits indicate the rate match pattern group of the first physical shared channel (such as recorded as PDSCH1) scheduled by the control information.
  • the 7th bit and the 8th bit (or described as the bit numbered 7 and the bit numbered 8) of the 14 bits indicate the rate match pattern group of the second physical shared channel (such as recorded as PDSCH2) scheduled by the control information.
  • the other bits can be deduced in this way and will not be repeated.
  • the rate matching indicator field actually has 10 valid bits, as shown in the oblique line-filled box in Figure 11. The bits numbered 1 to 4 of these 10 bits will be ignored by the second device, that is, the rate match pattern group of any physical shared channel will not be indicated.
  • the 2*g-1 bit among the G bits refers to the 2*g-1 bit among the G bits calculated from LSB to MSB.
  • the 2*g bit among the G bits refers to the 2*g bit among the G bits calculated from LSB to MSB.
  • the 2*(X-L+g)-1 bit among the G bits refers to the 2*(X-L+g)-1 bit among the G bits calculated from LSB to MSB.
  • the 2*(X-L+g) bit among the G bits refers to the 2*(X-L+g) bit among the G bits calculated from LSB to MSB.
  • every 2 bits in the G bits start to indicate the rate match pattern group of different physical shared channels in order.
  • the rate match pattern group The 3rd and 4th bits calculated from LSB to MSB among the 14 bits indicate the rate match pattern group of the second physical shared channel (such as PDSCH2) scheduled by the control information.
  • Other bits can be deduced in this way and will not be described again.
  • the rate matching indicator field actually has 10 bits. efficient. These 10 bits are counted from the LSB, and the 11th to 14th bits counted from the LSB will be ignored by the second device, that is, the rate match pattern group does not indicate any physical shared channel.
  • the 5th and 6th bits calculated from LSB to MSB among the 14 bits indicate the rate match pattern group of the first physical shared channel scheduled by the control information.
  • the 7th and 8th bits calculated from LSB to MSB among the 14 bits indicate the rate match pattern group of the second physical shared channel scheduled by the control information.
  • each bit group in the first field indicates a rate matching pattern group for a physical shared channel, so that the control information flexibly indicates different rate matching pattern groups for different physical shared channels.
  • control information such as DCI
  • X 8.
  • X is still set to 8. It should be understood that X does not represent the number of physical shared channels actually indicated by the control information.
  • X represents the maximum number of physical shared channels that the control information can schedule.
  • the first field can indicate the rate matching pattern group of each physical shared channel that can be scheduled by the control information.
  • G can be any positive integer greater than or equal to 2X.
  • the first bit group may indicate the following four situations (the following situations 1 to 4):
  • the first value is 0. That is to say, among G bits, the 2*g-1 bit is 0, and the 2*g bit is 0
  • the rate matching pattern group indicated by the first bit group does not exist.
  • the rate matching pattern group indicated by the first bit group does not exist.
  • the rate matching pattern group indicated by the first bit group is empty.
  • the rate matching pattern group indicated by the first bit group corresponds to the second rate matching pattern group.
  • the resource does not exist.
  • the actual transmission resources of the physical shared channel corresponding to the first bit group do not need to remove any resource reservation area.
  • the rate matching pattern group indicated by the first bit group is the first rate.
  • Matching pattern groups are one of P rate matching pattern groups, such as rate match pattern group1.
  • P rate matching pattern groups please refer to the introduction of S801 and will not be described again here.
  • the first value is 0 and the second value is 1. That is, when the 2*g-1th bit among the G bits is 1 and the 2*gth bit is 0, the rate matching pattern group indicated by the first bit group is the first rate matching pattern group.
  • the actual transmission resources of the physical shared channel corresponding to the first bit group need to exclude the resource reserved area of the first rate matching pattern group.
  • the rate matching pattern group indicated by the first bit group is the second value.
  • Rate matching pattern group is another one of the P rate matching pattern groups, such as rate match pattern group2.
  • P rate matching pattern groups please refer to the introduction of S801 and will not be described again here.
  • the first value is 0 and the second value is 1. That is to say, when the 2*g-1th bit among the G bits is 0 and the 2*g-th bit is 1, the rate matching pattern group indicated by the first bit group is the second rate matching pattern group .
  • the actual transmission resources of the physical shared channel corresponding to the first bit group need to exclude the resource reservation area of the second rate matching pattern group.
  • the rate matching pattern group indicated by the first bit group is the first rate.
  • a matching pattern set and a second rate matching pattern set are different.
  • the second value is 1. That is to say, when the 2*g-1th bit among the G bits is 1, and the 2*g-th bit is 1, the rate matching pattern group indicated by the first bit group is the first rate matching pattern group and a second rate matching pattern set.
  • the actual transmission resources of the physical shared channel corresponding to the first bit group need to exclude the resource reservation areas of the first rate matching pattern group and the second rate matching pattern group.
  • the first value is 0 and the second value is 1 as an example for introduction. Of course, it can also be replaced by the first value being 1 and the second value being 0, which is not limited in the embodiment of the present application.
  • the 2*g-1 bit among the G bits can be replaced by the 2*(X-L+g)-1 bit among the G bits; and, among the G bits The 2*g bit can be replaced by the 2*(X-L+g) bit among the G bits. That is to say, the first bit group includes the 2*(X-L+g)-1 bit and the 2*(X-L+g) bit among the G bits. Cases 1 to 4 of Mode 1 The description is also applicable and will not be repeated here.
  • Each bit group among multiple bit groups includes one bit among G bits.
  • any one of the multiple bit groups is recorded as the first bit group.
  • the first bit group as an example, the following is introduced:
  • the M physical shared channels corresponding to the first bit group are: L The gth physical shared channel among the physical shared channels. Among them, g is any positive integer less than or equal to L.
  • the g-th bit among G bits refers to the g-th bit starting from MSB to LSB among G bits.
  • the g+G-L-th bit among the G bits refers to the g+G-L-th bit counted from the MSB to the LSB among the G bits.
  • the first field includes 7 bits, and the bit numbers are 1 to 7.
  • the MSB is the bit numbered 1
  • the LSB is the bit numbered 7.
  • the first bit starting from MSB to LSB indicates the rate match pattern group of the first physical shared channel (such as PDSCH1) scheduled by the control information.
  • the second bit counting from MSB to LSB among the 7 bits indicates the rate match pattern group of the second physical shared channel (such as PDSCH2) scheduled by the control information.
  • Other bits can be deduced in this way and will not be described again.
  • the third bit among the 7 bits indicates the rate match pattern of the first physical shared channel (such as PDSCH1) scheduled by the control information. group.
  • the 4th bit among the 7 bits indicates the rate match pattern group of the second physical shared channel (such as PDSCH2) scheduled by the control information.
  • the g-th bit among G bits refers to the g-th bit starting from LSB to MSB among G bits.
  • the g+G-L-th bit among the G bits refers to the g+G-L-th bit calculated from LSB to MSB among the G bits.
  • each bit in the G bits starts to indicate the rate match pattern group of different physical shared channels in order.
  • the second bit calculated from LSB to MSB among the 7 bits indicates the rate match pattern group of the second physical shared channel (such as PDSCH2) scheduled by the control information.
  • the third bit calculated from LSB to MSB among the 7 bits indicates the rate match pattern group of the first physical shared channel scheduled by the control information.
  • the 4th bit counting from LSB to MSB among the 7 bits indicates the rate match pattern group of the second physical shared channel scheduled by the control information.
  • each bit group (or described as each bit) in the first field indicates a rate matching pattern group for a physical shared channel, so that the control information can be flexibly configured for different physical shared channels. Indicates the rate matching pattern group.
  • X represents the maximum number of physical shared channels that the control information can schedule.
  • the G bits of the first field can indicate each physical shared channel that can be scheduled by the control information.
  • G can be any positive integer greater than or equal to X.
  • the size of G can also be configured by the first device.
  • the first device before executing S802, the first device also executes S804:
  • the first device sends the third configuration information to the second device.
  • the second device receives the third configuration information from the first device.
  • the third configuration information is used to configure the size of G.
  • the third configuration information may be carried in RRC signaling, so that the second device can learn the size of G.
  • the first bit group includes the g-th bit of the G bits.
  • the first bit group indicates the following two situations (the following situations 1 and 2):
  • the rate matching pattern groups indicated by the first bit group are P.
  • One of the rate match pattern groups such as rate match pattern group1, or rate match pattern group2.
  • P rate matching pattern groups please refer to the introduction of S801 and will not be described again here.
  • the rate matching pattern group indicated by the first bit group does not exist. It can be understood that the actual transmission resources of the physical shared channel corresponding to the first bit group do not need to exclude any resource reservation area.
  • the rate match pattern group indicated by the first bit group is rate match pattern group1. It can be understood that the actual transmission resources of the physical shared channel corresponding to the first bit group need to exclude the resource reservation area of rate match pattern group1. Or, when the g-th bit among the G bits is 1, the rate match pattern group indicated by the first bit group is rate match pattern group2. It can be understood that the actual transmission resources of the physical shared channel corresponding to the first bit group need to exclude the resource reservation area of rate match pattern group2.
  • the rate matching pattern group indicated by the first bit group does not exist. It can be understood that the actual transmission resources of the physical shared channel corresponding to the first bit group do not need to exclude any resource reservation area.
  • the rate match pattern group indicated by the first bit group is rate match pattern group1. It can be understood that the actual transmission resources of the physical shared channel corresponding to the first bit group need to exclude the resource reservation area of rate match pattern group1. Or, when the g-th bit among the G bits is 0, the rate match pattern group indicated by the first bit group is rate match pattern group2. It can be understood that the actual transmission resources of the physical shared channel corresponding to the first bit group need to exclude the resource reservation area of rate match pattern group2.
  • the first bit group includes the g-th bit among G bits.
  • the first bit group indicates the following two situations. (Situation 3 ⁇ 4 below):
  • the rate matching pattern group indicated by the first bit group is the first rate matching pattern group.
  • the first rate matching pattern group is one of P rate matching pattern groups, such as rate match pattern group1.
  • P rate matching pattern groups please refer to the introduction of S801 and will not be described again here.
  • the rate matching pattern group indicated by the first bit group is the second rate matching pattern group.
  • the second rate matching pattern group is another one of the P rate matching pattern groups, such as rate match pattern group2.
  • the rate matching pattern group indicated by the first bit group is rate match pattern group 1. It can be understood that the actual transmission resources of the physical shared channel corresponding to the first bit group need to exclude the resource reserved area of rate match pattern group 1.
  • the rate match pattern group indicated by the first bit group is rate match pattern group2. It can be understood that the actual transmission resources of the physical shared channel corresponding to the first bit group need to exclude the resource reservation area of rate match pattern group2.
  • the rate match pattern group indicated by the first bit group is rate match pattern group1. It can be understood that the actual transmission resources of the physical shared channel corresponding to the first bit group need to exclude the resource reservation area of rate match pattern group1.
  • the rate match pattern group indicated by the first bit group is rate match pattern group2. It can be understood that the actual transmission resources of the physical shared channel corresponding to the first bit group need to exclude the resource reservation area of rate match pattern group2.
  • the gth bit among the G bits can be replaced by the g+G-Lth bit among the G bits. That is, the first bit group includes the g+G-Lth bit among the G bits, and the description of case 1 to case 4 of mode 2 is also applicable, and will not be repeated here.
  • each bit group (or described as each bit) in the first field is a physical shared channel indicating rate matching pattern group, which can flexibly match different physical shares to a certain extent.
  • the channel indication rate matches the pattern group, which can also reduce signaling overhead.
  • Each of the multiple bit groups includes one of the G bits.
  • the size G of the first field is solid Value.
  • Each bit group corresponds to at most M physical shared channels among L physical shared channels, M>1, and M ⁇ L. It can be understood that each bit group in the plurality of bit groups is at most M physical shared channel indication rate matching pattern groups.
  • any one of the plurality of bit groups is recorded as the first bit group.
  • N min(G, L).
  • N represents the number of bits actually used to indicate the rate matching pattern group among the G bits
  • V 1 ceil(L/N). Among them, ceil( ⁇ ) represents the rounding up operator.
  • V 2 floor(L/N), wherein floor( ⁇ ) represents a floor operator.
  • N 1 is a positive integer
  • the M physical shared channels corresponding to the first bit group are : (g-1)*V 1 +1 to g*V 1th physical shared channel among L physical shared channels. That is, for the first N 1 bits among the G bits, each of the first N 1 bits indicates a rate matching pattern group for V 1 physical shared channels. Moreover, different bits in the first N 1 bits correspond to different physical shared channels.
  • the M physical shared channels corresponding to the first bit group are: L physical The N 1 *V 1 +(gN 1 -1)*V 2 +1 to the N 1 *V 1 +(gN 1 -1)*V 2 +V 2 physical shared channels in the shared channel. That is, for each bit after the N 1 -th bit among the G bits, a rate matching pattern group is indicated for the V 2 physical shared channels.
  • the g-th bit among G bits refers to the g-th bit starting from MSB to LSB among G bits.
  • the first bit calculated from MSB to LSB in the rate matching indicator field (bit numbered 1 in Figure 13) is used to indicate the 1st and 2nd PDSCH (denoted as PDSCH1 and 1 in Figure 13) PDSCH2) rate match pattern group;
  • the second bit calculated from MSB to LSB in the rate matching indicator field is used to indicate the 3rd and 4th PDSCH ( Figure 13
  • the rate match pattern group (denoted as PDSCH3 and PDSCH4) in the rate matching indicator field;
  • the 3rd bit starting from MSB to LSB in the rate matching indicator field (bit numbered 3 in Figure 13) is used to indicate the 5th and 6th
  • the rate match pattern group of PDSCH (denoted as PDSCH5 and PD
  • the first bit calculated from MSB to LSB in the rate matching indicator field (bit numbered 1 in Figure 14) is used to indicate the 1st and 2nd PDSCH (denoted as PDSCH1 and 1 in Figure 14 PDSCH2) rate match pattern group;
  • the second bit calculated from MSB to LSB in the rate matching indicator field is used to indicate the 3rd and 4th PDSCH ( Figure 14
  • the rate match pattern group (denoted as PDSCH3 and PDSCH4);
  • the 3rd bit starting from MSB to LSB in the rate matching indicator field (bit numbered 3 in Figure 14) is used to indicate the 5th PDSCH (as shown in Figure 14)
  • the rate match pattern group (recorded as PDSCH5 in 14); the 4
  • the first bit calculated starting from MSB to LSB in the rate matching indicator field (numbered 1 in Figure 15 bit), used to indicate the rate match pattern group of the first PDSCH (recorded as PDSCH1 in Figure 15); the second bit calculated starting from MSB to LSB in the rate matching indicator field (bit numbered 2 in Figure 15 ), used to indicate the rate match pattern group of the second PDSCH (recorded as PDSCH2 in Figure 15); the 3rd bit starting from MSB to LSB in the rate matching indicator field (bit numbered 3 in Figure 15) , used to indicate the rate match pattern group of the third PDSCH (denoted as PDSCH3 in Figure 15).
  • the g-th bit among G bits refers to the g-th bit starting from LSB to MSB among G bits ( (not shown in Figures 13 to 15).
  • the M physical bits corresponding to the first bit group are: the (g-1)*V 1 +1 to g*V 1th physical shared channels among the L physical shared channels. That is, for N 1 bits starting from the GN-th bit among the G bits, each of the N 1 bits indicates a rate matching pattern group for V 1 physical shared channels. Moreover, different bits among these N 1 bits correspond to different physical shared channels.
  • the M physical shared channels corresponding to the first bit group are: L The N 1 *V 1 +(gN 1 -1)*V 2 +1 to the N 1 *V 1 +(gN 1 -1)*V 2 +V 2 physical shared channels. That is, for each bit after the G-N+N 1th bit among the G bits, a rate matching pattern group is indicated for the V 2 physical shared channels.
  • the g+G-Nth bit among G bits refers to the g+th bit starting from MSB to LSB among G bits.
  • G-N bits
  • the g+G-Nth bit among G bits refers to the g+th G bits starting from LSB to MSB. G-N bits.
  • the first bit from LSB to MSB in the rate matching indicator field is used to indicate the rate match pattern group of the first and second PDSCH; the second bit from LSB to MSB in the rate matching indicator field is used to indicate the rate match pattern group of the first and second PDSCHs.
  • each bit group (or described as each bit) in the first field indicates a rate matching pattern group for multiple physical shared channels, which can flexibly indicate rate matching pattern groups for different physical shared channels to a certain extent and reduce signaling overhead.
  • each of the plurality of bit groups includes one of the G bits.
  • the first bit group is still used as an example.
  • the situation indicated by the first bit group is applicable to each of the up to M physical shared channels corresponding to the first bit group.
  • the rate matching pattern group indicated by the first bit group does not exist.
  • the rate matching pattern group corresponding to each of the M physical shared channels in the first bit group does not exist.
  • the rate matching pattern group corresponding to each of the M physical shared channels in the first bit group is the first rate matching pattern group.
  • Other situations can be deduced in this way and will not be described again.
  • Each bit group among multiple bit groups includes one bit among G bits.
  • Each bit group corresponds to at most M physical shared channels among L physical shared channels, M>1, and M ⁇ L. It can be understood that each bit group in the plurality of bit groups is at most M physical shared channel indication rate matching pattern groups. Among them, M is a fixed value.
  • the size of M is configured by the first device.
  • the first device before executing S802, the first device also executes S805:
  • the first device sends the second configuration information to the second device.
  • the second device receives the second configuration from the first device information.
  • the second configuration information is used to configure the size of M, where M is a positive integer less than or equal to X.
  • the second configuration information may be the configuration information in the PDSCH-config of RRC signaling, such as rateMatchPatternSubgroup-r18 signaling, used to indicate The value of M.
  • rateMatchPatternSubgroup-r18 signaling used to indicate The value of M.
  • the size of M is semi-statically configured by the network device through RRC signaling.
  • M is preconfigured.
  • any one of the plurality of bit groups is recorded as the first bit group.
  • the M corresponding to the first bit group includes the g-th bit among G bits, or the first bit group includes the g+G-ceil(L/M)-th bit among G bits, the M corresponding to the first bit group
  • the physical shared channels are: the (g-1)*M+1 to g*Mth physical shared channels among the L physical shared channels.
  • g is a positive integer less than floor(L/M)
  • ceil( ⁇ ) represents the upward rounding operator
  • floor( ⁇ ) represents the downward rounding operator
  • / represents the division operator.
  • the g-th bit among G bits refers to the g-th bit starting from MSB to LSB among G bits.
  • the g+G-ceil(L/M)th bit among the G bits refers to the g+G-ceil(L/M)th bit calculated from MSB to LSB among the G bits.
  • the first bit calculated from MSB to LSB in the rate matching indicator field is used to indicate The rate match pattern group of the first and second PDSCH; the second bit calculated from MSB to LSB in the rate matching indicator field is used to indicate the rate match pattern group of the third and fourth PDSCH.
  • the M physical shared channels corresponding to the first bit group are: (g-1)*M+1 to g*Mth physical shared channels among the L physical shared channels.
  • the M physical shared channels corresponding to the first bit group It is: (ceil(L/M)-1)*M+1 to Lth physical shared channel among L physical shared channels.
  • ceil( ⁇ ) represents the rounding up operator, and / represents the division operator.
  • the rate match pattern group of the 1st and 2nd PDSCH For example, taking bits, used to indicate the rate match pattern group of the 1st and 2nd PDSCH; the 2nd bit calculated from MSB to LSB in the rate matching indicator field, used to indicate the rate of the 3rd and 4th PDSCH match pattern group; the third bit of the rate matching indicator field is used to indicate the rate match pattern group of the fifth PDSCH.
  • the 2nd bit calculated from MSB to LSB in the rate matching indicator field, used to indicate the rate match pattern group of the 3rd PDSCH .
  • rate matching pattern groups are indicated for M physical shared channels.
  • the number of physical shared channels corresponding to the last bit group is less than M.
  • the g-th bit among G bits refers to the g-th bit starting from LSB to MSB among G bits.
  • the g+G-ceil(L/M)th bit among the G bits refers to the g+G-ceil(L/M)th bit calculated from LSB to MSB among the G bits.
  • the first bit calculated from LSB to MSB in the field is used to indicate the rate match pattern group of the first and second PDSCH; the second bit calculated from LSB to MSB in the rate matching indicator field is used to indicate the rate match pattern group of the first and second PDSCHs.
  • the rate match pattern group of the 3rd and 4th PDSCH; the 3rd bit calculated from LSB to MSB in the rate matching indicator field is used to indicate the rate match pattern group of the 5th PDSCH.
  • each bit group (or described as each bit) in the first field indicates a rate matching pattern group for multiple physical shared channels, which can flexibly indicate different physical shared channels to a certain extent.
  • the rate matching pattern group can also reduce signaling overhead.
  • each of the plurality of bit groups includes one of G bits.
  • the first bit group is still used as an example.
  • the situation indicated by the first bit group is applicable to each of the up to M physical shared channels corresponding to the first bit group.
  • the rate matching pattern group indicated by the first bit group does not exist.
  • the rate matching pattern group corresponding to each of the M physical shared channels in the first bit group does not exist.
  • the rate matching pattern group corresponding to each of the M physical shared channels in the first bit group is the first rate matching pattern group.
  • Other situations can be deduced in this way and will not be described again.
  • each bit group in multiple bit groups includes one bit of G bits.
  • the bit groups involved in Modes 2 to 4 can be replaced by bits.
  • Mode 2 The first bit group involved in ⁇ 4 can be replaced by the first bit.
  • the first device in the case of downlink transmission or sidelink transmission, after the first device performs S802, it performs S803a.
  • the first device In the case of uplink transmission, after the first device performs S802, it performs S803b.
  • the introduction of S803a and S803b is as follows:
  • the first device sends L physical shared channels to the second device.
  • the second device receives L physical shared channels from the first device according to the control information.
  • the i-th physical shared channel among the L physical shared channels occupies the i-th third resource, and the i-th third resource is the remaining resource after excluding the i-th second resource from the i-th first resource, i is Any positive integer less than or equal to L.
  • the i-th third resource is the i-th first resource except the overlapping resources. external resources.
  • the overlapping resource is a resource in which the i-th second resource overlaps with the i-th first resource.
  • the second second resource is the resource in the slash-filled area of the second D time slot (the time slot corresponding to PDSCH2)
  • the second third resource is the second D Resources in the time slot (time slot corresponding to PDSCH2) without slash filling area.
  • the i-th third resource is the i-th first resource.
  • the first second resource does not exist, and the first third resource is the resource in the area without slash filling in the first D time slot (the time slot corresponding to PDSCH1), such as It occupies 14 symbols in the time domain and 275 RBs in the frequency domain.
  • the i-th third resource is the i-th first resource, Figure 10 Not shown.
  • the second device sends L physical shared channels to the first device according to the control information.
  • the first device receives L physical shared channels from the second device.
  • the first device before executing S802, the first device further executes the following steps:
  • the first device sends fourth configuration information to the second device.
  • the second device receives the fourth configuration information from the first device.
  • the fourth configuration information is used to configure the size of X, where X represents the maximum number of physical shared channels that can be scheduled by the control information, and X is a positive integer greater than or equal to L.
  • the fourth configuration information may be carried in RRC signaling, so that the second device knows the size of X.
  • PDSCH is mainly used as an example for illustrative introduction, and should not be understood as limiting the embodiments of the present application.
  • the DCI format may be DCI1_1; when the physical shared channel is PSSCH and the control information is DCI, the DCI format may be DCI0_1.
  • the DCI format may be DCI1_1; when the physical shared channel is PSSCH and the control information is DCI, the DCI format may be DCI0_1.
  • embodiments of the present application also provide a communication device.
  • the communication device may be the network element in the above method embodiment, or a device including the above network element, or a component that can be used for the network element.
  • the communication device includes corresponding hardware structures and/or software modules for performing each function.
  • the present application can be implemented in the form of hardware or a combination of hardware and computer software. Whether a function is performed by hardware or computer software driving the hardware depends on the specific application and design constraints of the technical solution. Skilled artisans may implement the described functionality using different methods for each specific application, but such implementations should not be considered beyond the scope of this application.
  • FIG. 17 is a schematic structural diagram of a communication device provided by an embodiment of the present application.
  • the communication device may be a first device, or may be a chip (system) or other component or component that can be disposed on the first device.
  • the communication device may be a second device, or a chip (system) or other component or component that may be disposed on the second device.
  • communication device 1700 may include processor 1701.
  • the communication device 1700 may also include a memory 1702 and/or a transceiver 1703.
  • the processor 1701 is coupled to the memory 1702 and the transceiver 1703, for example, through a communication bus.
  • the processor 1701 is the control center of the communication device 1700, and may be a processor or a collective name for multiple processing elements.
  • the processor 1701 is one or more central processing units (CPUs), may also be an application specific integrated circuit (ASIC), or may be configured to implement one or more embodiments of the present application.
  • An integrated circuit such as one or more digital signal processors (DSP), or one or more field programmable gate arrays (FPGA).
  • DSP digital signal processors
  • FPGA field programmable gate arrays
  • the processor 1701 can perform various functions of the communication device 1700 by running or executing software programs stored in the memory 1702 and calling data stored in the memory 1702.
  • the processor 1701 may include one or more CPUs, such as CPU0 and CPU1 shown in FIG. 17 .
  • the communication device 1700 may also include multiple processors, such as the processor 1701 and the processor 1704 shown in FIG. 17 .
  • processors can be a single-core processor (single-CPU) or a multi-core processor (multi-CPU).
  • a processor here may refer to one or more devices, circuits, and/or processing cores for processing data (eg, computer program instructions).
  • the memory 1702 is used to store the software program for executing the solution of the present application, and is controlled by the processor 1701 for execution.
  • the memory 1702 is used to store the software program for executing the solution of the present application, and is controlled by the processor 1701 for execution.
  • the memory 1702 may be a read-only memory (ROM) or other type of static storage device that can store static information and instructions, a random access memory (random access memory (RAM)) or a device that can store information and instructions.
  • ROM read-only memory
  • RAM random access memory
  • Other types of dynamic storage devices for instructions can also be electrically erasable programmable read-only memory (EEPROM), compact disc read-only memory (CD-ROM) or other optical discs Storage, optical disc storage (including compressed optical discs, laser discs, optical discs, digital versatile discs, Blu-ray discs, etc.), magnetic disk storage media or other magnetic storage devices, or can be used to carry or store desired program code in the form of instructions or data structures and any other media capable of being accessed by a computer, without limitation.
  • the memory 1702 may be integrated with the processor 1701, or may exist independently and be coupled to the processor 1701 through the interface circuit of the communication device 1700 (not shown in Figure 17), which is not specifically limited in the embodiment of the present application.
  • Transceiver 1703 used for communication with other communication devices.
  • the communication device 1700 is a first device, and the transceiver 1703 can be used to communicate with a second device.
  • the communication device 1700 is a second device, and the transceiver 1703 can be used to communicate with the first device.
  • the transceiver 1703 may include a receiver and a transmitter (not shown separately in Figure 17). Among them, the receiver is used to implement the receiving function, and the transmitter is used to implement the sending function.
  • the transceiver 1703 may be integrated with the processor 1701, or may exist independently and be coupled to the processor 1701 through the interface circuit (not shown in Figure 17) of the communication device 1700. This is not the case in the embodiment of this application. Specific limitations.
  • the communication device 1700 shown in FIG. 17 does not constitute a limitation on the communication device.
  • the communication device may include more or fewer components than shown, or combine certain components, or arrange the components differently.
  • the technical effects of the communication device 1700 can be referred to the technical effects of the methods described in the above method embodiments, which will not be described again here.
  • the processor in the embodiment of the present application can be a central processing unit (CPU).
  • the processor can also be other general-purpose processors, digital signal processors (DSP), special-purpose integrated processors, etc.
  • Circuit application specific integrated circuit, ASIC), off-the-shelf programmable gate array (field programmable gate array, FPGA) or other programmable logic devices, discrete gate or transistor logic devices, discrete hardware components, etc.
  • a general-purpose processor may be a microprocessor or the processor may be any conventional processor, etc.
  • non-volatile memory may be volatile memory or non-volatile memory, or may include both volatile and non-volatile memory.
  • non-volatile memory can be read-only memory (ROM), programmable ROM (PROM), erasable programmable read-only memory (erasable PROM, EPROM), electrically removable memory. Erase electrically programmable read-only memory (EPROM, EEPROM) or flash memory.
  • Volatile memory can be random access memory (RAM), which is used as an external cache.
  • RAM random access memory
  • static random access memory static random access memory
  • DRAM dynamic random access memory
  • RAM synchronous dynamic random access memory
  • SDRAM synchronous dynamic random access memory
  • double data rate SDRAM double data rate SDRAM
  • DDR SDRAM double data rate SDRAM
  • enhanced SDRAM enhanced synchronous dynamic random access memory
  • SLDRAM synchronous connection dynamic random access memory access memory
  • direct rambus RAM direct rambus RAM, DR RAM
  • embodiments of the present application also provide a computer program product carrying computer instructions.
  • the computer instructions When the computer instructions are run on a computer, they cause the computer to execute the method described in the above embodiments.
  • embodiments of the present application also provide a computer-readable storage medium that stores computer instructions.
  • the computer instructions When the computer instructions are run on a computer, they cause the computer to execute the method described in the above embodiments.
  • the embodiment of the present application also provides a chip, including: a processing circuit and a transceiver circuit.
  • the processing circuit and the transceiver circuit are used to implement the method introduced in the above embodiment.
  • the processing circuit is used to perform the processing actions in the corresponding method, and the transceiver circuit is used to perform the receiving/transmitting actions in the corresponding method.
  • the above embodiments can be implemented in whole or in part by software, hardware (such as circuits), firmware or any other combination.
  • the above embodiments can be implemented in whole or in part in the form of a computer program product.
  • the computer program product includes one or more computer instructions or computer programs. When the computer instructions or computer programs are loaded or executed on a computer, the process or function described in the embodiment of the present application is generated in whole or in part.
  • the computer can be a general-purpose computer, a special-purpose computer, a computer network, or other programmable device.
  • the computer instructions can be stored in a computer-readable storage medium, or transmitted from one computer-readable storage medium to another computer-readable storage medium.
  • the computer instructions can be transmitted from one website site, computer, server or data center to another website site, computer, server or data center by wired (such as infrared, wireless, microwave, etc.).
  • the computer-readable storage medium can be any available medium that a computer can access or a data storage device such as a server or data center that contains one or more available media sets.
  • the available medium can be a magnetic medium (for example, a floppy disk, a hard disk, a tape), an optical medium (for example, a DVD), or a semiconductor medium.
  • the semiconductor medium can be a solid-state hard disk.
  • At least one means one or more, and “more than one” means two or more.
  • At least one of the following” or similar expressions refers to any combination of these items, including any combination of single or plural items.
  • at least one of a, b, or c can mean: a, b, c, a-b, a-c, b-c, or a-b-c, where a, b, c can be single or multiple.
  • the size of the sequence numbers of the above-mentioned processes does not mean the order of execution.
  • the execution order of each process should be determined by its functions and internal logic, and should not be used in the embodiments of the present application.
  • the implementation process constitutes any limitation.
  • the disclosed systems, devices and methods can be implemented in other ways.
  • the device embodiments described above are only illustrative.
  • the division of the units is only a logical function division. In actual implementation, there may be other division methods.
  • multiple units or components may be combined or can be integrated into another system, or some features can be ignored, or not implemented.
  • the coupling or direct coupling or communication connection between each other shown or discussed may be through some interfaces, and the indirect coupling or communication connection of the devices or units may be in electrical, mechanical or other forms.
  • the units described as separate components may or may not be physically separated, and the components shown as units may or may not be physical units, that is, they may be located in one place, or they may be distributed to multiple network units. Some or all of the units can be selected according to actual needs to achieve the purpose of the solution of this embodiment.
  • each functional unit in each embodiment of the present application can be integrated into one processing unit, each unit can exist physically alone, or two or more units can be integrated into one unit.
  • the functions are implemented in the form of software functional units and sold or used as independent products, they can be stored in a computer-readable storage medium.
  • the technical solution of the present application is essentially or the part that contributes to the existing technology or the part of the technical solution can be embodied in the form of a software product.
  • the computer software product is stored in a storage medium, including Several instructions are used to cause a computer device (which may be a personal computer, a server, or a communication device, etc.) to execute all or part of the steps of the methods described in various embodiments of this application.
  • the aforementioned storage media include: U disk, mobile hard disk, read-only memory (ROM), random access memory (RAM), magnetic disk or optical disk and other media that can store program code. .

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请提供了一种通信方法及装置,涉及无线通信技术领域。本申请能够提升物理共享信道容量,减少时频资源的浪费。该方法包括:第一设备向第二设备发送控制信息。其中,控制信息包括第一字段,第一字段包括G个比特,G个比特指示L个速率匹配图案组,G个比特包括多个比特组,多个比特组中每个比特组为最多M个物理共享信道指示速率匹配图案组。L个速率匹配图案组中第i个速率匹配图案组指示第i个第二资源,第i个第二资源是控制信息指示的第i个物理共享信道不可占用的时频资源。第一字段可以是速率匹配指示符字段。

Description

通信方法及装置
本申请要求于2022年09月22日提交至中国国家知识产权局、申请号为202211169675.X、发明名称为“一种multi-PDSCH指示方法、终端设备、网络设备、装置”的中国专利申请的优先权,以及2022年10月24日提交至中国国家知识产权局、申请号为202211303879.8、发明名称为“通信方法及装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及无线通信领域,尤其涉及一种通信方法及装置。
背景技术
在通信系统中,同一控制信息能够调度至少两个物理共享信道,以提升物理共享信道的容量。并且,控制信息调度的所有物理共享信道由同一速率匹配指示符(rate matching indicator)字段指示速率匹配图案组(rate match pattern group)。其中,rate match pattern group涵盖控制信息调度的每个物理共享信道所在时间单元可能发生时频资源重叠(overlap)的区域,以保证物理共享信道与物理控制信道不冲突。时频资源重叠是指,物理共享信道的时频资源与其他终端设备的物理控制信道的时频资源重叠。
但是,在同一控制信息所调度的至少两个物理共享信道中,即使某一物理共享信道所在的时间单元并没有其他终端设备的物理控制信道,该物理共享信道也避开占用rate match pattern group所对应的时频资源,造成时频资源浪费,物理共享信道的容量低。
发明内容
本申请提供一种通信方法及装置,能够灵活地为自身调度的不同物理共享信道指示速率匹配图案组,从而提升物理共享信道容量,减少时频资源的浪费。为达到上述目的,本申请采用如下技术方案:
第一方面,提供一种通信方法。该方法的执行主体可以是第一设备,也可以是应用于第一设备的芯片。下面以执行主体是第一设备为例进行描述。该方法包括:第一设备向第二设备发送控制信息和L个物理共享信道。其中,控制信息指示L个物理共享信道和L个第一资源。L个第一资源中第i个第一资源是L个物理共享信道中第i个物理共享信道被分配的时频资源。控制信息包括第一字段,第一字段包括G个比特,G个比特指示L个速率匹配图案组,G个比特包括多个比特组,多个比特组中每个比特组为最多M个物理共享信道指示速率匹配图案组,M个物理共享信道是L个物理共享信道中的一部分,多个比特组中每个比特组所指示的速率匹配图案组是L个速率匹配图案组中的一部分。M为小于L的正整数,G为大于或等于2的正整数。L个速率匹配图案组中第i个速率匹配图案组指示第i个第二资源,第i个第二资源是控制信息指示的第i个物理共享信道不可占用的时频资源。L个物理共享信道中第i个物理共享信道占用第i个第三资源。在第i个第二资源存在,且第i个第二资源与第i个第一资源重叠的情况下,第i个第三资源是第i个第一资源中除重叠资源之外的资源,重叠资源为第i个第二资源与第i个第一资源重叠的资源。或者,在第i个第二资源不存在的情况下,第i个第三资源是第i个第一资源。L为大于1的正整数,i为小于或等于L的任意正整数。
容易理解的是,在第i个第二资源存在,且第i个第二资源与第i个第一资源不重叠的情况下,第i个第三资源是第i个第一资源。
也就是说,第一字段的不同比特指示的速率匹配图案组适用于不同的物理共享信道,提高了控制信息指示速率匹配图案组的灵活性。这样一来,在某两个物理共享信道所在的时间单元被其他终端设备占用的资源不同的情况下,控制信息即可为这两个物理共享信道指示不同的速率匹配图案组,从而使得这两个物理共享信道避让不同的资源,以提升物理共享信道容量,减少时频资源的浪费。
在一种可能的设计中,第一设备向第二设备发送控制信息之前,该方法还包括:第一设备向第二设备发送第一配置信息。其中,第一配置信息配置P个速率匹配图案组,L个速率匹配图案组中的任意一个速率匹配图案组为P个速率匹配图案组中的最多一个,P为大于1的正整数。
例如,在L个速率匹配图案组中第i个速率匹配图案组为非空的情况下,该速率匹配图案组为P个速率匹配图案组中的一个。反之,在L个速率匹配图案组中第i个速率匹配图案组为空的情况下,该速率匹配图案组不存在。
如此,第一设备即可通过第一配置信息为第二设备配置P个速率匹配图案组。
在一种可能的设计中,第一比特组为多个比特组中一个比特组,第一比特组包括G个比特中的一个比特。当第一比特组为第一值时,第一比特组所指示的速率匹配图案组不存在。也就是说,第一比特组对应的物理共享信道的实际传输资源不需要除去任何资源预留区域。或者,当第一比特组为第二值时,第一比特组所指示的速率匹配图案组为P个速率匹配图案组中的一个。也就是说,第一比特组对应的物理共享信道的实际传输资源需要除去某一个速率匹配图案组的资源预留区域。其中,第一比特组可以是多个比特组中的任意一个比特组。
在一种可能的设计中,第一比特组为多个比特组中一个比特组,第一比特组包括G个比特中的一个比特。当第一比特组为第一值时,第一比特组所指示的速率匹配图案组为第一速率匹配图案组。也就是说,第一比特组对应的物理共享信道的实际传输资源需要除去第一速率匹配图案组的资源预留区域。或者,当第一比特组为第二值时,第一比特组所指示的速率匹配图案组为第二速率匹配图案组。也就是说,第一比特组对应的物理共享信道的实际传输资源需要除去第二速率匹配图案组的资源预留区域。其中,第一速率匹配图案组为P个速率匹配图案组中的一个,第二速率匹配图案组为P个速率匹配图案组中的另一个。第一比特组可以是多个比特组中的任意一个比特组。
在一种可能的设计中,G=ceil(X/M)。ceil(·)表示向上取整运算符,X表示控制信息能够调度物理共享信道的最大数量。
也就是说,第一字段的比特数量是根据X和M确定的。
在一种可能的设计中,在第一设备向第二设备发送控制信息之前,该方法还包括:第一设备向第二设备发送第二配置信息。其中,第二配置信息用于配置M的大小,M为小于或等于X的正整数。如此,第二设备即可获知M的大小。
在一种可能的设计中,第一比特组为多个比特组中一个比特组,第一比特组包括G个比特中第g个比特,或者,第一比特组包括G个比特中第g+G-ceil(L/M)个比特。M个物理共享信道为L个物理共享信道中第(g-1)*M+1个至第g*M个物理共享信道。其中,G个比特中第1个比特为最高有效位MSB,G个比特中第G个比特为最低有效位LSB。或者,G个比特中第1个比特为LSB,G个比特中第G个比特为MSB。g为小于floor(L/M)的正整数,floor(·)表示向下取整运算符,ceil(·)表示向上取整运算符,/表示除法运算符。
例如,以G个比特中LSB至MSB开始计算为例,G个比特中第1个比特为MSB,G个比特中第G个比特为LSB。第一比特组包括G个比特中第g个比特,是指,G个比特中从MSB至LSB开始计算的第g个比特。第一比特组包括G个比特中第g+G-ceil(L/M)个比特,是指,G个比特中从MSB至LSB开始计算的第g+G-ceil(L/M)个比特。
再如,以G个比特中LSB至MSB开始计算为例,G个比特中第1个比特为LSB,G个比特中第G个比特为MSB。第一比特组包括G个比特中第g个比特,是指,G个比特中从LSB至MSB开始计算的第g个比特。第一比特组包括G个比特中第g+G-ceil(L/M)个比特,是指,G个比特中从LSB至MSB开始计算的第g+G-ceil(L/M)个比特。
也就是说,在g为小于floor(L/M)的正整数的情况下,第一比特组为M个物理共享信道指示速率匹配图案组。
在一种可能的设计中,第一比特组为多个比特组中一个比特组,当G*M>L时,第一比特组包括G个比特中第ceil(L/M)个比特,或者,第一比特组包括G个比特中第G个比特。M个物理共享信道为L个物理共享信道中第(ceil(L/M)-1)*M+1个至第L个物理共享信道。其中,G个比特中第1个比特为最高有效位MSB,G个比特中第G个比特为最低有效位LSB。或者,G个比特中第1个比特为LSB,G个比特中第G个比特为MSB。ceil(·)表示向上取整运算符,/表示除法运算符。
例如,以G个比特中MSB至LSB开始计算为例,G个比特中第1个比特为MSB,G个比特中第G个比特为LSB。第一比特组包括G个比特中第ceil(L/M)个比特,是指,G个比特中从MSB至LSB开始计算的第ceil(L/M)个比特。第一比特组包括G个比特中第G个比特,是指,G个比特中从 MSB至LSB开始计算的第G个比特。
再如,以G个比特中LSB至MSB开始计算为例,G个比特中第1个比特为LSB,G个比特中第G个比特为MSB。第一比特组包括G个比特中第ceil(L/M)个比特,是指,G个比特中从LSB至MSB开始计算的第ceil(L/M)个比特。第一比特组包括G个比特中第G个比特,是指,G个比特中从LSB至MSB开始计算的第G个比特。
也就是说,当G*M>L时,在第一比特组包括G个比特中第ceil(L/M)个比特,或者,第一比特组包括G个比特中第G个比特的情况下,第一比特组对应的物理共享信道数量小于M,即第一比特组为少于M个物理共享信道指示速率匹配图案组。
在一种可能的设计中,第一比特组为多个比特组中一个比特组,第一比特组包括G个比特中第g个比特,或者,第一比特组包括G个比特中第g+G-L个比特。M个物理共享信道为L个物理共享信道中第g个物理共享信道。或者,G个比特中第1个比特为LSB,G个比特中第G个比特为MSB。其中,G个比特中第1个比特为最高有效位MSB,G个比特中第G个比特为最低有效位LSB。或者,G个比特中第1个比特为LSB,G个比特中第G个比特为MSB。g为小于或等于L的任意正整数,M=1。
例如,以G个比特中MSB至LSB开始计算为例,G个比特中第1个比特为MSB,G个比特中第G个比特为LSB。第一比特组包括G个比特中第g个比特,是指,G个比特中从MSB至LSB开始计算的第g个比特。第一比特组包括G个比特中第g+G-L个比特,是指,G个比特中从MSB至LSB开始计算的第g+G-L个比特。
再如,以G个比特中LSB至MSB开始计算为例,G个比特中第1个比特为LSB,G个比特中第G个比特为MSB。第一比特组包括G个比特中第g个比特,是指,G个比特中从LSB至MSB开始计算的第g个比特。第一比特组包括G个比特中第g+G-L个比特,是指,G个比特中从LSB至MSB开始计算的第g+G-L个比特。
也就是说,第一比特组为一个物理共享信道指示速率匹配图案组,或者,G个比特中每个比特为一个物理共享信道指示速率匹配图案组。
在一种可能的设计中,第一比特组为多个比特组中一个比特组,第一比特组包括G个比特中第g个比特,或者,第一比特组包括G个比特中第g+G-N个比特。M个物理共享信道为L个物理共享信道中第(g-1)*V1+1个至第g*V1个物理共享信道。其中,G个比特中第1个比特为最高有效位MSB,G个比特中第G个比特为最低有效位LSB。或者,G个比特中第1个比特为LSB,G个比特中第G个比特为MSB。g为小于或等于N1的任意正整数,N1为L/N的余数,且N1为正整数,N=min(G,L),V1=ceil(L/N),/表示除法运算符,min(·)表示取最小值运算符,ceil(·)表示向上取整运算符。
例如,以G个比特中MSB至LSB开始计算为例,G个比特中第1个比特为MSB,G个比特中第G个比特为LSB。在g为小于或等于N1的任意正整数的情况下,第一比特组包括G个比特中第g个比特,是指,G个比特中从MSB至LSB开始计算的第g个比特。第一比特组包括G个比特中第g+G-N个比特,是指,G个比特中从MSB至LSB开始计算的第g+G-N个比特。
再如,以G个比特中LSB至MSB开始计算为例,G个比特中第1个比特为LSB,G个比特中第G个比特为MSB。在g为小于或等于N1的任意正整数的情况下,第一比特组包括G个比特中第g个比特,是指,G个比特中从LSB至MSB开始计算的第g个比特。第一比特组包括G个比特中第g+G-N个比特,是指,G个比特中从LSB至MSB开始计算的第g+G-N个比特。
也就是说,第一比特组为V1个物理共享信道指示速率匹配图案组。
在一种可能的设计中,第一比特组为多个比特组中一个比特组,第一比特组包括G个比特中第g个比特,或者,第一比特组包括G个比特中第g+G-N个比特。M个物理共享信道为L个物理共享信道中第N1*V1+(g-N1-1)*V2+1至第N1*V1+(g-N1-1)*V2+V2个物理共享信道。其中,G个比特中第1个比特为最高有效位MSB,G个比特中第G个比特为最低有效位LSB。或者,G个比特中第1个比特为LSB,G个比特中第G个比特为MSB。g为大于N1且小于或等于N的任意正整数,N1为L/N的余数,且N1为正整数,N=min(G,L),V1=ceil(L/N),V2=floor(L/N),/表示除法运算符,min(·)表示取最小值运算符,ceil(·)表示向上取整运算符,floor(·)表示向下取整运算符。
例如,以G个比特中MSB至LSB开始计算为例,G个比特中第1个比特为MSB,G个比特中第G个比特为LSB。在g为大于N1且小于或等于N的任意正整数的情况下,第一比特组包括G个比特中第g个比特,是指,G个比特中从MSB至LSB开始计算的第g个比特。第一比特组包括G个比特中第g+G-N个比特,是指,G个比特中从MSB至LSB开始计算的第g+G-N个比特。
再如,以G个比特中LSB至MSB开始计算为例,G个比特中第1个比特为LSB,G个比特中第G个比特为MSB。在g为大于N1且小于或等于N的任意正整数的情况下,第一比特组包括G个比特中第g个比特,是指,G个比特中从LSB至MSB开始计算的第g个比特。第一比特组包括G个比特中第g+G-N个比特,是指,G个比特中从LSB至MSB开始计算的第g+G-N个比特。
也就是说,第一比特组为V2个物理共享信道指示速率匹配图案组。
在一种可能的设计中,G=X。X表示控制信息能够调度物理共享信道的最大数量。
如此,第一字段的G个比特即可指示控制信息所能够调度的每个物理共享信道。
在一种可能的设计中,在第一设备向第二设备发送控制信息之前,该方法还包括:第一设备向第二设备发送第三配置信息。其中,第三配置信息用于配置G的大小。
也就是说,由第一设备为第二设备配置G的大小。
在一种可能的设计中,第一比特组为多个比特组中一个比特组,第一比特组包括G个比特中的至少两个相邻比特,M=1。其中,第一比特组可以为多个比特组中任意一个比特组。也就是说,第一比特组为一个物理共享信道指示速率匹配图案组。
在一种可能的设计中,第一比特组包括G个比特中第2*g-1个比特和第2*g个比特,或者,第一比特组包括G个比特中第2*(X-L+g)-1个比特和第2*(X-L+g)个比特。M个物理共享信道为L个物理共享信道中第g个物理共享信道。其中,G个比特中第1个比特为最高有效位MSB,G个比特中第G个比特为最低有效位LSB。或者,G个比特中第1个比特为LSB,G个比特中第G个比特为MSB。G为大于或等于2L的正整数,g为小于或等于L的任意正整数,X表示控制信息能够调度物理共享信道的最大数量。
例如,以G个比特中MSB至LSB开始计算为例,G个比特中第1个比特为MSB,G个比特中第G个比特为LSB。G个比特中第2*g-1个比特,是指,G个比特中从MSB至LSB开始计算的第2*g-1个比特。G个比特中第2*g个比特,是指,G个比特中从MSB至LSB开始计算的第2*g个比特。G个比特中第2*(X-L+g)-1个比特,是指,G个比特中从MSB至LSB开始计算的第2*(X-L+g)-1个比特。G个比特中第2*(X-L+g)个比特,是指,G个比特中从MSB至LSB开始计算的第2*(X-L+g)个比特。
例如,以G个比特中LSB至MSB开始计算为例,G个比特中第1个比特为LSB,G个比特中第G个比特为MSB。G个比特中第2*g-1个比特,是指,G个比特中从LSB至MSB开始计算的第2*g-1个比特。G个比特中第2*g个比特,是指,G个比特中从LSB至MSB开始计算的第2*g个比特。G个比特中第2*(X-L+g)-1个比特,是指,G个比特中从LSB至MSB开始计算的第2*(X-L+g)-1个比特。G个比特中第2*(X-L+g)个比特,是指,G个比特中从LSB至MSB开始计算的第2*(X-L+g)个比特。
也就是说,第一比特组为一个物理共享信道指示速率匹配图案组。
在一种可能的设计中,G=2X。如此,第一字段的G个比特即可指示控制信息所能够调度的每个物理共享信道。
在一种可能的设计中,第一比特组包括G个比特中的第2*g-1个比特和第2*g个比特。当G个比特中第2*g-1个比特为第一值,且第2*g个比特为第一值时,第一比特组指示的速率匹配图案组不存在。也就是说,第一比特组对应的物理共享信道的实际传输资源不需要除去任何资源预留区域。
当G个比特中第2*g-1个比特为第二值,且第2*g个比特为第一值时,第一比特组指示的速率匹配图案组为第一速率匹配图案组。也就是说,第一比特组对应的物理共享信道的实际传输资源需要除去第一速率匹配图案组的资源预留区域。
当G个比特中第2*g-1个比特为第一值,且第2*g个比特为第二值时,第一比特组指示的速率匹配图案组为第二速率匹配图案组。也就是说,第一比特组对应的物理共享信道的实际传输资源需要除去第二速率匹配图案组的资源预留区域。
当G个比特中第2*g-1个比特为第二值,且第2*g个比特为第二值时,第一比特组指示的速率匹配图案组为第一速率匹配图案组和第二速率匹配图案组。也就是说,第一比特组对应的物理共享信道的实际传输资源需要除去第一速率匹配图案组和第二速率匹配图案组的资源预留区域。
其中,G个比特中第1个比特为最高有效位MSB,G个比特中第G个比特为最低有效位LSB。或者,G个比特中第1个比特为LSB,G个比特中第G个比特为MSB。g为小于或等于L的任意正整数。第一速率匹配图案组为P个速率匹配图案组中的一个,第二速率匹配图案组为P个速率匹配图案组中的另一个。
在一种可能的设计中,P为2。
在一种可能的设计中,在第一设备向第二设备发送控制信息之前,该方法还包括:第一设备向第二设备发送第四配置信息。其中,第四配置信息用于配置X的大小,X表示控制信息能够调度物理共享信道的最大数量,X为大于或等于L的正整数。
也就是说,由第一设备为第二设备配置X的大小。
在一种可能的设计中,在第一设备为网络设备,第二设备为终端设备的情况下,控制信息为下行链路控制信息DCI,L个物理共享信道为L个物理下行链路共享信道PDSCH,第一字段为速率匹配指示rate matching indicator字段。
在一种可能的设计中,在第一设备为第一终端设备,第二设备为第二终端设备的情况下,控制信息为侧行链路控制信息SCI,L个物理共享信道为L个物理侧行链路共享信道PSSCH。
第二方面,提供一种通信方法。该方法的执行主体可以是第二设备,也可以是应用于第二设备的芯片。下面以执行主体是第二设备为例进行描述。该方法包括:第二设备接收来自第一设备的控制信息。其中,控制信息指示L个物理共享信道和L个第一资源。L个第一资源中第i个第一资源是L个物理共享信道中第i个物理共享信道被分配的时频资源。控制信息包括第一字段,第一字段包括G个比特,G个比特指示L个速率匹配图案组,G个比特包括多个比特组,多个比特组中每个比特组为最多M个物理共享信道指示速率匹配图案组,M个物理共享信道是L个物理共享信道中的一部分,多个比特组中每个比特组所指示的速率匹配图案组是L个速率匹配图案组中的一部分。M为小于L的正整数,G为大于或等于2的正整数。L个速率匹配图案组中第i个速率匹配图案组指示第i个第二资源,第i个第二资源是控制信息指示的第i个物理共享信道不可占用的时频资源。然后,第二设备根据控制信息,接收来自第一设备的L个物理共享信道。其中,L个物理共享信道中第i个物理共享信道占用第i个第三资源。在第i个第二资源存在,且第i个第二资源与第i个第一资源重叠的情况下,第i个第三资源是第i个第一资源中除重叠资源之外的资源,重叠资源为第i个第二资源与第i个第一资源重叠的资源。或者,在第i个第二资源不存在的情况下,第i个第三资源是第i个第一资源。L为大于1的正整数,i为小于或等于L的任意正整数。
在一种可能的设计中,第二设备接收来自第一设备的控制信息之前,该方法还包括:第二设备接收来自第一设备的第一配置信息。其中,第一配置信息配置P个速率匹配图案组,L个速率匹配图案组中的任意一个速率匹配图案组为P个速率匹配图案组中的最多一个,P为大于1的正整数。
在一种可能的设计中,第一比特组为多个比特组中一个比特组,第一比特组包括G个比特中的一个比特。当第一比特组为第一值时,第一比特组所指示的速率匹配图案组不存在。或者,当第一比特组为第二值时,第一比特组所指示的速率匹配图案组为P个速率匹配图案组中的一个。
在一种可能的设计中,第一比特组为多个比特组中一个比特组,第一比特组包括G个比特中的一个比特。当第一比特组为第一值时,第一比特组所指示的速率匹配图案组为第一速率匹配图案组。或者,当第一比特组为第二值时,第一比特组所指示的速率匹配图案组为第二速率匹配图案组。第一速率匹配图案组为P个速率匹配图案组中的一个,第二速率匹配图案组为P个速率匹配图案组中的另一个。
在一种可能的设计中,G=ceil(X/M)。ceil(·)表示向上取整运算符,X表示控制信息能够调度物理共享信道的最大数量。
在一种可能的设计中,在第二设备接收来自第一设备的控制信息之前,该方法还包括:第二设备接收来自第一设备的第二配置信息。其中,第二配置信息用于配置M的大小,M为小于或等于X的正整数。
在一种可能的设计中,第一比特组为多个比特组中一个比特组,第一比特组包括G个比特中第g个比特,或者,第一比特组包括G个比特中第g+G-ceil(L/M)个比特。M个物理共享信道为L个物理共享信道中第(g-1)*M+1个至第g*M个物理共享信道。其中,G个比特中第1个比特为最高有效位MSB,G个 比特中第G个比特为最低有效位LSB。或者,G个比特中第1个比特为LSB,G个比特中第G个比特为MSB。g为小于floor(L/M)的正整数,floor(·)表示向下取整运算符,ceil(·)表示向上取整运算符,/表示除法运算符。
在一种可能的设计中,第一比特组为多个比特组中一个比特组,当G*M>L时,第一比特组包括G个比特中第ceil(L/M)个比特,或者,第一比特组包括G个比特中第G个比特。M个物理共享信道为L个物理共享信道中第(ceil(L/M)-1)*M+1个至第L个物理共享信道。其中,G个比特中第1个比特为最高有效位MSB,G个比特中第G个比特为最低有效位LSB。或者,G个比特中第1个比特为LSB,G个比特中第G个比特为MSB。ceil(·)表示向上取整运算符,/表示除法运算符。
在一种可能的设计中,第一比特组为多个比特组中一个比特组,第一比特组包括G个比特中第g个比特,或者,第一比特组包括G个比特中第g+G-L个比特。M个物理共享信道为L个物理共享信道中第g个物理共享信道。其中,G个比特中第1个比特为最高有效位MSB,G个比特中第G个比特为最低有效位LSB。或者,G个比特中第1个比特为LSB,G个比特中第G个比特为MSB。g为小于或等于L的任意正整数,M=1。
在一种可能的设计中,第一比特组为多个比特组中一个比特组,第一比特组包括G个比特中第g个比特,或者,第一比特组包括G个比特中第g+G-N个比特。M个物理共享信道为L个物理共享信道中第(g-1)*V1+1个至第g*V1个物理共享信道。其中,G个比特中第1个比特为最高有效位MSB,G个比特中第G个比特为最低有效位LSB。或者,G个比特中第1个比特为LSB,G个比特中第G个比特为MSB。g为小于或等于N1的任意正整数,N1为L/N的余数,且N1为正整数,N=min(G,L),V1=ceil(L/N),/表示除法运算符,min(·)表示取最小值运算符,ceil(·)表示向上取整运算符。
在一种可能的设计中,第一比特组为多个比特组中一个比特组,第一比特组包括G个比特中第g个比特,或者,第一比特组包括G个比特中第g+G-N个比特。M个物理共享信道为L个物理共享信道中第N1*V1+(g-N1-1)*V2+1至第N1*V1+(g-N1-1)*V2+V2个物理共享信道。其中,G个比特中第1个比特为最高有效位MSB,G个比特中第G个比特为最低有效位LSB。或者,G个比特中第1个比特为LSB,G个比特中第G个比特为MSB。g为大于N1且小于或等于N的任意正整数,N1为L/N的余数,且N1为正整数,N=min(G,L),V1=ceil(L/N),V2=floor(L/N),/表示除法运算符,min(·)表示取最小值运算符,ceil(·)表示向上取整运算符,floor(·)表示向下取整运算符。
在一种可能的设计中,G=X。X表示控制信息能够调度物理共享信道的最大数量。
在一种可能的设计中,在第二设备接收来自第一设备的控制信息之前,该方法还包括:第二设备接收来自第一设备的第三配置信息。其中,第三配置信息用于配置G的大小。
在一种可能的设计中,第一比特组为多个比特组中一个比特组,第一比特组包括G个比特中的至少两个相邻比特,M=1。
在一种可能的设计中,第一比特组包括G个比特中第2*g-1个比特和第2*g个比特,或者,第一比特组包括G个比特中第2*(X-L+g)-1个比特和第2*(X-L+g)个比特。M个物理共享信道为L个物理共享信道中第g个物理共享信道。其中,G个比特中第1个比特为最高有效位MSB,G个比特中第G个比特为最低有效位LSB。或者,G个比特中第1个比特为LSB,G个比特中第G个比特为MSB。G为大于或等于2L的正整数,g为小于或等于L的任意正整数,X表示控制信息能够调度物理共享信道的最大数量。
在一种可能的设计中,G=2X。
在一种可能的设计中,第一比特组包括G个比特中的第2*g-1个比特和第2*g个比特。当G个比特中第2*g-1个比特为第一值,且第2*g个比特为第一值时,第一比特组指示的速率匹配图案组不存在。或者,当G个比特中第2*g-1个比特为第二值,且第2*g个比特为第一值时,第一比特组指示的速率匹配图案组为第一速率匹配图案组。或者,当G个比特中第2*g-1个比特为第一值,且第2*g个比特为第二值时,第一比特组指示的速率匹配图案组为第二速率匹配图案组。或者,当G个比特中第2*g-1个比特为第二值,且第2*g个比特为第二值时,第一比特组指示的速率匹配图案组为第一速率匹配图案组和第二速率匹配图案组。其中,G个比特中第1个比特为最高有效位MSB,G个比特中第G个比特为最低有效位LSB。或者,G个比特中第1个比特为LSB,G个比特中第G个比特为MSB。g为小于或等于L的任意正整数。第一速率匹配图案组为P个速率匹配图案组中的一个,第二速率匹配图案组为P个速率匹配图案组中的另一个。
在一种可能的设计中,P为2。
在一种可能的设计中,在第二设备接收来自第一设备的控制信息之前,该方法还包括:第二设备接收来自第一设备的第四配置信息。第四配置信息用于配置X的大小,X表示控制信息能够调度物理共享信道的最大数量,X为大于或等于L的正整数。
在一种可能的设计中,在第二设备为网络设备,第一设备为终端设备的情况下,控制信息为下行链路控制信息DCI,L个物理共享信道为L个物理下行链路共享信道PDSCH,第一字段为速率匹配指示rate matching indicator字段。
在一种可能的设计中,在第二设备为第一终端设备,第一设备为第二终端设备的情况下,控制信息为侧行链路控制信息SCI,L个物理共享信道为L个物理侧行链路共享信道PSSCH。
第三方面,提供了一种通信装置。该通信装置包括:处理器;所述处理器与存储器耦合,用于读取存储器中的指令并执行,以使该通信装置执行如上述任一方面或任一方面任一种可能的设计中的第一设备所执行的方法。该通信装置可以为上述第一方面或第一方面任一种可能的设计中的第一设备,或者实现上述第一设备功能的芯片。
第四方面,提供一种芯片。该芯片包括处理电路和输入输出接口。其中,输入输出接口用于与芯片之外的模块通信。例如,该芯片可以为实现上述第一方面或第一方面任一种可能的设计中的第一设备功能的芯片。处理电路用于运行计算机程序或指令,以实现以上第一方面或第一方面任一种可能的设计中的方法。
第五方面,提供了一种通信装置。该通信装置包括:处理器;所述处理器与存储器耦合,用于读取存储器中的指令并执行,以使该通信装置执行如上述任一方面或任一方面任一种可能的设计中的第二设备所执行的方法。该通信装置可以为上述第二方面或第二方面任一种可能的设计中的第二设备,或者实现上述第二设备功能的芯片。
第六方面,提供一种芯片。该芯片包括处理电路和输入输出接口。其中,输入输出接口用于与芯片之外的模块通信。例如,该芯片可以为实现上述第二方面或第二方面任一种可能的设计中的第二设备功能的芯片。处理电路用于运行计算机程序或指令,以实现以上第二方面或第二方面任一种可能的设计中的方法。
第七方面,提供一种计算机可读存储介质。该计算机可读存储介质中存储有指令,当其在计算机上运行时,使得计算机可以执行上述任一方面中任一项的方法。
第八方面,提供一种包含指令的计算机程序产品,当其在计算机上运行时,使得计算机可以执行上述任一方面中任一项的方法。
第九方面,提供一种电路系统。电路系统包括处理电路,处理电路被配置为执行如上述任一方面中任一项的方法。
第十方面,提供一种通信系统,包括:第一设备和第二设备。其中,第一设备用于执行第一方面及第一方面任一种可能的设计中的方法,第二设备用于执行第二方面及第二方面任一种可能的设计中所述的方法。
其中,第二方面至第十方面中任一种设计所带来的技术效果可参考上文所提供的对应的方法中的有益效果,此处不再赘述。
附图说明
图1为本申请实施例提供的一种通信系统的架构示意图;
图2为本申请实施例提供的一种调度场景示意图;
图3为本申请实施例提供的再一种调度场景示意图;
图4为本申请实施例提供的又一种调度场景示意图;
图5为本申请实施例提供的一种速率匹配图案的资源分布示意图;
图6为本申请实施例提供的一种速率匹配图案组的资源分布示意图;
图7为本申请实施例提供的又一种调度场景示意图;
图8为本申请实施例提供的一种通信方法的流程示意图;
图9为本申请实施例提供的再一种速率匹配图案组的资源分布示意图;
图10为本申请实施例提供的又一种调度场景示意图;
图11为本申请实施例提供的一种第一字段的示意图;
图12为本申请实施例提供的再一种第一字段的示意图;
图13为本申请实施例提供的又一种第一字段的示意图;
图14为本申请实施例提供的又一种第一字段的示意图;
图15为本申请实施例提供的又一种第一字段的示意图;
图16为本申请实施例提供的再一种通信方法的流程示意图;
图17为本申请实施例提供的一种通信装置的结构示意图。
具体实施方式
下面将结合附图,对本申请中的技术方案进行描述。
本申请实施例的技术方案可以应用于各种通信系统,例如通用移动通信系统(universal mobile telecommunications system,UMTS)、无线局域网(wireless local area network,WLAN)、无线保真(wireless fidelity,Wi-Fi)系统、有线网络、车到任意物体(vehicle to everything,V2X)通信系统、设备间(device-to-device,D2D)通信系统、车联网通信系统、第4代(4th generation,4G)移动通信系统,如长期演进(long term evolution,LTE)系统、全球互联微波接入(worldwide interoperability for microwave access,WiMAX)通信系统,第五代(5th generation,5G)移动通信系统,如新空口(new radio,NR)系统,第六代(6th generation,6G)移动通信系统等。
本申请将围绕可包括多个设备、组件、模块等的系统来呈现各个方面、实施例或特征。应当理解和明白的是,各个系统可以包括另外的设备、组件、模块等,并且/或者可以并不包括结合附图讨论的所有设备、组件、模块等。此外,还可以使用这些方案的组合。
另外,在本申请实施例中,“示例性的”、“例如”等词用于表示作例子、例证或说明。本申请中被描述为“示例”的任何实施例或设计方案不应被解释为比其它实施例或设计方案更优选或更具优势。确切而言,使用示例的一词旨在以具体方式呈现概念。
本申请实施例中,“的(of)”,“相应的(corresponding,relevant)”和“对应的(corresponding)”有时可以混用,应当指出的是,在不强调其区别时,其所要表达的含义是一致的。
本申请实施例描述的网络架构以及业务场景是为了更加清楚的说明本申请实施例的技术方案,并不构成对于本申请实施例提供的技术方案的限定,本领域普通技术人员可知,随着网络架构的演变和新业务场景的出现,本申请实施例提供的技术方案对于类似的技术问题,同样适用。
为便于理解本申请实施例,首先以图1中示出的通信系统为例详细说明适用于本申请实施例的通信系统。示例性地,图1为本申请实施例提供的方法所适用的一种通信系统的架构示意图。
如图1所示,该通信系统1000包括第一设备100和第二设备200。
在一些实施例中,上述第一设备100和第二设备200均可以为终端设备。可选的,该通信系统1000还包括网络设备(图1未示出)。其中,第一设备100和第二设备200之间通过侧行链路(或PC5接口)通信,第二设备200可以通过第一设备100与网络设备通信。第一设备100和第二设备200都可以在网络覆盖内,也可以一方在网络覆盖内、另一方在网络覆盖外,也可以都在网络覆盖外。当第一设备100和第二设备200都在网络覆盖内时,第一设备100的服务基站与第二设备200的服务基站可以相同,也可以不相同。
在另一些实施例中,上述第一设备100为终端设备,第二设备200为网络设备。或者,上述第一设备100为网络设备,第二设备200为终端设备。
其中,终端设备为一种具有无线收发功能的终端。本申请中的终端设备也可以称为终端、用户设备(user equipment,UE)、接入终端、用户单元、用户站、移动站、移动台、远方站、远程终端、移动设备、用户终端、无线通信设备、用户代理或用户装置。本申请的实施例中的终端可以是路测设备(road side unit,RSU)、手机(mobile phone)、平板电脑(pad)、无人机、带无线收发功能的电脑、客户前置设备(customer premise equipment,CPE)、虚拟现实(virtual reality,VR)终端、增强现实(augmented reality,AR)终端、物联网终端、工业控制(industrial control)中的无线终端、无人驾驶(self driving)中的无线终端、远程医疗(remote medical)中的无线终端、智能电网(smart grid) 中的无线终端、运输安全(transportation safety)中的无线终端、智慧城市(smart city)中的无线终端、智慧家庭(smart home)中的无线终端、蜂窝电话、无绳电话、会话启动协议(session initiation protocol,SIP)电话、无线本地环路(wireless local loop,WLL)站、个人数字助理(personal digital assistant,PDA)、具有无线通信功能的手持设备、计算设备或连接到无线调制解调器的其它处理设备、车载设备、可穿戴设备,5G网络中的终端或者未来演进网络中的终端等。
又例如,本申请中的终端设备可以是智慧物流中的快递终端(例如可监控货物车辆位置的设备、可监控货物温湿度的设备等)、智慧农业中的无线终端(例如可收集禽畜的相关数据的可穿戴设备等)、智慧建筑中的无线终端(例如智慧电梯、消防监测设备、以及智能电表等)、智能医疗中的无线终端(例如可监测人或动物的生理状态的可穿戴设备)、智能交通中的无线终端(例如智能公交车、智能车辆、共享单车、充电桩监测设备、智能红绿灯、以及智能监控以及智能停车设备等)、智能零售中的无线终端(例如自动售货机、自助结账机、以及无人便利店等)。又例如,本申请中的终端设备可以是作为一个或多个部件或者单元而内置于车辆的车载模块、车载模组、车载部件、车载芯片或者车载单元,车辆通过内置的所述车载模块、车载模组、车载部件、车载芯片或者车载单元可以实施本申请提供的方法。
其中,网络设备可以与终端设备通信,例如通过Uu口。示例性地,上述网络设备也可以称为接入网设备、接入设备或无线接入网设备,网络设备能够管理无线资源,为终端设备提供接入服务,完成数据在终端设备和核心网之间的转发,网络设备也可以理解为网络中的基站。
示例性地,本申请实施例中的网络设备可以是用于与终端设备通信的任意一种具有无线收发功能的通信设备。该网络设备包括但不限于:RSU、演进型节点B(evolved Node B,eNB)、无线网络控制器(radio network controller,RNC)、节点B(Node B,NB)、基站控制器(base station controller,BSC)、基站收发台(base transceiver station,BTS)、家庭基站(home evolved NodeB,HeNB,或home Node B,HNB)、基带单元(baseBand unit,BBU),无线保真(wireless fidelity,WIFI)系统中的接入点(access point,AP)、无线中继节点、无线回传节点、传输点(transmission point,TP)或者发送接收点(transmission and reception point,TRP)等,还可以为5G,如NR系统中的gNB,或传输点(TRP或TP),5G系统中的基站的一个或一组(包括多个天线面板)天线面板,或者,还可以为构成gNB或传输点的网络节点,如基带单元(BBU),或分布式单元(distributed unit,DU)等,还可以为卫星、或无人机等。
在一些部署中,gNB可以包括集中式单元(centralized unit,CU)和DU。gNB还可以包括有源天线单元(active antenna unit,AAU)。CU实现gNB的部分功能,DU实现gNB的部分功能。比如,CU负责处理非实时协议和服务,实现无线资源控制(radio resource control,RRC),分组数据汇聚层协议(packet data convergence protocol,PDCP)层的功能。DU负责处理物理层协议和实时服务,实现无线链路控制(radio link control,RLC)层、媒体接入控制(media access control,MAC)层和物理(physical,PHY)层的功能。AAU实现部分物理层处理功能、射频处理及有源天线的相关功能。RRC层的信息由CU生成,最终会经过DU的PHY层封装变成PHY层信息,或者,由PHY层的信息转变而来。因而,在这种架构下,高层信令如RRC层信令,也可以认为是由DU发送的,或者,由DU+AAU发送的。可以理解的是,网络设备可以为包括CU节点、DU节点、AAU节点中一项或多项的设备。此外,可以将CU划分为接入网(radio access network,RAN)中的接入网设备,也可以将CU划分为核心网(core network,CN)中的接入网设备,本申请对此不做限定。
可选的,图1所示的通信系统可以适用于目前正在讨论的通信网络,也可以适用于未来的其他网络等,本申请实施例对此不做具体限定。
应理解,本申请实施例提供的方法,可以适用于图1所示的任意两个节点之间,具体实现可以参考下述方法实施例,此处不再赘述。
应当指出的是,本申请实施例中的方案还可以应用于其他通信系统中,相应的名称也可以用其他通信系统中的对应功能的名称进行替代。
为了便于理解本申请实施例,下面先对本申请实施例中涉及的术语做简单说明。应理解,这些说明仅为便于理解本申请实施例,而不应对本申请构成任何限定。
1、扩展现实(extended reality,XR)
XR,是指通过计算机技术和可穿戴设备产生的一个真实与虚拟组合的、可人机交互的环境。XR是在增强现实(augmented reality,AR),虚拟现实(virtual reality,VR)和混合现实(mixed reality,MR)基础上提出的。换句话说,为了避免概念混淆,XR其实是一个总称,包括了AR,VR和MR。XR业务的目的是利用高速网络,加上360度影像等技术,达到交互式的沉浸体验效果。XR业务具有如下特点:业务量较大,传输时延要求较高(即需要尽可能降低传输时延),数据帧到达间隔较短,或业务周期性比较明显等。
一个XR视频帧通常需要若干个物理下行链路共享信道(physical downlink shared channel,PDSCH)才能完成传输。其中,每个PDSCH所能承载的数据量是有限的,通常取决于信道质量,符号数量,子载波数量等。
示例性的,图2示出了服务器通过网络设备给终端设备发送XR视频帧的场景,一个XR视频帧通过6个PDSCH才能完成传输。在图2中,时分双工(time division duplex,TDD)配比为4:1,每个TDD循环包括4个下行时隙和1个上行时隙。
2、动态调度
动态调度,是一种网络设备为终端设备调度的常用方式,即网络设备通过发送下行链路控制信息(downlink control information,DCI),为终端设备调度PDSCH。为了克服无线传输过程中的信道波动,以及调整PDSCH的资源大小以适应不同大小的数据量,PDSCH的传输参数通常是动态变化的,网络设备通过DCI来通知终端设备该DCI所调度PDSCH的参数。例如,终端设备通过DCI中的时域资源分配(time domain resource allocation,TDRA)字段,获得PDSCH的时域资源位置(如PDSCH在哪一个时隙上,在这一时隙的哪几个符号上)。终端设备通过DCI中的频域资源分配(frequency domain resource allocation,FDRA)字段,获得PDSCH的频域资源位置(如PDSCH在哪一个资源块(resource block,RB)上)。
表1示出了一种TDRA的指示方式。具体地,表1包括行索引(Row index),类型A解调参考信号(demodulation reference signal,DMRS)的位置(dmrs-TypeA-Position),PDSCH的映射类型(PDSCH mapping type),K0,S,和L等信息。
其中,DMRS为解调参考信号,用于接收端设备评估信道以便于解调信号。dmrs-TypeA-Position为当PDSCH映射类型为typeA时,DMRS的位置。例如,数字2代表DMRS在PDSCH所在时隙内的第2个符号上,数字3代表DMRS在PDSCH所在时隙内的第3个符号上。PDSCH mapping type指示了PDSCH的映射类型。例如,在PDSCH mapping type为A的情况下,PDSCH的起始符号为0~3,即第一个至第四个符号中的任意一个。在PDSCH mapping type为B的情况下,PDSCH的起始符号为0~12,即第一个至第十三个中的其中一个。K0代表PDSCH相较于对应的DCI的时间偏移,单位为时隙。S代表PDSCH的起始符号位置,从0开始计数。L代表PDSCH总共占用了多少个符号,从1开始计数。
DCI中TDRA字段采用4比特来指示这16个行索引中的一个行索引,以指示该PDSCH所采用的资源。例如,在TDRA=0000的情况下,代表该PDSCH采用Row index=1,即第一行。在预配置dmrs-TypeA-Position的情况下,终端设备即可获知该PDSCH的mapping type,时间偏移,时域起始符号和符号总数,以及当PDSCH mapping type为A的DMRS的位置。
表1

另外,终端设备通过DCI中的编码与调制策略(modulation and coding scheme,MCS)字段,确定PDSCH的调制阶数(modulation order)和信道编码码率,以便于正确地译码接收到PDSCH所承载的数据。
在一种实现方式中,如图3所示,一个XR视频帧通过6个PDSCH完成传输,每个PDSCH都对应一个DCI来指示,即6个PDSCH由6个单独的DCI进行指示。例如,第一个D时隙(即下行时隙)的PDSCH由DCI1进行指示,第二个D时隙的PDSCH由DCI2进行指示,其他PDSCH与DCI的关系可以此类推,不再赘述。图3所示的PDSCH和DCI位于同一个时隙内,如一个时隙的14个符号中前2(或3)个符号为物理下行控制信息(physical downlink control channel,PDCCH),PDCCH用于承载DCI,剩余的12(或11)个符号为该DCI所指示的PDSCH。
应理解,PDCCH和其对应的PDSCH可以不占满一个时隙。DCI所指示的PDSCH也可以和该DCI在不同的时隙中,但PDSCH晚于DCI。DCI1和DCI2可以是相同的格式,如DCI1为DCI格式1_1,DCI2也为DCI格式1_1,它们所包含的参数类型相同,但是参数数值可以不相同。或者,DCI1与DCI2也可以是不同的DCI格式,如DCI1为DCI格式1_1,DCI2为DCI格式1_0。
在另一种实现方式中,一个DCI可以指示多个PDSCH。如图4所示,6个PDSCH由DCI1进行指示。
单DCI调度多个PDSCH的一个问题是,一个DCI无法灵活指示自身所调度每个PDSCH的参数,或者说,若希望一个DCI可以调度多个PDSCH,又能够达到单个DCI调度单PDSCH的灵活性,则需要将DCI的大小扩大很多,这种开销是不可接受的。例如,图3中的每个DCI指示对应PDSCH的MCS参数,以及时且合理地适应变动的信道,而在图4所示的方式中,若为每个PDSCH都指示一个MCS,则需要将MSC字段扩大6倍,即开销是原MCS字段的6倍。为了使能一个DCI可以调度多个PDSCH,又不太增大DCI的开销,该DCI所调度的多个PDSCH需要牺牲一定的调度灵活性,例如,DCI中的一个字段(如MCS字段)将适用于该DCI所调度的所有PDSCH。
但并非所有DCI字段都需要成倍的开销。如图4,这6个PDSCH的时域资源可以通过一个TDRA字段来指示。具体地,网络设备可以通过RRC信令为终端设备配置多个PDSCH资源。例如,将表1中的每行代表1个PDSCH资源配置,将该表的每行扩展至更多列,如2个K0、2个PDSCH mapping type、2个S和2个L等,即可实现一个DCI调度2个PDSCH。
相较于图3中一个DCI调度一个PDSCH而言,图4中一个DCI调度多个PDSCH的方式,可以减少DCI的发送,即某些时隙不需要PDCCH,如图4的第2~6个D时隙,那么,节省下来的PDCCH的时频域资源可以用于PDSCH传输,以提升PDSCH的容量。
但是,PDCCH和PDSCH的复用问题并不简单。例如,一个终端设备的PDSCH所占用的时频资源需要避免与其他终端设备的PDCCH重叠,以避免对其他终端设备的PDCCH的译码性能产生影响。为了解决这个问题,相关标准通过设置速率匹配图案(rate match pattern)的方式,为一个时隙 内的资源划分(或预留)出来一部分时频域资源,当网络设备在将PDSCH映射至时频域资源时,需要避开这部分预留资源,即预留的资源不用来传输PDSCH。图5示出了一种rate match pattern的资源分布示意图。在图5中,斜线部分为rate match pattern对应的资源,即PDSCH不占用这部分区域的资源。
在一些实施例中,rate match pattern可以通过位图(bit map)的方式来指示。例如,网络设备通过无线资源控制(radio resource control,RRC)信令中的RateMatchPattern信息元素(information element,IE)为终端设备配置rate match pattern。以图5为例,网络设备可以通过RateMatchPattern IE中的symbolsInResourceBlock信令来指示rate match pattern的时域位置,并通过RateMatchPattern IE的resourceBlocks信令来指示rate match pattern的频域位置。示例性的,symbolsInResourceBlock为14比特的位图,resourceBlocks为275比特的位图。以图5为例,symbolsInResourceBlock取值为00001111111000,代表rate match pattern包括时域符号4至10,resourceBlocks取值为0011110000…000(275比特,…代表全部为比特0),用于指示rate match pattern包括频域的RB2-RB5。
在另一些实施例中,网络设备也可以通过RRC信令中RateMatchPattern IE的控制资源集(controlResourceSet,CORESET)信令来配置一个rate match pattern。具体地,网络设备通过controlResourceSet信令指示一个控制资源集索引(controlResourceSetId),该索引配置了一个对应的CORESET,该CORESET是网络设备通过RRC中ControlResourceSet IE配置的。网络设备通过controlResourceSet信令中的frequencyDomainResources信令为该CORESET配置频域参数,该参数为45比特的位图,每个比特指示6个RB。并且,网络设备通过持续(duration)信令为该CORESET配置时域长度,如7个符号。该CORESET的时域具体起始位置由其对应的搜索空间集(search space set,SSS)来确定。网络设备通过RRC的SearchSpace IE为终端设备配置SSS,在SearchSpace IE中通过controlResourceSetId为该SSS关联一个对应的CORESET。并且,网络设备可以在该SearchSpace IE中通过monitoringSymbolsWithinSlot信令等确定其所配置的SSS在一个时隙内的时域位置,具体地,该monitoringSymbolsWithinSlot信令也指示了一个14比特的位图。终端设备结合ControlResourceSet IE和SearchSpace IE,可以确定该ControlResourceSet IE所配置的CORESET的时频域位置,再进一步根据controlResourceSet信令,从而判断出rate match pattern。
应理解,图5仅示出了一个rate match pattern的资源分布。在相关技术中,网络设备通过RRC信令可以为终端设备配置2个速率匹配图案组(rate match pattern group),每个rate match pattern group可以包含最多8个rate match pattern,每个rate match pattern可以由上述两种方法获得。在rate match pattern group包括多个rate match pattern的情况下,最终预留的区域为多个rate match pattern的并集。
参见图6,图6示出了一个rate match pattern group的资源分布。在图6中,rateMatchPatternGroup1包含2个rate match pattern,分别为rateMatchPattern1和rateMatchPattern2,且该2个rate match pattern在同一个时隙出现。其中,每个大矩形框可以理解为一个时隙,每个斜线填充的小矩形框可以理解为一个rate match pattern,rateMatchPatternGroup1为2个rate match pattern的并集。
发端设备在将数据映射至PDSCH的时频资源时,需要避开这些预留部分。同理,收端设备在接收数据时,也会对这部分数据分别处理。
当终端设备被上述方式配置rate match pattern group时,可以不直接激活该rate match pattern group,而是通过DCI动态地指示该DCI所调度的PDSCH是否开启该rate match pattern group。具体地,一种实现方式为,网络设备通过RRC信令中物理下行链路共享信道配置PDSCH-config IE(或物理下行链路共享信道(physical uplink shared channel,PUSCH)配置(PUSCH-config))中的rateMatchPatternGroup1和rateMatchPatternGroup2信令为终端设备配置2个rate match pattern group,每个group分别包含8个不同的rate match pattern。当网络设备需要指示PDSCH绕开rate match pattern group所指示的预留资源时,可以通过DCI显式指示需要避开的rate match pattern group。例如,DCI中包含2比特的rate matching indicator字段,rate matching indicator字段用于指示该DCI所调度的所有PDSCH绕开的rate match pattern group。其中,‘00’代表该DCI所调度的PDSCH无需绕开任何rate match pattern group,‘10’代表该DCI所调度的PDSCH绕开了rate match pattern group1,‘01’代表该DCI所调度的PDSCH绕开了rate match pattern group2,‘11’代表该DCI所调度的PDSCH绕开了rate match pattern group1和rate match pattern group2的并集预留资源。示例性的,在rate match  group 1如图6所示,且DCI格式1_1的rate matching indicator字段指示了‘01’的情况下,该DCI所指示的PDSCH将不会覆盖rate match pattern group1,即PDSCH将不会映射至斜线填充的资源区域。
当该方式扩展至单DCI调度多PDSCH时,该rate matching indicator字段将对其所指示的所有PDSCH生效。仍以rate match pattern group1为图6所示为例,一个DCI调度了6个PDSCH,该DCI的rate matching indicator字段为‘01’,即这6个PDSCH都要避开按照图6右侧所示的资源。
图7示出了一个DCI调度多个PDSCH的场景。在图7中,终端设备接收到一个DCI,该DCI调度了6个PDSCH,如粗实线方框所示。为了提升PDSCH的容量,每个PDSCH被配置的时频资源都占满了整个时隙,如14个符号和275个RB,但同时为了避免PDSCH对其他终端设备(如图7中的UE2和UE3),终端设备1的DCI(如图7中的UE1)指示了一个rate match pattern group。由于该DCI所指示的rate match pattern group需要对自身调度的所有PDSCH生效,所以,该group内的rate match pattern需要考虑所有终端设备的情况,因此无可避免的造成了资源的浪费。
当一个DCI调度多个PDSCH时,若不扩展DCI中的rate matching indicator字段,则该DCI所指示的所有PDSCH都采用相同的rate match pattern group。此时为保证PDSCH和PDCCH不冲突,需要DCI所指示的rate match pattern group涵盖所有可能发生PDCCH和PDSCH时频资源复用重叠(overlap)的区域,对于PDSCH所在的时间单元(如时隙)没有PDCCH或者CORESET,这种PDSCH也会避开使用rate match pattern group的时频资源,从而导致资源浪费,系统容量下降。
有鉴于此,本申请实施例提供一种通信方法,该方法可以应用于图1的通信系统。在本申请实施例中,将发端设备描述为第一设备,收端设备描述为第二设备。在此作统一说明,后文不再赘述。
在本申请实施例提供的通信方法中,第一设备向第二设备发送控制信息和L个物理共享信道。其中,控制信息指示L个物理共享信道和L个第一资源。L个第一资源中第i个第一资源是L个物理共享信道中第i个物理共享信道被分配的时频资源。控制信息包括第一字段,第一字段包括G个比特,G个比特指示L个速率匹配图案组,G个比特包括多个比特组,多个比特组中每个比特组为最多M个物理共享信道指示速率匹配图案组,M个物理共享信道是L个物理共享信道中的一部分,多个比特组中每个比特组所指示的速率匹配图案组是L个速率匹配图案组中的一部分。M为小于L的正整数,G为大于或等于2的正整数。L个速率匹配图案组中第i个速率匹配图案组指示第i个第二资源,第i个第二资源是控制信息指示的第i个物理共享信道不可占用的时频资源。L个物理共享信道中第i个物理共享信道占用第i个第三资源。在第i个第二资源存在,且第i个第二资源与第i个第一资源重叠的情况下,第i个第三资源是第i个第一资源中除重叠资源之外的资源,重叠资源为第i个第二资源与第i个第一资源重叠的资源。或者,在第i个第二资源不存在的情况下,第i个第三资源是第i个第一资源。L为大于1的正整数,i为小于或等于L的任意正整数。也就是说,控制信息通过不同的比特来为不同的物理共享信道指示速率匹配图案组,避免第一字段指示的速率匹配图案组适用于控制信息调度的所有物理共享信道的情况。也就是说,第一字段的不同比特指示的速率匹配图案组适用于不同的物理共享信道,提高了控制信息指示速率匹配图案组的灵活性。这样一来,在某两个物理共享信道所在的时间单元被其他终端设备占用的资源不同的情况下,控制信息即可为这两个物理共享信道指示不同的速率匹配图案组,从而使得这两个物理共享信道避让不同的资源,以提升物理共享信道容量,减少时频资源的浪费。
应理解,本申请下述实施例中各个设备之间的消息名字或消息中各参数的名字等只是一个示例,具体实现中也可以是其他的名字,本申请实施例对此不作具体限定。
下面,结合图8至图16,对本申请实施例提出的通信方法进行详细介绍。本申请实施例提出的通信方法800包括如下步骤:
S801、第一设备向第二设备发送第一配置信息。相应的,第二设备接收来自第一设备的第一配置信息。
其中,第一配置信息配置P个速率匹配图案组,P为大于1的正整数。
示例性的,P=2。第一配置信息所配置的P个速率匹配图案组,可以记为速率匹配图案组1、速率匹配图案组2,如图9所示。
示例性的,在下行链路传输的情况下,第一配置信息可以是RRC信令中的PDSCH-config IE。在上行链路传输的情况下,第一配置信息可以是RRC信令中的PUSCH-config信息。P个速率匹配图案组的配置过程,可以参见图5或图6的介绍,此处不再赘述。
应理解,随着通信技术的演进,P可能存在其他取值,如P=3,本申请实施例中,以P=2为例,进行介绍,不应理解为对本申请实施例的限定。
对于第一设备而言,第一设备执行S801之后,还执行S802:
S802、第一设备向第二设备发送控制信息。相应的,第二设备接收来自第一设备的控制信息。
其中,控制信息指示以下三项:
第一项,L个物理共享信道。其中,L为大于1的正整数。示例性的,物理共享信道的介绍如下:在下行链路传输情况下,物理共享信道可以是PDSCH。在上行链路传输情况下,物理共享信道可以是PUSCH。上述两种情况(下行链路传输和上行链路传输)下,控制信息可以是DCI。相应的,第一设备是网络设备,第二设备是终端设备。在侧行链路传输情况下,物理共享信道可以是物理侧行链路共享信道(physical sidelink shared channel,PSSCH)。相应的,控制信息可以是侧行链路控制信息(sidelink control information,SCI)。第一设备是发端的终端设备,如终端设备1,第二设备是收端的终端设备,如终端设备2。
容易理解的是,L表示控制信息实际调度的物理共享信道的数量。示例性的,L可以是根据表2的PDSCH mapping type(或S,或L,或K0)的列数确定的。以表2为例,在行索引为1的情况下,该行包括3组PDSCH mapping type,3组S、3组L、3组K0,以分别指示3个PDSCH的时域资源。在行索引为2的情况下,该行包括5组PDSCH mapping type,5组S、5组L、5组K0,以分别指示5个PDSCH的时域资源(表2未示出)。在DCI的TDRA字段指示‘0000’的情况下,该DCI指示了行索引为1的PDSCH资源,即该DCI调度了3个PDSCH。此种情况下,L=3。
表2
容易理解的是,表2中,参数x1,x2,x3,y1,y2,y3,z1,z2,z3为整数。在物理共享信道为PUSCH的情况下,表2中的K0可以替换为K2,单位仍为时隙,表示PDSCH相较于对应的DCI的时间偏移。
第二项,L个第一资源。其中,L为大于1的正整数。示例性的,第一资源的介绍如下:L个第一资源中第i个第一资源是L个物理共享信道中第i个物理共享信道被分配的时频资源,i为小于或等于L的任意正整数。在控制信息是DCI的情况下,DCI包括TDRA字段和FDRA字段。其中,第一资源在时域上的资源可以包括TDRA字段所指示的时域资源,第一资源在频域上的资源可以包括FDRA字段所指示的频域资源。
第三项,L个速率匹配图案组。其中,L为大于1的正整数。
其中,L个速率匹配图案组中第i个速率匹配图案组指示第i个第二资源,第i个第二资源是控制信息指示的第i个物理共享信道不可占用的时频资源,i为小于或等于L的任意正整数。
容易理解的是,在第一设备执行S801的情况下,L个速率匹配图案组中的任意一个速率匹配图案组为P个速率匹配图案组中的最多一个。其中,最多一个,可以理解为:在L个速率匹配图案组中第i个速率匹配图案组为非空的情况下,该速率匹配图案组为P个速率匹配图案组中的一个。反之,在L个速率匹配图案组中第i个速率匹配图案组为空的情况下,该速率匹配图案组不存在。
在本申请实施例中,L个速率匹配图案组中第i个速率匹配图案组为非空,第i个速率匹配图案组存在,第i个第二资源存在,表达的含义相同,三者可以相同替换。类似的,L个速率匹配图案组中第i个速率匹配图案组为空,第i个速率匹配图案组不存在,第i个第二资源不存在,表达的含义相同,三者可以相同替换,在此作统一说明,后文不再赘述。
示例性的,结合图10,在L=6,P=2的情况下,L个速率匹配图案组中的第1个速率匹配图案组,是PDSCH1对应的速率匹配图案组,该速率匹配图案组为空。L个速率匹配图案组中的第2个速率匹配图案组,是PDSCH2对应的速率匹配图案组,该速率匹配图案组为非空,且对应P个速率匹配图案组中的速率匹配图案组2。L个速率匹配图案组中的第3个速率匹配图案组,是PDSCH3对应的速率匹配图案组,该速率匹配图案组为非空,且对应P个速率匹配图案组中的速率匹配图案组 1。L个速率匹配图案组中的第4个速率匹配图案组,是PDSCH4对应的速率匹配图案组,该速率匹配图案组为非空,且对应P个速率匹配图案组中的速率匹配图案组2。L个速率匹配图案组中的第5个速率匹配图案组,是PDSCH5对应的速率匹配图案组,该速率匹配图案组为空。L个速率匹配图案组中的第6个速率匹配图案组,是PDSCH6对应的速率匹配图案组,该速率匹配图案组为空。
其中,控制信息包括第一字段。第一字段包括G个比特,G个比特指示L个速率匹配图案组。具体地,G个比特包括多个比特组,多个比特组中每个比特组为最多M个物理共享信道指示速率匹配图案组。M个物理共享信道是L个物理共享信道中的一部分,多个比特组中每个比特组所指示的速率匹配图案组是L个速率匹配图案组中的一部分。M为小于L的正整数,G为大于或等于2的正整数。多个比特组中每个比特组包括G个比特中的一个或多个比特。
示例性的,控制信息为DCI,第一字段为rate matching indicator字段,G表示rate matching indicator字段的大小(bit width)。
容易理解的是,在本申请实施例中,比特组,也可以替换为其他描述,如比特集、比特段等。下面以比特组为例进行介绍,不应理解为对本申请实施例的限定。
接下来,通过四种方式(下述方式1~方式4)对比特组进行介绍:
在介绍四种方式(下述方式1~方式4)之前,先介绍两种情况(下述情况A和情况B):
情况A,G个比特中从MSB至LSB开始计算,即从G个比特中最左侧的比特至最右侧比特开始计算。此种情况下,G个比特中第1个比特为上述G个比特中最左侧的比特,即MSB;G个比特中第G个比特为上述G个比特中最右侧的比特,即LSB。
情况B,G个比特中从LSB至MSB开始计算,即从G个比特中最右侧的比特至最左侧比特开始计算。此种情况下,G个比特中第1个比特为上述G个比特中最右侧的比特,即LSB;G个比特中第G个比特为上述G个比特中最左侧的比特,即MSB。
再对四种方式(下述方式1~方式4)进行介绍:
方式1,多个比特组中每个比特组包括G个比特中至少两个相邻比特,每个比特组对应的M个物理共享信道是L个物理共享信道中的一个,即M=1。可以理解为,多个比特组中每个比特组为1个物理共享信道指示速率匹配图案组。
下面,将多个比特组中的任意一个比特组,记为第一比特组。以第一比特组为例,进行介绍:
在第一比特组包括G个比特中第2*g-1个比特和第2*g个比特,或者,第一比特组包括G个比特中第2*(X-L+g)-1个比特和第2*(X-L+g)个比特的情况下,第一比特组对应的M个物理共享信道为:L个物理共享信道中第g个物理共享信道。其中,G为大于或等于2L的正整数,g为小于或等于L的任意正整数,X表示控制信息能够调度物理共享信道的最大数量。
在方式1的情况A中,即以G个比特中MSB至LSB开始计算为例:
G个比特中第2*g-1个比特,是指,G个比特中从MSB至LSB开始计算的第2*g-1个比特。G个比特中第2*g个比特,是指,G个比特中从MSB至LSB开始计算的第2*g个比特。G个比特中第2*(X-L+g)-1个比特,是指,G个比特中从MSB至LSB开始计算的第2*(X-L+g)-1个比特。G个比特中第2*(X-L+g)个比特,是指,G个比特中从MSB至LSB开始计算的第2*(X-L+g)个比特。
示例性的,以图11为例,G=14。也就是说,第一字段包括14个比特,比特编号为1~14。在14个比特中,MSB是编号为1的比特位,LSB是编号为14的比特位。
在图11中“情况1”所在方框中,14个比特中MSB至LSB开始计算的前2个比特(即第1个比特和第2个比特,或编号为1的比特和编号为2的比特)指示该控制信息所调度的第1个物理共享信道(如记为PDSCH1)的rate match pattern group。14个比特中MSB至LSB开始计算的第3个比特和第4个比特(或描述为编号为3的比特和编号为4的比特),指示该控制信息所调度的第2个物理共享信道(如记为PDSCH2)的rate match pattern group。其他比特可以此类推,不再赘述。容易理解的是,在控制信息实际指示的物理共享信道个数小于7的情况下,如某次控制信息指示了5个物理共享信道,即L=5,那么,rate matching indicator字段实际有10比特有效,如图11中斜线填充的方框所示。这10比特从MSB开始计数,则从MSB开始计算的第11至14比特(或描述为编号为11至14的比特)将会被第二设备忽略,即不指示任何物理共享信道的rate match pattern group。
在图11中“情况2”所在方框中,14个比特中第5个比特和第6个比特(或描述为编号为5的比 特和编号为6的比特)指示该控制信息所调度的第1个物理共享信道(如记为PDSCH1)的rate match pattern group。14个比特中第7个比特和第8个比特(或描述为编号为7的比特和编号为8的比特)指示该控制信息所调度的第2个物理共享信道(如记为PDSCH2)的rate match pattern group。其他比特可以此类推,不再赘述。容易理解的是,在控制信息实际指示的物理共享信道个数小于7的情况下,如某次控制信息指示了5个物理共享信道,即L=5,那么,rate matching indicator字段实际有10比特有效,如图11中斜线填充的方框所示。这10比特中编号为1至4的比特将会被第二设备忽略,即不指示任何物理共享信道的rate match pattern group。
在方式1的情况B中,即以G个比特中LSB至MSB开始计算为例:
G个比特中第2*g-1个比特,是指,G个比特中从LSB至MSB开始计算的第2*g-1个比特。G个比特中第2*g个比特,是指,G个比特中从LSB至MSB开始计算的第2*g个比特。G个比特中第2*(X-L+g)-1个比特,是指,G个比特中从LSB至MSB开始计算的第2*(X-L+g)-1个比特。G个比特中第2*(X-L+g)个比特,是指,G个比特中从LSB至MSB开始计算的第2*(X-L+g)个比特。
示例性的,G比特中每2个比特开始按序指示不同的物理共享信道的rate match pattern group。例如,G=14,14个比特中LSB至MSB开始计算的前2个比特(即第1个比特和第2个比特)指示控制信息所调度的第1个物理共享信道(如记为PDSCH1)的rate match pattern group。14个比特中LSB至MSB开始计算的第3个比特和第4个比特,指示控制信息所调度的第2个物理共享信道(如记为PDSCH2)的rate match pattern group。其他比特可以此类推,不再赘述。容易理解的是,在控制信息实际指示的物理共享信道个数小于7的情况下,如某次控制信息指示了5个物理共享信道,即L=5,那么,rate matching indicator字段实际有10比特有效。这10比特从LSB开始计数,则从LSB开始计算的第11至14个比特将会被第二设备忽略,即不指示任何物理共享信道的rate match pattern group。
再如,G=14,14个比特中LSB至MSB开始计算的第5个比特和第6个比特指示控制信息所调度的第1个物理共享信道的rate match pattern group。14个比特中LSB至MSB开始计算的第7个比特和第8个比特,指示控制信息所调度的第2个物理共享信道的rate match pattern group。其他比特可以此类推,不再赘述。容易理解的是,在控制信息实际指示的物理共享信道个数小于7的情况下,如某次控制信息指示了5个物理共享信道,即L=5,那么,rate matching indicator字段实际有10比特有效。这10比特从LSB开始计数,则从LSB开始计算的第1至4个比特将会被第二设备忽略,即不指示任何物理共享信道的rate match pattern group。
也就是说,在方式1中,第一字段中每个比特组为1个物理共享信道指示速率匹配图案组,从而使得控制信息灵活地为不同的物理共享信道指示不同的速率匹配图案组。
可选的,在本申请实施例中,参数X的介绍如下:X表示控制信息能够调度物理共享信道的最大数量。在一些实施例中,X表示控制信息实际能够调度物理共享信道的最大数量。例如,控制信息所调度的物理共享信道的数量是根据表1的PDSCH mapping type(或S,或L,或K0)的列数确定的。以表1为例,表1中包括16个行索引,其中,在这些行索引中的任意一个行索引指示的PDSCH的最大数量为7,则相应的,X=7。在另一些实施例中,X表示控制信息能够配置的物理共享信道的最大数量。例如,在相关技术中规定,控制信息(如DCI)最多调度8个物理共享信道。相应的,X=8。此种情况下,即使表1中某一个行索引指示的PDSCH最大数量为7,仍将X设置为8。应理解,X并不代表控制信息所实际指示的物理共享信道的数量。
可选的,在方式1中,参数G的介绍如下:G=2X。其中,X表示控制信息能够调度物理共享信道的最大数量。这样一来,第一字段即可指示控制信息所能够调度的每个物理共享信道的速率匹配图案组。应理解,在方式1中,G可以取大于或等于2X的任意正整数,上述以G=2X为例,进行介绍,不应理解为对本申请实施例的限定。
可选的,在方式1中,以第一比特组包括G个比特中的第2*g-1个比特和第2*g个比特为例,第一比特组可以指示如下四种情况(下述情况1~情况4):
情况1,在G个比特中第2*g-1个比特为第一值,且第2*g个比特为第一值的情况下,第一比特组指示的速率匹配图案组不存在。
示例性的,第一值为0。也就是说,在G个比特中第2*g-1个比特为0,且第2*g个比特为0的 情况下,第一比特组指示的速率匹配图案组不存在。其中,第一比特组指示的速率匹配图案组不存在,也可以理解为,第一比特组指示的速率匹配图案组为空,相应的,第一比特组所指示速率匹配图案组对应的第二资源不存在。第一比特组对应的物理共享信道的实际传输资源不需要除去任何资源预留区域。
情况2,在G个比特中第2*g-1个比特为第二值,且第2*g个比特为第一值的情况下,第一比特组指示的速率匹配图案组为第一速率匹配图案组。其中,第一速率匹配图案组为P个速率匹配图案组中的一个,如rate match pattern group1。P个速率匹配图案组,可以参见S801的介绍,此处不再赘述。
示例性的,第一值为0,第二值为1。也就是说,在G个比特中第2*g-1个比特为1,且第2*g个比特为0的情况下,第一比特组指示的速率匹配图案组为第一速率匹配图案组。第一比特组对应的物理共享信道的实际传输资源需要除去第一速率匹配图案组的资源预留区域。
情况3,在当G个比特中第2*g-1个比特为第一值,且第2*g个比特为第二值的情况下,第一比特组指示的速率匹配图案组为第二速率匹配图案组。其中,第二速率匹配图案组为P个速率匹配图案组中的另一个,如rate match pattern group2。P个速率匹配图案组,可以参见S801的介绍,此处不再赘述。
示例性的,第一值为0,第二值为1。也就是说,在G个比特中第2*g-1个比特为0,且第2*g个比特为1的情况下,第一比特组指示的速率匹配图案组为第二速率匹配图案组。第一比特组对应的物理共享信道的实际传输资源需要除去第二速率匹配图案组的资源预留区域。
情况4,在G个比特中第2*g-1个比特为第二值,且第2*g个比特为第二值的情况下,第一比特组指示的速率匹配图案组为第一速率匹配图案组和第二速率匹配图案组。其中,第一速率匹配图案组为P个速率匹配图案组中的一个,如rate match pattern group1,第二速率匹配图案组为P个速率匹配图案组中的另一个,如rate match pattern group2,第一速率匹配图案组和第二速率匹配图案组不同。
示例性的,第二值为1。也就是说,在G个比特中第2*g-1个比特为1,且第2*g个比特为1的情况下,第一比特组指示的速率匹配图案组为第一速率匹配图案组和第二速率匹配图案组。第一比特组对应的物理共享信道的实际传输资源需要除去第一速率匹配图案组和第二速率匹配图案组的资源预留区域。
应理解,上述方式1的情况1~情况4中,以第一值是0,第二值是1为例,进行介绍。当然,也可以替换为,第一值是1,第二值是0,本申请实施例对此不作限定。上述情况1~情况4中,G个比特中第2*g-1个比特,可以替换为,G个比特中第2*(X-L+g)-1个比特;并且,G个比特中第2*g个比特,可以替换为,G个比特中第2*(X-L+g)个比特。也就是说,第一比特组包括G个比特中第2*(X-L+g)-1个比特和第2*(X-L+g)个比特,方式1的情况1~情况4的描述,也同样适用,此处不再一一赘述。
方式2,多个比特组中每个比特组包括G个比特中的一个比特。每个比特组对应的M个物理共享信道是L个物理共享信道中的一个,即M=1。可以理解为,多个比特组中每个比特组为1个物理共享信道指示速率匹配图案组。
下面,将多个比特组中的任意一个比特组,记为第一比特组。以第一比特组为例,进行介绍:
在第一比特组包括G个比特中第g个比特,或者,第一比特组包括G个比特中第g+G-L个比特的情况下,第一比特组对应的M个物理共享信道为:L个物理共享信道中第g个物理共享信道。其中,g为小于或等于L的任意正整数。
在方式2的情况A中,即以G个比特中MSB至LSB开始计算为例:G个比特中第g个比特,是指,G个比特中从MSB至LSB开始计算的第g个比特。G个比特中第g+G-L个比特,是指,G个比特中从MSB至LSB开始计算的第g+G-L个比特。
示例性的,以图12为例,G=7。也就是说,第一字段包括7个比特,比特编号为1~7。在7个比特中,MSB是编号为1的比特位,LSB是编号为7的比特位。7个比特中MSB至LSB开始计算的第1个比特(或编号为1的比特)指示该控制信息所调度的第1个物理共享信道(如记为PDSCH1)的rate match pattern group。7个比特中MSB至LSB开始计算的第2个比特(或描述为编号为2的比特),指示该控制信息所调度的第2个物理共享信道(如记为PDSCH2)的rate match pattern group。 其他比特可以此类推,不再赘述。容易理解的是,在控制信息实际指示的物理共享信道个数小于7的情况下,如某次控制信息指示了5个物理共享信道,即L=5,那么,rate matching indicator字段实际有5比特有效,如图12中斜线填充的方框所示。这5比特从MSB开始计数,则从MSB开始计算的第6至7比特(或描述为编号为6至7的比特)将被第二设备忽略,即不为任何物理共享信道指示rate match pattern group。
或者,仍以图12为例,7个比特中第3个比特(或描述为编号为3的比特)指示该控制信息所调度的第1个物理共享信道(如记为PDSCH1)的rate match pattern group。7个比特中第4个比特(或描述为编号为4的比特)指示该控制信息所调度的第2个物理共享信道(如记为PDSCH2)的rate match pattern group。其他比特可以此类推,不再赘述。容易理解的是,在控制信息实际指示的物理共享信道个数小于7的情况下,如某次控制信息指示了5个物理共享信道,即L=5,那么,rate matching indicator字段实际有5比特有效,如图12中斜线填充的方框所示。编号为1至2的比特将会被第二设备忽略,即不为任何PDSCH指示rate match pattern group。
在方式2的情况B中,即以G个比特中LSB至MSB开始计算为例:G个比特中第g个比特,是指,G个比特中从LSB至MSB开始计算的第g个比特。G个比特中第g+G-L个比特,是指,G个比特中从LSB至MSB开始计算的第g+G-L个比特。
示例性的,G比特中每1个比特开始按序指示不同的物理共享信道的rate match pattern group。例如,G=7,7个比特中LSB至MSB开始计算的第1个比特指示控制信息所调度的第1个物理共享信道(如记为PDSCH1)的rate match pattern group。7个比特中LSB至MSB开始计算的第2个比特,指示控制信息所调度的第2个物理共享信道(如记为PDSCH2)的rate match pattern group。其他比特可以此类推,不再赘述。容易理解的是,在控制信息实际指示的物理共享信道个数小于7的情况下,如某次控制信息指示了5个物理共享信道,即L=5,那么,rate matching indicator字段实际有5比特有效。这5比特从LSB开始计数,则从LSB开始计算的第6至7个比特将会被第二设备忽略,即不指示任何物理共享信道的rate match pattern group。
再如,G=7,7个比特中LSB至MSB开始计算的第3个比特指示控制信息所调度的第1个物理共享信道的rate match pattern group。7个比特中LSB至MSB开始计算的第4个比特,指示控制信息所调度的第2个物理共享信道的rate match pattern group。其他比特可以此类推,不再赘述。容易理解的是,在控制信息实际指示的物理共享信道个数小于7的情况下,如某次控制信息指示了5个物理共享信道,即L=5,那么,rate matching indicator字段实际有5比特有效。这5比特从LSB开始计数,则从LSB开始计算的第1至2个比特将会被第二设备忽略,即不指示任何物理共享信道的rate match pattern group。
也就是说,在方式2中,第一字段中每个比特组(或描述为每个比特)为1个物理共享信道指示速率匹配图案组,从而使得控制信息能够灵活地为不同的物理共享信道指示速率匹配图案组。
可选的,在方式2中,参数G的介绍如下:G=X。其中,X表示控制信息能够调度物理共享信道的最大数量。这样一来,第一字段的G个比特即可指示控制信息所能够调度的每个物理共享信道。应理解,在方式2中,G可以取大于或等于X的任意正整数,上述以G=X为例,进行介绍,不应理解为对本申请实施例的限定。
可选的,在方式2中,G的大小也可以由第一设备来配置。例如,参见图16,第一设备执行S802之前,还执行S804:
S804、第一设备向第二设备发送第三配置信息。相应的,第二设备接收来自第一设备的第三配置信息。
其中,第三配置信息用于配置G的大小。示例性的,第三配置信息可以承载于RRC信令,以使第二设备获知G的大小。
可选的,在方式2中,以第一比特组为例,第一比特组包括G个比特中的第g个比特,作为一种可能的实现方式,第一比特组指示如下两种情况(下述情况1~情况2):
情况1,在G个比特中第g个比特为第一值的情况下,第一比特组指示的速率匹配图案组不存在。
情况2,在G个比特中第g个比特为第二值的情况下,第一比特组指示的速率匹配图案组为P个 速率匹配图案组中的一个,如rate match pattern group1,或者rate match pattern group2。P个速率匹配图案组,可以参见S801的介绍,此处不再赘述。
例如,以第一值为0,第二值为1为例:
在G个比特中第g个比特为0的情况下,第一比特组指示的速率匹配图案组不存在。可以理解为,第一比特组对应的物理共享信道的实际传输资源不需要除去任何资源预留区域。
在G个比特中第g个比特为1的情况下,第一比特组指示的速率匹配图案组为rate match pattern group1。可以理解为,第一比特组对应的物理共享信道的实际传输资源需要除去rate match pattern group1的资源预留区域。或者,在G个比特中第g个比特为1的情况下,第一比特组指示的速率匹配图案组为rate match pattern group2。可以理解为,第一比特组对应的物理共享信道的实际传输资源需要除去rate match pattern group2的资源预留区域。
再如,以第一值为1,第二值为0为例:
在G个比特中第g个比特为1的情况下,第一比特组指示的速率匹配图案组不存在。可以理解为,第一比特组对应的物理共享信道的实际传输资源不需要除去任何资源预留区域。
在G个比特中第g个比特为0的情况下,第一比特组指示的速率匹配图案组为rate match pattern group1。可以理解为,第一比特组对应的物理共享信道的实际传输资源需要除去rate match pattern group1的资源预留区域。或者,在G个比特中第g个比特为0的情况下,第一比特组指示的速率匹配图案组为rate match pattern group2。可以理解为,第一比特组对应的物理共享信道的实际传输资源需要除去rate match pattern group2的资源预留区域。
可选的,在方式2中,以第一比特组为例,第一比特组包括G个比特中的第g个比特,作为另一种可能的实现方式,第一比特组指示如下两种情况(下述情况3~情况4):
情况3,在当G个比特中第g个比特为第一值的情况下,第一比特组指示的速率匹配图案组为第一速率匹配图案组。其中,第一速率匹配图案组为P个速率匹配图案组中的一个,如rate match pattern group1。P个速率匹配图案组,可以参见S801的介绍,此处不再赘述。
情况4,在G个比特中第g个比特为第二值的情况下,第一比特组指示的速率匹配图案组为第二速率匹配图案组。其中,第二速率匹配图案组为P个速率匹配图案组中的另一个,如rate match pattern group2。
例如,以第一值为0,第二值为1为例:
在G个比特中第g个比特为0的情况下,第一比特组指示的速率匹配图案组为rate match pattern group1。可以理解为,第一比特组对应的物理共享信道的实际传输资源需要除去rate match pattern group1的资源预留区域。
在G个比特中第g个比特为1的情况下,第一比特组指示的速率匹配图案组为rate match pattern group2。可以理解为,第一比特组对应的物理共享信道的实际传输资源需要除去rate match pattern group2的资源预留区域。
再如,以第一值为1,第二值为0为例:
在G个比特中第g个比特为1的情况下,第一比特组指示的速率匹配图案组为rate match pattern group1。可以理解为,第一比特组对应的物理共享信道的实际传输资源需要除去rate match pattern group1的资源预留区域。
在G个比特中第g个比特为0的情况下,第一比特组指示的速率匹配图案组为rate match pattern group2。可以理解为,第一比特组对应的物理共享信道的实际传输资源需要除去rate match pattern group2的资源预留区域。
应理解,上述方式2的情况1~情况4中,G个比特中第g个比特,可以替换为,G个比特中第g+G-L个比特。也就是说,第一比特组包括G个比特中第g+G-L个比特,方式2的情况1~情况4的描述,也同样适用,此处不再一一赘述。
也就是说,在方式2中,第一字段中每个比特组(或描述为每个比特)为1个物理共享信道指示速率匹配图案组,既能够在一定程度上灵活地为不同的物理共享信道指示速率匹配图案组,又能够降低信令开销。
方式3,多个比特组中每个比特组包括G个比特中的一个比特。其中,第一字段的大小G为固 定值。每个比特组对应L个物理共享信道中最多M个物理共享信道,M>1,且M<L。可以理解为,多个比特组中每个比特组为最多M个物理共享信道指示速率匹配图案组。
在方式3的一些实施例中,参数G的介绍如下:G的大小为一个默认的数值。例如,在物理共享信道为PDSCH的情况下,默认G=K,如K=8。或者,G的大小取决于X。例如,在X>2,且X<=4的情况下,G=2。在X>4,且X<=6的情况下,G=3。在X>6的情况下,G=4。其中,X表示控制信息能够调度物理共享信道的最大数量,具体参见方式1的介绍。或者,G=X,或者,G的大小由第一设备来配置,详见方式2的介绍,此处不再赘述。
下面,将多个比特组中的任意一个比特组,记为第一比特组。以第一比特组为例,进行介绍:
先定义如下参数:
参数1,N=min(G,L)。其中,N表示G个比特中实际用来指示速率匹配图案组的比特数量,min(·)表示取最小值运算符。示例性的,在G>L的情况下,N=L;在G=L的情况下,N=L;在G<L的情况下,N=G。
参数2,N1为L/N的余数。其中,/表示除法运算符。示例性的,在N=L的情况下,N1=0;在N=G的情况下,N1为正整数。
参数3,V1=ceil(L/N)。其中,ceil(·)表示向上取整运算符。
参数4,V2=floor(L/N)。其中,floor(·)表示向下取整运算符。
再针对N1为正整数的情况,进行说明:
在一些实施例中,当g为小于或等于N1的任意正整数时,在第一比特组包括G个比特中第g个比特的情况下,第一比特组对应的M个物理共享信道为:L个物理共享信道中第(g-1)*V1+1个至第g*V1个物理共享信道。也就是说,针对G个比特中前N1个比特,前N1个比特中的每个比特为V1个物理共享信道指示速率匹配图案组。并且,前N1个比特中的不同比特对应的物理共享信道不同。
当g为大于N1且小于或等于N任意正整数时,在第一比特组包括G个比特中第g个比特的情况下,第一比特组对应的M个物理共享信道为:L个物理共享信道中第N1*V1+(g-N1-1)*V2+1至第N1*V1+(g-N1-1)*V2+V2个物理共享信道。也就是说,针对G个比特中第N1个比特之后的每个比特,为V2个物理共享信道指示速率匹配图案组。
在方式3的情况A中,即以G个比特中MSB至LSB开始计算为例:G个比特中第g个比特,是指,G个比特中从MSB至LSB开始计算的第g个比特。
例如,参见图13,以G=4,L=7,N=4为例,N1为7/4的余数,即N1=3,V1=ceil(7/4)=2,V2=floor(7/4)=1。相应的,rate matching indicator字段中MSB至LSB开始计算的第1个比特(如图13中编号为1的比特),用于指示第1个和第2个PDSCH(如图13中记为PDSCH1和PDSCH2)的rate match pattern group;rate matching indicator字段中MSB至LSB开始计算的第2个比特(如图13中编号为2的比特),用于指示第3个和第4个PDSCH(如图13中记为PDSCH3和PDSCH4)的rate match pattern group;rate matching indicator字段中MSB至LSB开始计算的第3个比特(如图13中编号为3的比特),用于指示第5个和第6个PDSCH(如图13中记为PDSCH5和PDSCH6)的rate match pattern group;rate matching indicator字段中MSB至LSB开始计算的第4个比特(如图13中编号为4的比特),用于指示第7个PDSCH(如图13中记为PDSCH7)的rate match pattern group。
再如,参见图14,以G=4,L=6,N=4为例,N1为6/4的余数,即N1=2,V1=ceil(6/4)=2,V2=floor(6/4)=1。相应的,rate matching indicator字段中MSB至LSB开始计算的第1个比特(如图14中编号为1的比特),用于指示第1个和第2个PDSCH(如图14中记为PDSCH1和PDSCH2)的rate match pattern group;rate matching indicator字段中MSB至LSB开始计算的第2个比特(如图14中编号为2的比特),用于指示第3个和第4个PDSCH(如图14中记为PDSCH3和PDSCH4)的rate match pattern group;rate matching indicator字段中MSB至LSB开始计算的第3个比特(如图14中编号为3的比特),用于指示第5个PDSCH(如图14中记为PDSCH5)的rate match pattern group;rate matching indicator字段中MSB至LSB开始计算的第4个比特(如图14中编号为4的比特),用于指示第6个PDSCH(如图14中记为PDSCH6)的rate match pattern group。
又如,参见图15,以N=3,L=3为例,N1为3/4的余数,即N1=3,V1=ceil(3/4)=1,V2=floor(3/4)=0。相应的,rate matching indicator字段中MSB至LSB开始计算的第1个比特(如图15中编号为1的 比特),用于指示第1个PDSCH(如图15中记为PDSCH1)的rate match pattern group;rate matching indicator字段中MSB至LSB开始计算的第2个比特(如图15中编号为2的比特),用于指示第2个PDSCH(如图15中记为PDSCH2)的rate match pattern group;rate matching indicator字段中MSB至LSB开始计算的第3个比特(如图15中编号为3的比特),用于指示第3个PDSCH(如图15中记为PDSCH3)的rate match pattern group。
在方式3的情况B中,即以G个比特中LSB至MSB开始计算为例:G个比特中第g个比特,是指,G个比特中从LSB至MSB开始计算的第g个比特(图13至图15未示出)。
在另一些实施例中,当g为小于或等于N1的任意正整数时,在第一比特组包括G个比特中第g+G-N个比特的情况下,第一比特组对应的M个物理共享信道为:L个物理共享信道中第(g-1)*V1+1个至第g*V1个物理共享信道。也就是说,针对G个比特中从第G-N个比特开始的N1个比特,这N1个比特中的每个比特为V1个物理共享信道指示速率匹配图案组。并且,这N1个比特中的不同比特对应的物理共享信道不同。
当g为大于N1且小于或等于N任意正整数时,在第一比特组包括G个比特中第g+G-N个比特的情况下,第一比特组对应的M个物理共享信道为:L个物理共享信道中第N1*V1+(g-N1-1)*V2+1至第N1*V1+(g-N1-1)*V2+V2个物理共享信道。也就是说,针对G个比特中第G-N+N1个比特之后的每个比特,为V2个物理共享信道指示速率匹配图案组。
在方式3的情况A中,即以G个比特中MSB至LSB开始计算为例:G个比特中第g+G-N个比特,是指,G个比特中从MSB至LSB开始计算的第g+G-N个比特。
在方式3的情况B中,即以G个比特中LSB至MSB开始计算为例:G个比特中第g+G-N个比特,是指,G个比特中从LSB至MSB开始计算的第g+G-N个比特。
在方式3的情况B中,即以G个比特中LSB至MSB开始计算为例:
G比特中每1个比特开始按序指示最多M个物理共享信道的rate match pattern group。例如,以N=4,L=7为例,N1为7/4的余数,即N1=3,V1=ceil(7/4)=2,V2=floor(7/4)=1。相应的,rate matching indicator字段中LSB至MSB开始计算的第1个比特,用于指示第1个和第2个PDSCH的rate match pattern group;rate matching indicator字段中LSB至MSB开始计算的第2个比特,用于指示第3个和第4个PDSCH的rate match pattern group;rate matching indicator字段中LSB至MSB开始计算的第3个比特,用于指示第5个和第6个PDSCH的rate match pattern group;rate matching indicator字段中LSB至MSB开始计算的第4个比特,用于指示第7个PDSCH的rate match pattern group。
容易理解的是,在方式3中,在N1=0的情况下,V1=V2=1。也就是说,G个比特中一个比特为一个物理共享信道指示速率匹配图案组,具体可以参见方式2的介绍,此处不再赘述。
也就是说,在方式3中,第一字段中每个比特组(或描述为每个比特)为多个物理共享信道指示速率匹配图案组,既能够在一定程度上灵活地为不同的物理共享信道指示速率匹配图案组,又能够降低信令开销。
在方式3中,多个比特组中每个比特组包括G个比特中的一个比特。每个比特组的指示情况,可以参见方式2中情况1~情况4的介绍。在方式3中,仍以第一比特组为例,第一比特组所指示的情况,适用于第一比特组对应的最多M个物理共享信道中的每个信道。例如,在第一比特组指示的速率匹配图案组不存在的情况下,第一比特组对应M个物理共享信道中每个信道的速率匹配图案组不存在。在第一比特组指示的速率匹配图案组为第一速率匹配图案组的情况下,第一比特组对应M个物理共享信道中每个信道的速率匹配图案组为第一速率匹配图案组。其他情况可以此类推,不再赘述。
方式4,多个比特组中每个比特组包括G个比特中的一个比特。每个比特组对应L个物理共享信道中最多M个物理共享信道,M>1,且M<L。可以理解为,多个比特组中每个比特组为最多M个物理共享信道指示速率匹配图案组。其中,M为固定值。
可选的,在方式4中,关于参数M的介绍如下:
在一些实施例中,M的大小由第一设备来配置。例如,参见图16,第一设备执行S802之前,还执行S805:
S805、第一设备向第二设备发送第二配置信息。相应的,第二设备接收来自第一设备的第二配置 信息。
其中,第二配置信息用于配置M的大小,M为小于或等于X的正整数。
示例性的,在第一设备为网络设备,第二设备为终端设备的情况下,第二配置信息可以是RRC信令的PDSCH-config中的配置信息,如rateMatchPatternSubgroup-r18信令,用于指示M的取值。也就是说,M的大小是网络设备通过RRC信令半静态配置的。
在另一些实施例中,M是预配置的。示例性的,M的大小取决于X。例如,在X>2,且X<=4的情况下,M=2。在X>4,且X<=6的情况下,M=3。在X>6的情况下,M=4。其中,X表示控制信息能够调度物理共享信道的最大数量,具体可以参见方式1的介绍,此处不再赘述。
可选的,在方式4中,关于参数G的介绍如下:G的大小是根据X和M确定的,如G=ceil(X/M)。也就是说,当X和M的取值确定后,即可通过ceil(X/M)来获得G的大小,从而获知第一字段(如rate matching indicator字段)的大小。
示例性的,在X=7,M=2的情况下,G=ceil(X/M)=4,即第一字段(如rate matching indicator字段)占用4比特。
下面,将多个比特组中的任意一个比特组,记为第一比特组。以第一比特组为例,进行介绍:
在第一比特组包括G个比特中第g个比特,或者,第一比特组包括G个比特中第g+G-ceil(L/M)个比特的情况下,第一比特组对应的M个物理共享信道为:L个物理共享信道中第(g-1)*M+1个至第g*M个物理共享信道。其中,g为小于floor(L/M)的正整数,ceil(·)表示向上取整运算符,floor(·)表示向下取整运算符,/表示除法运算符。
在方式4的情况A中,即以G个比特中MSB至LSB开始计算为例:G个比特中第g个比特,是指,G个比特中从MSB至LSB开始计算的第g个比特。G个比特中第g+G-ceil(L/M)个比特,是指,G个比特中从MSB至LSB开始计算的第g+G-ceil(L/M)个比特。
例如,以X=7,M=2,G=4为例,在控制信息实际调度了4个PDSCH的情况下,rate matching indicator字段中从MSB至LSB开始计算的第1个比特,用于指示第1个和第2个PDSCH的rate match pattern group;rate matching indicator字段中从MSB至LSB开始计算的第2个比特,用于指示第3个和第4个PDSCH的rate match pattern group。
当G*M>L时,在第一比特组包括G个比特中第g个比特,或者,第一比特组包括G个比特中第g+G-ceil(L/M)个比特的情况下,第一比特组对应的M个物理共享信道为:L个物理共享信道中第(g-1)*M+1个至第g*M个物理共享信道。在第一比特组包括G个比特中第ceil(L/M)个比特,或者,第一比特组包括G个比特中第G个比特的情况下,第一比特组对应的M个物理共享信道为:L个物理共享信道中第(ceil(L/M)-1)*M+1个至第L个物理共享信道。其中,ceil(·)表示向上取整运算符,/表示除法运算符。
例如,以X=7,M=2,G=4为例,在控制信息实际调度了5(即L=5)个PDSCH的情况下,rate matching indicator字段中从MSB至LSB开始计算的第1个比特,用于指示第1个和第2个PDSCH的rate match pattern group;rate matching indicator字段中从MSB至LSB开始计算的第2个比特,用于指示第3个和第4个PDSCH的rate match pattern group;rate matching indicator字段的第3个比特,用于指示第5个PDSCH的rate match pattern group。
再如,以X=7,M=2,G=4为例,在控制信息实际调度了3(即L=3)个PDSCH的情况下,rate matching indicator字段中从MSB至LSB开始计算的第1个比特,用于指示第1个和第2个PDSCH的rate match pattern group;rate matching indicator字段中从MSB至LSB开始计算的第2个比特,用于指示第3个PDSCH的rate match pattern group。
也就是说,当G*M>L时,针对G个比特所包括的多个比特组中,最后一个比特组之前的每个比特组,为M个物理共享信道指示速率匹配图案组。最后一个比特组对应的物理共享信道数量小于M。
在方式4的情况B中,即以G个比特中LSB至MSB开始计算为例:G个比特中第g个比特,是指,G个比特中从LSB至MSB开始计算的第g个比特。G个比特中第g+G-ceil(L/M)个比特,是指,G个比特中从LSB至MSB开始计算的第g+G-ceil(L/M)个比特。
示例性的,G比特中每1个比特开始按序指示最多M个物理共享信道的rate match pattern group。例如,以X=7,M=2,G=4为例,在控制信息实际调度了5个PDSCH的情况下,rate matching indicator 字段中LSB至MSB开始计算的第1个比特,用于指示第1个和第2个PDSCH的rate match pattern group;rate matching indicator字段中LSB至MSB开始计算的第2个比特,用于指示第3个和第4个PDSCH的rate match pattern group;rate matching indicator字段中LSB至MSB开始计算的第3个比特,用于指示第5个PDSCH的rate match pattern group。
如此,在方式4中,第一字段中每个比特组(或描述为每个比特)为多个物理共享信道指示速率匹配图案组,既能够在一定程度上灵活地为不同的物理共享信道指示速率匹配图案组,又能够降低信令开销。
在方式4中,多个比特组中每个比特组包括G个比特中的一个比特。每个比特组的指示情况,可以参见方式2中情况1~情况4的介绍。在方式4中,仍以第一比特组为例,第一比特组所指示的情况,适用于第一比特组对应的最多M个物理共享信道中的每个信道。例如,在第一比特组指示的速率匹配图案组不存在的情况下,第一比特组对应M个物理共享信道中每个信道的速率匹配图案组不存在。在第一比特组指示的速率匹配图案组为第一速率匹配图案组的情况下,第一比特组对应M个物理共享信道中每个信道的速率匹配图案组为第一速率匹配图案组。其他情况可以此类推,不再赘述。
应理解,在方式2~4中,多个比特组中每个比特组包括G个比特中的一个比特,此种情况下,方式2~4中所涉及的比特组可以替换为比特,方式2~4中所涉及的第一比特组可以替换为第一比特。
对于第一设备而言,在下行链路传输或侧行链路传输情况下,第一设备执行S802之后,执行S803a。在上行链路传输情况下,第一设备执行S802之后,执行S803b。其中,S803a和S803b的介绍如下:
S803a、第一设备向第二设备发送L个物理共享信道。相应的,第二设备根据控制信息,接收来自第一设备的L个物理共享信道。
其中,L个物理共享信道中第i个物理共享信道占用第i个第三资源,第i个第三资源是第i个第一资源中排除第i个第二资源之后的剩余资源,i为小于或等于L的任意正整数。
示例性的,在第i个第二资源存在,且第i个第二资源与第i个第一资源重叠的情况下,第i个第三资源是第i个第一资源中除重叠资源之外的资源。其中,重叠资源为第i个第二资源与第i个第一资源重叠的资源。参见图10,以i=2为例,第2个第二资源是第二个D时隙(PDSCH2对应的时隙)中斜线填充区域的资源,第2个第三资源是第二个D时隙(PDSCH2对应的时隙)中无斜线填充区域的资源。
示例性的,在第i个第二资源不存在的情况下,第i个第三资源是第i个第一资源。参见图10,以i=1为例,第1个第二资源不存在,第1个第三资源是第一个D时隙(PDSCH1对应的时隙)中无斜线填充区域的资源,如时域上占用14个符号,频域上占用275个RB。
容易理解的是,在第i个第二资源存在,且第i个第二资源与第i个第一资源不重叠的情况下,第i个第三资源是第i个第一资源,图10未示出。
S803b、第二设备根据控制信息,向第一设备发送L个物理共享信道。相应的,第一设备接收来自第二设备的L个物理共享信道。
其中,L个物理共享信道中每个物理共享信道占用的第三资源,可以参见S803a的介绍,此处不再赘述。
在一些实施例中,参见图16,第一设备在执行S802之前,还执行如下步骤:
S806、第一设备向第二设备发送第四配置信息。相应的,第二设备接收来自第一设备的第四配置信息。
其中,第四配置信息用于配置X的大小,X表示控制信息能够调度物理共享信道的最大数量,X为大于或等于L的正整数。
示例性的,第四配置信息可以承载于RRC信令,以使第二设备获知X的大小。
应理解,本申请实施例中主要以PDSCH为例,进行示例性介绍,不应理解为对本申请实施例的限定。在物理共享信道为PDSCH,且控制信息为DCI的情况下,DCI格式可以为DCI1_1;在物理共享信道为PSSCH,且控制信息为DCI的情况下,DCI格式可以为DCI0_1,具体可以参见相关技术,此处不再赘述。
上述主要从各个网元之间交互的角度对本申请实施例提供的方案进行了介绍。相应的,本申请实施例还提供了通信装置,该通信装置可以为上述方法实施例中的网元,或者包含上述网元的装置,或者为可用于网元的部件。可以理解的是,该通信装置为了实现上述功能,其包含了执行各个功能相应的硬件结构和/或软件模块。本领域技术人员应该很容易意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,本申请能够以硬件或硬件和计算机软件的结合形式来实现。某个功能究竟以硬件还是计算机软件驱动硬件的方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
示例性地,图17为本申请实施例提供的通信装置的结构示意图。该通信装置可以是第一设备,也可以是可设置于第一设备的芯片(系统)或其他部件或组件。或者,该通信装置可以是第二设备,也可以是可设置于第二设备的芯片(系统)或其他部件或组件。
如图17所示,通信装置1700可以包括处理器1701。可选地,通信装置1700还可以包括存储器1702和/或收发器1703。其中,处理器1701与存储器1702和收发器1703耦合,如可以通过通信总线连接。
下面结合图17对通信装置1700的各个构成部件进行具体的介绍:
其中,处理器1701是通信装置1700的控制中心,可以是一个处理器,也可以是多个处理元件的统称。例如,处理器1701是一个或多个中央处理器(central processing unit,CPU),也可以是特定集成电路(application specific integrated circuit,ASIC),或者是被配置成实施本申请实施例的一个或多个集成电路,例如:一个或多个数字信号处理器(digital signal processor,DSP),或,一个或者多个现场可编程门阵列(field programmable gate array,FPGA)。
可选地,处理器1701可以通过运行或执行存储在存储器1702内的软件程序,以及调用存储在存储器1702内的数据,执行通信装置1700的各种功能。
在具体的实现中,作为一种实施例,处理器1701可以包括一个或多个CPU,例如图17中所示出的CPU0和CPU1。
在具体实现中,作为一种实施例,通信装置1700也可以包括多个处理器,例如图17中所示的处理器1701和处理器1704。这些处理器中的每一个可以是一个单核处理器(single-CPU),也可以是一个多核处理器(multi-CPU)。这里的处理器可以指一个或多个设备、电路、和/或用于处理数据(例如计算机程序指令)的处理核。
其中,所述存储器1702用于存储执行本申请方案的软件程序,并由处理器1701来控制执行,具体实现方式可以参考上述方法实施例,此处不再赘述。
可选地,存储器1702可以是只读存储器(read-only memory,ROM)或可存储静态信息和指令的其他类型的静态存储设备,随机存取存储器(random access memory,RAM)或者可存储信息和指令的其他类型的动态存储设备,也可以是电可擦可编程只读存储器(electrically erasable programmable read-only memory,EEPROM)、只读光盘(compact disc read-only memory,CD-ROM)或其他光盘存储、光碟存储(包括压缩光碟、激光碟、光碟、数字通用光碟、蓝光光碟等)、磁盘存储介质或者其他磁存储设备、或者能够用于携带或存储具有指令或数据结构形式的期望的程序代码并能够由计算机存取的任何其他介质,但不限于此。存储器1702可以和处理器1701集成在一起,也可以独立存在,并通过通信装置1700的接口电路(图17中未示出)与处理器1701耦合,本申请实施例对此不作具体限定。
收发器1703,用于与其他通信装置之间的通信。例如,通信装置1700为第一设备,收发器1703可以用于与第二设备通信。又例如,通信装置1700为第二设备,收发器1703可以用于与第一设备通信。
可选地,收发器1703可以包括接收器和发送器(图17中未单独示出)。其中,接收器用于实现接收功能,发送器用于实现发送功能。
可选地,收发器1703可以和处理器1701集成在一起,也可以独立存在,并通过通信装置1700的接口电路(图17中未示出)与处理器1701耦合,本申请实施例对此不作具体限定。
容易理解的是,图17中示出的通信装置1700的结构并不构成对该通信装置的限定,实际的通 信装置可以包括比图示更多或更少的部件,或者组合某些部件,或者不同的部件布置。
此外,通信装置1700的技术效果可以参考上述方法实施例所述的方法的技术效果,此处不再赘述。
应理解,在本申请实施例中的处理器可以是中央处理单元(central processing unit,CPU),该处理器还可以是其他通用处理器、数字信号处理器(digital signal processor,DSP)、专用集成电路(application specific integrated circuit,ASIC)、现成可编程门阵列(field programmable gate array,FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件等。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。
还应理解,本申请实施例中的存储器可以是易失性存储器或非易失性存储器,或可包括易失性和非易失性存储器两者。其中,非易失性存储器可以是只读存储器(read-only memory,ROM)、可编程只读存储器(programmable ROM,PROM)、可擦除可编程只读存储器(erasable PROM,EPROM)、电可擦除可编程只读存储器(electrically EPROM,EEPROM)或闪存。易失性存储器可以是随机存取存储器(random access memory,RAM),其用作外部高速缓存。通过示例性但不是限制性说明,许多形式的随机存取存储器(random access memory,RAM)可用,例如静态随机存取存储器(static RAM,SRAM)、动态随机存取存储器(DRAM)、同步动态随机存取存储器(synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(double data rate SDRAM,DDR SDRAM)、增强型同步动态随机存取存储器(enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(synchlink DRAM,SLDRAM)和直接内存总线随机存取存储器(direct rambus RAM,DR RAM)。
可选的,本申请实施例还提供一种携带计算机指令的计算机程序产品,当该计算机指令在计算机上运行时,使得计算机执行上述实施例所介绍的方法。
可选的,本申请实施例还提供一种计算机可读存储介质,所述计算机可读存储介质存储计算机指令,当该计算机指令在计算机上运行时,使得计算机执行上述实施例所介绍的方法。
可选的,本申请实施例还提供一种芯片,包括:处理电路和收发电路,处理电路和收发电路用于实现上述实施例所介绍的方法。其中,处理电路用于执行相应方法中的处理动作,收发电路用于执行相应方法中的接收/发送的动作。
上述实施例,可以全部或部分地通过软件、硬件(如电路)、固件或其他任意组合来实现。当使用软件实现时,上述实施例可以全部或部分地以计算机程序产品的形式实现。所述计算机程序产品包括一个或多个计算机指令或计算机程序。在计算机上加载或执行所述计算机指令或计算机程序时,全部或部分地产生按照本申请实施例所述的流程或功能。所述计算机可以为通用计算机、专用计算机、计算机网络、或者其他可编程装置。所述计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,所述计算机指令可以从一个网站站点、计算机、服务器或数据中心通过有线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。所述计算机可读存储介质可以是计算机能够存取的任何可用介质或者是包含一个或多个可用介质集合的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质(例如,软盘、硬盘、磁带)、光介质(例如,DVD)、或者半导体介质。半导体介质可以是固态硬盘。
应理解,本文中术语“和/或”,仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况,其中A,B可以是单数或者复数。另外,本文中字符“/”,一般表示前后关联对象是一种“或”的关系,但也可能表示的是一种“和/或”的关系,具体可参考前后文进行理解。
本申请中,“至少一个”是指一个或者多个,“多个”是指两个或两个以上。“以下至少一项(个)”或其类似表达,是指的这些项中的任意组合,包括单项(个)或复数项(个)的任意组合。例如,a,b,或c中的至少一项(个),可以表示:a,b,c,a-b,a-c,b-c,或a-b-c,其中a,b,c可以是单个,也可以是多个。
应理解,在本申请的各种实施例中,上述各过程的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定,而不应对本申请实施例的实施过程构成任何限定。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤, 能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
所述功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者通信设备等)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(read-only memory,ROM)、随机存取存储器(random access memory,RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以所述权利要求的保护范围为准。

Claims (45)

  1. 一种通信方法,其特征在于,包括:
    第一设备向第二设备发送控制信息和L个物理共享信道;
    其中,所述控制信息指示所述L个物理共享信道和L个第一资源;所述L个第一资源中第i个第一资源是所述L个物理共享信道中第i个物理共享信道被分配的时频资源;
    所述控制信息包括第一字段,所述第一字段包括G个比特,所述G个比特指示L个速率匹配图案组,所述G个比特包括多个比特组,所述多个比特组中每个比特组为最多M个物理共享信道指示速率匹配图案组,所述M个物理共享信道是所述L个物理共享信道中的一部分,所述多个比特组中每个比特组所指示的速率匹配图案组是所述L个速率匹配图案组中的一部分;M为小于L的正整数,G为大于或等于2的正整数;所述L个速率匹配图案组中第i个速率匹配图案组指示第i个第二资源,所述第i个第二资源是所述控制信息指示的所述第i个物理共享信道不可占用的时频资源;
    所述L个物理共享信道中第i个物理共享信道占用第i个第三资源;
    在所述第i个第二资源存在,且所述第i个第二资源与所述第i个第一资源重叠的情况下,所述第i个第三资源是所述第i个第一资源中除重叠资源之外的资源,所述重叠资源为所述第i个第二资源与所述第i个第一资源重叠的资源;或者,
    在所述第i个第二资源不存在的情况下,所述第i个第三资源是所述第i个第一资源;
    L为大于1的正整数,i为小于或等于L的任意正整数。
  2. 根据权利要求1所述的方法,其特征在于,所述第一设备向所述第二设备发送所述控制信息之前,所述方法还包括:
    所述第一设备向所述第二设备发送第一配置信息;其中,所述第一配置信息配置P个速率匹配图案组,所述L个速率匹配图案组中的任意一个速率匹配图案组为所述P个速率匹配图案组中的最多一个,P为大于1的正整数。
  3. 根据权利要求2所述的方法,其特征在于,
    第一比特组为所述多个比特组中一个比特组,所述第一比特组包括所述G个比特中的一个比特;
    当所述第一比特组为第一值时,所述第一比特组所指示的速率匹配图案组不存在;或者,当所述第一比特组为第二值时,所述第一比特组所指示的速率匹配图案组为所述P个速率匹配图案组中的一个。
  4. 根据权利要求2所述的方法,其特征在于,
    第一比特组为所述多个比特组中一个比特组,所述第一比特组包括所述G个比特中的一个比特;
    当所述第一比特组为第一值时,所述第一比特组所指示的速率匹配图案组为第一速率匹配图案组;或者,当所述第一比特组为第二值时,所述第一比特组所指示的速率匹配图案组为第二速率匹配图案组;
    所述第一速率匹配图案组为所述P个速率匹配图案组中的一个,所述第二速率匹配图案组为所述P个速率匹配图案组中的另一个。
  5. 根据权利要求2-4任一项所述的方法,其特征在于,G=ceil(X/M);ceil(·)表示向上取整运算符,X表示所述控制信息能够调度物理共享信道的最大数量。
  6. 根据权利要求5所述的方法,其特征在于,在所述第一设备向所述第二设备发送所述控制信息之前,所述方法还包括:
    所述第一设备向所述第二设备发送第二配置信息;其中,所述第二配置信息用于配置M的大小,M为小于或等于X的正整数。
  7. 根据权利要求5或6所述的方法,其特征在于,
    第一比特组为所述多个比特组中一个比特组,所述第一比特组包括所述G个比特中第g个比特,或者,所述第一比特组包括所述G个比特中第g+G-ceil(L/M)个比特;所述M个物理共享信道为所述L个物理共享信道中第(g-1)*M+1个至第g*M个物理共享信道;
    其中,所述G个比特中第1个比特为最高有效位MSB,所述G个比特中第G个比特为最低有效位LSB;或者,所述G个比特中第1个比特为LSB,所述G个比特中第G个比特为MSB;g为小于floor(L/M)的正整数,floor(·)表示向下取整运算符,ceil(·)表示向上取整运算符,/表示除法运算符。
  8. 根据权利要求5或6所述的方法,其特征在于,
    第一比特组为所述多个比特组中一个比特组,当G*M>L时,所述第一比特组包括所述G个比特中第 ceil(L/M)个比特,或者,所述第一比特组包括所述G个比特中第G个比特;所述M个物理共享信道为所述L个物理共享信道中第(ceil(L/M)-1)*M+1个至第L个物理共享信道;
    其中,所述G个比特中第1个比特为最高有效位MSB,所述G个比特中第G个比特为最低有效位LSB;或者,所述G个比特中第1个比特为LSB,所述G个比特中第G个比特为MSB;ceil(·)表示向上取整运算符,/表示除法运算符。
  9. 根据权利要求2-4任一项所述的方法,其特征在于,
    第一比特组为所述多个比特组中一个比特组,所述第一比特组包括所述G个比特中第g个比特,或者,所述第一比特组包括所述G个比特中第g+G-L个比特;所述M个物理共享信道为所述L个物理共享信道中第g个物理共享信道;
    其中,所述G个比特中第1个比特为最高有效位MSB,所述G个比特中第G个比特为最低有效位LSB;或者,所述G个比特中第1个比特为LSB,所述G个比特中第G个比特为MSB;g为小于或等于L的任意正整数,M=1。
  10. 根据权利要求2-4任一项所述的方法,其特征在于,
    第一比特组为所述多个比特组中一个比特组,所述第一比特组包括所述G个比特中第g个比特,或者,所述第一比特组包括所述G个比特中第g+G-N个比特;所述M个物理共享信道为所述L个物理共享信道中第(g-1)*V1+1个至第g*V1个物理共享信道;
    其中,所述G个比特中第1个比特为最高有效位MSB,所述G个比特中第G个比特为最低有效位LSB;或者,所述G个比特中第1个比特为LSB,所述G个比特中第G个比特为MSB;所述g为小于或等于N1的任意正整数,N1为L/N的余数,且N1为正整数,N=min(G,L),V1=ceil(L/N),/表示除法运算符,min(·)表示取最小值运算符,ceil(·)表示向上取整运算符。
  11. 根据权利要求2-4任一项所述的方法,其特征在于,
    第一比特组为所述多个比特组中一个比特组,所述第一比特组包括所述G个比特中第g个比特,或者,所述第一比特组包括所述G个比特中第g+G-N个比特;所述M个物理共享信道为所述L个物理共享信道中第N1*V1+(g-N1-1)*V2+1至第N1*V1+(g-N1-1)*V2+V2个物理共享信道;
    其中,所述G个比特中第1个比特为最高有效位MSB,所述G个比特中第G个比特为最低有效位LSB;或者,所述G个比特中第1个比特为LSB,所述G个比特中第G个比特为MSB;所述g为大于N1且小于或等于N的任意正整数,N1为L/N的余数,且N1为正整数,N=min(G,L),V1=ceil(L/N),V2=floor(L/N),/表示除法运算符,min(·)表示取最小值运算符,ceil(·)表示向上取整运算符,floor(·)表示向下取整运算符。
  12. 根据权利要求9-11任一项所述的方法,其特征在于,G=X;X表示所述控制信息能够调度物理共享信道的最大数量。
  13. 根据权利要求9-11任一项所述的方法,其特征在于,在所述第一设备向所述第二设备发送所述控制信息之前,所述方法还包括:
    所述第一设备向所述第二设备发送第三配置信息;所述第三配置信息用于配置G的大小。
  14. 根据权利要求2所述的方法,其特征在于,
    第一比特组为所述多个比特组中一个比特组,所述第一比特组包括所述G个比特中的至少两个相邻比特,M=1。
  15. 根据权利要求14所述的方法,其特征在于,
    所述第一比特组包括所述G个比特中第2*g-1个比特和第2*g个比特,或者,所述第一比特组包括所述G个比特中第2*(X-L+g)-1个比特和第2*(X-L+g)个比特;所述M个物理共享信道为所述L个物理共享信道中第g个物理共享信道;
    其中,所述G个比特中第1个比特为最高有效位MSB,所述G个比特中第G个比特为最低有效位LSB;或者,所述G个比特中第1个比特为LSB,所述G个比特中第G个比特为MSB;G为大于或等于2L的正整数,g为小于或等于L的任意正整数,X表示所述控制信息能够调度物理共享信道的最大数量。
  16. 根据权利要求15所述的方法,其特征在于,G=2X。
  17. 根据权利要求14-16任一项所述的方法,其特征在于,
    所述第一比特组包括所述G个比特中的第2*g-1个比特和第2*g个比特;
    当所述G个比特中第2*g-1个比特为第一值,且第2*g个比特为第一值时,所述第一比特组指示的速率匹配图案组不存在;或者,
    当所述G个比特中第2*g-1个比特为第二值,且第2*g个比特为第一值时,所述第一比特组指示的速率匹配图案组为第一速率匹配图案组;或者,
    当所述G个比特中第2*g-1个比特为第一值,且第2*g个比特为第二值时,所述第一比特组指示的速率匹配图案组为第二速率匹配图案组;或者,
    当所述G个比特中第2*g-1个比特为第二值,且第2*g个比特为第二值时,所述第一比特组指示的速率匹配图案组为第一速率匹配图案组和第二速率匹配图案组;
    其中,所述G个比特中第1个比特为最高有效位MSB,所述G个比特中第G个比特为最低有效位LSB;或者,所述G个比特中第1个比特为LSB,所述G个比特中第G个比特为MSB;g为小于或等于L的任意正整数;所述第一速率匹配图案组为所述P个速率匹配图案组中的一个,所述第二速率匹配图案组为所述P个速率匹配图案组中的另一个。
  18. 根据权利要求2-17任一项所述的方法,其特征在于,所述P为2。
  19. 根据权利要求1-18任一项所述的方法,其特征在于,在所述第一设备向所述第二设备发送所述控制信息之前,所述方法还包括:
    所述第一设备向所述第二设备发送第四配置信息;所述第四配置信息用于配置X的大小,X表示所述控制信息能够调度物理共享信道的最大数量,X为大于或等于L的正整数。
  20. 根据权利要求1-19任一项所述的方法,其特征在于,
    在所述第一设备为网络设备,所述第二设备为终端设备的情况下,所述控制信息为下行链路控制信息DCI,所述L个物理共享信道为L个物理下行链路共享信道PDSCH,所述第一字段为速率匹配指示rate matching indicator字段;
    或者,
    在所述第一设备为第一终端设备,所述第二设备为第二终端设备的情况下,所述控制信息为侧行链路控制信息SCI,所述L个物理共享信道为L个物理侧行链路共享信道PSSCH。
  21. 一种通信方法,其特征在于,包括:
    第二设备接收来自第一设备的控制信息;
    其中,所述控制信息指示L个物理共享信道和L个第一资源;所述L个第一资源中第i个第一资源是所述L个物理共享信道中第i个物理共享信道被分配的时频资源;
    所述控制信息包括第一字段,所述第一字段包括G个比特,所述G个比特指示L个速率匹配图案组,所述G个比特包括多个比特组,所述多个比特组中每个比特组为最多M个物理共享信道指示速率匹配图案组,所述M个物理共享信道是所述L个物理共享信道中的一部分,所述多个比特组中每个比特组所指示的速率匹配图案组是所述L个速率匹配图案组中的一部分;M为小于L的正整数,G为大于或等于2的正整数;所述L个速率匹配图案组中第i个速率匹配图案组指示第i个第二资源,所述第i个第二资源是所述控制信息指示的所述第i个物理共享信道不可占用的时频资源;
    所述第二设备根据所述控制信息,接收来自所述第一设备的所述L个物理共享信道;
    其中,所述L个物理共享信道中第i个物理共享信道占用第i个第三资源;
    在所述第i个第二资源存在,且所述第i个第二资源与所述第i个第一资源重叠的情况下,所述第i个第三资源是所述第i个第一资源中除重叠资源之外的资源,所述重叠资源为所述第i个第二资源与所述第i个第一资源重叠的资源;或者,
    在所述第i个第二资源不存在的情况下,所述第i个第三资源是所述第i个第一资源;
    L为大于1的正整数,i为小于或等于L的任意正整数。
  22. 根据权利要求21所述的方法,其特征在于,所述第二设备接收来自所述第一设备的所述控制信息之前,所述方法还包括:
    所述第二设备接收来自所述第一设备的第一配置信息;其中,所述第一配置信息配置P个速率匹配图案组,所述L个速率匹配图案组中的任意一个速率匹配图案组为所述P个速率匹配图案组中的最多一个,P为大于1的正整数。
  23. 根据权利要求22所述的方法,其特征在于,
    第一比特组为所述多个比特组中一个比特组,所述第一比特组包括所述G个比特中的一个比特;
    当所述第一比特组为第一值时,所述第一比特组所指示的速率匹配图案组不存在;或者,当所述第一比特组为第二值时,所述第一比特组所指示的速率匹配图案组为所述P个速率匹配图案组中的一个。
  24. 根据权利要求22所述的方法,其特征在于,
    第一比特组为所述多个比特组中一个比特组,所述第一比特组包括所述G个比特中的一个比特;
    当所述第一比特组为第一值时,所述第一比特组所指示的速率匹配图案组为第一速率匹配图案组;或者,当所述第一比特组为第二值时,所述第一比特组所指示的速率匹配图案组为第二速率匹配图案组;
    所述第一速率匹配图案组为所述P个速率匹配图案组中的一个,所述第二速率匹配图案组为所述P个速率匹配图案组中的另一个。
  25. 根据权利要求22-24任一项所述的方法,其特征在于,G=ceil(X/M);ceil(·)表示向上取整运算符,X表示所述控制信息能够调度物理共享信道的最大数量。
  26. 根据权利要求25所述的方法,其特征在于,在所述第二设备接收来自所述第一设备的所述控制信息之前,所述方法还包括:
    所述第二设备接收来自所述第一设备的第二配置信息;其中,所述第二配置信息用于配置M的大小,M为小于或等于X的正整数。
  27. 根据权利要求25或26所述的方法,其特征在于,
    第一比特组为所述多个比特组中一个比特组,所述第一比特组包括所述G个比特中第g个比特,或者,所述第一比特组包括所述G个比特中第g+G-ceil(L/M)个比特;所述M个物理共享信道为所述L个物理共享信道中第(g-1)*M+1个至第g*M个物理共享信道;
    其中,所述G个比特中第1个比特为最高有效位MSB,所述G个比特中第G个比特为最低有效位LSB;或者,所述G个比特中第1个比特为LSB,所述G个比特中第G个比特为MSB;g为小于floor(L/M)的正整数,floor(·)表示向下取整运算符,ceil(·)表示向上取整运算符,/表示除法运算符。
  28. 根据权利要求25或26所述的方法,其特征在于,
    第一比特组为所述多个比特组中一个比特组,当G*M>L时,所述第一比特组包括所述G个比特中第ceil(L/M)个比特,或者,所述第一比特组包括所述G个比特中第G个比特;所述M个物理共享信道为所述L个物理共享信道中第(ceil(L/M)-1)*M+1个至第L个物理共享信道;
    其中,所述G个比特中第1个比特为最高有效位MSB,所述G个比特中第G个比特为最低有效位LSB;或者,所述G个比特中第1个比特为LSB,所述G个比特中第G个比特为MSB;ceil(·)表示向上取整运算符,/表示除法运算符。
  29. 根据权利要求22-24任一项所述的方法,其特征在于,
    第一比特组为所述多个比特组中一个比特组,所述第一比特组包括所述G个比特中第g个比特,或者,所述第一比特组包括所述G个比特中第g+G-L个比特;所述M个物理共享信道为所述L个物理共享信道中第g个物理共享信道;
    其中,所述G个比特中第1个比特为最高有效位MSB,所述G个比特中第G个比特为最低有效位LSB;或者,所述G个比特中第1个比特为LSB,所述G个比特中第G个比特为MSB;g为小于或等于L的任意正整数,M=1。
  30. 根据权利要求22-24任一项所述的方法,其特征在于,
    第一比特组为所述多个比特组中一个比特组,所述第一比特组包括所述G个比特中第g个比特,或者,所述第一比特组包括所述G个比特中第g+G-N个比特;所述M个物理共享信道为所述L个物理共享信道中第(g-1)*V1+1个至第g*V1个物理共享信道;
    其中,所述G个比特中第1个比特为最高有效位MSB,所述G个比特中第G个比特为最低有效位LSB;或者,所述G个比特中第1个比特为LSB,所述G个比特中第G个比特为MSB;所述g为小于或等于N1的任意正整数,N1为L/N的余数,且N1为正整数,N=min(G,L),V1=ceil(L/N),/表示除法运算符,min(·)表示取最小值运算符,ceil(·)表示向上取整运算符。
  31. 根据权利要求22-24任一项所述的方法,其特征在于,
    第一比特组为所述多个比特组中一个比特组,所述第一比特组包括所述G个比特中第g个比特,或者,所述第一比特组包括所述G个比特中第g+G-N个比特;所述M个物理共享信道为所述L个物理共享 信道中第N1*V1+(g-N1-1)*V2+1至第N1*V1+(g-N1-1)*V2+V2个物理共享信道;
    其中,所述G个比特中第1个比特为最高有效位MSB,所述G个比特中第G个比特为最低有效位LSB;或者,所述G个比特中第1个比特为LSB,所述G个比特中第G个比特为MSB;所述g为大于N1且小于或等于N的任意正整数,N1为L/N的余数,且N1为正整数,N=min(G,L),V1=ceil(L/N),V2=floor(L/N),/表示除法运算符,min(·)表示取最小值运算符,ceil(·)表示向上取整运算符,floor(·)表示向下取整运算符。
  32. 根据权利要求29-31任一项所述的方法,其特征在于,G=X;X表示所述控制信息能够调度物理共享信道的最大数量。
  33. 根据权利要求29-31任一项所述的方法,其特征在于,在所述第二设备接收来自所述第一设备的所述控制信息之前,所述方法还包括:
    所述第二设备接收来自所述第一设备的第三配置信息;其中,所述第三配置信息用于配置G的大小。
  34. 根据权利要求22所述的方法,其特征在于,
    第一比特组为所述多个比特组中一个比特组,所述第一比特组包括所述G个比特中的至少两个相邻比特,M=1。
  35. 根据权利要求34所述的方法,其特征在于,
    所述第一比特组包括所述G个比特中第2*g-1个比特和第2*g个比特,或者,所述第一比特组包括所述G个比特中第2*(X-L+g)-1个比特和第2*(X-L+g)个比特;所述M个物理共享信道为所述L个物理共享信道中第g个物理共享信道;
    其中,所述G个比特中第1个比特为最高有效位MSB,所述G个比特中第G个比特为最低有效位LSB;或者,所述G个比特中第1个比特为LSB,所述G个比特中第G个比特为MSB;G为大于或等于2L的正整数,g为小于或等于L的任意正整数,X表示所述控制信息能够调度物理共享信道的最大数量。
  36. 根据权利要求35所述的方法,其特征在于,G=2X。
  37. 根据权利要求34-36任一项所述的方法,其特征在于,
    所述第一比特组包括所述G个比特中的第2*g-1个比特和第2*g个比特;
    当所述G个比特中第2*g-1个比特为第一值,且第2*g个比特为第一值时,所述第一比特组指示的速率匹配图案组不存在;或者,
    当所述G个比特中第2*g-1个比特为第二值,且第2*g个比特为第一值时,所述第一比特组指示的速率匹配图案组为第一速率匹配图案组;或者,
    当所述G个比特中第2*g-1个比特为第一值,且第2*g个比特为第二值时,所述第一比特组指示的速率匹配图案组为第二速率匹配图案组;或者,
    当所述G个比特中第2*g-1个比特为第二值,且第2*g个比特为第二值时,所述第一比特组指示的速率匹配图案组为第一速率匹配图案组和第二速率匹配图案组;
    其中,所述G个比特中第1个比特为最高有效位MSB,所述G个比特中第G个比特为最低有效位LSB;或者,所述G个比特中第1个比特为LSB,所述G个比特中第G个比特为MSB;g为小于或等于L的任意正整数;所述第一速率匹配图案组为所述P个速率匹配图案组中的一个,所述第二速率匹配图案组为所述P个速率匹配图案组中的另一个。
  38. 根据权利要求22-37任一项所述的方法,其特征在于,所述P为2。
  39. 根据权利要求21-38任一项所述的方法,其特征在于,在所述第二设备接收来自所述第一设备的所述控制信息之前,所述方法还包括:
    所述第二设备接收来自所述第一设备的第四配置信息;所述第四配置信息用于配置X的大小,X表示所述控制信息能够调度物理共享信道的最大数量,X为大于或等于L的正整数。
  40. 根据权利要求21-39任一项所述的方法,其特征在于,
    在所述第二设备为网络设备,所述第一设备为终端设备的情况下,所述控制信息为下行链路控制信息DCI,所述L个物理共享信道为L个物理下行链路共享信道PDSCH,所述第一字段为速率匹配指示rate matching indicator字段;
    或者,
    在所述第二设备为第一终端设备,所述第一设备为第二终端设备的情况下,所述控制信息为侧行链路 控制信息SCI,所述L个物理共享信道为L个物理侧行链路共享信道PSSCH。
  41. 一种第一设备,其特征在于,包括:处理器和存储器,所述处理器和所述存储器耦合,所述存储器存储有程序指令,当所述存储器存储的程序指令被所述处理器执行时,如权利要求1-20中任意一项所述的方法被实现。
  42. 一种第二设备,其特征在于,包括:处理器和存储器,所述处理器和所述存储器耦合,所述存储器存储有程序指令,当所述存储器存储的程序指令被所述处理器执行时,如权利要求21-40中任意一项所述的方法被实现。
  43. 一种芯片,其特征在于,包括处理器和输入输出接口,所述输入输出接口用于接收来自所述芯片之外的其它装置的信号并传输至所述处理器或将来自所述处理器的信号发送给所述芯片之外的其它装置,所述处理器通过逻辑电路或执行代码指令用于实现如权利要求1-40中任意一项所述的方法。
  44. 一种计算机可读存储介质,其特征在于,所述存储介质中存储有计算机程序或指令,当所述计算机程序或指令被执行时,实现如权利要求1-40中任意一项所述的方法。
  45. 一种通信系统,其特征在于,包括第一设备和第二设备;其中,
    所述第一设备用于执行如权利要求1-20中任意一项所述的方法;
    所述第二设备用于执行如权利要求21-40中任意一项所述的方法。
PCT/CN2023/116551 2022-09-22 2023-09-01 通信方法及装置 WO2024060970A1 (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN202211169675 2022-09-22
CN202211169675.X 2022-09-22
CN202211303879.8 2022-10-24
CN202211303879.8A CN117749335A (zh) 2022-09-22 2022-10-24 通信方法及装置

Publications (1)

Publication Number Publication Date
WO2024060970A1 true WO2024060970A1 (zh) 2024-03-28

Family

ID=90281890

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/116551 WO2024060970A1 (zh) 2022-09-22 2023-09-01 通信方法及装置

Country Status (2)

Country Link
CN (1) CN117749335A (zh)
WO (1) WO2024060970A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110535604A (zh) * 2019-03-29 2019-12-03 中兴通讯股份有限公司 一种速率匹配方法和装置
WO2021035556A1 (zh) * 2019-08-27 2021-03-04 Oppo广东移动通信有限公司 无线通信的方法、终端设备和网络设备
US20210321444A1 (en) * 2020-04-10 2021-10-14 Qualcomm Incorporated Rate matching for a physical downlink shared channel (pdsch)
CN113543328A (zh) * 2020-04-17 2021-10-22 华为技术有限公司 一种通信方法和通信装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110535604A (zh) * 2019-03-29 2019-12-03 中兴通讯股份有限公司 一种速率匹配方法和装置
WO2021035556A1 (zh) * 2019-08-27 2021-03-04 Oppo广东移动通信有限公司 无线通信的方法、终端设备和网络设备
US20210321444A1 (en) * 2020-04-10 2021-10-14 Qualcomm Incorporated Rate matching for a physical downlink shared channel (pdsch)
CN113543328A (zh) * 2020-04-17 2021-10-22 华为技术有限公司 一种通信方法和通信装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
ERICSSON: "PDSCH/PUSCH enhancements", 3GPP DRAFT; R1-2104462, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, no. e-Meeting; 20210510 - 20210527, 11 May 2021 (2021-05-11), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , XP052006205 *

Also Published As

Publication number Publication date
CN117749335A (zh) 2024-03-22

Similar Documents

Publication Publication Date Title
US11606776B2 (en) Transmission method and apparatus thereof
WO2021128746A1 (zh) 通信方法及装置
WO2019233398A1 (zh) 数据传输方法、通信装置及存储介质
JP7319363B2 (ja) データ伝送方法及び通信装置
WO2021032015A1 (zh) 反馈信息传输方法及通信装置
JP7399190B2 (ja) 通信方法及び通信装置
WO2020238992A1 (zh) 一种通信方法及装置
US20230101648A1 (en) Information transmission method, terminal device, and network device
WO2021017765A1 (zh) 通信方法和通信装置
WO2021081898A1 (zh) 通信方法和通信装置
WO2019051792A1 (zh) 资源分配的方法、终端设备和网络设备
WO2021026836A1 (zh) 通信方法以及通信装置
WO2024060970A1 (zh) 通信方法及装置
US11477793B2 (en) Information transmission method and device
WO2020249043A1 (zh) 反馈资源的配置方法及终端装置
WO2021047615A1 (zh) 参考信号传输方法及通信装置
EP4132156A1 (en) Data transmission method, terminal device, and network device
CN114071720A (zh) 资源确定的方法以及通信装置
WO2024067617A1 (zh) 资源配置的方法及装置
WO2023207784A1 (zh) 资源指示方法及通信装置
WO2024001843A1 (zh) 一种数据传输方法及通信装置
WO2024032806A1 (zh) 数据传输方法、装置、芯片、芯片模组及存储介质
US11533761B2 (en) Information processing method and device
WO2023035909A1 (zh) 数据传输方法及装置
WO2024027812A1 (zh) 侧链路通信方法及通信装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23867261

Country of ref document: EP

Kind code of ref document: A1