WO2021035556A1 - 无线通信的方法、终端设备和网络设备 - Google Patents

无线通信的方法、终端设备和网络设备 Download PDF

Info

Publication number
WO2021035556A1
WO2021035556A1 PCT/CN2019/102913 CN2019102913W WO2021035556A1 WO 2021035556 A1 WO2021035556 A1 WO 2021035556A1 CN 2019102913 W CN2019102913 W CN 2019102913W WO 2021035556 A1 WO2021035556 A1 WO 2021035556A1
Authority
WO
WIPO (PCT)
Prior art keywords
coreset
rate matching
matching parameter
parameter configuration
information
Prior art date
Application number
PCT/CN2019/102913
Other languages
English (en)
French (fr)
Inventor
方昀
陈文洪
史志华
黄莹沛
Original Assignee
Oppo广东移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oppo广东移动通信有限公司 filed Critical Oppo广东移动通信有限公司
Priority to PCT/CN2019/102913 priority Critical patent/WO2021035556A1/zh
Priority to CN201980095892.9A priority patent/CN113748729A/zh
Priority to EP19943511.6A priority patent/EP3955668A4/en
Publication of WO2021035556A1 publication Critical patent/WO2021035556A1/zh
Priority to US17/564,260 priority patent/US20220123912A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/004Arrangements for detecting or preventing errors in the information received by using forward error control
    • H04L1/0056Systems characterized by the type of code used
    • H04L1/0067Rate matching
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0058Allocation criteria
    • H04L5/0064Rate requirement of the data, e.g. scalable bandwidth, data priority
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0032Distributed allocation, i.e. involving a plurality of allocating devices, each making partial allocation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal

Definitions

  • the embodiments of the present application relate to the field of communications, and in particular to a wireless communication method, terminal device, and network device.
  • a downlink non-coherent transmission (Non-Coherent Joint Transmission, NC-JT) is introduced.
  • TRP Transmission Point
  • PDSCH Physical Downlink Shared Channel
  • the multiple TRPs may use different control channels to schedule PDSCH transmission of a terminal device.
  • the terminal equipment uses a uniform rate matching parameter configuration to perform rate de-matching on the PDSCH or transmission layers transmitted by the multiple TRPs.
  • a uniform rate matching parameter configuration to perform rate de-matching on the PDSCH or transmission layers transmitted by the multiple TRPs.
  • the embodiments of the present application provide a wireless communication method, terminal device, and network device, which are beneficial to improving system performance.
  • a wireless communication method including: a terminal device receives first downlink control information DCI sent by a network device, the first DCI is used to schedule the transmission of first data; the terminal device receives The first data; the terminal device determines the target rate matching parameter configuration used by the first data according to the first DCI and first configuration information, where the first configuration information is used to indicate the rate matching parameter Configure the association relationship with the first control resource set CORESET, where the first CORESET includes the CORESET carrying the first DCI; the terminal device performs rate de-matching on the first data according to the target rate matching parameter configuration .
  • a wireless communication method including: a network device sends first configuration information to a terminal device, wherein the first configuration information is used to indicate the association between the rate matching parameter configuration and the first control resource set CORESET Relationship, the first configuration information is used by the terminal device to determine the target rate matching parameter configuration used by the network device to send the first data.
  • a terminal device which is used to execute the foregoing first aspect or any possible implementation of the first aspect.
  • the terminal device includes a unit for executing the foregoing first aspect or the method in any possible implementation manner of the first aspect.
  • a network device which is used to execute the foregoing second aspect or any possible implementation of the second aspect.
  • the network device includes a unit for executing the foregoing second aspect or the method in any possible implementation manner of the second aspect.
  • a terminal device in a fifth aspect, includes a processor and a memory.
  • the memory is used to store a computer program, and the processor is used to call and run the computer program stored in the memory to execute the method in the above-mentioned first aspect or each of its implementation manners.
  • a network device in a sixth aspect, includes a processor and a memory.
  • the memory is used to store a computer program
  • the processor is used to call and run the computer program stored in the memory, and execute the method in the above-mentioned second aspect or each of its implementation modes.
  • a chip is provided, which is used to implement any one of the above-mentioned first aspect to the second aspect or the method in each implementation manner thereof.
  • the chip includes: a processor, configured to call and run a computer program from the memory, so that the device installed with the chip executes any one of the above-mentioned first aspect to the second aspect or any of the implementations thereof method.
  • a computer-readable storage medium for storing a computer program that enables a computer to execute any one of the above-mentioned first to second aspects or the method in each implementation manner thereof.
  • a computer program product including computer program instructions that cause a computer to execute any one of the above-mentioned first aspect to the second aspect or the method in each implementation manner thereof.
  • a computer program which when running on a computer, causes the computer to execute any one of the above-mentioned first to second aspects or the method in each of its implementation manners.
  • the terminal device can determine the target rate matching parameter configuration used for the data scheduled by the DCI according to the DCI sent by the received network device in combination with the first configuration information. Further, when receiving the data scheduled by the DCI, The data can be de-rate-matched according to the target rate-matching parameter configuration.
  • Fig. 1 is a schematic diagram of an application scenario provided by an embodiment of the present application.
  • Figures 2a and 2b are schematic diagrams of a transmission mode of downlink non-coherent transmission.
  • Figures 3a and 3b are schematic diagrams of another transmission mode of downlink non-coherent transmission.
  • 4a and 4b are schematic diagrams of two transmission modes of repeated transmission of PDSCH.
  • Figure 5 is a schematic interaction diagram of downlink beam management.
  • FIG. 6 is a schematic diagram of a wireless communication method provided by an embodiment of the present application.
  • FIG. 7 is a schematic diagram of another wireless communication method provided by an embodiment of the present application.
  • FIG. 8 is a schematic interaction diagram of a wireless communication method provided by an embodiment of the present application.
  • FIG. 9 is a schematic block diagram of a terminal device according to an embodiment of the present application.
  • FIG. 10 is a schematic block diagram of a network device provided by an embodiment of the present application.
  • FIG. 11 is a schematic block diagram of a communication device according to another embodiment of the present application.
  • FIG. 12 is a schematic block diagram of a chip provided by an embodiment of the present application.
  • FIG. 13 is a schematic block diagram of a communication system provided by an embodiment of the present application.
  • GSM Global System of Mobile Communication
  • CDMA Code Division Multiple Access
  • WCDMA Wideband Code Division Multiple Access
  • GPRS General Packet Radio Service
  • LTE Long Term Evolution LTE
  • FDD Frequency Division Duplex
  • TDD Time Division Duplex
  • UMTS Universal Mobile Telecommunication System
  • WiMAX Worldwide Interoperability for Microwave Access
  • NR New Radio
  • 5G System 5G System
  • the technical solutions of the embodiments of the present application can be applied to various communication systems based on non-orthogonal multiple access technologies, such as sparse code multiple access (SCMA) systems, low-density signatures (Low Density Signature, LDS) system, etc.
  • SCMA sparse code multiple access
  • LDS Low Density Signature
  • SCMA system and LDS system can also be called other names in the communication field; further, the technical solutions of the embodiments of this application can be applied to multi-carriers using non-orthogonal multiple access technology Transmission system, such as non-orthogonal multiple access technology Orthogonal Frequency Division Multiplexing (OFDM), Filter Bank Multi-Carrier (FBMC), Generalized Frequency Division Multiplexing (Generalized Frequency Division Multiplexing) Frequency Division Multiplexing (GFDM), filtered orthogonal frequency division multiplexing (Filtered-OFDM, F-OFDM) systems, etc.
  • OFDM Orthogonal Frequency Division Multiplexing
  • FBMC Filter Bank Multi-Carrier
  • Generalized Frequency Division Multiplexing Generalized Frequency Division Multiplexing
  • GFDM Frequency Division Multiplexing
  • Filtered-OFDM Frequency Division Multiplexing
  • F-OFDM filtered orthogonal frequency division multiplexing
  • the communication system 100 applied in the embodiment of the present application is shown in FIG. 1.
  • the communication system 100 may include a network device 110, and the network device 110 may be a device that communicates with a terminal device 120 (or called a communication terminal or terminal).
  • the network device 110 may provide communication coverage for a specific geographic area, and may communicate with terminal devices located in the coverage area.
  • the network device 110 may be a base station (Base Transceiver Station, BTS) in a GSM system or a CDMA system, a base station (NodeB, NB) in a WCDMA system, or an evolved base station in an LTE system (Evolutional Node B, eNB or eNodeB), or the wireless controller in the Cloud Radio Access Network (CRAN), or the network equipment can be a mobile switching center, a relay station, an access point, a vehicle-mounted device, Wearable devices, hubs, switches, bridges, routers, network equipment gNB in 5G networks, or network equipment in the future evolution of Public Land Mobile Network (PLMN), etc.
  • BTS Base Transceiver Station
  • NodeB, NB base station
  • LTE Long Term Evolutional Node B, eNB or eNodeB
  • the network equipment can be a mobile switching center, a relay station, an access point, a vehicle-mounted device,
  • the communication system 100 also includes at least one terminal device 120 located within the coverage area of the network device 110.
  • terminal equipment includes but is not limited to User Equipment (UE), access terminal, user unit, user station, mobile station, mobile station, remote station, remote terminal, mobile equipment, user terminal, Terminal, wireless communication equipment, user agent or user device.
  • UE User Equipment
  • the access terminal can be a cellular phone, a cordless phone, a Session Initiation Protocol (SIP) phone, a wireless local loop (Wireless Local Loop, WLL) station, a personal digital processing (Personal Digital Assistant, PDA), with wireless communication Functional handheld devices, computing devices or other processing devices connected to wireless modems, in-vehicle devices, wearable devices, terminal devices in the future 5G network or future evolution of the public land mobile network (Public Land Mobile Network, PLMN) Terminal equipment, etc., are not limited in the embodiment of the present invention.
  • SIP Session Initiation Protocol
  • WLL Wireless Local Loop
  • PDA Personal Digital Assistant
  • direct terminal connection (Device to Device, D2D) communication may be performed between the terminal devices 120.
  • the 5G system or 5G network may also be referred to as a New Radio (NR) system or NR network.
  • NR New Radio
  • Figure 1 exemplarily shows one network device and two terminal devices.
  • the communication system 100 may include multiple network devices and the coverage of each network device may include other numbers of terminal devices. The embodiment does not limit this.
  • the communication system 100 may also include other network entities such as a network controller and a mobility management entity, which are not limited in the embodiment of the present application.
  • network entities such as a network controller and a mobility management entity, which are not limited in the embodiment of the present application.
  • the devices with communication functions in the network/system in the embodiments of the present application may be referred to as communication devices.
  • the communication device may include a network device 110 having a communication function and a terminal device 120.
  • the network device 110 and the terminal device 120 may be the specific devices described above, which will not be repeated here.
  • the communication device may also include other devices in the communication system 100, such as network controllers, mobility management entities, and other network entities, which are not limited in the embodiment of the present application.
  • a downlink non-coherent joint transmission (NC-JT) based on multiple transmission points/reception points (Transmission/Reception Points, TRP) is introduced.
  • the backhaul connection between TRPs may be ideal or non-ideal. Under ideal backhaul, TRPs can exchange information quickly and dynamically. Under non-ideal backhaul, TRPs can only exchange information quasi-statically due to the large delay.
  • multiple TRPs can use different control channels to independently schedule a physical downlink shared channel (PDSCH) transmission of a terminal device, and the scheduled PDSCH can be in the same time slot or different time slots transmission.
  • the terminal device needs to support simultaneous reception of the Physical Downlink Control Channel (PDCCH) and PDSCH from different TRPs.
  • ACK/NACK Acknowledgement/Negative
  • ACK/NACK can be fed back to different TRPs that transmit the corresponding PDSCH, as shown in Figure 2b, or they can be combined and reported to A TRP.
  • the downlink control information (Downlink Control Information, DCI) transmitted by different TRPs for scheduling PDSCH can be carried by different control resource sets (Control Resource Set, CORESET), that is, multiple CORESETs are configured on the network side, and each TRP uses Each CORESET is scheduled, that is, different TRPs can be distinguished by CORESET.
  • DCI Downlink Control Information
  • multiple TRPs can use the same control channel to independently schedule the PDSCH transmission of a UE.
  • different TRPs transmit data of different transmission layers, and the terminal equipment needs to support simultaneous reception of PDSCH transmission layers from different TRPs.
  • the data transmitted by different TRPs need to be configured with independent transmission configuration indicators (Transmission Configuration Indicator, TCI) status and demodulation reference signal (Demodulation Reference Signal, DMRS) ports, and different DMRS ports need to belong to different code division multiplexing (Code Division Multiplexing) ports.
  • CDM Code Division Multiplexing
  • the network device can also dynamically select a TRP with better channel quality among multiple TRPs to transmit PDSCH to avoid mutual interference.
  • This transmission method is Dynamic Point Switching (DPS), as shown in Figure 3b. Shown.
  • the transmission layers of the PDSCHs respectively transmitted by the multiple TRPs may occupy the same time domain resources, for example, occupy the same time slot or mini time slot.
  • one mini-slot may occupy multiple Orthogonal Frequency-Division Multiple Access (OFDM) symbols in one slot.
  • OFDM Orthogonal Frequency-Division Multiple Access
  • repeated transmission of the PDSCH is introduced.
  • the PDSCH carrying the same data can be transmitted multiple times through different time slots, TRP or redundancy versions, etc., so as to obtain diversity gain and reduce False detection probability (BLER).
  • the repeated transmission can be performed in multiple time slots (as shown in Figure 4a), or can be performed on multiple TRPs (as shown in Figure 4b).
  • one DCI can schedule multiple PDSCHs carrying the same data for transmission on multiple consecutive time slots, using the same frequency domain resources.
  • the PDSCH carrying the same data can be transmitted separately on different TRPs, for example, using different beams (in this case, multiple TCI states need to be indicated in one DCI, and each TCI state is used for one repeated transmission) .
  • the repeated transmission of multiple TRPs can also be combined with the repeated transmission of multiple time slots. For example, continuous time slots can be used for transmission, and different TRPs can be used for transmission in different time slots.
  • the network equipment can use an analog beam to transmit the physical downlink shared channel (Physical Downlink Shared Channel, PDSCH).
  • PDSCH Physical Downlink Shared Channel
  • the network equipment needs to determine the beam to be used through the downlink beam management process.
  • the downlink beam management can be based on the channel state information reference signal (Channel State Information Reference Signal, CSI-RS) or the synchronization signal block (Synchronization Signal). Block, SSB). As shown in FIG.
  • a network device for example, gNB sends N SSBs or N CSI-RS resources for beam management, where N is greater than 1, and the terminal device is based on the N SSBs or N CSI-RS resources Perform measurement, select the K SSB or CSI-RS resources with the best reception quality, K is greater than or equal to 1, and add the corresponding SSB index or CSI-RS resource index and the corresponding reference signal receiving power (Reference Signal Receiving Power, RSRP) reported to the network device.
  • the network device determines an optimal SSB or CSI-RS resource according to the report of the terminal device, determines its used transmission beam as the transmission beam used for downlink transmission, and then uses the transmission beam to transmit the downlink control channel or the downlink data channel.
  • the network device Before transmitting the downlink control channel or the downlink data channel, the network device can indicate the corresponding quasi-co-located (QCL) reference signal to the terminal device through the TCI state, so that the terminal device can receive the QCL reference signal
  • the received beam is used to receive corresponding downlink control channels such as Physical Downlink Control Channel (PDCCH) or downlink data channels, such as Physical Downlink Shared Channel (PDSCH).
  • PDCH Physical Downlink Control Channel
  • PDSCH Physical Downlink Shared Channel
  • the terminal equipment uses a unified rate matching parameter configuration to de-rate-match the received PDSCH or transmission layer from multiple TRPs, but how to proceed if the multiple TRPs are interfered by different signals De-rate matching to improve system performance is an urgent problem to be solved.
  • the embodiments of the present application provide a technical solution that can configure a terminal device to perform rate matching on data scheduled by different DCIs according to different rate matching parameter configurations, which is beneficial to reduce interference to data transmission, thereby improving system performance.
  • FIG. 6 is a schematic flowchart of a wireless communication method 200 according to an embodiment of this application.
  • the method 200 may be executed by the terminal device in the communication system shown in FIG. 1.
  • the method 200 may include at least part of the following content:
  • the terminal device receives first downlink control information DCI, where the first DCI is used to schedule transmission of first data.
  • S220 The terminal device receives the first data
  • the terminal device determines a target rate matching parameter configuration used by the first data according to the first DCI and first configuration information, where the first configuration information is used to indicate the rate matching parameter configuration and the first configuration information.
  • S240 The terminal device performs rate de-matching on the first data according to the target rate matching parameter configuration.
  • the first data may be data in the transmission layer of PDSCH or PDSCH.
  • the wireless communication method in the embodiment of the present application may be applied to a scenario of downlink unrelated transmission, or may also be applied to a scenario of repeated PDSCH transmission, which is not limited in the embodiment of the present application.
  • the terminal device may receive the first DCI sent by the first network device.
  • the first DCI is used to schedule the transmission of the first data.
  • the terminal device may also receive the second DCI.
  • the first data and the second data may be the same data, such as a PDSCH carrying the same data, or the first data and the second data may also be different data, for example, PDSCH carrying different data, or data of different transmission layers of the same PDSCH, for example, the first data includes data of at least one transmission layer of the PDSCH, and the second data includes at least one transmission layer of the PDSCH The data.
  • the network device may determine the association relationship between the rate matching parameter configuration and the first control resource set CORESET, that is, the first configuration information.
  • the first CORESET may include all the configuration information of the network device. CORESET.
  • the rate matching parameter configuration may include at least one of the following:
  • LTE cell reference signal CRS pattern Physical downlink shared channel PDSCH rate matching pattern, zero-power channel state information reference signal (ZP-CSI-RS) resources.
  • ZP-CSI-RS zero-power channel state information reference signal
  • the LTE CRS pattern may refer to the transmission resource location of the CRS from the LTE network.
  • the LTE CRS pattern may be obtained through lte-CRS-ToMatchAround configured by the RRC parameter.
  • the PDSCH rate matching pattern is a physical resource dedicated to PDSCH rate matching.
  • the PDSCH rate matching pattern can be obtained through RateMatchPattern or RateMatchPatternGroup configured by RRC parameters.
  • the ZP-CSI-RS resource may be a CSI-RS resource location without actual CSI-RS transmission.
  • the ZP-CSI-RS resource may be configured through RRC parameters ZP-CSI-RS-Resource or ZP-CSI-RS-ResourceID acquisition.
  • the rate matching parameter configuration may also include other downlink channels or downlink signal resource locations that may interfere with downlink transmission, such as synchronization channels, periodic CSI-RS, The resource location of the DMRS or the control channel, etc., are not limited in the embodiment of the present application.
  • Embodiment 1 The first configuration information is used to indicate the CORESET information corresponding to each rate matching parameter configuration configured by the network device.
  • the CORESET information is an identifier (Identify, ID) of a control resource set (Control Resource Set, CORESET).
  • the CORESET information is a CORESET group index, where the CORESET group index may correspond to multiple CORESETs.
  • the CORESET information corresponding to a rate matching parameter configuration includes a bitmap, and each bit in the bitmap corresponds to a CORESET or CORESET group, which is used to indicate whether the rate matching parameter configuration can be used for the corresponding CORESET or CORESET or CORESET group.
  • each rate matching parameter configuration can correspond to a bitmap, and each bit in the bitmap corresponds to a CORESET or CORESET group, and the value of each bit can be used to indicate Whether the rate matching parameter configuration is used for the PDSCH or the transport layer scheduled by the DCI carried in the CORESET or CORESET group, for example, the value of this bit is 0, indicating that it cannot be used for the PDSCH scheduled by the DCI carried in the CORESET or CORESET group Or the transport layer.
  • the value of this bit is 1, which means that it cannot be used for the PDSCH or transport layer scheduled by the DCI carried in the CORESET or CORESET group.
  • the first configuration information can configure the effective CORESET or CORESET group corresponding to each rate matching parameter configuration, and the terminal device can determine the CORESET or CORESET group that carries the DCI according to the received DCI, and further The first configuration information determines the target rate matching parameter configuration that can be used for the data scheduled by the DCI carried in the CORESET or CORESET group, and further can perform de-rate matching on the data scheduled by the DCI according to the target rate matching parameter configuration.
  • the CORESET information corresponding to one rate matching parameter configuration includes at least one CORESET group index, and the rate matching parameter configuration is used for the PDSCH scheduled by the DCI carried in the CORESET group corresponding to the at least one CORESET group index.
  • the CORESET information corresponding to one rate matching parameter configuration includes at least one CORESET ID, and the rate matching parameter configuration is used for the PDSCH scheduled by the DCI carried in the CORESET corresponding to the at least one CORESET ID.
  • the network device can configure a valid CORESET or CORESET group corresponding to each rate matching parameter configuration, and the terminal device can determine the CORESET or CORESET group that carries the DCI according to the received DCI, and further in the first
  • the configuration information determines the target rate matching parameter configuration that can be used for the data scheduled by the DCI carried in the CORESET or CORESET group, and further can perform de-rate matching on the data scheduled by the DCI according to the target rate matching parameter configuration.
  • the network device may configure a corresponding CORESET group index for each CORESET, and there may be multiple CORESET corresponding to the same CORESET group index.
  • the first configuration information is used to determine the target rate matching parameter configuration corresponding to each CORESET information in the first CORESET.
  • the target rate matching parameter configuration corresponding to each CORESET may be one or multiple.
  • the first configuration information includes an index of the target rate matching parameter configuration in at least one rate matching parameter configuration pre-configured by the network device.
  • the first configuration information may be the corresponding relationship between the CORESET information and the target rate matching parameter configuration
  • each CORESET information may correspond to the corresponding target rate matching parameter configuration
  • the target rate matching parameter configuration corresponding to each CORESET information may be a preset One or more of the configured rate matching parameters.
  • the first configuration information may be the correspondence between the CORESET ID and the index of the rate matching parameter configuration, indicating that the rate matching parameter configuration may be used for the PDSCH scheduled by the DCI carried in the CORESET corresponding to the CORESET ID Or the transport layer.
  • the first configuration information may be the correspondence between the CORESET group index and the rate matching parameter configuration index. It means that the rate matching parameter configuration can be used for the PDSCH or the transport layer scheduled by the DCI carried in the CORESET group corresponding to the CORESET group index.
  • the first configuration information includes a bitmap corresponding to each CORESET ID, and each bit in the bitmap corresponds to a rate matching parameter configuration, and is used to indicate whether the rate matching parameter configuration can be used for the rate matching parameter configuration.
  • each CORESET ID can correspond to a bitmap, and each bit in the bitmap corresponds to a rate matching parameter configuration.
  • the bitmap It can include N bits, and the value of each bit can be used to indicate whether the corresponding rate matching parameter configuration is used for the PDSCH or transport layer scheduled by the DCI carried in the CORESET.
  • the value of this bit is 0, which means that it cannot be used for For the PDSCH or transport layer scheduled by the DCI carried in the CORESET, the value of this bit is 1, indicating that it cannot be used for the PDSCH or transport layer scheduled by the DCI carried in the CORESET.
  • the first configuration information includes a bitmap corresponding to each CORESET group index, and each bit in the bitmap corresponds to a rate matching parameter configuration, which is used to indicate whether the rate matching parameter configuration can be used for all
  • the CORESET group index corresponds to the PDSCH scheduled by the DCI carried in the CORESET group.
  • each CORESET group index can correspond to a bitmap, and each bit in the bitmap corresponds to a rate matching parameter configuration.
  • the bit The bitmap may include N bits, and the value of each bit may be used to indicate whether the corresponding rate matching parameter configuration is used for the PDSCH or transport layer scheduled by the DCI carried in the CORESET group corresponding to the CORESET group index.
  • the bit takes A value of 0 means that it cannot be used for the PDSCH or transport layer scheduled by the DCI carried in the CORESET group.
  • the value of this bit is 1, which means that it cannot be used for the PDSCH or transport layer scheduled by the DCI carried in the CORESET group.
  • each CORESET ID or CORESET group index can correspond to the effective rate matching parameter configuration
  • the terminal device can determine the CORESET ID or CORESET group index that carries the DCI according to the received DCI, and further according to the carrying of the DCI
  • the CORESET ID or CORESET group index combined with the first configuration information, determines the target rate matching parameter configuration that can be used for the data scheduled by the DCI carried in the CORESET or CORESET group, and the DCI can be further configured according to the target rate matching parameter configuration.
  • the scheduled data is de-rate matched.
  • the first configuration information includes a plurality of rate matching parameter configurations and a first bitmap, the first bitmap includes a plurality of sets of bits, and the plurality of sets of bits correspond to the plurality of rate matching parameter configurations in a one-to-one correspondence.
  • the value of each group of bits in the multiple groups of bits is used to indicate a resource identifier corresponding to a corresponding rate matching parameter configuration.
  • the first bitmap includes N groups of bits. If CORESET information occupies M bits, each group of bits in the first bitmap can occupy M bits, and the N The value of each group of bits in the group of bits is used to indicate the CORESET information corresponding to a corresponding rate matching parameter configuration, that is, the rate matching parameter configuration can be used for scheduling by the DCI carried in the CORESET corresponding to the CORESET information PDSCH.
  • the first bitmap may include 4 groups of bits, and each group of bits includes 2 bits, which are used to indicate 4 CORESET IDs, such as 00-11,
  • the 4 groups of bits may respectively correspond to one rate matching parameter configuration among the 4 rate matching parameter configurations.
  • the arrangement order of the 4 groups of bits in the first bitmap may be in accordance with the arrangement order of the 4 rate matching parameter configurations, that is, the first group of bits is used to indicate the first rate matching parameter configuration
  • the second group of bits is used to indicate the CORESET ID corresponding to the second rate matching parameter configuration, and so on. If the value of the first group of bits is 00, the CORESET ID corresponding to the first rate matching parameter configuration is 00.
  • the third rate matching parameter configuration corresponds to The CORESET ID is 11.
  • the terminal device can determine that the first rate matching parameter is configured as the rate used by the data scheduled by the first DCI Matching parameter configuration.
  • the first configuration information includes a plurality of rate matching parameter configurations and a second bitmap
  • the second bitmap includes a plurality of sets of bits
  • the plurality of sets of bits correspond to a plurality of CORESET information in a one-to-one relationship.
  • the value of each group of bits in is used to indicate a rate matching parameter configuration corresponding to the corresponding CORESET information, that is, the rate matching parameter configuration can be used for the PDSCH scheduled by the DCI carried in the CORESET corresponding to the CORESET information.
  • the multiple rate matching parameter configurations include N rate matching parameter configurations, the second bitmap includes M groups of bits, and M is the number of CORESET information. If the index of the rate matching parameter configuration occupies K bits, the Each group of bits in the second bitmap occupies K bits, and the value of each group of bits in the M groups of bits is used to indicate a rate matching parameter configuration corresponding to the corresponding CORESET information.
  • the second bitmap may include 4 groups of bits, and each group of bits includes 2 bits, which are used to indicate the index of 4 rate matching parameter configurations, for example, 00 ⁇ 11.
  • the 4 groups of bits in the second bitmap may correspond to one CORESET ID of the 4 CORESET IDs.
  • the 4 groups of bits in the second bitmap may correspond to the 4 CORESET IDs.
  • the value of the first group of bits is used to indicate the index of the rate matching parameter configuration corresponding to CORESET ID00
  • the value of the second group of bits is used to indicate the index of the rate matching parameter configuration corresponding to CORESET ID01. And so on.
  • the rate matching parameter configuration identifier corresponding to the CORESET ID 00 is 00, which corresponds to the first rate matching parameter configuration.
  • the third group of bits has a value If it is 11, the index of the rate matching parameter configuration corresponding to the CORESET ID 11 is 11, which corresponds to the fourth rate matching parameter configuration.
  • the terminal device can determine that the first rate matching parameter configuration is the rate matching parameter configuration used by the first network device to transmit the data scheduled by the first DCI.
  • the network device may send the first configuration information to the terminal device through high-level signaling.
  • the high-level signaling may be radio resource control (Radio Resource Control, RRC) information.
  • RRC Radio Resource Control
  • MAC CE Media Access Control Control Element
  • the first configuration information may be RRC parameters or MAC CE information.
  • the network device may send the first DCI to the terminal device, where the first DCI is used to schedule the transmission of the PDSCH or at least one transmission layer of the PDSCH.
  • the terminal device may receive the first DCI sent by the network device. Further, the terminal device may determine the first DCI according to the first DCI and the first configuration information configured by the network device. The target rate matching parameter configuration used by the DCI scheduled data.
  • the network device may determine the target rate matching parameter configuration used by the first data scheduled by the first DCI according to the COREST information carrying the first DCI in combination with the first configuration information, and may further determine the target rate matching parameter configuration used by the first data scheduled by the first DCI.
  • the target rate matching parameter configuration performs rate matching on the first data, and sends the first data after the rate matching to the terminal device.
  • the network device may determine the target rate matching resource corresponding to the data scheduled by the first DCI according to the target rate matching parameter configuration corresponding to the first data, and further determine the target rate matching resource corresponding to the target rate matching resource based on the target rate matching resource.
  • One data is rate matched.
  • the target rate matching parameter configuration may include at least one of the following: Long Term Evolution LTE cell reference signal CRS pattern, physical downlink shared channel PDSCH rate matching pattern, zero power channel state information reference signal ZP-CSI -RS resources.
  • the target rate matching resource may configure the physical resource corresponding to the target rate matching parameter, for example, may include at least one of the following: physical resource corresponding to the LTE CRS pattern, physical resource corresponding to the PDSCH rate matching pattern, zero power ZP-CSI-RS resources.
  • the network device may determine other physical resources other than the target rate matching resource as an available transmission resource for transmitting the first data, and determine to perform channel coding on the first data according to the available transmission resource
  • the target code rate used may further perform channel coding on the first data according to the target code rate, and then carry the channel-coded first data on the available transmission resource and send it to the terminal equipment.
  • the terminal device may combine the first DCI with the first configuration information to determine that the target rate used by the first data scheduled by the first DCI matches
  • the parameter configuration further determines the available transmission resources for the network device to transmit the first data.
  • the terminal device may determine the target rate matching resource according to the target rate matching parameter configuration, and further determine other physical resources other than the per-target rate matching resource for the network device to transmit the first An available transmission resource for data.
  • the terminal device may receive the first data sent by the network device on the available transmission resource, and according to the available transmission resource, determine that the network device uses the channel coding for the first data
  • the target code rate of the first data may be further channel-decoded according to the target code rate used by the network device to perform channel coding on the first data.
  • the available transmission resources are not actually due to physical resources for data transmission.
  • the terminal device may also perform rate matching in combination with other signals or channels to determine The available transmission resources.
  • the corresponding rate matching parameter configuration can be determined according to the first configuration information to perform rate matching on the data to be sent.
  • the terminal device can perform rate matching on the data to be sent.
  • the corresponding rate matching parameter configuration can be used to perform rate de-matching, thereby improving scheduling flexibility and achieving optimal transmission performance.
  • a network device uses a specific CORESET to send data, it only needs to perform rate matching according to the rate matching parameter configuration corresponding to the CORESET, and does not need to perform rate matching according to the rate matching parameter configuration corresponding to other CORESETs, which is beneficial to increase the available physical resources for downlink transmission.
  • using different rate matching resources for rate matching for different DCI-scheduled data is beneficial to improve resource efficiency and can reduce interference to downlink transmission.
  • the wireless communication method according to the embodiment of the present application is described in detail above with reference to FIG. 6 from the perspective of the terminal device, and the wireless communication method according to the embodiment of the present application is described in detail below in conjunction with FIG. 7 from the perspective of the network device. It should be understood that the description on the network device side corresponds to the description on the terminal device side, and similar descriptions can be referred to above. To avoid repetition, details are not repeated here.
  • FIG. 7 is a schematic flowchart of a wireless communication method provided by an embodiment of this application.
  • the method 300 may be executed by a network device in the communication system shown in FIG. 1. As shown in FIG. 7, the method 300 may include at least part of the following content:
  • the network device sends first configuration information to the terminal device, where the first configuration information is used to indicate the association relationship between the rate matching parameter configuration and the first control resource set CORESET, and the first configuration information is used for the terminal.
  • the device determines the target rate matching parameter configuration used by the network device to send the first data.
  • the first configuration information is used to indicate CORESET information corresponding to each rate matching parameter configuration configured by the network device.
  • the CORESET information is a CORESET identification ID or a CORESET group index.
  • the CORESET information corresponding to a rate matching parameter configuration includes a bitmap, and each bit in the bitmap corresponds to a CORESET or CORESET group, which is used to indicate the rate matching parameter. Whether the configuration can be used for the PDSCH scheduled by the corresponding CORESET or DCI carried in the CORESET group.
  • the CORESET information corresponding to a rate matching parameter configuration includes at least one CORESET ID, and the rate matching parameter configuration is used for the PDSCH scheduled by the DCI carried in the CORESET corresponding to the CORESET ID; or
  • the CORESET information corresponding to one rate matching parameter configuration includes at least one CORESET group index, and the rate matching parameter configuration is used for the PDSCH scheduled by the DCI carried in the CORESET group corresponding to the CORESET group index.
  • the first configuration information is used to determine the target rate matching parameter configuration corresponding to each CORESET information in the first CORESET.
  • the first configuration information includes an index of the target rate matching parameter configuration in at least one rate matching parameter configuration pre-configured by the network device; or,
  • the first configuration information includes a bitmap corresponding to each CORESET, and each bit in the bitmap corresponds to a rate matching parameter configuration, which is used to indicate whether the rate matching parameter configuration can be used for the CORESET
  • the PDSCH scheduled by the DCI carried in the carrier or
  • the first configuration information includes a bitmap corresponding to each CORESET group, and each bit in the bitmap corresponds to a rate matching parameter configuration, which is used to indicate whether the rate matching parameter configuration can be used for the rate matching parameter configuration.
  • the method 300 further includes:
  • the network device sends high-level signaling to the terminal device, where the high-level signaling includes the first configuration information.
  • the high-level signaling is radio resource control RRC signaling or media access control MAC control element CE.
  • the rate matching parameter configuration includes at least one of the following:
  • LTE cell reference signal CRS pattern Physical downlink shared channel PDSCH rate matching pattern, zero-power channel state information reference signal ZP-CSI-RS resource.
  • the first data is data of at least one transmission layer of the physical downlink shared data channel PDSCH or PDSCH.
  • the wireless communication method according to the embodiment of the present application is described from the perspective of the terminal device and the network device respectively.
  • the wireless communication method according to the embodiment of the present application is described from the perspective of device interaction. Methods of wireless communication. As shown in Figure 8, the method includes the following steps:
  • S410 The network device determines the first configuration information.
  • the network device can determine the association relationship between the rate matching parameter configuration and the first control resource set CORESET.
  • the network device can determine the association relationship between the rate matching parameter configuration and the first control resource set CORESET.
  • S420 The network device sends the first configuration information to the terminal device.
  • the network device sends the first DCI, where the first DCI is used to schedule transmission of the PDSCH or the transmission layer of the PDSCH.
  • the terminal device receives the first DCI. Further, in S440, the terminal device may determine the PDSCH scheduled by the first DCI or the transmission layer used by the first DCI according to the first DCI and the first configuration information.
  • the target rate matching parameter configuration For the specific implementation process, refer to the related description in the method 200. For brevity, details are not repeated here.
  • the network device may determine the PDSCH scheduled by the first DCI or the target rate matching parameter configuration used by the transport layer according to the CORESET that carries the first DCI, and perform calculations on the target rate matching parameter configuration according to the target rate matching parameter configuration.
  • the PDSCH or the transmission layer scheduled by the first DCI performs rate matching.
  • the network device sends the PDSCH or the transport layer after the rate matching to the terminal device.
  • the terminal device receives multiple rate-matched PDSCHs or transmission layers sent by the network device.
  • S470 The terminal device performs rate de-matching on the received PDSCH or the transmission layer according to the target rate matching parameter configuration determined in S440.
  • FIG. 9 shows a schematic block diagram of a terminal device 500 according to an embodiment of the present application.
  • the terminal device 500 includes:
  • the communication module 510 is configured to receive first downlink control information DCI, where the first DCI is used to schedule the transmission of first data; and to receive the first data;
  • the processing module 520 is configured to determine a target rate matching parameter configuration used by the first data according to the first DCI and first configuration information, where the first configuration information is used to indicate the rate matching parameter configuration and the first configuration information.
  • the first configuration information is used to indicate CORESET information corresponding to each rate matching parameter configuration configured by the network device.
  • the CORESET information is a CORESET identification ID or a CORESET group index.
  • the CORESET information corresponding to a rate matching parameter configuration includes a bitmap, and each bit in the bitmap corresponds to a CORESET or CORESET group, which is used to indicate the rate matching parameter. Whether the configuration can be used for the PDSCH scheduled by the corresponding CORESET or DCI carried in the CORESET group.
  • the CORESET information corresponding to a rate matching parameter configuration includes at least one CORESET ID, and the rate matching parameter configuration is used for the PDSCH scheduled by the DCI carried in the CORESET corresponding to the CORESET ID; or
  • the CORESET information corresponding to one rate matching parameter configuration includes at least one CORESET group index, and the rate matching parameter configuration is used for the PDSCH scheduled by the DCI carried in the CORESET group corresponding to the CORESET group index.
  • the first configuration information is used to determine the target rate matching parameter configuration corresponding to each CORESET information in the first CORESET.
  • the first configuration information includes an index of the target rate matching parameter configuration in at least one rate matching parameter configuration pre-configured by the network device; or,
  • the first configuration information includes a bitmap corresponding to each CORESET, and each bit in the bitmap corresponds to a rate matching parameter configuration, which is used to indicate whether the rate matching parameter configuration can be used for the CORESET
  • the PDSCH scheduled by the DCI carried in the carrier or
  • the first configuration information includes a bitmap corresponding to each CORESET group, and each bit in the bitmap corresponds to a rate matching parameter configuration, which is used to indicate whether the rate matching parameter configuration can be used for the rate matching parameter configuration.
  • the communication module is further used for:
  • the high-level signaling is radio resource control RRC signaling or media access control MAC control element CE.
  • the rate matching parameter configuration includes at least one of the following:
  • LTE cell reference signal CRS pattern Physical downlink shared channel PDSCH rate matching pattern, zero-power channel state information reference signal ZP-CSI-RS resource.
  • the first data is data of at least one transmission layer of the physical downlink shared data channel PDSCH or PDSCH.
  • terminal device 500 may correspond to the terminal device in the method embodiment of the present application, and the above and other operations and/or functions of each unit in the terminal device 500 are to implement the method shown in FIG. 6 respectively.
  • FIG. 10 shows a schematic block diagram of a network device 600 according to an embodiment of the present application.
  • the network device 600 includes:
  • the communication module 610 is configured to send first configuration information to the terminal device, where the first configuration information is used to indicate the association relationship between the rate matching parameter configuration and the first control resource set CORESET, and the first configuration information is used for all
  • the terminal device determines the target rate matching parameter configuration used by the network device to send the first data.
  • the first configuration information is used to indicate CORESET information corresponding to each rate matching parameter configuration configured by the network device.
  • the CORESET information is a CORESET identification ID or a CORESET group index.
  • the CORESET information corresponding to a rate matching parameter configuration includes a bitmap, and each bit in the bitmap corresponds to a CORESET or CORESET group, which is used to indicate the rate matching parameter. Whether the configuration can be used for the PDSCH scheduled by the corresponding CORESET or DCI carried in the CORESET group.
  • the CORESET information corresponding to a rate matching parameter configuration includes at least one CORESET ID, and the rate matching parameter configuration is used for the PDSCH scheduled by the DCI carried in the CORESET corresponding to the CORESET ID; or
  • the CORESET information corresponding to one rate matching parameter configuration includes at least one CORESET group index, and the rate matching parameter configuration is used for the PDSCH scheduled by the DCI carried in the CORESET group corresponding to the CORESET group index.
  • the first configuration information is used to determine the target rate matching parameter configuration corresponding to each CORESET information in the first CORESET.
  • the first configuration information includes an index of the target rate matching parameter configuration in at least one rate matching parameter configuration pre-configured by the network device; or,
  • the first configuration information includes a bitmap corresponding to each CORESET, and each bit in the bitmap corresponds to a rate matching parameter configuration, which is used to indicate whether the rate matching parameter configuration can be used for the CORESET
  • the PDSCH scheduled by the DCI carried in the carrier or
  • the first configuration information includes a bitmap corresponding to each CORESET group, and each bit in the bitmap corresponds to a rate matching parameter configuration, which is used to indicate whether the rate matching parameter configuration can be used for the rate matching parameter configuration.
  • the communication module 610 is further configured to:
  • the high-level signaling is radio resource control RRC signaling or media access control MAC control element CE.
  • the rate matching parameter configuration includes at least one of the following:
  • LTE cell reference signal CRS pattern Physical downlink shared channel PDSCH rate matching pattern, zero-power channel state information reference signal ZP-CSI-RS resource.
  • the first data is data of at least one transmission layer of the physical downlink shared data channel PDSCH or PDSCH.
  • the network device 600 may correspond to the network device in the method embodiment of the present application, and the above and other operations and/or functions of each unit in the network device 600 are to implement the method shown in FIG. 7 respectively.
  • FIG. 11 is a schematic structural diagram of a communication device 1000 according to an embodiment of the present application.
  • the communication device 1000 shown in FIG. 11 includes a processor 1010, and the processor 1010 can call and run a computer program from a memory to implement the method in the embodiment of the present application.
  • the communication device 1000 may further include a memory 1020.
  • the processor 1010 can call and run a computer program from the memory 1020 to implement the method in the embodiment of the present application.
  • the memory 1020 may be a separate device independent of the processor 1010, or may be integrated in the processor 1010.
  • the communication device 1000 may further include a transceiver 1030, and the processor 1010 may control the transceiver 1030 to communicate with other devices. Specifically, it may send information or data to other devices, or receive other devices. Information or data sent by the device.
  • the transceiver 1030 may include a transmitter and a receiver.
  • the transceiver 1030 may further include an antenna, and the number of antennas may be one or more.
  • the communication device 1000 may specifically be a network device of an embodiment of the application, and the communication device 1000 may implement the corresponding process implemented by the network device in each method of the embodiment of the application. For the sake of brevity, details are not repeated here. .
  • the communication device 1000 may specifically be a mobile terminal/terminal device of an embodiment of the present application, and the communication device 1000 may implement the corresponding process implemented by the mobile terminal/terminal device in each method of the embodiment of the present application.
  • I won’t repeat it here.
  • FIG. 12 is a schematic structural diagram of a chip of an embodiment of the present application.
  • the chip 1100 shown in FIG. 12 includes a processor 1110, and the processor 1110 can call and run a computer program from the memory to implement the method in the embodiment of the present application.
  • the chip 1100 may further include a memory 1120.
  • the processor 1110 can call and run a computer program from the memory 1120 to implement the method in the embodiment of the present application.
  • the memory 1120 may be a separate device independent of the processor 1110, or may be integrated in the processor 1110.
  • the chip 1100 may further include an input interface 1130.
  • the processor 1110 can control the input interface 1130 to communicate with other devices or chips, and specifically, can obtain information or data sent by other devices or chips.
  • the chip 1100 may further include an output interface 1140.
  • the processor 1110 can control the output interface 1140 to communicate with other devices or chips, and specifically, can output information or data to other devices or chips.
  • the chip can be applied to the network device in the embodiment of the present application, and the chip can implement the corresponding process implemented by the network device in each method of the embodiment of the present application.
  • the chip can implement the corresponding process implemented by the network device in each method of the embodiment of the present application.
  • the chip can be applied to the mobile terminal/terminal device in the embodiment of the present application, and the chip can implement the corresponding process implemented by the mobile terminal/terminal device in each method of the embodiment of the present application.
  • the chip can implement the corresponding process implemented by the mobile terminal/terminal device in each method of the embodiment of the present application.
  • the chip can implement the corresponding process implemented by the mobile terminal/terminal device in each method of the embodiment of the present application.
  • the chip mentioned in the embodiment of the present application may also be referred to as a system-level chip, a system-on-chip, a system-on-chip, or a system-on-chip.
  • FIG. 13 is a schematic block diagram of a communication system 1200 according to an embodiment of the present application. As shown in FIG. 13, the communication system 1200 includes a terminal device 1210 and a network device 1220.
  • the terminal device 1210 can be used to implement the corresponding function implemented by the terminal device in the above method
  • the network device 1220 can be used to implement the corresponding function implemented by the network device in the above method. For brevity, it will not be repeated here. .
  • the processor of the embodiment of the present application may be an integrated circuit chip with signal processing capability.
  • the steps of the foregoing method embodiments can be completed by hardware integrated logic circuits in the processor or instructions in the form of software.
  • the above-mentioned processor may be a general-purpose processor, a digital signal processor (Digital Signal Processor, DSP), an application specific integrated circuit (ASIC), a ready-made programmable gate array (Field Programmable Gate Array, FPGA) or other Programming logic devices, discrete gates or transistor logic devices, discrete hardware components.
  • DSP Digital Signal Processor
  • ASIC application specific integrated circuit
  • FPGA Field Programmable Gate Array
  • the methods, steps, and logical block diagrams disclosed in the embodiments of the present application can be implemented or executed.
  • the general-purpose processor may be a microprocessor or the processor may also be any conventional processor or the like.
  • the steps of the method disclosed in the embodiments of the present application can be directly embodied as being executed and completed by a hardware decoding processor, or executed and completed by a combination of hardware and software modules in the decoding processor.
  • the software module can be located in a mature storage medium in the field, such as random access memory, flash memory, read-only memory, programmable read-only memory, or electrically erasable programmable memory, registers.
  • the storage medium is located in the memory, and the processor reads the information in the memory and completes the steps of the above method in combination with its hardware.
  • the memory in the embodiments of the present application may be a volatile memory or a non-volatile memory, or may include both volatile and non-volatile memory.
  • the non-volatile memory can be read-only memory (Read-Only Memory, ROM), programmable read-only memory (Programmable ROM, PROM), erasable programmable read-only memory (Erasable PROM, EPROM), and electrically available Erase programmable read-only memory (Electrically EPROM, EEPROM) or flash memory.
  • the volatile memory may be random access memory (Random Access Memory, RAM), which is used as an external cache.
  • RAM random access memory
  • SRAM static random access memory
  • DRAM dynamic random access memory
  • DRAM synchronous dynamic random access memory
  • DDR SDRAM Double Data Rate Synchronous Dynamic Random Access Memory
  • Enhanced SDRAM, ESDRAM Enhanced Synchronous Dynamic Random Access Memory
  • Synchronous Link Dynamic Random Access Memory Synchronous Link Dynamic Random Access Memory
  • DR RAM Direct Rambus RAM
  • the memory in the embodiment of the present application may also be static random access memory (static RAM, SRAM), dynamic random access memory (dynamic RAM, DRAM), Synchronous dynamic random access memory (synchronous DRAM, SDRAM), double data rate synchronous dynamic random access memory (double data rate SDRAM, DDR SDRAM), enhanced synchronous dynamic random access memory (enhanced SDRAM, ESDRAM), synchronous connection Dynamic random access memory (synch link DRAM, SLDRAM) and direct memory bus random access memory (Direct Rambus RAM, DR RAM) and so on. That is to say, the memory in the embodiments of the present application is intended to include, but is not limited to, these and any other suitable types of memory.
  • the embodiment of the present application also provides a computer-readable storage medium for storing computer programs.
  • the computer-readable storage medium may be applied to the network device in the embodiment of the present application, and the computer program causes the computer to execute the corresponding process implemented by the network device in each method of the embodiment of the present application.
  • the computer program causes the computer to execute the corresponding process implemented by the network device in each method of the embodiment of the present application.
  • the computer-readable storage medium can be applied to the mobile terminal/terminal device in the embodiment of the present application, and the computer program causes the computer to execute the corresponding process implemented by the mobile terminal/terminal device in each method of the embodiment of the present application , For the sake of brevity, I won’t repeat it here.
  • the embodiments of the present application also provide a computer program product, including computer program instructions.
  • the computer program product can be applied to the network device in the embodiment of the present application, and the computer program instructions cause the computer to execute the corresponding process implemented by the network device in each method of the embodiment of the present application.
  • the computer program instructions cause the computer to execute the corresponding process implemented by the network device in each method of the embodiment of the present application.
  • the computer program product can be applied to the mobile terminal/terminal device in the embodiment of the present application, and the computer program instructions cause the computer to execute the corresponding process implemented by the mobile terminal/terminal device in each method of the embodiment of the present application, For the sake of brevity, I will not repeat them here.
  • the embodiment of the present application also provides a computer program.
  • the computer program can be applied to the network device in the embodiment of the present application.
  • the computer program runs on the computer, it causes the computer to execute the corresponding process implemented by the network device in each method of the embodiment of the present application.
  • I won’t repeat it here.
  • the computer program can be applied to the mobile terminal/terminal device in the embodiment of the present application.
  • the computer program runs on the computer, the computer executes each method in the embodiment of the present application. For the sake of brevity, the corresponding process will not be repeated here.
  • the disclosed system, device, and method may be implemented in other ways.
  • the device embodiments described above are merely illustrative, for example, the division of the units is only a logical function division, and there may be other divisions in actual implementation, for example, multiple units or components may be combined or It can be integrated into another system, or some features can be ignored or not implemented.
  • the displayed or discussed mutual coupling or direct coupling or communication connection may be indirect coupling or communication connection through some interfaces, devices or units, and may be in electrical, mechanical or other forms.
  • the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, they may be located in one place, or they may be distributed on multiple network units. Some or all of the units may be selected according to actual needs to achieve the objectives of the solutions of the embodiments.
  • the functional units in the various embodiments of the present application may be integrated into one processing unit, or each unit may exist alone physically, or two or more units may be integrated into one unit.
  • the function is implemented in the form of a software functional unit and sold or used as an independent product, it can be stored in a computer readable storage medium.
  • the technical solution of the present application essentially or the part that contributes to the existing technology or the part of the technical solution can be embodied in the form of a software product, and the computer software product is stored in a storage medium, including Several instructions are used to make a computer device (which may be a personal computer, a server, or a network device, etc.) execute all or part of the steps of the methods described in the various embodiments of the present application.
  • the aforementioned storage media include: U disk, mobile hard disk, read-only memory (Read-Only Memory,) ROM, random access memory (Random Access Memory, RAM), magnetic disks or optical disks and other media that can store program codes. .

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

一种无线通信的方法、终端设备和网络设备,该方法包括:终端设备接收第一下行控制信息DCI,所述第一DCI用于调度第一数据的传输;所述终端设备接收所述第一数据;所述终端设备根据所述第一DCI和第一配置信息,确定所述第一数据所使用的目标速率匹配参数配置,其中,所述第一配置信息用于指示速率匹配参数配置与第一控制资源集CORESET的关联关系,所述第一CORESET包含承载所述第一DCI的CORESET;所述终端设备根据所述目标速率匹配参数配置,对所述第一数据进行解速率匹配。

Description

无线通信的方法、终端设备和网络设备 技术领域
本申请实施例涉及通信领域,具体涉及一种无线通信的方法、终端设备和网络设备。
背景技术
在新无线(New Radio,NR)系统中,引入了下行的非相干传输(Non-Coherent Joint Transmission,NC-JT)。在下行的非相干传输中,多个传输点(Transmission Point,TRP)可以采用相同的控制信道调度一个终端设备的物理下行共享信道(Physical Downlink Shared Channel,PDSCH)的传输,其中,不同TRP同时传输不同传输层的数据;或者在另一种传输方式中,该多个TRP可以采用不同的控制信道调度一个终端设备的PDSCH的传输。
在下行非相干传输中,终端设备使用统一的速率匹配参数配置对所述多个TRP传输的PDSCH或传输层进行解速率匹配,但是,若多个TRP受到不同信号的干扰时,如何进行解速率匹配以提升系统性能是一项亟需解决的问题。
发明内容
本申请实施例提供一种无线通信的方法、终端设备和网络设备,有利于提升系统性能。
第一方面,提供了一种无线通信的方法,包括:终端设备接收网络设备发送的第一下行控制信息DCI,所述第一DCI用于调度第一数据的传输;所述终端设备接收所述第一数据;所述终端设备根据所述第一DCI和第一配置信息,确定所述第一数据所使用的目标速率匹配参数配置,其中,所述第一配置信息用于指示速率匹配参数配置与第一控制资源集CORESET的关联关系,所述第一CORESET包含承载所述第一DCI的CORESET;所述终端设备根据所述目标速率匹配参数配置,对所述第一数据进行解速率匹配。
第二方面,提供了一种无线通信的方法,包括:网络设备向终端设备发送第一配置信息,其中,所述第一配置信息用于指示速率匹配参数配置与第一控制资源集CORESET的关联关系,所述第一配置信息用于所述终端设备确定所述网络设备发送第一数据所使用的目标速率匹配参数配置。
第三方面,提供了一种终端设备,用于执行上述第一方面或第一方面的任意可能的实现方式中的方法。具体地,该终端设备包括用于执行上述第一方面或第一方面的任一可能的实现方式中的方法的单元。
第四方面,提供了一种网络设备,用于执行上述第二方面或第二方面的任意可能的实现方式中的方法。具体地,该网络设备包括用于执行上述第二方面或第二方面的任一可能的实现方式中的方法的单元。
第五方面,提供了一种终端设备,该终端设备包括:包括处理器和存储器。该存储器用于存储计算机程序,该处理器用于调用并运行该存储器中存储的计算机程序,执行上述第一方面或其各实现方式中的方法。
第六方面,提供了一种网络设备,该网络设备包括:包括处理器和存储器。该存储 器用于存储计算机程序,该处理器用于调用并运行该存储器中存储的计算机程序,执行上述第二方面或其各实现方式中的方法。
第七方面,提供了一种芯片,用于实现上述第一方面至第二方面中的任一方面或其各实现方式中的方法。
具体地,该芯片包括:处理器,用于从存储器中调用并运行计算机程序,使得安装有该芯片的设备执行如上述第一方面至第二方面中的任一方面或其各实现方式中的方法。
第八方面,提供了一种计算机可读存储介质,用于存储计算机程序,该计算机程序使得计算机执行上述第一方面至第二方面中的任一方面或其各实现方式中的方法。
第九方面,提供了一种计算机程序产品,包括计算机程序指令,该计算机程序指令使得计算机执行上述第一方面至第二方面中的任一方面或其各实现方式中的方法。
第十方面,提供了一种计算机程序,当其在计算机上运行时,使得计算机执行上述第一方面至第二方面中的任一方面或其各实现方式中的方法。
基于上述技术方案,终端设备可以根据接收的网络设备发送的DCI,结合第一配置信息确定该DCI调度的数据所使用的目标速率匹配参数配置,进一步可以在接收到该DCI所调度的数据时,可以根据该目标速率匹配参数配置对该数据进行解速率匹配。
附图说明
图1是本申请实施例提供的一种应用场景的示意性图。
图2a和图2b是下行非相干传输的一种传输方式的示意图。
图3a和图3b是下行非相干传输的另一种传输方式的示意图。
图4a和图4b是PDSCH的重复传输的两种传输方式的示意图。
图5是下行波束管理的示意性交互图。
图6是本申请实施例提供的一种无线通信的方法的示意性图。
图7是本申请实施例提供的另一种无线通信的方法的示意性图。
图8是本申请实施例提供的一种无线通信的方法的示意性交互图。
图9是本申请实施例提供的一种终端设备的示意性框图。
图10是本申请实施例提供的一种网络设备的示意性框图。
图11是本申请另一实施例提供的一种通信设备的示意性框图。
图12是本申请实施例提供的一种芯片的示意性框图。
图13是本申请实施例提供的一种通信系统的示意性框图。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行描述,显然,所描述的实施例是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
应理解,本申请实施例的技术方案可以应用于各种通信系统,例如:全球移动通讯(Global System of Mobile communication,GSM)系统、码分多址(Code Division Multiple Access,CDMA)系统、宽带码分多址(Wideband Code Division Multiple Access,WCDMA) 系统、通用分组无线业务(General Packet Radio Service,GPRS)、长期演进LTE系统、LTE频分双工(Frequency Division Duplex,FDD)系统、LTE时分双工(Time Division Duplex,TDD)、通用移动通信系统(Universal Mobile Telecommunication System,UMTS)、全球互联微波接入(Worldwide Interoperability for Microwave Access,WiMAX)通信系统、新无线(New Radio,NR)或未来的5G系统等。
特别地,本申请实施例的技术方案可以应用于各种基于非正交多址接入技术的通信系统,例如稀疏码多址接入(Sparse Code Multiple Access,SCMA)系统、低密度签名(Low Density Signature,LDS)系统等,当然SCMA系统和LDS系统在通信领域也可以被称为其他名称;进一步地,本申请实施例的技术方案可以应用于采用非正交多址接入技术的多载波传输系统,例如采用非正交多址接入技术正交频分复用(Orthogonal Frequency Division Multiplexing,OFDM)、滤波器组多载波(Filter Bank Multi-Carrier,FBMC)、通用频分复用(Generalized Frequency Division Multiplexing,GFDM)、滤波正交频分复用(Filtered-OFDM,F-OFDM)系统等。
示例性的,本申请实施例应用的通信系统100如图1所示。该通信系统100可以包括网络设备110,网络设备110可以是与终端设备120(或称为通信终端、终端)通信的设备。网络设备110可以为特定的地理区域提供通信覆盖,并且可以与位于该覆盖区域内的终端设备进行通信。可选地,该网络设备110可以是GSM系统或CDMA系统中的基站(Base Transceiver Station,BTS),也可以是WCDMA系统中的基站(NodeB,NB),还可以是LTE系统中的演进型基站(Evolutional Node B,eNB或eNodeB),或者是云无线接入网络(Cloud Radio Access Network,CRAN)中的无线控制器,或者该网络设备可以为移动交换中心、中继站、接入点、车载设备、可穿戴设备、集线器、交换机、网桥、路由器、5G网络中的网络设备gNB或者未来演进的公共陆地移动网络(Public Land Mobile Network,PLMN)中的网络设备等。
该通信系统100还包括位于网络设备110覆盖范围内的至少一个终端设备120。作为在此使用的“终端设备”包括但不限于用户设备(User Equipment,UE)、接入终端、用户单元、用户站、移动站、移动台、远方站、远程终端、移动设备、用户终端、终端、无线通信设备、用户代理或用户装置。接入终端可以是蜂窝电话、无绳电话、会话启动协议(Session Initiation Protocol,SIP)电话、无线本地环路(Wireless Local Loop,WLL)站、个人数字处理(Personal Digital Assistant,PDA)、具有无线通信功能的手持设备、计算设备或连接到无线调制解调器的其它处理设备、车载设备、可穿戴设备,未来5G网络中的终端设备或者未来演进的公用陆地移动通信网络(Public Land Mobile Network,PLMN)中的终端设备等,本发明实施例并不限定。
可选地,终端设备120之间可以进行终端直连(Device to Device,D2D)通信。
可选地,5G系统或5G网络还可以称为新无线(New Radio,NR)系统或NR网络。
图1示例性地示出了一个网络设备和两个终端设备,可选地,该通信系统100可以包括多个网络设备并且每个网络设备的覆盖范围内可以包括其它数量的终端设备,本申请实施例对此不做限定。
可选地,该通信系统100还可以包括网络控制器、移动管理实体等其他网络实体,本申请实施例对此不作限定。
应理解,本申请实施例中网络/系统中具有通信功能的设备可称为通信设备。以图1 示出的通信系统100为例,通信设备可包括具有通信功能的网络设备110和终端设备120,网络设备110和终端设备120可以为上文所述的具体设备,此处不再赘述;通信设备还可包括通信系统100中的其他设备,例如网络控制器、移动管理实体等其他网络实体,本申请实施例中对此不做限定。
应理解,本文中术语“系统”和“网络”在本文中常被可互换使用。本文中术语“和/或”,仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,本文中字符“/”,一般表示前后关联对象是一种“或”的关系。
在NR系统中引入了基于多个传输点/发送接收点(Transmission/Reception Point,TRP)的下行非相干传输(Non-Coherent Joint Transmission,NC-JT)。其中,TRP之间的回传(backhaul)连接可以是理想的或者非理想的。理想的backhaul下TRP之间可以快速动态的进行信息交互,非理想的backhaul下由于时延较大TRP之间只能准静态的进行信息交互。
在下行非相干传输中,多个TRP可以采用不同的控制信道独立调度一个终端设备的物理下行共享信道(Physical Downlink Shared Channel,PDSCH)传输,所调度的PDSCH可以在相同时隙或不同时隙中传输。终端设备需要支持同时接收来自不同TRP的物理下行控制信道(Physical Downlink Control Channel,PDCCH)和PDSCH。终端设备反馈确认/否定确认(Acknowledgement/Negative,ACK/NACK)时,如图2a所示,可以将ACK/NACK各自反馈给传输相应PDSCH的不同TRP,如图2b所示,也可以合并上报给一个TRP。前者可以应用于理想backhaul和非理想backhaul两种场景,后者只能用于理想backhaul的场景。其中,不同TRP传输的用于调度PDSCH的下行控制信息(Downlink Control Information,DCI)可以通过不同的控制资源集(Control Resource Set,CORESET)来承载,即网络侧配置多个CORESET,每个TRP采用各自的CORESET进行调度,即可以通过CORESET来区分不同的TRP。
在另一种传输方式中,多个TRP可以采用相同的控制信道独立调度一个UE的PDSCH传输,其中,不同的TRP传输不同传输层的数据,终端设备需要支持同时接收来自不同TRP的PDSCH传输层。不同的TRP传输的数据需要配置独立的传输配置指示(Transmission Configuration Indicator,TCI)状态和解调参考信号(Demodulation Reference Signal,DMRS)端口,且不同的DMRS端口需要属于不同的码分复用(Code Division Multiple,CDM)组以保证DMRS端口间的正交性,如图3a所示。或者,网络设备也可以在多个TRP中动态选择一个信道质量较好的TRP用于传输PDSCH,以避免相互干扰,这种传输方式为动态传输点切换(Dynamic Point Switching,DPS),如图3b所示。
应理解,所述多个TRP分别传输的PDSCH的传输层可以占用相同的时域资源,例如,占用相同的时隙或迷你时隙。可选地,在一些实施例中,一个迷你时隙可以占用一个时隙内的多个正交频分多址(Orthogonal frequency-division multiplexing,OFDM)符号。
在NR系统中,为了提高PDSCH的传输可靠性,引入了PDSCH的重复传输,例如,携带相同数据的PDSCH可以通过不同的时隙,TRP或冗余版本等多次传输,从而获得分集增益,降低误检概率(BLER)。在一种实现方式中,所述重复传输可以在多个时隙进行(如图4a),也可以在多个TRP上进行(如图4b)。对于多时隙的重复传输,一个DCI可以调度多个携带相同数据的PDSCH在连续的多个时隙上传输,采用相同的频 域资源。对于多TRP的重复传输,携带相同数据的PDSCH可以在不同TRP上分别传输,例如,采用不同的波束(此时需要在一个DCI中指示多个TCI状态,每个TCI状态用于一次重复传输)。这里,多TRP的重复传输也可以和多时隙的重复传输可以相互结合,例如,可以采用连续的时隙来传输,在不同的时隙采用不同的TRP进行传输。
在NR系统中,网络设备可以采用模拟波束来传输物理下行共享信道(Physical Downlink Shared Channel,PDSCH)。在进行模拟波束赋形之前,网络设备需要通过下行波束管理过程来确定所用的波束,下行波束管理可以基于信道状态信息参考信号(Channel State Information Reference Signal,CSI-RS)或者同步信号块(Synchronization Signal Block,SSB)进行。如图5所示,网络设备(例如,gNB)发送用于波束管理的N个SSB或者N个CSI-RS资源,其中,N大于1,终端设备基于该N个SSB或N个CSI-RS资源进行测量,选择其中接收质量最好的K个SSB或者CSI-RS资源,K大于或等于1,并将相应的SSB索引或CSI-RS资源索引以及相应的参考信号接收功率(Reference Signal Receiving Power,RSRP)上报给网络设备。网络设备根据终端设备的上报确定一个最优的SSB或CSI-RS资源,将其所用的发送波束确定为下行传输所用的发送波束,从而使用该发送波束传输下行控制信道或者下行数据信道。网络设备在传输下行控制信道或下行数据信道之前,可以通过TCI状态将对应的准共址(Quasi-co-located,QCL)参考信号指示给终端设备,从而终端设备可以采用接收所述QCL参考信号所用的接收波束,来接收对应的下行控制信道例如物理下行控制信道(Physical Downlink Control Channel,PDCCH)或下行数据信道,例如,物理下行共享信道(Physical Downlink Shared Channel,PDSCH)。
在下行非相干传输中,终端设备使用统一的速率匹配参数配置对接收到的来自多个TRP的PDSCH或传输层进行解速率匹配,但是,若该多个TRP受到不同信号的干扰时,如何进行解速率匹配以提升系统性能是一项亟需解决的问题。
有鉴于此,本申请实施例提供一种技术方案,可以配置终端设备根据不同的速率匹配参数配置对不同DCI调度的数据进行速率匹配,有利于降低对数据传输的干扰,从而能够提升系统性能。
图6为本申请实施例提供的一种无线通信的方法200的示意性流程图。该方法200可以由图1所示的通信系统中的终端设备执行,如图6所示,该方法200可以包括如下至少部分内容:
S210,终端设备接收第一下行控制信息DCI,所述第一DCI用于调度第一数据的传输;
S220,所述终端设备接收所述第一数据;
S230,所述终端设备根据所述第一DCI和第一配置信息,确定所述第一数据所使用的目标速率匹配参数配置,其中,所述第一配置信息用于指示速率匹配参数配置与第一控制资源集CORESET的关联关系,所述第一CORESET包含承载所述第一DCI的CORESET;
S240,所述终端设备根据所述目标速率匹配参数配置,对所述第一数据进行解速率匹配。
可选地,在一些实施例中,所述第一数据可以为PDSCH或PDSCH的传输层中的数据。
可选地,本申请实施例的无线通信的方法可以应用于下行非相关传输的场景,或者也可以应用于PDSCH的重复传输的场景,本申请实施例对此不作限定。
在本申请实施例中,所述终端设备可以接收第一网络设备发送的第一DCI,所述第一DCI用于调度第一数据的传输,可选地,所述终端设备还可以接收第二网络设备发送的第二DCI,所述第二DCI用于调度第二数据的传输。可选地,所述第一数据和所述第二数据可以为相同的数据,例如承载相同数据的PDSCH,或者,所述第一数据和所述第二数据也可以为不同的数据,例如,承载不同数据的PDSCH,或者,同一PDSCH的不同传输层的数据,例如,所述第一数据包括所述PDSCH的至少一个传输层的数据,所述第二数据包括所述PDSCH的至少一个传输层的数据。
在本申请实施例中,网络设备可以确定速率匹配参数配置与第一控制资源集CORESET的关联关系,即所述第一配置信息,可选地,所述第一CORESET可以包括网络设备配置的所有CORESET。网络设备可以通过特定CORESET承载DCI时,使用该CORESET对应的速率匹配参数配置对待传输的数据进行速率匹配,对应地,终端设备可以根据承载DCI的CORESET确定解速率匹配该DCI所调度的数据所使用的目标速率匹配参数配置。
可选地,在一些实施例中,所述速率匹配参数配置可以包括以下中的至少一种:
长期演进LTE小区参考信号CRS图样,物理下行共享信道PDSCH速率匹配图样,零功率信道状态信息参考信号(Zero Power-Channel State Information Reference Signal,ZP-CSI-RS)资源。
其中,所述LTE CRS图样可以指来自LTE网络的CRS的发送资源位置,作为一个示例,所述LTE CRS图样可以通过RRC参数配置的lte-CRS-ToMatchAround获取。
PDSCH速率匹配图样为专门用于PDSCH速率匹配的物理资源,作为一个示例,所述PDSCH速率匹配图样可以通过RRC参数配置的RateMatchPattern或RateMatchPatternGroup获取。
所述ZP-CSI-RS资源可以为没有实际CSI-RS传输的CSI-RS资源位置,作为一个示例,例如所述ZP-CSI-RS资源可以通过RRC参数配置的ZP-CSI-RS-Resource或ZP-CSI-RS-ResourceID获取。
应理解,以上速率匹配参数配置仅为示例,所述速率匹配参数配置还可以包括其他对下行传输可能产生干扰的下行信道或下行信号的资源位置,例如,同步信道,周期性的CSI-RS,DMRS或控制信道的资源位置等,本申请实施例对此不作限定。
以下,结合具体实施例,具体说明该第一配置信息的实现方式。
实施例1:所述第一配置信息用于指示网络设备配置的每个速率匹配参数配置分别对应的CORESET信息。
作为一个示例,所述CORESET信息为控制资源集(Control Resource Set,CORESET)的标识(Identify,ID)。
作为另一个示例,所述CORESET信息为CORESET组索引,其中,CORESET组索引可以对应多个CORESET。
方式1:
一个速率匹配参数配置对应的CORESET信息包含一个比特位图,所述比特位图中的每个比特对应一个CORESET或CORESET组,用于指示所述速率匹配参数配置能否 用于所对应的CORESET或CORESET组中承载的DCI所调度的PDSCH或传输层。
若包括N个速率匹配参数配置,则每个速率匹配参数配置可以对应一个比特位图,该比特位图中的每个比特对应一个CORESET或CORESET组,该每个比特的取值可以用于指示该速率匹配参数配置是否用于该CORESET或CORESET组中承载的DCI所调度的PDSCH或传输层,例如,该比特取值为0,表示不能用于CORESET或CORESET组中承载的DCI所调度的PDSCH或传输层,该比特取值为1,表示不能用于CORESET或CORESET组中承载的DCI所调度的PDSCH或传输层。
因此,在该方式1中,第一配置信息可以配置每个速率匹配参数配置分别对应的有效的CORESET或CORESET组,终端设备可以根据接收的DCI,确定承载该DCI的CORESET或CORESET组,进一步在该第一配置信息中确定能够用于CORESET或CORESET组中承载的DCI所调度的数据的目标速率匹配参数配置,进一步可以根据该目标速率匹配参数配置对所述DCI调度的数据进行解速率匹配。
方式2
一个速率匹配参数配置对应的CORESET信息包含至少一个CORESET组索引,所述速率匹配参数配置用于所述至少一个CORESET组索引对应的CORESET组中承载的DCI所调度的PDSCH。
一个速率匹配参数配置对应的CORESET信息包含至少一个CORESET ID,所述速率匹配参数配置用于所述至少一个CORESET ID对应的CORESET中承载的DCI所调度的PDSCH。
在该方式2中,所述网络设备可以配置每个速率匹配参数配置对应的有效的CORESET或CORESET组,终端设备可以根据接收的DCI,确定承载该DCI的CORESET或CORESET组,进一步在该第一配置信息中确定能够用于CORESET或CORESET组中承载的DCI所调度的数据的目标速率匹配参数配置,进一步可以根据该目标速率匹配参数配置对所述DCI调度的数据进行解速率匹配。
可选地,在本申请实施例中,网络设备可以为每个CORESET配置对应的CORESET组索引,对应相同的CORESET组索引的CORESET可以有多个。
实施例2:
所述第一配置信息用于确定所述第一CORESET中的每个CORESET信息分别对应的目标速率匹配参数配置。
可选地,所述每个CORESET对应的目标速率匹配参数配置可以为一个或者也可以是多个。
方式3:
所述第一配置信息包含所述目标速率匹配参数配置在网络设备预先配置的至少一个速率匹配参数配置中的索引。
即所述第一配置信息可以是CORESET信息和目标速率匹配参数配置的对应关系,每个CORESET信息可以对应相应的目标速率匹配参数配置,每个CORESET信息可以对应的目标速率匹配参数配置可以是预配置的速率匹配参数配置中的一个或多个。
作为一个示例,所述第一配置信息可以是CORESET ID和速率匹配参数配置的索引的对应关系,表示所述速率匹配参数配置可以用于所述CORESET ID对应的CORESET中承载的DCI所调度的PDSCH或传输层。
作为另一个示例,所述第一配置信息可以是CORESET组索引和速率匹配参数配置的索引的对应关系。表示所述速率匹配参数配置可以用于所述CORESET组索引对应的CORESET组中承载的DCI所调度的PDSCH或传输层。
方式4:
所述第一配置信息包含每个CORESET ID分别对应的比特位图,所述比特位图中的每个比特对应一个速率匹配参数配置,用于指示所述速率匹配参数配置能否用于所述CORESET ID对应的CORESET中承载的DCI所调度的PDSCH。
例如,若包括M个CORESET ID,则每个CORESET ID可以对应一个比特位图,该比特位图中的每个比特对应一个速率匹配参数配置,若有N个速率匹配参数配置,该比特位图可以包括N比特,每个比特的取值可以用于指示对应速率匹配参数配置是否用于该CORESET中承载的DCI所调度的PDSCH或传输层,例如,该比特取值为0,表示不能用于CORESET中承载的DCI所调度的PDSCH或传输层,该比特取值为1,表示不能用于CORESET中承载的DCI所调度的PDSCH或传输层。
所述第一配置信息包含每个CORESET组索引分别对应的比特位图,所述比特位图中的每个比特对应一个速率匹配参数配置,用于指示所述速率匹配参数配置能否用于所述CORESET组索引对应的CORESET组中承载的DCI所调度的PDSCH。
例如,若包括P个CORESET组索引,则每个CORESET组索引可以对应一个比特位图,该比特位图中的每个比特对应一个速率匹配参数配置,若有N个速率匹配参数配置,该比特位图可以包括N比特,每个比特的取值可以用于指示对应速率匹配参数配置是否用于该CORESET组索引对应的CORESET组中承载的DCI所调度的PDSCH或传输层,例如,该比特取值为0,表示不能用于该CORESET组中承载的DCI所调度的PDSCH或传输层,该比特取值为1,表示不能用于该CORESET组中承载的DCI所调度的PDSCH或传输层。
因此,在该方式4中,每个CORESET ID或CORESET组索引可以对应有效的速率匹配参数配置,终端设备可以根据接收的DCI,确定承载该DCI的CORESET ID或CORESET组索引,进一步根据承载该DCI的CORESET ID或CORESET组索引,结合该第一配置信息确定能够用于CORESET或CORESET组中承载的DCI所调度的数据的目标速率匹配参数配置,进一步可以根据该目标速率匹配参数配置对所述DCI调度的数据进行解速率匹配。
实施例3:
所述第一配置信息包括多个速率匹配参数配置和第一比特图,所述第一比特图包括多组比特,所述多组比特和所述多个速率匹配参数配置一一对应,所述多组比特中的每组比特的取值用于指示对应的一个速率匹配参数配置所对应的资源标识。
假设包括N个速率匹配参数配置,则所述第一比特图包括N组比特,若CORESET信息占M个比特,则所述第一比特图中的每组比特可以占M个比特,所述N组比特中的每组比特的取值用于指示对应的一个速率匹配参数配置所对应的CORESET信息,即所述速率匹配参数配置能够用于所述CORESET信息对应的CORESET中承载的DCI所调度的PDSCH。
以N为4,M为2,CORESET信息为CORESET ID为例,所述第一比特图可以包括4组比特,每组比特包括2个比特,用于指示4种CORESET ID,例如00~11,该4 组比特可以分别对应4个速率匹配参数配置中的一个速率匹配参数配置。在一种实现方式中,所述第一比特图中的4组比特的排列顺序可以按照所述4个速率匹配参数配置的排列顺序,即第一组比特用于指示第一个速率匹配参数配置所对应的CORESET ID,第二组比特用于指示第二个速率匹配参数配置所对应的CORESET ID,依次类推。若该第一组比特取值为00,则该第一个速率匹配参数配置对应的CORESET ID为00,又例如,若第三组比特取值为11,则该第三个速率匹配参数配置对应的CORESET ID为11。
若所述终端设备接收到第一DCI,所述承载第一DCI的CORESET ID为00,则该终端设备可以确定第一个速率匹配参数配置为所述第一DCI所调度的数据所使用的速率匹配参数配置。
实施例4:
所述第一配置信息包括多个速率匹配参数配置和第二比特图,所述第二比特图包括多组比特,所述多组比特和多个CORESET信息一一对应,所述多组比特中的每组比特的取值用于指示对应的CORESET信息所对应的一个速率匹配参数配置,即所述速率匹配参数配置能够用于所述CORESET信息对应的CORESET中承载的DCI所调度的PDSCH。
所述多个速率匹配参数配置包括N个速率匹配参数配置,所述第二比特图包括M组比特,M为CORESET信息的个数,若速率匹配参数配置的索引占K个比特,则所述第二比特图中的每组比特占K个比特,所述M组比特中的每组比特的取值用于指示对应的CORESET信息所对应的一个速率匹配参数配置。
以N为4,M为4,CORESET信息为CORESET ID为例,所述第二比特图可以包括4组比特,每组比特包括2个比特,用于指示4个速率匹配参数配置的索引,例如00~11。该第二比特图中的4组比特可以分别对应4个CORESET ID中的一个CORESET ID,在一种实现方式中,所述第二比特图中的4组比特可以按照所述4个CORESET ID的大小顺序排列,例如,第一组比特的取值用于指示CORESET ID00所对应的速率匹配参数配置的索引,第二组比特的取值用于指示CORESET ID01所对应的速率匹配参数配置的索引,依次类推。例如,若该第一组比特取值为00,则该CORESET ID 00所对应的速率匹配参数配置的标识为00,即对应第一个速率匹配参数配置,又例如,若第三组比特取值为11,则该CORESET ID 11所对应的速率匹配参数配置的索引为11,即对应第四个速率匹配参数配置。
接着上述示例,若所述终端设备接收到第一DCI,所述传输第一DCI的资源对应资源标识00,若在所述第二比特图中,所述资源标识00对应的速率匹配参数配置的索引为00,则该终端设备可以确定第一个速率匹配参数配置为所述第一网络设备传输所述第一DCI所调度的数据所使用的速率匹配参数配置。
在一些实施例中,所述网络设备可以通过高层信令向所述终端设备发送所述第一配置信息,可选地,所述高层信令可以为无线资源控制(Radio Resource Control,RRC)信令或媒体接入控制控制元素(Media Access Control Control Element,MAC CE)等。也就是说,所述第一配置信息可以为RRC参数或MAC CE信息。
在一些实施例中,所述网络设备可以向终端设备发送第一DCI,所述第一DCI用于调度PDSCH或PDSCH的至少一个传输层的传输。
对应地,所述终端设备可以接收所述网络设备发送的第一DCI,进一步地,所述终 端设备可以根据所述第一DCI和网络设备配置的所述第一配置信息,确定所述第一DCI调度的数据所使用的目标速率匹配参数配置。
在网络侧,所述网络设备可以根据承载第一DCI的COREST信息结合所述第一配置信息,确定所述第一DCI所调度的第一数据所使用的目标速率匹配参数配置,进一步可以根据所述目标速率匹配参数配置对所述第一数据进行速率匹配,并向终端设备发送速率匹配后的所述第一数据。具体地,网络设备可以根据所述第一数据对应的目标速率匹配参数配置,确定所述第一DCI所调度的数据对应的目标速率匹配资源,进一步基于所述目标速率匹配资源,对所述第一数据进行速率匹配。
在一些实施例中,所述目标速率匹配参数配置可以包括以下中的至少一种:长期演进LTE小区参考信号CRS图样,物理下行共享信道PDSCH速率匹配图样,零功率信道状态信息参考信号ZP-CSI-RS资源。则所述目标速率匹配资源可以为所述目标速率匹配参数配置对应的物理资源,例如可以包括如下中的至少一种:LTE CRS图样对应的物理资源,PDSCH速率匹配图样对应的物理资源,零功率ZP-CSI-RS资源。
进一步地,所述网络设备可以将所述目标速率匹配资源以外的其他物理资源确定为传输所述第一数据的可用传输资源,并根据所述可用传输资源确定对所述第一数据进行信道编码所使用的目标码率,进一步可以根据所述目标码率对所述第一数据进行信道编码,然后将信道编码后的所述第一数据承载在所述可用传输资源上,发送给所述终端设备。
对应地,在接收到所述网络设备发送的第一DCI之后,所述终端设备可以所述第一DCI结合所述第一配置信息,确定第一DCI调度的第一数据所使用的目标速率匹配参数配置,进一步确定所述网络设备传输所述第一数据的可用传输资源。具体地,所述终端设备可以根据所述目标速率匹配参数配置,确定所述目标速率匹配资源,并进一步确定所述每目标速率匹配资源之外的其他物理资源为所述网络设备传输所述第一数据的可用传输资源。进一步地,所述终端设备可以在所述可用传输资源上接收所述网络设备发送的第一数据,并根据所述可用传输资源,确定所述网络设备对所述第一数据进行信道编码所使用的目标码率,进一步可以根据所述网络设备对所述第一数据进行信道编码所使用的目标码率,对所述所述第一数据进行信道解码。
应理解,在本申请实施例中,所述可用传输资源并不一定是实际由于数据传输的物理资源,在一些实施例中,所述终端设备还可以结合其他信号或信道进行速率匹配,以确定所述可用传输资源。
因此,在本申请实施例中,当网络设备采用不同的CORESET调度下行传输时,可以根据该第一配置信息确定对应的速率匹配参数配置对待发送的数据进行速率匹配,对应地,终端设备可以对接收的通过不同CORESET承载的DCI所调度的数据时,可以采用对应的速率匹配参数配置进行解速率匹配,从而提高调度的灵活性,达到最优的传输性能。
并且,网络设备使用特定CORESET发送数据时只需要根据该CORESET对应的速率匹配参数配置进行速率匹配,不需要根据其他CORESET对应的速率匹配参数配置进行速率匹配,有利于增加下行传输的可用物理资源,另一方面,对不同的DCI调度的数据采用不同的速率匹配资源进行速率匹配,有利于提升资源的效率,并且能够降低对下行传输的干扰。
上文结合图6,从终端设备的角度详细描述了根据本申请实施例的无线通信的方法,下文结合图7,从网络设备的角度详细描述根据本申请实施例的无线通信的方法。应理解,网络设备侧的描述与终端设备侧的描述相互对应,相似的描述可以参见上文,为避免重复,此处不再赘述。
图7为本申请实施例提供的一种无线通信的方法的示意性流程图。该方法300可以由图1所示的通信系统中的网络设备执行,如图7所示,该方法300可以包括至少部分如下内容:
S310,网络设备向终端设备发送第一配置信息,其中,所述第一配置信息用于指示速率匹配参数配置与第一控制资源集CORESET的关联关系,所述第一配置信息用于所述终端设备确定所述网络设备发送第一数据所使用的目标速率匹配参数配置。
可选地,在一些实施例中,所述第一配置信息用于指示网络设备配置的每个速率匹配参数配置分别对应的CORESET信息。
可选地,所述CORESET信息为CORESET标识ID或者CORESET组索引。
可选地,在一些实施例中,一个速率匹配参数配置对应的CORESET信息包含一个比特位图,所述比特位图中的每个比特对应一个CORESET或CORESET组,用于指示所述速率匹配参数配置能否用于所对应的CORESET或CORESET组中承载的DCI所调度的PDSCH。
可选地,在一些实施例中,一个速率匹配参数配置对应的CORESET信息包含至少一个CORESET ID,所述速率匹配参数配置用于所述CORESET ID对应的CORESET中承载的DCI所调度的PDSCH;或者一个速率匹配参数配置对应的CORESET信息包含至少一个CORESET组索引,所述速率匹配参数配置用于所述CORESET组索引对应的CORESET组中承载的DCI所调度的PDSCH。
可选地,在一些实施例中,所述第一配置信息用于确定所述第一CORESET中的每个CORESET信息分别对应的目标速率匹配参数配置。
可选地,在一些实施例中,所述第一配置信息包含所述目标速率匹配参数配置在网络设备预先配置的至少一个速率匹配参数配置中的索引;或者,
所述第一配置信息包含每个CORESET分别对应的比特位图,所述比特位图中的每个比特对应一个速率匹配参数配置,用于指示所述速率匹配参数配置能否用于所述CORESET中承载的DCI所调度的PDSCH;或者
所述第一配置信息包含每个CORESET组分别对应的比特位图,所述比特位图中的每个比特对应一个速率匹配参数配置,用于指示所述速率匹配参数配置能否用于所述CORESET组中承载的DCI所调度的PDSCH。
可选地,在一些实施例中,所述方法300还包括:
所述网络设备向所述终端设备发送高层信令,所述高层信令包括所述第一配置信息。
可选地,在一些实施例中,所述高层信令为无线资源控制RRC信令或媒体接入控制MAC控制元素CE。
可选地,在一些实施例中,所述速率匹配参数配置包括以下中的至少一种:
长期演进LTE小区参考信号CRS图样,物理下行共享信道PDSCH速率匹配图样,零功率信道状态信息参考信号ZP-CSI-RS资源。
可选地,在一些实施例中,所述第一数据为物理下行共享数据信道PDSCH或PDSCH 的至少一个传输层的数据。
以上,结合图6和图7,分别从终端设备和网络设备的角度描述的根据本申请实施例的无线通信的方法,以下,结合图8,从设备交互的角度描述的根据本申请实施例的无线通信的方法。如图8所示,该方法包括如下步骤:
S410,网络设备确定所述第一配置信息;
即网络设备可以确定速率匹配参数配置与第一控制资源集CORESET的关联关系。具体实现方式可以参考方法200中的相关描述。
S420,网络设备向终端设备发送所述第一配置信息。
具体实现过程参考方法200中的相关描述,为了简洁,这里不再赘述。
S430,网络设备发送第一DCI,所述第一DCI用于调度PDSCH或PDSCH的传输层的传输。
对应地,终端设备接收所述第一DCI,进一步地,在S440中,所述终端设备可以根据所述第一DCI和所述第一配置信息,确定第一DCI调度的PDSCH或传输层所使用的目标速率匹配参数配置。具体实现过程参考方法200中的相关描述,为了简洁,这里不再赘述。
S450,所述网络设备可以根据承载所述第一DCI的CORESET,确定所述第一DCI调度的PDSCH或传输层所使用的目标速率匹配参数配置,并根据所述目标速率匹配参数配置对所述第一DCI调度的PDSCH或传输层进行速率匹配。具体实现过程参考方法200中的相关描述,为了简洁,这里不再赘述。
进一步地,在S460中,所述网络设备将速率匹配后的PDSCH或传输层发送给终端设备。
对应地,所述终端设备接收所述网络设备发送的多个速率匹配后的PDSCH或传输层。
S470,所述终端设备根据在S440中确定所述目标速率匹配参数配置对接收的PDSCH或传输层进行解速率匹配。
具体实现过程参考方法200中的相关描述,为了简洁,这里不再赘述。
上文结合图6至图8,详细描述了本申请的方法实施例,下文结合图9至图13,详细描述本申请的装置实施例,应理解,装置实施例与方法实施例相互对应,类似的描述可以参照方法实施例。
图9示出了根据本申请实施例的终端设备500的示意性框图。如图9所示,该终端设备500包括:
通信模块510,用于接收第一下行控制信息DCI,所述第一DCI用于调度第一数据的传输;以及接收所述第一数据;
处理模块520,用于根据所述第一DCI和第一配置信息,确定所述第一数据所使用的目标速率匹配参数配置,其中,所述第一配置信息用于指示速率匹配参数配置与第一控制资源集CORESET的关联关系,所述第一CORESET包含承载所述第一DCI的CORESET;以及根据所述目标速率匹配参数配置,对所述第一数据进行解速率匹配。
可选地,在一些实施例中,所述第一配置信息用于指示网络设备配置的每个速率匹配参数配置分别对应的CORESET信息。
可选地,在一些实施例中,所述CORESET信息为CORESET标识ID或者CORESET 组索引。
可选地,在一些实施例中,一个速率匹配参数配置对应的CORESET信息包含一个比特位图,所述比特位图中的每个比特对应一个CORESET或CORESET组,用于指示所述速率匹配参数配置能否用于所对应的CORESET或CORESET组中承载的DCI所调度的PDSCH。
可选地,在一些实施例中,一个速率匹配参数配置对应的CORESET信息包含至少一个CORESET ID,所述速率匹配参数配置用于所述CORESET ID对应的CORESET中承载的DCI所调度的PDSCH;或者一个速率匹配参数配置对应的CORESET信息包含至少一个CORESET组索引,所述速率匹配参数配置用于所述CORESET组索引对应的CORESET组中承载的DCI所调度的PDSCH。
可选地,在一些实施例中,所述第一配置信息用于确定所述第一CORESET中的每个CORESET信息分别对应的目标速率匹配参数配置。
可选地,在一些实施例中,所述第一配置信息包含所述目标速率匹配参数配置在网络设备预先配置的至少一个速率匹配参数配置中的索引;或者,
所述第一配置信息包含每个CORESET分别对应的比特位图,所述比特位图中的每个比特对应一个速率匹配参数配置,用于指示所述速率匹配参数配置能否用于所述CORESET中承载的DCI所调度的PDSCH;或者
所述第一配置信息包含每个CORESET组分别对应的比特位图,所述比特位图中的每个比特对应一个速率匹配参数配置,用于指示所述速率匹配参数配置能否用于所述CORESET组中承载的DCI所调度的PDSCH。
可选地,在一些实施例中,所述通信模块还用于:
接收高层信令,所述高层信令包括所述第一配置信息。
可选地,在一些实施例中,所述高层信令为无线资源控制RRC信令或媒体接入控制MAC控制元素CE。
可选地,在一些实施例中,所述速率匹配参数配置包括以下中的至少一种:
长期演进LTE小区参考信号CRS图样,物理下行共享信道PDSCH速率匹配图样,零功率信道状态信息参考信号ZP-CSI-RS资源。
可选地,在一些实施例中,所述第一数据为物理下行共享数据信道PDSCH或PDSCH的至少一个传输层的数据。
应理解,根据本申请实施例的终端设备500可对应于本申请方法实施例中的终端设备,并且终端设备500中的各个单元的上述和其它操作和/或功能分别为了实现图6所示方法200或图8所示方法400中终端设备的相应流程,为了简洁,在此不再赘述。
图10示出了根据本申请实施例的网络设备600的示意性框图。如图10所示,该网络设备600包括:
通信模块610,用于向终端设备发送第一配置信息,其中,所述第一配置信息用于指示速率匹配参数配置与第一控制资源集CORESET的关联关系,所述第一配置信息用于所述终端设备确定所述网络设备发送第一数据所使用的目标速率匹配参数配置。
可选地,在一些实施例中,所述第一配置信息用于指示网络设备配置的每个速率匹配参数配置分别对应的CORESET信息。
可选地,在一些实施例中,所述CORESET信息为CORESET标识ID或者CORESET 组索引。
可选地,在一些实施例中,一个速率匹配参数配置对应的CORESET信息包含一个比特位图,所述比特位图中的每个比特对应一个CORESET或CORESET组,用于指示所述速率匹配参数配置能否用于所对应的CORESET或CORESET组中承载的DCI所调度的PDSCH。
可选地,在一些实施例中,一个速率匹配参数配置对应的CORESET信息包含至少一个CORESET ID,所述速率匹配参数配置用于所述CORESET ID对应的CORESET中承载的DCI所调度的PDSCH;或者一个速率匹配参数配置对应的CORESET信息包含至少一个CORESET组索引,所述速率匹配参数配置用于所述CORESET组索引对应的CORESET组中承载的DCI所调度的PDSCH。
可选地,在一些实施例中,所述第一配置信息用于确定所述第一CORESET中的每个CORESET信息分别对应的目标速率匹配参数配置。
可选地,在一些实施例中,所述第一配置信息包含所述目标速率匹配参数配置在网络设备预先配置的至少一个速率匹配参数配置中的索引;或者,
所述第一配置信息包含每个CORESET分别对应的比特位图,所述比特位图中的每个比特对应一个速率匹配参数配置,用于指示所述速率匹配参数配置能否用于所述CORESET中承载的DCI所调度的PDSCH;或者
所述第一配置信息包含每个CORESET组分别对应的比特位图,所述比特位图中的每个比特对应一个速率匹配参数配置,用于指示所述速率匹配参数配置能否用于所述CORESET组中承载的DCI所调度的PDSCH。
可选地,在一些实施例中,所述通信模块610还用于:
向所述终端设备发送高层信令,所述高层信令包括所述第一配置信息。
可选地,在一些实施例中,所述高层信令为无线资源控制RRC信令或媒体接入控制MAC控制元素CE。
可选地,在一些实施例中,所述速率匹配参数配置包括以下中的至少一种:
长期演进LTE小区参考信号CRS图样,物理下行共享信道PDSCH速率匹配图样,零功率信道状态信息参考信号ZP-CSI-RS资源。
可选地,在一些实施例中,所述第一数据为物理下行共享数据信道PDSCH或PDSCH的至少一个传输层的数据。
应理解,根据本申请实施例的网络设备600可对应于本申请方法实施例中的网络设备,并且网络设备600中的各个单元的上述和其它操作和/或功能分别为了实现图7所示方法300或图9所示方法400中网络设备的相应流程,为了简洁,在此不再赘述。
图11是本申请实施例提供的一种通信设备1000示意性结构图。图11所示的通信设备1000包括处理器1010,处理器1010可以从存储器中调用并运行计算机程序,以实现本申请实施例中的方法。
可选地,如图11所示,通信设备1000还可以包括存储器1020。其中,处理器1010可以从存储器1020中调用并运行计算机程序,以实现本申请实施例中的方法。
其中,存储器1020可以是独立于处理器1010的一个单独的器件,也可以集成在处理器1010中。
可选地,如图11所示,通信设备1000还可以包括收发器1030,处理器1010可以控 制该收发器1030与其他设备进行通信,具体地,可以向其他设备发送信息或数据,或接收其他设备发送的信息或数据。
其中,收发器1030可以包括发射机和接收机。收发器1030还可以进一步包括天线,天线的数量可以为一个或多个。
可选地,该通信设备1000具体可为本申请实施例的网络设备,并且该通信设备1000可以实现本申请实施例的各个方法中由网络设备实现的相应流程,为了简洁,在此不再赘述。
可选地,该通信设备1000具体可为本申请实施例的移动终端/终端设备,并且该通信设备1000可以实现本申请实施例的各个方法中由移动终端/终端设备实现的相应流程,为了简洁,在此不再赘述。
图12是本申请实施例的芯片的示意性结构图。图12所示的芯片1100包括处理器1110,处理器1110可以从存储器中调用并运行计算机程序,以实现本申请实施例中的方法。
可选地,如图12所示,芯片1100还可以包括存储器1120。其中,处理器1110可以从存储器1120中调用并运行计算机程序,以实现本申请实施例中的方法。
其中,存储器1120可以是独立于处理器1110的一个单独的器件,也可以集成在处理器1110中。
可选地,该芯片1100还可以包括输入接口1130。其中,处理器1110可以控制该输入接口1130与其他设备或芯片进行通信,具体地,可以获取其他设备或芯片发送的信息或数据。
可选地,该芯片1100还可以包括输出接口1140。其中,处理器1110可以控制该输出接口1140与其他设备或芯片进行通信,具体地,可以向其他设备或芯片输出信息或数据。
可选地,该芯片可应用于本申请实施例中的网络设备,并且该芯片可以实现本申请实施例的各个方法中由网络设备实现的相应流程,为了简洁,在此不再赘述。
可选地,该芯片可应用于本申请实施例中的移动终端/终端设备,并且该芯片可以实现本申请实施例的各个方法中由移动终端/终端设备实现的相应流程,为了简洁,在此不再赘述。
应理解,本申请实施例提到的芯片还可以称为系统级芯片,系统芯片,芯片系统或片上系统芯片等。
图13是本申请实施例提供的一种通信系统1200的示意性框图。如图13所示,该通信系统1200包括终端设备1210和网络设备1220。
其中,该终端设备1210可以用于实现上述方法中由终端设备实现的相应的功能,以及该网络设备1220可以用于实现上述方法中由网络设备实现的相应的功能为了简洁,在此不再赘述。
应理解,本申请实施例的处理器可能是一种集成电路芯片,具有信号的处理能力。在实现过程中,上述方法实施例的各步骤可以通过处理器中的硬件的集成逻辑电路或者软件形式的指令完成。上述的处理器可以是通用处理器、数字信号处理器(Digital Signal Processor,DSP)、专用集成电路(Application Specific Integrated Circuit,ASIC)、现成可编程门阵列(Field Programmable Gate Array,FPGA)或者其他可编程逻辑器件、分立 门或者晶体管逻辑器件、分立硬件组件。可以实现或者执行本申请实施例中的公开的各方法、步骤及逻辑框图。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。结合本申请实施例所公开的方法的步骤可以直接体现为硬件译码处理器执行完成,或者用译码处理器中的硬件及软件模块组合执行完成。软件模块可以位于随机存储器,闪存、只读存储器,可编程只读存储器或者电可擦写可编程存储器、寄存器等本领域成熟的存储介质中。该存储介质位于存储器,处理器读取存储器中的信息,结合其硬件完成上述方法的步骤。
可以理解,本申请实施例中的存储器可以是易失性存储器或非易失性存储器,或可包括易失性和非易失性存储器两者。其中,非易失性存储器可以是只读存储器(Read-Only Memory,ROM)、可编程只读存储器(Programmable ROM,PROM)、可擦除可编程只读存储器(Erasable PROM,EPROM)、电可擦除可编程只读存储器(Electrically EPROM,EEPROM)或闪存。易失性存储器可以是随机存取存储器(Random Access Memory,RAM),其用作外部高速缓存。通过示例性但不是限制性说明,许多形式的RAM可用,例如静态随机存取存储器(Static RAM,SRAM)、动态随机存取存储器(Dynamic RAM,DRAM)、同步动态随机存取存储器(Synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(Double Data Rate SDRAM,DDR SDRAM)、增强型同步动态随机存取存储器(Enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(Synchlink DRAM,SLDRAM)和直接内存总线随机存取存储器(Direct Rambus RAM,DR RAM)。应注意,本文描述的系统和方法的存储器旨在包括但不限于这些和任意其它适合类型的存储器。
应理解,上述存储器为示例性但不是限制性说明,例如,本申请实施例中的存储器还可以是静态随机存取存储器(static RAM,SRAM)、动态随机存取存储器(dynamic RAM,DRAM)、同步动态随机存取存储器(synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(double data rate SDRAM,DDR SDRAM)、增强型同步动态随机存取存储器(enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(synch link DRAM,SLDRAM)以及直接内存总线随机存取存储器(Direct Rambus RAM,DR RAM)等等。也就是说,本申请实施例中的存储器旨在包括但不限于这些和任意其它适合类型的存储器。
本申请实施例还提供了一种计算机可读存储介质,用于存储计算机程序。
可选的,该计算机可读存储介质可应用于本申请实施例中的网络设备,并且该计算机程序使得计算机执行本申请实施例的各个方法中由网络设备实现的相应流程,为了简洁,在此不再赘述。
可选地,该计算机可读存储介质可应用于本申请实施例中的移动终端/终端设备,并且该计算机程序使得计算机执行本申请实施例的各个方法中由移动终端/终端设备实现的相应流程,为了简洁,在此不再赘述。
本申请实施例还提供了一种计算机程序产品,包括计算机程序指令。
可选的,该计算机程序产品可应用于本申请实施例中的网络设备,并且该计算机程序指令使得计算机执行本申请实施例的各个方法中由网络设备实现的相应流程,为了简洁,在此不再赘述。
可选地,该计算机程序产品可应用于本申请实施例中的移动终端/终端设备,并且该 计算机程序指令使得计算机执行本申请实施例的各个方法中由移动终端/终端设备实现的相应流程,为了简洁,在此不再赘述。
本申请实施例还提供了一种计算机程序。
可选的,该计算机程序可应用于本申请实施例中的网络设备,当该计算机程序在计算机上运行时,使得计算机执行本申请实施例的各个方法中由网络设备实现的相应流程,为了简洁,在此不再赘述。
可选地,该计算机程序可应用于本申请实施例中的移动终端/终端设备,当该计算机程序在计算机上运行时,使得计算机执行本申请实施例的各个方法中由移动终端/终端设备实现的相应流程,为了简洁,在此不再赘述。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
所述功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(Read-Only Memory,)ROM、随机存取存储器(Random Access Memory,RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应所述以权利要求的保护范围为准。

Claims (51)

  1. 一种无线通信的方法,其特征在于,包括:
    终端设备接收第一下行控制信息DCI,所述第一DCI用于调度第一数据的传输;
    所述终端设备接收所述第一数据;
    所述终端设备根据所述第一DCI和第一配置信息,确定所述第一数据所使用的目标速率匹配参数配置,其中,所述第一配置信息用于指示速率匹配参数配置与第一控制资源集CORESET的关联关系,所述第一CORESET包含承载所述第一DCI的CORESET;
    所述终端设备根据所述目标速率匹配参数配置,对所述第一数据进行解速率匹配。
  2. 根据权利要求1所述的方法,其特征在于,所述第一配置信息用于指示网络设备配置的每个速率匹配参数配置分别对应的CORESET信息。
  3. 根据权利要求2所述的方法,其特征在于,所述CORESET信息为CORESET标识ID或者CORESET组索引。
  4. 根据权利要求2或3所述的方法,其特征在于,一个速率匹配参数配置对应的CORESET信息包含一个比特位图,所述比特位图中的每个比特对应一个CORESET或CORESET组,用于指示所述速率匹配参数配置能否用于所对应的CORESET或CORESET组中承载的DCI所调度的PDSCH。
  5. 根据权利要求2或3所述的方法,其特征在于,一个速率匹配参数配置对应的CORESET信息包含至少一个CORESET ID,所述速率匹配参数配置用于所述CORESET ID对应的CORESET中承载的DCI所调度的PDSCH;或者
    一个速率匹配参数配置对应的CORESET信息包含至少一个CORESET组索引,所述速率匹配参数配置用于所述CORESET组索引对应的CORESET组中承载的DCI所调度的PDSCH。
  6. 根据权利要求1所述的方法,其特征在于,所述第一配置信息用于确定所述第一CORESET中的每个CORESET信息分别对应的目标速率匹配参数配置。
  7. 根据权利要求6所述的方法,其特征在于,所述第一配置信息包含所述目标速率匹配参数配置在网络设备预先配置的至少一个速率匹配参数配置中的索引;或者,
    所述第一配置信息包含每个CORESET分别对应的比特位图,所述比特位图中的每个比特对应一个速率匹配参数配置,用于指示所述速率匹配参数配置能否用于所述CORESET中承载的DCI所调度的PDSCH;或者
    所述第一配置信息包含每个CORESET组分别对应的比特位图,所述比特位图中的每个比特对应一个速率匹配参数配置,用于指示所述速率匹配参数配置能否用于所述CORESET组中承载的DCI所调度的PDSCH。
  8. 根据权利要求1至7中任一项所述的方法,其特征在于,所述方法还包括:
    所述终端设备接收高层信令,所述高层信令包括所述第一配置信息。
  9. 根据权利要求8所述的方法,其特征在于,所述高层信令为无线资源控制RRC信令或媒体接入控制MAC控制元素CE。
  10. 根据权利要求1至9中任一项所述的方法,其特征在于,所述速率匹配参数配置包括以下中的至少一种:
    长期演进LTE小区参考信号CRS图样,物理下行共享信道PDSCH速率匹配图样,零功率信道状态信息参考信号ZP-CSI-RS资源。
  11. 根据权利要求1至10中任一项所述的方法,其特征在于,所述第一数据为物理下行共享数据信道PDSCH或PDSCH的至少一个传输层的数据。
  12. 一种无线通信的方法,其特征在于,包括:
    网络设备向终端设备发送第一配置信息,其中,所述第一配置信息用于指示速率匹配参数配置与第一控制资源集CORESET的关联关系,所述第一配置信息用于所述终端设备确定所述网络设备发送第一数据所使用的目标速率匹配参数配置。
  13. 根据权利要求12所述的方法,其特征在于,所述第一配置信息用于指示网络设备配置的每个速率匹配参数配置分别对应的CORESET信息。
  14. 根据权利要求13所述的方法,其特征在于,所述CORESET信息为CORESET标识ID或者CORESET组索引。
  15. 根据权利要求13或14所述的方法,其特征在于,一个速率匹配参数配置对应的CORESET信息包含一个比特位图,所述比特位图中的每个比特对应一个CORESET或CORESET组,用于指示所述速率匹配参数配置能否用于所对应的CORESET或CORESET组中承载的DCI所调度的PDSCH。
  16. 根据权利要求13或14所述的方法,其特征在于,一个速率匹配参数配置对应的CORESET信息包含至少一个CORESET ID,所述速率匹配参数配置用于所述CORESET ID对应的CORESET中承载的DCI所调度的PDSCH;或者
    一个速率匹配参数配置对应的CORESET信息包含至少一个CORESET组索引,所述速率匹配参数配置用于所述CORESET组索引对应的CORESET组中承载的DCI所调度的PDSCH。
  17. 根据权利要求12所述的方法,其特征在于,所述第一配置信息用于确定所述第一CORESET中的每个CORESET信息分别对应的目标速率匹配参数配置。
  18. 根据权利要求17所述的方法,其特征在于,所述第一配置信息包含所述目标速率匹配参数配置在网络设备预先配置的至少一个速率匹配参数配置中的索引;或者,
    所述第一配置信息包含每个CORESET分别对应的比特位图,所述比特位图中的每个比特对应一个速率匹配参数配置,用于指示所述速率匹配参数配置能否用于所述CORESET中承载的DCI所调度的PDSCH;或者
    所述第一配置信息包含每个CORESET组分别对应的比特位图,所述比特位图中的每个比特对应一个速率匹配参数配置,用于指示所述速率匹配参数配置能否用于所述CORESET组中承载的DCI所调度的PDSCH。
  19. 根据权利要求12至18中任一项所述的方法,其特征在于,所述方法还包括:
    所述网络设备向所述终端设备发送高层信令,所述高层信令包括所述第一配置信息。
  20. 根据权利要求19所述的方法,其特征在于,所述高层信令为无线资源控制RRC信令或媒体接入控制MAC控制元素CE。
  21. 根据权利要求12至20中任一项所述的方法,其特征在于,所述速率匹配参数配置包括以下中的至少一种:
    长期演进LTE小区参考信号CRS图样,物理下行共享信道PDSCH速率匹配图样,零功率信道状态信息参考信号ZP-CSI-RS资源。
  22. 根据权利要求12至21中任一项所述的方法,其特征在于,所述第一数据为物理下行共享数据信道PDSCH或PDSCH的至少一个传输层的数据。
  23. 一种终端设备,其特征在于,包括:
    通信模块,用于接收第一下行控制信息DCI,所述第一DCI用于调度第一数据的传输;以及接收所述第一数据;
    处理模块,用于根据所述第一DCI和第一配置信息,确定所述第一数据所使用的目标速率匹配参数配置,其中,所述第一配置信息用于指示速率匹配参数配置与第一控制资源集CORESET的关联关系,所述第一CORESET包含承载所述第一DCI的CORESET;以及根据所述目标速率匹配参数配置,对所述第一数据进行解速率匹配。
  24. 根据权利要求23所述的终端设备,其特征在于,所述第一配置信息用于指示网络设备配置的每个速率匹配参数配置分别对应的CORESET信息。
  25. 根据权利要求24所述的终端设备,其特征在于,所述CORESET信息为CORESET标识ID或者CORESET组索引。
  26. 根据权利要求24或25所述的终端设备,其特征在于,一个速率匹配参数配置对应的CORESET信息包含一个比特位图,所述比特位图中的每个比特对应一个CORESET或CORESET组,用于指示所述速率匹配参数配置能否用于所对应的CORESET或CORESET组中承载的DCI所调度的PDSCH。
  27. 根据权利要求24或25所述的终端设备,其特征在于,一个速率匹配参数配置对应的CORESET信息包含至少一个CORESET ID,所述速率匹配参数配置用于所述CORESET ID对应的CORESET中承载的DCI所调度的PDSCH;或者
    一个速率匹配参数配置对应的CORESET信息包含至少一个CORESET组索引,所述速率匹配参数配置用于所述CORESET组索引对应的CORESET组中承载的DCI所调度的PDSCH。
  28. 根据权利要求23所述的终端设备,其特征在于,所述第一配置信息用于确定所述第一CORESET中的每个CORESET信息分别对应的目标速率匹配参数配置。
  29. 根据权利要求28所述的终端设备,其特征在于,所述第一配置信息包含所述目标速率匹配参数配置在网络设备预先配置的至少一个速率匹配参数配置中的索引;或者,
    所述第一配置信息包含每个CORESET分别对应的比特位图,所述比特位图中的每个比特对应一个速率匹配参数配置,用于指示所述速率匹配参数配置能否用于所述CORESET中承载的DCI所调度的PDSCH;或者
    所述第一配置信息包含每个CORESET组分别对应的比特位图,所述比特位图中的每个比特对应一个速率匹配参数配置,用于指示所述速率匹配参数配置能否用于所述CORESET组中承载的DCI所调度的PDSCH。
  30. 根据权利要求23至29中任一项所述的终端设备,其特征在于,所述通信模块还用于:
    接收高层信令,所述高层信令包括所述第一配置信息。
  31. 根据权利要求30所述的终端设备,其特征在于,所述高层信令为无线资源控制RRC信令或媒体接入控制MAC控制元素CE。
  32. 根据权利要求23至31中任一项所述的终端设备,其特征在于,所述速率匹配参数配置包括以下中的至少一种:
    长期演进LTE小区参考信号CRS图样,物理下行共享信道PDSCH速率匹配图样,零功率信道状态信息参考信号ZP-CSI-RS资源。
  33. 根据权利要求23至32中任一项所述的终端设备,其特征在于,所述第一数据为物理下行共享数据信道PDSCH或PDSCH的至少一个传输层的数据。
  34. 一种网络设备,其特征在于,包括:
    通信模块,用于向终端设备发送第一配置信息,其中,所述第一配置信息用于指示速率匹配参数配置与第一控制资源集CORESET的关联关系,所述第一配置信息用于所述终端设备确定所述网络设备发送第一数据所使用的目标速率匹配参数配置。
  35. 根据权利要求34所述的网络设备,其特征在于,所述第一配置信息用于指示网络设备配置的每个速率匹配参数配置分别对应的CORESET信息。
  36. 根据权利要求35所述的网络设备,其特征在于,所述CORESET信息为CORESET标识ID或者CORESET组索引。
  37. 根据权利要求35或36所述的网络设备,其特征在于,一个速率匹配参数配置对应的CORESET信息包含一个比特位图,所述比特位图中的每个比特对应一个CORESET或CORESET组,用于指示所述速率匹配参数配置能否用于所对应的CORESET或CORESET组中承载的DCI所调度的PDSCH。
  38. 根据权利要求35或36所述的网络设备,其特征在于,一个速率匹配参数配置对应的CORESET信息包含至少一个CORESET ID,所述速率匹配参数配置用于所述CORESET ID对应的CORESET中承载的DCI所调度的PDSCH;或者
    一个速率匹配参数配置对应的CORESET信息包含至少一个CORESET组索引,所述速率匹配参数配置用于所述CORESET组索引对应的CORESET组中承载的DCI所调度的PDSCH。
  39. 根据权利要求34所述的网络设备,其特征在于,所述第一配置信息用于确定所述第一CORESET中的每个CORESET信息分别对应的目标速率匹配参数配置。
  40. 根据权利要求39所述的网络设备,其特征在于,所述第一配置信息包含所述目标速率匹配参数配置在网络设备预先配置的至少一个速率匹配参数配置中的索引;或者,
    所述第一配置信息包含每个CORESET分别对应的比特位图,所述比特位图中的每个比特对应一个速率匹配参数配置,用于指示所述速率匹配参数配置能否用于所述CORESET中承载的DCI所调度的PDSCH;或者
    所述第一配置信息包含每个CORESET组分别对应的比特位图,所述比特位图中的每个比特对应一个速率匹配参数配置,用于指示所述速率匹配参数配置能否用于所述CORESET组中承载的DCI所调度的PDSCH。
  41. 根据权利要求34至40中任一项所述的网络设备,其特征在于,所述通信模块还用于:
    向所述终端设备发送高层信令,所述高层信令包括所述第一配置信息。
  42. 根据权利要求41所述的网络设备,其特征在于,所述高层信令为无线资源控制RRC信令或媒体接入控制MAC控制元素CE。
  43. 根据权利要求34至42中任一项所述的网络设备,其特征在于,所述速率匹配参数配置包括以下中的至少一种:
    长期演进LTE小区参考信号CRS图样,物理下行共享信道PDSCH速率匹配图样,零功率信道状态信息参考信号ZP-CSI-RS资源。
  44. 根据权利要求34至43中任一项所述的网络设备,其特征在于,所述第一数据 为物理下行共享数据信道PDSCH或PDSCH的至少一个传输层的数据。
  45. 一种终端设备,其特征在于,包括:处理器和存储器,该存储器用于存储计算机程序,所述处理器用于调用并运行所述存储器中存储的计算机程序,执行如权利要求1至11中任一项所述的方法。
  46. 一种网络设备,其特征在于,包括:处理器和存储器,该存储器用于存储计算机程序,所述处理器用于调用并运行所述存储器中存储的计算机程序,执行如权利要求12至22中任一项所述的方法。
  47. 一种芯片,其特征在于,包括:处理器,用于从存储器中调用并运行计算机程序,使得安装有所述芯片的设备执行如权利要求1至11中任一项所述的方法,或如权利要求12至22中任一项所述的方法。
  48. 一种计算机可读存储介质,其特征在于,用于存储计算机程序,所述计算机程序使得计算机执行如权利要求1至11中任一项所述的方法,或如权利要求12至22中任一项所述的方法。
  49. 一种计算机程序产品,其特征在于,包括计算机程序指令,该计算机程序指令使得计算机执行如权利要求1至11中任一项所述的方法,或如权利要求12至22中任一项所述的方法。
  50. 一种计算机程序,其特征在于,所述计算机程序使得计算机执行如权利要求1至11中任一项所述的方法,或如权利要求12至22中任一项所述的方法。
  51. 一种计算机可读存储介质,其特征在于,用于存储计算机程序,所述计算机程序使得计算机执行如权利要求1至11中任一项所述的方法,或如权利要求12至22中任一项所述的方法。
PCT/CN2019/102913 2019-08-27 2019-08-27 无线通信的方法、终端设备和网络设备 WO2021035556A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
PCT/CN2019/102913 WO2021035556A1 (zh) 2019-08-27 2019-08-27 无线通信的方法、终端设备和网络设备
CN201980095892.9A CN113748729A (zh) 2019-08-27 2019-08-27 无线通信的方法、终端设备和网络设备
EP19943511.6A EP3955668A4 (en) 2019-08-27 2019-08-27 WIRELESS COMMUNICATION METHOD, TERMINAL DEVICE AND NETWORK DEVICE
US17/564,260 US20220123912A1 (en) 2019-08-27 2021-12-29 Wireless communication method, terminal device and network device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2019/102913 WO2021035556A1 (zh) 2019-08-27 2019-08-27 无线通信的方法、终端设备和网络设备

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/564,260 Continuation US20220123912A1 (en) 2019-08-27 2021-12-29 Wireless communication method, terminal device and network device

Publications (1)

Publication Number Publication Date
WO2021035556A1 true WO2021035556A1 (zh) 2021-03-04

Family

ID=74684955

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/102913 WO2021035556A1 (zh) 2019-08-27 2019-08-27 无线通信的方法、终端设备和网络设备

Country Status (4)

Country Link
US (1) US20220123912A1 (zh)
EP (1) EP3955668A4 (zh)
CN (1) CN113748729A (zh)
WO (1) WO2021035556A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024060970A1 (zh) * 2022-09-22 2024-03-28 华为技术有限公司 通信方法及装置

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11990993B2 (en) * 2020-03-02 2024-05-21 Qualcomm Incorporated Rate matching between uplink and downlink
CN116707726A (zh) * 2022-02-24 2023-09-05 维沃移动通信有限公司 传输方法、终端及网络侧设备

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109863809A (zh) * 2016-11-01 2019-06-07 Lg电子株式会社 用于在无线通信系统中传输动态可变大小的下行链路控制信息的方法及其装置
US20190200332A1 (en) * 2017-02-14 2019-06-27 Lg Electronics Inc. Method and apparatus for transmitting and receiving a data
WO2019160375A1 (en) * 2018-02-16 2019-08-22 Samsung Electronics Co., Ltd. Reference signal configuration in a telecommunication system

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10911201B2 (en) * 2018-06-08 2021-02-02 FG Innovation Company Limited Methods and apparatuses for multi-TRP transmission

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109863809A (zh) * 2016-11-01 2019-06-07 Lg电子株式会社 用于在无线通信系统中传输动态可变大小的下行链路控制信息的方法及其装置
US20190200332A1 (en) * 2017-02-14 2019-06-27 Lg Electronics Inc. Method and apparatus for transmitting and receiving a data
WO2019160375A1 (en) * 2018-02-16 2019-08-22 Samsung Electronics Co., Ltd. Reference signal configuration in a telecommunication system

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
See also references of EP3955668A4 *
ZTE; SANECHIPS: "On remaining issues of rate matching", 3GPP DRAFT; R1-1800141 ON REMAINING ISSUES FOR RATE MATCHING, 13 January 2018 (2018-01-13), Vancouver, Canada, pages 1 - 5, XP051384631 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024060970A1 (zh) * 2022-09-22 2024-03-28 华为技术有限公司 通信方法及装置

Also Published As

Publication number Publication date
EP3955668A4 (en) 2022-04-13
US20220123912A1 (en) 2022-04-21
CN113748729A (zh) 2021-12-03
EP3955668A1 (en) 2022-02-16

Similar Documents

Publication Publication Date Title
US11128416B2 (en) Feedback information transmission method and apparatus
KR102445177B1 (ko) 다운링크 제어 정보(dci)의 전송 방법, 장치 및 네트워크 기기
WO2021012265A1 (zh) 用于传输数据的方法和终端设备
WO2020155179A1 (zh) 传输信号的方法、终端设备和网络设备
US11296855B2 (en) Communication method, terminal device, and network device
WO2020168577A1 (zh) 传输上行反馈信息的方法、终端设备和网络设备
US20220123912A1 (en) Wireless communication method, terminal device and network device
WO2019237241A1 (zh) 一种下行信号的传输方法及终端设备
WO2020243930A1 (zh) 数据传输的方法、终端设备和网络设备
CN113490278B (zh) 下行信号传输的方法和设备
WO2020248101A1 (zh) 上报csi的方法和终端设备
US20230403057A1 (en) Wireless communication method, terminal device and network device
WO2020191559A1 (zh) 传输数据信道的方法和终端设备
US11863493B2 (en) Method for transmitting feedback information, terminal device, and network device
WO2021056135A1 (zh) 传输上行控制信息的方法和终端设备
WO2020093399A1 (zh) 无线通信方法、网络设备和终端设备
CN112119595B (zh) 一种信号加扰方法及装置、通信设备
EP3965495A1 (en) Information processing method, network device, and user equipment
US20220095344A1 (en) Method and terminal equipment for harq feedback
WO2020143743A1 (zh) 接收数据的方法和装置
WO2020252669A1 (zh) 一种数据传输处理方法、设备及存储介质
CN118234037A (zh) 传输数据信道的方法和终端设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19943511

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019943511

Country of ref document: EP

Effective date: 20211109

NENP Non-entry into the national phase

Ref country code: DE