WO2023246744A1 - 一种通信方法及装置 - Google Patents

一种通信方法及装置 Download PDF

Info

Publication number
WO2023246744A1
WO2023246744A1 PCT/CN2023/101284 CN2023101284W WO2023246744A1 WO 2023246744 A1 WO2023246744 A1 WO 2023246744A1 CN 2023101284 W CN2023101284 W CN 2023101284W WO 2023246744 A1 WO2023246744 A1 WO 2023246744A1
Authority
WO
WIPO (PCT)
Prior art keywords
transmission opportunity
video frame
transmission
type
access network
Prior art date
Application number
PCT/CN2023/101284
Other languages
English (en)
French (fr)
Inventor
王珏
范强
唐小伟
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2023246744A1 publication Critical patent/WO2023246744A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N21/00Selective content distribution, e.g. interactive television or video on demand [VOD]
    • H04N21/20Servers specifically adapted for the distribution of content, e.g. VOD servers; Operations thereof
    • H04N21/23Processing of content or additional data; Elementary server operations; Server middleware
    • H04N21/238Interfacing the downstream path of the transmission network, e.g. adapting the transmission rate of a video stream to network bandwidth; Processing of multiplex streams
    • H04N21/2385Channel allocation; Bandwidth allocation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/12Wireless traffic scheduling
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal

Definitions

  • the present application relates to the field of communication technology, and in particular, to a communication method and device.
  • XR extended reality
  • AR augmented reality
  • VR virtual reality
  • mixed reality mixed reality
  • This application provides a communication method and device for transmitting video frames between access network equipment and terminal equipment through semi-static scheduling.
  • embodiments of the present application provide a communication method, which can be applied to a terminal device or a module (such as a chip) in the terminal device.
  • the terminal device receives First indication information from the access network device, the first indication information indicates the time-frequency position of M transmission opportunities, and the amount of data that each of the M transmission opportunities can carry matches the first type of video frame
  • the data amount of the first type video frame is less than the data amount of the second type video frame; wherein, the M transmission opportunities include the first transmission opportunity, and the first transmission opportunity corresponds to the first video frame, M is a positive integer; if the first video frame belongs to the second type of video frame, then the first video frame is sent to the access network device at the second transmission opportunity, and the second transmission opportunity is The amount of data that can be carried matches the data amount of the second type of video frame.
  • the amount of data that each of the M transmission opportunities can carry matches the data amount of the first type of video frame. That is to say, the amount of data that each of the M transmission opportunities can carry does not match the data amount of the first type of video frame.
  • the data amount of the second type of video frame can be understood as “matching” can be understood as “greater than or equal to”, and “unmatching” can be understood as “less than”. Therefore, the amount of data that each of the M transmission opportunities can carry matches the data amount of the first type of video frame, which may mean: the amount of data that each of the M transmission opportunities can carry is greater than or equal to the first type of video frame.
  • the data amount of one type of video frame, and the amount of data that each of the M transmission opportunities can carry is smaller than the data amount of the second type of video frame.
  • the XR service may include different types of video frames (such as I frames and P frames).
  • the data amounts of I frames and P frames are different.
  • the access network equipment configures the transmission timing for the terminal equipment, usually In this case, the amount of data that can be carried by multiple configured transmission opportunities is the same. Therefore, there will be a problem that the amount of data that can be carried by the transmission opportunity does not match the data amount of the video frame, which may lead to waste of resources or video frames.
  • the transmission delay is relatively large (see the description in Figure 4 for details).
  • the access network equipment indicates the time-frequency positions of M transmission opportunities to the terminal equipment.
  • the M transmission opportunities correspond to M video frames one-to-one.
  • the transmission opportunities corresponding to the video frames can be used to transmit the video frames, such as the One transmission opportunity corresponds to the first video frame.
  • the terminal device may send the data to the access network device at the second transmission opportunity.
  • the first video frame thus effectively solves the problem of mismatch between the amount of data that can be carried by the transmission timing and the amount of data in the video frame, allowing access network equipment and terminal equipment to transmit video frames through semi-static scheduling.
  • the method further includes: if the first video frame belongs to the first type of video frame, sending the said access network device at the first transmission opportunity. First video frame.
  • the modulation and coding strategy MCS corresponding to the second transmission opportunity is the same as the MCS corresponding to the first transmission opportunity.
  • the method further includes: determining based on the time-frequency position of the first transmission opportunity and the data amount of the first type video frame and the data amount of the second type video frame.
  • the time-frequency position of the second transmission opportunity For example, terminal equipment can The time domain length and/or the frequency domain length of the first transmission opportunity are expanded according to the ratio of the data amount of the second type video frame to the data amount of the first type video frame to obtain the second transmission opportunity, and in the second The second type video frame is sent on the transmission occasion.
  • the terminal device determines the time-frequency position of the second transmission opportunity based on the time-frequency position and ratio of the first transmission opportunity, it is easy to ensure that the amount of data that the second transmission opportunity can carry matches the data of the second type of video frame. quantity.
  • the method further includes: receiving second indication information from the access network device, the second indication information indicating the time-frequency positions of N transmission opportunities, and the N transmission opportunities
  • the amount of data that each transmission opportunity can carry matches the data amount of the second type video frame, the N transmission opportunities include the second transmission opportunity, and N is a positive integer.
  • the terminal device can directly determine the time-frequency position of the second transmission opportunity according to the instruction of the access network device.
  • the first transmission opportunity and the second transmission opportunity completely overlap in the frequency domain; the time domain starting position of the first transmission opportunity and the time domain of the second transmission opportunity The starting position is the same, or the time domain end position of the first transmission opportunity is the same as the time domain end position of the second transmission opportunity; the time domain length of the second transmission opportunity is greater than the time domain length of the first transmission opportunity. field length.
  • the terminal device can obtain the second transmission opportunity by extending the time domain length of the first transmission opportunity, which is relatively simple to implement.
  • the first transmission opportunity includes T1 time units in the time domain
  • the second transmission opportunity includes T2 time units in the time domain
  • T2 ceil[( ⁇ ) ⁇ T1]
  • T2 ceil( ⁇ ) ⁇ T1]
  • ceil means rounding up
  • means the ratio of the data amount of the second type video frame to the data amount of the first type video frame
  • T1 and T2 are both Positive integer.
  • the first transmission opportunity and the second transmission opportunity completely overlap in the time domain; the frequency domain starting positions of the first transmission opportunity and the second transmission opportunity are the same, or The frequency domain end positions of the first transmission opportunity and the second transmission opportunity are the same; the frequency domain width of the second transmission opportunity is greater than the frequency domain width of the first transmission opportunity.
  • the terminal device can obtain the second transmission opportunity by expanding the frequency domain width of the first transmission opportunity, which is relatively simple to implement.
  • the first transmission opportunity includes P1 resource blocks RB in the frequency domain
  • the second transmission opportunity includes P2 RBs in the frequency domain
  • P2 ceil[( ⁇ ) ⁇ P1]
  • P2 ceil( ⁇ ) ⁇ P1]
  • ceil means rounding up
  • means the ratio of the data amount of the second type video frame to the data amount of the first type video frame
  • P1 and P2 are both Positive integer.
  • the time-frequency position of the second transmission opportunity is the same as the time-frequency position of the first transmission opportunity.
  • the method further includes: determining the MCS corresponding to the first transmission opportunity and the data amount of the first type video frame and the data amount of the second type video frame. MCS corresponding to the second transmission opportunity. In this way, since the terminal device determines the MCS corresponding to the second transmission opportunity based on the MCS corresponding to the first transmission opportunity and the ratio, it is easy to ensure that the amount of data carried by the second transmission opportunity matches the data amount of the second type of video frame.
  • the method further includes: receiving third indication information from the access network device, the third indication information indicating the MCS corresponding to the second transmission opportunity, or the second The offset between the MCS corresponding to the transmission opportunity and the MCS corresponding to the first transmission opportunity.
  • the terminal device can directly determine the MCS corresponding to the second transmission opportunity according to the instruction of the access network device.
  • the method further includes: receiving fourth indication information from the access network device, where the fourth indication information indicates the MCS corresponding to the first transmission opportunity.
  • the method further includes: if the first transmission opportunity is the n*K+1th transmission opportunity among the M transmission opportunities, determining that the first video frame belongs to The second type of video frame; wherein, n is an integer greater than or equal to 0, and K is the number of video frames included in the transmission period of the second type of video frame.
  • the M transmission opportunities also include a third transmission opportunity located before the first transmission opportunity, the third transmission opportunity corresponds to a second video frame, and the second video frame belongs to the The second type of video frame; the method further includes: if the time interval between the time domain starting position of the first transmission opportunity and the time domain starting position of the third transmission opportunity is equal to the first duration, If the first duration is equal to the transmission period of the second type video frame, it is determined that the first video frame belongs to the second type video frame.
  • the first video frame includes a type identifier, and the type identifier is used to indicate that the first video frame belongs to the second type of video frame.
  • the terminal device can determine the type of the first video frame according to the type identifier included in the first video frame, it is convenient to improve the accuracy of the type of the first video frame determined by the terminal device.
  • the first data packet of the first video frame includes the type identifier.
  • the type identifier is carried in the first data packet of the first video frame, it is convenient for the terminal device to determine the type of the video frame as early as possible.
  • embodiments of the present application provide a communication method.
  • the method can be applied to access network equipment or modules (such as chips) in the access network equipment.
  • the method can also be applied to implement all or part of the access network.
  • Logic modules or software for device functionality are examples of devices that can be used to implement all or part of the access network.
  • the access network equipment sends first indication information to the terminal equipment, and the first indication information indicates the time-frequency positions of M transmission opportunities, and the M transmission opportunities
  • the amount of data that each transmission opportunity can carry matches the first type of video
  • the data amount of the frame the data amount of the first type video frame is less than the data amount of the second type video frame; wherein, the M transmission opportunities include a first transmission opportunity, and the first transmission opportunity corresponds to the first video frame , M is a positive integer; if the first video frame belongs to the second type of video frame, then the first video frame is sent to the access network device at the second transmission opportunity, and the second transmission opportunity
  • the amount of data that can be carried matches the data amount of the second type of video frame.
  • the modulation and coding strategy MCS corresponding to the second transmission opportunity is the same as the MCS corresponding to the first transmission opportunity.
  • the method further includes: determining based on the time-frequency position of the first transmission opportunity and the data amount of the first type video frame and the data amount of the second type video frame. The time-frequency position of the second transmission opportunity.
  • the method further includes: sending second indication information to the terminal device, the second indication information indicating the time-frequency positions of N transmission opportunities, each of the N transmission opportunities The amount of data that a transmission opportunity can carry matches the data amount of the second type of video frame, the N transmission opportunities include the second transmission opportunity, and N is a positive integer.
  • the first transmission opportunity and the second transmission opportunity completely overlap in the frequency domain; the time domain starting position of the first transmission opportunity and the time domain of the second transmission opportunity The starting position is the same, or the time domain end position of the first transmission opportunity is the same as the time domain end position of the second transmission opportunity; the time domain length of the second transmission opportunity is greater than the time domain length of the first transmission opportunity. field length.
  • the first transmission opportunity includes T1 time units in the time domain
  • the second transmission opportunity includes T2 time units in the time domain
  • T2 ceil[( ⁇ ) ⁇ T1]
  • T2 ceil( ⁇ ) ⁇ T1]
  • ceil means rounding up
  • means the ratio of the data amount of the second type video frame to the data amount of the first type video frame
  • T1 and T2 are both Positive integer.
  • the first transmission opportunity and the second transmission opportunity completely overlap in the time domain; the frequency domain starting positions of the first transmission opportunity and the second transmission opportunity are the same, or The frequency domain end positions of the first transmission opportunity and the second transmission opportunity are the same; the frequency domain width of the second transmission opportunity is greater than the frequency domain width of the first transmission opportunity.
  • the first transmission opportunity includes P1 resource blocks RB in the frequency domain
  • the second transmission opportunity includes P2 RBs in the frequency domain
  • P2 ceil[( ⁇ ) ⁇ P1]
  • P2 ceil( ⁇ ) ⁇ P1]
  • ceil means rounding up
  • means the ratio of the data amount of the second type video frame to the data amount of the first type video frame
  • P1 and P2 are both Positive integer.
  • the time-frequency position of the second transmission opportunity is the same as the time-frequency position of the first transmission opportunity.
  • the method further includes: determining the MCS corresponding to the first transmission opportunity and the data amount of the first type video frame and the data amount of the second type video frame. MCS corresponding to the second transmission opportunity.
  • the method further includes: sending third indication information to the terminal device, the third indication information indicating the MCS corresponding to the second transmission opportunity, or the MCS corresponding to the second transmission opportunity.
  • the method further includes: sending fourth indication information to the terminal device, where the fourth indication information indicates the MCS corresponding to the first transmission opportunity.
  • the method further includes: if the first transmission opportunity is the n*K+1th transmission opportunity among the M transmission opportunities, determining that the first video frame belongs to The second type of video frame; wherein, n is an integer greater than or equal to 0, and K is the number of video frames included in the transmission period of the second type of video frame.
  • the M transmission opportunities also include a third transmission opportunity located before the first transmission opportunity, the third transmission opportunity corresponds to a second video frame, and the second video frame belongs to the The second type of video frame; the method further includes: if the time interval between the time domain starting position of the first transmission opportunity and the time domain starting position of the third transmission opportunity is equal to the first duration, If the first duration is equal to the transmission period of the second type video frame, it is determined that the first video frame belongs to the second type video frame.
  • the first video frame includes a type identifier, and the type identifier is used to indicate that the first video frame belongs to the second type of video frame.
  • the first data packet of the first video frame includes the type identifier.
  • embodiments of the present application provide a communication method, which can be applied to a terminal device or a module (such as a chip) in the terminal device. Taking this method as an example, it is applied to a terminal device.
  • the terminal device receives First indication information from the access network device, the first indication information indicates the time-frequency position of M transmission opportunities, and the amount of data that each of the M transmission opportunities can carry matches the first type of video frame The data amount of the first type video frame is less than the data amount of the second type video frame; wherein, The M transmission opportunities include a first transmission opportunity, the first transmission opportunity corresponds to a first video frame, and M is a positive integer; if the first video frame belongs to the second type of video frame, then in the Send the first video frame to the access network device on a first transmission opportunity and a second transmission opportunity, and the total amount of data that can be carried by the first transmission opportunity and the second transmission opportunity matches the second type The amount of data in the video frame.
  • the method further includes: if the first video frame belongs to the first type of video frame, sending the said access network device at the first transmission opportunity. First video frame.
  • the MCS corresponding to the second transmission opportunity is the same as the MCS corresponding to the first transmission opportunity.
  • the method further includes: determining based on the time-frequency position of the first transmission opportunity and the data amount of the first type video frame and the data amount of the second type video frame. The time-frequency position of the second transmission opportunity.
  • the method further includes: receiving second indication information from the access network device, the second indication information indicating the time-frequency positions of N transmission opportunities, and the N transmission opportunities Including the second transmission opportunity, N is a positive integer.
  • T1 and T3 are both positive integers.
  • P1 and P3 are both positive integers.
  • the method further includes: if the first transmission opportunity is the n*K+1th transmission opportunity among the M transmission opportunities, determining that the first video frame belongs to The second type of video frame; wherein, n is an integer greater than or equal to 0, and K is the number of video frames included in the transmission period of the second type of video frame.
  • the M transmission opportunities also include a third transmission opportunity located before the first transmission opportunity, the third transmission opportunity corresponds to a second video frame, and the second video frame belongs to the The second type of video frame; the method further includes: if the time interval between the time domain starting position of the first transmission opportunity and the time domain starting position of the third transmission opportunity is equal to the first duration, If the first duration is equal to the transmission period of the second type video frame, it is determined that the first video frame belongs to the second type video frame.
  • the first video frame includes a type identifier, and the type identifier is used to indicate that the first video frame belongs to the second type of video frame.
  • the first data packet of the first video frame includes the type identifier.
  • embodiments of the present application provide a communication method.
  • the method can be applied to access network equipment or modules (such as chips) in the access network equipment.
  • the method can also be applied to realize all or part of the access network.
  • Logic modules or software for device functionality can be applied to realize all or part of the access network.
  • the access network equipment sends first indication information to the terminal equipment, and the first indication information indicates the time-frequency positions of M transmission opportunities, and the M transmission opportunities
  • the amount of data that each transmission opportunity can carry in the transmission opportunities matches the data amount of the first type of video frame, and the data amount of the first type of video frame is smaller than the data amount of the second type of video frame;
  • the M transmission The timing includes a first transmission timing, the first transmission timing corresponds to the first video frame, and M is a positive integer; if the first video frame belongs to the second type of video frame, then between the first transmission timing and the The first video frame from the terminal device is received upward at two transmission opportunities, and the total amount of data that can be carried by the first transmission opportunity and the second transmission opportunity matches the data amount of the second type video frame.
  • the method further includes: if the first video frame belongs to the first type of video frame, sending the said access network device at the first transmission opportunity. First video frame.
  • the MCS corresponding to the second transmission opportunity is the same as the MCS corresponding to the first transmission opportunity.
  • the method further includes: determining based on the time-frequency position of the first transmission opportunity and the data amount of the first type video frame and the data amount of the second type video frame. The time-frequency position of the second transmission opportunity.
  • the method further includes: sending second indication information to the terminal device, the second indication information indicating the time-frequency positions of N transmission opportunities, the N transmission opportunities including the At the second transmission opportunity, N is a positive integer.
  • T1 and T3 are both positive integers.
  • P1 and P3 are both positive integers.
  • the method further includes: if the first transmission opportunity is the n*K+1th transmission opportunity among the M transmission opportunities, determining that the first video frame belongs to The second type of video frame; wherein, n is an integer greater than or equal to 0, and K is the number of video frames included in the transmission period of the second type of video frame.
  • the M transmission opportunities also include a third transmission opportunity located before the first transmission opportunity, the third transmission opportunity corresponds to a second video frame, and the second video frame belongs to the The second type of video frame; the method further includes: if the time interval between the time domain starting position of the first transmission opportunity and the time domain starting position of the third transmission opportunity is equal to the first duration, If the first duration is equal to the transmission period of the second type video frame, it is determined that the first video frame belongs to the second type video frame.
  • the first video frame includes a type identifier, and the type identifier is used to indicate that the first video frame belongs to the second type of video frame.
  • the first data packet of the first video frame includes the type identifier.
  • the present application provides a communication device.
  • the communication device is provided with the function of implementing the first aspect or the third aspect.
  • the communication device includes an operation corresponding to performing the operations related to the first aspect or the third aspect.
  • Modules, units or means, the modules, units or means can be implemented by software, or implemented by hardware, or can also be implemented by hardware executing corresponding software.
  • the communication device includes a processing unit and a communication unit, where the communication unit can be used to send and receive signals to implement communication between the communication device and other devices; the processing unit can be used to perform the communication Some internal operations of the device.
  • the functions performed by the processing unit and the communication unit may correspond to the operations related to the above-mentioned first aspect or the third aspect.
  • the communication device includes a processor, and the processor can be coupled to a memory.
  • the memory may store necessary computer programs or instructions to implement the functions involved in the first aspect or the third aspect.
  • the processor can execute the computer program or instructions stored in the memory. When the computer program or instructions are executed, the communication device implements any possible design or implementation in the first aspect or the third aspect. Methods.
  • the communication device includes a processor and a memory, and the memory can store the necessary computer programs or instructions to implement the functions involved in the first aspect or the third aspect.
  • the processor can execute the computer program or instructions stored in the memory. When the computer program or instructions are executed, the communication device implements any possible design or implementation in the first aspect or the third aspect. Methods.
  • the communication device includes a processor and an interface circuit, wherein the processor is configured to communicate with other devices through the interface circuit and execute any possible design in the above first aspect or the third aspect or Methods in the implementation.
  • the present application provides a communication device.
  • the communication device is capable of implementing the functions related to the second aspect or the fourth aspect.
  • the communication device includes an operation corresponding to performing the operations related to the second aspect or the fourth aspect.
  • Modules, units or means, the functions, units or means can be implemented by software, or implemented by hardware, or can be implemented by hardware executing corresponding software.
  • the communication device includes a processing unit and a communication unit, where the communication unit can be used to send and receive signals to implement communication between the communication device and other devices.
  • the communication unit is used to send messages to a terminal.
  • the device sends system information; the processing unit may be used to perform some internal operations of the communication device.
  • the functions performed by the processing unit and the communication unit may correspond to the operations related to the above-mentioned second aspect or fourth aspect.
  • the communication device includes a processor, and the processor can be coupled to a memory.
  • the memory may store necessary computer programs or instructions to implement the functions involved in the second aspect or the fourth aspect.
  • the processor can execute the computer program or instructions stored in the memory. When the computer program or instructions are executed, the communication device implements any possible design or implementation of the second aspect or the fourth aspect. method.
  • the communication device includes a processor and a memory, and the memory can store the necessary computer programs or instructions to implement the functions involved in the second aspect or the fourth aspect.
  • the processor can execute the computer program or instructions stored in the memory. When the computer program or instructions are executed, the communication device implements any possible design or implementation of the second aspect or the fourth aspect. method.
  • the communication device includes a processor and an interface circuit, wherein the processor is configured to communicate with other devices through the interface circuit and execute any possible design or implementation of the second aspect or the fourth aspect. method within the method.
  • the processor can be implemented by hardware or software.
  • the processor can be a logic circuit, an integrated circuit, etc.; when implemented by software, the processor can be a general processor that is implemented by reading software codes stored in a memory.
  • the above processors may be one or more, and the memories may be one or more.
  • the memory can be integrated with the processor, or the memory can be provided separately from the processor. During the specific implementation process, the memory and the processor can be integrated on the same chip, or they can be respectively provided on different chips. The embodiments of this application do not limit the type of memory and the arrangement method of the memory and the processor.
  • the present application provides a communication system, which may include the communication device provided in the fifth aspect and the communication device provided in the sixth aspect.
  • the present application provides a computer-readable storage medium.
  • Computer-readable instructions are stored in the computer storage medium.
  • the computer reads and executes the computer-readable instructions, the computer is caused to execute the above-mentioned first aspect to Any possible design method of the fourth aspect.
  • the present application provides a computer program product, which when a computer reads and executes the computer program product, causes the computer to execute the method in any possible design of the above-mentioned first to fourth aspects.
  • the present application provides a chip.
  • the chip includes a processor.
  • the processor is coupled to a memory and is used to read and execute a software program stored in the memory to implement the above first to fourth aspects. any possible design approach.
  • Figure 1 is a schematic diagram of the architecture of a communication system applied in an embodiment of the present application
  • Figure 2 is a schematic diagram of the transmission of multiple video frames provided by an embodiment of the present application.
  • Figure 3 is a schematic diagram of the mismatch in the time domain between the period of transmission opportunities and the transmission period of video frames provided by the embodiment of the present application;
  • Figure 4 is a schematic diagram showing the mismatch between the amount of data that can be carried by the transmission opportunity provided by the embodiment of the present application and the amount of data in the video frame;
  • Figure 5 is a schematic flow chart corresponding to the communication method provided by the embodiment of the present application.
  • Figure 6 is a schematic diagram of M transmission opportunities provided by the embodiment of the present application.
  • Figure 7 is a schematic diagram of extended transmission timing using extension rule 1 provided by an embodiment of the present application.
  • Figure 8 is a schematic diagram of extended transmission timing using extension rule 2 provided by an embodiment of the present application.
  • Figure 9 is a schematic diagram of N transmission opportunities provided by the embodiment of the present application.
  • Figure 10 is another schematic diagram of N transmission opportunities provided by the embodiment of the present application.
  • Figure 11 is a schematic flow chart corresponding to the communication method provided by the embodiment of the present application.
  • Figure 12 is a schematic flow chart corresponding to the communication method provided by the embodiment of the present application.
  • Figure 13 is a schematic diagram of the second transmission timing provided by the embodiment of the present application.
  • Figure 14 is another schematic diagram of N transmission opportunities provided by the embodiment of the present application.
  • Figure 15 is another schematic diagram of N transmission opportunities provided by the embodiment of the present application.
  • Figure 16 is a schematic flow chart corresponding to the communication method provided by the embodiment of the present application.
  • Figure 17 is a possible exemplary block diagram of the device involved in the embodiment of the present application.
  • Figure 18 is a schematic structural diagram of a terminal device provided by an embodiment of the present application.
  • Figure 19 is a schematic structural diagram of a network device provided by an embodiment of the present application.
  • FIG 1 is a schematic architectural diagram of a communication system applied in an embodiment of the present application.
  • the communication system 1000 includes a wireless access network 100 and a core network 200.
  • the communication system 1000 may also include the Internet 300.
  • the radio access network 100 may include at least one radio access network device, such as 110a and 110b in Figure 1, and may also include at least one terminal device, such as 120a-120j in Figure 1.
  • 110a is a base station
  • 110b is a micro station
  • 120a, 120e, 120f and 120j are mobile phones
  • 120b is a car
  • 120c is a gas pump
  • 120d is a home access point (HAP) arranged indoors or outdoors.
  • 120g is a laptop
  • 120h is a printer
  • 120i is a drone.
  • terminal equipment can be connected to wireless access network equipment, and wireless access network equipment can be connected to core network equipment in the core network.
  • the core network equipment and the radio access network equipment can be independent and different physical devices, or the functions of the core network equipment and the logical functions of the radio access network equipment can be integrated on the same physical device, or they can be one physical device. It integrates the functions of some core network equipment and some functions of wireless access network equipment. Between terminal equipment and terminal equipment and between wireless access network equipment and wireless access network equipment, Connect to each other via wired or wireless means.
  • Figure 1 is only a schematic diagram.
  • the communication system may also include other equipment, such as wireless relay equipment and wireless backhaul equipment, which are not shown in Figure 1 .
  • the wireless access network equipment and terminal equipment are introduced below.
  • Wireless access network equipment can also be called access network equipment.
  • Access network equipment can be base stations, evolved base stations (evolved NodeB, eNodeB), transmission reception points (transmission reception points, TRP), fifth generation (5th generation, Next generation base station (next generation NodeB, gNB) in 5G) mobile communication system, base station in sixth generation (6th generation, 6G) mobile communication system, base station or wireless fidelity (WiFi) in future mobile communication system ) access node in the system; it can also be a module or unit that completes some functions of the base station, for example, it can be a centralized unit (central unit, CU) or a distributed unit (distributed unit, DU).
  • the access network equipment may be a macro base station (110a in Figure 1), a micro base station or an indoor station (110b in Figure 1), or a relay node or a donor node.
  • the device used to implement the function of the access device may be an access network device; it may also be a device that can support the access network device to implement the function, such as a chip system.
  • the device may be installed on the access network device.
  • the chip system can be composed of chips, or can also include chips and other discrete devices.
  • the functions of the access network device can also be implemented through multiple network function entities, and each network function entity is used to implement part of the functions of the access network device.
  • These network function entities can be network elements in hardware devices, software functions running on dedicated hardware, or virtualized functions instantiated on a platform (such as a cloud platform).
  • a platform such as a cloud platform.
  • Terminal equipment can also be called terminal, user equipment (UE), mobile station, mobile terminal, etc.
  • Terminal devices can be widely used in various scenarios, such as device-to-device (D2D), vehicle to everything (V2X) communication, machine-type communication (MTC), and the Internet of Things (internet of things, IOT), virtual reality, augmented reality, industrial control, autonomous driving, telemedicine, smart grid, smart furniture, smart office, smart wear, smart transportation, smart city, etc.
  • Terminal devices can be mobile phones, tablets, computers with wireless transceiver functions, wearable devices, vehicles, drones, helicopters, airplanes, ships, robots, robotic arms, smart home devices, etc. The embodiments of this application do not limit the specific technology and specific equipment form used by the terminal equipment.
  • the device for realizing the function of the terminal device may be a terminal device; it may also be a device that can support the terminal device to realize the function, such as a chip system, and the device may be installed in the terminal device.
  • the technical solution provided by the embodiments of the present application is described by taking the device for realizing the functions of the terminal device being a terminal device as an example.
  • the mobile phones in Figure 1 include 120a, 120e, 120f and 120j.
  • the mobile phone 120a can access the base station 110a, connect to the car 120b, directly communicate with the mobile phone 120e and access the HAP;
  • the mobile phone 120e can access the HAP and directly communicate with the mobile phone 120a;
  • the mobile phone 120f can access the micro station 110b.
  • the mobile phone 120j can control the drone 120i.
  • the helicopter or drone 120i in Figure 1 can be configured as a mobile base station.
  • the terminal device 120i is a base station; but for the base station 110a , 120i is a terminal device, that is, communication between 110a and 120i is through a wireless air interface protocol.
  • communication between 110a and 120i can also be carried out through an interface protocol between base stations.
  • relative to 110a, 120i is also a base station. Therefore, both the wireless access network and the terminal equipment can be collectively called communication devices.
  • 110a and 110b in Figure 1 can be called communication devices with base station functions
  • 120a-120j in Figure 1 can be called communication devices with terminal equipment functions. device.
  • Access network equipment and terminal equipment can be fixed-position or removable. Access network equipment and terminal equipment can be deployed on land, indoors or outdoors, handheld or vehicle-mounted; they can also be deployed on water; they can also be deployed on aircraft, balloons and satellites in the sky. The embodiments of this application do not limit the application scenarios of access network equipment and terminal equipment.
  • Communication between access network equipment and terminal equipment, between access network equipment and access network equipment, and between terminal equipment and terminal equipment can be carried out through licensed spectrum, or through unlicensed spectrum, or at the same time through authorized spectrum.
  • Spectrum and unlicensed spectrum for communication you can communicate through spectrum below 6 gigahertz (GHz), you can communicate through spectrum above 6 GHz, and you can communicate using spectrum below 6 GHz and spectrum above 6 GHz simultaneously.
  • the embodiments of the present application do not limit the spectrum resources used for wireless communication.
  • the communication system shown in Figure 1 above can support various radio access technologies (RAT).
  • the communication system shown in Figure 1 can be a fourth generation (4th generation, 4G) communication system (also known as Long term evolution (long term evolution, LTE) communication system), 5G communication system (also called new radio (NR) communication system), or future-oriented evolution system, such as 6G communication system.
  • 4G fourth generation
  • LTE Long term evolution
  • NR new radio
  • 6G communication system 6G communication system.
  • the communication system and business scenarios described in the embodiments of this application are for the purpose of explaining the technical solutions of the embodiments of this application more clearly, and do not constitute a limitation on the technical solutions provided by the embodiments of this application.
  • Those of ordinary skill in the art will know that with the communication With the evolution of the system and the emergence of new business scenarios, the technical solutions provided in the embodiments of this application are also applicable to similar technical problems.
  • Video can be composed of consecutive images (or pictures, photos, etc.) played continuously. When 24 images are played quickly in one second, the human eye will think that this is a continuous picture (ie, video).
  • the frame rate refers to the number of images played per second. For example, when the frame rate is 24 frames per second (24fps), it means 24 images are played per second. When the frame rate is 60fps, it means 60 images are played per second. images, and so on.
  • a video frame can be understood as an image, that is, a video frame can include multiple data packets corresponding to an image, and the data amount of a video frame is the sum of the data amounts of multiple data packets included in the video frame.
  • ms milliseconds
  • Figure 2 is a schematic diagram of the transmission of multiple video frames.
  • Video frame 1 to video frame 8 in Figure 2 are eight consecutive video frames.
  • the types of video frames include I frames, P frames, and B frames.
  • the I frame is an intra-frame coded image frame, which is an independent frame that carries all its own information. It can be decoded independently without referring to other images. It can be simply understood as a static picture;
  • the P frame is a predictive coded image frame, which requires Encoding can be done by referring to the previous I frame, which represents the difference between the current frame and the previous frame (the previous frame may be an I frame or a P frame). When decoding, you need to superimpose the previously cached picture on top of the one defined by this frame. differences to generate the final picture.
  • the B frame is a bidirectional predictive coding frame, that is, the B frame records the difference between this frame and the previous and next frames; that is, to decode the B frame, not only the previous cached picture must be obtained, but also the subsequent pictures must be decoded.
  • the final picture is obtained by superimposing it with the data of this frame.
  • the data amount of different video frames belonging to the same type is basically the same.
  • the data amount of an I frame can be greater than the data amount of a P frame
  • the data amount of a P frame can be greater than the data amount of a B frame.
  • Video frames of the same service may include I frames and P frames, or may include I frames and B frames, or may include I frames, P frames, and B frames.
  • the video frames of the XR service may include I frames and P frames.
  • an image group can include multiple continuous video frames, and the multiple video frames included in each image group can belong to different types.
  • each image group The first video frame is an I frame, and the remaining video frames are P frames.
  • the number of video frames included in the GOP can be called the size of the image group.
  • the duration corresponding to one image group can be equal to 4*16.67ms (ie, 66.68ms), and the transmission period of the I frame can be equal to the duration corresponding to one image group (ie, 66.68ms).
  • the access network device can send control information to the terminal device through the control channel, thereby allocating transmission parameters of the data channel to the terminal device.
  • the control channel can be, for example, a physical downlink control channel (PDCCH), and the control information can be, for example, downlink control information (DCI);
  • the data channel for example, can be a physical downlink shared channel (physical downlink shared channel, PDSCH) or physical uplink shared channel (PUSCH).
  • control information may indicate the time-frequency location to which the data channel is mapped (for example, the time domain symbol and frequency domain resource block (RB) mapped to the data channel), so that the access network equipment and the terminal equipment can In terms of time and frequency, downlink data (such as data carried by PDSCH) and/or uplink data (such as data carried by PUSCH) can be transmitted through the data channel.
  • RB time domain symbol and frequency domain resource block
  • the access network equipment can allocate periodic uplink and downlink transmission resources to the terminal equipment.
  • the semi-persistent scheduling used to allocate uplink transmission resources may be called configured grant (CG), and the semi-persistent scheduling used to allocate downlink transmission resources may be called semi-persistent scheduling (SPS).
  • CG configured grant
  • SPS semi-persistent scheduling
  • the transmission resource used for an uplink transmission can be called an uplink transmission opportunity (which can be referred to as a transmission opportunity).
  • the uplink transmission opportunity can also be replaced by other possible descriptions, such as CG resources or PUSCH resources or PUSCH opportunity or PUSCH timing.
  • the transmission resource used for a downlink transmission can be called a downlink transmission opportunity (can be referred to as a transmission opportunity), and the downlink transmission opportunity can also be replaced by It may be described, such as SPS resources or PDSCH resources or PDSCH opportunities or PDSCH opportunities.
  • the access network device can first configure at least a set of partial parameters of the transmission timing (such as cycle, etc.) for the terminal device through radio resource control (RRC) messages.
  • RRC radio resource control
  • the RRC message may include the sps-Config field corresponding to each set of transmission opportunities in at least one set of transmission opportunities, and parameters such as the period of each set of transmission opportunities may be carried in the sps-Config field corresponding to each set of transmission opportunities.
  • a set of transmission opportunities may include multiple transmission opportunities that appear periodically.
  • the access network device may send an activation command to the terminal device, and the activation command is used to activate the set of transmission opportunities.
  • the activation command may be, for example, the DCI in the PDCCH, and the DCI may be scrambled using a configured scheduled radio network temporary identifier (CS-RNTI).
  • CS-RNTI configured scheduled radio network temporary identifier
  • the activation command may include another part of the parameters of the set of transmission opportunities, for example, the other part of the parameters includes parameter 1 and parameter 2.
  • Parameter 1 indicates the frequency domain position of each transmission opportunity in the set of transmission opportunities. The frequency domain positions of different transmission opportunities belonging to the same set of transmission opportunities are the same; in other words, different transmission opportunities belonging to the same set of transmission opportunities completely overlap in the frequency domain.
  • the frequency domain width of the transmission opportunity may refer to the number of consecutive RBs included in the frequency domain of the transmission opportunity.
  • Parameter 2 indicates the time domain position of each transmission opportunity in the set of transmission opportunities. Different transmission opportunities belonging to the same set of transmission opportunities have the same time domain length.
  • the time domain length of a transmission opportunity can refer to the symbols that the transmission opportunity lasts in the time domain. number.
  • parameter 1 can indicate the frequency domain position of the transmission opportunity in various ways.
  • Parameter 1 includes a bitmap, which indicates the resource block group (RBG) included in the transmission opportunity
  • Method 2 Parameter 1 includes a resource indication value (RIV), RIV Indicates the starting RB of the transmission opportunity (can be expressed as RB start ) and the number of consecutive RBs in the frequency domain (can be expressed as L RB ).
  • RIV resource indication value
  • Parameter 2 can indicate the time domain position of the transmission opportunity in various ways.
  • parameter 2 includes the time domain resource assignment (TDRA) field, and the TDRA field includes K0, start and length indicator value (SLIV).
  • K0 indicates the time slot offset value between the PDCCH used to carry the activation command and the first transmission opportunity in the set of transmission opportunities
  • SLIV indicates the start of the first transmission opportunity in the set of transmission opportunities. The starting symbol position and the time domain length of each transmission opportunity in the set of transmission opportunities.
  • the terminal device can determine the time domain starting position of the Nth transmission opportunity through the following formula, that is, the time domain starting position of the Nth transmission opportunity appears in which system frame and which time slot, or it can be understood as: If SFN and slot number in the frame satisfies the following formula, then the terminal device can determine that the time domain starting position of the Nth transmission opportunity is located in the time slot with the slot number in the system frame with the system frame number SFN:
  • the value range of SFN is 0, 1, 2...1023, the value range of slot number in the frame is 0, 1, 2...numberOfSlotsPerFrame-1, numberOfSlotsPerFrame represents the number of time slots included in a system frame, and periodicity is The period of the set of transmission opportunities configured by the RRC message, modulo represents the modulo operation.
  • CG can support two types, namely CG type 1 and CG type 2.
  • the difference between CG type 1 and CG type 2 is the way to activate the transmission opportunity.
  • CG type 1 means that the access network device configures the period of each set of transmission opportunities in at least one set of transmission opportunities and indicates the specific time-frequency position through RRC messages.
  • parameter 1 and parameter 2 are used to indicate the specific time-frequency position.
  • the period parameter, parameter 1 and parameter 2 are all carried in the RRC message; once the terminal device correctly receives the RRC message, the configuration will take effect immediately (that is, the configuration is activated).
  • CG type 2 is similar to SPS, that is, the access network device can configure parameters such as the cycle of at least one set of transmission opportunities through RRC messages, and then, for each set of transmission opportunities in the at least one set of transmission opportunities, the access network device can be activated through DCI And indicate the time-frequency position of each transmission opportunity in the set of transmission opportunities.
  • the terminal device can send video frames to the access network device on the set of transmission opportunities.
  • the transmission period of the video frame may not be an integer multiple of 1ms. For example, when the frame rate is 60fps, the transmission period of the video frame is approximately 16.67ms, thus making the period of the transmission opportunity It may not match the transmission period of the video frame in the time domain, which may result in a large transmission delay of the video frame and a waste of transmission resources.
  • the period of a set of transmission opportunities configured by the access network device for the terminal device is 16ms.
  • the set of transmission opportunities may include transmission opportunity k, transmission opportunity k+1, and transmission opportunity k+2. , transmission timing k+3, etc.
  • the terminal device can send video frame k at transmission opportunity k; when video frame k+1 arrives, because The arrival time of video frame k+1 is before the start position of the time domain of transmission opportunity k+1, so the terminal device can send video frame k+1 at transmission opportunity k+1; when video frame k+2 arrives, due to The arrival time of video frame k+2 is after the starting position of the time domain of transmission opportunity k+2, so the terminal device cannot send video frame k+2 at transmission opportunity k+2, but only at transmission opportunity k+3. Send video frame k+2.
  • embodiments of the present application provide a variety of semi-static scheduling enhancement technologies to match the period of transmission opportunities with the transmission period of video frames in the time domain.
  • the semi-static scheduling enhancement technology provided by the embodiments of this application is introduced below in combination with Configuration Mode 1 and Configuration Mode 2.
  • the access network device can configure a set of transmission opportunities with irregular periods for the terminal device.
  • the access network device configures a set of reference cycles and cycle increment sequences of transmission opportunities for the terminal device.
  • the duration of the reference period can be obtained by rounding down the transmission period of the video frame.
  • the periodic increment sequence can include multiple periodic increments.
  • the periodic increment sequence includes 3 periodic increments, which means that every 3
  • the duration of the first period in a period is equal to the sum of the duration of the base period and the first period increment in the period increment sequence.
  • the duration of the second period is equal to the sum of the duration of the base period and the second period in the period increment sequence.
  • the sum of period increments, the length of the third period is equal to the sum of the length of the base period and the third period increment in the period increment sequence.
  • the length of the reference period can be 16ms, and the period increment can be [1ms, 1ms, 0].
  • the access network The length of the irregular period configured by the device for the terminal device is [17ms, 17ms, 16ms, 17ms, 17ms, 16ms,...].
  • the above implementation is only an example.
  • the access network device can also configure other possible parameters to configure a set of irregular periodic transmission opportunities for the terminal device. This is not limited in the embodiments of the present application.
  • the access network device can configure multiple sets of transmission opportunities with the same period but different time domain starting positions for the terminal device. For example, when the transmission period of the video frame is 16.67ms, the access network equipment can configure 3 sets of transmission opportunities for the terminal device. The periods of the 3 sets of transmission opportunities are all 50ms. The time domain starting positions of the 3 sets of transmission opportunities are The intervals are 17ms, 17ms, 16ms.
  • the access network equipment can indicate to the terminal equipment the modulation and coding scheme (MCS) corresponding to the transmission opportunity, and then the access network equipment and the terminal equipment can transmit video frames on the transmission opportunity according to the MCS corresponding to the transmission opportunity.
  • MCS modulation and coding scheme
  • the access network device can indicate to the terminal device the MCS corresponding to the transmission opportunity configured for the terminal device, and then the terminal device can send video frames to the access network device at the transmission opportunity based on the MCS corresponding to the transmission opportunity.
  • the access network device can send indication information 1 and indication information 2 to the terminal device.
  • the indication information 1 can be used to indicate the target MCS table
  • the indication information 2 can be used to indicate the target MCS in the target MCS table.
  • the indication information 2 includes the index value of the target MCS; furthermore, the terminal device selects from multiple MCS tables according to the indication information 1. Select the target MCS table from the target MCS table, and determine the target MCS from the target MCS table according to the instruction information 2.
  • the target MCS is the MCS corresponding to the transmission opportunity.
  • the target MCS table may include multiple MCS indexes (such as MCS index 0 to MCS index 27), and each MCS index may correspond to a modulation order and a target code rate. For example, if the target MCS index value included in the indication information 2 is 18, the terminal device can determine that the target MCS is MCS18. For example, the corresponding modulation order of MCS18 is 4 and the corresponding target code rate is 490. MCS18 can also be recorded as MCS. (4,490).
  • Different transmission timings belonging to the same set of transmission timings correspond to the same MCS.
  • the access network device configures the period and other parameters of the set of transmission opportunities through RRC messages, and activates the set of transmission opportunities through DCI, then when the access network device When the device indicates to the terminal device the MCS corresponding to the set of transmission opportunities through indication information 1 and indication information 2, the indication information 1 can be carried in the above-mentioned RRC message.
  • the indication information 1 can be carried in the RRC message the SPS corresponding to the set of transmission opportunities.
  • -Config field indicating that information 2 can be carried in the above-mentioned DCI.
  • the access network device configures a set of transmission opportunities for the XR service in the manner described in configuration method 1 above, and configures the transmission opportunities according to the data volume of the I frame (such as configuring the time-frequency position of the transmission opportunity and the MCS corresponding to the transmission opportunity). ), that is, the amount of data that the transmission opportunity can carry matches the data amount of the I frame, but does not match the data amount of the P frame. As shown in situation a in Figure 4, the amount of data that transmission opportunities 1 to 5 can carry all match the data amount of an I frame. Since transmission opportunity 2, transmission opportunity 3 and transmission opportunity 4 are used to transmit P frames, P The data amount of the frame is smaller than the data amount of the I frame. Therefore, using this solution will result in a waste of resources at transmission opportunities 2, 3, and 4.
  • the amount of data that the transmission opportunity can carry matches the data amount of the video frame may mean that the amount of data that the transmission opportunity can carry is equal to the data amount of the video frame, or the amount of data that the transmission opportunity can carry is greater than the data amount of the video frame.
  • the access network device configures a set of transmission opportunities for the XR service in the manner described in configuration method 1 above, and configures the transmission opportunities according to the data amount of the P frame (such as configuring the time-frequency position of the transmission opportunity and the corresponding MCS), that is, the amount of data that the transmission opportunity can carry matches the data amount of the P frame, but does not match the data amount of the I frame.
  • the amount of data that can be carried by transmission opportunities 1 to 5 all matches the data amount of the P frame. Therefore, the data of the I frame cannot be transferred at transmission opportunity 1 (or transmission opportunity 5). The packet transmission is completed.
  • the data packet of the I frame needs to be continued to be transmitted at the next transmission opportunity of transmission opportunity 1 (that is, transmission opportunity 2), which will cause the transmission of subsequent video frames to be delayed, resulting in the transmission of video frames.
  • transmission opportunity 2 that is, transmission opportunity 2
  • the access network equipment configures multiple sets of transmission opportunities for the XR service in the manner described in Configuration Mode 2 above.
  • the access network equipment can configure multiple sets of transmission opportunities that can carry different amounts of data, when a GOP continues When the duration and period of transmission opportunities are different, I frames may be transmitted on different sets of transmission opportunities. There will still be a problem of mismatch between the amount of data that the transmission opportunities can carry and the amount of data of the video frame described above.
  • uplink transmission that is, the terminal device sends video frames to the access network device through semi-static scheduling
  • the terminal device sends video frames to the access network device through semi-static scheduling
  • Figure 5 is a schematic flowchart corresponding to the communication method provided by the embodiment of the present application.
  • the method is illustrated by taking the terminal device and the access network device as the execution subjects of the interaction gesture as an example, but this application does not limit the execution subjects of the interaction gesture.
  • the terminal device in Figure 5 can also be a chip, chip system, or processor that supports the terminal device to implement the method;
  • the access network device in Figure 5 can also be a chip that supports the access network device to implement the method.
  • chip system, or processor it can also be a logic module or software that can realize all or part of the functions of the access network equipment.
  • the method includes the following steps:
  • the access network device sends first indication information to the terminal device.
  • the first indication information indicates the time-frequency positions of M transmission opportunities; accordingly, the terminal device can receive the first indication information.
  • the M transmission opportunities may correspond to the M video frames of the first service one-to-one, and the transmission opportunities corresponding to the video frames may be used to transmit the video frames, as shown in Figure 6 .
  • the M transmission opportunities include a first transmission opportunity, and the first transmission opportunity corresponds to the first video frame of the first service.
  • the M video frames of the first service may include first type video frames and second type video frames.
  • the first service is an XR service
  • the first type of video frame is a P frame
  • the second type of video frame is an I frame.
  • the first indication information may indicate the time-frequency positions of the M transmission opportunities in various ways. For example, when M transmission opportunities can belong to a set of transmission opportunities, the access network device can use the configuration method 1 in the previous article to configure M transmissions for the terminal device according to the transmission cycle of the video frame of the first service (such as 16.67ms). opportunity.
  • the first indication information may include relevant parameters involved in configuration mode 1.
  • the first indication information may include period parameters (such as reference period and period increment) of M transmission opportunities, parameter 1 and parameter 2. , Parameter 1 and Parameter 2 can be found in the previous description.
  • the access network equipment can also use the video frame of the first service to For the transmission period (such as 16.67ms), use the configuration method 2 mentioned above to configure M transmission opportunities for the terminal device.
  • the first indication information may include relevant parameters involved in configuration mode 2. For example, M transmission opportunities belong to 3 sets of transmission opportunities, then the first indication information may include period parameters of these 3 sets of transmission opportunities, and 3 Parameter 1 and parameter 2 corresponding to each set of transmission timings in the set of transmission timings.
  • the access network device may obtain the service information of the first service.
  • the service information of the first service may include at least one of the following: the transmission period, frame rate, and second type of the video frame of the first service.
  • the ratio of the data amount of the second type video frame to the data amount of the first type video frame may refer to: the data amount of any second type video frame of the first service to the data amount of any first type video frame.
  • the ratio of The ratio of the average data amount of the second type video frame to the average data amount of W3 first type video frames, where W2 and W3 are integers greater than 1, and W2 and W3 may be the same or different.
  • the access network device may obtain the service information of the first service.
  • the terminal device sends the service information of the first service to the access network device, or the access network device obtains the service information of the first service from the core network device. .
  • the terminal device sends the first video frame to the access network device at the second transmission opportunity.
  • the access network device sends the first video frame to the access network device at the second transmission opportunity.
  • the first video frame from the terminal device is received on the transmitter.
  • the amount of data that the second transmission opportunity can carry matches the amount of data of the second type of video frame.
  • the terminal device determines that the first video frame belongs to the second type of video frame, it can determine the second transmission opportunity (such as determining the time-frequency position of the second transmission opportunity and the second transmission opportunity corresponding MCS), and sends a transport block to the access network device at the second transmission opportunity, where the transport block includes all data packets of the first video frame.
  • the access network equipment determines that the first video frame belongs to the second type of video frame, it can determine the second transmission opportunity (such as determining the time-frequency position of the second transmission opportunity and the second transmission opportunity). corresponding MCS), and receives the transmission block from the terminal device on the second transmission opportunity.
  • the terminal device may determine that the first video frame belongs to the second type of video frame. Three possible methods are described below in combination with Method 1 to Method 3.
  • the first video frame included in each image group of the first service is the second type video frame. Therefore, the n*K+1th video frame of the first service is the second type video frame. .
  • n is an integer greater than or equal to 0
  • K is the number of video frames included in each image group of the first service
  • K is the first type of video frames included in the transmission period of the second type of video frame. and the total number of video frames of the second type.
  • the M transmission opportunities correspond to the M video frames of the first service one-to-one, that is, the first transmission opportunity among the M transmission opportunities corresponds to the first video frame of the first service, and the second one of the M transmission opportunities corresponds to the first video frame of the first service.
  • the transmission timing corresponds to the second video frame of the first service, and so on. Since the n*K+1th video frame of the first service is a second type video frame, if the terminal device determines that the first transmission opportunity is the n*K+1th transmission opportunity among the M transmission opportunities, it can It is determined that the first video frame corresponding to the first transmission opportunity belongs to the second type of video frame.
  • the M transmission opportunities may also include a third transmission opportunity located before the first transmission opportunity.
  • the third transmission opportunity corresponds to the second video frame, and the second video frame belongs to the second type of video frame.
  • the terminal device determines that the time interval between the time domain starting position of the first transmission opportunity and the time domain starting position of the third transmission opportunity is equal to the first duration, the first duration is equal to the second type of video If the frame transmission period (or the corresponding duration of an image group) is determined, it can be determined that the first video frame belongs to the second type of video frame.
  • the terminal device can maintain a timer, and the timer's duration is the first duration.
  • the terminal device can determine that the video frame corresponding to the first transmission opportunity among the M transmission opportunities (such as the first transmission opportunity after the terminal device receives the activation command) belongs to the second type of video frame, and in the first of the transmission opportunities Start the timer on symbols. For each subsequent transmission opportunity, if the timer is running on the first symbol of the transmission opportunity, the terminal device can determine that the video frame corresponding to the transmission opportunity belongs to the first type of video frame; if the timer on the first symbol of the transmission opportunity is When the timer times out on the first symbol, the terminal device can determine the transmission opportunity. The corresponding video frame belongs to the second type of video frame, and the timer is restarted on the first symbol of the transmission opportunity.
  • the terminal device determines that the interval between the first transmission opportunity and the third transmission opportunity is K-1 transmission opportunities (or in other words, the interval between the first video frame and the second video frame is K-1 video frame), it can be determined that the first video frame belongs to the second type of video frame.
  • the terminal device can maintain a counter.
  • the terminal device can start counting from the first transmission opportunity among the M transmission opportunities (the count value is 1).
  • the terminal device can Clear the count value to zero and restart counting for the next transmission opportunity. In this way, the terminal device can determine that the video frame corresponding to the transmission opportunity with a count value of 1 belongs to the second type of video frame.
  • the first video frame may include a type identifier.
  • the type identifier is used to indicate that the first video frame belongs to the second type of video frame.
  • the terminal device may then determine that the first video frame belongs to the second type of video frame based on the type identifier carried by the first video frame. .
  • the type identifier may include type identifier 1 and type identifier 2, where type identifier 1 indicates a first type video frame and type identifier 2 indicates a second type video frame.
  • Each video frame of the first service may carry a type identifier, where the first type video frame carries type identifier 1, and the second type video frame carries type identifier 2. Then, the terminal device can determine the type to which the video frame belongs based on the type identifier carried by each video frame.
  • the type identifier indicates a second type video frame.
  • the second type video frame of the first service carries a type identifier, and the first type video frame does not carry a type identifier.
  • the terminal device can determine that the video frame belongs to the second type of video frame.
  • the type identifier indicates the first type of video frame.
  • the first type video frame of the first service carries a type identifier
  • the second type video frame does not carry a type identifier.
  • the terminal device can determine that the video frame belongs to the second type of video frame.
  • the type identifier may be carried in the first data packet of the video frame, thereby facilitating the terminal device to determine the type of the video frame as early as possible.
  • the terminal device may use at least one of the above methods 1, 2, and 3 to determine the type to which the video frame belongs. For example, the terminal device can use method 1 and method 3 to determine the type of the video frame; usually, the judgment result of method 1 is consistent with the judgment result of method 3. If there is a conflict between the judgment result of method 1 and the judgment result of method 3, the terminal device can adopt the judgment result of method 3 and use the I frame determined by method 3 as the first video frame of the new GOP.
  • the access network equipment may also use at least one of the above-mentioned methods 1, 2 and 3 to determine the type of the video frame.
  • the access network device may use the same method as the terminal device to determine that the first video frame belongs to the second type of video frame.
  • the method to be used may be predefined by the protocol, or the access network device may notify the terminal of the first video frame.
  • the method to be used for device indication The specific indication method is not limited.
  • the access network device can indicate via RRC message or media access control (MAC) control element (CE) or DCI.
  • MAC media access control
  • CE control element
  • the terminal device determining the second transmission opportunity may mean that the terminal device determines the time-frequency position of the second transmission opportunity and the MCS corresponding to the second transmission opportunity.
  • the MCS corresponding to the second transmission opportunity is the same as the MCS corresponding to the first transmission opportunity.
  • the MCS corresponding to the second transmission opportunity can be predefined by the protocol to be the same as the MCS corresponding to the first transmission opportunity, or the access network device can also indicate to the terminal device that the MCS corresponding to the second transmission opportunity is the same as the MCS corresponding to the first transmission opportunity.
  • the MCS is the same; furthermore, when the access network device indicates the MCS corresponding to the first transmission opportunity to the terminal device, the terminal device can obtain the MCS corresponding to the second transmission opportunity based on the MCS corresponding to the first transmission opportunity.
  • the access network device may respectively indicate to the terminal device the MCS corresponding to the first transmission opportunity and the MCS corresponding to the second transmission opportunity, and the respectively indicated MCSs are the same.
  • the MCS corresponding to the transmission opportunity indicated by the access network device to the terminal device please refer to the previous description.
  • the terminal device can determine the time-frequency position of the second transmission opportunity in the following two possible ways.
  • the terminal device may determine the time-frequency position of the second transmission opportunity based on the time-frequency position of the first transmission opportunity and the data amount of the first type video frame and the data amount of the second type video frame. For example, the terminal device can expand the first transmission opportunity in the time domain and/or frequency domain according to the ratio of the data amount of the second type video frame to the data amount of the first type video frame to obtain the second transmission opportunity.
  • specific extension There can be many types of rules, such as the following expansion rules 1 to 3.
  • Extension rule 1 the terminal device can extend the time domain length of the first transmission opportunity according to the ratio (for example, extend it backward) to obtain the second transmission opportunity.
  • the terminal device may send a transport block on the second transmission opportunity, and the transport block includes all data packets of the first video frame.
  • the first transmission opportunity and the second transmission opportunity completely overlap in the frequency domain; the time domain starting position of the first transmission opportunity and the time domain starting position of the second transmission opportunity are the same.
  • the time domain length of the second transmission opportunity is greater than the time domain length of the first transmission opportunity.
  • the first transmission opportunity includes T1 time units in the time domain
  • the second transmission opportunity includes T2 time units in the time domain
  • T2 ceil[( ⁇ ) ⁇ T1]
  • T2 ceil( ⁇ ) ⁇ T1]
  • ceil means rounding up
  • means the ratio of the data amount of the second type video frame to the data amount of the first type video frame
  • T1 and T2 are both positive integers.
  • Expansion rule 2 the terminal device can expand the frequency domain width of the first transmission opportunity according to the ratio to obtain the second transmission opportunity.
  • the terminal device may send a transport block on the second transmission opportunity, and the transport block includes all data packets of the first video frame.
  • the first transmission opportunity and the second transmission opportunity completely overlap in the time domain.
  • the starting positions of the first transmission opportunity and the second transmission opportunity in the frequency domain are the same.
  • the frequency domain width of the transmission opportunity is greater than the frequency domain width of the first transmission opportunity.
  • the first transmission opportunity and the second transmission opportunity completely overlap in the time domain, the frequency domain end positions of the first transmission opportunity and the second transmission opportunity are the same, and the frequency domain of the second transmission opportunity is the same.
  • the domain width is greater than the frequency domain width of the first transmission opportunity.
  • the first transmission opportunity includes P1 resource blocks RB in the frequency domain
  • the second transmission opportunity includes P2 RBs in the frequency domain
  • P2 ceil[( ⁇ ) ⁇ P1]
  • P2 ceil( ⁇ ) ⁇ P1
  • P1 and P2 are all positive integers.
  • expansion rule 3 the terminal device simultaneously determines the time domain length and frequency domain width of the first transmission opportunity based on the ratio. Expand to obtain the second transmission opportunity.
  • the access network equipment can also determine the time-frequency position of the second transmission opportunity in the above manner 1.
  • the expansion rule adopted by the access network device may be the same as the expansion rule adopted by the terminal device.
  • the extension rules to be used can be predefined by the protocol, or the access network device can indicate the extension rules to be used to the terminal device.
  • the specific instruction method is not limited.
  • the access network device can use RRC messages or MAC CE or DCI to indicate.
  • the terminal device can extend the time domain length and/or frequency domain length of the first transmission opportunity to obtain a second transmission opportunity, and send the second type of video frame on the second transmission opportunity. Therefore, on the one hand, compared with the situation a in Figure 4, the problem of resource waste can be effectively avoided; on the other hand, compared with the situation b in Figure 4 (that is, the video frame corresponding to the transmission opportunity 1 is an I frame , since the amount of data that transmission opportunity 1 can carry is less than the data amount of an I frame, it is necessary to postpone the unsent data packets on transmission opportunity 1 to transmission opportunity 2).
  • the second transmission opportunity obtained by extension It is located before the next transmission opportunity of the first transmission opportunity among the M transmission opportunities (in other words, the time domain end position of the second transmission opportunity is before the time domain start position of the next transmission opportunity).
  • the first transmission opportunity is as shown in Figure In the transmission opportunity 1 of scenario b in 4, the second transmission opportunity is before transmission opportunity 2. That is to say, the terminal device can finish sending the data packet of the I frame at the second transmission opportunity without having to send the data packet of the I frame.
  • the transmission is postponed to transmission opportunity 2, which can effectively reduce the transmission delay of the video frame.
  • the access network device may send second indication information to the terminal device.
  • the second indication information indicates the time-frequency position of N transmission opportunities.
  • the amount of data that each of the N transmission opportunities can carry matches the second type of video frame.
  • the amount of data, N transmission opportunities include the second transmission opportunity, N is a positive integer.
  • the N transmission opportunities may correspond to the second type video frames of the first service one-to-one.
  • N transmission opportunities can belong to a set of transmission opportunities.
  • the access network device can configure N transmissions for the terminal device according to the transmission cycle of the second type video frame of the first service (such as 66.68ms) using the configuration method 1 in the previous article. timing; alternatively, the N transmission timings can also belong to multiple sets of transmission timings.
  • the access network equipment can also adopt the configuration method 2 in the previous article based on the transmission cycle of the second type video frame of the first service (such as 66.68ms).
  • the terminal device configures N transmission opportunities. Since the n*K+1th video frame of the first service is the second type video frame, the n+1th transmission opportunity among the N transmission opportunities can correspond to the n*K+1th video frame of the first service. Video frames.
  • the n+1th transmission opportunity among the N transmission opportunities and the n*K+1th transmission opportunity among the M transmission opportunities may satisfy the following condition 1 or condition 2.
  • Condition 1 The n+1th transmission opportunity and the n*K+1th transmission opportunity completely overlap in the frequency domain, and the time domain starting positions of the n+1th transmission opportunity and the n*K+1th transmission opportunity Similarly, the time domain length of the n+1th transmission opportunity is greater than the time domain length of the n*K+1th transmission opportunity, as shown in Figure 9.
  • the n*K+1th transmission opportunity includes T1 time units in the time domain
  • the n+1th transmission opportunity includes T2 time units in the time domain.
  • T1 and T2 is as described above.
  • the frequency domain width of the n+1th transmission opportunity is greater than the frequency domain of the n*K+1th transmission opportunity Width, see Figure 10.
  • the n*K+1th transmission opportunity includes P1 resource block RBs in the frequency domain
  • the n+1th transmission opportunity includes P2 RBs in the frequency domain. The relationship between P1 and P2 is as described above.
  • the terminal device determines that the first video frame corresponding to the first transmission opportunity belongs to the second type of video frame (that is, the first video frame is the n*K+1th video frame of the first service), the terminal device can determine N transmission The n+1th transmission opportunity among the opportunities is the second transmission opportunity, and the first video frame is sent on the second transmission opportunity.
  • the access network device when the access network device determines that the first video frame corresponding to the first transmission opportunity belongs to the second type of video frame, the access network device can determine the nth of the N transmission opportunities. +1 transmission opportunity is the second transmission opportunity, and the first video frame is received at the second transmission opportunity.
  • the time-frequency position of the second transmission opportunity is the same as the time-frequency position of the first transmission opportunity.
  • the time-frequency position of the second transmission opportunity may be predefined by the protocol to be the same as the time-frequency position of the first transmission opportunity, or the access network device may indicate to the terminal device that the time-frequency position of the second transmission opportunity is the same as the time-frequency position of the first transmission opportunity.
  • the time-frequency position of the opportunity is the same; furthermore, when the access network device indicates the time-frequency position of the first transmission opportunity to the terminal device, the terminal device can obtain the time-frequency position of the second transmission opportunity based on the time-frequency position of the first transmission opportunity.
  • the terminal device can determine the MCS corresponding to the second transmission opportunity in the following two possible ways, and then the terminal device can determine the MCS corresponding to the second transmission opportunity according to the time-frequency position of the second transmission opportunity and the MCS corresponding to the second transmission opportunity. Send video frames to the access network equipment at the transmission opportunity.
  • the terminal device may determine the MCS corresponding to the second transmission opportunity based on the MCS corresponding to the first transmission opportunity. For example, the terminal device may determine the MCS corresponding to the second transmission opportunity based on the MCS corresponding to the first transmission opportunity and the ratio of the data amount of the second type video frame to the data amount of the first type video frame.
  • the terminal device can query the correlation table between the ratio and the MCS index value offset according to the ratio, obtain the MCS index value offset associated with the ratio, and then calculate the MCS index value offset associated with the ratio based on the MCS corresponding to the first transmission opportunity. Shift to obtain the MCS corresponding to the second transmission opportunity.
  • the MCS index value corresponding to the second transmission opportunity the MCS index value corresponding to the first transmission opportunity + the MCS index value offset associated with the ratio.
  • the correlation table between the ratio and the offset of the MCS index value may be predefined by the protocol, or may be instructed by the access network device to the terminal device, and is not specifically limited.
  • the access network equipment can also use method 1 to determine the MCS corresponding to the second transmission opportunity.
  • the access network device may send third indication information to the terminal device, where the third indication information indicates the MCS corresponding to the second transmission opportunity, or the offset between the MCS corresponding to the second transmission opportunity and the MCS corresponding to the first transmission opportunity. Furthermore, the terminal device may determine the MCS corresponding to the second transmission opportunity according to the third indication information. For example, the access network device may determine the MCS corresponding to the second transmission opportunity according to the above method 1, and indicate it to the terminal device through the third indication information. For another example, the access network device can query the association table between the ratio and the MCS index value offset according to the ratio, and obtain the MCS index value offset associated with the ratio (that is, the MCS corresponding to the second transmission opportunity corresponds to the first transmission opportunity). offset between MCS), and indicate it to the terminal device through the third indication information.
  • the terminal device may send the access network device the said video frame at the first transmission opportunity.
  • the first video frame correspondingly, the access network device receives the first video frame from the terminal device at the first transmission opportunity.
  • the terminal device can send the first video frame to the access network device on the second transmission opportunity.
  • the second transmission opportunity can The amount of data carried matches the amount of data of the second type of video frame, which can effectively solve the problem of mismatch between the amount of data that can be carried at the transmission time and the amount of data of the video frame, so that access network equipment and terminal equipment can be scheduled through semi-static scheduling way to transmit video frames.
  • Embodiment 2 is for uplink transmission, and Embodiment 2 is for downlink transmission.
  • Figure 11 is a schematic flow chart corresponding to the communication method provided in Embodiment 2 of the present application.
  • the method is illustrated by taking the terminal device and the access network device as the execution subjects of the interaction gesture as an example, but this application does not limit the execution subjects of the interaction gesture.
  • the terminal device in Figure 11 can also be a chip, chip system, or processor that supports the terminal device to implement the method;
  • the access network device in Figure 11 can also be a chip that supports the access network device to implement the method.
  • chip system, or processor it can also be a logic module or software that can realize all or part of the functions of the access network equipment.
  • the method includes the following steps:
  • the access network device sends first indication information to the terminal device.
  • the first indication information indicates the time-frequency positions of M transmission opportunities; accordingly, the terminal device can receive the first indication information.
  • the access network device may send service information of the first service to the terminal device, and the service information of the first service may include at least one of the following: the transmission period of the video frame of the first service (such as 16.67ms), the first The number of video frames included in an image group of the service (that is, the value of K), the ratio of the data amount of the second type of video frame to the data amount of the first type of video frame (can be recorded as ⁇ ), the correspondence of one image group of duration.
  • the access network device may obtain the service information of the first service in various ways. For example, the access network device may obtain the service information of the first service from the XR application server.
  • the access network device sends the service information of the first service to the terminal device.
  • the following takes the access network device sending the ratio ⁇ to the terminal device as an example to describe several possible ways.
  • the access network device may send an RRC message to the terminal device, where the RRC message includes the ratio ⁇ .
  • the ratio ⁇ can be carried in the SPS-Config field corresponding to the set of transmission opportunities in the RRC message.
  • the first set of transmission opportunities among the three sets of transmission opportunities corresponds to SPS-Config field 1
  • the second set of transmission opportunities corresponds to SPS-Config field 2.
  • the third set of transmission timing corresponds to SPS-Config field 3.
  • the ratio ⁇ can be carried in each SPS-Config field 1, SPS-Config field 2 and SPS-Config field 3.
  • Config field that is, each SPS-Config field 1 includes the ratio ⁇ ), or it can also be carried in one or two of SPS-Config field 1, SPS-Config field 2 and SPS-Config field 3. Config field.
  • a new field can be defined in the RRC message, such as the sps-Config-XR field.
  • the sps-Config-XR field can include the ratio ⁇ and the SPS-Config field list.
  • the SPS-Config field list Including SPS-Config field 1, SPS-Config field 2 and SPS-Config field 3.
  • the access network device may send DCI to the terminal device, where the DCI includes the ratio ⁇ .
  • the access network device can send DCI-1 to the terminal device.
  • DCI-1 is used to activate the M transmission opportunities, and DCI-1 includes the ratio ⁇ .
  • the access network device can send DCI-1, DCI-2 and DCI-3, DCI-1 is used to activate the first set of transmission opportunities among the three sets of transmission opportunities, DCI-2 is used to activate the second set of transmission opportunities among the three sets of transmission opportunities, DCI- 3 is used to activate the third set of transmission opportunities among the three sets of transmission opportunities.
  • the ratio ⁇ may be carried in each of DCI-1, DCI-2, and DCI-3 (i.e., each DCI includes the ratio ⁇ ), or may be carried in DCI-1, DCI-2, and DCI-3 in one or both of the DCIs.
  • the access network device can send a new DCI to the terminal device, and the DCI includes the ratio ⁇ .
  • the DCI is different from the DCI used to activate M transmission opportunities.
  • the DCI can satisfy at least one of the following: the DCI uses a radio network temporary identifier (RNTI) different from CS-RNTI for scrambling;
  • RNTI radio network temporary identifier
  • the search space corresponding to DCI is different from the search space corresponding to the DCI used to activate M transmission opportunities;
  • the format of the DCI is different from the format of the DCI used to activate M transmission opportunities (for example, the format of the DCI is a newly defined one Format).
  • the way in which the access network device sends other service information to the terminal device can refer to the implementation of the access network device sending the ratio ⁇ to the terminal device, which will not be described again.
  • the service information sent by the access network device to the terminal device may be carried in the same message, or may be carried in different messages.
  • the access network device sends the first video frame to the terminal device at the second transmission opportunity.
  • the terminal device sends the first video frame at the second transmission opportunity.
  • the amount of data that the second transmission opportunity can carry matches the amount of data of the second type of video frame.
  • the access network device after the access network device instructs the terminal device M transmission opportunities, if the amount of data that each of the M transmission opportunities can carry matches the data amount of the first type of video frame, then When the first video frame corresponding to the first transmission opportunity among the M transmission opportunities belongs to the second type of video frame, the access network device can send the first video frame to the terminal device on the second transmission opportunity.
  • the second transmission opportunity can The amount of data carried matches the amount of data of the second type of video frame, which can effectively solve the problem of mismatch between the amount of data that can be carried at the transmission time and the amount of data of the video frame, so that access network equipment and terminal equipment can be scheduled through semi-static scheduling way to transmit video frames.
  • uplink transmission will be taken as an example for description.
  • Figure 12 is a schematic flow chart corresponding to the communication method provided in Embodiment 3 of the present application.
  • the method is illustrated by taking the terminal device and the access network device as the execution subjects of the interaction gesture as an example, but this application does not limit the execution subjects of the interaction gesture.
  • the terminal device in Figure 12 can also be a chip, chip system, or processor that supports the terminal device to implement the method;
  • the access network device in Figure 12 can also be a chip that supports the access network device to implement the method.
  • chip system, or processor it can also be a logic module or software that can realize all or part of the functions of the access network equipment.
  • the method includes the following steps:
  • the access network device sends first indication information to the terminal device.
  • the first indication information indicates the time-frequency positions of M transmission opportunities; accordingly, the terminal device can receive the first indication information.
  • the terminal device sends the first video frame to the access network device at the first transmission opportunity and the second transmission opportunity.
  • the access network device receives the first video frame from the terminal device on the first transmission opportunity and the second transmission opportunity.
  • the total amount of data that can be carried by the first transmission opportunity and the second transmission opportunity matches the data amount of the second type of video frame.
  • the terminal device determines that the first video frame belongs to the second type of video frame, it can determine the second transmission opportunity (such as determining the time-frequency position of the second transmission opportunity and the second transmission opportunity Corresponding MCS), and send transmission block 1 to the access network device on the first transmission opportunity.
  • Transport block 1 includes part of the data packet of the first video frame, and send transmission to the access network device on the second transmission opportunity.
  • Block 2 Transport Block 2 includes another portion of the packet of the first video frame.
  • the access network equipment determines that the first video frame belongs to the second type of video frame, it can determine the second transmission opportunity (such as determining the time-frequency position of the second transmission opportunity and the second transmission opportunity). corresponding MCS), and receives transmission block 1 on the first transmission opportunity, and receives transmission block 2 on the second transmission opportunity.
  • the way in which the terminal device and the access network device determine that the first video frame belongs to the second type of video frame can refer to Embodiment 1.
  • the terminal device determining the second transmission opportunity may mean that the terminal device determines the time-frequency position of the second transmission opportunity and the MCS corresponding to the second transmission opportunity.
  • the MCS corresponding to the second transmission opportunity is the same as the MCS corresponding to the first transmission opportunity.
  • the MCS corresponding to the second transmission opportunity can be predefined by the protocol to be the same as the MCS corresponding to the first transmission opportunity, or the access network device can also indicate to the terminal device that the MCS corresponding to the second transmission opportunity is the same as the MCS corresponding to the first transmission opportunity.
  • the MCS is the same; furthermore, when the access network device indicates the MCS corresponding to the first transmission opportunity to the terminal device, the terminal device can obtain the MCS corresponding to the second transmission opportunity based on the MCS corresponding to the first transmission opportunity.
  • the access network device may respectively indicate to the terminal device the MCS corresponding to the first transmission opportunity and the MCS corresponding to the second transmission opportunity, and the respectively indicated MCSs are the same.
  • the terminal device can determine the time-frequency position of the second transmission opportunity through the following methods 1 and 2.
  • the terminal device may determine the time-frequency position of the second transmission opportunity based on the time-frequency position of the first transmission opportunity and the data amount of the first type video frame and the data amount of the second type video frame. For example, the terminal device can add a new transmission opportunity (ie, the second transmission opportunity) within the period of the first transmission opportunity based on the ratio of the data amount of the second type video frame to the data amount of the first type video frame. That is to say, the second transmission opportunity is located before the next transmission opportunity of the first transmission opportunity among the M transmission opportunities.
  • a new transmission opportunity ie, the second transmission opportunity
  • the time domain starting position of the second transmission opportunity may be the same as the time domain end position of the first transmission opportunity (that is, the first transmission opportunity and the second transmission opportunity are in the time domain. Continuous), in this case, the terminal device can send a transmission block on the first transmission opportunity and the second transmission opportunity.
  • the transmission block includes all the data packets of the first video frame. See the description in Embodiment 1.
  • the terminal device can also add ceil( ⁇ )-1 second transmission opportunities within the period of the first transmission opportunity, and the time domain length of each second transmission opportunity is the same as that of the first transmission opportunity.
  • the lengths of the opportunities are the same, and the terminal device can send the first video frame on the first transmission opportunity and at least one second transmission opportunity.
  • adding a second transmission opportunity please refer to the description of adding a second transmission opportunity, which will not be described again.
  • the terminal device adds a new transmission opportunity (i.e., the second transmission opportunity) within the period where the first transmission opportunity is located, that is to say, the second transmission opportunity is located in the first transmission opportunity among the M transmission opportunities. before the next transmission opportunity. Therefore, compared with the situation a in Figure 4, the problem of resource waste can be effectively avoided. Compared with the situation b in Figure 4, the transmission delay of the video frame can be effectively reduced. .
  • the access network device may send second indication information to the terminal device, where the second indication information indicates the time-frequency positions of N transmission opportunities, where the N transmission opportunities include the second transmission opportunity, and N is a positive integer.
  • the N transmission opportunities may correspond to the second type video frames of the first service one-to-one.
  • N transmission opportunities can belong to a set of transmission opportunities.
  • the access network device can configure N transmissions for the terminal device according to the transmission cycle of the second type video frame of the first service (such as 66.68ms) using the configuration method 1 in the previous article. timing; alternatively, the N transmission timings can also belong to multiple sets of transmission timings.
  • the access network equipment can also adopt the configuration method 2 in the previous article based on the transmission cycle of the second type video frame of the first service (such as 66.68ms).
  • the terminal device configures N transmission opportunities. Since the n*K+1th video frame of the first service is the second type video frame, the n+1th transmission opportunity among the N transmission opportunities can correspond to the n*K+1th video frame of the first service. Video frames.
  • the n+1th transmission opportunity among the N transmission opportunities and the n*K+1th transmission opportunity among the M transmission opportunities may satisfy the following condition 1 or condition 2.
  • the n+1th transmission opportunity and the n*K+1th transmission opportunity have the same frequency domain width.
  • the n*K+1th transmission opportunity includes T1 time units in the time domain.
  • the n+1th transmission The timing includes T3 time units in the time domain. See above for the relationship between T3 and T1.
  • the n+1th transmission opportunity and the n*K+1th transmission opportunity can completely overlap in the frequency domain, that is, the frequency domain start of the n+1th transmission opportunity and the n*K+1th transmission opportunity
  • the positions are the same, or the frequency domain end positions of the n+1th transmission opportunity and the n*K+1th transmission opportunity are the same.
  • the n+1th transmission opportunity and the n*K+1th transmission opportunity can be continuous in the frequency domain, that is, the frequency domain starting position of the n+1th transmission opportunity is the same as the n*K+1th transmission opportunity.
  • the end position of the frequency domain of the opportunity is the same, or the end position of the frequency domain of the n+1th transmission opportunity is the same as the starting position of the frequency domain of the n*K+1th transmission opportunity.
  • the n+1th transmission opportunity and the n*K+1th transmission opportunity may be discontinuous in the frequency domain.
  • the n+1th transmission opportunity and the n*K+1th transmission opportunity can be continuous in the time domain.
  • the time domain starting position of the n+1th transmission opportunity and the n*K+1th transmission opportunity The end position of the time domain can be the same, as shown in Figure 14.
  • the n+1th transmission opportunity and the n*K+1th transmission opportunity may be discontinuous in the time domain.
  • the time domain starting position of the n+1th transmission opportunity is at the n*K+1th pass After the end position of the time domain of the input opportunity.
  • the terminal device may also send a transmission block on the first transmission opportunity and the second transmission opportunity, and the transmission block includes all data packets of the first video frame.
  • the time domain length of the n+1th transmission opportunity and the n*K+1th transmission opportunity are the same.
  • the n*K+1th transmission opportunity includes P1 resource blocks RB in the frequency domain.
  • the n+1th transmission opportunity and the n*K+1th transmission opportunity can completely overlap in the time domain, that is, the time domain start of the n+1th transmission opportunity and the n*K+1th transmission opportunity
  • the positions are the same, or the time domain end positions of the n+1th transmission opportunity and the n*K+1th transmission opportunity are the same, see Figure 15.
  • the n+1th transmission opportunity and the n*K+1th transmission opportunity can be continuous in the time domain.
  • the time domain starting position of the n+1th transmission opportunity is the same as the n*K+1th transmission opportunity.
  • the timing ends at the same time.
  • the n+1th transmission opportunity and the n*K+1th transmission opportunity may be discontinuous in the time domain.
  • the time domain starting position of the n+1th transmission opportunity is located at the n*K+1th After the end position of the time domain of each transmission opportunity.
  • the n+1th transmission opportunity and the n*K+1th transmission opportunity can be continuous in the frequency domain.
  • the frequency domain starting position of the n+1th transmission opportunity and the frequency domain of the n*K+1th transmission opportunity The end position of the domain is the same (see situation a in Figure 15).
  • the end position of the frequency domain of the n+1th transmission opportunity is the same as the starting position of the frequency domain of the n*K+1th transmission opportunity (see Figure 15 situation b).
  • the n+1th transmission opportunity and the n*K+1th transmission opportunity may be discontinuous in the frequency domain.
  • the frequency domain starting position of the n+1th transmission opportunity is located at the n*K+1th transmission Above the frequency domain end position of the opportunity, or below the frequency domain end position of the n+1th transmission opportunity and the frequency domain start position of the n*K+1th transmission opportunity.
  • the terminal device can also send a transmission block on the first transmission opportunity and the second transmission opportunity, and the transmission block includes the first video frame. All packets.
  • the terminal device may send the access network device the said video frame at the first transmission opportunity.
  • the first video frame correspondingly, the access network device receives the first video frame from the terminal device at the first transmission opportunity.
  • the terminal device may send the first video frame to the access network device on the first transmission opportunity and the second transmission opportunity.
  • the amount of data that can be carried by the first transmission opportunity and the second transmission opportunity matches the data amount of the second type of video frame, thereby effectively solving the problem of mismatch between the amount of data that can be carried by the transmission opportunity and the amount of data of the video frame, making access Network equipment and terminal equipment can transmit video frames through semi-static scheduling.
  • Embodiment 3 is described taking uplink transmission as an example, and the solution in Embodiment 3 can also be applied to downlink transmission.
  • uplink transmission will be taken as an example for description.
  • Figure 16 is a schematic flowchart corresponding to the communication method provided in Embodiment 4 of the present application.
  • the method is illustrated by taking the terminal device and the access network device as the execution subjects of the interaction gesture as an example, but this application does not limit the execution subjects of the interaction gesture.
  • the terminal device in Figure 16 can also be a chip, chip system, or processor that supports the terminal device to implement the method;
  • the access network device in Figure 16 can also be a chip that supports the access network device to implement the method.
  • chip system, or processor it can also be a logic module or software that can realize all or part of the functions of the access network equipment.
  • the method includes the following steps:
  • the access network device sends first indication information to the terminal device.
  • the first indication information indicates the time-frequency positions of M transmission opportunities; accordingly, the terminal device can receive the first indication information.
  • the M transmission opportunities include first-type transmission opportunities and second-type transmission opportunities, and the first-type transmission opportunities and the second-type transmission opportunities have different amounts of data they can carry.
  • the M transmission opportunities may correspond to the M video frames of the first service one-to-one.
  • the access network device may configure the cycle parameters of the M transmission opportunities according to the transmission cycle of the video frames of the first service (for example, 16.67 ms).
  • the M video frames of the first service may include first type video frames and second type video frames.
  • the video frames corresponding to the first type of transmission opportunities belong to the first type of video frames, and the video frames corresponding to the second type of transmission opportunities belong to A second type of video frame; the amount of data that can be carried by the first type of transmission opportunity matches the data amount of the first type of video frame, and the amount of data that can be carried by the second type of transmission opportunity matches the data amount of the second type of video frame.
  • the first indication information may include a length sequence including K elements, for example, the length sequence is ⁇ L2, L1,..., L1 ⁇ .
  • L2 L1*ceil( ⁇ ).
  • the terminal device can determine the time of the first transmission opportunity among the K transmission opportunities.
  • the domain length is L2, and the time domain length from the second to the Kth transmission opportunity is L1; alternatively, the terminal device can determine that the frequency domain width of the first transmission opportunity among the K transmission opportunities is L2, and the second to the Kth transmission opportunity is L1.
  • the frequency domain width of K transmission opportunities is L1. That is to say, the first transmission opportunity among every K transmission opportunities is a second type transmission opportunity, and the second to Kth transmission opportunities are all first type transmission opportunities.
  • the access network device sends the length sequence to the terminal device.
  • the access network device can indicate the length sequence through SLIV, or the access network device can also indicate the length sequence in the SLIV.
  • the time domain length of the transmission opportunity is not indicated, and a length sequence is sent in addition (in this case, the SLIV and the length sequence can be carried in the same message or different messages).
  • the first indication information includes the basic length (denoted as L) and a length scaling factor sequence.
  • the length scaling factor sequence includes K elements.
  • the length scaling factor sequence is ⁇ ceil( ⁇ ),1 ,...,1 ⁇ .
  • the terminal device can determine the first transmission opportunity among the K transmission opportunities.
  • the time domain length of is L*ceil( ⁇ ), and the time domain length of the second to K-th transmission opportunities is L; alternatively, the terminal device can determine the frequency domain width of the first transmission opportunity among the K transmission opportunities as L*ceil( ⁇ ), the frequency domain width from the second to the Kth transmission opportunity is L. That is to say, the first transmission opportunity among every K transmission opportunities is a second type transmission opportunity, and the second to Kth transmission opportunities are all first type transmission opportunities.
  • the access network device can indicate the basic length through SLIV and additionally send a length scaling factor sequence (in this case, SLIV and length scaling factor sequences may be carried in the same message or in different messages).
  • the first indication information includes K, L1 and L2.
  • L2 L1*ceil( ⁇ ).
  • the terminal device may, according to the first instruction information, start from the first transmission opportunity among the M transmission opportunities. For each K transmission opportunities, the terminal device may determine the time domain length of the first transmission opportunity among the K transmission opportunities. is L2, and the time domain length from the second to the Kth transmission opportunity is L1; alternatively, the terminal device can determine that the frequency domain width of the first transmission opportunity among the K transmission opportunities is L2, and the second to the Kth transmission opportunity is L2.
  • the frequency domain width of the transmission timing is L1. That is to say, the first transmission opportunity among every K transmission opportunities is a second type transmission opportunity, and the second to Kth transmission opportunities are all first type transmission opportunities.
  • the access network device can indicate two time domain lengths (ie, L1 and L2) through SLIV, and additionally notify the terminal device Indicates the value of K.
  • the first indication information may also include other possible information, such as period parameters, etc.
  • period parameters such as period parameters, etc.
  • the terminal device sends video frames corresponding to M transmission opportunities to the access network device on M transmission opportunities, that is, sends the first type of video frame to the access network device on the first type of transmission opportunity, and sends the first type of video frame to the access network device on the second type of transmission opportunity.
  • the second type video frame is sent to the access network device on the type transmission opportunity; accordingly, the access network device can receive the video frames corresponding to the M transmission opportunities on the M transmission opportunities respectively.
  • the access network device can configure M transmission opportunities for the terminal device, the amount of data that the first type of transmission opportunity can carry among the M transmission opportunities is different from that of the second type of transmission opportunity.
  • the amount of data can effectively solve the problem of mismatch between the amount of data that can be carried by the transmission opportunity and the amount of data in the video frame, so that access network equipment and terminal equipment can transmit video frames through semi-static scheduling.
  • Embodiment 4 is described taking uplink transmission as an example, and the solution in Embodiment 4 can also be applied to downlink transmission.
  • Embodiments 1 to 4 can be referred to each other; in addition, in the same embodiment, , different implementations or different examples can also be cross-referenced.
  • the description is based on the example that the amount of data that can be carried by each of the M transmission opportunities matches the data amount of the first type of video frame; in this case, when the first transmission opportunity When the corresponding first video frame belongs to the first type of video frame, the terminal device and the access network device can extend the first transmission opportunity to obtain a second transmission opportunity.
  • the amount of data that each of the M transmission opportunities can carry can also match the data amount of the second type of video frame; in this case, when the first video corresponding to the first transmission opportunity When the frame belongs to the first type of video frame, the terminal device and the access network device can reduce the first transmission opportunity to obtain the second transmission opportunity.
  • the access network equipment and the terminal equipment may include corresponding hardware structures and/or software modules that perform each function.
  • the embodiments of the present application can be implemented in the form of hardware or a combination of hardware and computer software. Whether a function is performed by hardware or computer software driving the hardware depends on the specific application and design constraints of the technical solution. Skilled artisans may implement the described functionality using different methods for each specific application, but such implementations should not be considered beyond the scope of this application.
  • each functional unit can be divided corresponding to each function, or two or more functions can be integrated into one unit.
  • the above integrated units can be implemented in the form of hardware or software functional units.
  • Figure 17 shows a possible exemplary block diagram of the device involved in the embodiment of the present application.
  • the device 1700 may include: a processing unit 1702 and a communication unit 1703.
  • the processing unit 1702 is used to control and manage the actions of the device 1700 .
  • the communication unit 1703 is used to support communication between the device 1700 and other devices.
  • the communication unit 1703 also called a transceiver unit, may include a receiving unit and/or a sending unit, respectively configured to perform receiving and sending operations.
  • the device 1700 may also include a storage unit 1701 for storing program codes and/or data of the device 1700 .
  • the device 1700 may be the terminal device in the above embodiment.
  • the processing unit 1702 can support the apparatus 1700 to perform the actions of the terminal device in each of the above method examples.
  • the processing unit 1702 mainly performs internal actions of the terminal device in the method example, and the communication unit 1703 may support communication between the apparatus 1700 and other devices.
  • the communication unit 1703 is configured to: receive first indication information from the access network device, where the first indication information indicates the time-frequency positions of M transmission opportunities, and each of the M transmission opportunities is The amount of data that can be carried by each transmission opportunity matches the data amount of the first type of video frame, and the data amount of the first type of video frame is less than the data amount of the second type of video frame; wherein, the M transmission opportunities include the first Transmission timing, the first transmission timing corresponds to the first video frame, M is a positive integer; if the first video frame belongs to the second type of video frame, then the access network device is The first video frame is sent, and the data amount that the second transmission opportunity can carry matches the data amount of the second type video frame.
  • the device 1700 may be the access network equipment in the above embodiment.
  • the processing unit 1702 can support the apparatus 1700 to perform the actions of the access network device in each of the above method examples.
  • the processing unit 1702 mainly performs internal actions of the access network device in the method example, and the communication unit 1703 may support communication between the device 1700 and other devices.
  • the communication unit 1703 is configured to: send first indication information to the terminal device, where the first indication information indicates the time-frequency positions of M transmission opportunities, and each of the M transmission opportunities
  • the amount of data that can be carried matches the amount of data of the first type of video frame, and the amount of data of the first type of video frame is smaller than the amount of data of the second type of video frame; wherein, the M transmission opportunities include the first transmission opportunity,
  • the first transmission opportunity corresponds to a first video frame, and M is a positive integer; if the first video frame belongs to the second type of video frame, then the second transmission opportunity is sent to the access network device.
  • the first video frame, the data amount that the second transmission opportunity can carry matches the data amount of the second type video frame.
  • each unit in the device can be a separate processing element, or it can be integrated and implemented in a certain chip of the device.
  • it can also be stored in the memory in the form of a program, and a certain processing element of the device can call and execute the unit. Function.
  • these single All or part of the elements can be integrated together or implemented independently.
  • the processing element described here can also be a processor, which can be an integrated circuit with signal processing capabilities.
  • each operation of the above method or each unit above can be implemented by an integrated logic circuit of hardware in the processor element or implemented in the form of software calling through the processing element.
  • the unit in any of the above devices may be one or more integrated circuits configured to implement the above method, such as: one or more application specific integrated circuits (ASIC), or one or Multiple microprocessors (digital signal processors, DSPs), or one or more field programmable gate arrays (FPGAs), or a combination of at least two of these integrated circuit forms.
  • ASIC application specific integrated circuits
  • DSPs digital signal processors
  • FPGAs field programmable gate arrays
  • the unit in the device can be implemented in the form of a processing element scheduler
  • the processing element can be a processor, such as a general central processing unit (CPU), or other processors that can call programs.
  • these units can be integrated together and implemented in the form of a system-on-a-chip (SOC).
  • SOC system-on-a-chip
  • the above receiving unit is an interface circuit of the device and is used to receive signals from other devices.
  • the receiving unit is an interface circuit used by the chip to receive signals from other chips or devices.
  • the above unit used for sending is an interface circuit of the device and is used to send signals to other devices.
  • the sending unit is an interface circuit used by the chip to send signals to other chips or devices.
  • the terminal device can be applied in the communication system shown in Fig. 1 to implement the operations of the terminal device in the above embodiment.
  • the terminal device includes: an antenna 1810, a radio frequency part 1820, and a signal processing part 1830.
  • the antenna 1810 is connected to the radio frequency part 1820.
  • the radio frequency part 1820 receives the information sent by the access network device through the antenna 1810, and sends the information sent by the access network device to the signal processing part 1830 for processing.
  • the signal processing part 1830 processes the information of the terminal equipment and sends it to the radio frequency part 1820.
  • the radio frequency part 1820 processes the information of the terminal equipment and then sends it to the access network equipment through the antenna 1810.
  • the signal processing part 1830 may include a modulation and demodulation subsystem for processing each communication protocol layer of data; it may also include a central processing subsystem for processing the operating system and application layer of the terminal device; in addition, it may It includes other subsystems, such as multimedia subsystem, peripheral subsystem, etc.
  • the multimedia subsystem is used to control the camera, screen display, etc. of the terminal device, and the peripheral subsystem is used to realize the connection with other devices.
  • the modem subsystem can be a separately configured chip.
  • the modem subsystem may include one or more processing elements 1831, including, for example, a host CPU and other integrated circuits.
  • the modem subsystem may also include a storage element 1832 and an interface circuit 1833.
  • the storage element 1832 is used to store data and programs, but the program used to perform the method performed by the terminal device in the above method may not be stored in the storage element 1832, but is stored in a memory outside the modem subsystem.
  • the modem subsystem is loaded and used when used.
  • Interface circuit 1833 is used to communicate with other subsystems.
  • the modulation and demodulation subsystem can be implemented by a chip, which includes at least one processing element and an interface circuit, wherein the processing element is used to perform various steps of any method performed by the above terminal equipment, and the interface circuit is used to communicate with other devices.
  • the unit for the terminal device to implement each step in the above method can be implemented in the form of a processing element scheduler.
  • the device for the terminal device includes a processing element and a storage element, and the processing element calls a program stored in the storage element to Execute the method executed by the terminal device in the above method embodiment.
  • the storage element may be a storage element on the same chip as the processing element, that is, an on-chip storage element.
  • the program for executing the method performed by the terminal device in the above method may be in a storage element on a different chip from the processing element, that is, an off-chip storage element.
  • the processing element calls from the off-chip storage element or loads the program on the on-chip storage element to call and execute the method executed by the terminal device in the above method embodiment.
  • the unit of the terminal device that implements each step in the above method may be configured as one or more processing elements. These processing elements are provided on the modulation and demodulation subsystem.
  • the processing elements here may be integrated circuits. For example: one or more ASICs, or one or more DSPs, or one or more FPGAs, or a combination of these types of integrated circuits. These integrated circuits can be integrated together to form a chip.
  • the units of the terminal device that implement each step in the above method can be integrated together and implemented in the form of a SOC.
  • the SOC chip is used to implement the above method.
  • the chip can integrate at least one processing element and a storage element, and the processing element calls the stored program of the storage element to implement the above method executed by the terminal device; or, the chip can integrate at least one integrated circuit to implement the above terminal device.
  • the method of device execution; or, the above implementation methods can be combined, and the functions of some units are realized in the form of processing components calling programs, and the functions of some units are realized in the form of integrated circuits.
  • the above apparatus for a terminal device may include at least one processing element and an interface circuit, wherein at least one processing element is used to execute any method performed by the terminal device provided in the above method embodiments.
  • the processing element can be processed in the first way: by calling the storage
  • Some or all of the steps executed by the terminal device can be executed in the form of a program stored in the component; it can also be executed in a second way: that is, through the integrated logic circuit of the hardware in the processor element combined with instructions to execute some or all of the steps executed by the terminal device;
  • some or all of the steps performed by the terminal device can also be performed in combination with the first method and the second method.
  • the processing elements here are the same as described above and can be implemented by a processor.
  • the functions of the processing elements can be the same as the functions of the processing unit described in FIG. 17 .
  • the processing element may be a general-purpose processor, such as a CPU, or one or more integrated circuits configured to implement the above method, such as: one or more ASICs, or one or more microprocessors DSP , or, one or more FPGAs, etc., or a combination of at least two of these integrated circuit forms.
  • the storage element can be implemented by a memory, and the function of the storage element can be the same as the function of the storage unit described in FIG. 17 .
  • the storage element can be one memory or a collective name for multiple memories.
  • the terminal device shown in Figure 18 can implement various processes related to the terminal device in the above method embodiment.
  • the operations and/or functions of each module in the terminal device shown in Figure 18 are respectively to implement the corresponding processes in the above method embodiment.
  • the access network device (or base station) can be applied in the communication system as shown in Figure 1.
  • the access network device in the above method embodiment is executed.
  • the access network device 190 may include one or more DUs 1901 and one or more CUs 1902.
  • the DU 1901 may include at least one antenna 19011, at least one radio frequency unit 19012, at least one processor 19013 and at least one memory 19014.
  • the DU 1901 part is mainly used for the transmission and reception of radio frequency signals, the conversion of radio frequency signals and baseband signals, and some baseband processing.
  • CU 1902 may include at least one processor 19022 and at least one memory 19021.
  • the CU 1902 part is mainly used for baseband processing, control of access network equipment, etc.
  • the DU 1901 and the CU 1902 can be physically set together or physically separated, that is, a distributed base station.
  • the CU 1902 is the control center of the access network equipment, which can also be called a processing unit, and is mainly used to complete the baseband processing function.
  • the CU 1902 can be used to control the access network device to perform the operation process of the access network device in the above method embodiment.
  • the access network device 190 may include one or more radio frequency units, one or more DUs, and one or more CUs.
  • the DU may include at least one processor 19013 and at least one memory 19014, the radio frequency unit may include at least one antenna 19011 and at least one radio frequency unit 19012, and the CU may include at least one processor 19022 and at least one memory 19021.
  • the CU1902 can be composed of one or more single boards. Multiple single boards can jointly support a wireless access network (such as a 5G network) with a single access indication, or can respectively support wireless access networks of different access standards. Access network (such as LTE network, 5G network or other networks).
  • the memory 19021 and processor 19022 may serve one or more single boards. In other words, the memory and processor can be set independently on each board. It is also possible for multiple boards to share the same memory and processor. In addition, necessary circuits can also be installed on each board.
  • the DU1901 can be composed of one or more single boards.
  • Multiple single boards can jointly support a wireless access network with a single access indication (such as a 5G network), or can respectively support wireless access networks of different access standards (such as a 5G network).
  • the memory 19014 and processor 19013 may serve one or more single boards. In other words, the memory and processor can be set independently on each board. It is also possible for multiple boards to share the same memory and processor. In addition, necessary circuits can also be installed on each board.
  • the access network device shown in Figure 19 can implement various processes related to the access network device in the above method embodiment.
  • the operations and/or functions of each module in the access network equipment shown in Figure 19 are respectively to implement the corresponding processes in the above method embodiment.
  • system and “network” in the embodiments of this application may be used interchangeably.
  • “At least one” means one or more, and “plurality” means two or more.
  • “And/or” describes the relationship between associated objects, indicating that there can be three relationships, for example, A and/or B, which can mean: A alone exists, A and B exist simultaneously, and B alone exists, where A, B can be singular or plural.
  • the character “/” generally indicates that the related objects are in an “or” relationship.
  • “At least one of the following” or similar expressions thereof refers to any combination of these items, including any combination of a single item (items) or a plurality of items (items).
  • At least one of A, B, and C includes A, B, C, AB, AC, BC, or ABC.
  • the ordinal numbers such as “first” and “second” mentioned in the embodiments of this application are used to distinguish multiple objects and are not used to limit the order, timing, priority or importance of multiple objects. degree.
  • embodiments of the present application may be provided as methods, systems, or computer program products. Accordingly, the present application may take the form of an entirely hardware embodiment, an entirely software embodiment, or an embodiment that combines software and hardware aspects. Furthermore, the present application may take the form of a computer program product embodied on one or more computer-usable storage media (including, but not limited to, disk storage, optical storage, etc.) having computer-usable program code embodied therein.
  • a computer-usable storage media including, but not limited to, disk storage, optical storage, etc.
  • These computer program instructions may also be stored in a computer-readable memory that causes a computer or other programmable data processing apparatus to operate in a particular manner, such that the instructions stored in the computer-readable memory produce an article of manufacture including the instruction means, the instructions
  • the device implements the functions specified in a process or processes of the flowchart and/or a block or blocks of the block diagram.
  • These computer program instructions may also be loaded onto a computer or other programmable data processing device, causing a series of operating steps to be performed on the computer or other programmable device to produce computer-implemented processing, thereby executing on the computer or other programmable device.
  • Instructions provide steps for implementing the functions specified in a process or processes of a flowchart diagram and/or a block or blocks of a block diagram.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Multimedia (AREA)
  • Two-Way Televisions, Distribution Of Moving Picture Or The Like (AREA)
  • Data Exchanges In Wide-Area Networks (AREA)

Abstract

本申请涉及通信技术领域,公开了一种通信方法及装置。其中方法包括:终端设备接收来自接入网设备的第一指示信息,第一指示信息指示M个传输时机的时频位置,M个传输时机中每个传输时机所能承载的数据量匹配第一类型视频帧的数据量,第一类型视频帧的数据量小于第二类型视频帧的数据量;M个传输时机包括第一传输时机,第一传输时机对应第一视频帧,M为正整数;若第一视频帧属于第二类型视频帧,则在第二传输时机上向接入网设备发送第一视频帧,第二传输时机所能承载的数据量匹配第二类型视频帧的数据量,从而有效解决传输时机所能承载的数据量与视频帧的数据量不匹配的问题,使得接入网设备和终端设备可以通过半静态调度的方式传输视频帧。

Description

一种通信方法及装置
相关申请的交叉引用
本申请要求在2022年06月24日提交中国专利局、申请号为202210731411.2、申请名称为“一种通信方法及装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及通信技术领域,尤其涉及一种通信方法及装置。
背景技术
随着无线通信系统的不断发展,数据传输时延不断降低,传输容量越来越大。无线通信系统逐渐渗入一些实时性强、数据容量要求大的业务,比如扩展现实(extended reality,XR)业务。其中,XR是指通过计算机技术和可穿戴设备产生的一个真实与虚拟组合、可人机交互的环境,是增强现实(augmented reality,AR)、虚拟现实(virtual reality,VR)、混合现实(mixed reality,MR)等多种形式的统称。
以XR业务为例,接入网设备和终端设备之间如何传输XR业务的视频帧,仍需进一步研究。
发明内容
本申请提供了一种通信方法及装置,用于实现接入网设备和终端设备之间通过半静态调度方式传输视频帧。
第一方面,本申请实施例提供一种通信方法,该方法可以应用于终端设备或者终端设备中的模块(如芯片),以该方法应用于终端设备为例,在该方法中,终端设备接收来自接入网设备的第一指示信息,所述第一指示信息指示M个传输时机的时频位置,所述M个传输时机中每个传输时机所能承载的数据量匹配第一类型视频帧的数据量,所述第一类型视频帧的数据量小于第二类型视频帧的数据量;其中,所述M个传输时机包括第一传输时机,所述第一传输时机对应第一视频帧,M为正整数;若所述第一视频帧属于所述第二类型视频帧,则在第二传输时机上向所述接入网设备发送所述第一视频帧,所述第二传输时机所能承载的数据量匹配所述第二类型视频帧的数据量。
此处,M个传输时机中每个传输时机所能承载的数据量匹配第一类型视频帧的数据量,也就是说,M个传输时机中每个传输时机所能承载的数据量不匹配第二类型视频帧的数据量。其中,“匹配”可以理解为“大于或等于”,“不匹配”可以理解为“小于”。因此,M个传输时机中每个传输时机所能承载的数据量匹配第一类型视频帧的数据量,可以是指:M个传输时机中每个传输时机所能承载的数据量大于或等于第一类型视频帧的数据量,且M个传输时机中每个传输时机所能承载的数据量小于第二类型视频帧的数据量。
以XR业务为例,XR业务中可能会包括不同类型的视频帧(比如I帧和P帧),I帧和P帧的数据量不同,而接入网设备为终端设备配置传输时机时,通常情况下,配置的多个传输时机所能承载的数据量是相同,因此,会存在传输时机所能承载的数据量与视频帧的数据量不匹配的问题,进而可能会导致资源浪费或者视频帧的传输时延较大(具体可参见图4的描述)。采用上述方法,接入网设备为终端设备指示M个传输时机的时频位置,M个传输时机与M个视频帧一一对应,视频帧对应的传输时机可以用于传输该视频帧,比如第一传输时机对应第一视频帧。当第一视频帧属于第二类型视频帧(即第一传输时机所能承载的数据量不匹配第一视频帧的数据量)时,终端设备可以在第二传输时机上向接入网设备发送第一视频帧,从而有效解决传输时机所能承载的数据量与视频帧的数据量不匹配的问题,使得接入网设备和终端设备可以通过半静态调度的方式传输视频帧。
在一种可能的设计中,所述方法还包括:若所述第一视频帧属于所述第一类型视频帧时,则在所述第一传输时机上向所述接入网设备发送所述第一视频帧。
在一种可能的设计中,所述第二传输时机对应的调制和编码策略MCS和所述第一传输时机对应的MCS相同。
在一种可能的设计中,所述方法还包括:根据所述第一传输时机的时频位置,以及所述第一类型视频帧的数据量与所述第二类型视频帧的数据量,确定所述第二传输时机的时频位置。比如,终端设备可 以根据第二类型视频帧的数据量与第一类型视频帧的数据量的比值,对第一传输时机的时域长度和/或频域长度进行扩展,得到第二传输时机,并在第二传输时机上发送第二类型视频帧。如此,由于终端设备是根据第一传输时机的时频位置和比值,来确定第二传输时机的时频位置,从而便于保证第二传输时机所能承载的数据量匹配第二类型视频帧的数据量。
在一种可能的设计中,所述方法还包括:接收来自所述接入网设备的第二指示信息,所述第二指示信息指示N个传输时机的时频位置,所述N个传输时机中每个传输时机所能承载的数据量匹配所述第二类型视频帧的数据量,所述N个传输时机包括所述第二传输时机,N为正整数。如此,终端设备可以直接根据接入网设备的指示确定第二传输时机的时频位置。
在一种可能的设计中,所述第一传输时机和所述第二传输时机在频域上完全重叠;所述第一传输时机的时域起始位置和所述第二传输时机的时域起始位置相同,或者所述第一传输时机的时域结束位置和所述第二传输时机的时域结束位置相同;所述第二传输时机的时域长度大于所述第一传输时机的时域长度。如此,终端设备可以通过扩展第一传输时机的时域长度得到第二传输时机,实现较为简便。
在一种可能的设计中,所述第一传输时机在时域上包括T1个时间单元,所述第二传输时机在时域上包括T2个时间单元;其中,T2=ceil[(α)·T1],或者T2=ceil(α)·T1,ceil表示向上取整,α表示所述第二类型视频帧的数据量与所述第一类型视频帧的数据量的比值;T1、T2均为正整数。
在一种可能的设计中,所述第一传输时机和所述第二传输时机在时域上完全重叠;所述第一传输时机和所述第二传输时机的频域起始位置相同,或者所述第一传输时机和所述第二传输时机的频域结束位置相同;所述第二传输时机的频域宽度大于所述第一传输时机的频域宽度。如此,终端设备可以通过扩展第一传输时机的频域宽度得到第二传输时机,实现较为简便。
在一种可能的设计中,所述第一传输时机在频域上包括P1个资源块RB,所述第二传输时机在频域上包括P2个RB;其中,P2=ceil[(α)·P1],或者P2=ceil(α)·P1,ceil表示向上取整,α表示所述第二类型视频帧的数据量与所述第一类型视频帧的数据量的比值;P1、P2均为正整数。
在一种可能的设计中,所述第二传输时机的时频位置和所述第一传输时机的时频位置相同。
在一种可能的设计中,所述方法还包括:根据所述第一传输时机对应的MCS以及所述第一类型视频帧的数据量与所述第二类型视频帧的数据量,确定所述第二传输时机对应的MCS。如此,由于终端设备是根据第一传输时机对应的MCS和比值,来确定第二传输时机对应的MCS,从而便于保证第二传输时机所能承载的数据量匹配第二类型视频帧的数据量。
在一种可能的设计中,所述方法还包括:接收来自所述接入网设备的第三指示信息,所述第三指示信息指示所述第二传输时机对应的MCS,或者所述第二传输时机对应的MCS与所述第一传输时机对应的MCS之间的偏移量。如此,终端设备可以直接根据接入网设备的指示确定第二传输时机对应的MCS。
在一种可能的设计中,所述方法还包括:接收来自所述接入网设备的第四指示信息,所述第四指示信息指示所述第一传输时机对应的MCS。
在一种可能的设计中,所述方法还包括:若所述第一传输时机为所述M个传输时机中的第n*K+1个传输时机,则确定所述第一视频帧属于所述第二类型视频帧;其中,n为大于或等于0的整数,K为所述第二类型视频帧的传输周期内所包括的视频帧的数量。
在一种可能的设计中,所述M个传输时机还包括位于所述第一传输时机之前的第三传输时机,所述第三传输时机对应第二视频帧,所述第二视频帧属于所述第二类型视频帧;所述方法还包括:若所述第一传输时机的时域起始位置与所述第三传输时机的时域起始位置之间的时间间隔等于第一时长,所述第一时长等于所述第二类型视频帧的传输周期,则确定所述第一视频帧属于所述第二类型视频帧。
在一种可能的设计中,所述第一视频帧包括类型标识,类型标识用于指示第一视频帧属于第二类型视频帧。如此,由于终端设备可以根据第一视频帧所包括的类型标识确定第一视频帧的类型,便于提高终端设备确定的第一视频帧的类型的准确性。
在一种可能的设计中,所述第一视频帧的首个数据包包括所述类型标识。如此,由于类型标识携带在第一视频帧的首个数据包中,从而便于终端设备尽早确定出视频帧所属的类型。
第二方面,本申请实施例提供一种通信方法,该方法可以应用于接入网设备或者接入网设备中的模块(如芯片),该方法还可以应用于能够实现全部或部分接入网设备功能的逻辑模块或软件。以该方法应用于接入网设备为例,在该方法中,接入网设备向终端设备发送第一指示信息,所述第一指示信息指示M个传输时机的时频位置,所述M个传输时机中每个传输时机所能承载的数据量匹配第一类型视频 帧的数据量,所述第一类型视频帧的数据量小于第二类型视频帧的数据量;其中,所述M个传输时机包括第一传输时机,所述第一传输时机对应第一视频帧,M为正整数;若所述第一视频帧属于所述第二类型视频帧,则在第二传输时机上向所述接入网设备发送所述第一视频帧,所述第二传输时机所能承载的数据量匹配所述第二类型视频帧的数据量。
在一种可能的设计中,所述第二传输时机对应的调制和编码策略MCS和所述第一传输时机对应的MCS相同。
在一种可能的设计中,所述方法还包括:根据所述第一传输时机的时频位置,以及所述第一类型视频帧的数据量与所述第二类型视频帧的数据量,确定所述第二传输时机的时频位置。
在一种可能的设计中,所述方法还包括:向所述终端设备发送第二指示信息,所述第二指示信息指示N个传输时机的时频位置,所述N个传输时机中每个传输时机所能承载的数据量匹配所述第二类型视频帧的数据量,所述N个传输时机包括所述第二传输时机,N为正整数。
在一种可能的设计中,所述第一传输时机和所述第二传输时机在频域上完全重叠;所述第一传输时机的时域起始位置和所述第二传输时机的时域起始位置相同,或者所述第一传输时机的时域结束位置和所述第二传输时机的时域结束位置相同;所述第二传输时机的时域长度大于所述第一传输时机的时域长度。
在一种可能的设计中,所述第一传输时机在时域上包括T1个时间单元,所述第二传输时机在时域上包括T2个时间单元;其中,T2=ceil[(α)·T1],或者T2=ceil(α)·T1,ceil表示向上取整,α表示所述第二类型视频帧的数据量与所述第一类型视频帧的数据量的比值;T1、T2均为正整数。
在一种可能的设计中,所述第一传输时机和所述第二传输时机在时域上完全重叠;所述第一传输时机和所述第二传输时机的频域起始位置相同,或者所述第一传输时机和所述第二传输时机的频域结束位置相同;所述第二传输时机的频域宽度大于所述第一传输时机的频域宽度。
在一种可能的设计中,所述第一传输时机在频域上包括P1个资源块RB,所述第二传输时机在频域上包括P2个RB;其中,P2=ceil[(α)·P1],或者P2=ceil(α)·P1,ceil表示向上取整,α表示所述第二类型视频帧的数据量与所述第一类型视频帧的数据量的比值;P1、P2均为正整数。
在一种可能的设计中,所述第二传输时机的时频位置和所述第一传输时机的时频位置相同。
在一种可能的设计中,所述方法还包括:根据所述第一传输时机对应的MCS以及所述第一类型视频帧的数据量与所述第二类型视频帧的数据量,确定所述第二传输时机对应的MCS。
在一种可能的设计中,所述方法还包括:向所述终端设备发送第三指示信息,所述第三指示信息指示所述第二传输时机对应的MCS,或者所述第二传输时机对应的MCS与所述第一传输时机对应的MCS之间的偏移量。
在一种可能的设计中,所述方法还包括:向所述终端设备发送第四指示信息,所述第四指示信息指示所述第一传输时机对应的MCS。
在一种可能的设计中,所述方法还包括:若所述第一传输时机为所述M个传输时机中的第n*K+1个传输时机,则确定所述第一视频帧属于所述第二类型视频帧;其中,n为大于或等于0的整数,K为所述第二类型视频帧的传输周期内所包括的视频帧的数量。
在一种可能的设计中,所述M个传输时机还包括位于所述第一传输时机之前的第三传输时机,所述第三传输时机对应第二视频帧,所述第二视频帧属于所述第二类型视频帧;所述方法还包括:若所述第一传输时机的时域起始位置与所述第三传输时机的时域起始位置之间的时间间隔等于第一时长,所述第一时长等于所述第二类型视频帧的传输周期,则确定所述第一视频帧属于所述第二类型视频帧。
在一种可能的设计中,所述第一视频帧包括类型标识,类型标识用于指示第一视频帧属于第二类型视频帧。
在一种可能的设计中,所述第一视频帧的首个数据包包括所述类型标识。
可以理解的是,上述第二方面所请求保护的方法与第一方面所请求保护的方法相对应,因此,第二方面中相关技术特征的有益效果可以参照第一方面中的描述,不再赘述。
第三方面,本申请实施例提供一种通信方法,该方法可以应用于终端设备或者终端设备中的模块(如芯片),以该方法应用于终端设备为例,在该方法中,终端设备接收来自接入网设备的第一指示信息,所述第一指示信息指示M个传输时机的时频位置,所述M个传输时机中每个传输时机所能承载的数据量匹配第一类型视频帧的数据量,所述第一类型视频帧的数据量小于第二类型视频帧的数据量;其中, 所述M个传输时机包括第一传输时机,所述第一传输时机对应第一视频帧,M为正整数;若所述第一视频帧属于所述第二类型视频帧,则在所述第一传输时机和第二传输时机上向所述接入网设备发送所述第一视频帧,所述第一传输时机和所述第二传输时机所能承载的总数据量匹配所述第二类型视频帧的数据量。
在一种可能的设计中,所述方法还包括:若所述第一视频帧属于所述第一类型视频帧时,则在所述第一传输时机上向所述接入网设备发送所述第一视频帧。
在一种可能的设计中,所述第二传输时机对应的MCS和所述第一传输时机对应的MCS相同。
在一种可能的设计中,所述方法还包括:根据所述第一传输时机的时频位置,以及所述第一类型视频帧的数据量与所述第二类型视频帧的数据量,确定所述第二传输时机的时频位置。
在一种可能的设计中,所述方法还包括:接收来自所述接入网设备的第二指示信息,所述第二指示信息指示N个传输时机的时频位置,所述N个传输时机包括所述第二传输时机,N为正整数。
在一种可能的设计中,所述第一传输时机和所述第二传输时机的频域宽度相同;所述第一传输时机在时域上包括T1个时间单元,所述第二传输时机在时域上包括T3个时间单元;其中,T3=ceil[(α)·T1]-T1,或者T3=ceil(α)·T1-T1,ceil表示向上取整,α表示所述第二类型视频帧的数据量与所述第一类型视频帧的数据量的比值;T1、T3均为正整数。
在一种可能的设计中,所述第一传输时机和所述第二传输时机的时域长度相同;所述第一传输时机在频域上包括P1个资源块RB,所述第二传输时机在频域上包括P3个RB;其中,P3=ceil[(α)·P1]-P1,或者P3=ceil(α)·P1-P1,ceil表示向上取整,α表示所述第二类型视频帧的数据量与所述第一类型视频帧的数据量的比值;P1、P3均为正整数。
在一种可能的设计中,所述方法还包括:若所述第一传输时机为所述M个传输时机中的第n*K+1个传输时机,则确定所述第一视频帧属于所述第二类型视频帧;其中,n为大于或等于0的整数,K为所述第二类型视频帧的传输周期内所包括的视频帧的数量。
在一种可能的设计中,所述M个传输时机还包括位于所述第一传输时机之前的第三传输时机,所述第三传输时机对应第二视频帧,所述第二视频帧属于所述第二类型视频帧;所述方法还包括:若所述第一传输时机的时域起始位置与所述第三传输时机的时域起始位置之间的时间间隔等于第一时长,所述第一时长等于所述第二类型视频帧的传输周期,则确定所述第一视频帧属于所述第二类型视频帧。
在一种可能的设计中,所述第一视频帧包括类型标识,类型标识用于指示第一视频帧属于第二类型视频帧。
在一种可能的设计中,所述第一视频帧的首个数据包包括所述类型标识。
第四方面,本申请实施例提供一种通信方法,该方法可以应用于接入网设备或者接入网设备中的模块(如芯片),该方法还可以应用于能够实现全部或部分接入网设备功能的逻辑模块或软件。以该方法应用于接入网设备为例,在该方法中,接入网设备向终端设备发送第一指示信息,所述第一指示信息指示M个传输时机的时频位置,所述M个传输时机中每个传输时机所能承载的数据量匹配第一类型视频帧的数据量,所述第一类型视频帧的数据量小于第二类型视频帧的数据量;其中,所述M个传输时机包括第一传输时机,所述第一传输时机对应第一视频帧,M为正整数;若所述第一视频帧属于所述第二类型视频帧,则在所述第一传输时机和第二传输时机上向接收来自所述终端设备的所述第一视频帧,所述第一传输时机和所述第二传输时机所能承载的总数据量匹配所述第二类型视频帧的数据量。
在一种可能的设计中,所述方法还包括:若所述第一视频帧属于所述第一类型视频帧时,则在所述第一传输时机上向所述接入网设备发送所述第一视频帧。
在一种可能的设计中,所述第二传输时机对应的MCS和所述第一传输时机对应的MCS相同。
在一种可能的设计中,所述方法还包括:根据所述第一传输时机的时频位置,以及所述第一类型视频帧的数据量与所述第二类型视频帧的数据量,确定所述第二传输时机的时频位置。
在一种可能的设计中,所述方法还包括:向所述终端设备发送第二指示信息,所述第二指示信息指示N个传输时机的时频位置,所述N个传输时机包括所述第二传输时机,N为正整数。
在一种可能的设计中,所述第一传输时机和所述第二传输时机的频域宽度相同;所述第一传输时机在时域上包括T1个时间单元,所述第二传输时机在时域上包括T3个时间单元;其中,T3=ceil[(α)·T1]-T1,或者T3=ceil(α)·T1-T1,ceil表示向上取整,α表示所述第二类型视频帧的数据量与所述第一类型视频帧的数据量的比值;T1、T3均为正整数。
在一种可能的设计中,所述第一传输时机和所述第二传输时机的时域长度相同;所述第一传输时机在频域上包括P1个资源块RB,所述第二传输时机在频域上包括P3个RB;其中,P3=ceil[(α)·P1]-P1,或者P3=ceil(α)·P1-P1,ceil表示向上取整,α表示所述第二类型视频帧的数据量与所述第一类型视频帧的数据量的比值;P1、P3均为正整数。
在一种可能的设计中,所述方法还包括:若所述第一传输时机为所述M个传输时机中的第n*K+1个传输时机,则确定所述第一视频帧属于所述第二类型视频帧;其中,n为大于或等于0的整数,K为所述第二类型视频帧的传输周期内所包括的视频帧的数量。
在一种可能的设计中,所述M个传输时机还包括位于所述第一传输时机之前的第三传输时机,所述第三传输时机对应第二视频帧,所述第二视频帧属于所述第二类型视频帧;所述方法还包括:若所述第一传输时机的时域起始位置与所述第三传输时机的时域起始位置之间的时间间隔等于第一时长,所述第一时长等于所述第二类型视频帧的传输周期,则确定所述第一视频帧属于所述第二类型视频帧。
在一种可能的设计中,所述第一视频帧包括类型标识,类型标识用于指示第一视频帧属于第二类型视频帧。
在一种可能的设计中,所述第一视频帧的首个数据包包括所述类型标识。
第五方面,本申请提供一种通信装置,所述通信装置具备实现上述第一方面或第三方面的功能,比如,所述通信装置包括执行上述第一方面或第三方面涉及操作所对应的模块或单元或手段(means),所述模块或单元或手段可以通过软件实现,或者通过硬件实现,也可以通过硬件执行相应的软件实现。
在一种可能的设计中,所述通信装置包括处理单元、通信单元,其中,通信单元可以用于收发信号,以实现该通信装置和其它装置之间的通信;处理单元可以用于执行该通信装置的一些内部操作。处理单元、通信单元执行的功能可以和上述第一方面或第三方面涉及的操作相对应。
在一种可能的设计中,所述通信装置包括处理器,处理器可以用于与存储器耦合。所述存储器可以保存实现上述第一方面或第三方面涉及的功能的必要计算机程序或指令。所述处理器可执行所述存储器存储的计算机程序或指令,当所述计算机程序或指令被执行时,使得所述通信装置实现上述第一方面或第三方面中任意可能的设计或实现方式中的方法。
在一种可能的设计中,所述通信装置包括处理器和存储器,存储器可以保存实现上述第一方面或第三方面涉及的功能的必要计算机程序或指令。所述处理器可执行所述存储器存储的计算机程序或指令,当所述计算机程序或指令被执行时,使得所述通信装置实现上述第一方面或第三方面中任意可能的设计或实现方式中的方法。
在一种可能的设计中,所述通信装置包括处理器和接口电路,其中,处理器用于通过所述接口电路与其它装置通信,并执行上述第一方面或第三方面中任意可能的设计或实现方式中的方法。
第六方面,本申请提供一种通信装置,所述通信装置具备实现上述第二方面或第四方面涉及的功能,比如,所述通信装置包括执行上述第二方面或第四方面涉及操作所对应的模块或单元或手段,所述功能或单元或手段可以通过软件实现,或者通过硬件实现,也可以通过硬件执行相应的软件实现。
在一种可能的设计中,所述通信装置包括处理单元、通信单元,其中,通信单元可以用于收发信号,以实现该通信装置和其它装置之间的通信,比如,通信单元用于向终端设备发送系统信息;处理单元可以用于执行该通信装置的一些内部操作。处理单元、通信单元执行的功能可以和上述第二方面或第四方面涉及的操作相对应。
在一种可能的设计中,所述通信装置包括处理器,处理器可以用于与存储器耦合。所述存储器可以保存实现上述第二方面或第四方面涉及的功能的必要计算机程序或指令。所述处理器可执行所述存储器存储的计算机程序或指令,当所述计算机程序或指令被执行时,使得所述通信装置实现上述第二方面或第四方面任意可能的设计或实现方式中的方法。
在一种可能的设计中,所述通信装置包括处理器和存储器,存储器可以保存实现上述第二方面或第四方面涉及的功能的必要计算机程序或指令。所述处理器可执行所述存储器存储的计算机程序或指令,当所述计算机程序或指令被执行时,使得所述通信装置实现上述第二方面或第四方面任意可能的设计或实现方式中的方法。
在一种可能的设计中,所述通信装置包括处理器和接口电路,其中,处理器用于通过所述接口电路与其它装置通信,并执行上述第二方面或第四方面任意可能的设计或实现方式中的方法。
可以理解地,上述第五方面和第六方面中,处理器可以通过硬件来实现也可以通过软件来实现,当 通过硬件实现时,该处理器可以是逻辑电路、集成电路等;当通过软件来实现时,该处理器可以是一个通用处理器,通过读取存储器中存储的软件代码来实现。此外,以上处理器可以为一个或多个,存储器可以为一个或多个。存储器可以与处理器集成在一起,或者存储器与处理器分离设置。在具体实现过程中,存储器可以与处理器集成在同一块芯片上,也可以分别设置在不同的芯片上,本申请实施例对存储器的类型以及存储器与处理器的设置方式不做限定。
第七方面,本申请提供一种通信系统,该通信系统可以包括上述第五方面所提供的通信装置和上述第六方面所提供的通信装置。
第八方面,本申请提供一种计算机可读存储介质,所述计算机存储介质中存储有计算机可读指令,当计算机读取并执行所述计算机可读指令时,使得计算机执行上述第一方面至第四方面的任一种可能的设计中的方法。
第九方面,本申请提供一种计算机程序产品,当计算机读取并执行所述计算机程序产品时,使得计算机执行上述第一方面至第四方面的任一种可能的设计中的方法。
第十方面,本申请提供一种芯片,所述芯片包括处理器,所述处理器与存储器耦合,用于读取并执行所述存储器中存储的软件程序,以实现上述第一方面至第四方面的任一种可能的设计中的方法。
附图说明
图1为本申请实施例应用的通信系统的架构示意图;
图2为本申请实施例提供的多个视频帧的传输示意图;
图3为本申请实施例提供的传输时机的周期与视频帧的传输周期在时域上不匹配示意图;
图4为本申请实施例提供的传输时机所能承载的数据量与视频帧的数据量不匹配示意图;
图5为本申请实施例提供的通信方法所对应的流程示意图;
图6为本申请实施例提供的M个传输时机示意图;
图7为本申请实施例提供的采用扩展规则1扩展传输时机示意图;
图8为本申请实施例提供的采用扩展规则2扩展传输时机示意图;
图9为本申请实施例提供的N个传输时机一种示意图;
图10为本申请实施例提供的N个传输时机的又一种示意图;
图11为本申请实施例提供的通信方法所对应的流程示意图;
图12为本申请实施例提供的通信方法所对应的流程示意图;
图13为本申请实施例提供的第二传输时机示意图;
图14为本申请实施例提供的N个传输时机又一种示意图;
图15为本申请实施例提供的N个传输时机又一种示意图;
图16为本申请实施例提供的通信方法所对应的流程示意图;
图17为本申请实施例中所涉及的装置的可能的示例性框图;
图18为本申请实施例提供的一种终端设备的结构示意图;
图19为本申请实施例提供的一种网络设备的结构示意图。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行描述。
图1为本申请实施例应用的通信系统的架构示意图。如图1所示,通信系统1000包括无线接入网100和核心网200,可选的,通信系统1000还可以包括互联网300。其中,无线接入网100可以包括至少一个无线接入网设备,如图1中的110a和110b,还可以包括至少一个终端设备,如图1中的120a-120j。其中,110a是基站,110b是微站,120a、120e、120f和120j是手机,120b是汽车,120c是加油机,120d是布置在室内或室外的家庭接入节点(home access point,HAP),120g是笔记本电脑,120h是打印机,120i是无人机。
图1中,终端设备可以与无线接入网设备相连,无线接入网设备可以与核心网中的核心网设备连接。核心网设备与无线接入网设备可以是独立的不同的物理设备,也可以是将核心网设备的功能与无线接入网设备的逻辑功能集成在同一个物理设备上,还可以是一个物理设备上集成了部分核心网设备的功能和部分的无线接入网设备的功能。终端设备和终端设备之间以及无线接入网设备和无线接入网设备之间可 以通过有线或无线的方式相互连接。图1只是示意图,该通信系统中还可以包括其它设备,如还可以包括无线中继设备和无线回传设备,在图1中未画出。
下面对无线接入网设备和终端设备进行介绍。
(1)无线接入网设备
无线接入网设备也可以称为接入网设备,接入网设备可以是基站、演进型基站(evolved NodeB,eNodeB)、发送接收点(transmission reception point,TRP)、第五代(5th generation,5G)移动通信系统中的下一代基站(next generation NodeB,gNB)、第六代(6th generation,6G)移动通信系统中的基站、未来移动通信系统中的基站或无线保真(wireless fidelity,WiFi)系统中的接入节点等;也可以是完成基站部分功能的模块或单元,例如,可以是集中式单元(central unit,CU),也可以是分布式单元(distributed unit,DU)。接入网设备可以是宏基站(如图1中的110a),也可以是微基站或室内站(如图1中的110b),还可以是中继节点或施主节点等。
本申请实施例对接入网设备所采用的具体技术和具体设备形态不做限定。在本申请实施例中,用于实现接入设备的功能的装置可以是接入网设备;也可以是能够支持接入网设备实现该功能的装置,例如芯片系统,该装置可以被安装在接入网设备中。其中,芯片系统可以由芯片构成,也可以包括芯片和其他分立器件。在本申请实施例中,也可以通过多个网络功能实体来实现接入网设备的功能,每个网络功能实体用于实现接入网设备的部分功能。这些网络功能实体可以是硬件设备中的网络元件,也可以是在专用硬件上运行的软件功能,或者通过平台(例如云平台)上实例化的虚拟化功能。在本申请实施例提供的技术方案中,以用于实现接入网设备的功能的装置是接入网设备为例,描述本申请实施例提供的技术方案。
(2)终端设备
终端设备也可以称为终端、用户设备(user equipment,UE)、移动台、移动终端等。终端设备可以广泛应用于各种场景,例如,设备到设备(device-to-device,D2D)、车物(vehicle to everything,V2X)通信、机器类通信(machine-type communication,MTC)、物联网(internet of things,IOT)、虚拟现实、增强现实、工业控制、自动驾驶、远程医疗、智能电网、智能家具、智能办公、智能穿戴、智能交通、智慧城市等。终端设备可以是手机、平板电脑、带无线收发功能的电脑、可穿戴设备、车辆、无人机、直升机、飞机、轮船、机器人、机械臂、智能家居设备等。本申请实施例对终端设备所采用的具体技术和具体设备形态不做限定。
本申请实施例中,用于实现终端设备的功能的装置可以是终端设备;也可以是能够支持终端设备实现该功能的装置,例如芯片系统,该装置可以被安装在终端设备中。本申请实施例提供的技术方案中,以用于实现终端设备的功能的装置是终端设备为例,描述本申请实施例提供的技术方案。
此外,同一个终端设备或接入网设备,在不同应用场景中可以提供不同的功能。比如,图1中的手机包括120a、120e、120f和120j。其中,手机120a可以接入基站110a,连接汽车120b,与手机120e直连通信以及接入到HAP;手机120e可以接入HAP以及与手机120a直连通信;手机120f可以接入为微站110b,连接笔记本电脑120g,连接打印机120h;手机120j可以控制无人机120i。
接入网设备和终端设备的角色可以是相对的。例如,图1中的直升机或无人机120i可以被配置成移动基站,对于那些通过120i接入到无线接入网100的终端设备120j来说,终端设备120i是基站;但对于基站110a来说,120i是终端设备,即110a与120i之间是通过无线空口协议进行通信的。当然,110a与120i之间也可以是通过基站与基站之间的接口协议进行通信的,此时,相对于110a来说,120i也是基站。因此,无线接入网和终端设备都可以统一称为通信装置,图1中的110a和110b可以称为具有基站功能的通信装置,图1中的120a-120j可以称为具有终端设备功能的通信装置。
接入网设备和终端设备可以是固定位置的,也可以是可移动的。接入网设备和终端设备可以部署在陆地上,包括室内或室外、手持或车载;也可以部署在水面上;还可以部署在空中的飞机、气球和人造卫星上。本申请的实施例对接入网设备和终端设备的应用场景不做限定。
接入网设备和终端设备之间、接入网设备和接入网设备之间、终端设备和终端设备之间可以通过授权频谱进行通信,也可以通过免授权频谱进行通信,也可以同时通过授权频谱和免授权频谱进行通信;可以通过6千兆赫兹(gigahertz,GHz)以下的频谱进行通信,也可以通过6GHz以上的频谱进行通信,还可以同时使用6GHz以下的频谱和6GHz以上的频谱进行通信。本申请的实施例对无线通信所使用的频谱资源不做限定。
上述图1所示意的通信系统可以支持各种无线接入技术(radio access technology,RAT),例如图1所示意的通信系统可以为第四代(4th generation,4G)通信系统(也可以称为长期演进(long term evolution,LTE)通信系统),5G通信系统(也可以称为新无线(new radio,NR)通信系统),或者是面向未来的演进系统,例如6G通信系统。本申请实施例描述的通信系统以及业务场景是为了更加清楚的说明本申请实施例的技术方案,并不构成对于本申请实施例提供的技术方案的限定,本领域普通技术人员可知,随着通信系统的演变和新业务场景的出现,本申请实施例提供的技术方案对于类似的技术问题,同样适用。
下面先对本申请实施例所涉及的相关技术特征进行解释说明。需要说明的是,这些解释是为了让本申请实施例更容易被理解,而不应该视为对本申请所要求的保护范围的限定。
一、视频帧
视频可以是由一张张连贯起来的图像(或者说图片、照片等)连续播放组成的,当一秒钟有24张图像快速播放,人眼就会认为这是连续的画面(即视频)。帧率是指每秒钟播放的图像数量,比如当帧率为24帧每秒钟(24fps)时,表示每秒钟播放24张图像,当帧率为60fps时,表示每秒钟播放60张图像,以此类推。一个视频帧可以理解为一张图像,即一个视频帧可以包括一张图像对应的多个数据包,一个视频帧的数据量即为该视频帧所包括的多个数据包的数据量之和。当帧率为60帧时,视频帧的传输周期为1000/60=50/3毫秒(ms),约等于16.67ms。以帧率为60帧为例,参见图2所示,为多个视频帧的传输示意图,其中,图2中的视频帧1至视频帧8为连续的8个视频帧。
视频帧的类型可以有多种,比如在一种可能的划分方式中,视频帧的类型包括I帧、P帧、B帧。其中,I帧为帧内编码图像帧,是一种自带全部信息的独立帧,无需参考其他图像便可独立进行解码,可以简单理解为一张静态画面;P帧为预测编码图像帧,需要参考前面的I帧才能进行编码,表示的是当前帧画面与前一帧(前一帧可能是I帧也可能是P帧)的差别,解码时需要用之前缓存的画面叠加上本帧定义的差别,生成最终画面。B帧为双向预测编码帧,也就是B帧记录的是本帧与前后帧的差别;也就是说,要解码B帧,不仅要取得之前的缓存画面,还要解码之后的画面,通过前后画面与本帧数据的叠加取得最终的画面。通常情况下,属于同一类型的不同视频帧的数据量基本相同。通常情况下,一个I帧的数据量可以大于一个P帧的数据量,一个P帧的数据量可以大于一个B帧的数据量。
同一业务的视频帧可以包括I帧和P帧,或者也可以包括I帧和B帧,或者也可以包括I帧、P帧和B帧。
以XR业务为例,XR业务的视频帧可以包括I帧和P帧。在基于图像组(group of picture,GOP)的XR业务模型中,一个图像组可以包括多个连续的视频帧,每个图像组所包括的多个视频帧可以属于不同类型,比如每个图像组的第一个视频帧为I帧,其余视频帧为P帧。其中,GOP所包括的视频帧的个数可以称为图像组的大小,比如图像组的大小为K,图2中是以K=4为例进行示意的。当K=4时,一个图像组对应的时长可以等于4*16.67ms(即66.68ms),I帧的传输周期可以等于一个图像组对应的时长(即66.68ms)。
二、半静态调度
接入网设备为终端设备调度上下行传输资源的方式可以有两种,即动态调度和半静态调度。在动态调度中,接入网设备可以通过控制信道向终端设备发送控制信息,从而为终端设备分配数据信道的传输参数。其中,控制信道比如为物理下行控制信道(physical downlink control channel,PDCCH),控制信息比如可以为下行控制信息(downlink control information,DCI);数据信道比如可以为物理下行共享信道(physical downlink shared channel,PDSCH)或物理上行共享信道(physical uplink shared channel,PUSCH)。示例性地,控制信息可以指示数据信道所映射的时频位置(比如,数据信道所映射的时域符号、频域资源块(resource block,RB)),进而接入网设备和终端设备在该时频位置上,可以通过数据信道传输下行数据(比如PDSCH携带的数据)和/或上行数据(比如PUSCH携带的数据)。
在半静态调度中,接入网设备可以为终端设备分配周期性的上下行传输资源。其中,用于分配上行传输资源的半静态调度可以称为配置授权(configured grant,CG),用于分配下行传输资源的半静态调度可以称为半持续调度(semi-persistent scheduling,SPS)。进一步地,针对于上行:用于进行一次上行传输的传输资源可以称为一个上行传输时机(可简称为传输时机),上行传输时机也可以替换为其它可能的描述,比如CG资源或PUSCH资源或PUSCH机会或PUSCH时机。针对于下行:用于进行一次下行传输的传输资源可以称为一个下行传输时机(可简称为传输时机),下行传输时机也可以替换为其 它可能的描述,比如SPS资源或PDSCH资源或PDSCH机会或PDSCH时机。
(1)SPS
在SPS机制中,接入网设备可以先通过无线资源控制(radio resource control,RRC)消息为终端设备配置至少一套传输时机的部分参数(比如周期等)。比如,RRC消息可以包括至少一套传输时机中每套传输时机对应的sps-Config字段,每套传输时机的周期等参数可以承载在每套传输时机对应的sps-Config字段中。其中,一套传输时机可以包括周期性出现的多个传输时机。
进一步地,针对至少一套传输时机中的每套传输时机,接入网设备可以向终端设备发送激活命令,激活命令用于激活该套传输时机。其中,激活命令比如可以为PDCCH中的DCI,该DCI可以采用配置调度的无线网络临时标识(configured scheduling radio network temporary identifier,CS-RNTI)加扰。示例性地,激活命令可以包括该套传输时机的另一部分参数,比如另一部分参数包括参数1和参数2。参数1指示该套传输时机中每个传输时机的频域位置,属于同一套传输时机的不同传输时机的频域位置相同;或者说,属于同一套传输时机的不同传输时机在频域上完全重叠;或者说,不同传输时机的频域起始位置相同、频域结束位置相同、频域宽度相同。其中,传输时机的频域宽度可以是指传输时机在频域上所包括的连续RB的数量。参数2指示该套传输时机中每个传输时机的时域位置,属于同一套传输时机的不同传输时机的时域长度相同,传输时机的时域长度可以是指传输时机在时域上持续的符号个数。
其中,参数1指示传输时机的频域位置的方式可以多种。比如,方式1:参数1包括一个位图,该位图指示传输时机所包括的资源块组(resource block group,RBG);方式2:参数1包括资源指示值(resource indication value,RIV),RIV指示传输时机的起始RB(可表示为RBstart)和频域上连续RB的数量(可表示为LRB)。
参数2指示传输时机的时域位置的方式可以多种。比如,参数2包括时域资源分配(time domain resource assignment,TDRA)字段,TDRA字段中包括K0、起始和长度指示值(start and length indicator value,SLIV)。其中,K0指示用于承载激活命令的PDCCH和该套传输时机中的第一个传输时机之间的时隙(slot)偏移值,SLIV指示该套传输时机中的第一个传输时机的起始符号位置和该套传输时机中每个传输时机的时域长度。
比如,接入网设备通过参数2所指示的第一个传输时机的时域位置对应的系统帧号(system frame number,SFN)和时隙编号分别记为SFNstart time和slotstart time,则终端设备可以通过如下公式确定第N个传输时机的时域起始位置,即第N个传输时机的时域起始位置出现在哪个系统帧的哪个时隙内,或者理解为:若SFN和slot number in the frame满足如下公式,则终端设备可以确定第N个传输时机的时域起始位置位于系统帧号为SFN的系统帧中的时隙编号为slot number in the frame的时隙中:
(numberOfSlotsPerFrame*SFN+slot number in the frame)=[(numberOfSlotsPerFrame*SFNstart time+slotstart time)+N*periodicity*numberOfSlotsPerFrame/10]modulo(1024*numberOfSlotsPerFrame)
其中,SFN的取值范围为0、1、2…1023,slot number in the frame的取值范围为0、1、2…numberOfSlotsPerFrame-1,numberOfSlotsPerFrame表示一个系统帧包括的时隙的数量,periodicity为RRC消息配置的该套传输时机的周期,modulo表示取模运算。
(2)CG
CG可以支持两种类型,分别为CG类型1和CG类型2,CG类型1和CG类型2的区别在于激活传输时机的方式不同。其中,CG类型1是指,接入网设备通过RRC消息配置至少一套传输时机中每套传输时机的周期以及指示具体的时频位置,比如通过参数1和参数2来指示具体的时频位置,此种情形下,周期参数以及参数1和参数2均承载于RRC消息;终端设备一旦正确接收到RRC消息,配置就立即生效(也就是说,配置即激活)。CG类型2类似于SPS,即接入网设备可以通过RRC消息配置至少一套传输时机的周期等参数,然后,针对至少一套传输时机中的每套传输时机,接入网设备可以通过DCI激活并指示该套传输时机中每个传输时机的时频位置。
三、半静态调度增强技术
以上行传输为例,接入网设备通过CG为终端设备配置并激活一套传输时机后,终端设备可以在该套传输时机上向接入网设备发送视频帧。然而,由于传输时机的周期的最小单位为1ms,而视频帧的传输周期可能不是1ms的整数倍,比如当帧率为60fps时,视频帧的传输周期约为16.67ms,从而使得传输时机的周期与视频帧的传输周期在时域上可能无法匹配,进而可能会导致视频帧的传输时延较大以及传输资源的浪费。
具体来说,参见图3所示,比如接入网设备为终端设备配置的一套传输时机的周期为16ms,该套传输时机可以包括传输时机k、传输时机k+1、传输时机k+2、传输时机k+3等。当视频帧k到达时,由于视频帧k到达的时间在传输时机k的时域起始位置之前,因此终端设备可以在传输时机k上发送视频帧k;当视频帧k+1到达时,由于视频帧k+1到达的时间在传输时机k+1的时域起始位置之前,因此终端设备可以在传输时机k+1上发送视频帧k+1;当视频帧k+2到达时,由于视频帧k+2到达的时间在传输时机k+2的时域起始位置之后,因此终端设备无法在传输时机k+2上发送视频帧k+2,而只能在传输时机k+3上发送视频帧k+2。如此,一方面会导致传输时机k+2上没有进行数据传输,造成传输资源的浪费,另一方面由于将视频帧k+2推迟到传输时机k+3上发送,导致视频帧的传输时延较大。
基于此,本申请实施例提供多种半静态调度增强技术,以使传输时机的周期与视频帧的传输周期在时域上匹配。下面结合配置方式1和配置方式2对本申请实施例提供的半静态调度增强技术进行介绍。
(1)配置方式1
在配置方式1中,接入网设备可以为终端设备配置一套具有非规则周期的传输时机。
具体来说,一种可能的实现为:接入网设备为终端设备配置一套传输时机的基准周期和周期增量序列。其中,基准周期的时长可以通过对视频帧的传输周期向下取整得到,周期增量序列中可以包多个周期增量,比如周期增量序列中包括3个周期增量,则表示每3个周期中第1个周期的时长等于基准周期的时长与周期增量序列中的第1个周期增量之和,第2个周期的时长等于基准周期的时长与周期增量序列中的第2个周期增量之和,第3个周期的时长等于基准周期的时长与周期增量序列中的第3个周期增量之和。举个例子,视频帧的传输周期为50/3ms(约等于16.67ms),则基准周期的时长可以为16ms,周期增量可以为[1ms,1ms,0],此种情形下,接入网设备为终端设备配置的非规则周期的时长依次为[17ms,17ms,16ms,17ms,17ms,16ms,……]。
上述实现仅为一种示例,接入网设备也可以通过配置其它可能的参数来为终端设备配置一套非规则周期的传输时机,本申请实施例对此不做限定。
(2)配置方式2
在配置方式2中,接入网设备可以为终端设备配置多套周期相同但时域起始位置不同的传输时机。比如,当视频帧的传输周期为16.67ms时,接入网设备可以为终端设备配置3套传输时机,3套传输时机的周期均为50ms,3套传输时机的时域起始位置之间的间隔为17ms,17ms,16ms。
可以理解的是,此处主要描述了配置方式1、配置方式2与前文所述的半静态调度的差异之处,除此差异之处的其它内容,可以参照前文所述的半静态调度。
四、传输时机对应的调制与编码策略
接入网设备可以向终端设备指示传输时机对应的调制与编码策略(modulation and coding scheme,MCS),进而接入网设备和终端设备可以根据传输时机对应的MCS在传输时机上传输视频帧。以上行传输为例,接入网设备可以向终端设备指示为终端设备配置的传输时机对应的MCS,进而终端设备可以根据传输时机对应的MCS,在传输时机上向接入网设备发送视频帧。
接入网设备向终端设备指示传输时机对应的MCS的方式可以有多种。作为一种可能的实现,接入网设备可以向终端设备发送指示信息1和指示信息2。其中,指示信息1可用于指示目标MCS表格,指示信息2可用于指示目标MCS表格中的目标MCS,比如指示信息2包括目标MCS的索引值;进而,终端设备根据指示信息1从多个MCS表格中选择出目标MCS表格,以及根据指示信息2从目标MCS表格中确定目标MCS。目标MCS即为传输时机对应的MCS。其中,目标MCS表格中可包括多个MCS索引(比如MCS索引0至MCS索引27),每个MCS索引可以对应一个调制阶数和一个目标码率。举例来说,指示信息2包括的目标MCS索引值为18,则终端设备可以确定目标MCS为MCS18,比如MCS18对应的调制阶数为4,对应的目标码率为490,MCS18也可以记为MCS(4,490)。
属于同一套传输时机的不同传输时机对应的MCS相同。作为一种可能的实现,针对于某一套传输时机,若接入网设备是通过RRC消息来配置该套传输时机的周期等参数,以及通过DCI来激活该套传输时机,则当接入网设备通过指示信息1和指示信息2向终端设备指示该套传输时机对应的MCS时,指示信息1可以承载于上述RRC消息中,比如指示信息1可以承载于RRC消息中该套传输时机对应的sps-Config字段,指示信息2可以承载于上述DCI中。
根据上述相关技术特征的描述可知,同一套传输时机中的不同传输时机的频域宽度相同、时域长度相同(即同一套传输时机中的不同传输时机所包括的资源元素(resource element,RE)的数量相同), 以及同一套传输时机中的不同传输时机对应的MCS相同。由于传输时机所能承载的数据量可以根据传输时机包括的可用RE的数量和传输时机对应的MCS来确定,因此,假设传输时机包括的RE均为可用RE,则同一套传输时机中的不同传输时机所能承载的最大数据量相同。
然而,当某一业务包括不同类型的视频帧时,由于不同类型的视频帧的数据量不同,比如I帧的数据量大于P帧的数据量,因此,会存在传输时机所能承载的数据量与视频帧的数据量不匹配的问题。
比如,接入网设备按照上述配置方式1所描述的方式为XR业务配置一套传输时机,且根据I帧的数据量来配置传输时机(比如配置传输时机的时频位置和传输时机对应的MCS),即传输时机所能承载的数据量匹配I帧的数据量,而不匹配P帧的数据量。如图4中的情形a所示,传输时机1至传输时机5所能承载的数据量均匹配I帧的数据量,由于传输时机2、传输时机3和传输时机4用于传输P帧,P帧的数据量小于I帧的数据量,因此,采用该种方案会导致传输时机2、传输时机3和传输时机4存在资源浪费。
其中,传输时机所能承载的数据量匹配视频帧的数据量可以是指,传输时机所能承载的数据量等于视频帧的数据量,或者传输时机所能承载的数据量大于视频帧的数据量。
又比如,接入网设备按照上述配置方式1所描述的方式为XR业务配置一套传输时机,且根据P帧的数据量来配置传输时机(比如配置传输时机的时频位置和传输时机对应的MCS),即传输时机所能承载的数据量匹配P帧的数据量,而不匹配I帧的数据量。如图4中的情形b所示,传输时机1至传输时机5所能承载的数据量均匹配P帧的数据量,因此,在传输时机1(或传输时机5)上无法将I帧的数据包传输完成,此种情形下,需要在传输时机1的下一个传输时机(即传输时机2)上继续传输I帧的数据包,从而会使得后续视频帧均会推迟传输,导致视频帧的传输时延较大,影响用户体验。
又比如,接入网设备按照上述配置方式2所描述的方式为XR业务配置多套传输时机,尽管接入网设备可以配置多套传输时机所能承载的数据量不同,但是当一个GOP持续的时长和传输时机的周期不同时,I帧可能会在不同套传输时机上进行传输,仍然会存在上述所描述的传输时机所能承载的数据量与视频帧的数据量不匹配的问题。
基于此,本申请实施例将对接入网设备和终端设备之间通过半静态调度方式传输视频帧的相关实现进行研究。
下面结合实施例一至实施例四对本申请实施例提供的通信方法进行介绍。
实施例一
在实施例一中,将以上行传输(即终端设备通过半静态调度方式向接入网设备发送视频帧)为例进行描述。
图5为本申请实施例提供的通信方法所对应的流程示意图。图5中以终端设备和接入网设备作为该交互示意的执行主体为例来示意该方法,但本申请并不限制该交互示意的执行主体。例如,图5中的终端设备也可以是支持该终端设备实现该方法的芯片、芯片系统、或处理器;图5中的接入网设备也可以是支持该接入网设备实现该方法的芯片、芯片系统、或处理器,还可以是能实现全部或部分接入网设备功能的逻辑模块或软件。
如图5所示,该方法包括如下步骤:
S501,接入网设备向终端设备发送第一指示信息,第一指示信息指示M个传输时机的时频位置;相应地,终端设备可以接收第一指示信息。
此处,M个传输时机中每个传输时机所能承载的数据量匹配第一类型视频帧的数据量,第一类型视频帧的数据量小于第二类型视频帧的数据量。M个传输时机可以与第一业务的M个视频帧一一对应,视频帧对应的传输时机可以用于传输该视频帧,参见图6所示。M个传输时机包括第一传输时机,第一传输时机对应第一业务的第一视频帧。其中,第一业务的M个视频帧可以包括第一类型视频帧和第二类型视频帧。比如,第一业务为XR业务,第一类型视频帧为P帧,第二类型视频帧为I帧。
第一指示信息指示M个传输时机的时频位置的方式可以有多种。比如,当M个传输时机可以属于一套传输时机时,接入网设备可以根据第一业务的视频帧的传输周期(比如16.67ms),采用前文中的配置方式1为终端设备配置M个传输时机。此种情形下,第一指示信息可以包括配置方式1中所涉及的相关参数,比如第一指示信息可以包括M个传输时机的周期参数(比如基准周期和周期增量)、参数1和参数2,参数1和参数2可以参见前文的描述。
又比如,当M个传输时机可以属于多套传输时机时,接入网设备也可以根据第一业务的视频帧的 传输周期(比如16.67ms),采用前文中的配置方式2为终端设备配置M个传输时机。此种情形下,第一指示信息可以包括配置方式2中所涉及的相关参数,比如M个传输时机属于3套传输时机,则第一指示信息可以包括这3套传输时机的周期参数,以及3套传输时机中每套传输时机对应的参数1和参数2。
可选地,在S501之前,接入网设备可以获取第一业务的业务信息,第一业务的业务信息可以包括以下至少一项:第一业务的视频帧的传输周期、帧率、第二类型视频帧的传输周期、第一业务的一个图像组所包括的视频帧的数量(即K的取值)、第二类型视频帧的数据量与第一类型视频帧的数据量的比值(可记为α)、一个图像组对应的时长。
其中,第二类型视频帧的数据量与第一类型视频帧的数据量的比值可以是指:第一业务的任一第二类型视频帧的数据量与任一第一类型视频帧的数据量的比值;或者,也可以是指:W1个第二类型视频帧与W1个第一类型视频帧对应的W1个比值的平均值,W1为大于1的整数;或者,也可以是指:W2个第二类型视频帧的数据量的平均值与W3个第一类型视频帧的数据量的平均值的比值,W2、W3为大于1的整数,W2和W3可以相同或不同。
接入网设备获取第一业务的业务信息的方式可以有多种,比如终端设备向接入网设备发送第一业务的业务信息,或者接入网设备从核心网设备获取第一业务的业务信息。
S502,若第一传输时机对应的第一视频帧属于第二类型视频帧,则终端设备在第二传输时机上向接入网设备发送第一视频帧,相应地,接入网设备在第二传输时机上接收来自终端设备的第一视频帧。其中,第二传输时机所能承载的数据量匹配第二类型视频帧的数据量。
具体来说,从终端设备的角度来看,当终端设备确定第一视频帧属于第二类型视频帧后,可以确定第二传输时机(比如确定第二传输时机的时频位置和第二传输时机对应的MCS),并在第二传输时机上向接入网设备发送传输块,传输块包括第一视频帧的所有数据包。从接入网设备的角度来看,当接入网设备确定第一视频帧属于第二类型视频帧后,可以确定第二传输时机(比如确定第二传输时机的时频位置和第二传输时机对应的MCS),并在第二传输时机上接收来自终端设备的传输块。
下面以终端设备为例进行介绍。
(1)终端设备确定第一视频帧属于第二类型视频帧的方式
终端设备确定第一视频帧属于第二类型视频帧的方式可以有多种。下面结合方式1至方式3描述三种可能的方式。
(1.1)方式1
如前文所述,第一业务的每个图像组所包括的第一个视频帧为第二类型视频帧,因此,第一业务的第n*K+1个视频帧即为第二类型视频帧。其中,n为大于或等于0的整数,K为第一业务的每个图像组所包括的视频帧的数量,或者说K为第二类型视频帧的传输周期内所包括的第一类型视频帧和第二类型视频帧的总数量。
由于M个传输时机与第一业务的M个视频帧一一对应,即M个传输时机中的第一个传输时机对应第一业务的第一个视频帧,M个传输时机中的第二个传输时机对应第一业务的第二个视频帧,以此类推。由于第一业务的第n*K+1个视频帧为第二类型视频帧,因此,终端设备若确定第一传输时机为M个传输时机中的第n*K+1个传输时机,则可以确定第一传输时机对应的第一视频帧属于第二类型视频帧。
(1.2)方式2
M个传输时机还可以包括位于第一传输时机之前的第三传输时机,第三传输时机对应第二视频帧,第二视频帧属于第二类型视频帧。
作为一种可能的实现,终端设备若确定第一传输时机的时域起始位置与第三传输时机的时域起始位置之间的时间间隔等于第一时长,第一时长等于第二类型视频帧的传输周期(或者说一个图像组对应的时长),则可以确定第一视频帧属于第二类型视频帧。
基于该实现,在一个示例中,终端设备可以维护一个定时器,定时器的时长为第一时长。终端设备可以确定M个传输时机中的第一个传输时机(如终端设备接收到激活命令后的第一个传输时机)对应的视频帧属于第二类型视频帧,并在该传输时机的第一个符号上启动定时器。针对于后续的每个传输时机,如果在该传输时机的第一个符号上定时器正在运行,则终端设备可以确定该传输时机对应的视频帧属于第一类型视频帧;如果在该传输时机的第一个符号上定时器超时,则终端设备可以确定该传输时机 对应的视频帧属于第二类型视频帧,并在该传输时机的第一个符号上重启定时器。
作为又一种可能的实现,终端设备若确定第一传输时机与第三传输时机之间间隔K-1个传输时机(或者说,第一视频帧与第二视频帧之间间隔K-1个视频帧),则可以确定第一视频帧属于第二类型视频帧。
基于该实现,在一个示例中,终端设备可以维护一个计数器,终端设备可以从M个传输时机中的第一个传输时机开始计数(计数值为1),当计数值为K时,终端设备可以将计数值清零,并针对于下一个传输时机重新开始计数。如此,终端设备可以确定计数值为1的传输时机对应的视频帧属于第二类型视频帧。
(1.3)方式3
第一视频帧可以包括类型标识,类型标识用于指示第一视频帧属于第二类型视频帧,进而终端设备可以根据第一视频帧携带的类型标识,确定第一视频帧属于第二类型视频帧。
作为一种可能的实现,类型标识可以包括类型标识1和类型标识2,其中,类型标识1指示第一类型视频帧,类型标识2指示第二类型视频帧。第一业务的每个视频帧均可以携带类型标识,其中,第一类型视频帧携带类型标识1,第二类型视频帧携带类型标识2。进而终端设备可以根据每个视频帧所携带的类型标识确定出该视频帧所属的类型。
作为又一种可能的实现,类型标识指示第二类型视频帧。第一业务的第二类型视频帧携带类型标识,第一类型视频帧不携带类型标识。进而,若某一视频帧携带有类型标识,则终端设备可以确定该视频帧属于第二类型视频帧。
作为又一种可能的实现,类型标识指示第一类型视频帧。第一业务的第一类型视频帧携带类型标识,第二类型视频帧不携带类型标识。进而,若某一视频帧未携带类型标识,则终端设备可以确定该视频帧属于第二类型视频帧。
示例性地,类型标识可以携带在视频帧的首个数据包中,从而便于终端设备尽早确定出视频帧所属的类型。
具体实施中,终端设备可以采用上述方式1、方式2和方式3中的至少一种方式来确定视频帧所属的类型。比如,终端设备可以采用方式1和方式3来确定视频帧所属的类型;通常情况下,方式1的判断结果和方式3的判断结果是一致的。如果方式1的判断结果和方式3的判断结果存在冲突,则终端设备可以采纳方式3的判断结果,并将方式3确定出的I帧作为新的GOP的第一个视频帧。
可以理解的是,从接入网设备的角度来看,接入网设备也可以采用上述方式1、方式2和方式3中的至少一种方式来确定视频帧所属的类型。示例性地,接入网设备可以采用与终端设备相同的方式来确定第一视频帧属于第二类型视频帧,比如可以由协议预先定义所要采用的方式,或者也可以是接入网设备向终端设备指示所要采用的方式,具体的指示方式不做限定,比如接入网设备可以RRC消息或媒体接入控制(media access control,MAC)控制单元(control element,CE)或DCI来指示。
(2)终端设备确定第二传输时机的方式
终端设备确定第二传输时机,可以是指,终端设备确定第二传输时机的时频位置和第二传输时机对应的MCS。具体的方式可以有多种,下面结合情形1和情形2描述几种可能的方式。
(2.1)情形1
在情形1中,第二传输时机对应的MCS和第一传输时机对应的MCS相同。比如,可以由协议预先定义第二传输时机对应的MCS和第一传输时机对应的MCS相同,或者也可以由接入网设备向终端设备指示第二传输时机对应的MCS和第一传输时机对应的MCS相同;进而,当接入网设备向终端设备指示第一传输时机对应的MCS后,终端设备可以根据第一传输时机对应的MCS得到第二传输时机对应的MCS。又比如,接入网设备可以向终端设备分别指示第一传输时机对应的MCS和第二传输时机对应的MCS,分别指示的MCS是相同的。其中,接入网设备向终端设备指示传输时机对应的MCS的具体实现可以参见前文的描述。
基于该种情形,终端设备可以通过如下两种可能的方式来确定第二传输时机的时频位置。
(2.1.1)方式1
终端设备可以根据第一传输时机的时频位置、以及第一类型视频帧的数据量与第二类型视频帧的数据量,确定第二传输时机的时频位置。比如,终端设备可以根据第二类型视频帧的数据量与第一类型视频帧的数据量的比值,对第一传输时机在时域和/或频域上进行扩展,得到第二传输时机。具体的扩展 规则可以有多种,比如下述扩展规则1至扩展规则3。
扩展规则1,终端设备可以根据比值对第一传输时机的时域长度进行扩展(比如向后延长),得到第二传输时机。终端设备可以在第二传输时机上发送一个传输块,该传输块包括第一视频帧的所有数据包。
此种情形下,参见图7所示,第一传输时机和第二传输时机在频域上完全重叠;第一传输时机的时域起始位置和第二传输时机的时域起始位置相同,第二传输时机的时域长度大于第一传输时机的时域长度。举个例子,第一传输时机在时域上包括T1个时间单元,第二传输时机在时域上包括T2个时间单元,则T2=ceil[(α)·T1],或者T2=ceil(α)·T1,ceil表示向上取整,α表示第二类型视频帧的数据量与第一类型视频帧的数据量的比值;T1、T2均为正整数。
扩展规则2,终端设备可以根据比值对第一传输时机的频域宽度进行扩展,得到第二传输时机。终端设备可以在第二传输时机上发送一个传输块,该传输块包括第一视频帧的所有数据包。
此种情形下,参见图8中的情形a所示,第一传输时机和第二传输时机在时域上完全重叠,第一传输时机和第二传输时机的频域起始位置相同,第二传输时机的频域宽度大于第一传输时机的频域宽度。或者,参见图8中的情形b所示,第一传输时机和第二传输时机在时域上完全重叠,第一传输时机和第二传输时机的频域结束位置相同,第二传输时机的频域宽度大于第一传输时机的频域宽度。
举个例子,第一传输时机在频域上包括P1个资源块RB,第二传输时机在频域上包括P2个RB,则P2=ceil[(α)·P1],或者P2=ceil(α)·P1,P1、P2均为正整数。其中,图8中的(a)也可以理解为:对第一传输时机的频域结束位置进行修改,以P2=ceil(α)·P1为例,则相当于将第一传输时机的频域结束位置由RBstart+P1修改为RBstart+ceil(α)·P1。图8中的(b)也可以理解为:对第一传输时机的频域起始位置进行修改,以P2=ceil(α)·P1为例,则相当于将第一传输时机的频域起始位置由RBstart修改为RBstart-(ceil(α)-1)·P1。
可以理解的是,上述所列举的三种扩展规则仅作为示例,还可以存在其它可能的扩展规则,比如扩展规则3:终端设备根据比值,同时对第一传输时机的时域长度和频域宽度进行扩展,得到第二传输时机。
此外,从接入网设备的角度来看,接入网设备也可以上述方式1来确定第二传输时机的时频位置。其中,接入网设备在确定第二传输时机的时频位置时,所采用的扩展规则可以和终端设备采用的扩展规则相同。比如,可以由协议预先定义所要采用的扩展规则,或者也可以是接入网设备向终端设备指示所要采用的扩展规则,具体的指示方式不做限定,比如接入网设备可以RRC消息或MAC CE或DCI来指示。
采用上述情形1中的方式1,终端设备可以对第一传输时机的时域长度和/或频域长度进行扩展得到第二传输时机,并在第二传输时机上发送第二类型视频帧。因此,一方面,相比于图4中的情形a来说,能够有效避免资源浪费的问题;另一方面,相比于图4中的情形b(即传输时机1对应的视频帧为I帧,由于传输时机1所能承载的数据量小于I帧的数据量,因此需要将传输时机1上未发送完的数据包推迟到传输时机2上发送)来说,由于扩展得到的第二传输时机位于M个传输时机中第一传输时机的下一个传输时机之前(或者说,第二传输时机的时域结束位置位于下一个传输时机的时域起始位置之前),比如第一传输时机为图4中情形b的传输时机1,则第二传输时机位于传输时机2之前,也就是说,终端设备可以在第二传输时机上将I帧的数据包发送完,而无需将I帧的数据包推迟到传输时机2上发送,从而能够有效降低视频帧的传输时延。
(2.1.2)方式2
接入网设备可以向终端设备发送第二指示信息,第二指示信息指示N个传输时机的时频位置,N个传输时机中每个传输时机所能承载的数据量匹配第二类型视频帧的数据量,N个传输时机包括第二传输时机,N为正整数。
其中,N个传输时机可以与第一业务的第二类型视频帧一一对应。N个传输时机可以属于一套传输时机,比如接入网设备可以根据第一业务的第二类型视频帧的传输周期(比如66.68ms),采用前文中的配置方式1为终端设备配置N个传输时机;或者,N个传输时机也可以属于多套传输时机,比如接入网设备也可以根据第一业务的第二类型视频帧的传输周期(比如66.68ms),采用前文中的配置方式2为终端设备配置N个传输时机。由于第一业务的第n*K+1个视频帧即为第二类型视频帧,因此,N个传输时机中的第n+1个传输时机可以对应第一业务的第n*K+1个视频帧。
示例性地,N个传输时机中的第n+1个传输时机与M个传输时机中的第n*K+1个传输时机可以满足如下条件1或条件2。
条件1:第n+1个传输时机与第n*K+1个传输时机在频域上完全重叠,第n+1个传输时机与第n*K+1个传输时机的时域起始位置相同,第n+1个传输时机的时域长度大于第n*K+1个传输时机的时域长度,参见图9所示。比如,第n*K+1个传输时机在时域上包括T1个时间单元,第n+1传输时机在时域上包括T2个时间单元,T1和T2的关系参见上文。
条件2:第n+1个传输时机与第n*K+1个传输时机在时域上完全重叠,第n+1个传输时机与第n*K+1个传输时机的频域起始位置相同(或者第n+1个传输时机与第n*K+1个传输时机的频域结束位置相同),第n+1传输时机的频域宽度大于第n*K+1传输时机的频域宽度,参见图10所示。比如,第n*K+1个传输时机在频域上包括P1个资源块RB,第n+1个传输时机在频域上包括P2个RB,P1和P2的关系参见上文。
当终端设备确定第一传输时机对应的第一视频帧属于第二类型视频帧(即第一视频帧为第一业务的第n*K+1个视频帧)时,终端设备可以确定N个传输时机中的第n+1个传输时机即为第二传输时机,并在第二传输时机上发送第一视频帧。
此外,从接入网设备的角度来看,当接入网设备确定第一传输时机对应的第一视频帧属于第二类型视频帧时,接入网设备可以确定N个传输时机中的第n+1个传输时机即为第二传输时机,并在第二传输时机上接收第一视频帧。
采用上述情形1中的方式2,由于N个传输时机是由接入网设备指示给终端设备的,从而便于降低终端设备的处理负担。进一步地,由于N个传输时机中的第n+1个传输时机与M个传输时机中的第n*K+1个传输时机满足条件1或条件2,因此,一方面,相比于图4中的情形a来说,能够有效避免资源浪费的问题;另一方面,相比于图4中的情形b来说,能够有效降低视频帧的传输时延。此处可以参照上述情形1中方式1的描述。
(2.2)情形2
在情形2中,第二传输时机的时频位置和第一传输时机的时频位置相同。比如,可以由协议预先定义第二传输时机的时频位置和第一传输时机的时频位置相同,或者也可以由接入网设备向终端设备指示第二传输时机的时频位置和第一传输时机的时频位置相同;进而,当接入网设备向终端设备指示第一传输时机的时频位置后,终端设备可以根据第一传输时机的时频位置得到第二传输时机的时频位置。
基于该种情形,终端设备可以通过如下两种可能的方式来确定第二传输时机对应的MCS,进而终端设备可以根据第二传输时机的时频位置和第二传输时机对应的MCS,在第二传输时机上向接入网设备发送视频帧。
(2.2.1)方式1
终端设备可以根据第一传输时机对应的MCS,确定第二传输时机对应的MCS。比如,终端设备可以根据第一传输时机对应的MCS,以及第二类型视频帧的数据量与第一类型视频帧的数据量的比值,确定第二传输时机对应的MCS。
比如,终端设备可以根据比值,查询比值与MCS索引值偏移量的关联关系表,得到比值关联的MCS索引值偏移量,进而根据第一传输时机对应的MCS和比值关联的MCS索引值偏移量,得到第二传输时机对应的MCS。其中,第二传输时机对应的MCS索引值=第一传输时机对应的MCS索引值+比值关联的MCS索引值偏移量。比值与MCS索引值偏移量的关联关系表可以为协议预先定义的,或者也可以是接入网设备指示给终端设备的,具体不做限定。
此外,从接入网设备的角度来看,接入网设备也可以采用方式1来确定第二传输时机对应的MCS。
(2.2.2)方式2
接入网设备可以向终端设备发送第三指示信息,第三指示信息指示第二传输时机对应的MCS,或者第二传输时机对应的MCS与第一传输时机对应的MCS之间的偏移量。进而,终端设备可以根据第三指示信息确定第二传输时机对应的MCS。比如,接入网设备可以根据上述方式1来确定第二传输时机对应的MCS,并通过第三指示信息指示给终端设备。又比如,接入网设备可以根据比值,查询比值与MCS索引值偏移量的关联关系表,得到比值关联的MCS索引值偏移量(即第二传输时机对应的MCS与第一传输时机对应的MCS之间的偏移量),并通过第三指示信息指示给终端设备。
采用上述情形2中的方式1或方式2,由于第一传输时机和第二传输时机的时频位置相同,因此, 相比于图4中的情形a来说,能够有效避免资源浪费的问题,相比于图4中的情形b来说,能够有效降低视频帧的传输时延。
可以理解的是,在其它可能的实施例中,若第一传输时机对应的视频帧属于第一类型视频帧时,则终端设备可以在第一传输时机上向所述接入网设备发送所述第一视频帧,相应地,接入网设备在第一传输时机上接收来自终端设备的第一视频帧。
采用上述实施例一中的方法,接入网设备为终端设备指示M个传输时机后,若M个传输时机中每个传输时机所能承载的数据量匹配第一类型视频帧的数据量,则当M个传输时机中第一传输时机对应的第一视频帧属于第二类型视频帧时,终端设备可以在第二传输时机上向接入网设备发送第一视频帧,第二传输时机所能承载的数据量匹配第二类型视频帧的数据量,从而能够有效解决传输时机所能承载的数据量与视频帧的数据量不匹配的问题,使得接入网设备和终端设备可以通过半静态调度的方式传输视频帧。
实施例二
实施例二与实施例一的区别之处在于:实施例一是针对上行传输,实施例二是针对下行传输。
图11为本申请实施例二提供的通信方法所对应的流程示意图。图11中以终端设备和接入网设备作为该交互示意的执行主体为例来示意该方法,但本申请并不限制该交互示意的执行主体。例如,图11中的终端设备也可以是支持该终端设备实现该方法的芯片、芯片系统、或处理器;图11中的接入网设备也可以是支持该接入网设备实现该方法的芯片、芯片系统、或处理器,还可以是能实现全部或部分接入网设备功能的逻辑模块或软件。
如图11所示,该方法包括如下步骤:
S1101,接入网设备向终端设备发送第一指示信息,第一指示信息指示M个传输时机的时频位置;相应地,终端设备可以接收第一指示信息。
此处,S1101可以参见实施例一中S501的描述。
可选地,接入网设备可以向终端设备发送第一业务的业务信息,第一业务的业务信息可以包括以下至少一项:第一业务的视频帧的传输周期(比如16.67ms)、第一业务的一个图像组所包括的视频帧的数量(即K的取值)、第二类型视频帧的数据量与第一类型视频帧的数据量的比值(可记为α)、一个图像组对应的时长。其中,接入网设备获取第一业务的业务信息的方式可以有多种,比如接入网设备可以从XR应用服务器获取第一业务的业务信息。
接入网设备向终端设备发送第一业务的业务信息的方式可以有多种,下面以接入网设备向终端设备发送比值α为例,描述几种可能的方式。
(1)方式1
接入网设备可以向终端设备发送RRC消息,RRC消息包括比值α。
比如,当M个传输时机属于一套传输时机时,比值α可以承载于RRC消息中该套传输时机对应的SPS-Config字段中。
又比如,当M个传输时机属于多套传输时机(以3套为例)时,3套传输时机中的第1套传输时机对应SPS-Config字段1,第2套传输时机对应SPS-Config字段2,第3套传输时机对应SPS-Config字段3,则作为一种可能的实现,比值α可以承载于SPS-Config字段1、SPS-Config字段2和SPS-Config字段3中的每个SPS-Config字段中(即每个SPS-Config字段1都包括比值α),或者也可以承载于SPS-Config字段1、SPS-Config字段2和SPS-Config字段3中的其中一个或其中两个SPS-Config字段中。
作为又一种可能的实现,可以在RRC消息中定义一个新的字段,比如sps-Config-XR字段,sps-Config-XR字段中可以包括比值α和SPS-Config字段列表,SPS-Config字段列表包括SPS-Config字段1、SPS-Config字段2和SPS-Config字段3。
(2)方式2
接入网设备可以向终端设备发送DCI,DCI包括比值α。
比如,当M个传输时机属于一套传输时机时,接入网设备可以向终端设备发送DCI-1,DCI-1用于激活M个传输时机,DCI-1包括比值α。
又比如,当M个传输时机属于多套传输时机(以3套为例)时,接入网设备可以向终端设备发送 DCI-1、DCI-2和DCI-3,DCI-1用于激活3套传输时机中的第1套传输时机,DCI-2用于激活3套传输时机中的第2套传输时机,DCI-3用于激活3套传输时机中的第3套传输时机。比值α可以承载于DCI-1、DCI-2和DCI-3中的每个DCI中(即每个DCI都包括比值α),或者也可以承载于DCI-1、DCI-2和DCI-3中的其中一个或其中两个DCI中。
又比如,接入网设备可以向终端设备发送一个新的DCI,该DCI中包括比值α。该DCI不同于用于激活M个传输时机的DCI,比如该DCI可以满足以下至少一项:该DCI使用不同于CS-RNTI的无线网络临时标识(radio network temporary identifier,RNTI)进行加扰;该DCI对应的搜索空间不同于用于激活M个传输时机的DCI对应的搜索空间;该DCI的格式不同于用于激活M个传输时机的DCI的格式(比如该DCI的格式为新定义的一种格式)。
可以理解的是,接入网设备向终端设备发送其它业务信息的方式可以参照接入网设备向终端设备发送比值α的实现,不再赘述。接入网设备向终端设备发送的这些业务信息可以承载于同一消息,或者也可以承载于不同消息。
S1102,若第一传输时机对应的第一视频帧属于第二类型视频帧,则接入网设备在第二传输时机上向终端设备发送第一视频帧,相应地,终端设备在第二传输时机上接收来自接入网设备的第一视频帧。其中,第二传输时机所能承载的数据量匹配第二类型视频帧的数据量。
此处,S1102可以参见实施例一中S502的描述。
采用上述实施例二中的方法,接入网设备为终端设备指示M个传输时机后,若M个传输时机中每个传输时机所能承载的数据量匹配第一类型视频帧的数据量,则当M个传输时机中第一传输时机对应的第一视频帧属于第二类型视频帧时,接入网设备可以在第二传输时机上向终端设备发送第一视频帧,第二传输时机所能承载的数据量匹配第二类型视频帧的数据量,从而能够有效解决传输时机所能承载的数据量与视频帧的数据量不匹配的问题,使得接入网设备和终端设备可以通过半静态调度的方式传输视频帧。
实施例三
在实施例三中,将以上行传输为例进行描述。
图12为本申请实施例三提供的通信方法所对应的流程示意图。图12中以终端设备和接入网设备作为该交互示意的执行主体为例来示意该方法,但本申请并不限制该交互示意的执行主体。例如,图12中的终端设备也可以是支持该终端设备实现该方法的芯片、芯片系统、或处理器;图12中的接入网设备也可以是支持该接入网设备实现该方法的芯片、芯片系统、或处理器,还可以是能实现全部或部分接入网设备功能的逻辑模块或软件。
如图12所示,该方法包括如下步骤:
S1201,接入网设备向终端设备发送第一指示信息,第一指示信息指示M个传输时机的时频位置;相应地,终端设备可以接收第一指示信息。
此处,S1201可以参见实施例一中S501的描述。
S1202,若第一传输时机对应的第一视频帧属于第二类型视频帧,则终端设备在第一传输时机和第二传输时机上向接入网设备发送第一视频帧,相应地,接入网设备在第一传输时机和第二传输时机上接收来自终端设备的第一视频帧。其中,第一传输时机和第二传输时机所能承载的总数据量匹配第二类型视频帧的数据量。
具体来说,从终端设备的角度来看,当终端设备确定第一视频帧属于第二类型视频帧后,可以确定第二传输时机(比如确定第二传输时机的时频位置和第二传输时机对应的MCS),并在第一传输时机上向接入网设备发送传输块1,传输块1包括第一视频帧的部分数据包,以及,在第二传输时机上向接入网设备发送传输块2,传输块2包括第一视频帧的另一部分数据包。从接入网设备的角度来看,当接入网设备确定第一视频帧属于第二类型视频帧后,可以确定第二传输时机(比如确定第二传输时机的时频位置和第二传输时机对应的MCS),并在第一传输时机上接收传输块1,以及在第二传输时机上接收传输块2。
示例性地,终端设备和接入网设备确定第一视频帧属于第二类型视频帧的方式可以参见实施例一。
下面以终端设备为例,对终端设备确定第二传输时机的方式进行描述。终端设备确定第二传输时机,可以是指,终端设备确定第二传输时机的时频位置和第二传输时机对应的MCS。
其中,第二传输时机对应的MCS和第一传输时机对应的MCS相同。比如,可以由协议预先定义第二传输时机对应的MCS和第一传输时机对应的MCS相同,或者也可以由接入网设备向终端设备指示第二传输时机对应的MCS和第一传输时机对应的MCS相同;进而,当接入网设备向终端设备指示第一传输时机对应的MCS后,终端设备可以根据第一传输时机对应的MCS得到第二传输时机对应的MCS。又比如,接入网设备可以向终端设备分别指示第一传输时机对应的MCS和第二传输时机对应的MCS,分别指示的MCS是相同的。
此种情形下,终端设备可以通过如下方式1和方式2来确定第二传输时机的时频位置。
(1)方式1
终端设备可以根据第一传输时机的时频位置,以及第一类型视频帧的数据量与第二类型视频帧的数据量,确定第二传输时机的时频位置。比如,终端设备可以根据第二类型视频帧的数据量与第一类型视频帧的数据量的比值,在第一传输时机所在的周期内,增加一个新的传输时机(即第二传输时机)。也就是说,第二传输时机位于M个传输时机中第一传输时机的下一个传输时机之前。参见图13所示,第二传输时机和第一传输时机在频域上重叠,第二传输时机的时域起始位置可以位于第一传输时机的时域结束位置之后(即第一传输时机和第二传输时机在时域上不连续),第二传输时机在时域上包括T3个时间单元,其中,T3=ceil[(α)·T1]-T1,或者T3=ceil(α)·T1-T1。
可以理解的是,在其它可能的实施例中,第二传输时机的时域起始位置可以与第一传输时机的时域结束位置相同(即第一传输时机和第二传输时机在时域上连续),此种情形下,终端设备可以在第一传输时机和第二传输时机上发送一个传输块,该传输块包括第一视频帧的所有数据包,参见实施例一中的描述。
在其它可能的实施例中,终端设备也可以在第一传输时机所在的周期内,增加ceil(α)-1个第二传输时机,每个第二传输时机的时域长度都与第一传输时机的长度相同,进而终端设备可以在第一传输时机和至少一个第二传输时机上发送第一视频帧,具体可以参照增加一个第二传输时机的描述,不再赘述。
采用上述方式1,由于终端设备是在第一传输时机所在的周期内增加一个新的传输时机(即第二传输时机),也就是说,第二传输时机位于M个传输时机中第一传输时机的下一个传输时机之前,因此,相比于图4中的情形a来说,能够有效避免资源浪费的问题,相比于图4中的情形b来说,能够有效降低视频帧的传输时延。
(2)方式2
接入网设备可以向终端设备发送第二指示信息,第二指示信息指示N个传输时机的时频位置,N个传输时机包括第二传输时机,N为正整数。
其中,N个传输时机可以与第一业务的第二类型视频帧一一对应。N个传输时机可以属于一套传输时机,比如接入网设备可以根据第一业务的第二类型视频帧的传输周期(比如66.68ms),采用前文中的配置方式1为终端设备配置N个传输时机;或者,N个传输时机也可以属于多套传输时机,比如接入网设备也可以根据第一业务的第二类型视频帧的传输周期(比如66.68ms),采用前文中的配置方式2为终端设备配置N个传输时机。由于第一业务的第n*K+1个视频帧即为第二类型视频帧,因此,N个传输时机中的第n+1个传输时机可以对应第一业务的第n*K+1个视频帧。
示例性地,N个传输时机中的第n+1个传输时机与M个传输时机中的第n*K+1个传输时机可以满足如下条件1或条件2。
条件1:第n+1个传输时机与第n*K+1个传输时机的频域宽度相同,第n*K+1个传输时机在时域上包括T1个时间单元,第n+1传输时机在时域上包括T3个时间单元,T3和T1的关系参见上文。
其中,第n+1个传输时机与第n*K+1个传输时机可以在频域上完全重叠,即第n+1个传输时机与第n*K+1个传输时机的频域起始位置相同,或者第n+1个传输时机与第n*K+1个传输时机的频域结束位置相同。或者,第n+1个传输时机与第n*K+1个传输时机中可以在频域上连续,即第n+1个传输时机的频域起始位置与第n*K+1个传输时机的频域结束位置相同,或者第n+1个传输时机的频域结束位置与第n*K+1个传输时机的频域起始位置相同。又或者,第n+1个传输时机与第n*K+1个传输时机中可以在频域上不连续。
第n+1个传输时机与第n*K+1个传输时机中可以在时域上连续,比如第n+1个传输时机的时域起始位置与第n*K+1个传输时机的时域结束位置可以相同,参见图14所示。或者,第n+1个传输时机与第n*K+1个传输时机中可以在时域上不连续,比如第n+1个传输时机的时域起始位置在第n*K+1个传 输时机的时域结束位置之后。
可以理解的是,当第n+1个传输时机与第n*K+1个传输时机可以在频域上完全重叠,且第n+1个传输时机与第n*K+1个传输时机中可以在时域上连续时,终端设备也可以在第一传输时机和第二传输时机上发送一个传输块,该传输块包括第一视频帧的所有数据包。
条件2:第n+1个传输时机与第n*K+1个传输时机的时域长度相同,第n*K+1个传输时机在频域上包括P1个资源块RB,第n+1个传输时机在频域上包括P3个RB,P3=ceil[(α)·P1]-P1,或者P3=[ceil(α)-1]·P1。
其中,第n+1个传输时机与第n*K+1个传输时机可以在时域上完全重叠,即第n+1个传输时机与第n*K+1个传输时机的时域起始位置相同,或者第n+1个传输时机与第n*K+1个传输时机的时域结束位置相同,参见图15所示。或者,第n+1个传输时机与第n*K+1个传输时机中可以在时域上连续,比如第n+1个传输时机的时域起始位置与第n*K+1个传输时机的时域结束位置相同。又或者,第n+1个传输时机与第n*K+1个传输时机中可以在时域上不连续,比如第n+1个传输时机的时域起始位置位于第n*K+1个传输时机的时域结束位置之后。
第n+1个传输时机与第n*K+1个传输时机可以在频域上连续,比如第n+1个传输时机的频域起始位置与第n*K+1个传输时机的频域结束位置相同(参见图15中的情形a),又比如第n+1个传输时机的频域结束位置与第n*K+1个传输时机的频域起始位置相同(参见图15中的情形b)。或者,第n+1个传输时机与第n*K+1个传输时机可以在频域上不连续,比如第n+1个传输时机的频域起始位置位于第n*K+1个传输时机的频域结束位置之上,或者第n+1个传输时机的频域结束位置与第n*K+1个传输时机的频域起始位置之下。
可以理解的是,当第n+1个传输时机与第n*K+1个传输时机可以在时域上完全重叠,且第n+1个传输时机与第n*K+1个传输时机中可以在频域上连续时(即图15所示意的情形a和情形b),终端设备也可以在第一传输时机和第二传输时机上发送一个传输块,该传输块包括第一视频帧的所有数据包。
采用上述方式2,由于N个传输时机是由接入网设备指示给终端设备的,从而便于降低终端设备的处理负担。进一步地,由于N个传输时机中的第n+1个传输时机与M个传输时机中的第n*K+1个传输时机满足条件1或条件2,也就是说,第二传输时机位于M个传输时机中第一传输时机的下一个传输时机之前,因此,相比于图4中的情形a来说,能够有效避免资源浪费的问题,相比于图4中的情形b来说,能够有效降低视频帧的传输时延。
可以理解的是,在其它可能的实施例中,若第一传输时机对应的视频帧属于第一类型视频帧时,则终端设备可以在第一传输时机上向所述接入网设备发送所述第一视频帧,相应地,接入网设备在第一传输时机上接收来自终端设备的第一视频帧。
采用上述实施例二中的方法,接入网设备为终端设备指示M个传输时机后,若M个传输时机中每个传输时机所能承载的数据量匹配第一类型视频帧的数据量,则当M个传输时机中第一传输时机对应的第一视频帧属于第二类型视频帧时,终端设备可以在第一传输时机和第二传输时机上向接入网设备发送第一视频帧,第一传输时机和第二传输时机所能承载的数据量匹配第二类型视频帧的数据量,从而能够有效解决传输时机所能承载的数据量与视频帧的数据量不匹配的问题,使得接入网设备和终端设备可以通过半静态调度的方式传输视频帧。
实施例三是以上行传输为例进行描述的,实施例三中的方案也可以适用于下行传输。
实施例四
在实施例四中,将以上行传输为例进行描述。
图16为本申请实施例四提供的通信方法所对应的流程示意图。图16中以终端设备和接入网设备作为该交互示意的执行主体为例来示意该方法,但本申请并不限制该交互示意的执行主体。例如,图16中的终端设备也可以是支持该终端设备实现该方法的芯片、芯片系统、或处理器;图16中的接入网设备也可以是支持该接入网设备实现该方法的芯片、芯片系统、或处理器,还可以是能实现全部或部分接入网设备功能的逻辑模块或软件。
如图16所示,该方法包括如下步骤:
S1601,接入网设备向终端设备发送第一指示信息,第一指示信息指示M个传输时机的时频位置;相应地,终端设备可以接收第一指示信息。
此处,M个传输时机包括第一类型传输时机和第二类型传输时机,第一类型传输时机和第二传输时机所能承载的数据量不同。M个传输时机可以与第一业务的M个视频帧一一对应,比如接入网设备可以根据第一业务的视频帧的传输周期(比如16.67ms)来配置M个传输时机的周期参数。其中,第一业务的M个视频帧可以包括第一类型视频帧和第二类型视频帧,第一类型传输时机对应的视频帧属于第一类型视频帧,第二类型传输时机对应的视频帧属于第二类型视频帧;第一类型传输时机所能承载的数据量匹配第一类型视频帧的数据量,第二类型传输时机所能承载的数据量匹配第二类型视频帧的数据量。
作为一种可能的实现,第一指示信息可以包括一个长度序列,长度序列中包括K个元素,比如长度序列为{L2,L1,…,L1}。举个例子,L2=L1*ceil(α)。
由于长度序列中包括K个元素,因此,从M个传输时机中的第一个传输时机开始,针对于每K个传输时机,终端设备可以确定K个传输时机中的第一个传输时机的时域长度为L2,第二个至第K个传输时机的时域长度为L1;或者,终端设备可以确定K个传输时机中的第一个传输时机的频域宽度为L2,第二个至第K个传输时机的频域宽度为L1。也就是说,每K个传输时机中的第一个传输时机为第二类型传输时机,第二个至第K个传输时机均为第一类型传输时机。
示例性地,接入网设备向终端设备发送长度序列的方式可以有多种。以长度序列中的元素为时域长度以及M个传输时机属于一套传输时机为例,在一个示例中,接入网设备可以通过SLIV指示长度序列,或者,接入网设备也可以在SLIV中不指示传输时机的时域长度,并额外发送长度序列(此种情形下,SLIV和长度序列可以承载于同一消息或不同消息)。
作为又一种可能的实现,第一指示信息包括基础长度(记为L)和一个长度缩放因子序列,长度缩放因子序列中包括K个元素,比如长度缩放因子序列为{ceil(α),1,…,1}。
由于长度缩放因子序列中包括K个元素,因此,从M个传输时机中的第一个传输时机开始,针对于每K个传输时机,终端设备可以确定K个传输时机中的第一个传输时机的时域长度为L*ceil(α),第二个至第K个传输时机的时域长度为L;或者,终端设备可以确定K个传输时机中的第一个传输时机的频域宽度为L*ceil(α),第二个至第K个传输时机的频域宽度为L。也就是说,每K个传输时机中的第一个传输时机为第二类型传输时机,第二个至第K个传输时机均为第一类型传输时机。
示例性地,以基础长度为时域长度以及M个传输时机属于一套传输时机为例,接入网设备可以通过SLIV指示基础长度,并额外发送一个长度缩放因子序列(此种情形下,SLIV和长度缩放因子序列可以承载于同一消息或不同消息)。
作为又一种可能的实现,第一指示信息包括K、L1和L2。举个例子,L2=L1*ceil(α)。
终端设备可以根据第一指示信息,从M个传输时机中的第一个传输时机开始,针对于每K个传输时机,终端设备可以确定K个传输时机中的第一个传输时机的时域长度为L2,第二个至第K个传输时机的时域长度为L1;或者,终端设备可以确定K个传输时机中的第一个传输时机的频域宽度为L2,第二个至第K个传输时机的频域宽度为L1。也就是说,每K个传输时机中的第一个传输时机为第二类型传输时机,第二个至第K个传输时机均为第一类型传输时机。
示例性地,以L1、L2为时域长度以及M个传输时机属于一套传输时机为例,接入网设备可以通过SLIV指示两个时域长度(即L1和L2),并额外向终端设备指示K的取值。
可以理解的是,第一指示信息还可以包括其它可能的信息,比如周期参数等,具体可以参照实施例一中的描述。
S1602,终端设备在M个传输时机上向接入网设备发送M个传输时机分别对应的视频帧,即在第一类型传输时机上向接入网设备发送第一类型视频帧,以及在第二类型传输时机上向接入网设备发送第二类型视频帧;相应地,接入网设备可以在M个传输时机上分别接收M个传输时机对应的视频帧。
采用上述实施例四中的方法,由于接入网设备可以为终端设备配置M个传输时机,M个传输时机中第一类型传输时机所能承载的数据量不同于第二类型传输时机所能承载的数据量,从而能够有效解决传输时机所能承载的数据量与视频帧的数据量不匹配的问题,使得接入网设备和终端设备可以通过半静态调度的方式传输视频帧。
实施例四是以上行传输为例进行描述的,实施例四中的方案也可以适用于下行传输。
针对于上述实施例一至实施例四,可以理解的是:
(1)上述侧重描述了实施例一至实施例四中不同实施例之间的差异之处,除差异之处的其它内容,实施例一至实施例四之间可以相互参照;此外,同一实施例中,不同实现方式或不同示例之间也可以相互参照。
(2)上述实施例中,是以M个传输时机中每个传输时机所能承载的数据量匹配第一类型视频帧的数据量为例进行描述的;此种情形下,当第一传输时机对应的第一视频帧属于第一类型视频帧时,终端设备和接入网设备可以对第一传输时机进行扩展得到第二传输时机。在其它可能的实施例中,M个传输时机中每个传输时机所能承载的数据量也可以匹配第二类型视频帧的数据量;此种情形下,当第一传输时机对应的第一视频帧属于第一类型视频帧时,终端设备和接入网设备可以对第一传输时机进行缩小得到第二传输时机。
上述主要从通信装置交互的角度对本申请实施例提供的方案进行了介绍。可以理解的是,为了实现上述功能,接入网设备和终端设备可以包括执行各个功能相应的硬件结构和/或软件模块。本领域技术人员应该很容易意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,本申请的实施例能够以硬件或硬件和计算机软件的结合形式来实现。某个功能究竟以硬件还是计算机软件驱动硬件的方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
本申请实施例可以根据上述方法示例对接入网设备和终端设备进行功能单元的划分,例如,可以对应各个功能划分各个功能单元,也可以将两个或两个以上的功能集成在一个单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用软件功能单元的形式实现。
在采用集成的单元的情况下,图17示出了本申请实施例中所涉及的装置的可能的示例性框图。如图17所示,装置1700可以包括:处理单元1702和通信单元1703。处理单元1702用于对装置1700的动作进行控制管理。通信单元1703用于支持装置1700与其他设备的通信。可选地,通信单元1703也称为收发单元,可以包括接收单元和/或发送单元,分别用于执行接收和发送操作。装置1700还可以包括存储单元1701,用于存储装置1700的程序代码和/或数据。
该装置1700可以为上述实施例中的终端设备。处理单元1702可以支持装置1700执行上文中各方法示例中终端设备的动作。或者,处理单元1702主要执行方法示例中终端设备的内部动作,通信单元1703可以支持装置1700与其它设备之间的通信。
比如,在一个实施例中,通信单元1703用于:接收来自接入网设备的第一指示信息,所述第一指示信息指示M个传输时机的时频位置,所述M个传输时机中每个传输时机所能承载的数据量匹配第一类型视频帧的数据量,所述第一类型视频帧的数据量小于第二类型视频帧的数据量;其中,所述M个传输时机包括第一传输时机,所述第一传输时机对应第一视频帧,M为正整数;若所述第一视频帧属于所述第二类型视频帧,则在第二传输时机上向所述接入网设备发送所述第一视频帧,所述第二传输时机所能承载的数据量匹配所述第二类型视频帧的数据量。
该装置1700可以为上述实施例中的接入网设备。处理单元1702可以支持装置1700执行上文中各方法示例中接入网设备的动作。或者,处理单元1702主要执行方法示例中接入网设备的内部动作,通信单元1703可以支持装置1700与其它设备之间的通信。
比如,在一个实施例中,通信单元1703用于:向终端设备发送第一指示信息,所述第一指示信息指示M个传输时机的时频位置,所述M个传输时机中每个传输时机所能承载的数据量匹配第一类型视频帧的数据量,所述第一类型视频帧的数据量小于第二类型视频帧的数据量;其中,所述M个传输时机包括第一传输时机,所述第一传输时机对应第一视频帧,M为正整数;若所述第一视频帧属于所述第二类型视频帧,则在第二传输时机上向所述接入网设备发送所述第一视频帧,所述第二传输时机所能承载的数据量匹配所述第二类型视频帧的数据量。
应理解以上装置中单元的划分仅仅是一种逻辑功能的划分,实际实现时可以全部或部分集成到一个物理实体上,也可以物理上分开。且装置中的单元可以全部以软件通过处理元件调用的形式实现;也可以全部以硬件的形式实现;还可以部分单元以软件通过处理元件调用的形式实现,部分单元以硬件的形式实现。例如,各个单元可以为单独设立的处理元件,也可以集成在装置的某一个芯片中实现,此外,也可以以程序的形式存储于存储器中,由装置的某一个处理元件调用并执行该单元的功能。此外这些单 元全部或部分可以集成在一起,也可以独立实现。这里所述的处理元件又可以成为处理器,可以是一种具有信号的处理能力的集成电路。在实现过程中,上述方法的各操作或以上各个单元可以通过处理器元件中的硬件的集成逻辑电路实现或者以软件通过处理元件调用的形式实现。
在一个例子中,以上任一装置中的单元可以是被配置成实施以上方法的一个或多个集成电路,例如:一个或多个特定集成电路(application specific integrated circuit,ASIC),或,一个或多个微处理器(digital singnal processor,DSP),或,一个或者多个现场可编程门阵列(field programmable gate array,FPGA),或这些集成电路形式中至少两种的组合。再如,当装置中的单元可以通过处理元件调度程序的形式实现时,该处理元件可以是处理器,比如通用中央处理器(central processing unit,CPU),或其它可以调用程序的处理器。再如,这些单元可以集成在一起,以片上系统(system-on-a-chip,SOC)的形式实现。
以上用于接收的单元是一种该装置的接口电路,用于从其它装置接收信号。例如,当该装置以芯片的方式实现时,该接收单元是该芯片用于从其它芯片或装置接收信号的接口电路。以上用于发送的单元是一种该装置的接口电路,用于向其它装置发送信号。例如,当该装置以芯片的方式实现时,该发送单元是该芯片用于向其它芯片或装置发送信号的接口电路。
参见图18,为本申请实施例提供的一种终端设备的结构示意图,该终端设备可应用于如图1所示的通信系统中,用于实现以上实施例中终端设备的操作。如图18所示,该终端设备包括:天线1810、射频部分1820、信号处理部分1830。天线1810与射频部分1820连接。在下行方向上,射频部分1820通过天线1810接收接入网设备发送的信息,将接入网设备发送的信息发送给信号处理部分1830进行处理。在上行方向上,信号处理部分1830对终端设备的信息进行处理,并发送给射频部分1820,射频部分1820对终端设备的信息进行处理后经过天线1810发送给接入网设备。
信号处理部分1830可以包括调制解调子系统,用于实现对数据各通信协议层的处理;还可以包括中央处理子系统,用于实现对终端设备操作系统以及应用层的处理;此外,还可以包括其它子系统,例如多媒体子系统,周边子系统等,其中多媒体子系统用于实现对终端设备相机,屏幕显示等的控制,周边子系统用于实现与其它设备的连接。调制解调子系统可以为单独设置的芯片。
调制解调子系统可以包括一个或多个处理元件1831,例如,包括一个主控CPU和其它集成电路。此外,该调制解调子系统还可以包括存储元件1832和接口电路1833。存储元件1832用于存储数据和程序,但用于执行以上方法中终端设备所执行的方法的程序可能不存储于该存储元件1832中,而是存储于调制解调子系统之外的存储器中,使用时调制解调子系统加载使用。接口电路1833用于与其它子系统通信。
该调制解调子系统可以通过芯片实现,该芯片包括至少一个处理元件和接口电路,其中处理元件用于执行以上终端设备执行的任一种方法的各个步骤,接口电路用于与其它装置通信。在一种实现中,终端设备实现以上方法中各个步骤的单元可以通过处理元件调度程序的形式实现,例如用于终端设备的装置包括处理元件和存储元件,处理元件调用存储元件存储的程序,以执行以上方法实施例中终端设备执行的方法。存储元件可以为与处理元件处于同一芯片上的存储元件,即片内存储元件。
在另一种实现中,用于执行以上方法中终端设备所执行的方法的程序可以在与处理元件处于不同芯片上的存储元件,即片外存储元件。此时,处理元件从片外存储元件调用或加载程序于片内存储元件上,以调用并执行以上方法实施例中终端设备执行的方法。
在又一种实现中,终端设备实现以上方法中各个步骤的单元可以是被配置成一个或多个处理元件,这些处理元件设置于调制解调子系统上,这里的处理元件可以为集成电路,例如:一个或多个ASIC,或,一个或多个DSP,或,一个或者多个FPGA,或者这些类集成电路的组合。这些集成电路可以集成在一起,构成芯片。
终端设备实现以上方法中各个步骤的单元可以集成在一起,以SOC的形式实现,该SOC芯片,用于实现以上方法。该芯片内可以集成至少一个处理元件和存储元件,由处理元件调用存储元件的存储的程序的形式实现以上终端设备执行的方法;或者,该芯片内可以集成至少一个集成电路,用于实现以上终端设备执行的方法;或者,可以结合以上实现方式,部分单元的功能通过处理元件调用程序的形式实现,部分单元的功能通过集成电路的形式实现。
可见,以上用于终端设备的装置可以包括至少一个处理元件和接口电路,其中至少一个处理元件用于执行以上方法实施例所提供的任一种终端设备执行的方法。处理元件可以以第一种方式:即调用存储 元件存储的程序的方式执行终端设备执行的部分或全部步骤;也可以以第二种方式:即通过处理器元件中的硬件的集成逻辑电路结合指令的方式执行终端设备执行的部分或全部步骤;当然,也可以结合第一种方式和第二种方式执行终端设备执行的部分或全部步骤。
这里的处理元件同以上描述,可以通过处理器实现,处理元件的功能可以和图17中所描述的处理单元的功能相同。示例性地,处理元件可以是通用处理器,例如CPU,还可以是被配置成实施以上方法的一个或多个集成电路,例如:一个或多个ASIC,或,一个或多个微处理器DSP,或,一个或者多个FPGA等,或这些集成电路形式中至少两种的组合。存储元件可以通过存储器实现,存储元件的功能可以和图17中所描述的存储单元的功能相同。存储元件可以是一个存储器,也可以是多个存储器的统称。
图18所示的终端设备能够实现上述方法实施例中涉及终端设备的各个过程。图18所示的终端设备中的各个模块的操作和/或功能,分别为了实现上述方法实施例中的相应流程。具体可参见上述方法实施例中的描述,为避免重复,此处适当省略详述描述。
参见图19,为本申请实施例提供的一种接入网设备的结构示意图,该接入网设备(或基站)可应用于如图1所示的通信系统中,执行上述方法实施例中接入网设备的功能。如图19所示,接入网设备190可包括一个或多个DU 1901和一个或多个CU 1902。所述DU 1901可以包括至少一个天线19011,至少一个射频单元19012,至少一个处理器19013和至少一个存储器19014。所述DU 1901部分主要用于射频信号的收发以及射频信号与基带信号的转换,以及部分基带处理。CU1902可以包括至少一个处理器19022和至少一个存储器19021。
所述CU 1902部分主要用于进行基带处理,对接入网设备进行控制等。所述DU 1901与CU 1902可以是物理上设置在一起,也可以物理上分离设置的,即分布式基站。所述CU 1902为接入网设备的控制中心,也可以称为处理单元,主要用于完成基带处理功能。例如所述CU 1902可以用于控制接入网设备执行上述方法实施例中关于接入网设备的操作流程。
此外,可选的,接入网设备190可以包括一个或多个射频单元,一个或多个DU和一个或多个CU。其中,DU可以包括至少一个处理器19013和至少一个存储器19014,射频单元可以包括至少一个天线19011和至少一个射频单元19012,CU可以包括至少一个处理器19022和至少一个存储器19021。
在一个实例中,所述CU1902可以由一个或多个单板构成,多个单板可以共同支持单一接入指示的无线接入网(如5G网),也可以分别支持不同接入制式的无线接入网(如LTE网,5G网或其他网)。所述存储器19021和处理器19022可以服务于一个或多个单板。也就是说,可以每个单板上单独设置存储器和处理器。也可以是多个单板共用相同的存储器和处理器。此外每个单板上还可以设置有必要的电路。所述DU1901可以由一个或多个单板构成,多个单板可以共同支持单一接入指示的无线接入网(如5G网),也可以分别支持不同接入制式的无线接入网(如LTE网,5G网或其他网)。所述存储器19014和处理器19013可以服务于一个或多个单板。也就是说,可以每个单板上单独设置存储器和处理器。也可以是多个单板共用相同的存储器和处理器。此外每个单板上还可以设置有必要的电路。
图19所示的接入网设备能够实现上述方法实施例中涉及接入网设备的各个过程。图19所示的接入网设备中的各个模块的操作和/或功能,分别为了实现上述方法实施例中的相应流程。具体可参见上述方法实施例中的描述,为避免重复,此处适当省略详述描述。
本申请实施例中的术语“系统”和“网络”可被互换使用。“至少一种”是指一种或者多种,“多个”是指两个或两个以上。“和/或”,描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A、同时存在A和B、单独存在B的情况,其中A,B可以是单数或者复数。字符“/”一般表示前后关联对象是一种“或”的关系。“以下至少一项(个)”或其类似表达,是指的这些项中的任意组合,包括单项(个)或复数项(个)的任意组合。例如“A,B和C中的至少一个”包括A,B,C,AB,AC,BC或ABC。以及,除非有特别说明,本申请实施例提及“第一”、“第二”等序数词是用于对多个对象进行区分,不用于限定多个对象的顺序、时序、优先级或者重要程度。
本领域内的技术人员应明白,本申请的实施例可提供为方法、系统、或计算机程序产品。因此,本申请可采用完全硬件实施例、完全软件实施例、或结合软件和硬件方面的实施例的形式。而且,本申请可采用在一个或多个其中包含有计算机可用程序代码的计算机可用存储介质(包括但不限于磁盘存储器、光学存储器等)上实施的计算机程序产品的形式。
本申请是参照根据本申请的方法、设备(系统)、和计算机程序产品的流程图和/或方框图来描述的。应理解可由计算机程序指令实现流程图和/或方框图中的每一流程和/或方框、以及流程图和/或方框图中的流程和/或方框的结合。可提供这些计算机程序指令到通用计算机、专用计算机、嵌入式处理机或其他可编程数据处理设备的处理器以产生一个机器,使得通过计算机或其他可编程数据处理设备的处理器执行的指令产生用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的装置。
这些计算机程序指令也可存储在能引导计算机或其他可编程数据处理设备以特定方式工作的计算机可读存储器中,使得存储在该计算机可读存储器中的指令产生包括指令装置的制造品,该指令装置实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能。
这些计算机程序指令也可装载到计算机或其他可编程数据处理设备上,使得在计算机或其他可编程设备上执行一系列操作步骤以产生计算机实现的处理,从而在计算机或其他可编程设备上执行的指令提供用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的步骤。
显然,本领域的技术人员可以对本申请进行各种改动和变型而不脱离本申请的精神和范围。这样,倘若本申请的这些修改和变型属于本申请权利要求及其等同技术的范围之内,则本申请也意图包含这些改动和变型在内。

Claims (33)

  1. 一种通信方法,其特征在于,所述方法包括:
    接收来自接入网设备的第一指示信息,所述第一指示信息指示M个传输时机的时频位置,所述M个传输时机中每个传输时机所能承载的数据量匹配第一类型视频帧的数据量,所述第一类型视频帧的数据量小于第二类型视频帧的数据量;其中,所述M个传输时机包括第一传输时机,所述第一传输时机对应第一视频帧,M为正整数;
    若所述第一视频帧属于所述第二类型视频帧,则在第二传输时机上向所述接入网设备发送所述第一视频帧,所述第二传输时机所能承载的数据量匹配所述第二类型视频帧的数据量。
  2. 根据权利要求1所述的方法,其特征在于,所述第二传输时机对应的调制和编码策略MCS和所述第一传输时机对应的MCS相同。
  3. 根据权利要求1或2所述的方法,其特征在于,所述方法还包括:
    根据所述第一传输时机的时频位置,以及所述第一类型视频帧的数据量与所述第二类型视频帧的数据量,确定所述第二传输时机的时频位置。
  4. 根据权利要求1或2所述的方法,其特征在于,所述方法还包括:
    接收来自所述接入网设备的第二指示信息,所述第二指示信息指示N个传输时机的时频位置,所述N个传输时机中每个传输时机所能承载的数据量匹配所述第二类型视频帧的数据量,所述N个传输时机包括所述第二传输时机,N为正整数。
  5. 根据权利要求1至4中任一项所述的方法,其特征在于:
    所述第二传输时机的时域长度大于所述第一传输时机的时域长度。
  6. 根据权利要求5所述的方法,其特征在于,所述第一传输时机在时域上包括T1个时间单元,所述第二传输时机在时域上包括T2个时间单元;
    其中,T2=ceil[(α)·T1],或者T2=ceil(α)·T1,ceil表示向上取整,α表示所述第二类型视频帧的数据量与所述第一类型视频帧的数据量的比值;T1、T2均为正整数。
  7. 根据权利要求1至4中任一项所述的方法,其特征在于:
    所述第二传输时机的频域宽度大于所述第一传输时机的频域宽度。
  8. 根据权利要求7所述的方法,其特征在于,所述第一传输时机在频域上包括P1个资源块RB,所述第二传输时机在频域上包括P2个RB;
    其中,P2=ceil[(α)·P1],或者P2=ceil(α)·P1,ceil表示向上取整,α表示所述第二类型视频帧的数据量与所述第一类型视频帧的数据量的比值;P1、P2均为正整数。
  9. 根据权利要求1所述的方法,其特征在于,所述第二传输时机的时频位置和所述第一传输时机的时频位置相同。
  10. 根据权利要求9所述的方法,其特征在于,所述方法还包括:
    根据所述第一传输时机对应的MCS,以及所述第一类型视频帧的数据量与所述第二类型视频帧的数据量,确定所述第二传输时机对应的MCS。
  11. 根据权利要求9所述的方法,其特征在于,所述方法还包括:
    接收来自所述接入网设备的第三指示信息,所述第三指示信息指示所述第二传输时机对应的MCS,或者所述第二传输时机对应的MCS与所述第一传输时机对应的MCS之间的偏移量。
  12. 根据权利要求1至11中任一项所述的方法,其特征在于,所述方法还包括:
    接收来自所述接入网设备的第四指示信息,所述第四指示信息指示所述第一传输时机对应的MCS。
  13. 根据权利要求1至12中任一项所述的方法,其特征在于,所述方法还包括:
    若所述第一传输时机为所述M个传输时机中的第n*K+1个传输时机,则确定所述第一视频帧属于所述第二类型视频帧;
    其中,n为大于或等于0的整数,K为所述第二类型视频帧的传输周期内所包括的视频帧的数量。
  14. 根据权利要求1至12中任一项所述的方法,其特征在于,所述M个传输时机还包括位于所述第一传输时机之前的第三传输时机,所述第三传输时机对应第二视频帧,所述第二视频帧属于所述第二类型视频帧;
    所述方法还包括:
    若所述第一传输时机的时域起始位置与所述第三传输时机的时域起始位置之间的时间间隔等于第一时长,所述第一时长等于所述第二类型视频帧的传输周期,则确定所述第一视频帧属于所述第二类型视频帧。
  15. 根据权利要求1至12中任一项所述的方法,其特征在于,所述第一视频帧包括类型标识,类型标识用于指示第一视频帧属于第二类型视频帧。
  16. 一种通信方法,其特征在于,所述方法包括:
    向终端设备发送第一指示信息,所述第一指示信息指示M个传输时机的时频位置,所述M个传输时机中每个传输时机所能承载的数据量匹配第一类型视频帧的数据量,所述第一类型视频帧的数据量小于第二类型视频帧的数据量;其中,所述M个传输时机包括第一传输时机,所述第一传输时机对应第一视频帧,M为正整数;
    若所述第一视频帧属于所述第二类型视频帧,则在第二传输时机上向所述接入网设备发送所述第一视频帧,所述第二传输时机所能承载的数据量匹配所述第二类型视频帧的数据量。
  17. 根据权利要求16所述的方法,其特征在于,所述第二传输时机对应的MCS和所述第一传输时机对应的MCS相同。
  18. 根据权利要求16或17所述的方法,其特征在于,所述方法还包括:
    根据所述第一传输时机的时频位置,以及所述第一类型视频帧的数据量与所述第二类型视频帧的数据量,确定所述第二传输时机的时频位置。
  19. 根据权利要求16至18中任一项所述的方法,其特征在于,所述方法还包括:
    向所述终端设备发送第二指示信息,所述第二指示信息指示N个传输时机的时频位置,所述N个传输时机中每个传输时机所能承载的数据量匹配所述第二类型视频帧的数据量,所述N个传输时机包括所述第二传输时机,N为正整数。
  20. 根据权利要求16至19中任一项所述的方法,其特征在于:
    所述第二传输时机的时域长度大于所述第一传输时机的时域长度。
  21. 根据权利要求20所述的方法,其特征在于,所述第一传输时机在时域上包括T1个时间单元,所述第二传输时机在时域上包括T2个时间单元;
    其中,T2=ceil[(α)·T1],或者T2=ceil(α)·T1,ceil表示向上取整,α表示所述第二类型视频帧的数据量与所述第一类型视频帧的数据量的比值;T1、T2均为正整数。
  22. 根据权利要求16至19中任一项所述的方法,其特征在于:
    所述第二传输时机的频域宽度大于所述第一传输时机的频域宽度。
  23. 根据权利要求22所述的方法,其特征在于,所述第一传输时机在频域上包括P1个资源块RB,所述第二传输时机在频域上包括P2个RB;
    其中,P2=ceil[(α)·P1],或者P2=ceil(α)·P1,ceil表示向上取整,α表示所述第二类型视频帧的数据量与所述第一类型视频帧的数据量的比值;P1、P2均为正整数。
  24. 根据权利要求16所述的方法,其特征在于,所述第二传输时机的时频位置和所述第一传输时机的时频位置相同。
  25. 根据权利要求24所述的方法,其特征在于,所述方法还包括:
    根据所述第一传输时机对应的MCS,以及所述第一类型视频帧的数据量与所述第二类型视频帧的数据量,确定所述第二传输时机对应的MCS。
  26. 根据权利要求24或25所述的方法,其特征在于,所述方法还包括:
    向所述终端设备发送第三指示信息,所述第三指示信息指示所述第二传输时机对应的MCS,或者所述第二传输时机对应的MCS与所述第一传输时机对应的MCS之间的偏移量。
  27. 根据权利要求16至26中任一项所述的方法,其特征在于,所述方法还包括:
    向所述终端设备发送第四指示信息,所述第四指示信息指示所述第一传输时机对应的MCS。
  28. 根据权利要求16至27中任一项所述的方法,其特征在于,所述方法还包括:
    若所述第一传输时机为所述M个传输时机中的第n*K+1个传输时机,则确定所述第一视频帧属于所述第二类型视频帧;
    其中,n为大于或等于0的整数,K为所述第二类型视频帧的传输周期内所包括的视频帧的数量。
  29. 根据权利要求16至27中任一项所述的方法,其特征在于,所述M个传输时机还包括位于所述 第一传输时机之前的第三传输时机,所述第三传输时机对应第二视频帧,所述第二视频帧属于所述第二类型视频帧;
    所述方法还包括:
    若所述第一传输时机的时域起始位置与所述第三传输时机的时域起始位置之间的时间间隔等于第一时长,所述第一时长等于所述第二类型视频帧的传输周期,则确定所述第一视频帧属于所述第二类型视频帧。
  30. 根据权利要求16至27中任一项所述的方法,其特征在于,所述第一视频帧包括类型标识,类型标识用于指示第一视频帧属于第二类型视频帧。
  31. 一种通信装置,其特征在于,包括处理器,所述处理器和存储器耦合,所述存储器中存储有计算机程序;所述处理器用于调用所述存储器中的计算机程序,使得所述通信装置执行如权利要求1至15中任一项所述的方法或者如权利要求16至30中任一项所述的方法。
  32. 一种计算机可读存储介质,其特征在于,所述存储介质中存储有计算机程序或指令,当所述计算机程序或指令被计算机执行时,实现如权利要求1至15中任一项所述的方法或者如权利要求16至30中任一项所述的方法。
  33. 一种计算机程序产品,其特征在于,当计算机读取并执行所述计算机程序产品时,使得计算机执行权利要求1至15中任一项所述的方法或者如权利要求16至30中任一项所述的方法。
PCT/CN2023/101284 2022-06-24 2023-06-20 一种通信方法及装置 WO2023246744A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210731411.2A CN117354941A (zh) 2022-06-24 2022-06-24 一种通信方法及装置
CN202210731411.2 2022-06-24

Publications (1)

Publication Number Publication Date
WO2023246744A1 true WO2023246744A1 (zh) 2023-12-28

Family

ID=89354370

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/101284 WO2023246744A1 (zh) 2022-06-24 2023-06-20 一种通信方法及装置

Country Status (2)

Country Link
CN (1) CN117354941A (zh)
WO (1) WO2023246744A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140233413A1 (en) * 2013-02-21 2014-08-21 Altiostar Networks, Inc. Systems and methods for coordinating transmission of data packets based on frame type detection in a base station
CN111107297A (zh) * 2019-12-30 2020-05-05 广州市百果园网络科技有限公司 一种视频传输方法、装置、资源服务器和存储介质
CN111934828A (zh) * 2020-06-30 2020-11-13 王柳渝 基于ofdma模式的数据传输方法及系统
CN112533029A (zh) * 2020-11-17 2021-03-19 浙江大华技术股份有限公司 一种视频分时传输方法、摄像装置、系统和存储介质

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140233413A1 (en) * 2013-02-21 2014-08-21 Altiostar Networks, Inc. Systems and methods for coordinating transmission of data packets based on frame type detection in a base station
CN111107297A (zh) * 2019-12-30 2020-05-05 广州市百果园网络科技有限公司 一种视频传输方法、装置、资源服务器和存储介质
CN111934828A (zh) * 2020-06-30 2020-11-13 王柳渝 基于ofdma模式的数据传输方法及系统
CN112533029A (zh) * 2020-11-17 2021-03-19 浙江大华技术股份有限公司 一种视频分时传输方法、摄像装置、系统和存储介质

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
HUAWEI, HISILICON: "Performance evaluation results for XR and Cloud Gaming", 3GPP DRAFT; R1-2110811, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, no. e-Meeting; 20211111 - 20211119, 6 November 2021 (2021-11-06), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France, XP052074592 *

Also Published As

Publication number Publication date
CN117354941A (zh) 2024-01-05

Similar Documents

Publication Publication Date Title
WO2019242776A1 (zh) 无线通信方法及装置
WO2018202163A1 (zh) 一种资源指示方法及装置
CN109150463B (zh) 信息发送、接收方法及装置
WO2019029463A1 (zh) 一种接收控制信息、发送控制信息的方法及设备
WO2019158039A1 (zh) 通信方法和通信装置
CN115226190A (zh) 搜索空间的监测方法及装置
WO2023246744A1 (zh) 一种通信方法及装置
WO2017205999A1 (zh) 一种数据传输的方法、设备和系统
WO2024032276A1 (zh) 一种通信方法及装置
WO2024140257A1 (zh) 一种基于配置授权的通信方法及装置
WO2023010951A1 (zh) 资源配置方法和通信装置
WO2023011372A1 (zh) 数据传输方法及装置
WO2024140365A1 (zh) 一种通信方法及相关设备
WO2022110245A1 (zh) 一种资源指示方法及装置
WO2024041184A1 (zh) 一种通信方法及装置
CN112423313B (zh) 传输块大小确定方法及装置
WO2023284485A1 (zh) 信号传输方法及装置
CN118265151A (zh) 一种基于配置授权的通信方法及装置
WO2023207506A1 (zh) 共享资源分配方法及装置
WO2024067171A1 (zh) 一种通信方法和装置
WO2024093892A1 (zh) 用于无线通信的电子设备和方法、计算机可读存储介质
WO2023035909A1 (zh) 数据传输方法及装置
WO2024094192A1 (zh) 一种下行控制信息的传输方法及通信装置
WO2023045714A1 (zh) 一种调度方法及通信装置
WO2024065762A1 (zh) 无线通信的方法及终端设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23826391

Country of ref document: EP

Kind code of ref document: A1