WO2024159581A1 - 压电薄膜体声波谐振器 - Google Patents
压电薄膜体声波谐振器 Download PDFInfo
- Publication number
- WO2024159581A1 WO2024159581A1 PCT/CN2023/081487 CN2023081487W WO2024159581A1 WO 2024159581 A1 WO2024159581 A1 WO 2024159581A1 CN 2023081487 W CN2023081487 W CN 2023081487W WO 2024159581 A1 WO2024159581 A1 WO 2024159581A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- bulk acoustic
- film bulk
- acoustic wave
- piezoelectric
- wave resonator
- Prior art date
Links
- 238000003780 insertion Methods 0.000 claims abstract description 45
- 230000037431 insertion Effects 0.000 claims abstract description 45
- 239000010409 thin film Substances 0.000 claims description 52
- 239000007769 metal material Substances 0.000 claims description 48
- 239000010408 film Substances 0.000 claims description 38
- 239000000758 substrate Substances 0.000 claims description 28
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 claims description 24
- 229910052721 tungsten Inorganic materials 0.000 claims description 24
- 239000010937 tungsten Substances 0.000 claims description 24
- ZOKXTWBITQBERF-UHFFFAOYSA-N Molybdenum Chemical compound [Mo] ZOKXTWBITQBERF-UHFFFAOYSA-N 0.000 claims description 21
- KJTLSVCANCCWHF-UHFFFAOYSA-N Ruthenium Chemical compound [Ru] KJTLSVCANCCWHF-UHFFFAOYSA-N 0.000 claims description 21
- 229910052782 aluminium Inorganic materials 0.000 claims description 21
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 claims description 21
- 229910052750 molybdenum Inorganic materials 0.000 claims description 21
- 239000011733 molybdenum Substances 0.000 claims description 21
- 229910052707 ruthenium Inorganic materials 0.000 claims description 21
- 239000000463 material Substances 0.000 claims description 19
- XLOMVQKBTHCTTD-UHFFFAOYSA-N Zinc monoxide Chemical compound [Zn]=O XLOMVQKBTHCTTD-UHFFFAOYSA-N 0.000 claims description 14
- PMHQVHHXPFUNSP-UHFFFAOYSA-M copper(1+);methylsulfanylmethane;bromide Chemical compound Br[Cu].CSC PMHQVHHXPFUNSP-UHFFFAOYSA-M 0.000 claims description 13
- 239000002131 composite material Substances 0.000 claims description 12
- 229910052751 metal Inorganic materials 0.000 claims description 9
- 239000002184 metal Substances 0.000 claims description 9
- WSMQKESQZFQMFW-UHFFFAOYSA-N 5-methyl-pyrazole-3-carboxylic acid Chemical compound CC1=CC(C(O)=O)=NN1 WSMQKESQZFQMFW-UHFFFAOYSA-N 0.000 claims description 7
- VJPLIHZPOJDHLB-UHFFFAOYSA-N lead titanium Chemical compound [Ti].[Pb] VJPLIHZPOJDHLB-UHFFFAOYSA-N 0.000 claims description 7
- GQYHUHYESMUTHG-UHFFFAOYSA-N lithium niobate Chemical compound [Li+].[O-][Nb](=O)=O GQYHUHYESMUTHG-UHFFFAOYSA-N 0.000 claims description 7
- 239000011787 zinc oxide Substances 0.000 claims description 7
- 229910052581 Si3N4 Inorganic materials 0.000 claims description 6
- 239000003989 dielectric material Substances 0.000 claims description 6
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 claims description 6
- 238000005530 etching Methods 0.000 abstract description 17
- 230000009286 beneficial effect Effects 0.000 description 10
- 230000008878 coupling Effects 0.000 description 6
- 238000010168 coupling process Methods 0.000 description 6
- 238000005859 coupling reaction Methods 0.000 description 6
- 238000010586 diagram Methods 0.000 description 5
- 101000827703 Homo sapiens Polyphosphoinositide phosphatase Proteins 0.000 description 4
- 102100023591 Polyphosphoinositide phosphatase Human genes 0.000 description 4
- 238000004519 manufacturing process Methods 0.000 description 4
- 230000001902 propagating effect Effects 0.000 description 4
- 238000005260 corrosion Methods 0.000 description 3
- 230000007797 corrosion Effects 0.000 description 3
- 230000003647 oxidation Effects 0.000 description 3
- 238000007254 oxidation reaction Methods 0.000 description 3
- 239000000126 substance Substances 0.000 description 3
- 101001121408 Homo sapiens L-amino-acid oxidase Proteins 0.000 description 2
- 102100026388 L-amino-acid oxidase Human genes 0.000 description 2
- 238000006243 chemical reaction Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000010292 electrical insulation Methods 0.000 description 2
- 238000012423 maintenance Methods 0.000 description 2
- 230000003071 parasitic effect Effects 0.000 description 2
- 230000000149 penetrating effect Effects 0.000 description 2
- 101100012902 Saccharomyces cerevisiae (strain ATCC 204508 / S288c) FIG2 gene Proteins 0.000 description 1
- 101100233916 Saccharomyces cerevisiae (strain ATCC 204508 / S288c) KAR5 gene Proteins 0.000 description 1
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 1
- 230000004308 accommodation Effects 0.000 description 1
- 230000008030 elimination Effects 0.000 description 1
- 238000003379 elimination reaction Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000001914 filtration Methods 0.000 description 1
- 238000009434 installation Methods 0.000 description 1
- 238000000034 method Methods 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03H—IMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
- H03H9/00—Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
- H03H9/02—Details
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03H—IMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
- H03H9/00—Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
- H03H9/15—Constructional features of resonators consisting of piezoelectric or electrostrictive material
- H03H9/17—Constructional features of resonators consisting of piezoelectric or electrostrictive material having a single resonator
Definitions
- the present application relates to the technical field of resonators, and in particular to a piezoelectric thin film bulk acoustic wave resonator.
- Piezoelectric film bulk acoustic wave resonator is a resonator made using silicon substrate, micro-electromechanical system and thin film technology. It can realize functions such as image elimination, parasitic filtering and channel selection in wireless transceivers.
- the existing piezoelectric film bulk acoustic wave resonator includes a substrate, a bottom electrode, a piezoelectric layer, a top electrode, an etched insertion layer, and an annular raised frame stacked along the thickness direction of the piezoelectric film bulk acoustic wave resonator.
- the overlapping area of the bottom electrode, the piezoelectric layer, the top electrode, and the etched insertion layer constitutes an effective source area of the piezoelectric film bulk acoustic wave resonator.
- the projection outline of the raised frame is located at the edge of the effective source area.
- the raised frame is used to reflect part of the laterally propagating Rayleigh-Lamb wave (RL wave) back into the effective source area.
- the wavelength of each mode is different.
- the width of the raised frame is equal to an odd multiple of 1/4 of the wavelength of the RL wave in a certain mode, the reflection efficiency of the raised frame is the highest. Since the width of the raised frame cannot be adjusted after production and processing, the raised frame can only reflect the RL wave in a single mode.
- the RL wave is in other modes, the energy leaked at the edge of the effective source area is large, which makes the quality factor of the piezoelectric film bulk acoustic wave resonator low.
- the purpose of the present application is to provide a piezoelectric thin film bulk acoustic resonator with a high quality factor.
- the piezoelectric thin film bulk acoustic wave resonator comprises:
- a bottom electrode located on one side of the substrate, a piezoelectric layer covering the side of the bottom electrode away from the substrate, a top electrode located on the side of the piezoelectric layer away from the bottom electrode, an etched insertion layer located on the side of the top electrode away from the piezoelectric layer, and a raised frame located on the side of the etched insertion layer away from the top electrode;
- the stacked region of the bottom electrode, the piezoelectric layer, the top electrode, and the etched insertion layer constitutes at least a portion of an effective source region of the piezoelectric thin film bulk acoustic wave resonator;
- At least one of the etched insertion layer and the raised frame is provided with an extension portion, which is located at the edge of the effective source region and extends in a direction away from the effective source region along the length direction and/or width direction of the piezoelectric thin film bulk acoustic wave resonator.
- a projection outline of the extension portion is located within a projection outline of the bottom electrode.
- the length L of the extension portion satisfies: L ⁇ 0.5 ⁇ m.
- both the etching insert layer and the protruding frame are provided with extension portions, the extension portion on the etching insert layer is a first extension portion, and the extension portion on the protruding frame is a second extension portion;
- an extending length of the first extending portion is the same as or different from an extending length of the second extending portion.
- the substrate includes a cavity, and the cavity penetrates one side of the substrate along the thickness direction of the piezoelectric thin film bulk acoustic wave resonator;
- a bottom electrode covers the cavity.
- the size of the bottom electrode is equal to or larger than the size of the cavity, and the size of the top electrode is smaller than or equal to the size of the cavity.
- the etched insertion layer includes a dielectric material, and the dielectric material is aluminum nitride or silicon nitride.
- the raised frame includes a first metal material
- the first metal material includes one of aluminum, molybdenum, tungsten, and ruthenium
- the first metal material is a composite metal formed by at least two of aluminum, molybdenum, tungsten, and ruthenium.
- the bottom electrode comprises a second metal material
- the second metal material comprises one of aluminum, molybdenum, tungsten, and ruthenium
- the second metal material is a composite metal formed by at least two of aluminum, molybdenum, tungsten, and ruthenium
- the top electrode includes a third metal material, and the third metal material includes one of aluminum, molybdenum, tungsten, and ruthenium, or the third metal material is a composite metal formed by at least two of aluminum, molybdenum, tungsten, and ruthenium.
- the piezoelectric layer includes a piezoelectric material
- the piezoelectric material includes one of aluminum nitride, zinc oxide, lead titanium zirconate, lithium niobate, and lithium tantalate; or, the piezoelectric material is a composite piezoelectric material formed by at least two of aluminum nitride, zinc oxide, lead titanium zirconate, lithium niobate, and lithium tantalate.
- the beneficial effect of the present application is that by setting the extension part, the first extreme point, the second extreme point and the third extreme point of the quality factor of the piezoelectric thin film bulk acoustic wave resonator of the present application are significantly increased compared with the prior art, and the increase of the first extreme point is the largest.
- the extension part will not additionally reduce the effective electromechanical coupling coefficient (k2eff) of the piezoelectric thin film bulk acoustic wave resonator
- the width of the smaller raised frame corresponding to the first extreme point is selected so that the high-voltage thin film bulk acoustic wave resonator has both a higher quality factor and a larger effective electromechanical coupling coefficient (k2eff).
- Figure 1 is a schematic diagram of the structure of a piezoelectric thin film bulk acoustic resonator in one embodiment provided in the present application;
- FIG2 is a top view of FIG1 ;
- FIG3 is a cross-sectional view of FIG1 in the thickness direction of the piezoelectric thin film bulk acoustic resonator
- FIG4 is a schematic structural diagram of a piezoelectric thin film bulk acoustic resonator provided by the present application in another embodiment
- FIG5 is a top view of FIG4
- FIG6 is a cross-sectional view of FIG4 in the thickness direction of the piezoelectric thin film bulk acoustic resonator
- FIG. 7 is a schematic diagram of the structure of the etching insertion layer in FIG. 4 in an embodiment
- FIG8 is a bottom view of FIG7
- FIG9 is a schematic structural diagram of the raised frame in FIG4 in an embodiment
- FIG10 is a bottom view of FIG9
- FIG11 is a comparison curve diagram of the quality factor of the piezoelectric film bulk acoustic wave resonator provided by the present application and the piezoelectric film bulk acoustic wave resonator of the prior art;
- FIG. 12 is a comparison curve of the effective electromechanical coupling coefficient (k2eff) of the piezoelectric film bulk acoustic wave resonator provided by the present application and the piezoelectric film bulk acoustic wave resonator of the prior art.
- the present application provides a piezoelectric film bulk acoustic wave resonator.
- the outer contour of the piezoelectric film bulk acoustic wave resonator can be rectangular, pentagonal, hexagonal, elliptical or other deformed structures.
- the present application takes the outer contour of the piezoelectric film bulk acoustic wave resonator as a rectangle as an example.
- the piezoelectric thin film bulk acoustic wave resonator includes: a substrate 1; along the thickness direction of the piezoelectric thin film bulk acoustic wave resonator, a bottom electrode 2 located on one side of the substrate 1, a piezoelectric layer 3 covering the side of the bottom electrode 2 away from the substrate 1, a top electrode 4 located on the side of the piezoelectric layer 3 away from the bottom electrode 2, an etched insertion layer 5 located on the side of the top electrode 4 away from the piezoelectric layer 3, and a raised frame 6 located on the side of the etched insertion layer 5 away from the top electrode 4; the stacked area of the bottom electrode 2, the piezoelectric layer 3, the top electrode 4, and the etched insertion layer 5 constitutes at least a part of the effective source area S1 of the piezoelectric thin film bulk acoustic wave resonator; at least one of the etched insertion layer 5 and the raised frame 6 is provided with an extension portion, the extension portion is located at
- the effective source region S1 includes a first region S11 and a second region S12.
- the first region S11 is located in the middle part of the raised frame 6, that is, the exposed part of the top electrode 4
- the second region S12 is the part from the inner edge of the raised frame 6 to the outer edge of the top electrode 4
- the part from the outer edge of the top electrode 4 to the outer edge of the extension is the third region S2
- the part from the outer edge of the extension to the outer edge of the piezoelectric layer 3 is the fourth region S3.
- the bottom electrode 2 and the top electrode 4 are electrically connected to the power supply respectively, and the power supply applies an alternating current to the top electrode 4 and the bottom electrode 2, so that the top electrode 4 and the bottom electrode 2 drive the piezoelectric layer 3 to vibrate, thereby generating an effective sound wave propagating along the thickness direction Z of the piezoelectric film bulk acoustic wave resonator and a Rayleigh-Lamb wave (RL wave) propagating along the length direction X and/or width direction Y of the piezoelectric film bulk acoustic wave resonator (i.e., lateral propagation).
- RL wave Rayleigh-Lamb wave
- the width of the raised frame 6 When the width of the raised frame 6 is determined, most of the energy of the RL wave of a single mode matching the width of the raised frame 6 will be reflected from the boundary between the second region S12 and the third region S2 back to the effective source region S1 (for the sake of ease of description, the S0 mode is taken as an example below), reducing the energy of the RL wave of the S0 mode leaking from the edge of the effective source region S1; part of the energy of the RL wave of the A0 mode, S1 mode, and A1 mode will propagate to the third region S2.
- the leaked RL waves of the A0 mode, S1 mode, and A1 mode will be reflected from the boundary between the third region S2 and the fourth region S3 back to the effective source region S1, and can be converted into a piston acoustic wave mode (i.e., an effective acoustic wave) propagating along the thickness direction Z of the piezoelectric film bulk acoustic wave resonator, reducing the energy of the RL wave of the A0 mode, S1 mode, and A1 mode leaking from the edge of the effective source region S1, thereby effectively improving the quality factor of the piezoelectric film bulk acoustic wave resonator.
- a piston acoustic wave mode i.e., an effective acoustic wave
- the RL wave that can be reflected is increased, the use limitation of the piezoelectric film bulk acoustic wave resonator is reduced, and the working performance and application range of the piezoelectric film bulk acoustic wave resonator are improved.
- the extension length of the extension portion can be adjusted to adjust the acoustic reflection coefficient of the RL waves reflected back in the A0 mode, S1 mode, and A1 mode, and the conversion efficiency from the RL waves to the effective acoustic waves.
- extension portion is located outside the effective source region S1, no parasitic effect and load effect are generated, and the effective electromechanical coupling coefficient (k2eff) of the piezoelectric thin film bulk acoustic wave resonator is not additionally reduced.
- the projection outline of the extension portion is located within the projection outline of the bottom electrode 2 .
- the extension portion if the outer contour of the extension portion exceeds the outer contour of the bottom electrode 2, the extension portion cannot divide the outer side of the effective source region S1 into the third region S2 and the fourth region S3, so that part of the RL wave cannot be reflected into the effective source region S1, thereby reducing the quality factor of the piezoelectric film bulk acoustic wave resonator. Therefore, along the thickness direction Z of the piezoelectric film bulk acoustic wave resonator, the projection contour of the extension portion is located within the projection contour of the bottom electrode 2, which improves the reflection stability of the extension portion to the RL wave, thereby improving the quality factor of the piezoelectric film bulk acoustic wave resonator.
- the length L of the extension portion satisfies: L ⁇ 0.5 ⁇ m.
- the length of the extension portion can be 0.5 ⁇ m, 1 ⁇ m, 1.5 ⁇ m, 2 ⁇ m, 2.6 ⁇ m, 3 ⁇ m, etc.
- L ⁇ 0.5 ⁇ m can enhance the reflection effect of the extension on the RL wave, increase the energy of the RL wave reflected by the extension, and further enhance the quality factor of the piezoelectric thin film bulk acoustic wave resonator.
- only the insertion layer 5 is etched to provide an extension portion, so as to simplify the structure of the raised frame 6 and reduce the processing cost of the raised frame 6 .
- the extension part and the etching insertion layer 5 are integrally formed or separately arranged to increase the structural flexibility of the extension part and the etching insertion layer 5.
- the materials of the extension part and the etching insertion layer 5 can be the same or different to increase the replaceability of the extension part and the etching insertion layer 5, thereby reducing the processing and maintenance costs of the extension part and the etching insertion layer 5.
- only the protruding frame 6 is provided with an extension to simplify the structure of the etching insertion layer 5 and reduce the processing cost of etching the insertion layer 5 .
- the extension part and the raised frame 6 are integrally formed or separately arranged to increase the structural flexibility of the extension part and the raised frame 6.
- the materials of the extension part and the raised frame 6 can be the same or different to increase the replaceability of the extension part and the raised frame 6, thereby reducing the processing and maintenance costs of the extension part and the raised frame 6.
- the etching insertion layer 5 and the raised frame 6 are both provided with extension portions, the extension portion on the etching insertion layer 5 is a first extension portion 51 , and the extension portion on the raised frame 6 is a second extension portion 61 .
- the etched insertion layer 5 is provided with a first accommodating space 52, and along the thickness direction Z of the piezoelectric thin film bulk acoustic wave resonator, the first accommodating space 52 passes through one side of the etched insertion layer 5.
- the top electrode 4 is installed in the first accommodating space 52, and the edge of the top electrode 4 abuts against the side wall of the first accommodating space 52; the edge of the etched insertion layer 5 at the opening of the first accommodating space 52 extends along the length direction X and/or width direction Y of the piezoelectric thin film bulk acoustic wave resonator to form a first extension portion 51.
- the first extension portion 51 abuts against the piezoelectric layer 3, and the top electrode 4 is clamped and fixed by the piezoelectric layer 3 and the etched insertion layer 5.
- the raised frame 6 includes a second accommodating space 62 and a third accommodating space 63 which are relatively arranged along the thickness direction Z of the piezoelectric film bulk acoustic wave resonator.
- the second accommodating space 62 passes through one side of the raised frame 6, and the third accommodating space 63 passes through the other side of the raised frame 6, and the second accommodating cavity is communicated with the third accommodating space 63.
- the edge of the raised frame 6 at the opening of the second accommodating space 62 extends along the length direction X and/or width direction Y of the piezoelectric film bulk acoustic wave resonator to form a second extension portion 61.
- a portion of the etched insertion layer 5 is located in the second accommodating space 62 and abuts against the side wall of the second accommodating space 62, the second extension portion 61 abuts against the first extension portion 51, and a portion of the etched insertion layer 5 is exposed through the third accommodating space 63.
- the area enclosed by the third accommodating space 63 is the first area S11 of the effective source area S1.
- the extension length of the first extension part 51 and the extension length of the second extension part 61 can be the same or different, so as to increase the structural flexibility of the first extension part 51 and the second extension part 61.
- the edges of the first extension part 51 and the second extension part 61 are located in the same plane in the thickness direction Z of the piezoelectric film bulk acoustic wave resonator.
- the material of the first extending portion 51 and the material of the second extending portion 61 may be the same or different.
- the substrate 1 is provided with an acoustic reflection structure, and the acoustic reflection structure can be a closed cavity formed inside the substrate 1 (not shown in the figure); or, as shown in Figures 3 and 6, the acoustic reflection structure is a cavity 11 formed on the substrate 1, along the thickness direction Z of the piezoelectric thin film bulk acoustic wave resonator, the cavity 11 passes through one side of the substrate 1, and the bottom electrode 2 covers the cavity 11; or, the acoustic reflection structure is a Bragg reflector formed on the surface of the substrate 1 (not shown in the figure).
- the acoustic reflection structure is a closed cavity 11 inside the substrate 1, a cavity penetrating one side of the substrate 1, or a Bragg reflector, which increases the flexibility of the acoustic reflection structure, so that it can be flexibly set according to actual needs during the production and processing process, thereby improving the scope of application of the piezoelectric film bulk acoustic wave resonator.
- the acoustic reflection structure is a cavity penetrating one side of the substrate 1, so as to simplify the structure of the substrate 1, reduce the production cost of the substrate 1, and thus reduce the cost of the piezoelectric film bulk acoustic wave resonator; at the same time, the cavity penetrates one side of the substrate 1, that is, the cavity is exposed outside the substrate 1.
- the size, contour shape, etc. of the cavity can be adjusted according to needs to improve the working stability and reliability of the piezoelectric film bulk acoustic wave resonator.
- the size of the bottom electrode 2 is equal to or greater than the size of the cavity 11, and the size of the top electrode 4 is less than or equal to the size of the cavity 11.
- the size of the bottom electrode 2 is equal to or larger than the size of the cavity 11, which reduces the risk of the bottom electrode 2 tilting into the cavity 11 when the bottom electrode 2 covers the cavity 11, thereby improving the stability and reliability of the installation of the bottom electrode 2, and further improving the working stability of the piezoelectric thin film bulk acoustic wave resonator.
- the etched insertion layer 5 includes a dielectric material, and the dielectric material is aluminum nitride or silicon nitride.
- the etched insertion layer 5 includes aluminum nitride or silicon nitride, which increases the electrical insulation properties of the etched insertion layer 5 and reduces the risk of short-circuiting the top electrode 4 due to etching the insertion layer 5 during the operation of the piezoelectric thin film bulk acoustic wave resonator, thereby improving the operating stability of the top electrode 4 and the piezoelectric thin film bulk acoustic wave resonator, and is beneficial to extending the service life of the top electrode 4 and the piezoelectric thin film bulk acoustic wave resonator.
- the raised frame 6 includes a first metal material
- the first metal material includes one of aluminum, molybdenum, tungsten, and ruthenium
- the first metal material is a composite metal formed by at least two of aluminum, molybdenum, tungsten, and ruthenium.
- the first metal material when the first metal material is aluminum, the first metal material has good ductility, which facilitates the processing of the raised frame 6 and reduces the processing cost of the raised frame 6; when the first metal material is molybdenum or tungsten, the first metal material has strong hardness, which improves the structural stability of the raised frame 6 and is beneficial to extending the service life of the raised frame 6; when the first metal material is tungsten or ruthenium, the chemical properties of the first metal material are stable, which reduces the risk of corrosion and oxidation of the raised frame 6, thereby improving the structural stability of the raised frame 6 and is beneficial to extending the service life of the raised frame 6.
- the bottom electrode 2 includes a second metal material
- the second metal material includes one of aluminum, molybdenum, tungsten, and ruthenium
- the second metal material is a composite metal formed by at least two of aluminum, molybdenum, tungsten, and ruthenium.
- the second metal material when the second metal material is aluminum, the second metal material has good ductility, which facilitates the processing of the bottom electrode 2 and reduces the processing cost of the bottom electrode 2; when the second metal material is molybdenum or tungsten, the second metal material has strong hardness, which improves the structural stability of the bottom electrode 2 and is beneficial to extending the service life of the bottom electrode 2; when the second metal material is tungsten or ruthenium, the chemical properties of the second metal material are stable, which reduces the risk of corrosion and oxidation of the bottom electrode 2, thereby improving the structural stability of the bottom electrode 2 and is beneficial to extending the service life of the bottom electrode 2.
- the top electrode 4 includes a third metal material
- the third metal material includes one of aluminum, molybdenum, tungsten, and ruthenium
- the third metal material is a composite metal formed by at least two of aluminum, molybdenum, tungsten, and ruthenium.
- the third metal material when the third metal material is aluminum, the third metal material has good ductility, which facilitates the processing of the top electrode 4 and reduces the processing cost of the top electrode 4; when the third metal material is molybdenum or tungsten, the third metal material has strong hardness, which improves the structural stability of the top electrode 4 and is beneficial to extending the service life of the top electrode 4; when the third metal material is tungsten or ruthenium, the chemical properties of the third metal material are stable, which reduces the risk of corrosion and oxidation of the top electrode 4, thereby improving the structural stability of the top electrode 4 and is beneficial to extending the service life of the top electrode 4.
- the first metal material, the second metal material and the third metal material may be the same or different.
- the piezoelectric layer 3 includes a piezoelectric material, and the piezoelectric material includes one of aluminum nitride, zinc oxide, lead titanium zirconate, lithium niobate, and lithium tantalate.
- the piezoelectric material is a composite piezoelectric material formed by at least two of aluminum nitride, zinc oxide, lead titanium zirconate, lithium niobate, and lithium tantalate.
- the piezoelectric layer 3 has the highest piezoelectric tensor, which is beneficial to improving the acoustic wave conversion efficiency of the piezoelectric thin film bulk acoustic wave resonator.
- the quality factor of the piezoelectric film bulk acoustic wave resonator can be further improved.
- the first extreme point, the second extreme point and the third extreme point of the quality factor of the piezoelectric film bulk acoustic wave resonator of the present application are significantly increased compared to the prior art, and the increase in the first extreme point is the largest.
- extension portion will not additionally reduce the effective electromechanical coupling coefficient (k2eff) of the piezoelectric film bulk acoustic wave resonator
- selecting a smaller width of the raised frame 6 corresponding to the first extreme point enables the high-voltage film bulk acoustic wave resonator to have both a higher quality factor and a larger effective electromechanical coupling coefficient (k2eff).
Landscapes
- Physics & Mathematics (AREA)
- Acoustics & Sound (AREA)
- Piezo-Electric Or Mechanical Vibrators, Or Delay Or Filter Circuits (AREA)
Abstract
一种压电薄膜体声波谐振器,包括:衬底(1)、位于衬底(1)的一侧的底电极(2)、覆盖于底电极(2)远离衬底(1)的一侧的压电层(3)、位于压电层(3)远离底电极(2)的一侧的顶电极(4)、位于顶电极(4)远离压电层(3)的一侧的刻蚀插入层(5)、位于刻蚀插入层(5)远离顶电极(4)的一侧的凸起框架(6);刻蚀插入层(5)和凸起框架(6)中,至少一者设置有延伸部,通过设置延伸部,压电薄膜体声波谐振器的品质因数的第一极值点、第二极值点和第三极值点相较于现有技术均有明显增大,且第一极值点的增幅最大;由于延伸部不会额外降低压电薄膜体声波谐振器的k2eff,选择第一极值点对应的较小的凸起框架的宽度就使得高压电薄膜体声波谐振器同时具有较高的品质因数和较大的k2eff。
Description
本申请涉及谐振器技术领域,尤其涉及一种压电薄膜体声波谐振器。
压电薄膜体声波谐振器是一种使用硅衬底、借助微机电系统以及薄膜技术制造而成的谐振器,在无线收发器中能够实现镜像消除、寄生滤波和信道选择等功能。
现有的压电薄膜体声波谐振器包括沿自身厚度方向层叠设置的衬底、底电极、压电层、顶电极、刻蚀插入层、环状凸起框架,底电极、压电层、顶电极、刻蚀插入层的交叠区域构成压电薄膜体声波谐振器的有效源区,沿压电薄膜体声波谐振器的厚度方向,凸起框架的投影轮廓位于有效源区的边缘位置,凸起框架用于将部分横向传播的瑞利-兰姆波(RL波)反射回有效源区内。
目前RL波主要有S0、A0、S1和A1四种模式且每种模式的波长均不同,当凸起框架的宽度等于某一模式下的RL波的波长1/4的奇数倍时,凸起框架的反射效率最高,由于生产加工后凸起框架的宽度不可调,使得凸起框架只能对单一模式下的RL波进行反射,当RL波处于其他模式时,有效源区的边缘位置泄露的能量大,使得压电薄膜体声波谐振器的品质因数较低。
因此,有必要提供一种品质因数较高的压电薄膜体声波谐振器。
本申请的目的在于提供一种品质因数较高的压电薄膜体声波谐振器。
本申请的技术方案如下:压电薄膜体声波谐振器包括:
衬底;
沿压电薄膜体声波谐振器的厚度方向,位于衬底的一侧的底电极、覆盖于底电极远离衬底的一侧的压电层、位于压电层远离底电极的一侧的顶电极、位于顶电极远离压电层的一侧的刻蚀插入层、位于刻蚀插入层远离顶电极的一侧的凸起框架;
底电极、压电层、顶电极、刻蚀插入层的层叠区域构成压电薄膜体声波谐振器的有效源区的至少部分;
刻蚀插入层和凸起框架中,至少一者设置有延伸部,延伸部位于有效源区的边缘处,且沿压电薄膜体声波谐振器的长度方向和/或宽度方向,延伸部朝向远离有效源区的方向延伸。
在一些实施例中,沿压电薄膜体声波谐振器的厚度方向,延伸部的投影轮廓位于底电极的投影轮廓内。
在一些实施例中,沿压电薄膜体声波谐振器的长度方向和/或宽度方向,延伸部的长度L满足:L≥0.5μm。
在一些实施例中,刻蚀插入层和凸起框架均设置有延伸部,刻蚀插入层上的延伸部为第一延伸部,凸起框架上的延伸部为第二延伸部;
沿延伸部的延伸方向,第一延伸部的延伸长度与第二延伸部的延伸长度相同或不同。
在一些实施例中,衬底包括空腔,沿压电薄膜体声波谐振器的厚度方向,空腔贯通衬底的一侧;
底电极覆盖空腔。
在一些实施例中,在压电薄膜体声波谐振器的长度方向和/或宽度方向上,底电极的尺寸等于或大于空腔的尺寸,顶电极的尺寸小于或等于空腔的尺寸。
在一些实施例中,其特征在于,刻蚀插入层包括介电材料,介电材料为氮化铝或氮化硅。
在一些实施例中,其特征在于,凸起框架包括第一金属材料,第一金属材料包括铝、钼、钨、钌中的一者,或者,第一金属材料为铝、钼、钨、钌中的至少两者形成的复合金属。
在一些实施例中,其特征在于,底电极包括第二金属材料,第二金属材料包括铝、钼、钨、钌中的一者,或者,第二金属材料为铝、钼、钨、钌中的至少两者形成的复合金属;
顶电极包括第三金属材料,第三金属材料包括铝、钼、钨、钌中的一者,或者,第三金属材料为铝、钼、钨、钌中的至少两者形成的复合金属。
在一些实施例中,压电层包括压电材料,压电材料包括氮化铝、氧化锌、锆酸钛铅、铌酸锂、钽酸锂中的一者,或者,压电材料为氮化铝、氧化锌、锆酸钛铅、铌酸锂、钽酸锂中的至少两者形成的复合压电材料。
应当理解的是,以上的一般描述和后文的细节描述仅是示例性的,并不能限制本申请。
本申请的有益效果在于:通过设置延伸部,本申请的压电薄膜体声波谐振器的品质因数的第一极值点、第二极值点和第三极值点相较于现有技术均有明显增大,且第一极值点的增幅最大。此外,由于延伸部不会额外降低压电薄膜体声波谐振器的有效机电耦合系数(k2eff),选择第一极值点对应的较小的凸起框架的宽度就使得高压电薄膜体声波谐振器同时具有较高的品质因数和较大的有效机电耦合系数(k2eff)。
图1为本申请所提供的压电薄膜体声波谐振器在一种实施例中的结构示意图;
图2为图1的俯视图;
图3为图1在压电薄膜体声波谐振器的厚度方向上的剖视图;
图4为本申请所提供的压电薄膜体声波谐振器在另一种实施例中的结构示意图;
图5为图4的俯视图;
图6为图4在压电薄膜体声波谐振器的厚度方向上的剖视图;
图7为图4中刻蚀插入层在一种实施例中的结构示意图;
图8为图7的仰视图;
图9为图4中凸起框架在一种实施例中的结构示意图;
图10为图9的仰视图;
图11为本申请所提供的压电薄膜体声波谐振器与现有技术的压电薄膜体声波谐振器的品质因数的对比曲线图;
图12为本申请所提供的压电薄膜体声波谐振器与现有技术的压电薄膜体声波谐振器的有效机电耦合系数(k2eff)的对比曲线图。
附图标记:
1-衬底;
11-空腔;
2-底电极;
3-压电层;
4-顶电极;
5-刻蚀插入层;
51-第一延伸部;
52-第一容纳空间;
6-凸起框架;
61-第二延伸部;
62-第二容纳空间;
63-第三容纳空间;
S1-有效源区;
S11-第一区域;
S12-第二区域;
S2-第三区域;
S3-第四区域。
此处的附图被并入说明书中并构成本说明书的一部分,示出了符合本申请的实施例,并与说明书一起用于解释本申请的原理。
为了更好的理解本申请的技术方案,下面结合附图对本申请实施例进行详细描述。
应当明确,所描述的实施例仅仅是本申请一部分实施例。基于本申请中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其它实施例,都属于本申请保护的范围。
在一种具体实施例中,下面通过具体的实施例并结合附图对本申请做进一步的详细描述。
本申请提供一种压电薄膜体声波谐振器,,压电薄膜体声波谐振器的外轮廓可以为矩型、五边形、六边形、椭圆形或其他变形结构,本申请以压电薄膜体声波谐振器的外轮廓为矩型为例。
如图1至图6所示,压电薄膜体声波谐振器包括:衬底1;沿压电薄膜体声波谐振器的厚度方向,位于衬底1的一侧的底电极2、覆盖于底电极2远离衬底1的一侧的压电层3、位于压电层3远离底电极2的一侧的顶电极4、位于顶电极4远离压电层3的一侧的刻蚀插入层5、位于刻蚀插入层5远离顶电极4的一侧的凸起框架6;底电极2、压电层3、顶电极4、刻蚀插入层5的层叠区域构成压电薄膜体声波谐振器的有效源区S1的至少部分;刻蚀插入层5和凸起框架6中,至少一者设置有延伸部,延伸部位于有效源区S1的边缘处,且沿压电薄膜体声波谐振器的长度方向和/或宽度方向,延伸部朝向远离有效源区S1的方向延伸。
其中,如图2、图3、图5和图6所示,有效源区S1包括第一区域S11和第二区域S12,在压电薄膜体声波谐振器长度方向X、宽度方向Y围成的平面内(为了便于叙述,以下均以水平面为例进行说明),第一区域S11位于凸起框架6的中间部分,即顶电极4裸露的部分,第二区域S12为凸起框架6的内边缘至顶电极4的外边缘的部分,顶电极4的外边缘至延伸部的外边缘的部分为第三区域S2,延伸部的外边缘至压电层3的外边缘的部分为第四区域S3。
压电薄膜体声波谐振器工作时,底电极2、顶电极4分别与电源电连接,电源向顶电极4、底电极2施加交变电流,使得顶电极4、底电极2驱动压电层3振动,从而产生沿压电薄膜体声波谐振器厚度方向Z传播的有效声波、沿压电薄膜体声波谐振器长度方向X和/或宽度方向Y传播(即横向传播)的瑞利-兰姆波(RL波)。
当凸起框架6的宽度确定时,与凸起框架6的宽度相匹配的单一模式的RL波的大部分能量会从第二区域S12与第三区域S2的边界处反射回有效源区S1(为了便于叙述,以下均以S0模式为例进行说明),降低S0模式的RL波从有效源区S1边缘泄漏的能量;A0模式、S1模式、A1模式的RL波的部分能量会传播到第三区域S2中,由于第三区域S2和第四区域S3的声阻抗不同,会使得泄漏的A0模式、S1模式、A1模式的RL波从第三区域S2与第四区域S3的边界处反射回有效源区S1,且能够转换成沿压电薄膜体声波谐振器厚度方向Z传播的活塞声波模式(即有效声波),降低A0模式、S1模式、A1模式的RL波从有效源区S1边缘泄漏的能量,从而有效提高了压电薄膜体声波谐振器的品质因数。通过在凸起框架6和/或刻蚀插入层5上设置延伸部,增加了能够反射的RL波,降低了压电薄膜体声波谐振器的使用局限性,从而提升了压电薄膜体声波谐振器的工作性能及适用范围。
其中,可以通过调整延伸部的延伸长度,以调整A0模式、S1模式、A1模式的RL波反射回来的声波反射系数、从RL波转换为有效声波的转换效率。
此外,由于延伸部位于有效源区S1外侧,因此不会产生寄生效应和负载效应,不会额外降低压电薄膜体声波谐振器的有效机电耦合系数(k2eff)。
具体地,如图3和图6所示,沿压电薄膜体声波谐振器的厚度方向Z,延伸部的投影轮廓位于底电极2的投影轮廓内。
在本实施例中,若延伸部的外轮廓超出底电极2的外轮廓,则延伸部无法将有效源区S1的外侧分为第三区域S2和第四区域S3,从而使得部分RL波无法被反射会有效源区S1内,进而降低了压电薄膜体声波谐振器的品质因数。因此,沿压电薄膜体声波谐振器的厚度方向Z,延伸部的投影轮廓位于底电极2的投影轮廓内,提升了延伸部对RL波的反射稳定性,进而提升了压电薄膜体声波谐振器的品质因数。
其中,沿压电薄膜体声波谐振器的长度方向X和/或宽度方向Y,延伸部的长度L满足:L≥0.5μm,具体地,延伸部的长度可以为0.5μm、1μm、1.5μm、2μm、2.6μm、3μm等。
若延伸部的长度较小,即L<0.5μm,则延伸部能够反射的RL波的能量较少。因此,L≥0.5μm,能够提升延伸部对RL波的反射作用,增加了延伸部反射的RL波的能量,从而进一步提升了压电薄膜体声波谐振器的品质因数。
在一种实施例中,如图1、图2和图3所示,仅刻蚀插入层5设置有延伸部,以简化凸起框架6的结构,降低凸起框架6的加工成本。
其中,延伸部与刻蚀插入层5一体成型或分体设置,以增加延伸部、刻蚀插入层5的结构灵活性。延伸部与刻蚀插入层5的材质可以相同也可以不同,以增加延伸部、刻蚀插入层5的可替换性,进而降低延伸部、刻蚀插入层5的加工、维修成本。
在另一种实施例中,仅凸起框架6上设置有延伸,以简化刻蚀插入层5的结构,降低刻蚀插入层5的加工成本。
其中,延伸部与凸起框架6一体成型或分体设置,以增加延伸部、凸起框架6的结构灵活性。延伸部与凸起框架6的材质可以相同也可以不同,以增加延伸部、凸起框架6的可替换性,进而降低延伸部、凸起框架6的加工、维修成本。
在另一种实施例中,如图4、图5和图6所示,刻蚀插入层5和凸起框架6均设置有延伸部,刻蚀插入层5上的延伸部为第一延伸部51,凸起框架6上的延伸部为第二延伸部61。
具体地,如图7和图8所示,刻蚀插入层5设置有第一容纳空间52,沿压电薄膜体声波谐振器的厚度方向Z,第一容纳空间52贯通刻蚀插入层5的一侧,如图6所示,顶电极4安装于第一容纳空间52,且顶电极4的边缘与第一容纳空间52的侧壁抵接;刻蚀插入层5在第一容纳空间52的开口处的边缘沿压电薄膜体声波谐振器的长度方向X和/或宽度方向Y延伸形成第一延伸部51,如图6所示,第一延伸部51与压电层3抵接,顶电极4被压电层3与刻蚀插入层5夹持固定。
如图9和图10所示,凸起框架6包括沿压电薄膜体声波谐振器的厚度方向Z相对设置的第二容纳空间62和第三容纳空间63,第二容纳空间62贯通凸起框架6的一侧,第三容纳空间63贯通凸起框架6的另一侧,且第二容纳腔与第三容纳空间63相通,凸起框架6在第二容纳空间62的开口处的边缘沿压电薄膜体声波谐振器的长度方向X和/或宽度方向Y延伸形成第二延伸部61,如图6所示,刻蚀插入层5的一部分位于第二容纳空间62内并与第二容纳空间62的侧壁抵接,第二延伸部61与第一延伸部51抵接,刻蚀插入层5的一部分经第三容纳空间63裸露,第三容纳空间63围成的区域为有效源区S1的第一区域S11。
其中,沿延伸部的延伸方向,即沿压电薄膜体声波谐振器的长度方向X和/或宽度方向Y,第一延伸部51的延伸长度与第二延伸部61的延伸长度可以相同也可以不同,以增加第一延伸部51、第二延伸部61的结构灵活性,在本实施例中,第一延伸部51、第二延伸部61的边缘在压电薄膜体声波谐振器的厚度方向Z位于同一平面内。
此外,第一延伸部51的材质与第二延伸部61的材质可以相同也可以不同。
具体地,衬底1设置有声学反射结构,声学反射结构可以为形成在衬底1内部的密闭腔体(图中未标示);或者,如图3和图6所示,声学反射结构为形成在衬底1上的空腔11,沿压电薄膜体声波谐振器的厚度方向Z,空腔11贯通衬底1的一侧,底电极2覆盖在空腔11上;或者,声学反射结构为形成在衬底1表面的布拉格反射镜(图中未标示)。
在本实施例中,声学反射结构为衬底1内部的密闭空腔11、贯通衬底1一侧的腔体或布拉格反射镜,增加了声学反射结构的灵活性,以便于在生产加工过程中根据实际需求灵活设置,进而提升了压电薄膜体声波谐振器的适用范围。在本实施例中,声学反射结构为贯通衬底1一侧的腔体,以简化衬底1的结构,降低衬底1的生产成本,进而降低压电薄膜体声波谐振器的成本;同时,腔体贯通衬底1的一侧,即腔体裸露在衬底1外,在压电薄膜体声波谐振器使用过程中,可以根据需求调节腔体的尺寸、轮廓形状等,以提升压电薄膜体声波谐振器的工作稳定性及可靠性。
具体地,如图3和图6所示,在压电薄膜体声波谐振器的长度方向和/或宽度方向上,底电极2的尺寸等于或大于空腔11的尺寸,顶电极4的尺寸小于或等于空腔11的尺寸。
在本实施例中,底电极2的尺寸等于或大于空腔11的尺寸,降低了底电极2覆盖在空腔11上方时底电极2倾斜至空腔11内的风险,从而提升了底电极2安装的稳固性和可靠性,进而提升了压电薄膜体声波谐振器的工作稳定性。
以上任一实施例中,刻蚀插入层5包括介电材料,介电材料为氮化铝或氮化硅。
在本实施例中,氮化铝、氮化硅的介电性能强,即氮化铝、氮化硅具有良好的电绝缘性,刻蚀插入层5包括氮化铝或氮化硅,增加了刻蚀插入层5的电绝缘性能,降低了在压电薄膜体声波谐振器工作过程中刻蚀插入层5导致顶电极4短路的风险,从而提升了顶电极4、压电薄膜体声波谐振器的工作稳定性,并有利于延长顶电极4、压电薄膜体声波谐振器的使用寿命。
以上任一实施例中,凸起框架6包括第一金属材料,第一金属材料包括铝、钼、钨、钌中的一者,或者,第一金属材料为铝、钼、钨、钌中的至少两者形成的复合金属。
在本实施例中,当第一金属材料为铝时,第一金属材料具有良好的延展性,从而便于凸起框架6的加工,降低凸起框架6的加工成本;当第一金属材料为钼、钨时,第一金属材料具有较强的硬度,从而提升了凸起框架6的结构稳定性,有利于延长凸起框架6的使用寿命;当第一金属材料为钨、钌时,第一金属材料的化学性质稳定,降低了凸起框架6被腐蚀、氧化的风险,从而提升了凸起框架6的结构稳定性,有利于延长凸起框架6的使用寿命。
以上任一实施例中,底电极2包括第二金属材料,第二金属材料包括铝、钼、钨、钌中的一者,或者,第二金属材料为铝、钼、钨、钌中的至少两者形成的复合金属。
在本实施例中,当第二金属材料为铝时,第二金属材料具有良好的延展性,从而便于底电极2的加工,降低底电极2的加工成本;当第二金属材料为钼、钨时,第二金属材料具有较强的硬度,从而提升了底电极2的结构稳定性,有利于延长底电极2的使用寿命;当第二金属材料为钨、钌时,第二金属材料的化学性质稳定,降低了底电极2被腐蚀、氧化的风险,从而提升了底电极2的结构稳定性,有利于延长底电极2的使用寿命。
以上任一实施例中,顶电极4包括第三金属材料,第三金属材料包括铝、钼、钨、钌中的一者,或者,第三金属材料为铝、钼、钨、钌中的至少两者形成的复合金属。
在本实施例中,当第三金属材料为铝时,第三金属材料具有良好的延展性,从而便于顶电极4的加工,降低顶电极4的加工成本;当第三金属材料为钼、钨时,第三金属材料具有较强的硬度,从而提升了顶电极4的结构稳定性,有利于延长顶电极4的使用寿命;当第三金属材料为钨、钌时,第三金属材料的化学性质稳定,降低了顶电极4被腐蚀、氧化的风险,从而提升了顶电极4的结构稳定性,有利于延长顶电极4的使用寿命。
其中,第一金属材料、第二金属材料、第三金属材料可以相同也可以不同。
以上任一实施例中,压电层3包括压电材料,压电材料包括氮化铝、氧化锌、锆酸钛铅、铌酸锂、钽酸锂中的一者,或者,压电材料为氮化铝、氧化锌、锆酸钛铅、铌酸锂、钽酸锂中的至少两者形成的复合压电材料。
在本实施例中,当压电材料为氮化铝、氧化锌、锆酸钛铅、铌酸锂、钽酸锂时,使得压电层3最高的压电张量,从而有利于提升压电薄膜体声波谐振器的声波转换效率。
综上,在本申请中,通过设置延伸部、优化调节延伸部的延伸长度,可以进一步地提高压电薄膜体声波谐振器的品质因数。如图11和图12所示,当刻蚀插入层5、凸起框架6上均设置有延伸部时,本申请的压电薄膜体声波谐振器的品质因数的第一极值点、第二极值点和第三极值点相较于现有技术均有明显增大,且第一极值点的增幅最大。此外,由于延伸部不会额外降低压电薄膜体声波谐振器的有效机电耦合系数(k2eff),选择第一极值点对应的较小的凸起框架6的宽度就使得高压电薄膜体声波谐振器同时具有较高的品质因数和较大的有效机电耦合系数(k2eff)。
需要指出的是,本专利申请文件的一部分包含受著作权保护的内容。除了对专利局的专利文件或记录的专利文档内容制作副本以外,著作权人保留著作权。
Claims (10)
- 一种压电薄膜体声波谐振器,其特征在于,所述压电薄膜体声波谐振器包括:衬底(1);沿所述压电薄膜体声波谐振器的厚度方向,位于所述衬底(1)的一侧的底电极(2)、覆盖于所述底电极(2)远离所述衬底(1)的一侧的压电层(3)、位于所述压电层(3)远离所述底电极(2)的一侧的顶电极(4)、位于所述顶电极(4)远离所述压电层(3)的一侧的刻蚀插入层(5)、位于所述刻蚀插入层(5)远离所述顶电极(4)的一侧的凸起框架(6);所述底电极(2)、所述压电层(3)、所述顶电极(4)、所述刻蚀插入层(5)的层叠区域构成所述压电薄膜体声波谐振器的有效源区(S1)的至少部分;所述刻蚀插入层(5)和所述凸起框架(6)中,至少一者设置有延伸部,所述延伸部位于所述有效源区(S1)的边缘处,且沿所述压电薄膜体声波谐振器的长度方向和/或宽度方向,所述延伸部朝向远离所述有效源区(S1)的方向延伸。
- 根据权利要求1所述的压电薄膜体声波谐振器,其特征在于,沿压电薄膜体声波谐振器的厚度方向,所述延伸部的投影轮廓位于所述底电极(2)的投影轮廓内。
- 根据权利要求2所述的压电薄膜体声波谐振器,其特征在于,沿所述压电薄膜体声波谐振器的长度方向和/或宽度方向,所述延伸部的长度L满足:L≥0.5μm。
- 根据权利要求1所述的压电薄膜体声波谐振器,其特征在于,所述刻蚀插入层(5)和所述凸起框架(6)均设置有所述延伸部,所述刻蚀插入层(5)上的所述延伸部为第一延伸部(51),所述凸起框架(6)上的所述延伸部为第二延伸部(61);沿所述延伸部的延伸方向,所述第一延伸部(51)的延伸长度与所述第二延伸部(61)的延伸长度相同或不同。
- 根据权利要求1所述的压电薄膜体声波谐振器,其特征在于,所述衬底(1)包括空腔(11),沿所述压电薄膜体声波谐振器的厚度方向,所述空腔(11)贯通所述衬底(1)的一侧;所述底电极(2)覆盖所述空腔(11)。
- 根据权利要求5所述的压电薄膜体声波谐振器,其特征在于,在所述压电薄膜体声波谐振器的长度方向和/或宽度方向上,所述底电极(2)的尺寸等于或大于所述空腔(11)的尺寸,所述顶电极(4)的尺寸小于或等于所述空腔(11)的尺寸。
- 根据权利要求1至6中任一项所述的压电薄膜体声波谐振器,其特征在于,所述刻蚀插入层(5)包括介电材料,所述介电材料为氮化铝或氮化硅。
- 根据权利要求1至6中任一项所述的压电薄膜体声波谐振器,其特征在于,所述凸起框架(6)包括第一金属材料,所述第一金属材料包括铝、钼、钨、钌中的一者,或者,所述第一金属材料为铝、钼、钨、钌中的至少两者形成的复合金属。
- 根据权利要求1至6中任一项所述的压电薄膜体声波谐振器,其特征在于,所述底电极(2)包括第二金属材料,所述第二金属材料包括铝、钼、钨、钌中的一者,或者,所述第二金属材料为铝、钼、钨、钌中的至少两者形成的复合金属;所述顶电极(4)包括第三金属材料,所述第三金属材料包括铝、钼、钨、钌中的一者,或者,所述第三金属材料为铝、钼、钨、钌中的至少两者形成的复合金属。
- 根据权利要求1至6中任一项所述的压电薄膜体声波谐振器,其特征在于,所述压电层(3)包括压电材料,所述压电材料包括氮化铝、氧化锌、锆酸钛铅、铌酸锂、钽酸锂中的一者,或者,所述压电材料为氮化铝、氧化锌、锆酸钛铅、铌酸锂、钽酸锂中的至少两者形成的复合压电材料。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US18/334,364 US20240267018A1 (en) | 2023-02-02 | 2023-06-13 | Piezoelectric film bulk acoustic resonator |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202310073492.6 | 2023-02-02 | ||
CN202310073492.6A CN115987243A (zh) | 2023-02-02 | 2023-02-02 | 压电薄膜体声波谐振器 |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US18/334,364 Continuation US20240267018A1 (en) | 2023-02-02 | 2023-06-13 | Piezoelectric film bulk acoustic resonator |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2024159581A1 true WO2024159581A1 (zh) | 2024-08-08 |
Family
ID=85962531
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2023/081487 WO2024159581A1 (zh) | 2023-02-02 | 2023-03-15 | 压电薄膜体声波谐振器 |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN115987243A (zh) |
WO (1) | WO2024159581A1 (zh) |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20140125202A1 (en) * | 2009-11-25 | 2014-05-08 | Avago Technologies General Ip (Singapore) Pte. Ltd. | Bulk acoustic wave (baw) resonator structure having an electrode with a cantilevered portion and a piezoelectric layer with multiple dopants |
CN110061712A (zh) * | 2018-12-26 | 2019-07-26 | 天津大学 | 包括环形凸起梁檐结构的声学谐振器、滤波器和电子设备 |
CN111010119A (zh) * | 2019-08-15 | 2020-04-14 | 天津大学 | 带复合环形结构的谐振器、滤波器及电子设备 |
CN111669141A (zh) * | 2020-05-29 | 2020-09-15 | 杭州见闻录科技有限公司 | 一种体声波谐振器的电极结构及制作工艺 |
CN113872555A (zh) * | 2021-09-26 | 2021-12-31 | 瑞声声学科技(深圳)有限公司 | 压电谐振器及其制作方法 |
CN114553169A (zh) * | 2020-11-24 | 2022-05-27 | 诺思(天津)微系统有限责任公司 | 利用凸起结构降低声阻抗的体声波谐振器、滤波器及电子设备 |
-
2023
- 2023-02-02 CN CN202310073492.6A patent/CN115987243A/zh active Pending
- 2023-03-15 WO PCT/CN2023/081487 patent/WO2024159581A1/zh unknown
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20140125202A1 (en) * | 2009-11-25 | 2014-05-08 | Avago Technologies General Ip (Singapore) Pte. Ltd. | Bulk acoustic wave (baw) resonator structure having an electrode with a cantilevered portion and a piezoelectric layer with multiple dopants |
CN110061712A (zh) * | 2018-12-26 | 2019-07-26 | 天津大学 | 包括环形凸起梁檐结构的声学谐振器、滤波器和电子设备 |
CN111010119A (zh) * | 2019-08-15 | 2020-04-14 | 天津大学 | 带复合环形结构的谐振器、滤波器及电子设备 |
CN111669141A (zh) * | 2020-05-29 | 2020-09-15 | 杭州见闻录科技有限公司 | 一种体声波谐振器的电极结构及制作工艺 |
CN114553169A (zh) * | 2020-11-24 | 2022-05-27 | 诺思(天津)微系统有限责任公司 | 利用凸起结构降低声阻抗的体声波谐振器、滤波器及电子设备 |
CN113872555A (zh) * | 2021-09-26 | 2021-12-31 | 瑞声声学科技(深圳)有限公司 | 压电谐振器及其制作方法 |
Also Published As
Publication number | Publication date |
---|---|
CN115987243A (zh) | 2023-04-18 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US12052011B2 (en) | High quality factor transducers for surface acoustic wave devices | |
JP4589306B2 (ja) | 電気音響構成素子および製造方法 | |
US6788170B1 (en) | Resonator structure having a dampening material and a filter having such a resonator structure | |
US9203374B2 (en) | Film bulk acoustic resonator comprising a bridge | |
US9083302B2 (en) | Stacked bulk acoustic resonator comprising a bridge and an acoustic reflector along a perimeter of the resonator | |
US9048812B2 (en) | Bulk acoustic wave resonator comprising bridge formed within piezoelectric layer | |
US9136818B2 (en) | Stacked acoustic resonator comprising a bridge | |
US9099983B2 (en) | Bulk acoustic wave resonator device comprising a bridge in an acoustic reflector | |
US11146233B2 (en) | Elastic wave device and manufacturing method therefor | |
WO2020209152A1 (ja) | 弾性波デバイスおよびそれを備えたフィルタ装置 | |
JP2002374144A (ja) | 薄膜圧電共振器 | |
WO2010052914A1 (ja) | 弾性波素子と、これを用いた電子機器 | |
CN110999076A (zh) | 杂散模式信号被抑制的saw设备 | |
EP3979496A1 (en) | Bulk acoustic resonator having separated additional structure and top electrode, filter, and electronic device | |
CN112039477B (zh) | 一种薄膜体声波谐振器及其制造方法 | |
JPWO2008088010A1 (ja) | 薄膜圧電共振器および薄膜圧電フィルタ | |
CN111010132A (zh) | 体声波谐振器、滤波器及电子设备 | |
CN110868183B (zh) | 谐振器和滤波器 | |
CN216390944U (zh) | 压电谐振器 | |
CN115842530A (zh) | 体声波谐振器以及体声波谐振器的制作方法 | |
WO2024159581A1 (zh) | 压电薄膜体声波谐振器 | |
WO2024159616A1 (zh) | 一种薄膜声学谐振器 | |
JP2006270465A (ja) | 圧電振動子の周波数特性調整方法 | |
CN112039483B (zh) | 一种薄膜体声波谐振器 | |
US20230231533A1 (en) | Laterally excited bulk wave resonator and fabricating method thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 23919155 Country of ref document: EP Kind code of ref document: A1 |