WO2024157590A1 - Solar battery cell - Google Patents

Solar battery cell Download PDF

Info

Publication number
WO2024157590A1
WO2024157590A1 PCT/JP2023/042149 JP2023042149W WO2024157590A1 WO 2024157590 A1 WO2024157590 A1 WO 2024157590A1 JP 2023042149 W JP2023042149 W JP 2023042149W WO 2024157590 A1 WO2024157590 A1 WO 2024157590A1
Authority
WO
WIPO (PCT)
Prior art keywords
solar cell
resin coating
transparent conductive
electrode
conductive layer
Prior art date
Application number
PCT/JP2023/042149
Other languages
French (fr)
Japanese (ja)
Inventor
将典 福田
Original Assignee
株式会社カネカ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社カネカ filed Critical 株式会社カネカ
Publication of WO2024157590A1 publication Critical patent/WO2024157590A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0216Coatings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0224Electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers
    • H01L31/072Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN heterojunction type
    • H01L31/0745Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN heterojunction type comprising a AIVBIV heterojunction, e.g. Si/Ge, SiGe/Si or Si/SiC solar cells
    • H01L31/0747Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN heterojunction type comprising a AIVBIV heterojunction, e.g. Si/Ge, SiGe/Si or Si/SiC solar cells comprising a heterojunction of crystalline and amorphous materials, e.g. heterojunction with intrinsic thin layer

Definitions

  • the present invention relates to a solar cell.
  • the solar cell of Patent Document 1 uses a transparent conductive oxide, which is generally a porous material, as the transparent conductive layer. Therefore, if the division work is performed in the air, moisture and the like in the air may penetrate through the transparent conductive layer to the photoelectric conversion section, which may degrade the performance of the solar cell module.
  • the present invention aims to provide a solar cell that can suppress the intrusion of moisture and other substances from the atmosphere, compared to conventional solar cells.
  • One aspect of the present invention for solving the above-mentioned problems is a solar cell having a first electrode portion and a resin coating portion adjacent to the first electrode portion, the first electrode portion and the resin coating portion constituting a part of a first main surface, the first main surface having an inner edge region constituted by the first electrode portion and the resin coating portion, and the edge of the inner edge region is formed within a range of 0.5 mm from the outer periphery.
  • the inner edge region formed within a range of 0.5 mm from the outer periphery is composed of the first electrode portion and the resin coating portion, so that it is possible to prevent moisture and the like from entering in the thickness direction from the first main surface.
  • the first electrode portion and the resin coating portion include a continuously connected resin portion.
  • the total area of the resin-coated portion of the inner edge region is greater than the total area of the first electrode portion.
  • the first electrode portion has at least two finger electrode portions, the two finger electrode portions extend in substantially the same direction and are arranged side by side at a distance in a direction intersecting the extending direction, and the inner edge region is constituted by the resin coating portion between the two finger electrode portions.
  • substantially parallel does not only refer to the case where the centerlines are completely parallel, but also includes the case where the absolute value of the inclination angle of one centerline relative to the other centerline is 3 degrees or less.
  • the first electrode portion and the resin coating portion are formed on the first substrate main surface of the photoelectric conversion substrate, the photoelectric conversion substrate has a textured structure formed on the first substrate main surface, and the resin coating portion has an uneven region in which unevenness smaller than the unevenness of the textured structure is formed.
  • the resin coating portion covers the unevenness of the textured structure, thereby forming the uneven area.
  • the first electrode portion and the resin coating portion are formed on the first substrate main surface of the photoelectric conversion substrate
  • the photoelectric conversion substrate has a pn junction in which a p-type semiconductor and an n-type semiconductor are joined directly or via an intrinsic semiconductor in the thickness direction, and the pn junction is formed on the first main surface side of the center of the photoelectric conversion substrate in the thickness direction.
  • the pn junction which is the reaction site, is located close to the first electrode and the resin coating, so it is less susceptible to the effects of moisture, etc. when generating electricity at the pn junction.
  • a transparent conductive layer is disposed in a position overlapping the inner edge region when viewed in a plan view, and the first electrode portion and the resin coating portion cover the transparent conductive layer.
  • the first electrode portion is laminated on a transparent conductive layer, the first main surface has a transparent conductive layer-free region where no transparent conductive layer is formed, and the resin coating portion coats the transparent conductive layer along the outer periphery of the transparent conductive layer and extends from the transparent conductive layer to the transparent conductive layer-free region.
  • One aspect of the present invention is a solar cell having a photoelectric conversion substrate having a photoelectric conversion section and a transparent conductive layer, a first electrode section formed on the transparent conductive layer, and a resin coating section adjacent to the first electrode section, the photoelectric conversion section having an exposed portion from the transparent conductive layer at its outer periphery when viewed in a plan view, and the resin coating section coating the transparent conductive layer along the outer periphery of the transparent conductive layer and being provided across from the transparent conductive layer to the exposed portion of the photoelectric conversion section.
  • the resin coating portion coats the transparent conductive layer along the outer periphery of the transparent conductive layer and covers the end faces of the transparent conductive layer, so that it is possible to prevent moisture and the like from entering the direction of the interface between the photoelectric conversion portion and the transparent conductive layer.
  • the solar cell of the present invention can suppress the intrusion of moisture and other substances from the atmosphere compared to conventional methods.
  • FIG. 1 is a perspective view of a stacked structure of solar cells according to a first embodiment of the present invention
  • FIG. 2 is a plan view of the solar cell of FIG. 1
  • 2A is an explanatory diagram of the solar cell of FIG. 1, where FIG. 2A is an oblique view seen from the first cell main surface side, and FIG. 2B is an oblique view of the solar cell of FIG. 2A rotated in the direction of arrow R and seen from the second cell main surface side.
  • 3A and 3B are explanatory views of the solar cell of FIG. 2, in which FIG. 3A is an end view of the AA cross section of FIG. 2, and FIG. 3B is an end view of the BB cross section of FIG.
  • FIG. 5A and 5B are explanatory diagrams of the solar cell of FIG. 4, in which (a) is an enlarged view of region C in FIG. 4A, and (b) is an enlarged view of region D in FIG. 4A.
  • 2 is a plan view of a solar cell module using divided solar cells obtained by dividing the solar cell of FIG. 1, with a first sealing member and a first sealing material omitted for ease of understanding.
  • FIG. 7 is a cross-sectional end view of the solar cell module of FIG. 6, with hatching of the first and second encapsulants omitted for ease of understanding.
  • FIG. 1 is a cross-sectional view after the photoelectric conversion part forming process
  • (b) is a cross-sectional view after the transparent conductive layer forming process.
  • (b) shows dots for the parts formed in each process, and hatching is omitted for the rest.
  • 2 is an explanatory diagram of the solar cell manufacturing process for manufacturing the solar cell of FIG. 1, where (a) is a cross-sectional view after the first electrode forming process, and (b) is a cross-sectional view after the second electrode forming process. Note that (a) and (b) show dots for the parts formed in each process, and hatching is omitted for the rest.
  • FIGS. 2A and 2B are explanatory diagrams of the positional relationship between solar cells in a layered structure formation process for forming the layered structure of solar cells in FIG. 1, in which (a) is an end view of a vertical cross section, and (b) is an end view of a cross section in a direction perpendicular to the cross section of (a) (horizontal direction).
  • 3 is an explanatory diagram of the solar cell processing step for processing the solar cell of FIG. 2, where (a) is a cross-sectional view after the laser step, and (b) is a cross-sectional view after the bending step. Note that (a) and (b) are omitted from hatching for ease of understanding.
  • 1A and 1B are explanatory diagrams of the main parts of a solar cell of another embodiment of the present invention, in which (a) is a plan view of an embodiment in which a plurality of second finger electrode portions are located between first finger electrode portions, and (b) is a plan view of an embodiment in which a plurality of first finger electrode portions are located between second finger electrode portions.
  • 1A and 1B are explanatory diagrams of a solar cell processing step for processing a solar cell according to another embodiment of the present invention, in which (a) is a cross-sectional view of the solar cell after a laser process, and (b) is a cross-sectional view of the solar cell after a folding process. Note that (a) and (b) are omitted from hatching for ease of understanding.
  • the solar cell stack structure 1 of the first embodiment of the present invention (hereinafter simply referred to as the stack structure 1) has a plurality of solar cells 2, and is a stack in which the solar cells 2 are stacked in the top-to-bottom direction (the vertical direction Z) as shown in Figure 1. That is, in the stacked structure 1, the solar cells 2 are stacked in a lying state, and the solar cells 2 on the upper level are stacked so that most of the solar cells 2 on the upper level overlap with the solar cells 2 on the lower level.
  • the overlapping structure 1 of this embodiment when viewed in a plan view, the solar cells 2 on the upper side are overlapped such that 90% or more of the solar cells 2 on the upper side overlap with the solar cells 2 on the lower side.
  • the number of stacked solar cells 2 constituting the stacked structure 1 is not particularly limited.
  • the solar cell 2 is used by being cut along parting lines L1 shown in Fig. 2 and divided into a plurality of rectangular divided solar cells 101, and as shown in Fig. 6 and Fig. 7, each divided solar cell 101 is connected directly or via a conductive adhesive 102 to form a solar cell module 100 having a solar cell group 103.
  • the solar cell 2 is a solar cell in process that is a solar cell module 100 in process.
  • the solar cell 2 of this embodiment is a crystalline solar cell, and is a heterojunction solar cell.
  • the solar cell 2 is a plate-shaped cell having a first cell principal surface 10 (first principal surface) and a second cell principal surface 11 (second principal surface) as its two principal surfaces, and is provided with a photoelectric conversion substrate 20, a first electrode portion 21, a second electrode portion 22, a first resin coating portion 23, and a second resin coating portion 24.
  • the solar cell 2 has a quadrangular shape when the photoelectric conversion substrate 20 is viewed in plan, and has horizontal sides 30 and 31 extending in the horizontal direction X and vertical sides 32 and 33 extending in the vertical direction Y.
  • the solar cell 2 has horizontal sides 30 and 31 parallel to each other, and vertical sides 32 and 33 parallel to each other.
  • the photoelectric conversion substrate 20 is a plate-like substrate having a first substrate main surface 28 and a second substrate main surface 29 as its two main surfaces, and includes a first transparent conductive layer 25, a photoelectric conversion section 26, and a second transparent conductive layer 27.
  • the first substrate main surface 28 is the main light-receiving surface.
  • the transparent conductive layers 25 and 27 are conductive layers that form a pair and extract electricity from the photoelectric conversion section 26 , and are base conductive layers that form the base of the electrode sections 21 and 22 .
  • the transparent conductive layers 25 and 27 are not particularly limited as long as they are transparent and conductive, and are made of a transparent conductive oxide such as indium tin oxide (ITO), for example.
  • ITO indium tin oxide
  • the photoelectric conversion portion 26 is a portion that converts light energy into electrical energy, and as shown in FIG. 5, includes a semiconductor substrate 35, a first intrinsic semiconductor layer 36, a first conductivity type semiconductor layer 37, a second intrinsic semiconductor layer 38, and a second conductivity type semiconductor layer 39.
  • the photoelectric conversion unit 26 has a first intrinsic semiconductor layer 36 and a first conductivity type semiconductor layer 37 stacked in this order on one main surface side (the first cell main surface 10 side) of the semiconductor substrate 35, and a second intrinsic semiconductor layer 38 and a second conductivity type semiconductor layer 39 stacked in this order on the other main surface side (the second cell main surface 11 side) of the semiconductor substrate 35.
  • the semiconductor substrate 35 is a base material having n-type or p-type conductivity, such as n-type silicon or p-type silicon.
  • the semiconductor substrate 35 has a conductivity type opposite to that of the first conductivity type semiconductor layer 37 and has the same conductivity type as that of the second conductivity type semiconductor layer 39 .
  • the semiconductor substrate 35 is made of a p-type semiconductor
  • the first conductive type semiconductor layer 37 is made of an n-type semiconductor
  • the second conductive type semiconductor layer 39 is made of a p-type semiconductor.
  • the semiconductor substrate 35 is made of an n-type semiconductor
  • the first conductive type semiconductor layer 37 is made of a p-type semiconductor
  • the second conductive type semiconductor layer 39 is made of an n-type semiconductor. That is, in the photoelectric conversion section 26 , a pn junction is formed on the first cell main surface 10 side with respect to the semiconductor substrate 35 .
  • the pn junction is a portion where a p-type semiconductor and an n-type semiconductor are joined directly or via an intrinsic semiconductor in the thickness direction of the photoelectric conversion section 26, and is formed on the first cell main surface 10 side rather than the center of the thickness direction of the photoelectric conversion section 26.
  • the first intrinsic semiconductor layer 36 is a layer made of an intrinsic semiconductor such as i-type silicon.
  • the first conductive type semiconductor layer 37 is a semiconductor layer having n-type or p-type conductivity, such as n-type silicon or p-type silicon.
  • the second intrinsic semiconductor layer 38 is a layer made of an intrinsic semiconductor such as i-type silicon.
  • the second conductive type semiconductor layer 39 is a semiconductor layer having a p-type or n-type conductivity, such as p-type silicon or n-type silicon, and has a conductivity type different from that of the first conductive type semiconductor layer 37.
  • the photoelectric conversion substrate 20 has first texture structures 80, 81 with surface irregularities formed on both one main surface (the surface facing the first substrate main surface 28) and the other main surface (the surface facing the second substrate main surface 29) of the semiconductor substrate 35.
  • the semiconductor layers 36, 37 on one main surface of the semiconductor substrate 35 reflect the unevenness of the first texture structure 80 of the semiconductor substrate 35, and a second texture structure 82 in which surface unevenness is formed is formed in the first conductivity type semiconductor layer 37.
  • the semiconductor layers 38, 39 on the other main surface of the semiconductor substrate 35 reflect the unevenness of the first texture structure 81 of the semiconductor substrate 35, and a second texture structure 83 in which surface unevenness is formed is formed in the second conductivity type semiconductor layer 39.
  • the first transparent conductive layer 25 on the first conductive type semiconductor layer 37 reflects the unevenness of the second texture structure 82 of the first conductive type semiconductor layer 37, forming a third texture structure 84.
  • the second transparent conductive layer 27 on the second conductive type semiconductor layer 39 reflects the unevenness of the second texture structure 83 of the second conductive type semiconductor layer 39, forming a third texture structure 85.
  • the transparent conductive layers 25, 27 are not formed over the entire surfaces of the substrate main surfaces 28, 29.
  • second texture structures 82, 83 are formed on parts of the substrate main surfaces 28, 29, respectively, and third texture structures 84, 85 are formed on the remaining parts of the substrate main surfaces 28, 29, respectively.
  • the first electrode portion 21 is formed by solidifying a first conductive paste, and as shown in FIGS. 2 and 3(a), is composed of a plurality of first collector electrodes 40 (40a to 40d). As shown in FIGS. 3( a ) and 4 , the first collector electrode 40 constitutes part of the first cell main surface 10 , and is a conductive layer partially laminated on the first substrate main surface 28 of the photoelectric conversion substrate 20 . The first collector electrode 40 protrudes in the thickness direction relative to the other portion of the first cell main surface 10 (the first substrate main surface 28 of the photoelectric conversion substrate 20 ). The thickness of the first collector electrode 40 is not particularly limited, but is preferably 5 ⁇ m or more and 40 ⁇ m or less.
  • the first collector electrode 40 extends in a comb-like shape, and is composed of a first bus bar electrode portion 50 and a plurality of first finger electrode portions 51 .
  • the first collecting electrode 40 is not particularly limited as long as it has electrical conductivity, and may be made of, for example, a metal material mainly composed of a metal such as gold, silver, aluminum, copper, or palladium, or a metal alloy thereof.
  • the first collecting electrode 40 preferably has a higher electrical conductivity than the first transparent conductive layer 25 that serves as the base.
  • the first collector electrode 40 in this embodiment is formed simultaneously with the first resin coating portion 23 from the first conductive paste by the first electrode formation process described below, and contains a resin component common to the first resin coating portion 23.
  • the first collector electrodes 40a to 40d are provided independently and individually, and are not directly connected to each other.
  • the first bus bar electrode portion 50 is a connection portion that extends in the lateral direction X when viewed in a plan view and connects the ends of the first finger electrode portions 51 together.
  • the first bus bar electrode portions 50 of the first collector electrodes 40a to 40d are arranged at intervals in the vertical direction Y and are parallel to each other. In this embodiment, the first bus bar electrode portions 50 of the first collector electrodes 40a to 40d are arranged in parallel at equal intervals in the vertical direction Y.
  • the width of the first bus bar electrode portion 50 is not particularly limited, but is preferably 0.1 mm or more and 8 mm or less.
  • the first finger electrode portion 51 is a linear electrode portion extending in the vertical direction Y from a middle portion in the extension direction (horizontal direction X) of the first bus bar electrode portion 50 toward the horizontal side 31 side. As shown in FIG. 2 , each of the first finger electrode portions 51 extends in the same direction and is arranged side by side at a distance D2 in the horizontal direction X. In this embodiment, each of the first finger electrode portions 51 is arranged side by side at equal intervals in the horizontal direction X at a distance D2 in between.
  • the width of the first finger electrode portion 51 is narrower than the width of the first bus bar electrode portion 50, and is preferably 20 ⁇ m or more and 70 ⁇ m or less.
  • the distance D2 between adjacent first finger electrode portions 51, 51 be 1 mm or less, from the viewpoint of covering the space between the first finger electrode portions 51, 51 with the first resin coating portion 23 by seeping out of the first conductive paste in the first electrode formation process described below.
  • the second electrode portion 22 is formed by solidifying a second conductive paste, and as shown in FIGS. 2 and 3(b), is composed of a plurality of second collecting electrodes 60 (60a to 60d). As shown in FIGS. 3( b ) and 4 , the second collector electrode 60 constitutes part of the second cell main surface 11 , and is a conductive layer partially laminated on the second substrate main surface 29 of the photoelectric conversion substrate 20 . The second collector electrode 60 protrudes in the thickness direction relative to the other portion of the second cell main surface 11 (the second substrate main surface 29 of the photoelectric conversion substrate 20 ). The thickness of the second collector electrode 60 is not particularly limited, but is preferably 5 ⁇ m or more and 40 ⁇ m or less.
  • the second collecting electrode 60 extends in a comb-like shape, and is composed of a second bus bar electrode portion 70 and a plurality of second finger electrode portions 71 .
  • the second collecting electrode 60 is not particularly limited as long as it has conductivity, and may be made of, for example, a metal material mainly composed of a metal such as gold, silver, aluminum, copper, or palladium, or a metal alloy thereof.
  • the second collecting electrode 60 preferably has a higher conductivity than the second transparent conductive layer 27 that serves as the base.
  • the second collector electrode 60 in this embodiment is formed simultaneously with the second resin coating portion 24 from the second conductive paste by the second electrode formation process described later, and contains a resin component common to the second resin coating portion 24.
  • the second collecting electrodes 60a to 60d are provided independently and individually, and are not directly connected to each other.
  • the second bus bar electrode portion 70 is a connection portion that extends in the lateral direction X when viewed in a plan view and connects the ends of the second finger electrode portions 71 together.
  • the second bus bar electrode portions 70 of the second collector electrodes 60a to 60d are arranged at intervals in the vertical direction Y and are parallel to each other.
  • the second bus bar electrode portions 70 of each of the second collector electrodes 60a to 60d are arranged in parallel in the vertical direction Y at equal intervals.
  • the width of the second bus bar electrode portion 70 is not particularly limited, but is preferably 0.1 mm or more and 8 mm or less.
  • the second finger electrode portion 71 is a linear electrode portion extending in the vertical direction Y from a middle portion in the horizontal direction X of the second bus bar electrode portion 70 toward the horizontal side 30 side. As shown in FIG. 2 , each second finger electrode portion 71 extends in the same direction and is arranged side by side at a distance D3 in the horizontal direction X. In this embodiment, each second finger electrode portion 71 is arranged side by side at equal intervals in the horizontal direction X at a distance D3.
  • the distance D3 between adjacent second finger electrode portions 71, 71 is approximately the same as the distance D2 between adjacent first finger electrode portions 51, 51, and is preferably the same distance.
  • substantially the same interval means that the difference between the interval D2 of the first finger electrode portions 51 and the interval D3 of the second finger electrode portions 71 is 1 ⁇ m or less.
  • the width of the second finger electrode portion 71 is narrower than the width of the second bus bar electrode portion 70, and is preferably not less than 20 ⁇ m and not more than 70 ⁇ m. It is preferable that the distance D3 between adjacent second finger electrode portions 71, 71 be 1 mm or less, from the viewpoint of covering the space between the second finger electrode portions 71, 71 with the second resin coating portion 24 by seeping out of the second conductive paste in the second electrode formation process described below.
  • the first resin coating portion 23 is a layer that protects the first substrate main surface 28 of the photoelectric conversion substrate 20 from physical and mechanical contact with the second electrode portions 22 of the other solar cells 2 when stacked together with other solar cells 2 to form the overlapping structure 1.
  • the layer also protects the photoelectric conversion substrate 20 from the laser light irradiated in the laser process described below, and suppresses damage to the photoelectric conversion substrate 20 .
  • the first resin coating portion 23 preferably has gas barrier properties, insulating properties, and light-transmitting properties.
  • the first resin coating portion 23 in this embodiment is formed by solidifying a resin component containing a liquid resin of the first conductive paste used when forming the first electrode portion 21, and contains a resin component common to the first electrode portion 21.
  • the first resin coating portion 23 is provided adjacent to the first electrode portion 21 and is continuous with the first electrode portion 21 .
  • the first resin coating portion 23 spans from the first transparent conductive layer 25 to the exposed portion of the first conductivity type semiconductor layer 37 from the first transparent conductive layer 25, and as shown in Figure 5, it follows and reflects the unevenness of the second texture structure 82 of the underlying first conductivity type semiconductor layer 37 and the third texture structure 84 of the first transparent conductive layer 25, thereby forming an uneven region 86. Since the uneven region 86 is formed from a resin component that contains a liquid resin having fluidity, the unevenness is smoothed out and the surface unevenness is smaller than the unevenness of the second texture structure 82 and the unevenness of the third texture structure 84.
  • the second resin coating portion 24 is a layer that protects the second substrate main surface 29 of the photoelectric conversion substrate 20 from physical and mechanical contact with the first electrode portions 21 of the other solar cells 2 when stacked together with other solar cells 2 to form the overlapping structure 1.
  • the second resin coating portion 24 preferably has gas barrier properties, insulating properties, and light-transmitting properties.
  • the second resin coating portion 24 in this embodiment is formed by solidifying a resin component containing a liquid resin of the second conductive paste used when forming the second electrode portion 22, and contains a resin component common to the second electrode portion 22. In other words, there is a continuously connected resin portion between the second electrode portion 22 and the second resin coating portion 24. As shown in FIG.
  • the second resin coating portion 24 is provided adjacent to the second electrode portion 22 and is continuous with the second electrode portion 22 .
  • the second resin coating portion 24 spans from above the second transparent conductive layer 27 to the exposed portion of the second conductivity type semiconductor layer 39 from the second transparent conductive layer 27, and as shown in Figure 5, it follows and reflects the unevenness of the second texture structure 83 of the underlying second conductivity type semiconductor layer 39 and the third texture structure 85 of the second transparent conductive layer 27, thereby forming an uneven region 87. Since the uneven region 87 is formed from a resin component that contains a liquid resin having fluidity, the unevenness is smoothed out and the surface unevenness is smaller than the unevenness of the second texture structure 83 and the unevenness of the third texture structure 85.
  • the solar cell module 100 is configured such that a group of multiple solar cells 103, each of which has a plurality of divided solar cells 101 electrically connected in series either directly or by a conductive adhesive 102, is sandwiched between a first sealing member 115 and a second sealing member 116, and the space between the first sealing member 115 and the second sealing member 116 is filled and sealed with a first sealing material 117 and a second sealing material 118.
  • the end of each solar cell group 103 in the direction of electrical flow is connected to output wiring 113 , 114 to the outside, and each solar cell group 103 is electrically connected in parallel.
  • the divided solar cell 101 is obtained by cutting and dividing the solar cell 2 along the division line L1 shown in FIG. As shown in Figure 8, the divided solar cell 101 has a first collector electrode 40 and a first resin coating portion 23 provided on the first substrate main surface 28 of the photoelectric conversion substrate 20, and a second collector electrode 60 and a second resin coating portion 24 provided on the second substrate main surface 29.
  • Each divided solar cell 101 has a laser cut portion 120 on its widthwise end face, which is the cut surface, and a crease cut portion 121 on which a crease mark is formed.
  • the laser cut portion 120 is continuous with the cut portion 121 and forms an inclined surface inclined with respect to the cut portion 121, and a protective resin layer 122 is formed on the surface.
  • the photoelectric conversion substrate 20 of the divided solar cell 101 has a width in the vertical direction Y and extends in the horizontal direction X when viewed in a plan view.
  • the protective resin layer 122 is continuous with the first resin-coated portion 23 and contains an oxide component of the resin component contained in the first resin-coated portion 23 .
  • the conductive adhesive 102 is a conductive member having electrical conductivity, and is an adhesive that connects the bus bar electrode portions 50, 70 of the divided solar cells 101, 101 together, as shown in FIG.
  • the conductive adhesive 102 of this embodiment is a conductive adhesive film in which a conductive adhesive material is provided on both sides of a conductive film.
  • the sealing members 115 and 116 are insulating sealing substrates that extend in a planar shape and have sealing and insulating properties. At least the sealing member 115 on the light receiving side is a light-transmitting member that is capable of transmitting light in the thickness direction.
  • the sealing materials 117 and 118 have sealing properties and serve to seal the solar cell group 103 together with the sealing members 115 and 116 , and also serve as an adhesive that bonds the sealing members 115 and 116 together.
  • the solar cell 2 has a second collecting electrode 60 located between the first collecting electrodes 40, 40 adjacent to each other in the vertical direction Y, and the first collecting electrode 40 located between the second collecting electrodes 60, 60 adjacent to each other in the vertical direction Y.
  • the first bus bar electrode portions 50 of the first collector electrodes 40a to 40c extend in parallel to and in close proximity to the second bus bar electrode portions 70 of the adjacent second collector electrodes 60b to 60d. Between the first bus bar electrode portion 50 and the second bus bar electrode portion 70 that are closest to each other in the vertical direction Y, a cutting region is provided for dividing the divided solar cell 101 .
  • the distance D1 (the width of the cutting area) between the first bus bar electrode portion 50 and the second bus bar electrode portion 70 adjacent to each other on either side of the dividing line L1 shown in FIG. 2 is preferably 0.5 mm or more and 4 mm or less.
  • the first bus bar electrode portions 50 of each first collector 40 are shifted in the vertical direction Y with respect to the second bus bar electrode portions 70 of each second collector 60, and do not overlap in the thickness direction.
  • the first finger electrode portion 51 of the first collecting electrode 40 extends in the opposite direction to the second finger electrode portion 71 of the second collecting electrode 60, and the tip of the first finger electrode portion 51 in the extension direction reaches the vicinity of the opposing second collecting electrode 60.
  • the first finger electrode portion 51 extends from the first bus bar electrode portion 50 between adjacent second finger electrode portions 71, 71 in the lateral direction X
  • the second finger electrode portion 71 extends from the second bus bar electrode portion 70 between adjacent first finger electrode portions 51, 51 in the lateral direction X.
  • each first finger electrode portion 51 of each first collector 40 are shifted in the lateral direction X relative to the second finger electrode portions 71 of each second collector 60 and do not overlap in the thickness direction.
  • Each first finger electrode portion 51 is located between adjacent second finger electrode portions 71 , 71 in the horizontal direction X, and is preferably located in the center between the adjacent second finger electrode portions 71 , 71 .
  • Each second finger electrode portion 71 is located between adjacent first finger electrode portions 51 , 51 in the horizontal direction X, and is preferably located in the center between the adjacent first finger electrode portions 51 , 51 .
  • the first cell main surface 10 of the solar cell 2 has a first inner edge region 130 formed by a first electrode portion 21 and a first resin coating portion 23, and the edge of the first inner edge region 130 is formed within a range of 0.5 mm from the outer peripheral edge of the solar cell 2.
  • the total area of the first resin coating portion 23 is preferably larger than the total area of the first electrode portion 21 .
  • the space between adjacent first busbar electrode portions 50, 50 is defined by a first resin coating portion 23, and the space between adjacent first finger electrode portions 51, 51 is also defined by a first resin coating portion 23.
  • the area of the first inner edge region 130 is larger than the area of the first transparent conductive layer 25, and the first resin coating 23 covers the end faces of the first transparent conductive layer 25 as shown in FIG. 5(a).
  • the second cell main surface 11 of the solar cell 2 has a second inner edge region 131 formed by the second electrode portion 22 and the second resin coating portion 24, and the edge of the second inner edge region 131 is formed within a range of 0.5 mm from the outer peripheral edge of the solar cell 2.
  • the total area of the second resin coating portion 24 is preferably larger than the total area of the second electrode portion 22 .
  • the space between adjacent second busbar electrode portions 70, 70 is defined by a second resin coating portion 24, and the space between adjacent second finger electrode portions 71, 71 is also defined by a second resin coating portion 24.
  • the area of the second inner edge region 131 is larger than the area of the second transparent conductive layer 27, and the second resin coating portion 24 covers the end face of the second transparent conductive layer 27 as shown in FIG. 5(a).
  • the manufacturing method for the solar cell module 100 is carried out across the first and second manufacturing lines, and is comprised of a solar cell manufacturing process, a superimposed structure forming process, a transport process, and a solar cell processing process.
  • the solar cell manufacturing process is a process for forming solar cells 2 on a first production line.
  • both surfaces of the semiconductor substrate 35 are etched by anisotropic alkaline wet etching, and first texture structures 80, 81 are formed on the surface.
  • a plasma CVD device or the like is used to stack a first intrinsic semiconductor layer 36 and a first conductivity type semiconductor layer 37 in this order on one main surface of the semiconductor substrate 35, and a second intrinsic semiconductor layer 38 and a second conductivity type semiconductor layer 39 in this order on the other main surface of the semiconductor substrate 35, as shown in FIG. 9( a), to form the photoelectric conversion section 26 (photoelectric conversion section formation process).
  • transparent conductive layers 25 and 27 are formed on one main surface side and the other main surface side of the photoelectric conversion section 26 using a sputtering device or the like, thereby forming the photoelectric conversion substrate 20 (transparent conductive layer formation process).
  • the transparent conductive layers 25, 27 are formed on most of the substrate main surfaces 28, 29, and transparent conductive layer non-forming areas 133, 134 where the transparent conductive layers 25, 27 are not formed are formed along the outer periphery of the substrate main surfaces 28, 29. That is, the transparent conductive layer-free regions 133 and 134 are exposed portions of the photoelectric conversion section 26 from the transparent conductive layers 25 and 27 provided on the outer periphery of the photoelectric conversion substrate 20 when viewed in plan.
  • a first conductive paste containing conductive particles and liquid resin is applied by screen printing or the like onto the first transparent conductive layer 25 constituting the first substrate main surface 28 of the photoelectric conversion substrate 20, as shown in Figure 10 (a).
  • the conductive particles remain at the intended position for forming the first electrode portion 21, while the liquid resin seeps out further from the intended position for forming the first electrode portion 21. That is, conductive particles aggregate at the position where the first electrode portion 21 is planned to be formed, and the gaps between the conductive particles contain liquid resin, while the liquid resin seeps out near the position where the first electrode portion 21 is planned to be formed.
  • the first conductive paste is solidified by heating or the like, and the first electrode portion 21 and the first resin coating portion 23 are formed (first electrode formation process). That is, in the first electrode formation process, a liquid component containing a liquid resin seeps out from the applied portion of the first conductive paste where the first electrode portion 21 is formed into the gap of the first electrode portion 21 to form the first resin coating portion 23.
  • the first electrode portion 21 and the first resin-coated portion 23 formed in this first electrode formation process contain a common resin component. That is, there is a continuously connected resin portion between the first electrode portion 21 and the first resin-coated portion 23. More specifically, a continuously connected resin portion is formed between the first resin-coated portion 23 and a part of the resin in the gaps between the conductive particles constituting the first electrode portion 21.
  • the conductive particles used in the first conductive paste are not particularly limited as long as they are conductive particles. For example, metal materials such as silver, aluminum, copper, indium, bismuth, and gallium can be used as the conductive particles.
  • the liquid resin used in the first conductive paste is not particularly limited as long as it is a binder resin in a liquid state and is solidified by heat, ultraviolet light, etc.
  • a thermosetting resin such as an epoxy resin, a phenol resin, or an acrylic resin can be used.
  • the first conductive paste may further contain a liquid solvent such as an organic solvent or an inorganic solvent.
  • the first conductive paste of the present embodiment is a mixture containing conductive particles, a liquid resin, and a liquid solvent.
  • a first inner edge region 130 is formed, and this first inner edge region 130 overlaps with a first transparent conductive layer non-forming region 133, and the first electrode portion 21 and the first resin coating portion 23 cover the entire first transparent conductive layer 25, and further the first resin coating portion 23 extends from above the first transparent conductive layer 25 to the first transparent conductive layer non-forming region 133. That is, the first resin coating portion 23 is provided spanning from the first transparent conductive layer 25 to the exposed portion of the photoelectric conversion portion 26, and the outer peripheral edge of the first inner edge region 130 is formed outside the outer peripheral edge of the first transparent conductive layer 25 and inside the outer peripheral edge of the photoelectric conversion substrate 20.
  • a second conductive paste containing conductive particles and liquid resin is applied by screen printing or the like onto the second transparent conductive layer 27 constituting the second substrate main surface 29 of the photoelectric conversion substrate 20, as shown in Figure 10 (b).
  • the conductive particles remain at the intended position for forming the second electrode portion 22, while the liquid resin seeps out further from the intended position for forming the second electrode portion 22. That is, conductive particles aggregate at the position where the second electrode portion 22 is planned to be formed, and the gaps between the conductive particles contain liquid resin, while the liquid resin seeps out near the position where the second electrode portion 22 is planned to be formed.
  • the second conductive paste is solidified by heating or the like, and the second electrode portion 22 and the second resin coating portion 24 are formed (second electrode formation process). That is, in the second electrode formation process, liquid components containing liquid resin seep out from the applied portion of the second conductive paste where the second electrode portion 22 is formed into the gaps of the second electrode portion 22 to form the second resin coating portion 24.
  • the second electrode portion 22 and the second resin-coated portion 24 formed in this second electrode formation process contain a common resin component. That is, there is a continuously connected resin portion between the second electrode portion 22 and the second resin-coated portion 24. More specifically, a continuously connected resin portion is formed between the second resin-coated portion 24 and a part of the resin in the gaps between the conductive particles constituting the second electrode portion 22.
  • the second conductive paste may contain the same conductive particles and liquid resin as the first conductive paste used in the first electrode formation step.
  • the second conductive paste of the present embodiment is a mixture containing conductive particles, a liquid resin, and a liquid solvent.
  • a second inner edge region 131 is formed, and this second inner edge region 131 overlaps with the second transparent conductive layer non-forming region 134, and the second electrode portion 22 and the second resin coating portion 24 cover the entire second transparent conductive layer 27, and further, the second resin coating portion 24 extends from above the second transparent conductive layer 27 to the second transparent conductive layer non-forming region 134. That is, the second resin coating portion 24 is provided spanning from the second transparent conductive layer 27 to the exposed portion of the photoelectric conversion portion 26, and the outer peripheral edge of the second inner edge region 131 is formed outside the outer peripheral edge of the second transparent conductive layer 27 and inside the outer peripheral edge of the photoelectric conversion substrate 20.
  • the solar cell 2 is completed and the solar cell manufacturing process is completed.
  • the overlapping structure forming step is a step of forming the overlapping structure 1 in order to transport the solar cell 2 from the first production line to the second production line in the transport step.
  • the overlapping structure forming step first, as shown in FIG. 1 , a plurality of solar cells 2 are overlapped in the vertical direction Z, and the solar cells 2 are overlapped in the thickness direction to form the overlapping structure 1 .
  • the first cell principal surface 10 of each of the solar cells 2A to 2C forms the upper surface
  • the second cell principal surface 11 forms the lower surface.
  • the second electrode portion 22 on the second cell main surface 11 of the middle solar cell 2B (first solar cell) is supported in contact with the first resin coating portion 23 on the first cell main surface 10 of the lower solar cell 2A
  • the first electrode portion 21 on the first cell main surface 10 is supported in contact with the second resin coating portion 24 on the second cell main surface 11 of the upper solar cell 2C (second solar cell).
  • the middle solar cell 2B is supported by the first electrode portion 21 of the lower solar cell 2A in contact with the second resin coating portion 24 of the second cell main surface 11, and is supported by the second electrode portion 22 of the upper solar cell 2C in contact with the first resin coating portion 23 of the first cell main surface 10.
  • the transport step is a step of transporting the overlapped structure 1 formed in the overlapped structure forming step from the first production line to the second production line.
  • the solar cell processing step is a step in which solar cells are processed in the second production line to form the solar cell module 100 .
  • the solar cell 2 is removed from the overlapping structure 1 formed in the overlapping structure forming step, and cut along the dividing lines L1 shown in Figure 2 to divide it into a plurality of divided solar cells 101 (dividing step).
  • a laser beam is irradiated from the first cell main surface 10 of the solar cell 2 so as to pass through the positions overlapping the resin coating portions 23, 24 in a plan view while avoiding the electrode portions 21, 22, to form a dividing groove 125 that extends from the first resin coating portion 23 to at least the inside of the semiconductor substrate 35 (the middle portion in the thickness direction) (dividing groove forming process).
  • a portion of the first resin coating portion 23 is oxidized by the laser light, and a protective resin layer 122 is formed on the surface of the dividing groove 125.
  • the solar cell 2 is folded along the dividing groove 125 so as to pass through the second resin coating portion 24, and divided into a plurality of divided solar cell units 101 (folding and dividing process).
  • the sheet is cut in the thickness direction from the bottom of the dividing groove 125, forming the laser cut portion 120 and the crease cut portion 121.
  • the first busbar electrode portion 50 and the second busbar electrode portion 70 of each divided solar cell 101 are bonded with a conductive adhesive 102 to form a solar cell group 103 in which the divided solar cell cells 101 are electrically connected in series (solar cell group formation process).
  • busbar electrode portions 50, 70 at the ends of each solar cell group 103 in the direction of electrical flow are connected to the output wiring 113, 114, respectively (wiring connection process).
  • each solar cell group 103 is sandwiched between sealing members 115, 116, and the spaces between each solar cell group 103 and the sealing members 115, 116 are filled with sealing materials 117, 118 to seal, completing the solar cell module 100 (assembly process).
  • the solar cell 2 of this embodiment when the second cell main surface 11 of the upper solar cell 2 is stacked on the first cell main surface 10, most of the second electrode portion 22 of the upper solar cell 2 can be supported by the first resin coating portion 23, thereby reducing damage such as scratches caused by the second electrode portion 22 of the upper solar cell 2 coming into contact with the first substrate main surface 28 of the photoelectric conversion substrate 20.
  • the solar cell 2 of this embodiment when the second cell main surface 11 is stacked on the first cell main surface 10 of the solar cell 2 in the lower tier, most of the first electrode portion 21 of the solar cell 2 in the lower tier can be supported by the second resin coating portion 24, thereby reducing damage such as scratches caused by the first electrode portion 21 of the solar cell 2 in the lower tier coming into contact with the second substrate main surface 29 of the photoelectric conversion substrate 20.
  • the first electrode portion 21 is adjacent to the first resin coating portion 23 and contains a resin component common to the first resin coating portion 23, so they can be formed simultaneously with the first conductive paste.
  • the second electrode portion 22 is adjacent to the second resin coating portion 24 and contains a resin component common to the second resin coating portion 24, so they can be formed simultaneously with the second conductive paste.
  • the first finger electrode portion 51 which is thinner than the first bus bar electrode portion 50 and more likely to be cut by a load, overlaps the second resin coating portion 24 in a plan view, so that when the second cell main surface 11 of the solar cell 2 in the upper layer is stacked on the first cell main surface 10, the first finger electrode portion 51 comes into contact with the second resin coating portion 24 of the solar cell 2 in the upper layer, and the second resin coating portion 24 functions as a buffer material. Therefore, the first finger electrode portion 51 is not easily cut.
  • the second finger electrode portion 71 which is thinner than the second bus bar electrode portion 70 and more likely to be cut by a load, overlaps the first resin coating portion 23 in a plan view, so that when the second cell main surface 11 of the upper solar cell 2 is stacked on the first cell main surface 10 of the lower solar cell 2, the second finger electrode portion 71 comes into contact with the first resin coating portion 23 of the lower solar cell 2, and the first resin coating portion 23 functions as a buffer material. Therefore, the second finger electrode portion 71 is not easily cut.
  • the first electrode portion 21 and the first resin coating portion 23 can be formed simultaneously using the first conductive paste, and can be easily manufactured.
  • the second electrode portion 22 and the second resin coating portion 24 can be formed simultaneously using the second conductive paste, and can be easily manufactured.
  • the first inner edge region 130 formed within a range of 0.5 mm from the outer peripheral edge on the first cell main surface 10 is composed of the first electrode portion 21 and the first resin coating portion 23, thereby preventing moisture and the like from entering in the thickness direction from the first cell main surface 10.
  • the second inner edge region 131 formed within a range of 0.5 mm from the outer peripheral edge on the second cell main surface 11 is composed of the second electrode portion 22 and the second resin coating portion 24, so that the intrusion of moisture and the like in the thickness direction from the second cell main surface 11 can be suppressed.
  • the electrode portions 21, 22 and the resin coating portions 23, 24 include a resin portion that is continuously connected, so that moisture and the like can be prevented from entering through the gaps between the electrode portions 21, 22 and the resin coating portions 23, 24.
  • the total area of the resin-coated portions 23, 24 of the inner edge regions 130, 131 is larger than the total area of the electrode portions 21, 22, so that a large light-receiving area can be secured while preventing the intrusion of moisture, etc.
  • the first inner edge region 130 has the first resin coating portion 23 between adjacent first finger electrode portions 51, 51, so that the intrusion of moisture and the like can be more effectively prevented. Furthermore, in the solar cell 2 of this embodiment, the second inner edge region 131 has the second resin coating portion 24 between adjacent second finger electrode portions 71, 71, which further prevents the intrusion of moisture and the like.
  • the resin coating portions 23, 24 have uneven regions 86, 87 with unevenness smaller than the unevenness of the second texture structures 82, 83 and the unevenness of the third texture structures 84, 85. This reduces the wettability near the electrode portions 21, 22, and prevents the conductive adhesive 102 from spreading even if the conductive adhesive 102 protrudes from the electrode portions 21, 22 during the solar cell group formation process.
  • the pn junction is protected by the first electrode portion 21 and the first resin coating portion 23, so the pn junction is less susceptible to moisture intrusion and mechanical contact.
  • the inner edge regions 130, 131 are composed of the electrode portions 21, 22 and the resin coating portions 23, 24, so that even if the transparent conductive layers 25, 27 are interposed between the photoelectric conversion portion 26, the intrusion of moisture and the like into the photoelectric conversion portion 26 can be suppressed.
  • the resin coating portions 23, 24 cover the transparent conductive layers 25, 27 along the outer periphery of the transparent conductive layers 25, 27, and extend from the transparent conductive layers 25, 27 to the transparent conductive layer non-forming regions 133, 134. In other words, because the resin coating portions 23, 24 cover the end faces of the transparent conductive layers 25, 27, it is possible to suppress the intrusion of moisture and the like toward the interface between the photoelectric conversion portion 26 and the transparent conductive layers 25, 27.
  • the portion of the photoelectric conversion substrate 20 where the division groove 125 is formed is protected by the first resin coating portion 23, so that the impact on the photoelectric conversion substrate 20 when forming the division groove 125 can be suppressed.
  • the portion of the photoelectric conversion substrate 20 that is to be folded is protected by the second resin coating portion 24, so that the impact on the photoelectric conversion substrate 20 when folding can be suppressed.
  • a protective resin layer 122 is formed on part of the end face of the photoelectric conversion substrate 20, making it less likely for short circuits to occur at the end face of the photoelectric conversion substrate 20, and therefore highly reliable.
  • the first electrode portion 21 and the second electrode portion 22 do not overlap when viewed in a plan view, so when the solar cell 2 is stacked with other solar cells 2, defects such as chipping or cracking caused by the electrode portions 21, 22 coming into contact with each other can be prevented.
  • the first finger electrode portion 51 and the second finger electrode portion 71 extend in opposite directions between the first bus bar electrode portion 50 and the second bus bar electrode portion 70. Therefore, when multiple solar cells 2 are stacked, the load is evenly distributed across the surface of the solar cell 2, making it more stable.
  • the first finger electrode portion 51 when viewed in a plan view, the first finger electrode portion 51 is positioned and extends between the second finger electrode portions 71, 71 adjacent to each other in the horizontal direction X, and the second finger electrode portion 71 is positioned and extends between the first finger electrode portions 51, 51 adjacent to each other in the horizontal direction X. Therefore, when multiple solar cells 2 are stacked, the load is evenly distributed across the surface of the solar cell 2, making it more stable.
  • the second collector 60b is located between the mutually independent first collectors 40a, 40b, and the first collector 40a is located between the mutually independent second collectors 60a, 60b. Therefore, even if the solar cell 2 is cut between the first collector 40a and the second collector 60b, power can be extracted from the first collector 40a (40b) and the second collector 60a (60b) in each of the cut solar cell segments 101.
  • the first electrode portion 21 of the lower solar cell 2B and the second electrode portion 22 of the upper solar cell 2C are not in contact with each other, so defects such as chipping and cracking caused by contact between the electrodes 21, 22 can be prevented.
  • the solar cells 2 are laid down and stacked in the vertical direction Z, but the present invention is not limited to this.
  • the solar cells 2 may be stood upright and stacked in a direction intersecting the vertical direction Z.
  • multiple solar cells 2 are stacked, but the present invention is not limited to this. Multiple divided solar cells 101 may also be stacked.
  • one solar cell 2 is divided into four divided solar cells 101, but the present invention is not limited to this.
  • One solar cell 2 may be divided into two to three divided solar cells 101, or into five or more divided solar cells 101. In this case, the number of collector electrodes 40, 60 will be increased or decreased depending on the number of divided solar cells 101 to be divided.
  • the solar cell 2 is divided into a plurality of divided solar cell cells 101, but the present invention is not limited to this.
  • the solar cell 2 does not have to be divided.
  • the second electrode formation process is performed after the first electrode formation process, but the present invention is not limited to this.
  • the first electrode formation process may be performed after the second electrode formation process.
  • the pn junction is provided on the first cell main surface 10 side with respect to the semiconductor substrate 35, but the present invention is not limited to this.
  • the pn junction may be provided on the second cell main surface 11 side with respect to the semiconductor substrate 35.
  • each electrode portion 21, 22 has a busbar electrode portion 50, 70 and a finger electrode portion 51, 71, but the present invention is not limited to this. It may also be a so-called busbarless solar cell that does not have a busbar electrode.
  • the first finger electrode portions 51 are arranged side by side at equal intervals, but the present invention is not limited to this.
  • the first finger electrode portions 51 may also be arranged at non-equidistant intervals.
  • the second finger electrode portions 71 are arranged side by side at equal intervals, but the present invention is not limited to this.
  • the second finger electrode portions 71 may also be arranged at non-equidistant intervals.
  • the spacing D2 between the first finger electrode portions 51 and the spacing D3 between the second finger electrode portions 71 are substantially the same, but the present invention is not limited to this.
  • the spacing D2 between the first finger electrode portions 51 may be narrower than the spacing D3 between the second finger electrode portions 71, and the spacing D3 between the second finger electrode portions 71 may be narrower than the spacing D2 between the first finger electrode portions 51.
  • the plurality of first finger electrode portions 51 may be located between adjacent second finger electrode portions 71, 71 in the horizontal direction X.
  • the plurality of second finger electrode portions 71 may be located between adjacent first finger electrode portions 51, 51 in the horizontal direction X. For example, as shown in FIG.
  • each first finger electrode portion 51 may be located at the center of adjacent second finger electrode portions 71, 71 in the horizontal direction X, and n second finger electrode portions 71 may be located between adjacent first finger electrode portions 51, 51. Also, for example, as shown in FIG.
  • each second finger electrode portion 71 may be located at the center of adjacent first finger electrode portions 51, 51 in the horizontal direction X, and n first finger electrode portions 51 may be located between adjacent second finger electrode portions 71, 71.
  • the solar cell 2 has the electrodes 21, 22 arranged at intervals in the vertical direction Y, but the present invention is not limited to this.
  • the solar cell 2 may have the electrodes 21, 22 arranged in the horizontal direction X.
  • the solar cell 2 is a crystalline solar cell and a heterojunction solar cell, but the present invention is not limited to this.
  • the solar cell 2 may be another type of solar cell.
  • it may be a PERC type solar cell.
  • the resin coating portions 23, 24 are formed on both substrate main surfaces 28, 29 of the photoelectric conversion substrate 20, but the present invention is not limited to this.
  • the resin coating portion 23 may be coated on only one substrate main surface 28 (substrate main surface 29) of the two substrate main surfaces 28, 29 of the photoelectric conversion substrate 20.
  • the resin coating portions 23, 24 are formed on both the first substrate main surface 28 side and the second substrate main surface 29 side of the photoelectric conversion substrate 20, but the present invention is not limited to this.
  • the resin coating portion 23 (resin coating portion 24) may be formed only on one substrate main surface 28 (substrate main surface 29) side of the photoelectric conversion substrate 20.
  • the solar cell 2 when the photoelectric conversion substrate 20 is viewed in plan, the solar cell 2 has the first electrode portion 21 entirely overlapped with the second resin coating portion 24, but the present invention is not limited to this.
  • the first electrode portion 21 may overlap most of the second resin coating portion 24, and the remaining portion may overlap with the second electrode portion 22.
  • the entire second electrode portion 22 overlaps with the first resin coating portion 23, but the present invention is not limited to this.
  • the second electrode portion 22 may overlap with the first resin coating portion 23 for the most part, and overlap with the first electrode portion 21 for the remaining part.
  • both the busbar electrode portions 50, 70 and the finger electrode portions 51, 71 are in contact with the resin coating portions 24, 23, but the present invention is not limited to this.
  • the busbar electrode portions 50, 70 do not have to be in contact with the resin coating portions 24, 23.
  • the resin coating portions 24, 23 do not have to be provided at positions corresponding to the busbar electrode portions 50, 70, and the busbar electrode portions 50, 70 may be in contact with each other.
  • the tip portion of the first finger electrode portion 51 of the lower solar cell 2B may be in contact with the second busbar electrode portion 70 of the upper solar cell 2C.
  • the thickness of the first electrode portion 21 and the thickness of the second electrode portion 22 are approximately the same, but the present invention is not limited to this.
  • the thickness of the first electrode portion 21 may be greater than the thickness of the second electrode portion 22.
  • the first electrode portion 21 of the first cell main surface 10 of the middle solar cell 2B contacts the second resin coating portion 24 of the second cell main surface 11 of the upper solar cell 2C (second solar cell) to support the solar cell 2C.
  • the middle solar cell 2B is also supported by the first electrode portion 21 of the lower solar cell 2A contacting the second resin coating portion 24 of the second cell main surface 11.
  • the thickness of the first electrode portion 21 and the thickness of the second electrode portion 22 are approximately the same, but the present invention is not limited to this.
  • the thickness of the second electrode portion 22 may be greater than the thickness of the first electrode portion 21.
  • the middle solar cell 2B first solar cell
  • the middle solar cell 2B is also supported by the second electrode portion 22 of the upper solar cell 2C contacting the first resin coating portion 23 of the first cell main surface 10.
  • the dividing groove 125 is formed by irradiating with laser light, but the present invention is not limited to this.
  • the dividing groove 125 may be formed by other methods such as a dicing saw.
  • a laser beam is irradiated from the first cell main surface 10 side to form dividing grooves 125, and the solar cell is folded along the dividing grooves 125 to divide into a plurality of divided solar cell cells 101, but the present invention is not limited to this.
  • a laser beam may be irradiated from the second cell main surface 11 side to form dividing grooves 125 as shown in Fig. 14(a), and the solar cell may be folded along the dividing grooves 125 to divide into a plurality of divided solar cell cells 101 as shown in Fig. 14(b).
  • laser light may be applied to form dividing grooves 125 that reach the entire thickness direction of the solar cell 2, thereby dividing the solar cell into a plurality of divided solar cell 101. That is, the solar cell may be divided into a plurality of divided solar cell 101 only by the laser step.
  • the laser light may be applied from the first cell main surface 10 side, or from the second cell main surface 11 side.
  • the protective resin layer 122 is formed on the entire end face of the photoelectric conversion substrate 20.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Energy (AREA)
  • Photovoltaic Devices (AREA)

Abstract

The present invention provides a solar cell that suppresses ingress of atmospheric moisture etc. as compared to the prior art. The solar cell comprises a first electrode part (21) and a resin covering part (23) that is adjacent to the first electrode part (21), wherein the first electrode part (21) and the resin covering part (23) constitute part of a first main surface (10), the first main surface (10) has an inner edge region (130) constituted by the first electrode part (21) and the resin covering part (23), and an edge of the inner edge region (130) is formed within the range of 0.5 mm or less from an outer peripheral edge.

Description

太陽電池セルSolar Cell
 本発明は、太陽電池セルに関する。 The present invention relates to a solar cell.
 近年、一枚のパネル状の太陽電池セルを短冊状の複数の分割太陽電池セルに分割し、分割太陽電池セルの端辺同士を電気的に接続した太陽電池モジュールが知られている(例えば、特許文献1)。
 特許文献1の太陽電池モジュールは、分割太陽電池セルの端辺同士を重ねて接続するので(シングリング接続、Shingling接続と呼ばれる)、有効受光面積を大きくでき、従来に比べて変換効率が高いと考えられる。
2. Description of the Related Art In recent years, solar cell modules have become known in which a panel-shaped solar cell is divided into a plurality of rectangular divided solar cells, and the ends of the divided solar cells are electrically connected to each other (for example, Patent Document 1).
The solar cell module of Patent Document 1 has divided solar cells connected by overlapping their ends (called a shingling connection), which makes it possible to increase the effective light-receiving area and is thought to have a higher conversion efficiency than conventional modules.
国際公開第2020/158379号International Publication No. 2020/158379
 ところで、太陽電池セルを複数の分割太陽電池セルに分割する際には、大気中で行われることが多い。
 しかしながら、特許文献1の太陽電池セルは、透明導電層として一般的に多孔質体である透明導電性酸化物を使用しているため、大気中で分割作業が行われると、大気中の水分等が透明導電層から光電変換部に進入してしまい、太陽電池モジュールの性能が低下してしまうおそれがあった。
Incidentally, dividing a solar cell into a plurality of divided solar cells is often carried out in the atmosphere.
However, the solar cell of Patent Document 1 uses a transparent conductive oxide, which is generally a porous material, as the transparent conductive layer. Therefore, if the division work is performed in the air, moisture and the like in the air may penetrate through the transparent conductive layer to the photoelectric conversion section, which may degrade the performance of the solar cell module.
 そこで、本発明は、従来に比べて、大気中の水分等の進入を抑制できる太陽電池セルを提供することを目的とする。 The present invention aims to provide a solar cell that can suppress the intrusion of moisture and other substances from the atmosphere, compared to conventional solar cells.
 上記した課題を解決するための本発明の一つの様相は、第1電極部と、前記第1電極部に隣接した樹脂被覆部を有し、前記第1電極部と前記樹脂被覆部は、第1主面の一部を構成しており、前記第1主面は、前記第1電極部と前記樹脂被覆部で構成された内縁領域を有し、前記内縁領域の縁は、外周縁から0.5mm以内の範囲に形成されている、太陽電池セルである。 One aspect of the present invention for solving the above-mentioned problems is a solar cell having a first electrode portion and a resin coating portion adjacent to the first electrode portion, the first electrode portion and the resin coating portion constituting a part of a first main surface, the first main surface having an inner edge region constituted by the first electrode portion and the resin coating portion, and the edge of the inner edge region is formed within a range of 0.5 mm from the outer periphery.
 本様相によれば、外周縁から0.5mm以内の範囲に形成された内縁領域が第1電極部と樹脂被覆部で構成されているため、第1主面から厚み方向に水分等が進入することを抑制できる。 In this aspect, the inner edge region formed within a range of 0.5 mm from the outer periphery is composed of the first electrode portion and the resin coating portion, so that it is possible to prevent moisture and the like from entering in the thickness direction from the first main surface.
 好ましい様相は、前記第1電極部と前記樹脂被覆部は、連続的につながった樹脂部分を含む。 In a preferred embodiment, the first electrode portion and the resin coating portion include a continuously connected resin portion.
 好ましい様相は、前記内縁領域は、前記第1電極部の総面積よりも前記樹脂被覆部の総面積の方が大きい。 In a preferred aspect, the total area of the resin-coated portion of the inner edge region is greater than the total area of the first electrode portion.
 好ましい様相は、前記第1電極部は、少なくとも2つのフィンガー電極部を有し、前記2つのフィンガー電極部は、実質的に同一方向に延び、延び方向に対する交差方向に間隔を空けて並設されており、前記内縁領域は、前記2つのフィンガー電極部の間が前記樹脂被覆部で構成されている。 In a preferred aspect, the first electrode portion has at least two finger electrode portions, the two finger electrode portions extend in substantially the same direction and are arranged side by side at a distance in a direction intersecting the extending direction, and the inner edge region is constituted by the resin coating portion between the two finger electrode portions.
 ここでいう「実質的に同一方向に延びる」とは、実質的に平行であることをいう。
 ここでいう「実質的に平行」とは、中心線同士が完全に平行である場合だけではなく、一方の中心線に対する他方の中心線の傾斜角度の絶対値が3度以下である場合を含む。
Here, "extending in substantially the same direction" means being substantially parallel.
Here, "substantially parallel" does not only refer to the case where the centerlines are completely parallel, but also includes the case where the absolute value of the inclination angle of one centerline relative to the other centerline is 3 degrees or less.
 好ましい様相は、光電変換基板の第1基板主面上に前記第1電極部と前記樹脂被覆部が形成されており、前記光電変換基板は、前記第1基板主面にテクスチャ構造が形成されており、前記樹脂被覆部は、前記テクスチャ構造の凹凸よりも小さな凹凸が形成された凹凸領域を備えている。 In a preferred aspect, the first electrode portion and the resin coating portion are formed on the first substrate main surface of the photoelectric conversion substrate, the photoelectric conversion substrate has a textured structure formed on the first substrate main surface, and the resin coating portion has an uneven region in which unevenness smaller than the unevenness of the textured structure is formed.
 好ましい様相は、前記樹脂被覆部は、前記テクスチャ構造の凹凸を覆うことで、前記凹凸領域が形成されている。 In a preferred aspect, the resin coating portion covers the unevenness of the textured structure, thereby forming the uneven area.
 好ましい様相は、光電変換基板の第1基板主面上に前記第1電極部と前記樹脂被覆部が形成されており、前記光電変換基板は、厚み方向にp型半導体とn型半導体が直接又は真性半導体を介して接合したpn接合部を有し、前記pn接合部は、前記光電変換基板の厚み方向の中央よりも第1主面側に形成されている。 In a preferred aspect, the first electrode portion and the resin coating portion are formed on the first substrate main surface of the photoelectric conversion substrate, the photoelectric conversion substrate has a pn junction in which a p-type semiconductor and an n-type semiconductor are joined directly or via an intrinsic semiconductor in the thickness direction, and the pn junction is formed on the first main surface side of the center of the photoelectric conversion substrate in the thickness direction.
 本様相によれば、反応場であるpn接合部が第1電極部と樹脂被覆部に近い側に設けられているため、pn接合部で発電する際に水分等の影響を受けにくい。 In this aspect, the pn junction, which is the reaction site, is located close to the first electrode and the resin coating, so it is less susceptible to the effects of moisture, etc. when generating electricity at the pn junction.
 好ましい様相は、平面視したときに、前記内縁領域と重なる位置に透明導電層が配されており、前記第1電極部及び前記樹脂被覆部は、前記透明導電層を覆っている。 In a preferred aspect, a transparent conductive layer is disposed in a position overlapping the inner edge region when viewed in a plan view, and the first electrode portion and the resin coating portion cover the transparent conductive layer.
 より好ましい様相は、前記第1電極部は、透明導電層上に積層されており、前記第1主面は、透明導電層が形成されていない透明導電層非形成領域があり、前記樹脂被覆部は、透明導電層の外周に沿って前記透明導電層を被覆し、前記透明導電層から前記透明導電層非形成領域に至っている。 In a more preferred aspect, the first electrode portion is laminated on a transparent conductive layer, the first main surface has a transparent conductive layer-free region where no transparent conductive layer is formed, and the resin coating portion coats the transparent conductive layer along the outer periphery of the transparent conductive layer and extends from the transparent conductive layer to the transparent conductive layer-free region.
 本発明の一つの様相は、光電変換部と透明導電層を有した光電変換基板と、前記透明導電層上に形成された第1電極部と、前記第1電極部と隣接する樹脂被覆部を有し、前記光電変換部は、平面視したときに、外周縁に前記透明導電層からの露出部分があり、前記樹脂被覆部は、前記透明導電層の外周に沿って前記透明導電層を被覆し、前記透明導電層から前記光電変換部の前記露出部分に跨って設けられている、太陽電池セルである。 One aspect of the present invention is a solar cell having a photoelectric conversion substrate having a photoelectric conversion section and a transparent conductive layer, a first electrode section formed on the transparent conductive layer, and a resin coating section adjacent to the first electrode section, the photoelectric conversion section having an exposed portion from the transparent conductive layer at its outer periphery when viewed in a plan view, and the resin coating section coating the transparent conductive layer along the outer periphery of the transparent conductive layer and being provided across from the transparent conductive layer to the exposed portion of the photoelectric conversion section.
 本様相によれば、樹脂被覆部が透明導電層の外周に沿って透明導電層を被覆し、透明導電層の端面を覆っているため、光電変換部と透明導電層との界面方向への水分等の進入を抑制できる。 In this aspect, the resin coating portion coats the transparent conductive layer along the outer periphery of the transparent conductive layer and covers the end faces of the transparent conductive layer, so that it is possible to prevent moisture and the like from entering the direction of the interface between the photoelectric conversion portion and the transparent conductive layer.
 本発明の太陽電池セルによれば、従来に比べて大気中の水分等の進入を抑制できる。 The solar cell of the present invention can suppress the intrusion of moisture and other substances from the atmosphere compared to conventional methods.
本発明の第1実施形態の太陽電池セルの重畳構造の斜視図である。1 is a perspective view of a stacked structure of solar cells according to a first embodiment of the present invention; 図1の太陽電池セルの平面図である。FIG. 2 is a plan view of the solar cell of FIG. 1 . 図1の太陽電池セルの説明図であり、(a)は第1セル主面側から視た斜視図であり、(b)は(a)の太陽電池セルを矢印Rの方向に回転させ、第2セル主面側から視た斜視図である。2A is an explanatory diagram of the solar cell of FIG. 1, where FIG. 2A is an oblique view seen from the first cell main surface side, and FIG. 2B is an oblique view of the solar cell of FIG. 2A rotated in the direction of arrow R and seen from the second cell main surface side. 図2の太陽電池セルの説明図であり、(a)は図2のA-A断面の端面図であり、(b)は図2のB-B断面の端面図である。3A and 3B are explanatory views of the solar cell of FIG. 2, in which FIG. 3A is an end view of the AA cross section of FIG. 2, and FIG. 3B is an end view of the BB cross section of FIG. 図4の太陽電池セルの説明図であり、(a)は図4(a)のC領域の拡大図であり、(b)は図4(a)のD領域の拡大図である。5A and 5B are explanatory diagrams of the solar cell of FIG. 4, in which (a) is an enlarged view of region C in FIG. 4A, and (b) is an enlarged view of region D in FIG. 4A. 図1の太陽電池セルを分割した分割太陽電池セルを用いた太陽電池モジュールの平面図であり、理解を容易にするために第1封止部材及び第1封止材を省略している。2 is a plan view of a solar cell module using divided solar cells obtained by dividing the solar cell of FIG. 1, with a first sealing member and a first sealing material omitted for ease of understanding. 図6の太陽電池モジュールの断面の端面図であり、理解を容易にするために第1封止材及び第2封止材のハッチングを省略している。FIG. 7 is a cross-sectional end view of the solar cell module of FIG. 6, with hatching of the first and second encapsulants omitted for ease of understanding. 図6の分割太陽電池セルの断面斜視図である。FIG. 7 is a cross-sectional perspective view of the divided solar cell of FIG. 6. 図1の太陽電池セルを製造する太陽電池セル製造工程の説明図であり、(a)は光電変換部形成工程後の断面図であり、(b)は透明導電層形成工程後の断面図である。なお、(b)は各工程で形成された部分についてドットを示し、それ以外はハッチングを省略する。2 is an explanatory diagram of the solar cell manufacturing process for manufacturing the solar cell of FIG. 1, where (a) is a cross-sectional view after the photoelectric conversion part forming process, and (b) is a cross-sectional view after the transparent conductive layer forming process. Note that (b) shows dots for the parts formed in each process, and hatching is omitted for the rest. 図1の太陽電池セルを製造する太陽電池セル製造工程の説明図であり、(a)は第1電極形成工程後の断面図であり、(b)は第2電極形成工程後の断面図である。なお、(a),(b)は各工程で形成された部分についてドットを示し、それ以外はハッチングを省略する。2 is an explanatory diagram of the solar cell manufacturing process for manufacturing the solar cell of FIG. 1, where (a) is a cross-sectional view after the first electrode forming process, and (b) is a cross-sectional view after the second electrode forming process. Note that (a) and (b) show dots for the parts formed in each process, and hatching is omitted for the rest. 図1の太陽電池セルの重畳構造を形成する重畳構造形成工程における太陽電池セル間の位置関係の説明図であり、(a)は縦方向の断面の端面図であり、(b)は(a)の断面に対する直交方向(横方向)の断面の端面図である。2A and 2B are explanatory diagrams of the positional relationship between solar cells in a layered structure formation process for forming the layered structure of solar cells in FIG. 1, in which (a) is an end view of a vertical cross section, and (b) is an end view of a cross section in a direction perpendicular to the cross section of (a) (horizontal direction). 図2の太陽電池セルを加工する太陽電池セル加工工程の説明図であり、(a)はレーザー工程後の断面図であり、(b)は折割工程後の断面図である。なお、(a),(b)は、理解を容易にするためにハッチングを省略している。3 is an explanatory diagram of the solar cell processing step for processing the solar cell of FIG. 2, where (a) is a cross-sectional view after the laser step, and (b) is a cross-sectional view after the bending step. Note that (a) and (b) are omitted from hatching for ease of understanding. 本発明の他の実施形態の太陽電池セルの要部の説明図であり、(a)は第1フィンガー電極部の間に複数の第2フィンガー電極部が位置する実施形態の平面図であり、(b)は第2フィンガー電極部の間に複数の第1フィンガー電極部が位置する実施形態の平面図である。1A and 1B are explanatory diagrams of the main parts of a solar cell of another embodiment of the present invention, in which (a) is a plan view of an embodiment in which a plurality of second finger electrode portions are located between first finger electrode portions, and (b) is a plan view of an embodiment in which a plurality of first finger electrode portions are located between second finger electrode portions. 本発明の他の実施形態の太陽電池セルを加工する太陽電池セル加工工程の説明図であり、(a)はレーザー工程後の太陽電池セルの断面図であり、(b)は折割工程後の太陽電池セルの断面図である。なお、(a),(b)は、理解を容易にするためにハッチングを省略している。1A and 1B are explanatory diagrams of a solar cell processing step for processing a solar cell according to another embodiment of the present invention, in which (a) is a cross-sectional view of the solar cell after a laser process, and (b) is a cross-sectional view of the solar cell after a folding process. Note that (a) and (b) are omitted from hatching for ease of understanding.
 以下、本発明の実施形態について詳細に説明する。 The following describes in detail an embodiment of the present invention.
 本発明の第1実施形態の太陽電池セルの重畳構造1(以下、単に重畳構造1ともいう)は、図1のように、複数の太陽電池セル2を有し、太陽電池セル2を天地方向(上下方向Z)に積み重ねた積重体である。
 すなわち、重畳構造1は、各太陽電池セル2を寝かした状態で積み重ねられており、上段側の太陽電池セル2の大部分が下段側の太陽電池セル2と重なるように重畳している。
 本実施形態の重畳構造1は、平面視したときに、上段側の太陽電池セル2の90%以上が下段側の太陽電池セル2と重なるように重畳している。
 なお、重畳構造1を構成する太陽電池セル2の積重数は、特に限定されるものではない。
The solar cell stack structure 1 of the first embodiment of the present invention (hereinafter simply referred to as the stack structure 1) has a plurality of solar cells 2, and is a stack in which the solar cells 2 are stacked in the top-to-bottom direction (the vertical direction Z) as shown in Figure 1.
That is, in the stacked structure 1, the solar cells 2 are stacked in a lying state, and the solar cells 2 on the upper level are stacked so that most of the solar cells 2 on the upper level overlap with the solar cells 2 on the lower level.
In the overlapping structure 1 of this embodiment, when viewed in a plan view, the solar cells 2 on the upper side are overlapped such that 90% or more of the solar cells 2 on the upper side overlap with the solar cells 2 on the lower side.
The number of stacked solar cells 2 constituting the stacked structure 1 is not particularly limited.
(太陽電池セル2)
 太陽電池セル2は、図2に示される分割線L1で切断して、複数の短冊状の分割太陽電池セル101に分割して使用されるものであり、図6,図7のように、各分割太陽電池セル101を直接又は導電性接着材102を介して接続した太陽電池群103を有する太陽電池モジュール100を形成するものである。すなわち、太陽電池セル2は、太陽電池モジュール100の仕掛品である仕掛太陽電池セルである。
(Solar cell 2)
The solar cell 2 is used by being cut along parting lines L1 shown in Fig. 2 and divided into a plurality of rectangular divided solar cells 101, and as shown in Fig. 6 and Fig. 7, each divided solar cell 101 is connected directly or via a conductive adhesive 102 to form a solar cell module 100 having a solar cell group 103. In other words, the solar cell 2 is a solar cell in process that is a solar cell module 100 in process.
 本実施形態の太陽電池セル2は、結晶型の太陽電池セルであって、ヘテロ接合型の太陽電池セルである。
 太陽電池セル2は、図3のように、第1セル主面10(第1主面)と第2セル主面11(第2主面)を両主面とする板状セルであり、光電変換基板20と、第1電極部21と、第2電極部22と、第1樹脂被覆部23と、第2樹脂被覆部24を備えている。
 太陽電池セル2は、図2のように、光電変換基板20を平面視したときに四角形状をしており、横方向Xに延びる横辺30,31と、縦方向Yに延びる縦辺32,33を備えている。
 太陽電池セル2は、横辺30,31が互いに平行となっており、縦辺32,33が互いに平行となっている。
The solar cell 2 of this embodiment is a crystalline solar cell, and is a heterojunction solar cell.
As shown in Figure 3, the solar cell 2 is a plate-shaped cell having a first cell principal surface 10 (first principal surface) and a second cell principal surface 11 (second principal surface) as its two principal surfaces, and is provided with a photoelectric conversion substrate 20, a first electrode portion 21, a second electrode portion 22, a first resin coating portion 23, and a second resin coating portion 24.
As shown in FIG. 2 , the solar cell 2 has a quadrangular shape when the photoelectric conversion substrate 20 is viewed in plan, and has horizontal sides 30 and 31 extending in the horizontal direction X and vertical sides 32 and 33 extending in the vertical direction Y.
The solar cell 2 has horizontal sides 30 and 31 parallel to each other, and vertical sides 32 and 33 parallel to each other.
(光電変換基板20)
 光電変換基板20は、図4のように、第1基板主面28と、第2基板主面29を両主面とする板状基板であり、第1透明導電層25と、光電変換部26と、第2透明導電層27を備えている。ここで、本実施形態の光電変換基板20は、第1基板主面28が主たる受光面である。
(Photoelectric conversion substrate 20)
4, the photoelectric conversion substrate 20 is a plate-like substrate having a first substrate main surface 28 and a second substrate main surface 29 as its two main surfaces, and includes a first transparent conductive layer 25, a photoelectric conversion section 26, and a second transparent conductive layer 27. Here, in the photoelectric conversion substrate 20 of this embodiment, the first substrate main surface 28 is the main light-receiving surface.
 透明導電層25,27は、互いに対をなし光電変換部26から電気を取り出す導電層であり、電極部21,22の下地となる下地導電層である。
 透明導電層25,27は、透明性と導電性を有するものであれば、特に限定されるものではなく、例えば、インジウム錫酸化物(ITO)等の透明導電性酸化物で構成されている。
The transparent conductive layers 25 and 27 are conductive layers that form a pair and extract electricity from the photoelectric conversion section 26 , and are base conductive layers that form the base of the electrode sections 21 and 22 .
The transparent conductive layers 25 and 27 are not particularly limited as long as they are transparent and conductive, and are made of a transparent conductive oxide such as indium tin oxide (ITO), for example.
 光電変換部26は、光エネルギーを電気エネルギーに変換する部位であり、図5のように、半導体基板35と、第1真性半導体層36と、第1導電型半導体層37と、第2真性半導体層38、第2導電型半導体層39を備えている。
 光電変換部26は、半導体基板35の一方の主面側(第1セル主面10側)に第1真性半導体層36、第1導電型半導体層37がこの順に積層され、半導体基板35の他方の主面側(第2セル主面11側)に第2真性半導体層38、第2導電型半導体層39がこの順に積層されている。
The photoelectric conversion portion 26 is a portion that converts light energy into electrical energy, and as shown in FIG. 5, includes a semiconductor substrate 35, a first intrinsic semiconductor layer 36, a first conductivity type semiconductor layer 37, a second intrinsic semiconductor layer 38, and a second conductivity type semiconductor layer 39.
The photoelectric conversion unit 26 has a first intrinsic semiconductor layer 36 and a first conductivity type semiconductor layer 37 stacked in this order on one main surface side (the first cell main surface 10 side) of the semiconductor substrate 35, and a second intrinsic semiconductor layer 38 and a second conductivity type semiconductor layer 39 stacked in this order on the other main surface side (the second cell main surface 11 side) of the semiconductor substrate 35.
 半導体基板35は、n型シリコンやp型シリコン等のn型又はp型の導電型をもつ基材である。
 半導体基板35は、第1導電型半導体層37と逆の導電型を有するものであり、第2導電型半導体層39と同一の導電型を有するものである。
 例えば、半導体基板35がp型の半導体で構成される場合には、第1導電型半導体層37がn型半導体で構成され、第2導電型半導体層39がp型半導体で構成される。一方、半導体基板35がn型の半導体で構成される場合には、第1導電型半導体層37がp型半導体で構成され、第2導電型半導体層39がn型半導体で構成される。
 すなわち、光電変換部26は、半導体基板35を基準として、第1セル主面10側でpn接合部が形成されている。
 pn接合部は、光電変換部26の厚み方向にp型半導体とn型半導体が直接又は真性半導体を介して接合した部位であり、光電変換部26の厚み方向の中央よりも第1セル主面10側に形成されている。
The semiconductor substrate 35 is a base material having n-type or p-type conductivity, such as n-type silicon or p-type silicon.
The semiconductor substrate 35 has a conductivity type opposite to that of the first conductivity type semiconductor layer 37 and has the same conductivity type as that of the second conductivity type semiconductor layer 39 .
For example, when the semiconductor substrate 35 is made of a p-type semiconductor, the first conductive type semiconductor layer 37 is made of an n-type semiconductor, and the second conductive type semiconductor layer 39 is made of a p-type semiconductor. On the other hand, when the semiconductor substrate 35 is made of an n-type semiconductor, the first conductive type semiconductor layer 37 is made of a p-type semiconductor, and the second conductive type semiconductor layer 39 is made of an n-type semiconductor.
That is, in the photoelectric conversion section 26 , a pn junction is formed on the first cell main surface 10 side with respect to the semiconductor substrate 35 .
The pn junction is a portion where a p-type semiconductor and an n-type semiconductor are joined directly or via an intrinsic semiconductor in the thickness direction of the photoelectric conversion section 26, and is formed on the first cell main surface 10 side rather than the center of the thickness direction of the photoelectric conversion section 26.
 第1真性半導体層36は、i型シリコン等の真性半導体で構成される層である。 The first intrinsic semiconductor layer 36 is a layer made of an intrinsic semiconductor such as i-type silicon.
 第1導電型半導体層37は、n型シリコンやp型シリコン等のn型又はp型の導電型をもつ半導体層である。 The first conductive type semiconductor layer 37 is a semiconductor layer having n-type or p-type conductivity, such as n-type silicon or p-type silicon.
 第2真性半導体層38は、i型シリコン等の真性半導体で構成される層である The second intrinsic semiconductor layer 38 is a layer made of an intrinsic semiconductor such as i-type silicon.
 第2導電型半導体層39は、p型シリコンやn型シリコン等のp型又はn型の導電型をもつ半導体層であり、第1導電型半導体層37とは異なる導電型を有するものである。 The second conductive type semiconductor layer 39 is a semiconductor layer having a p-type or n-type conductivity, such as p-type silicon or n-type silicon, and has a conductivity type different from that of the first conductive type semiconductor layer 37.
 光電変換基板20は、図5のように、半導体基板35の一方の主面(第1基板主面28側の面)と他方の主面(第2基板主面29側の面)の双方に、表面凹凸が形成された第1テクスチャ構造80,81が形成されている。 As shown in FIG. 5, the photoelectric conversion substrate 20 has first texture structures 80, 81 with surface irregularities formed on both one main surface (the surface facing the first substrate main surface 28) and the other main surface (the surface facing the second substrate main surface 29) of the semiconductor substrate 35.
 光電変換基板20は、半導体基板35の一方の主面上の半導体層36,37が半導体基板35の第1テクスチャ構造80の凹凸を追随して反映され、第1導電型半導体層37に表面凹凸が形成された第2テクスチャ構造82が形成されている。
 光電変換基板20は、半導体基板35の他方の主面上の半導体層38,39が半導体基板35の第1テクスチャ構造81の凹凸を追随して反映され、第2導電型半導体層39に表面凹凸が形成された第2テクスチャ構造83が形成されている。
In the photoelectric conversion substrate 20, the semiconductor layers 36, 37 on one main surface of the semiconductor substrate 35 reflect the unevenness of the first texture structure 80 of the semiconductor substrate 35, and a second texture structure 82 in which surface unevenness is formed is formed in the first conductivity type semiconductor layer 37.
In the photoelectric conversion substrate 20, the semiconductor layers 38, 39 on the other main surface of the semiconductor substrate 35 reflect the unevenness of the first texture structure 81 of the semiconductor substrate 35, and a second texture structure 83 in which surface unevenness is formed is formed in the second conductivity type semiconductor layer 39.
 光電変換基板20は、第1導電型半導体層37上の第1透明導電層25が第1導電型半導体層37の第2テクスチャ構造82の凹凸を追随して反映され、第3テクスチャ構造84が形成されている。
 光電変換基板20は、第2導電型半導体層39上の第2透明導電層27が第2導電型半導体層39の第2テクスチャ構造83の凹凸を追随して反映され、第3テクスチャ構造85が形成されている。
In the photoelectric conversion substrate 20, the first transparent conductive layer 25 on the first conductive type semiconductor layer 37 reflects the unevenness of the second texture structure 82 of the first conductive type semiconductor layer 37, forming a third texture structure 84.
In the photoelectric conversion substrate 20, the second transparent conductive layer 27 on the second conductive type semiconductor layer 39 reflects the unevenness of the second texture structure 83 of the second conductive type semiconductor layer 39, forming a third texture structure 85.
 光電変換基板20は、透明導電層25,27が基板主面28,29の全面に形成されておらず、平面視したときに、基板主面28,29の一部に第2テクスチャ構造82,83がそれぞれ形成されており、基板主面28,29の残部に第3テクスチャ構造84,85がそれぞれ形成されている。 In the photoelectric conversion substrate 20, the transparent conductive layers 25, 27 are not formed over the entire surfaces of the substrate main surfaces 28, 29. When viewed in a plan view, second texture structures 82, 83 are formed on parts of the substrate main surfaces 28, 29, respectively, and third texture structures 84, 85 are formed on the remaining parts of the substrate main surfaces 28, 29, respectively.
(第1電極部21)
 第1電極部21は、第1導電ペーストが固化して形成されるものであり、図2,図3(a)のように、複数の第1集電極40(40a~40d)で構成されている。
 第1集電極40は、図3(a),図4のように、第1セル主面10の一部を構成し、光電変換基板20の第1基板主面28上に部分的に積層された導電層である。
 第1集電極40は、第1セル主面10の他の部分(光電変換基板20の第1基板主面28)に対して厚み方向に厚み分突出している。
 第1集電極40の厚みは、特に限定されるものではないが、5μm以上40μm以下であることが好ましい。
(First electrode portion 21)
The first electrode portion 21 is formed by solidifying a first conductive paste, and as shown in FIGS. 2 and 3(a), is composed of a plurality of first collector electrodes 40 (40a to 40d).
As shown in FIGS. 3( a ) and 4 , the first collector electrode 40 constitutes part of the first cell main surface 10 , and is a conductive layer partially laminated on the first substrate main surface 28 of the photoelectric conversion substrate 20 .
The first collector electrode 40 protrudes in the thickness direction relative to the other portion of the first cell main surface 10 (the first substrate main surface 28 of the photoelectric conversion substrate 20 ).
The thickness of the first collector electrode 40 is not particularly limited, but is preferably 5 μm or more and 40 μm or less.
 第1集電極40は、図2,図3(a)のように、櫛歯状に延びており、第1バスバー電極部50と、複数の第1フィンガー電極部51でそれぞれ構成されている。
 第1集電極40は、導電性を有するものであれば、特に限定されるものではなく、例えば、金、銀、アルミニウム、銅、パラジウム等の金属又はその金属合金を主成分とする金属材料で構成できる。第1集電極40は、下地となる第1透明導電層25よりも導電率が高いことが好ましい。
 本実施形態の第1集電極40は、後述する第1電極形成工程によって、第1導電性ペーストから第1樹脂被覆部23と同時に形成されるものであり、第1樹脂被覆部23と共通の樹脂成分を含んでいる。
 各第1集電極40a~40dは、図3(a)のように、それぞれ独立して個別に設けられており、互いに直接接続されていない。
As shown in FIGS. 2 and 3A , the first collector electrode 40 extends in a comb-like shape, and is composed of a first bus bar electrode portion 50 and a plurality of first finger electrode portions 51 .
The first collecting electrode 40 is not particularly limited as long as it has electrical conductivity, and may be made of, for example, a metal material mainly composed of a metal such as gold, silver, aluminum, copper, or palladium, or a metal alloy thereof. The first collecting electrode 40 preferably has a higher electrical conductivity than the first transparent conductive layer 25 that serves as the base.
The first collector electrode 40 in this embodiment is formed simultaneously with the first resin coating portion 23 from the first conductive paste by the first electrode formation process described below, and contains a resin component common to the first resin coating portion 23.
As shown in FIG. 3A, the first collector electrodes 40a to 40d are provided independently and individually, and are not directly connected to each other.
 第1バスバー電極部50は、図2のように、平面視したときに、横方向Xに延び、各第1フィンガー電極部51の端部間を接続する接続部である。
 各第1集電極40a~40dの第1バスバー電極部50は、縦方向Yに間隔を空けて配されており、それぞれ平行となっている。
 本実施形態の各第1集電極40a~40dの第1バスバー電極部50は、縦方向Yに等間隔に並設されている。
 第1バスバー電極部50の幅は、特に限定されるものではないが、0.1mm以上8mm以下であることが好ましい。
As shown in FIG. 2 , the first bus bar electrode portion 50 is a connection portion that extends in the lateral direction X when viewed in a plan view and connects the ends of the first finger electrode portions 51 together.
The first bus bar electrode portions 50 of the first collector electrodes 40a to 40d are arranged at intervals in the vertical direction Y and are parallel to each other.
In this embodiment, the first bus bar electrode portions 50 of the first collector electrodes 40a to 40d are arranged in parallel at equal intervals in the vertical direction Y.
The width of the first bus bar electrode portion 50 is not particularly limited, but is preferably 0.1 mm or more and 8 mm or less.
 第1フィンガー電極部51は、第1バスバー電極部50の延び方向(横方向X)の中間部から横辺31側に向かって縦方向Yに延びる線状電極部である。
 各第1フィンガー電極部51は、図2のように、同一方向に延びて、横方向Xに間隔D2を空けて並設されており、本実施形態の各第1フィンガー電極部51は、横方向Xに間隔D2を空けて等間隔に並設されている。
 第1フィンガー電極部51の幅は、第1バスバー電極部50の幅よりも狭くなっており、20μm以上70μm以下であることが好ましい。
 隣接する第1フィンガー電極部51,51の間隔D2は、後述する第1電極形成工程において第1導電性ペーストの染み出しによって第1フィンガー電極部51,51間を第1樹脂被覆部23で覆う観点から、1mm以下であることが好ましい。
The first finger electrode portion 51 is a linear electrode portion extending in the vertical direction Y from a middle portion in the extension direction (horizontal direction X) of the first bus bar electrode portion 50 toward the horizontal side 31 side.
As shown in FIG. 2 , each of the first finger electrode portions 51 extends in the same direction and is arranged side by side at a distance D2 in the horizontal direction X. In this embodiment, each of the first finger electrode portions 51 is arranged side by side at equal intervals in the horizontal direction X at a distance D2 in between.
The width of the first finger electrode portion 51 is narrower than the width of the first bus bar electrode portion 50, and is preferably 20 μm or more and 70 μm or less.
It is preferable that the distance D2 between adjacent first finger electrode portions 51, 51 be 1 mm or less, from the viewpoint of covering the space between the first finger electrode portions 51, 51 with the first resin coating portion 23 by seeping out of the first conductive paste in the first electrode formation process described below.
(第2電極部22)
 第2電極部22は、第2導電ペーストが固化して形成されるものであり、図2,図3(b)のように、複数の第2集電極60(60a~60d)で構成されている。
 第2集電極60は、図3(b),図4のように、第2セル主面11の一部を構成し、光電変換基板20の第2基板主面29上に部分的に積層された導電層である。
 第2集電極60は、第2セル主面11の他の部分(光電変換基板20の第2基板主面29)に対して厚み方向に厚み分突出している。
 第2集電極60の厚みは、特に限定されるものではないが、5μm以上40μm以下であることが好ましい。
(Second electrode portion 22)
The second electrode portion 22 is formed by solidifying a second conductive paste, and as shown in FIGS. 2 and 3(b), is composed of a plurality of second collecting electrodes 60 (60a to 60d).
As shown in FIGS. 3( b ) and 4 , the second collector electrode 60 constitutes part of the second cell main surface 11 , and is a conductive layer partially laminated on the second substrate main surface 29 of the photoelectric conversion substrate 20 .
The second collector electrode 60 protrudes in the thickness direction relative to the other portion of the second cell main surface 11 (the second substrate main surface 29 of the photoelectric conversion substrate 20 ).
The thickness of the second collector electrode 60 is not particularly limited, but is preferably 5 μm or more and 40 μm or less.
 第2集電極60は、図2,図3(b)のように、櫛歯状に延びており、第2バスバー電極部70と、複数の第2フィンガー電極部71で構成されている。
 第2集電極60は、導電性を有するものであれば、特に限定されるものではなく、例えば、金、銀、アルミニウム、銅、パラジウム等の金属又はその金属合金を主成分とする金属材料で構成できる。第2集電極60は、下地となる第2透明導電層27よりも導電率が高いことが好ましい。
 本実施形態の第2集電極60は、後述する第2電極形成工程によって、第2導電性ペーストから第2樹脂被覆部24と同時に形成されるものであり、第2樹脂被覆部24と共通の樹脂成分を含んでいる。
 各第2集電極60a~60dは、図3(b)のように、それぞれ独立して個別に設けられており、互いに直接接続されていない。
As shown in FIGS. 2 and 3B , the second collecting electrode 60 extends in a comb-like shape, and is composed of a second bus bar electrode portion 70 and a plurality of second finger electrode portions 71 .
The second collecting electrode 60 is not particularly limited as long as it has conductivity, and may be made of, for example, a metal material mainly composed of a metal such as gold, silver, aluminum, copper, or palladium, or a metal alloy thereof. The second collecting electrode 60 preferably has a higher conductivity than the second transparent conductive layer 27 that serves as the base.
The second collector electrode 60 in this embodiment is formed simultaneously with the second resin coating portion 24 from the second conductive paste by the second electrode formation process described later, and contains a resin component common to the second resin coating portion 24.
As shown in FIG. 3B, the second collecting electrodes 60a to 60d are provided independently and individually, and are not directly connected to each other.
 第2バスバー電極部70は、図2のように、平面視したときに、横方向Xに延び、各第2フィンガー電極部71の端部間を接続する接続部である。
 各第2集電極60a~60dの第2バスバー電極部70は、縦方向Yに間隔を空けて配されており、それぞれ平行となっている。
 本実施形態の各第2集電極60a~60dの第2バスバー電極部70は、縦方向Yに等間隔に並設されている。
 第2バスバー電極部70の幅は、特に限定されるものではないが、0.1mm以上8mm以下であることが好ましい。
As shown in FIG. 2 , the second bus bar electrode portion 70 is a connection portion that extends in the lateral direction X when viewed in a plan view and connects the ends of the second finger electrode portions 71 together.
The second bus bar electrode portions 70 of the second collector electrodes 60a to 60d are arranged at intervals in the vertical direction Y and are parallel to each other.
In this embodiment, the second bus bar electrode portions 70 of each of the second collector electrodes 60a to 60d are arranged in parallel in the vertical direction Y at equal intervals.
The width of the second bus bar electrode portion 70 is not particularly limited, but is preferably 0.1 mm or more and 8 mm or less.
 第2フィンガー電極部71は、第2バスバー電極部70の横方向Xの中間部から横辺30側に向かって縦方向Yに延びる線状電極部である。
 各第2フィンガー電極部71は、図2のように、同一方向に延びて、横方向Xに間隔D3を空けて並設されており、本実施形態の各第2フィンガー電極部71は、横方向Xに間隔D3を空けて等間隔に並設されている。
 隣接する第2フィンガー電極部71,71の間隔D3は、隣接する第1フィンガー電極部51,51の間隔D2とほぼ同じ間隔であり、同じ間隔であることが好ましい。
 ここでいう「ほぼ同じ間隔」とは、第1フィンガー電極部51の間隔D2と第2フィンガー電極部71の間隔D3の差が1μm以下であることをいう。
 第2フィンガー電極部71の幅は、第2バスバー電極部70の幅よりも狭くなっており、20μm以上70μm以下であることが好ましい。
 隣接する第2フィンガー電極部71,71の間隔D3は、後述する第2電極形成工程において第2導電性ペーストの染み出しによって第2フィンガー電極部71,71間を第2樹脂被覆部24で覆う観点から、1mm以下であることが好ましい。
The second finger electrode portion 71 is a linear electrode portion extending in the vertical direction Y from a middle portion in the horizontal direction X of the second bus bar electrode portion 70 toward the horizontal side 30 side.
As shown in FIG. 2 , each second finger electrode portion 71 extends in the same direction and is arranged side by side at a distance D3 in the horizontal direction X. In this embodiment, each second finger electrode portion 71 is arranged side by side at equal intervals in the horizontal direction X at a distance D3.
The distance D3 between adjacent second finger electrode portions 71, 71 is approximately the same as the distance D2 between adjacent first finger electrode portions 51, 51, and is preferably the same distance.
Here, "substantially the same interval" means that the difference between the interval D2 of the first finger electrode portions 51 and the interval D3 of the second finger electrode portions 71 is 1 μm or less.
The width of the second finger electrode portion 71 is narrower than the width of the second bus bar electrode portion 70, and is preferably not less than 20 μm and not more than 70 μm.
It is preferable that the distance D3 between adjacent second finger electrode portions 71, 71 be 1 mm or less, from the viewpoint of covering the space between the second finger electrode portions 71, 71 with the second resin coating portion 24 by seeping out of the second conductive paste in the second electrode formation process described below.
(第1樹脂被覆部23)
 第1樹脂被覆部23は、重畳構造1を形成する際に、他の太陽電池セル2とともに積み重ねたときに、光電変換基板20の第1基板主面28を、他の太陽電池セル2の第2電極部22の物理的・力学的なコンタクトから保護する層である。
 また、後述するレーザー工程において照射されるレーザー光から光電変換基板20を保護し、光電変換基板20へのダメージを抑制する層でもある。
 第1樹脂被覆部23は、ガスバリア性と絶縁性と透光性を有することが好ましい。
 本実施形態の第1樹脂被覆部23は、第1電極部21を形成する際に使用する第1導電性ペーストの液状樹脂を含む樹脂成分が固化したものであり、第1電極部21と共通の樹脂成分を含んでいる。すなわち、第1電極部21と第1樹脂被覆部23の間には、連続的につながった樹脂部分がある。
 第1樹脂被覆部23は、図4のように、第1電極部21と隣接して設けられ、第1電極部21と連続している。
 第1樹脂被覆部23は、第1透明導電層25上から第1導電型半導体層37の第1透明導電層25からの露出部分に跨っており、図5のように、下地となる第1導電型半導体層37の第2テクスチャ構造82と第1透明導電層25の第3テクスチャ構造84の凹凸を追随して反映され、凹凸領域86が形成されている。
 凹凸領域86は、流動性を有する液状樹脂を含む樹脂成分によって形成されているため、凹凸が均されており、第2テクスチャ構造82の凹凸や第3テクスチャ構造84の凹凸よりも表面凹凸が小さい。
(First resin coating portion 23)
The first resin coating portion 23 is a layer that protects the first substrate main surface 28 of the photoelectric conversion substrate 20 from physical and mechanical contact with the second electrode portions 22 of the other solar cells 2 when stacked together with other solar cells 2 to form the overlapping structure 1.
The layer also protects the photoelectric conversion substrate 20 from the laser light irradiated in the laser process described below, and suppresses damage to the photoelectric conversion substrate 20 .
The first resin coating portion 23 preferably has gas barrier properties, insulating properties, and light-transmitting properties.
The first resin coating portion 23 in this embodiment is formed by solidifying a resin component containing a liquid resin of the first conductive paste used when forming the first electrode portion 21, and contains a resin component common to the first electrode portion 21. In other words, there is a continuously connected resin portion between the first electrode portion 21 and the first resin coating portion 23.
As shown in FIG. 4 , the first resin coating portion 23 is provided adjacent to the first electrode portion 21 and is continuous with the first electrode portion 21 .
The first resin coating portion 23 spans from the first transparent conductive layer 25 to the exposed portion of the first conductivity type semiconductor layer 37 from the first transparent conductive layer 25, and as shown in Figure 5, it follows and reflects the unevenness of the second texture structure 82 of the underlying first conductivity type semiconductor layer 37 and the third texture structure 84 of the first transparent conductive layer 25, thereby forming an uneven region 86.
Since the uneven region 86 is formed from a resin component that contains a liquid resin having fluidity, the unevenness is smoothed out and the surface unevenness is smaller than the unevenness of the second texture structure 82 and the unevenness of the third texture structure 84.
(第2樹脂被覆部24)
 第2樹脂被覆部24は、重畳構造1を形成する際に、他の太陽電池セル2とともに積み重ねたときに、光電変換基板20の第2基板主面29を、他の太陽電池セル2の第1電極部21の物理的・力学的なコンタクトから保護する層である。
 第2樹脂被覆部24は、ガスバリア性と絶縁性と透光性を有することが好ましい。
 本実施形態の第2樹脂被覆部24は、第2電極部22を形成する際に使用する第2導電性ペーストの液状樹脂を含む樹脂成分が固化したものであり、第2電極部22と共通の樹脂成分を含むものである。すなわち、第2電極部22と第2樹脂被覆部24の間には、連続的につながった樹脂部分がある。
 第2樹脂被覆部24は、図4のように、第2電極部22と隣接して設けられ、第2電極部22と連続している。
 第2樹脂被覆部24は、第2透明導電層27上から第2導電型半導体層39の第2透明導電層27からの露出部分に跨っており、図5のように、下地となる第2導電型半導体層39の第2テクスチャ構造83と第2透明導電層27の第3テクスチャ構造85の凹凸を追随して反映され、凹凸領域87が形成されている。
 凹凸領域87は、流動性を有する液状樹脂を含む樹脂成分によって形成されているため、凹凸が均されており、第2テクスチャ構造83の凹凸や第3テクスチャ構造85の凹凸よりも表面凹凸が小さい。
(Second resin coating portion 24)
The second resin coating portion 24 is a layer that protects the second substrate main surface 29 of the photoelectric conversion substrate 20 from physical and mechanical contact with the first electrode portions 21 of the other solar cells 2 when stacked together with other solar cells 2 to form the overlapping structure 1.
The second resin coating portion 24 preferably has gas barrier properties, insulating properties, and light-transmitting properties.
The second resin coating portion 24 in this embodiment is formed by solidifying a resin component containing a liquid resin of the second conductive paste used when forming the second electrode portion 22, and contains a resin component common to the second electrode portion 22. In other words, there is a continuously connected resin portion between the second electrode portion 22 and the second resin coating portion 24.
As shown in FIG. 4 , the second resin coating portion 24 is provided adjacent to the second electrode portion 22 and is continuous with the second electrode portion 22 .
The second resin coating portion 24 spans from above the second transparent conductive layer 27 to the exposed portion of the second conductivity type semiconductor layer 39 from the second transparent conductive layer 27, and as shown in Figure 5, it follows and reflects the unevenness of the second texture structure 83 of the underlying second conductivity type semiconductor layer 39 and the third texture structure 85 of the second transparent conductive layer 27, thereby forming an uneven region 87.
Since the uneven region 87 is formed from a resin component that contains a liquid resin having fluidity, the unevenness is smoothed out and the surface unevenness is smaller than the unevenness of the second texture structure 83 and the unevenness of the third texture structure 85.
(太陽電池モジュール100)
 太陽電池モジュール100は、図6,図7のように、複数の分割太陽電池セル101が直接又は導電性接着材102によって電気的に直列接続された複数の太陽電池群103が第1封止部材115と第2封止部材116で挟まれ、第1封止部材115と第2封止部材116の間を第1封止材117と第2封止材118で充填されて封止されたものである。
 また太陽電池モジュール100は、図6のように、各太陽電池群103の電気の流れ方向の端部が外部への取出配線113,114に接続されており、各太陽電池群103が電気的に並列接続されている。
(Solar cell module 100)
As shown in Figures 6 and 7 , the solar cell module 100 is configured such that a group of multiple solar cells 103, each of which has a plurality of divided solar cells 101 electrically connected in series either directly or by a conductive adhesive 102, is sandwiched between a first sealing member 115 and a second sealing member 116, and the space between the first sealing member 115 and the second sealing member 116 is filled and sealed with a first sealing material 117 and a second sealing material 118.
As shown in FIG. 6 , in the solar cell module 100 , the end of each solar cell group 103 in the direction of electrical flow is connected to output wiring 113 , 114 to the outside, and each solar cell group 103 is electrically connected in parallel.
(分割太陽電池セル101)
 分割太陽電池セル101は、太陽電池セル2が図2に示される分割線L1で切断され、分割されたものである。
 分割太陽電池セル101は、図8のように、光電変換基板20の第1基板主面28に第1集電極40と第1樹脂被覆部23が設けられ、第2基板主面29に第2集電極60と第2樹脂被覆部24が設けられている。
 分割太陽電池セル101は、切断面である幅方向の端面に、レーザー痕が形成されたレーザー切断部120と、折り割り痕が形成された折割切断部121が形成されている。
 レーザー切断部120は、折割切断部121と連続し、折割切断部121に対して傾斜した傾斜面を構成しており、表面に保護樹脂層122が形成されている。
 分割太陽電池セル101の光電変換基板20は、平面視したときに、縦方向Yに幅をもち、横方向Xに延びている。
 保護樹脂層122は、第1樹脂被覆部23と連続し、第1樹脂被覆部23に含まれる樹脂成分の酸化物成分を含んでいる。
(Segmented solar cell 101)
The divided solar cell 101 is obtained by cutting and dividing the solar cell 2 along the division line L1 shown in FIG.
As shown in Figure 8, the divided solar cell 101 has a first collector electrode 40 and a first resin coating portion 23 provided on the first substrate main surface 28 of the photoelectric conversion substrate 20, and a second collector electrode 60 and a second resin coating portion 24 provided on the second substrate main surface 29.
Each divided solar cell 101 has a laser cut portion 120 on its widthwise end face, which is the cut surface, and a crease cut portion 121 on which a crease mark is formed.
The laser cut portion 120 is continuous with the cut portion 121 and forms an inclined surface inclined with respect to the cut portion 121, and a protective resin layer 122 is formed on the surface.
The photoelectric conversion substrate 20 of the divided solar cell 101 has a width in the vertical direction Y and extends in the horizontal direction X when viewed in a plan view.
The protective resin layer 122 is continuous with the first resin-coated portion 23 and contains an oxide component of the resin component contained in the first resin-coated portion 23 .
(導電性接着材102)
 導電性接着材102は、導電性を有した導電部材であり、図7のように、分割太陽電池セル101,101のバスバー電極部50,70間を接続する接着材である。
 本実施形態の導電性接着材102は、導電性フィルムの両面に導電性粘着材が設けられた導電性接着フィルムである。
(Conductive adhesive 102)
The conductive adhesive 102 is a conductive member having electrical conductivity, and is an adhesive that connects the bus bar electrode portions 50, 70 of the divided solar cells 101, 101 together, as shown in FIG.
The conductive adhesive 102 of this embodiment is a conductive adhesive film in which a conductive adhesive material is provided on both sides of a conductive film.
(封止部材115,116)
 封止部材115,116は、面状に広がりをもち、封止性と絶縁性を有する絶縁封止基板である。
 少なくとも受光側の封止部材115は、厚み方向に光を透過可能な透光性部材である。
(Sealing members 115, 116)
The sealing members 115 and 116 are insulating sealing substrates that extend in a planar shape and have sealing and insulating properties.
At least the sealing member 115 on the light receiving side is a light-transmitting member that is capable of transmitting light in the thickness direction.
(封止材117,118)
 封止材117,118は、封止性を有し、封止部材115,116とともに太陽電池群103を封止する部材であり、封止部材115,116間を接着する接着材でもある。
(Sealing materials 117, 118)
The sealing materials 117 and 118 have sealing properties and serve to seal the solar cell group 103 together with the sealing members 115 and 116 , and also serve as an adhesive that bonds the sealing members 115 and 116 together.
 続いて、本実施形態の太陽電池セル2の各部位の位置関係について説明する。 Next, we will explain the positional relationship of each part of the solar cell 2 in this embodiment.
 太陽電池セル2は、図2のように、光電変換基板20を平面視したときに、縦方向Yに隣接する第1集電極40,40の間に第2集電極60が位置しており、縦方向Yに隣接する第2集電極60,60の間に第1集電極40が位置している。
 第1集電極40a~40cの第1バスバー電極部50は、隣接する第2集電極60b~60dの第2バスバー電極部70と近接した位置で平行に延びている。
 縦方向Yに最近接する第1バスバー電極部50と第2バスバー電極部70との間には、分割太陽電池セル101を分割する際の切断領域が設けられている。
 図2に示される分割線L1を挟んで隣接する第1バスバー電極部50と第2バスバー電極部70の間隔D1(切断領域の幅)は、太陽電池セル2を分割しやすさの観点から、0.5mm以上4mm以下であることが好ましい。
 各第1集電極40の第1バスバー電極部50は、図4(a)のように、各第2集電極60の第2バスバー電極部70に対して縦方向Yにずれており、厚み方向に重なっていない。
As shown in Figure 2, when the photoelectric conversion substrate 20 is viewed in a plane, the solar cell 2 has a second collecting electrode 60 located between the first collecting electrodes 40, 40 adjacent to each other in the vertical direction Y, and the first collecting electrode 40 located between the second collecting electrodes 60, 60 adjacent to each other in the vertical direction Y.
The first bus bar electrode portions 50 of the first collector electrodes 40a to 40c extend in parallel to and in close proximity to the second bus bar electrode portions 70 of the adjacent second collector electrodes 60b to 60d.
Between the first bus bar electrode portion 50 and the second bus bar electrode portion 70 that are closest to each other in the vertical direction Y, a cutting region is provided for dividing the divided solar cell 101 .
From the viewpoint of ease of dividing the solar cell 2, the distance D1 (the width of the cutting area) between the first bus bar electrode portion 50 and the second bus bar electrode portion 70 adjacent to each other on either side of the dividing line L1 shown in FIG. 2 is preferably 0.5 mm or more and 4 mm or less.
As shown in FIG. 4A , the first bus bar electrode portions 50 of each first collector 40 are shifted in the vertical direction Y with respect to the second bus bar electrode portions 70 of each second collector 60, and do not overlap in the thickness direction.
 第1集電極40の第1フィンガー電極部51は、図2のように、光電変換基板20を平面視すると、第2集電極60の第2フィンガー電極部71とは逆方向に延びており、その延伸方向の先端部は、対向する第2集電極60の近傍まで至っている。
 第1フィンガー電極部51は、第1バスバー電極部50から横方向Xに隣接する第2フィンガー電極部71,71の間を位置して延びており、第2フィンガー電極部71は、第2バスバー電極部70から横方向Xに隣接する第1フィンガー電極部51,51の間に位置して延びている。
When the photoelectric conversion substrate 20 is viewed in a plan view as shown in Figure 2, the first finger electrode portion 51 of the first collecting electrode 40 extends in the opposite direction to the second finger electrode portion 71 of the second collecting electrode 60, and the tip of the first finger electrode portion 51 in the extension direction reaches the vicinity of the opposing second collecting electrode 60.
The first finger electrode portion 51 extends from the first bus bar electrode portion 50 between adjacent second finger electrode portions 71, 71 in the lateral direction X, and the second finger electrode portion 71 extends from the second bus bar electrode portion 70 between adjacent first finger electrode portions 51, 51 in the lateral direction X.
 各第1集電極40の第1フィンガー電極部51は、図4(b)のように、各第2集電極60の第2フィンガー電極部71に対して横方向Xにずれており、厚み方向に重なっていない。
 各第1フィンガー電極部51は、横方向Xに隣接する第2フィンガー電極部71,71の間に位置しており、隣接する第2フィンガー電極部71,71間の中央に位置することが好ましい。
 各第2フィンガー電極部71は、横方向Xに隣接する第1フィンガー電極部51,51の間に位置しており、隣接する第1フィンガー電極部51,51間の中央に位置することが好ましい。
As shown in FIG. 4B , the first finger electrode portions 51 of each first collector 40 are shifted in the lateral direction X relative to the second finger electrode portions 71 of each second collector 60 and do not overlap in the thickness direction.
Each first finger electrode portion 51 is located between adjacent second finger electrode portions 71 , 71 in the horizontal direction X, and is preferably located in the center between the adjacent second finger electrode portions 71 , 71 .
Each second finger electrode portion 71 is located between adjacent first finger electrode portions 51 , 51 in the horizontal direction X, and is preferably located in the center between the adjacent first finger electrode portions 51 , 51 .
 太陽電池セル2の第1セル主面10は、図5のように、第1電極部21と第1樹脂被覆部23で構成された第1内縁領域130が形成されており、第1内縁領域130の縁は、太陽電池セル2の外周縁から0.5mm以内の範囲に形成されている。
 第1内縁領域130は、第1電極部21の総面積よりも第1樹脂被覆部23の総面積の方が大きいことが好ましい。
 第1セル主面10の第1内縁領域130では、隣接する第1バスバー電極部50,50の間が第1樹脂被覆部23で構成されており、隣接する第1フィンガー電極部51,51の間も第1樹脂被覆部23で構成されている。
 第1内縁領域130の面積は、第1透明導電層25の面積よりも広く、図5(a)のように第1樹脂被覆部23が第1透明導電層25の端面を覆っている。
As shown in Figure 5, the first cell main surface 10 of the solar cell 2 has a first inner edge region 130 formed by a first electrode portion 21 and a first resin coating portion 23, and the edge of the first inner edge region 130 is formed within a range of 0.5 mm from the outer peripheral edge of the solar cell 2.
In the first inner edge region 130 , the total area of the first resin coating portion 23 is preferably larger than the total area of the first electrode portion 21 .
In the first inner edge region 130 of the first cell main surface 10, the space between adjacent first busbar electrode portions 50, 50 is defined by a first resin coating portion 23, and the space between adjacent first finger electrode portions 51, 51 is also defined by a first resin coating portion 23.
The area of the first inner edge region 130 is larger than the area of the first transparent conductive layer 25, and the first resin coating 23 covers the end faces of the first transparent conductive layer 25 as shown in FIG. 5(a).
 同様に、太陽電池セル2の第2セル主面11は、第2電極部22と第2樹脂被覆部24で構成された第2内縁領域131が形成されており、第2内縁領域131の縁は、太陽電池セル2の外周縁から0.5mm以内の範囲に形成されている。
 第2内縁領域131は、第2電極部22の総面積よりも第2樹脂被覆部24の総面積の方が大きいことが好ましい。
 第2セル主面11の第2内縁領域131では、隣接する第2バスバー電極部70,70の間が第2樹脂被覆部24で構成されており、隣接する第2フィンガー電極部71,71の間も第2樹脂被覆部24で構成されている。
 第2内縁領域131の面積は、第2透明導電層27の面積よりも広く、図5(a)のように、第2樹脂被覆部24が第2透明導電層27の端面を覆っている。
Similarly, the second cell main surface 11 of the solar cell 2 has a second inner edge region 131 formed by the second electrode portion 22 and the second resin coating portion 24, and the edge of the second inner edge region 131 is formed within a range of 0.5 mm from the outer peripheral edge of the solar cell 2.
In the second inner edge region 131 , the total area of the second resin coating portion 24 is preferably larger than the total area of the second electrode portion 22 .
In the second inner edge region 131 of the second cell main surface 11, the space between adjacent second busbar electrode portions 70, 70 is defined by a second resin coating portion 24, and the space between adjacent second finger electrode portions 71, 71 is also defined by a second resin coating portion 24.
The area of the second inner edge region 131 is larger than the area of the second transparent conductive layer 27, and the second resin coating portion 24 covers the end face of the second transparent conductive layer 27 as shown in FIG. 5(a).
 続いて、本実施形態の太陽電池モジュール100の製造方法について説明する。 Next, a method for manufacturing the solar cell module 100 of this embodiment will be described.
 太陽電池モジュール100の製造方法は、第1製造ラインと第2製造ラインに跨って製造されるものであり、太陽電池セル製造工程と、重畳構造形成工程と、搬送工程と、太陽電池セル加工工程で構成されている。 The manufacturing method for the solar cell module 100 is carried out across the first and second manufacturing lines, and is comprised of a solar cell manufacturing process, a superimposed structure forming process, a transport process, and a solar cell processing process.
(太陽電池セル製造工程)
 太陽電池セル製造工程は、第1製造ラインで太陽電池セル2を形成する工程である。
 太陽電池セル製造工程では、まず、異方性アルカリウェットエッチングにより、半導体基板35の両面をエッチングするとともに、表面に第1テクスチャ構造80,81を形成する。続いて、プラズマCVD装置等によって、図9(a)のように半導体基板35の一方の主面上に第1真性半導体層36及び第1導電型半導体層37をこの順に積層し、半導体基板35の他方の主面上に第2真性半導体層38及び第2導電型半導体層39をこの順に積層して光電変換部26を形成する(光電変換部形成工程)。
(Solar cell manufacturing process)
The solar cell manufacturing process is a process for forming solar cells 2 on a first production line.
In the solar cell manufacturing process, first, both surfaces of the semiconductor substrate 35 are etched by anisotropic alkaline wet etching, and first texture structures 80, 81 are formed on the surface. Next, a plasma CVD device or the like is used to stack a first intrinsic semiconductor layer 36 and a first conductivity type semiconductor layer 37 in this order on one main surface of the semiconductor substrate 35, and a second intrinsic semiconductor layer 38 and a second conductivity type semiconductor layer 39 in this order on the other main surface of the semiconductor substrate 35, as shown in FIG. 9( a), to form the photoelectric conversion section 26 (photoelectric conversion section formation process).
 続いて、スパッタ装置等によって、図9(b)のように、光電変換部26の一方の主面側及び他方の主面側のそれぞれに透明導電層25,27を形成し、光電変換基板20を形成する(透明導電層形成工程)。 Next, as shown in FIG. 9(b), transparent conductive layers 25 and 27 are formed on one main surface side and the other main surface side of the photoelectric conversion section 26 using a sputtering device or the like, thereby forming the photoelectric conversion substrate 20 (transparent conductive layer formation process).
 このとき、光電変換基板20は、平面視したときに、基板主面28,29の大部分に透明導電層25,27が形成されており、基板主面28,29には外周縁に沿って透明導電層25,27が形成されていない透明導電層非形成領域133,134が形成されている。
 すなわち、透明導電層非形成領域133,134は、平面視したときに、光電変換基板20の外周縁に設けられた透明導電層25,27からの光電変換部26の露出部分である。
At this time, when the photoelectric conversion substrate 20 is viewed in a plane, the transparent conductive layers 25, 27 are formed on most of the substrate main surfaces 28, 29, and transparent conductive layer non-forming areas 133, 134 where the transparent conductive layers 25, 27 are not formed are formed along the outer periphery of the substrate main surfaces 28, 29.
That is, the transparent conductive layer- free regions 133 and 134 are exposed portions of the photoelectric conversion section 26 from the transparent conductive layers 25 and 27 provided on the outer periphery of the photoelectric conversion substrate 20 when viewed in plan.
 続いて、スクリーン印刷法等によって、図10(a)のように、光電変換基板20の第1基板主面28を構成する第1透明導電層25上に、導電性粒子と液状樹脂を含む第1導電性ペーストを塗布すると、導電性粒子は密度が大きいため、第1電極部21の形成予定位置にとどまる一方で、液状樹脂は第1電極部21の形成予定位置からさらに染み出る。
 すなわち、第1電極部21の形成予定位置には、導電性粒子が凝集し、その導電性粒子の隙間部分は液状樹脂が含まれている一方で、第1電極部21の形成予定位置の近傍には、液状樹脂が染み出る。
 そして、この第2導電性ペーストの液状樹脂が第1電極部21の形成予定位置(光電変換基板20への塗布部分)から染み出た状態で、加熱等を行って第1導電性ペーストを固化し、第1電極部21と第1樹脂被覆部23を形成する(第1電極形成工程)。
 すなわち、第1電極形成工程では、第1電極部21が形成される第1導電性ペーストの塗布部分から液状樹脂を含む液状成分が第1電極部21の隙間に染み出して第1樹脂被覆部23が形成される。
Next, a first conductive paste containing conductive particles and liquid resin is applied by screen printing or the like onto the first transparent conductive layer 25 constituting the first substrate main surface 28 of the photoelectric conversion substrate 20, as shown in Figure 10 (a).Due to their high density, the conductive particles remain at the intended position for forming the first electrode portion 21, while the liquid resin seeps out further from the intended position for forming the first electrode portion 21.
That is, conductive particles aggregate at the position where the first electrode portion 21 is planned to be formed, and the gaps between the conductive particles contain liquid resin, while the liquid resin seeps out near the position where the first electrode portion 21 is planned to be formed.
Then, with the liquid resin of this second conductive paste seeping out from the intended position where the first electrode portion 21 is to be formed (the portion applied to the photoelectric conversion substrate 20), the first conductive paste is solidified by heating or the like, and the first electrode portion 21 and the first resin coating portion 23 are formed (first electrode formation process).
That is, in the first electrode formation process, a liquid component containing a liquid resin seeps out from the applied portion of the first conductive paste where the first electrode portion 21 is formed into the gap of the first electrode portion 21 to form the first resin coating portion 23.
 この第1電極形成工程で形成された第1電極部21と第1樹脂被覆部23とは、共通の樹脂成分を含んでいる。すなわち、第1電極部21と第1樹脂被覆部23の間には、連続的につながった樹脂部分がある。より詳細には、第1電極部21を構成する導電性粒子の隙間部分の樹脂の一部と第1樹脂被覆部23の間には、連続的につながった樹脂部分が形成される。
 第1導電性ペーストに使用される導電性粒子は、導電性を有する粒子であれば、特に限定されるものではない。導電性粒子としては、例えば、銀、アルミニウム、銅、インジウム、ビスマス、ガリウム等の金属材料が使用できる。
 第1導電性ペーストに使用される液状樹脂は、性状が液体状のバインダー樹脂であり、熱や紫外線等によって固化するものであれば、特に限定されるものではない。液状樹脂としては、例えば、エポキシ系樹脂、フェノール系樹脂、アクリル系樹脂などの熱硬化性樹脂が使用できる。
 第1導電性ペーストは、有機溶剤や無機溶剤などの液状溶剤をさらに含んでいてもよい。
 本実施形態の第1導電性ペーストは、導電性粒子と液状樹脂と液状溶剤を含んだ混合物である。
The first electrode portion 21 and the first resin-coated portion 23 formed in this first electrode formation process contain a common resin component. That is, there is a continuously connected resin portion between the first electrode portion 21 and the first resin-coated portion 23. More specifically, a continuously connected resin portion is formed between the first resin-coated portion 23 and a part of the resin in the gaps between the conductive particles constituting the first electrode portion 21.
The conductive particles used in the first conductive paste are not particularly limited as long as they are conductive particles. For example, metal materials such as silver, aluminum, copper, indium, bismuth, and gallium can be used as the conductive particles.
The liquid resin used in the first conductive paste is not particularly limited as long as it is a binder resin in a liquid state and is solidified by heat, ultraviolet light, etc. As the liquid resin, for example, a thermosetting resin such as an epoxy resin, a phenol resin, or an acrylic resin can be used.
The first conductive paste may further contain a liquid solvent such as an organic solvent or an inorganic solvent.
The first conductive paste of the present embodiment is a mixture containing conductive particles, a liquid resin, and a liquid solvent.
 この第1電極形成工程において、図10(a)のように、第1内縁領域130が形成され、この第1内縁領域130は、第1透明導電層非形成領域133と重なり、第1電極部21と第1樹脂被覆部23が第1透明導電層25全体を被覆しており、さらに第1樹脂被覆部23が第1透明導電層25上から第1透明導電層非形成領域133に至る。
 すなわち、第1樹脂被覆部23は、第1透明導電層25上から光電変換部26の露出部分に跨って設けられ、第1内縁領域130の外周縁は、第1透明導電層25の外周縁の外側であって光電変換基板20の外周縁の内側に形成される。
In this first electrode formation process, as shown in Figure 10 (a), a first inner edge region 130 is formed, and this first inner edge region 130 overlaps with a first transparent conductive layer non-forming region 133, and the first electrode portion 21 and the first resin coating portion 23 cover the entire first transparent conductive layer 25, and further the first resin coating portion 23 extends from above the first transparent conductive layer 25 to the first transparent conductive layer non-forming region 133.
That is, the first resin coating portion 23 is provided spanning from the first transparent conductive layer 25 to the exposed portion of the photoelectric conversion portion 26, and the outer peripheral edge of the first inner edge region 130 is formed outside the outer peripheral edge of the first transparent conductive layer 25 and inside the outer peripheral edge of the photoelectric conversion substrate 20.
 続いて、スクリーン印刷法等によって、図10(b)のように、光電変換基板20の第2基板主面29を構成する第2透明導電層27上に導電性粒子と液状樹脂を含む第2導電性ペーストを塗布すると、導電性粒子は密度が大きいため、第2電極部22の形成予定位置にとどまる一方で、液状樹脂は第2電極部22の形成予定位置からさらに染み出る。
 すなわち、第2電極部22の形成予定位置には、導電性粒子が凝集し、その導電性粒子の隙間部分は液状樹脂が含まれている一方で、第2電極部22の形成予定位置の近傍には、液状樹脂が染み出る。
 そして、この第2導電性ペーストの液状樹脂が第2電極部22の形成予定位置(光電変換基板20への塗布部分)から染み出た状態で、加熱等を行って第2導電性ペーストを固化し、第2電極部22と第2樹脂被覆部24を形成する(第2電極形成工程)。
 すなわち、第2電極形成工程では、第2電極部22が形成される第2導電性ペーストの塗布部分から液状樹脂を含む液状成分が第2電極部22の隙間に染み出して第2樹脂被覆部24が形成される。
Next, a second conductive paste containing conductive particles and liquid resin is applied by screen printing or the like onto the second transparent conductive layer 27 constituting the second substrate main surface 29 of the photoelectric conversion substrate 20, as shown in Figure 10 (b).Due to the high density of the conductive particles, the conductive particles remain at the intended position for forming the second electrode portion 22, while the liquid resin seeps out further from the intended position for forming the second electrode portion 22.
That is, conductive particles aggregate at the position where the second electrode portion 22 is planned to be formed, and the gaps between the conductive particles contain liquid resin, while the liquid resin seeps out near the position where the second electrode portion 22 is planned to be formed.
Then, with the liquid resin of this second conductive paste seeping out from the intended position where the second electrode portion 22 is to be formed (the portion applied to the photoelectric conversion substrate 20), the second conductive paste is solidified by heating or the like, and the second electrode portion 22 and the second resin coating portion 24 are formed (second electrode formation process).
That is, in the second electrode formation process, liquid components containing liquid resin seep out from the applied portion of the second conductive paste where the second electrode portion 22 is formed into the gaps of the second electrode portion 22 to form the second resin coating portion 24.
 この第2電極形成工程で形成された第2電極部22と第2樹脂被覆部24とは、共通の樹脂成分を含んでいる。すなわち、第2電極部22と第2樹脂被覆部24の間には、連続的につながった樹脂部分がある。より詳細には、第2電極部22を構成する導電性粒子の隙間部分の樹脂の一部と第2樹脂被覆部24の間には、連続的につながった樹脂部分が形成される。
 第2導電性ペーストは、第1電極形成工程で使用した第1導電性ペーストと同様の導電性粒子及び液状樹脂が使用できる。
 本実施形態の第2導電性ペーストは、導電性粒子と液状樹脂と液状溶剤を含んだ混合物である。
The second electrode portion 22 and the second resin-coated portion 24 formed in this second electrode formation process contain a common resin component. That is, there is a continuously connected resin portion between the second electrode portion 22 and the second resin-coated portion 24. More specifically, a continuously connected resin portion is formed between the second resin-coated portion 24 and a part of the resin in the gaps between the conductive particles constituting the second electrode portion 22.
The second conductive paste may contain the same conductive particles and liquid resin as the first conductive paste used in the first electrode formation step.
The second conductive paste of the present embodiment is a mixture containing conductive particles, a liquid resin, and a liquid solvent.
 この第2電極形成工程において、図10(b)のように、第2内縁領域131が形成され、この第2内縁領域131は、第2透明導電層非形成領域134と重なり、第2電極部22と第2樹脂被覆部24が第2透明導電層27全体を被覆しており、さらに第2樹脂被覆部24が第2透明導電層27上から第2透明導電層非形成領域134に至る。
 すなわち、第2樹脂被覆部24は、第2透明導電層27上から光電変換部26の露出部分に跨って設けられ、第2内縁領域131の外周縁は、第2透明導電層27の外周縁の外側であって光電変換基板20の外周縁の内側に形成される。
In this second electrode formation process, as shown in Figure 10 (b), a second inner edge region 131 is formed, and this second inner edge region 131 overlaps with the second transparent conductive layer non-forming region 134, and the second electrode portion 22 and the second resin coating portion 24 cover the entire second transparent conductive layer 27, and further, the second resin coating portion 24 extends from above the second transparent conductive layer 27 to the second transparent conductive layer non-forming region 134.
That is, the second resin coating portion 24 is provided spanning from the second transparent conductive layer 27 to the exposed portion of the photoelectric conversion portion 26, and the outer peripheral edge of the second inner edge region 131 is formed outside the outer peripheral edge of the second transparent conductive layer 27 and inside the outer peripheral edge of the photoelectric conversion substrate 20.
 上記の第1電極形成工程と第2電極形成工程が終了すると、太陽電池セル2が完成し、太陽電池セル製造工程が終了される。 Once the first electrode formation process and the second electrode formation process are completed, the solar cell 2 is completed and the solar cell manufacturing process is completed.
(重畳構造形成工程)
 重畳構造形成工程は、搬送工程にて太陽電池セル2を第1製造ラインから第2製造ラインへを搬送するために、重畳構造1を形成する工程である。
 重畳構造形成工程では、まず、図1のように、複数の太陽電池セル2を上下方向Zに重ねて、各太陽電池セル2を厚み方向に重畳させて重畳構造1を形成する。
(Superimposed structure forming process)
The overlapping structure forming step is a step of forming the overlapping structure 1 in order to transport the solar cell 2 from the first production line to the second production line in the transport step.
In the overlapping structure forming step, first, as shown in FIG. 1 , a plurality of solar cells 2 are overlapped in the vertical direction Z, and the solar cells 2 are overlapped in the thickness direction to form the overlapping structure 1 .
 このとき、図11に示される厚み方向に積層された3段の太陽電池セル2A~2Cに注目すると、各太陽電池セル2A~2Cは、第1セル主面10が上面を構成し、第2セル主面11が下面を構成している。
 中段の太陽電池セル2B(第1太陽電池セル)は、図11のように、第2セル主面11の第2電極部22が下段の太陽電池セル2Aの第1セル主面10の第1樹脂被覆部23に接触して支持されており、第1セル主面10の第1電極部21が上段の太陽電池セル2C(第2太陽電池セル)の第2セル主面11の第2樹脂被覆部24に接触して支持している。
 中段の太陽電池セル2Bは、第2セル主面11の第2樹脂被覆部24に下段の太陽電池セル2Aの第1電極部21が接触して支持されており、第1セル主面10の第1樹脂被覆部23に上段の太陽電池セル2Cの第2電極部22が接触して支持している。
In this case, if we look at the three rows of solar cells 2A to 2C stacked in the thickness direction as shown in Figure 11, the first cell principal surface 10 of each of the solar cells 2A to 2C forms the upper surface, and the second cell principal surface 11 forms the lower surface.
As shown in Figure 11, the second electrode portion 22 on the second cell main surface 11 of the middle solar cell 2B (first solar cell) is supported in contact with the first resin coating portion 23 on the first cell main surface 10 of the lower solar cell 2A, and the first electrode portion 21 on the first cell main surface 10 is supported in contact with the second resin coating portion 24 on the second cell main surface 11 of the upper solar cell 2C (second solar cell).
The middle solar cell 2B is supported by the first electrode portion 21 of the lower solar cell 2A in contact with the second resin coating portion 24 of the second cell main surface 11, and is supported by the second electrode portion 22 of the upper solar cell 2C in contact with the first resin coating portion 23 of the first cell main surface 10.
(搬送工程)
 搬送工程は、重畳構造形成工程で形成された重畳構造1を第1製造ラインから第2製造ラインに輸送する工程である。
(Transportation process)
The transport step is a step of transporting the overlapped structure 1 formed in the overlapped structure forming step from the first production line to the second production line.
(太陽電池セル加工工程)
 太陽電池セル加工工程は、第2製造ラインで太陽電池セルを加工して太陽電池モジュール100を形成する工程である。
 太陽電池セル加工工程では、まず、重畳構造形成工程で形成された重畳構造1から太陽電池セル2を取り出し、図2に示される分割線L1で切断し、複数の分割太陽電池セル101に分割する(分割工程)。
(Solar cell processing process)
The solar cell processing step is a step in which solar cells are processed in the second production line to form the solar cell module 100 .
In the solar cell processing step, first, the solar cell 2 is removed from the overlapping structure 1 formed in the overlapping structure forming step, and cut along the dividing lines L1 shown in Figure 2 to divide it into a plurality of divided solar cells 101 (dividing step).
 具体的には、図12(a)のように、太陽電池セル2の第1セル主面10側から、平面視で、電極部21,22を避けて樹脂被覆部23,24と重なる位置を通過するように、レーザー光を照射して第1樹脂被覆部23から少なくとも半導体基板35の内部(厚み方向の中間部)まで至る分割溝125を形成する(分割溝形成工程)。 Specifically, as shown in FIG. 12(a), a laser beam is irradiated from the first cell main surface 10 of the solar cell 2 so as to pass through the positions overlapping the resin coating portions 23, 24 in a plan view while avoiding the electrode portions 21, 22, to form a dividing groove 125 that extends from the first resin coating portion 23 to at least the inside of the semiconductor substrate 35 (the middle portion in the thickness direction) (dividing groove forming process).
 このとき、第1樹脂被覆部23の一部がレーザー光によって酸化され、保護樹脂層122が分割溝125の表面に形成される。 At this time, a portion of the first resin coating portion 23 is oxidized by the laser light, and a protective resin layer 122 is formed on the surface of the dividing groove 125.
 続いて、図12(b)のように、太陽電池セル2を分割溝125に沿って第2樹脂被覆部24を通過するように折り割り、複数の分割太陽電池セル101に分割する(折割工程)。 Next, as shown in FIG. 12(b), the solar cell 2 is folded along the dividing groove 125 so as to pass through the second resin coating portion 24, and divided into a plurality of divided solar cell units 101 (folding and dividing process).
 このとき、分割溝125の底部から厚み方向に切断され、レーザー切断部120と折割切断部121が形成される。 At this time, the sheet is cut in the thickness direction from the bottom of the dividing groove 125, forming the laser cut portion 120 and the crease cut portion 121.
 続いて、図7のように、各分割太陽電池セル101の第1バスバー電極部50と第2バスバー電極部70を導電性接着材102で接着して分割太陽電池セル101が電気的に直列接続された太陽電池群103を形成する(太陽電池群形成工程)。 Next, as shown in FIG. 7, the first busbar electrode portion 50 and the second busbar electrode portion 70 of each divided solar cell 101 are bonded with a conductive adhesive 102 to form a solar cell group 103 in which the divided solar cell cells 101 are electrically connected in series (solar cell group formation process).
 続いて、図6のように、各太陽電池群103の電気の流れ方向の端部のバスバー電極部50,70をそれぞれ取出配線113,114に接続する(配線接続工程)。 Next, as shown in FIG. 6, the busbar electrode portions 50, 70 at the ends of each solar cell group 103 in the direction of electrical flow are connected to the output wiring 113, 114, respectively (wiring connection process).
 続いて、図7のように各太陽電池群103を封止部材115,116で挟み、各太陽電池群103と封止部材115,116の間を封止材117,118で充填して封止することで、太陽電池モジュール100が完成する(組立工程)。 Next, as shown in FIG. 7, each solar cell group 103 is sandwiched between sealing members 115, 116, and the spaces between each solar cell group 103 and the sealing members 115, 116 are filled with sealing materials 117, 118 to seal, completing the solar cell module 100 (assembly process).
 本実施形態の太陽電池セル2によれば、第1セル主面10上に、上段の太陽電池セル2の第2セル主面11を積み重ねたときに、上段の太陽電池セル2の第2電極部22の大部分を第1樹脂被覆部23で受けることができるため、上段の太陽電池セル2の第2電極部22が光電変換基板20の第1基板主面28に接触することによる傷等の損傷を低減できる。
 また、本実施形態の太陽電池セル2によれば、下段の太陽電池セル2の第1セル主面10上に第2セル主面11を積み重ねたときに、下段の太陽電池セル2の第1電極部21の大部分を第2樹脂被覆部24で受けることができるため、下段の太陽電池セル2の第1電極部21が光電変換基板20の第2基板主面29に接触することによる傷等の損傷を低減できる。
According to the solar cell 2 of this embodiment, when the second cell main surface 11 of the upper solar cell 2 is stacked on the first cell main surface 10, most of the second electrode portion 22 of the upper solar cell 2 can be supported by the first resin coating portion 23, thereby reducing damage such as scratches caused by the second electrode portion 22 of the upper solar cell 2 coming into contact with the first substrate main surface 28 of the photoelectric conversion substrate 20.
Furthermore, according to the solar cell 2 of this embodiment, when the second cell main surface 11 is stacked on the first cell main surface 10 of the solar cell 2 in the lower tier, most of the first electrode portion 21 of the solar cell 2 in the lower tier can be supported by the second resin coating portion 24, thereby reducing damage such as scratches caused by the first electrode portion 21 of the solar cell 2 in the lower tier coming into contact with the second substrate main surface 29 of the photoelectric conversion substrate 20.
 本実施形態の太陽電池セル2によれば、第1電極部21は、第1樹脂被覆部23と隣接しており、第1樹脂被覆部23と共通の樹脂成分を含むため、第1導電性ペーストによって同時に形成することができる。同様に、第2電極部22は、第2樹脂被覆部24と隣接しており、第2樹脂被覆部24と共通の樹脂成分を含むため、第2導電性ペーストによって同時に形成することができる。 In the solar cell 2 of this embodiment, the first electrode portion 21 is adjacent to the first resin coating portion 23 and contains a resin component common to the first resin coating portion 23, so they can be formed simultaneously with the first conductive paste. Similarly, the second electrode portion 22 is adjacent to the second resin coating portion 24 and contains a resin component common to the second resin coating portion 24, so they can be formed simultaneously with the second conductive paste.
 本実施形態の太陽電池セル2によれば、第1バスバー電極部50に比べて細く荷重により切断されやすい第1フィンガー電極部51が平面視したときに第2樹脂被覆部24と重なっているため、第1セル主面10上に、上段の太陽電池セル2の第2セル主面11を積み重ねたときに、第1フィンガー電極部51が上段の太陽電池セル2の第2樹脂被覆部24と接触し、第2樹脂被覆部24が緩衝材として機能する。そのため、第1フィンガー電極部51が切断されにくい。
 また、本実施形態の太陽電池セル2によれば、第2バスバー電極部70に比べて細く荷重により切断されやすい第2フィンガー電極部71が平面視したときに第1樹脂被覆部23と重なっているため、下段の太陽電池セル2の第1セル主面10上に上段の太陽電池セル2の第2セル主面11を積み重ねたときに、第2フィンガー電極部71が下段の太陽電池セル2の第1樹脂被覆部23と接触し、第1樹脂被覆部23が緩衝材として機能する。そのため、第2フィンガー電極部71が切断されにくい。
According to the solar cell 2 of this embodiment, the first finger electrode portion 51, which is thinner than the first bus bar electrode portion 50 and more likely to be cut by a load, overlaps the second resin coating portion 24 in a plan view, so that when the second cell main surface 11 of the solar cell 2 in the upper layer is stacked on the first cell main surface 10, the first finger electrode portion 51 comes into contact with the second resin coating portion 24 of the solar cell 2 in the upper layer, and the second resin coating portion 24 functions as a buffer material. Therefore, the first finger electrode portion 51 is not easily cut.
Furthermore, according to the solar cell 2 of this embodiment, the second finger electrode portion 71, which is thinner than the second bus bar electrode portion 70 and more likely to be cut by a load, overlaps the first resin coating portion 23 in a plan view, so that when the second cell main surface 11 of the upper solar cell 2 is stacked on the first cell main surface 10 of the lower solar cell 2, the second finger electrode portion 71 comes into contact with the first resin coating portion 23 of the lower solar cell 2, and the first resin coating portion 23 functions as a buffer material. Therefore, the second finger electrode portion 71 is not easily cut.
 本実施形態の太陽電池セル2の製造方法によれば、第1電極部21と第1樹脂被覆部23を第1導電性ペーストによって同時に形成することができ、容易に製造できる。同様に第2電極部22と第2樹脂被覆部24を第2導電性ペーストによって同時に形成することができ、容易に製造できる。 According to the manufacturing method of the solar cell 2 of this embodiment, the first electrode portion 21 and the first resin coating portion 23 can be formed simultaneously using the first conductive paste, and can be easily manufactured. Similarly, the second electrode portion 22 and the second resin coating portion 24 can be formed simultaneously using the second conductive paste, and can be easily manufactured.
 本実施形態の太陽電池セル2によれば、第1セル主面10において外周縁から0.5mm以内の範囲に形成された第1内縁領域130が第1電極部21と第1樹脂被覆部23で構成されているため、第1セル主面10から厚み方向に水分等が進入することを抑制できる。
 また、本実施形態の太陽電池セル2によれば、第2セル主面11において外周縁から0.5mm以内の範囲に形成された第2内縁領域131が第2電極部22と第2樹脂被覆部24で構成されているため、第2セル主面11から厚み方向に水分等が進入することを抑制できる。
According to the solar cell 2 of this embodiment, the first inner edge region 130 formed within a range of 0.5 mm from the outer peripheral edge on the first cell main surface 10 is composed of the first electrode portion 21 and the first resin coating portion 23, thereby preventing moisture and the like from entering in the thickness direction from the first cell main surface 10.
Furthermore, according to the solar cell 2 of this embodiment, the second inner edge region 131 formed within a range of 0.5 mm from the outer peripheral edge on the second cell main surface 11 is composed of the second electrode portion 22 and the second resin coating portion 24, so that the intrusion of moisture and the like in the thickness direction from the second cell main surface 11 can be suppressed.
 本実施形態の太陽電池セル2によれば、電極部21,22と樹脂被覆部23,24が連続的につながった樹脂部分を含むため、電極部21,22と樹脂被覆部23,24の隙間から水分等が進入することを防止できる。 In the solar cell 2 of this embodiment, the electrode portions 21, 22 and the resin coating portions 23, 24 include a resin portion that is continuously connected, so that moisture and the like can be prevented from entering through the gaps between the electrode portions 21, 22 and the resin coating portions 23, 24.
 本実施形態の太陽電池セル2によれば、内縁領域130,131は、電極部21,22の総面積よりも樹脂被覆部23,24の総面積の方が大きいので、水分等の進入を防止しつつ、受光面積を大きく確保することができる。 In the solar cell 2 of this embodiment, the total area of the resin-coated portions 23, 24 of the inner edge regions 130, 131 is larger than the total area of the electrode portions 21, 22, so that a large light-receiving area can be secured while preventing the intrusion of moisture, etc.
 本実施形態の太陽電池セル2によれば、第1内縁領域130は、隣接する第1フィンガー電極部51,51の間が第1樹脂被覆部23で構成されているので、より水分等の進入を防止できる。
 また、本実施形態の太陽電池セル2によれば、第2内縁領域131は、隣接する第2フィンガー電極部71,71の間が第2樹脂被覆部24で構成されているので、より水分等の進入を防止できる。
In the solar cell 2 of this embodiment, the first inner edge region 130 has the first resin coating portion 23 between adjacent first finger electrode portions 51, 51, so that the intrusion of moisture and the like can be more effectively prevented.
Furthermore, in the solar cell 2 of this embodiment, the second inner edge region 131 has the second resin coating portion 24 between adjacent second finger electrode portions 71, 71, which further prevents the intrusion of moisture and the like.
 本実施形態の太陽電池セル2によれば、樹脂被覆部23,24は、第2テクスチャ構造82,83の凹凸や第3テクスチャ構造84,85の凹凸よりも小さな凹凸をもつ凹凸領域86,87を備えている。そのため、電極部21,22近傍の濡れ性を低下させることができ、太陽電池群形成工程において導電性接着材102が電極部21,22からはみ出た場合であっても導電性接着材102の濡れ広がりを防止できる。 In the solar cell 2 of this embodiment, the resin coating portions 23, 24 have uneven regions 86, 87 with unevenness smaller than the unevenness of the second texture structures 82, 83 and the unevenness of the third texture structures 84, 85. This reduces the wettability near the electrode portions 21, 22, and prevents the conductive adhesive 102 from spreading even if the conductive adhesive 102 protrudes from the electrode portions 21, 22 during the solar cell group formation process.
 本実施形態の太陽電池セル2によれば、pn接合部が第1電極部21と第1樹脂被覆部23により保護されているため、pn接合部が水分侵入や機械的接触の影響を受けにくい。 In the solar cell 2 of this embodiment, the pn junction is protected by the first electrode portion 21 and the first resin coating portion 23, so the pn junction is less susceptible to moisture intrusion and mechanical contact.
 本実施形態の太陽電池セル2によれば、内縁領域130,131が電極部21,22と樹脂被覆部23,24で構成されているため、光電変換部26との間に透明導電層25,27が介在していても、光電変換部26への水分等の進入を抑制できる。 In the solar cell 2 of this embodiment, the inner edge regions 130, 131 are composed of the electrode portions 21, 22 and the resin coating portions 23, 24, so that even if the transparent conductive layers 25, 27 are interposed between the photoelectric conversion portion 26, the intrusion of moisture and the like into the photoelectric conversion portion 26 can be suppressed.
 本実施形態の太陽電池セル2によれば、樹脂被覆部23,24は、透明導電層25,27の外周に沿って透明導電層25,27を被覆し、透明導電層25,27から透明導電層非形成領域133,134に至っている。すなわち、樹脂被覆部23,24が透明導電層25,27の端面を覆っているため、光電変換部26と透明導電層25,27との界面方向への水分等の進入を抑制できる。 In the solar cell 2 of this embodiment, the resin coating portions 23, 24 cover the transparent conductive layers 25, 27 along the outer periphery of the transparent conductive layers 25, 27, and extend from the transparent conductive layers 25, 27 to the transparent conductive layer non-forming regions 133, 134. In other words, because the resin coating portions 23, 24 cover the end faces of the transparent conductive layers 25, 27, it is possible to suppress the intrusion of moisture and the like toward the interface between the photoelectric conversion portion 26 and the transparent conductive layers 25, 27.
 本実施形態の分割太陽電池セル101の製造方法によれば、光電変換基板20の分割溝125が形成される部分が第1樹脂被覆部23によって保護されるので、分割溝125を形成する際の光電変換基板20への影響を抑制できる。 According to the manufacturing method of the divided solar cell 101 of this embodiment, the portion of the photoelectric conversion substrate 20 where the division groove 125 is formed is protected by the first resin coating portion 23, so that the impact on the photoelectric conversion substrate 20 when forming the division groove 125 can be suppressed.
 本実施形態の分割太陽電池セル101の製造方法によれば、光電変換基板20の折り割りされる部分が第2樹脂被覆部24によって保護されているので、折り割りする際の光電変換基板20への影響を抑制できる。 In the manufacturing method of the split solar cell 101 of this embodiment, the portion of the photoelectric conversion substrate 20 that is to be folded is protected by the second resin coating portion 24, so that the impact on the photoelectric conversion substrate 20 when folding can be suppressed.
 本実施形態の分割太陽電池セル101によれば、光電変換基板20の端面の一部に保護樹脂層122が形成されているため、光電変換基板20の端面での短絡が生じにくく、信頼性が高い。 In the split solar cell 101 of this embodiment, a protective resin layer 122 is formed on part of the end face of the photoelectric conversion substrate 20, making it less likely for short circuits to occur at the end face of the photoelectric conversion substrate 20, and therefore highly reliable.
 本実施形態の太陽電池セル2によれば、第1電極部21と第2電極部22が平面視したときに重なっていないので、他の太陽電池セル2ともに積み重ねたときに、電極部21,22同士が接触することによる欠けや割れ等の不具合が生じることを防止できる。 In the solar cell 2 of this embodiment, the first electrode portion 21 and the second electrode portion 22 do not overlap when viewed in a plan view, so when the solar cell 2 is stacked with other solar cells 2, defects such as chipping or cracking caused by the electrode portions 21, 22 coming into contact with each other can be prevented.
 本実施形態の太陽電池セル2によれば、平面視したときに、第1フィンガー電極部51と第2フィンガー電極部71が第1バスバー電極部50と第2バスバー電極部70の間を互いに逆方向に延びているので、太陽電池セル2を複数積み重ねた場合に、太陽電池セル2の面内に均等に荷重がかかるので、より安定する。 In the solar cell 2 of this embodiment, when viewed in a plan view, the first finger electrode portion 51 and the second finger electrode portion 71 extend in opposite directions between the first bus bar electrode portion 50 and the second bus bar electrode portion 70. Therefore, when multiple solar cells 2 are stacked, the load is evenly distributed across the surface of the solar cell 2, making it more stable.
 本実施形態の太陽電池セル2によれば、平面視したときに、第1フィンガー電極部51が横方向Xに隣接する第2フィンガー電極部71,71の間に位置して延びており、第2フィンガー電極部71が横方向Xに隣接する第1フィンガー電極部51,51の間に位置して延びている。そのため、太陽電池セル2を複数積み重ねた場合に、太陽電池セル2の面内に均等に荷重がかかるので、より安定する。 In the solar cell 2 of this embodiment, when viewed in a plan view, the first finger electrode portion 51 is positioned and extends between the second finger electrode portions 71, 71 adjacent to each other in the horizontal direction X, and the second finger electrode portion 71 is positioned and extends between the first finger electrode portions 51, 51 adjacent to each other in the horizontal direction X. Therefore, when multiple solar cells 2 are stacked, the load is evenly distributed across the surface of the solar cell 2, making it more stable.
 本実施形態の太陽電池セル2によれば、互いに独立した第1集電極40a,40bの間に第2集電極60bが位置しており、互いに独立した第2集電極60a,60bの間に第1集電極40aが位置している。そのため、第1集電極40aと第2集電極60bの間で切断しても、切断された各分割太陽電池セル101でそれぞれ第1集電極40a(40b)と第2集電極60a(60b)から電力を取り出すことができる。 In the solar cell 2 of this embodiment, the second collector 60b is located between the mutually independent first collectors 40a, 40b, and the first collector 40a is located between the mutually independent second collectors 60a, 60b. Therefore, even if the solar cell 2 is cut between the first collector 40a and the second collector 60b, power can be extracted from the first collector 40a (40b) and the second collector 60a (60b) in each of the cut solar cell segments 101.
 本実施形態の重畳構造1によれば、下段の太陽電池セル2Bの第1電極部21と上段の太陽電池セル2Cの第2電極部22が接触していないので、電極部21,22同士が接触することによって欠けや割れ等の不具合が生じることを防止できる。 According to the stacked structure 1 of this embodiment, the first electrode portion 21 of the lower solar cell 2B and the second electrode portion 22 of the upper solar cell 2C are not in contact with each other, so defects such as chipping and cracking caused by contact between the electrodes 21, 22 can be prevented.
 上記した実施形態では、太陽電池セル2を寝かして上下方向Zに太陽電池セル2を重ねていたが、本発明はこれに限定されるものではない。太陽電池セル2を立たして上下方向Zに対する交差方向に太陽電池セル2を重ねてもよい。 In the above embodiment, the solar cells 2 are laid down and stacked in the vertical direction Z, but the present invention is not limited to this. The solar cells 2 may be stood upright and stacked in a direction intersecting the vertical direction Z.
 上記した実施形態では、太陽電池セル2を複数積み重ねていたが、本発明はこれに限定されるものではない。分割太陽電池セル101を複数積み重ねてもよい。 In the above embodiment, multiple solar cells 2 are stacked, but the present invention is not limited to this. Multiple divided solar cells 101 may also be stacked.
 上記した実施形態では、1枚の太陽電池セル2から4枚の分割太陽電池セル101に分割されていたが、本発明はこれに限定されるものではない。1枚の太陽電池セル2から2枚以上3枚以下の分割太陽電池セル101に分割されていてもよいし、5枚以上の分割太陽電池セル101に分割されていてもよい。この場合、分割する分割太陽電池セル101の数に応じて各集電極40,60の数を増減させることになる。 In the above embodiment, one solar cell 2 is divided into four divided solar cells 101, but the present invention is not limited to this. One solar cell 2 may be divided into two to three divided solar cells 101, or into five or more divided solar cells 101. In this case, the number of collector electrodes 40, 60 will be increased or decreased depending on the number of divided solar cells 101 to be divided.
 上記した実施形態では、太陽電池セル2を複数の分割太陽電池セル101に分割していたが、本発明はこれに限定されるものではない。太陽電池セル2を分割しなくてもよい。 In the above embodiment, the solar cell 2 is divided into a plurality of divided solar cell cells 101, but the present invention is not limited to this. The solar cell 2 does not have to be divided.
 上記した実施形態では、第1電極形成工程後に第2電極形成工程を行ったが本発明はこれに限定されるものではない。第2電極形成工程後に第1電極形成工程を行ってもよい。 In the above embodiment, the second electrode formation process is performed after the first electrode formation process, but the present invention is not limited to this. The first electrode formation process may be performed after the second electrode formation process.
 上記した実施形態では、pn接合部は、半導体基板35を基準として第1セル主面10側に設けられていたが、本発明はこれに限定されるものではない。pn接合部は、半導体基板35を基準として第2セル主面11側に設けられていてもよい。 In the above embodiment, the pn junction is provided on the first cell main surface 10 side with respect to the semiconductor substrate 35, but the present invention is not limited to this. The pn junction may be provided on the second cell main surface 11 side with respect to the semiconductor substrate 35.
 上記した実施形態では、各電極部21,22はバスバー電極部50,70と、フィンガー電極部51,71とを有していたが、本発明はこれに限定されるものではない。バスバー電極が設けられていない、いわゆるバスバーレスの太陽電池セルであってもよい。 In the above embodiment, each electrode portion 21, 22 has a busbar electrode portion 50, 70 and a finger electrode portion 51, 71, but the present invention is not limited to this. It may also be a so-called busbarless solar cell that does not have a busbar electrode.
 上記した実施形態では、第1フィンガー電極部51は、等間隔に並設されているが、本発明はこれに限定されるものではない。第1フィンガー電極部51は、非等間隔であってもよい。同様に、上記した実施形態では、第2フィンガー電極部71は、等間隔に並設されているが、本発明はこれに限定されるものではない。第2フィンガー電極部71は、非等間隔であってもよい。 In the above embodiment, the first finger electrode portions 51 are arranged side by side at equal intervals, but the present invention is not limited to this. The first finger electrode portions 51 may also be arranged at non-equidistant intervals. Similarly, in the above embodiment, the second finger electrode portions 71 are arranged side by side at equal intervals, but the present invention is not limited to this. The second finger electrode portions 71 may also be arranged at non-equidistant intervals.
 上記した実施形態では、第1フィンガー電極部51の間隔D2と、第2フィンガー電極部71の間隔D3とは、ほぼ同じであったが、本発明はこれに限定されるものではない。第1フィンガー電極部51の間隔D2は第2フィンガー電極部71の間隔D3より狭くてもよいし、第2フィンガー電極部71の間隔D3は第1フィンガー電極部51の間隔D2より狭くてもよい。
 また、複数本の第1フィンガー電極部51は、図13(a)のように、横方向Xに隣接する第2フィンガー電極部71,71の間に位置してもよい。また、複数の第2フィンガー電極部71は、図13(b)のように、横方向Xに隣接する第1フィンガー電極部51,51の間に位置してもよい。
 例えば、図13(a)のように、複数の第1フィンガー電極部51が等間隔に間隔D2を隔てて並設されており、複数の第2フィンガー電極部71が等間隔に間隔D2/n(nは2以上の自然数)を隔てて並設されている場合には、各第1フィンガー電極部51は、横方向Xに隣接する第2フィンガー電極部71,71の中央に位置し、隣接する第1フィンガー電極部51,51の間には、n本の第2フィンガー電極部71が位置する構成としても良い。
 また、例えば、図13(b)のように、複数の第2フィンガー電極部71が等間隔に間隔D3を隔てて並設されており、複数の第1フィンガー電極部51が等間隔に間隔D3/n(nは2以上の自然数)を隔てて並設されている場合には、各第2フィンガー電極部71は、横方向Xに隣接する第1フィンガー電極部51,51の中央に位置し、隣接する第2フィンガー電極部71,71の間には、n本の第1フィンガー電極部51が位置する構成としても良い。
In the above embodiment, the spacing D2 between the first finger electrode portions 51 and the spacing D3 between the second finger electrode portions 71 are substantially the same, but the present invention is not limited to this. The spacing D2 between the first finger electrode portions 51 may be narrower than the spacing D3 between the second finger electrode portions 71, and the spacing D3 between the second finger electrode portions 71 may be narrower than the spacing D2 between the first finger electrode portions 51.
13(a), the plurality of first finger electrode portions 51 may be located between adjacent second finger electrode portions 71, 71 in the horizontal direction X. Also, the plurality of second finger electrode portions 71 may be located between adjacent first finger electrode portions 51, 51 in the horizontal direction X.
For example, as shown in FIG. 13( a), in the case where a plurality of first finger electrode portions 51 are arranged side by side at equal intervals of a distance D2, and a plurality of second finger electrode portions 71 are arranged side by side at equal intervals of a distance D2/n (n is a natural number greater than or equal to 2), each first finger electrode portion 51 may be located at the center of adjacent second finger electrode portions 71, 71 in the horizontal direction X, and n second finger electrode portions 71 may be located between adjacent first finger electrode portions 51, 51.
Also, for example, as shown in FIG. 13 (b), in the case where a plurality of second finger electrode portions 71 are arranged side by side at equal intervals of a distance D3, and a plurality of first finger electrode portions 51 are arranged side by side at equal intervals of a distance D3/n (n is a natural number greater than or equal to 2), each second finger electrode portion 71 may be located at the center of adjacent first finger electrode portions 51, 51 in the horizontal direction X, and n first finger electrode portions 51 may be located between adjacent second finger electrode portions 71, 71.
 上記した実施形態では、太陽電池セル2は、各電極部21,22が縦方向Yに間隔を空けて並んでいたが、本発明はこれに限定されるものではない。太陽電池セル2は、各電極部21,22が横方向Xに並んでいてもよい。 In the above embodiment, the solar cell 2 has the electrodes 21, 22 arranged at intervals in the vertical direction Y, but the present invention is not limited to this. The solar cell 2 may have the electrodes 21, 22 arranged in the horizontal direction X.
 上記した実施形態では、太陽電池セル2が結晶型の太陽電池セルであってヘテロ接合型の太陽電池セルの場合について説明したが、本発明はこれに限定されるものではない。太陽電池セル2は他の種類の太陽電池セルであってもよい。例えば、PERC型の太陽電池セルであってもよい。 In the above embodiment, the solar cell 2 is a crystalline solar cell and a heterojunction solar cell, but the present invention is not limited to this. The solar cell 2 may be another type of solar cell. For example, it may be a PERC type solar cell.
 上記した実施形態では、光電変換基板20の両基板主面28,29に樹脂被覆部23,24が形成されていたが、本発明はこれに限定されるものではない。光電変換基板20の両基板主面28,29のうち一方の基板主面28(基板主面29)にのみ樹脂被覆部23(樹脂被覆部24)が被覆されていてもよい。 In the above embodiment, the resin coating portions 23, 24 are formed on both substrate main surfaces 28, 29 of the photoelectric conversion substrate 20, but the present invention is not limited to this. The resin coating portion 23 (resin coating portion 24) may be coated on only one substrate main surface 28 (substrate main surface 29) of the two substrate main surfaces 28, 29 of the photoelectric conversion substrate 20.
 上記した実施形態では、光電変換基板20の第1基板主面28側と第2基板主面29側の両方に樹脂被覆部23,24を形成したが、本発明はこれに限定されるものではない。光電変換基板20の一方の基板主面28(基板主面29)側のみに樹脂被覆部23(樹脂被覆部24)を形成してもよい。 In the above embodiment, the resin coating portions 23, 24 are formed on both the first substrate main surface 28 side and the second substrate main surface 29 side of the photoelectric conversion substrate 20, but the present invention is not limited to this. The resin coating portion 23 (resin coating portion 24) may be formed only on one substrate main surface 28 (substrate main surface 29) side of the photoelectric conversion substrate 20.
 上記した実施形態では、太陽電池セル2は、光電変換基板20を平面視したときに、第1電極部21の全体が第2樹脂被覆部24と重なっていたが、本発明はこれに限定されるものではない。第1電極部21は、大部分が第2樹脂被覆部24と重なり、残部が第2電極部22と重なっていてもよい。
 同様に、太陽電池セル2は、光電変換基板20を平面視したときに、第2電極部22の全体が第1樹脂被覆部23と重なっていたが、本発明はこれに限定されるものではない。第2電極部22は、大部分が第1樹脂被覆部23と重なり、残部が第1電極部21と重なっていてもよい。
In the above embodiment, when the photoelectric conversion substrate 20 is viewed in plan, the solar cell 2 has the first electrode portion 21 entirely overlapped with the second resin coating portion 24, but the present invention is not limited to this. The first electrode portion 21 may overlap most of the second resin coating portion 24, and the remaining portion may overlap with the second electrode portion 22.
Similarly, in the solar cell 2, when the photoelectric conversion substrate 20 is viewed in plan, the entire second electrode portion 22 overlaps with the first resin coating portion 23, but the present invention is not limited to this. The second electrode portion 22 may overlap with the first resin coating portion 23 for the most part, and overlap with the first electrode portion 21 for the remaining part.
 上記した実施形態では、重畳構造1は、バスバー電極部50,70とフィンガー電極部51,71の双方が樹脂被覆部24,23と接触していたが、本発明はこれに限定されるものではない。バスバー電極部50,70は、樹脂被覆部24,23と接触していなくてもよい。すなわち、バスバー電極部50,70と対応する位置に樹脂被覆部24,23が設けられていなくてもよく、バスバー電極部50,70同士が接触してもよい。また、下段の太陽電池セル2Bの第1フィンガー電極部51の先端部が上段の太陽電池セル2Cの第2バスバー電極部70と接触してもよい。 In the above embodiment, in the overlapping structure 1, both the busbar electrode portions 50, 70 and the finger electrode portions 51, 71 are in contact with the resin coating portions 24, 23, but the present invention is not limited to this. The busbar electrode portions 50, 70 do not have to be in contact with the resin coating portions 24, 23. In other words, the resin coating portions 24, 23 do not have to be provided at positions corresponding to the busbar electrode portions 50, 70, and the busbar electrode portions 50, 70 may be in contact with each other. In addition, the tip portion of the first finger electrode portion 51 of the lower solar cell 2B may be in contact with the second busbar electrode portion 70 of the upper solar cell 2C.
 上記した実施形態では、第1電極部21の厚みと第2電極部22の厚みとがほぼ同じであったが、本発明はこれに限定されるものではない。第1電極部21の厚みが第2電極部22の厚みより大きくてもよい。その場合、図11のような重畳構造において、中段の太陽電池セル2B(第1太陽電池セル)は、第1セル主面10の第1電極部21が上段の太陽電池セル2C(第2太陽電池セル)の第2セル主面11の第2樹脂被覆部24に接触して太陽電池セル2Cを支持している。また、中段の太陽電池セル2Bは、第2セル主面11の第2樹脂被覆部24に下段の太陽電池セル2Aの第1電極部21が接触して支持される。 In the above embodiment, the thickness of the first electrode portion 21 and the thickness of the second electrode portion 22 are approximately the same, but the present invention is not limited to this. The thickness of the first electrode portion 21 may be greater than the thickness of the second electrode portion 22. In that case, in the overlapping structure as shown in FIG. 11, the first electrode portion 21 of the first cell main surface 10 of the middle solar cell 2B (first solar cell) contacts the second resin coating portion 24 of the second cell main surface 11 of the upper solar cell 2C (second solar cell) to support the solar cell 2C. The middle solar cell 2B is also supported by the first electrode portion 21 of the lower solar cell 2A contacting the second resin coating portion 24 of the second cell main surface 11.
 上記した実施形態では、第1電極部21の厚みと第2電極部22の厚みとがほぼ同じであったが、本発明はこれに限定されるものではない。第2電極部22の厚みが第1電極部21の厚みより大きくてもよい。その場合、図11のような重畳構造において、中段の太陽電池セル2B(第1太陽電池セル)は、第2セル主面11の第2電極部22が下段の太陽電池セル2Aの第1セル主面10の第1樹脂被覆部23に接触して支持される。また、中段の太陽電池セル2Bは、第1セル主面10の第1樹脂被覆部23に上段の太陽電池セル2Cの第2電極部22が接触して支持している。 In the above embodiment, the thickness of the first electrode portion 21 and the thickness of the second electrode portion 22 are approximately the same, but the present invention is not limited to this. The thickness of the second electrode portion 22 may be greater than the thickness of the first electrode portion 21. In that case, in the overlapping structure as shown in FIG. 11, the middle solar cell 2B (first solar cell) is supported by the second electrode portion 22 of the second cell main surface 11 contacting the first resin coating portion 23 of the first cell main surface 10 of the lower solar cell 2A. The middle solar cell 2B is also supported by the second electrode portion 22 of the upper solar cell 2C contacting the first resin coating portion 23 of the first cell main surface 10.
 上記した実施形態では、レーザー光を照射することで分割溝125を形成したが、本発明はこれに限定されるものではない。ダイシングソー等の他の手法により分割溝125を形成してもよい。 In the above embodiment, the dividing groove 125 is formed by irradiating with laser light, but the present invention is not limited to this. The dividing groove 125 may be formed by other methods such as a dicing saw.
 上記した実施形態では、分割工程において、第1セル主面10側からレーザー光を照射して分割溝125を形成し、分割溝125に沿って折って複数の分割太陽電池セル101に分割したが、本発明はこれに限定されるものではない。分割工程において、図14(a)のように第2セル主面11側からレーザー光を照射して分割溝125を形成し、図14(b)のように分割溝125に沿って折って複数の分割太陽電池セル101に分割してもよい。
 また、分割工程においてレーザー光を照射して太陽電池セル2の厚み方向全体に至る分割溝125を形成して複数の分割太陽電池セル101に分割してもよい。すなわち、レーザー工程のみで複数の分割太陽電池セル101に分割してもよい。この場合、第1セル主面10側からレーザー光を照射してもよいし、第2セル主面11側からレーザー光を照射してもよい。この場合、光電変換基板20の端面の全部に保護樹脂層122が形成されることになる。
In the embodiment described above, in the dividing step, a laser beam is irradiated from the first cell main surface 10 side to form dividing grooves 125, and the solar cell is folded along the dividing grooves 125 to divide into a plurality of divided solar cell cells 101, but the present invention is not limited to this. In the dividing step, a laser beam may be irradiated from the second cell main surface 11 side to form dividing grooves 125 as shown in Fig. 14(a), and the solar cell may be folded along the dividing grooves 125 to divide into a plurality of divided solar cell cells 101 as shown in Fig. 14(b).
Furthermore, in the dividing step, laser light may be applied to form dividing grooves 125 that reach the entire thickness direction of the solar cell 2, thereby dividing the solar cell into a plurality of divided solar cell 101. That is, the solar cell may be divided into a plurality of divided solar cell 101 only by the laser step. In this case, the laser light may be applied from the first cell main surface 10 side, or from the second cell main surface 11 side. In this case, the protective resin layer 122 is formed on the entire end face of the photoelectric conversion substrate 20.
 上記した実施形態は、本発明の技術的範囲に含まれる限り、各実施形態間で各構成部材を自由に置換や付加できる。 The above embodiments can be freely substituted or added to each component as long as they fall within the technical scope of the present invention.
  2,2A~2C 太陽電池セル
 10 第1セル主面(第1主面)
 11 第2セル主面(第2主面)
 20 光電変換基板
 21 第1電極部
 22 第2電極部
 23 第1樹脂被覆部
 24 第2樹脂被覆部
 25 第1透明導電層
 26 光電変換部
 27 第2透明導電層
 28 第1基板主面
 29 第2基板主面
 51 第1フィンガー電極部
 71 第2フィンガー電極部
 82,83 第2テクスチャ構造
 84,85 第3テクスチャ構造
 86,87 凹凸領域
130 第1内縁領域
131 第2内縁領域
133 第1透明導電層非形成領域
134 第2透明導電層非形成領域
2, 2A to 2C Solar cell 10 First cell main surface (first main surface)
11 Second cell principal surface (second principal surface)
20 Photoelectric conversion substrate 21 First electrode portion 22 Second electrode portion 23 First resin coated portion 24 Second resin coated portion 25 First transparent conductive layer 26 Photoelectric conversion portion 27 Second transparent conductive layer 28 First substrate main surface 29 Second substrate main surface 51 First finger electrode portion 71 Second finger electrode portion 82, 83 Second texture structure 84, 85 Third texture structure 86, 87 Roughness region 130 First inner edge region 131 Second inner edge region 133 First transparent conductive layer non-formed region 134 Second transparent conductive layer non-formed region

Claims (10)

  1.  第1電極部と、前記第1電極部に隣接した樹脂被覆部を有し、
     前記第1電極部と前記樹脂被覆部は、第1主面の一部を構成しており、
     前記第1主面は、前記第1電極部と前記樹脂被覆部で構成された内縁領域を有し、
     前記内縁領域の縁は、外周縁から0.5mm以内の範囲に形成されている、太陽電池セル。
    A first electrode portion and a resin coating portion adjacent to the first electrode portion,
    the first electrode portion and the resin coating portion constitute a part of a first main surface,
    the first main surface has an inner edge region constituted by the first electrode portion and the resin coating portion,
    A solar cell, wherein the edge of the inner edge region is formed within a range of 0.5 mm from the outer edge.
  2.  前記第1電極部と前記樹脂被覆部は、連続的につながった樹脂部分を含む、請求項1に記載の太陽電池セル。 The solar cell according to claim 1, wherein the first electrode portion and the resin coating portion include a resin portion that is continuously connected.
  3.  前記内縁領域は、前記第1電極部の総面積よりも前記樹脂被覆部の総面積の方が大きい、請求項1又は2に記載の太陽電池セル。 The solar cell according to claim 1 or 2, wherein the total area of the resin-coated portion of the inner edge region is greater than the total area of the first electrode portion.
  4.  前記第1電極部は、少なくとも2つのフィンガー電極部を有し、
     前記2つのフィンガー電極部は、実質的に平行に延び、延び方向に対する交差方向に間隔を空けて並設されており、
     前記内縁領域は、前記2つのフィンガー電極部の間が前記樹脂被覆部で構成されている、請求項1又は2に記載の太陽電池セル。
    The first electrode portion has at least two finger electrode portions,
    The two finger electrode portions extend substantially parallel to each other and are arranged side by side at an interval in a direction intersecting the extending direction,
    The solar cell according to claim 1 , wherein the inner edge region is formed of the resin coating portion between the two finger electrode portions.
  5.  光電変換基板の第1基板主面上に前記第1電極部と前記樹脂被覆部が形成されており、
     前記光電変換基板は、前記第1基板主面にテクスチャ構造が形成されており、
     前記樹脂被覆部は、前記テクスチャ構造の凹凸よりも小さな凹凸が形成された凹凸領域を備えている、請求項1又は2に記載の太陽電池セル。
    the first electrode portion and the resin coating portion are formed on a first substrate main surface of a photoelectric conversion substrate,
    the photoelectric conversion substrate has a textured structure formed on the first substrate main surface,
    The solar cell according to claim 1 , wherein the resin-coated portion has an uneven region in which unevenness is smaller than unevenness of the textured structure.
  6.  前記樹脂被覆部は、前記テクスチャ構造の凹凸を覆うことで、前記凹凸領域が形成されている、請求項5に記載の太陽電池セル。 The solar cell according to claim 5, wherein the resin coating portion covers the unevenness of the textured structure to form the uneven area.
  7.  光電変換基板の第1基板主面上に前記第1電極部と前記樹脂被覆部が形成されており、
     前記光電変換基板は、pn接合部を有し、
     前記pn接合部は、前記光電変換基板の厚み方向の中央よりも第1主面側に形成されている、請求項1又は2に記載の太陽電池セル。
    the first electrode portion and the resin coating portion are formed on a first substrate main surface of a photoelectric conversion substrate,
    the photoelectric conversion substrate has a pn junction,
    The solar cell according to claim 1 , wherein the pn junction is formed closer to the first main surface than a center in a thickness direction of the photoelectric conversion substrate.
  8.  平面視したときに、前記内縁領域と重なる位置に透明導電層が配されており、
     前記第1電極部及び前記樹脂被覆部は、前記透明導電層を覆っている、請求項1又は2に記載の太陽電池セル。
    a transparent conductive layer is disposed at a position overlapping with the inner edge region in a plan view;
    The solar cell according to claim 1 , wherein the first electrode portion and the resin coating portion cover the transparent conductive layer.
  9.  前記第1電極部は、透明導電層上に積層されており、
     前記第1主面は、透明導電層が形成されていない透明導電層非形成領域があり、
     前記樹脂被覆部は、透明導電層の外周に沿って前記透明導電層を被覆し、前記透明導電層から前記透明導電層非形成領域に至っている、請求項8に記載の太陽電池セル。
    the first electrode unit is laminated on a transparent conductive layer,
    the first main surface has a transparent conductive layer-free region where no transparent conductive layer is formed,
    The solar cell according to claim 8 , wherein the resin coating portion coats the transparent conductive layer along an outer periphery of the transparent conductive layer and extends from the transparent conductive layer to the region where the transparent conductive layer is not formed.
  10.  光電変換部と透明導電層を有した光電変換基板と、前記透明導電層上に形成された第1電極部と、前記第1電極部と隣接する樹脂被覆部を有し、
     前記光電変換部は、平面視したときに、外周縁に前記透明導電層からの露出部分があり、
     前記樹脂被覆部は、前記透明導電層の外周に沿って前記透明導電層を被覆し、前記透明導電層から前記光電変換部の前記露出部分に跨って設けられている、太陽電池セル。
    A photoelectric conversion substrate having a photoelectric conversion unit and a transparent conductive layer, a first electrode unit formed on the transparent conductive layer, and a resin coating unit adjacent to the first electrode unit,
    the photoelectric conversion unit has an exposed portion at an outer periphery thereof which is not exposed from the transparent conductive layer when viewed in a plan view,
    The resin coating portion coats the transparent conductive layer along an outer periphery of the transparent conductive layer and is provided across from the transparent conductive layer to the exposed portion of the photoelectric conversion portion.
PCT/JP2023/042149 2023-01-26 2023-11-24 Solar battery cell WO2024157590A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2023010067 2023-01-26
JP2023-010067 2023-01-26

Publications (1)

Publication Number Publication Date
WO2024157590A1 true WO2024157590A1 (en) 2024-08-02

Family

ID=91970282

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/042149 WO2024157590A1 (en) 2023-01-26 2023-11-24 Solar battery cell

Country Status (1)

Country Link
WO (1) WO2024157590A1 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4542255A (en) * 1984-01-03 1985-09-17 Atlantic Richfield Company Gridded thin film solar cell
JP2008034592A (en) * 2006-07-28 2008-02-14 Sanyo Electric Co Ltd Photoelectromotive-force element and method of manufacturing the same
WO2012105155A1 (en) * 2011-01-31 2012-08-09 三洋電機株式会社 Photoelectric converter and method for producing same
WO2014034006A1 (en) * 2012-09-03 2014-03-06 三菱電機株式会社 Solar cell element and solar cell module
WO2015045263A1 (en) * 2013-09-26 2015-04-02 パナソニックIpマネジメント株式会社 Solar cell and solar cell module
JP2015198142A (en) * 2014-03-31 2015-11-09 株式会社カネカ Crystal silicon solar battery, manufacturing method for the same and solar battery module
JP2020155684A (en) * 2019-03-22 2020-09-24 株式会社カネカ Manufacturing method of solar cell string, solar cell module, and solar cell

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4542255A (en) * 1984-01-03 1985-09-17 Atlantic Richfield Company Gridded thin film solar cell
JP2008034592A (en) * 2006-07-28 2008-02-14 Sanyo Electric Co Ltd Photoelectromotive-force element and method of manufacturing the same
WO2012105155A1 (en) * 2011-01-31 2012-08-09 三洋電機株式会社 Photoelectric converter and method for producing same
WO2014034006A1 (en) * 2012-09-03 2014-03-06 三菱電機株式会社 Solar cell element and solar cell module
WO2015045263A1 (en) * 2013-09-26 2015-04-02 パナソニックIpマネジメント株式会社 Solar cell and solar cell module
JP2015198142A (en) * 2014-03-31 2015-11-09 株式会社カネカ Crystal silicon solar battery, manufacturing method for the same and solar battery module
JP2020155684A (en) * 2019-03-22 2020-09-24 株式会社カネカ Manufacturing method of solar cell string, solar cell module, and solar cell

Similar Documents

Publication Publication Date Title
US11316057B2 (en) Shingled solar cells overlapping along non-linear edges
EP3067939B1 (en) Solar cell module
JP5470248B2 (en) Solar cell manufacturing method and solar cell
JP5458485B2 (en) Method for manufacturing solar cell and method for manufacturing solar cell module
JP5377520B2 (en) Photoelectric conversion cell, photoelectric conversion module, and method for manufacturing photoelectric conversion cell
JP2012119343A (en) Solar battery manufacturing method, solar battery manufacturing apparatus, and solar battery
CN111755562B (en) Method for manufacturing solar cell and solar cell for dicing
JP2019522353A (en) Solar cells stacked in a roof plate shape that overlap along non-linear edges
CN113745365A (en) Thin-film solar cell structure and preparation method thereof
US9048359B2 (en) Solar cell module and manufacturing method thereof
WO2024157590A1 (en) Solar battery cell
WO2024157591A1 (en) Method for manufacturing divided solar cell, and divided solar cell
JP2024106022A (en) Solar cell, manufacturing method of solar cell, and stacked structure of solar cell
JPH0419713B2 (en)
US20210408312A1 (en) Photovoltaic module, solar cell and method for manufacturing thereof
US20200382054A1 (en) Shingled solar cell with low finger pitch
JP2024070097A (en) Solar cell, stacked structure of solar cell, and method for manufacturing solar cell
JP2009212396A (en) Solar-battery module and production method thereof
WO2017170214A1 (en) Solar battery module
TWI774397B (en) Thin film photovoltaic structure
JP7481177B2 (en) Solar Cell Module
JP6971749B2 (en) Manufacturing method of solar cell module and solar cell module
US9437767B2 (en) Multiple solar cell and method for manufacturing the same
WO2018051659A1 (en) Solar cell module and solar cell
JP2013149848A (en) Solar cell module and manufacturing method of the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23918545

Country of ref document: EP

Kind code of ref document: A1