WO2024138749A1 - 电极、二次电池和电子设备 - Google Patents
电极、二次电池和电子设备 Download PDFInfo
- Publication number
- WO2024138749A1 WO2024138749A1 PCT/CN2022/144359 CN2022144359W WO2024138749A1 WO 2024138749 A1 WO2024138749 A1 WO 2024138749A1 CN 2022144359 W CN2022144359 W CN 2022144359W WO 2024138749 A1 WO2024138749 A1 WO 2024138749A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- carbon nanotube
- active material
- electrode
- electrode active
- binder
- Prior art date
Links
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims abstract description 298
- 239000007772 electrode material Substances 0.000 claims abstract description 166
- 239000002041 carbon nanotube Substances 0.000 claims abstract description 142
- 229910021393 carbon nanotube Inorganic materials 0.000 claims abstract description 142
- 239000006258 conductive agent Substances 0.000 claims abstract description 93
- 239000011230 binding agent Substances 0.000 claims description 111
- 239000003792 electrolyte Substances 0.000 claims description 37
- 229910021389 graphene Inorganic materials 0.000 claims description 29
- 238000005056 compaction Methods 0.000 claims description 25
- 239000006229 carbon black Substances 0.000 claims description 24
- 239000002048 multi walled nanotube Substances 0.000 claims description 17
- 238000002844 melting Methods 0.000 claims description 10
- 230000008018 melting Effects 0.000 claims description 10
- 238000005979 thermal decomposition reaction Methods 0.000 claims description 10
- 230000000694 effects Effects 0.000 abstract description 38
- 230000010287 polarization Effects 0.000 abstract description 8
- 239000010410 layer Substances 0.000 description 86
- 238000002360 preparation method Methods 0.000 description 39
- 239000006185 dispersion Substances 0.000 description 36
- 239000002994 raw material Substances 0.000 description 35
- 239000011259 mixed solution Substances 0.000 description 29
- 229910001416 lithium ion Inorganic materials 0.000 description 26
- 238000000034 method Methods 0.000 description 26
- HBBGRARXTFLTSG-UHFFFAOYSA-N Lithium ion Chemical compound [Li+] HBBGRARXTFLTSG-UHFFFAOYSA-N 0.000 description 25
- 239000007774 positive electrode material Substances 0.000 description 24
- 239000002002 slurry Substances 0.000 description 22
- 239000011572 manganese Substances 0.000 description 20
- 239000002245 particle Substances 0.000 description 19
- 238000000498 ball milling Methods 0.000 description 18
- 239000002270 dispersing agent Substances 0.000 description 17
- 150000002500 ions Chemical class 0.000 description 17
- -1 polypropylene Polymers 0.000 description 16
- 239000004576 sand Substances 0.000 description 14
- SECXISVLQFMRJM-UHFFFAOYSA-N N-Methylpyrrolidone Chemical compound CN1CCCC1=O SECXISVLQFMRJM-UHFFFAOYSA-N 0.000 description 13
- 239000000654 additive Substances 0.000 description 13
- 239000002612 dispersion medium Substances 0.000 description 13
- XEKOWRVHYACXOJ-UHFFFAOYSA-N Ethyl acetate Chemical compound CCOC(C)=O XEKOWRVHYACXOJ-UHFFFAOYSA-N 0.000 description 12
- ZMXDDKWLCZADIW-UHFFFAOYSA-N N,N-Dimethylformamide Chemical compound CN(C)C=O ZMXDDKWLCZADIW-UHFFFAOYSA-N 0.000 description 12
- 230000008569 process Effects 0.000 description 12
- 238000009826 distribution Methods 0.000 description 11
- 238000002955 isolation Methods 0.000 description 11
- 239000012528 membrane Substances 0.000 description 11
- KFZMGEQAYNKOFK-UHFFFAOYSA-N Isopropanol Chemical compound CC(C)O KFZMGEQAYNKOFK-UHFFFAOYSA-N 0.000 description 10
- 239000002033 PVDF binder Substances 0.000 description 10
- 238000007600 charging Methods 0.000 description 10
- 239000002131 composite material Substances 0.000 description 10
- 229910000625 lithium cobalt oxide Inorganic materials 0.000 description 10
- BFZPBUKRYWOWDV-UHFFFAOYSA-N lithium;oxido(oxo)cobalt Chemical compound [Li+].[O-][Co]=O BFZPBUKRYWOWDV-UHFFFAOYSA-N 0.000 description 10
- 238000003801 milling Methods 0.000 description 10
- 229920002981 polyvinylidene fluoride Polymers 0.000 description 10
- 239000002109 single walled nanotube Substances 0.000 description 10
- 239000000243 solution Substances 0.000 description 10
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 description 9
- 230000000052 comparative effect Effects 0.000 description 9
- 229910052744 lithium Inorganic materials 0.000 description 9
- 239000003960 organic solvent Substances 0.000 description 9
- ZXEKIIBDNHEJCQ-UHFFFAOYSA-N isobutanol Chemical compound CC(C)CO ZXEKIIBDNHEJCQ-UHFFFAOYSA-N 0.000 description 8
- 239000000203 mixture Substances 0.000 description 8
- 239000007787 solid Substances 0.000 description 8
- 239000004698 Polyethylene Substances 0.000 description 7
- 230000015572 biosynthetic process Effects 0.000 description 7
- 229920000573 polyethylene Polymers 0.000 description 7
- ZWEHNKRNPOVVGH-UHFFFAOYSA-N 2-Butanone Chemical compound CCC(C)=O ZWEHNKRNPOVVGH-UHFFFAOYSA-N 0.000 description 6
- YEJRWHAVMIAJKC-UHFFFAOYSA-N 4-Butyrolactone Chemical compound O=C1CCCO1 YEJRWHAVMIAJKC-UHFFFAOYSA-N 0.000 description 6
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 description 6
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 6
- LYCAIKOWRPUZTN-UHFFFAOYSA-N Ethylene glycol Chemical compound OCCO LYCAIKOWRPUZTN-UHFFFAOYSA-N 0.000 description 6
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 6
- 239000004743 Polypropylene Substances 0.000 description 6
- DNIAPMSPPWPWGF-UHFFFAOYSA-N Propylene glycol Chemical compound CC(O)CO DNIAPMSPPWPWGF-UHFFFAOYSA-N 0.000 description 6
- 239000011248 coating agent Substances 0.000 description 6
- 238000000576 coating method Methods 0.000 description 6
- 230000001276 controlling effect Effects 0.000 description 6
- MTHSVFCYNBDYFN-UHFFFAOYSA-N diethylene glycol Chemical compound OCCOCCO MTHSVFCYNBDYFN-UHFFFAOYSA-N 0.000 description 6
- 239000007773 negative electrode material Substances 0.000 description 6
- 229920001155 polypropylene Polymers 0.000 description 6
- BDERNNFJNOPAEC-UHFFFAOYSA-N propan-1-ol Chemical compound CCCO BDERNNFJNOPAEC-UHFFFAOYSA-N 0.000 description 6
- 150000003839 salts Chemical class 0.000 description 6
- 239000000758 substrate Substances 0.000 description 6
- PEDCQBHIVMGVHV-UHFFFAOYSA-N Glycerine Chemical compound OCC(O)CO PEDCQBHIVMGVHV-UHFFFAOYSA-N 0.000 description 5
- 238000001035 drying Methods 0.000 description 5
- 239000011888 foil Substances 0.000 description 5
- 239000002904 solvent Substances 0.000 description 5
- PUPZLCDOIYMWBV-UHFFFAOYSA-N (+/-)-1,3-Butanediol Chemical compound CC(O)CCO PUPZLCDOIYMWBV-UHFFFAOYSA-N 0.000 description 4
- KBPLFHHGFOOTCA-UHFFFAOYSA-N 1-Octanol Chemical compound CCCCCCCCO KBPLFHHGFOOTCA-UHFFFAOYSA-N 0.000 description 4
- BBMCTIGTTCKYKF-UHFFFAOYSA-N 1-heptanol Chemical compound CCCCCCCO BBMCTIGTTCKYKF-UHFFFAOYSA-N 0.000 description 4
- SVTBMSDMJJWYQN-UHFFFAOYSA-N 2-methylpentane-2,4-diol Chemical compound CC(O)CC(C)(C)O SVTBMSDMJJWYQN-UHFFFAOYSA-N 0.000 description 4
- SBLRHMKNNHXPHG-UHFFFAOYSA-N 4-fluoro-1,3-dioxolan-2-one Chemical compound FC1COC(=O)O1 SBLRHMKNNHXPHG-UHFFFAOYSA-N 0.000 description 4
- FXHOOIRPVKKKFG-UHFFFAOYSA-N N,N-Dimethylacetamide Chemical compound CN(C)C(C)=O FXHOOIRPVKKKFG-UHFFFAOYSA-N 0.000 description 4
- AMQJEAYHLZJPGS-UHFFFAOYSA-N N-Pentanol Chemical compound CCCCCO AMQJEAYHLZJPGS-UHFFFAOYSA-N 0.000 description 4
- 229920000459 Nitrile rubber Polymers 0.000 description 4
- 230000000996 additive effect Effects 0.000 description 4
- 229910052782 aluminium Inorganic materials 0.000 description 4
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical group [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 4
- 239000011324 bead Substances 0.000 description 4
- 230000005540 biological transmission Effects 0.000 description 4
- 239000003575 carbonaceous material Substances 0.000 description 4
- 239000001768 carboxy methyl cellulose Substances 0.000 description 4
- 150000001875 compounds Chemical class 0.000 description 4
- BGTOWKSIORTVQH-UHFFFAOYSA-N cyclopentanone Chemical compound O=C1CCCC1 BGTOWKSIORTVQH-UHFFFAOYSA-N 0.000 description 4
- FKRCODPIKNYEAC-UHFFFAOYSA-N ethyl propionate Chemical compound CCOC(=O)CC FKRCODPIKNYEAC-UHFFFAOYSA-N 0.000 description 4
- 238000005227 gel permeation chromatography Methods 0.000 description 4
- ZSIAUFGUXNUGDI-UHFFFAOYSA-N hexan-1-ol Chemical compound CCCCCCO ZSIAUFGUXNUGDI-UHFFFAOYSA-N 0.000 description 4
- 229910003002 lithium salt Inorganic materials 0.000 description 4
- 159000000002 lithium salts Chemical class 0.000 description 4
- 238000004519 manufacturing process Methods 0.000 description 4
- 239000000463 material Substances 0.000 description 4
- 239000002609 medium Substances 0.000 description 4
- 150000002736 metal compounds Chemical class 0.000 description 4
- TZIHFWKZFHZASV-UHFFFAOYSA-N methyl formate Chemical compound COC=O TZIHFWKZFHZASV-UHFFFAOYSA-N 0.000 description 4
- 238000002156 mixing Methods 0.000 description 4
- 230000004048 modification Effects 0.000 description 4
- 238000012986 modification Methods 0.000 description 4
- XNLICIUVMPYHGG-UHFFFAOYSA-N pentan-2-one Chemical compound CCCC(C)=O XNLICIUVMPYHGG-UHFFFAOYSA-N 0.000 description 4
- 238000011056 performance test Methods 0.000 description 4
- 238000003825 pressing Methods 0.000 description 4
- 238000012545 processing Methods 0.000 description 4
- YPFDHNVEDLHUCE-UHFFFAOYSA-N propane-1,3-diol Chemical compound OCCCO YPFDHNVEDLHUCE-UHFFFAOYSA-N 0.000 description 4
- 150000003384 small molecules Chemical class 0.000 description 4
- 238000012360 testing method Methods 0.000 description 4
- VAYTZRYEBVHVLE-UHFFFAOYSA-N 1,3-dioxol-2-one Chemical compound O=C1OC=CO1 VAYTZRYEBVHVLE-UHFFFAOYSA-N 0.000 description 3
- 229920002134 Carboxymethyl cellulose Polymers 0.000 description 3
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 3
- 229910019142 PO4 Inorganic materials 0.000 description 3
- 239000011149 active material Substances 0.000 description 3
- 229910052799 carbon Inorganic materials 0.000 description 3
- 235000010948 carboxy methyl cellulose Nutrition 0.000 description 3
- 239000008112 carboxymethyl-cellulose Substances 0.000 description 3
- 230000008859 change Effects 0.000 description 3
- 238000010277 constant-current charging Methods 0.000 description 3
- 229910002804 graphite Inorganic materials 0.000 description 3
- 239000010439 graphite Substances 0.000 description 3
- 229910052751 metal Inorganic materials 0.000 description 3
- 239000002184 metal Substances 0.000 description 3
- 229910044991 metal oxide Inorganic materials 0.000 description 3
- 150000004706 metal oxides Chemical class 0.000 description 3
- 238000001000 micrograph Methods 0.000 description 3
- 235000021317 phosphate Nutrition 0.000 description 3
- 239000002861 polymer material Substances 0.000 description 3
- 238000005096 rolling process Methods 0.000 description 3
- 238000001132 ultrasonic dispersion Methods 0.000 description 3
- 238000004804 winding Methods 0.000 description 3
- ZZXUZKXVROWEIF-UHFFFAOYSA-N 1,2-butylene carbonate Chemical compound CCC1COC(=O)O1 ZZXUZKXVROWEIF-UHFFFAOYSA-N 0.000 description 2
- 229940058015 1,3-butylene glycol Drugs 0.000 description 2
- HNAGHMKIPMKKBB-UHFFFAOYSA-N 1-benzylpyrrolidine-3-carboxamide Chemical compound C1C(C(=O)N)CCN1CC1=CC=CC=C1 HNAGHMKIPMKKBB-UHFFFAOYSA-N 0.000 description 2
- SBASXUCJHJRPEV-UHFFFAOYSA-N 2-(2-methoxyethoxy)ethanol Chemical compound COCCOCCO SBASXUCJHJRPEV-UHFFFAOYSA-N 0.000 description 2
- XNWFRZJHXBZDAG-UHFFFAOYSA-N 2-METHOXYETHANOL Chemical compound COCCO XNWFRZJHXBZDAG-UHFFFAOYSA-N 0.000 description 2
- COBPKKZHLDDMTB-UHFFFAOYSA-N 2-[2-(2-butoxyethoxy)ethoxy]ethanol Chemical compound CCCCOCCOCCOCCO COBPKKZHLDDMTB-UHFFFAOYSA-N 0.000 description 2
- WFSMVVDJSNMRAR-UHFFFAOYSA-N 2-[2-(2-ethoxyethoxy)ethoxy]ethanol Chemical compound CCOCCOCCOCCO WFSMVVDJSNMRAR-UHFFFAOYSA-N 0.000 description 2
- MXVMODFDROLTFD-UHFFFAOYSA-N 2-[2-[2-(2-butoxyethoxy)ethoxy]ethoxy]ethanol Chemical compound CCCCOCCOCCOCCOCCO MXVMODFDROLTFD-UHFFFAOYSA-N 0.000 description 2
- GTAKOUPXIUWZIA-UHFFFAOYSA-N 2-[2-[2-(2-ethoxyethoxy)ethoxy]ethoxy]ethanol Chemical compound CCOCCOCCOCCOCCO GTAKOUPXIUWZIA-UHFFFAOYSA-N 0.000 description 2
- POAOYUHQDCAZBD-UHFFFAOYSA-N 2-butoxyethanol Chemical compound CCCCOCCO POAOYUHQDCAZBD-UHFFFAOYSA-N 0.000 description 2
- ZNQVEEAIQZEUHB-UHFFFAOYSA-N 2-ethoxyethanol Chemical compound CCOCCO ZNQVEEAIQZEUHB-UHFFFAOYSA-N 0.000 description 2
- RGSFGYAAUTVSQA-UHFFFAOYSA-N Cyclopentane Chemical compound C1CCCC1 RGSFGYAAUTVSQA-UHFFFAOYSA-N 0.000 description 2
- FBPFZTCFMRRESA-FSIIMWSLSA-N D-Glucitol Natural products OC[C@H](O)[C@H](O)[C@@H](O)[C@H](O)CO FBPFZTCFMRRESA-FSIIMWSLSA-N 0.000 description 2
- FBPFZTCFMRRESA-JGWLITMVSA-N D-glucitol Chemical compound OC[C@H](O)[C@@H](O)[C@H](O)[C@H](O)CO FBPFZTCFMRRESA-JGWLITMVSA-N 0.000 description 2
- OIFBSDVPJOWBCH-UHFFFAOYSA-N Diethyl carbonate Chemical compound CCOC(=O)OCC OIFBSDVPJOWBCH-UHFFFAOYSA-N 0.000 description 2
- KMTRUDSVKNLOMY-UHFFFAOYSA-N Ethylene carbonate Chemical compound O=C1OCCO1 KMTRUDSVKNLOMY-UHFFFAOYSA-N 0.000 description 2
- JGFBQFKZKSSODQ-UHFFFAOYSA-N Isothiocyanatocyclopropane Chemical compound S=C=NC1CC1 JGFBQFKZKSSODQ-UHFFFAOYSA-N 0.000 description 2
- RJUFJBKOKNCXHH-UHFFFAOYSA-N Methyl propionate Chemical compound CCC(=O)OC RJUFJBKOKNCXHH-UHFFFAOYSA-N 0.000 description 2
- SUAKHGWARZSWIH-UHFFFAOYSA-N N,N‐diethylformamide Chemical compound CCN(CC)C=O SUAKHGWARZSWIH-UHFFFAOYSA-N 0.000 description 2
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 2
- ALQSHHUCVQOPAS-UHFFFAOYSA-N Pentane-1,5-diol Chemical compound OCCCCCO ALQSHHUCVQOPAS-UHFFFAOYSA-N 0.000 description 2
- 239000004793 Polystyrene Substances 0.000 description 2
- XBDQKXXYIPTUBI-UHFFFAOYSA-M Propionate Chemical compound CCC([O-])=O XBDQKXXYIPTUBI-UHFFFAOYSA-M 0.000 description 2
- FKNQFGJONOIPTF-UHFFFAOYSA-N Sodium cation Chemical compound [Na+] FKNQFGJONOIPTF-UHFFFAOYSA-N 0.000 description 2
- ZJCCRDAZUWHFQH-UHFFFAOYSA-N Trimethylolpropane Chemical compound CCC(CO)(CO)CO ZJCCRDAZUWHFQH-UHFFFAOYSA-N 0.000 description 2
- KXKVLQRXCPHEJC-UHFFFAOYSA-N acetic acid trimethyl ester Natural products COC(C)=O KXKVLQRXCPHEJC-UHFFFAOYSA-N 0.000 description 2
- 230000002411 adverse Effects 0.000 description 2
- 238000005054 agglomeration Methods 0.000 description 2
- 230000002776 aggregation Effects 0.000 description 2
- 229910021383 artificial graphite Inorganic materials 0.000 description 2
- 230000009286 beneficial effect Effects 0.000 description 2
- MZNDIOURMFYZLE-UHFFFAOYSA-N butan-1-ol Chemical compound CCCCO.CCCCO MZNDIOURMFYZLE-UHFFFAOYSA-N 0.000 description 2
- GKMQWTVAAMITHR-UHFFFAOYSA-N butan-2-ol Chemical compound CCC(C)O.CCC(C)O GKMQWTVAAMITHR-UHFFFAOYSA-N 0.000 description 2
- FBSCWAJILZTGOJ-UHFFFAOYSA-N butan-2-ol;2-methylpropan-2-ol Chemical compound CCC(C)O.CC(C)(C)O FBSCWAJILZTGOJ-UHFFFAOYSA-N 0.000 description 2
- 235000019437 butane-1,3-diol Nutrition 0.000 description 2
- OBNCKNCVKJNDBV-UHFFFAOYSA-N butanoic acid ethyl ester Natural products CCCC(=O)OCC OBNCKNCVKJNDBV-UHFFFAOYSA-N 0.000 description 2
- PWLNAUNEAKQYLH-UHFFFAOYSA-N butyric acid octyl ester Natural products CCCCCCCCOC(=O)CCC PWLNAUNEAKQYLH-UHFFFAOYSA-N 0.000 description 2
- 238000005524 ceramic coating Methods 0.000 description 2
- 238000010280 constant potential charging Methods 0.000 description 2
- 239000011889 copper foil Substances 0.000 description 2
- 230000006866 deterioration Effects 0.000 description 2
- 229940028356 diethylene glycol monobutyl ether Drugs 0.000 description 2
- XXJWXESWEXIICW-UHFFFAOYSA-N diethylene glycol monoethyl ether Chemical compound CCOCCOCCO XXJWXESWEXIICW-UHFFFAOYSA-N 0.000 description 2
- 229940075557 diethylene glycol monoethyl ether Drugs 0.000 description 2
- VUPKGFBOKBGHFZ-UHFFFAOYSA-N dipropyl carbonate Chemical compound CCCOC(=O)OCCC VUPKGFBOKBGHFZ-UHFFFAOYSA-N 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- TUEYHEWXYWCDHA-UHFFFAOYSA-N ethyl 5-methylthiadiazole-4-carboxylate Chemical compound CCOC(=O)C=1N=NSC=1C TUEYHEWXYWCDHA-UHFFFAOYSA-N 0.000 description 2
- JBTWLSYIZRCDFO-UHFFFAOYSA-N ethyl methyl carbonate Chemical compound CCOC(=O)OC JBTWLSYIZRCDFO-UHFFFAOYSA-N 0.000 description 2
- CYEDOLFRAIXARV-UHFFFAOYSA-N ethyl propyl carbonate Chemical compound CCCOC(=O)OCC CYEDOLFRAIXARV-UHFFFAOYSA-N 0.000 description 2
- 235000011187 glycerol Nutrition 0.000 description 2
- 150000002334 glycols Chemical class 0.000 description 2
- 229940051250 hexylene glycol Drugs 0.000 description 2
- 150000003949 imides Chemical class 0.000 description 2
- 230000006872 improvement Effects 0.000 description 2
- 238000007561 laser diffraction method Methods 0.000 description 2
- GELKBWJHTRAYNV-UHFFFAOYSA-K lithium iron phosphate Chemical compound [Li+].[Fe+2].[O-]P([O-])([O-])=O GELKBWJHTRAYNV-UHFFFAOYSA-K 0.000 description 2
- 229910021437 lithium-transition metal oxide Inorganic materials 0.000 description 2
- DVATZODUVBMYHN-UHFFFAOYSA-K lithium;iron(2+);manganese(2+);phosphate Chemical compound [Li+].[Mn+2].[Fe+2].[O-]P([O-])([O-])=O DVATZODUVBMYHN-UHFFFAOYSA-K 0.000 description 2
- ILXAVRFGLBYNEJ-UHFFFAOYSA-K lithium;manganese(2+);phosphate Chemical compound [Li+].[Mn+2].[O-]P([O-])([O-])=O ILXAVRFGLBYNEJ-UHFFFAOYSA-K 0.000 description 2
- MCVFFRWZNYZUIJ-UHFFFAOYSA-M lithium;trifluoromethanesulfonate Chemical compound [Li+].[O-]S(=O)(=O)C(F)(F)F MCVFFRWZNYZUIJ-UHFFFAOYSA-M 0.000 description 2
- 239000011777 magnesium Substances 0.000 description 2
- 230000014759 maintenance of location Effects 0.000 description 2
- 229940017219 methyl propionate Drugs 0.000 description 2
- KKQAVHGECIBFRQ-UHFFFAOYSA-N methyl propyl carbonate Chemical compound CCCOC(=O)OC KKQAVHGECIBFRQ-UHFFFAOYSA-N 0.000 description 2
- YKYONYBAUNKHLG-UHFFFAOYSA-N n-Propyl acetate Natural products CCCOC(C)=O YKYONYBAUNKHLG-UHFFFAOYSA-N 0.000 description 2
- UUIQMZJEGPQKFD-UHFFFAOYSA-N n-butyric acid methyl ester Natural products CCCC(=O)OC UUIQMZJEGPQKFD-UHFFFAOYSA-N 0.000 description 2
- 239000010450 olivine Substances 0.000 description 2
- 229910052609 olivine Inorganic materials 0.000 description 2
- JCGNDDUYTRNOFT-UHFFFAOYSA-N oxolane-2,4-dione Chemical compound O=C1COC(=O)C1 JCGNDDUYTRNOFT-UHFFFAOYSA-N 0.000 description 2
- WXZMFSXDPGVJKK-UHFFFAOYSA-N pentaerythritol Chemical compound OCC(CO)(CO)CO WXZMFSXDPGVJKK-UHFFFAOYSA-N 0.000 description 2
- NBIIXXVUZAFLBC-UHFFFAOYSA-K phosphate Chemical compound [O-]P([O-])([O-])=O NBIIXXVUZAFLBC-UHFFFAOYSA-K 0.000 description 2
- 239000010452 phosphate Substances 0.000 description 2
- 229920001707 polybutylene terephthalate Polymers 0.000 description 2
- 229920000139 polyethylene terephthalate Polymers 0.000 description 2
- 239000005020 polyethylene terephthalate Substances 0.000 description 2
- 239000000843 powder Substances 0.000 description 2
- 229960000380 propiolactone Drugs 0.000 description 2
- 229940090181 propyl acetate Drugs 0.000 description 2
- RUOJZAUFBMNUDX-UHFFFAOYSA-N propylene carbonate Chemical compound CC1COC(=O)O1 RUOJZAUFBMNUDX-UHFFFAOYSA-N 0.000 description 2
- 239000002356 single layer Substances 0.000 description 2
- 229910001415 sodium ion Inorganic materials 0.000 description 2
- 159000000000 sodium salts Chemical class 0.000 description 2
- 239000000600 sorbitol Substances 0.000 description 2
- 229920003048 styrene butadiene rubber Polymers 0.000 description 2
- IAHFWCOBPZCAEA-UHFFFAOYSA-N succinonitrile Chemical compound N#CCCC#N IAHFWCOBPZCAEA-UHFFFAOYSA-N 0.000 description 2
- HHVIBTZHLRERCL-UHFFFAOYSA-N sulfonyldimethane Chemical compound CS(C)(=O)=O HHVIBTZHLRERCL-UHFFFAOYSA-N 0.000 description 2
- 238000010998 test method Methods 0.000 description 2
- ZIBGPFATKBEMQZ-UHFFFAOYSA-N triethylene glycol Chemical compound OCCOCCOCCO ZIBGPFATKBEMQZ-UHFFFAOYSA-N 0.000 description 2
- JLGLQAWTXXGVEM-UHFFFAOYSA-N triethylene glycol monomethyl ether Chemical compound COCCOCCOCCO JLGLQAWTXXGVEM-UHFFFAOYSA-N 0.000 description 2
- NQPDZGIKBAWPEJ-UHFFFAOYSA-N valeric acid Chemical compound CCCCC(O)=O NQPDZGIKBAWPEJ-UHFFFAOYSA-N 0.000 description 2
- FSSPGSAQUIYDCN-UHFFFAOYSA-N 1,3-Propane sultone Chemical compound O=S1(=O)CCCO1 FSSPGSAQUIYDCN-UHFFFAOYSA-N 0.000 description 1
- MBDUIEKYVPVZJH-UHFFFAOYSA-N 1-ethylsulfonylethane Chemical compound CCS(=O)(=O)CC MBDUIEKYVPVZJH-UHFFFAOYSA-N 0.000 description 1
- YBJCDTIWNDBNTM-UHFFFAOYSA-N 1-methylsulfonylethane Chemical compound CCS(C)(=O)=O YBJCDTIWNDBNTM-UHFFFAOYSA-N 0.000 description 1
- UHOPWFKONJYLCF-UHFFFAOYSA-N 2-(2-sulfanylethyl)isoindole-1,3-dione Chemical compound C1=CC=C2C(=O)N(CCS)C(=O)C2=C1 UHOPWFKONJYLCF-UHFFFAOYSA-N 0.000 description 1
- FALRKNHUBBKYCC-UHFFFAOYSA-N 2-(chloromethyl)pyridine-3-carbonitrile Chemical compound ClCC1=NC=CC=C1C#N FALRKNHUBBKYCC-UHFFFAOYSA-N 0.000 description 1
- OQXNUCOGMMHHNA-UHFFFAOYSA-N 4-methyl-1,3,2-dioxathiolane 2,2-dioxide Chemical compound CC1COS(=O)(=O)O1 OQXNUCOGMMHHNA-UHFFFAOYSA-N 0.000 description 1
- 229910001316 Ag alloy Inorganic materials 0.000 description 1
- 229910000838 Al alloy Inorganic materials 0.000 description 1
- 241001391944 Commicarpus scandens Species 0.000 description 1
- 229910000881 Cu alloy Inorganic materials 0.000 description 1
- GYHNNYVSQQEPJS-UHFFFAOYSA-N Gallium Chemical compound [Ga] GYHNNYVSQQEPJS-UHFFFAOYSA-N 0.000 description 1
- 101001121408 Homo sapiens L-amino-acid oxidase Proteins 0.000 description 1
- 229920002153 Hydroxypropyl cellulose Polymers 0.000 description 1
- 102100026388 L-amino-acid oxidase Human genes 0.000 description 1
- 229910013075 LiBF Inorganic materials 0.000 description 1
- 229910013188 LiBOB Inorganic materials 0.000 description 1
- 229910013684 LiClO 4 Inorganic materials 0.000 description 1
- 229910010941 LiFSI Inorganic materials 0.000 description 1
- 229910013870 LiPF 6 Inorganic materials 0.000 description 1
- 229910012258 LiPO Inorganic materials 0.000 description 1
- 229910000572 Lithium Nickel Cobalt Manganese Oxide (NCM) Inorganic materials 0.000 description 1
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 description 1
- JLVVSXFLKOJNIY-UHFFFAOYSA-N Magnesium ion Chemical compound [Mg+2] JLVVSXFLKOJNIY-UHFFFAOYSA-N 0.000 description 1
- 241001274216 Naso Species 0.000 description 1
- 229910000990 Ni alloy Inorganic materials 0.000 description 1
- AUBNQVSSTJZVMY-UHFFFAOYSA-M P(=O)([O-])(O)O.C(C(=O)O)(=O)F.C(C(=O)O)(=O)F.C(C(=O)O)(=O)F.C(C(=O)O)(=O)F.[Li+] Chemical compound P(=O)([O-])(O)O.C(C(=O)O)(=O)F.C(C(=O)O)(=O)F.C(C(=O)O)(=O)F.C(C(=O)O)(=O)F.[Li+] AUBNQVSSTJZVMY-UHFFFAOYSA-M 0.000 description 1
- 239000004372 Polyvinyl alcohol Substances 0.000 description 1
- 229910000676 Si alloy Inorganic materials 0.000 description 1
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 1
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 1
- 229910001128 Sn alloy Inorganic materials 0.000 description 1
- 229910006404 SnO 2 Inorganic materials 0.000 description 1
- 229920002472 Starch Polymers 0.000 description 1
- 229910001069 Ti alloy Inorganic materials 0.000 description 1
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 1
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 1
- VIEVWNYBKMKQIH-UHFFFAOYSA-N [Co]=O.[Mn].[Li] Chemical compound [Co]=O.[Mn].[Li] VIEVWNYBKMKQIH-UHFFFAOYSA-N 0.000 description 1
- QTHKJEYUQSLYTH-UHFFFAOYSA-N [Co]=O.[Ni].[Li] Chemical compound [Co]=O.[Ni].[Li] QTHKJEYUQSLYTH-UHFFFAOYSA-N 0.000 description 1
- SYRDSFGUUQPYOB-UHFFFAOYSA-N [Li+].[Li+].[Li+].[O-]B([O-])[O-].FC(=O)C(F)=O Chemical compound [Li+].[Li+].[Li+].[O-]B([O-])[O-].FC(=O)C(F)=O SYRDSFGUUQPYOB-UHFFFAOYSA-N 0.000 description 1
- RLTFLELMPUMVEH-UHFFFAOYSA-N [Li+].[O--].[O--].[O--].[V+5] Chemical compound [Li+].[O--].[O--].[O--].[V+5] RLTFLELMPUMVEH-UHFFFAOYSA-N 0.000 description 1
- JDZCKJOXGCMJGS-UHFFFAOYSA-N [Li].[S] Chemical compound [Li].[S] JDZCKJOXGCMJGS-UHFFFAOYSA-N 0.000 description 1
- FBDMTTNVIIVBKI-UHFFFAOYSA-N [O-2].[Mn+2].[Co+2].[Ni+2].[Li+] Chemical compound [O-2].[Mn+2].[Co+2].[Ni+2].[Li+] FBDMTTNVIIVBKI-UHFFFAOYSA-N 0.000 description 1
- XHCLAFWTIXFWPH-UHFFFAOYSA-N [O-2].[O-2].[O-2].[O-2].[O-2].[V+5].[V+5] Chemical compound [O-2].[O-2].[O-2].[O-2].[O-2].[V+5].[V+5] XHCLAFWTIXFWPH-UHFFFAOYSA-N 0.000 description 1
- DPXJVFZANSGRMM-UHFFFAOYSA-N acetic acid;2,3,4,5,6-pentahydroxyhexanal;sodium Chemical compound [Na].CC(O)=O.OCC(O)C(O)C(O)C(O)C=O DPXJVFZANSGRMM-UHFFFAOYSA-N 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 239000000853 adhesive Substances 0.000 description 1
- 230000001070 adhesive effect Effects 0.000 description 1
- BTGRAWJCKBQKAO-UHFFFAOYSA-N adiponitrile Chemical compound N#CCCCCC#N BTGRAWJCKBQKAO-UHFFFAOYSA-N 0.000 description 1
- NDPGDHBNXZOBJS-UHFFFAOYSA-N aluminum lithium cobalt(2+) nickel(2+) oxygen(2-) Chemical compound [Li+].[O--].[O--].[O--].[O--].[Al+3].[Co++].[Ni++] NDPGDHBNXZOBJS-UHFFFAOYSA-N 0.000 description 1
- 229910003481 amorphous carbon Inorganic materials 0.000 description 1
- 238000005452 bending Methods 0.000 description 1
- 229910052797 bismuth Inorganic materials 0.000 description 1
- JCXGWMGPZLAOME-UHFFFAOYSA-N bismuth atom Chemical compound [Bi] JCXGWMGPZLAOME-UHFFFAOYSA-N 0.000 description 1
- 229910052793 cadmium Inorganic materials 0.000 description 1
- BDOSMKKIYDKNTQ-UHFFFAOYSA-N cadmium atom Chemical compound [Cd] BDOSMKKIYDKNTQ-UHFFFAOYSA-N 0.000 description 1
- 238000004364 calculation method Methods 0.000 description 1
- 239000003990 capacitor Substances 0.000 description 1
- 238000005266 casting Methods 0.000 description 1
- 239000003153 chemical reaction reagent Substances 0.000 description 1
- 238000004891 communication Methods 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 229920001577 copolymer Polymers 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000010949 copper Substances 0.000 description 1
- 238000005336 cracking Methods 0.000 description 1
- 238000005520 cutting process Methods 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 239000008367 deionised water Substances 0.000 description 1
- 229910021641 deionized water Inorganic materials 0.000 description 1
- IEJIGPNLZYLLBP-UHFFFAOYSA-N dimethyl carbonate Chemical compound COC(=O)OC IEJIGPNLZYLLBP-UHFFFAOYSA-N 0.000 description 1
- 238000007599 discharging Methods 0.000 description 1
- 210000005069 ears Anatomy 0.000 description 1
- 238000004146 energy storage Methods 0.000 description 1
- AMQRHVWDAAPEOF-UHFFFAOYSA-N ethene sulfuric acid Chemical compound C=C.C=C.S(O)(O)(=O)=O AMQRHVWDAAPEOF-UHFFFAOYSA-N 0.000 description 1
- RBBXSUBZFUWCAV-UHFFFAOYSA-N ethenyl hydrogen sulfite Chemical compound OS(=O)OC=C RBBXSUBZFUWCAV-UHFFFAOYSA-N 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 229920001973 fluoroelastomer Polymers 0.000 description 1
- 229910052733 gallium Inorganic materials 0.000 description 1
- 239000003365 glass fiber Substances 0.000 description 1
- 239000011357 graphitized carbon fiber Substances 0.000 description 1
- 238000009499 grossing Methods 0.000 description 1
- DMEGYFMYUHOHGS-UHFFFAOYSA-N heptamethylene Natural products C1CCCCCC1 DMEGYFMYUHOHGS-UHFFFAOYSA-N 0.000 description 1
- 239000001863 hydroxypropyl cellulose Substances 0.000 description 1
- 235000010977 hydroxypropyl cellulose Nutrition 0.000 description 1
- 229910052738 indium Inorganic materials 0.000 description 1
- APFVFJFRJDLVQX-UHFFFAOYSA-N indium atom Chemical compound [In] APFVFJFRJDLVQX-UHFFFAOYSA-N 0.000 description 1
- 238000010030 laminating Methods 0.000 description 1
- 239000004973 liquid crystal related substance Substances 0.000 description 1
- 229910003473 lithium bis(trifluoromethanesulfonyl)imide Inorganic materials 0.000 description 1
- DEUISMFZZMAAOJ-UHFFFAOYSA-N lithium dihydrogen borate oxalic acid Chemical compound B([O-])(O)O.C(C(=O)O)(=O)O.C(C(=O)O)(=O)O.[Li+] DEUISMFZZMAAOJ-UHFFFAOYSA-N 0.000 description 1
- 229910002102 lithium manganese oxide Inorganic materials 0.000 description 1
- FRMOHNDAXZZWQI-UHFFFAOYSA-N lithium manganese(2+) nickel(2+) oxygen(2-) Chemical compound [O-2].[Mn+2].[Ni+2].[Li+] FRMOHNDAXZZWQI-UHFFFAOYSA-N 0.000 description 1
- MHCFAGZWMAWTNR-UHFFFAOYSA-M lithium perchlorate Chemical compound [Li+].[O-]Cl(=O)(=O)=O MHCFAGZWMAWTNR-UHFFFAOYSA-M 0.000 description 1
- 229910001486 lithium perchlorate Inorganic materials 0.000 description 1
- 229910001496 lithium tetrafluoroborate Inorganic materials 0.000 description 1
- 229910000686 lithium vanadium oxide Inorganic materials 0.000 description 1
- VDVLPSWVDYJFRW-UHFFFAOYSA-N lithium;bis(fluorosulfonyl)azanide Chemical compound [Li+].FS(=O)(=O)[N-]S(F)(=O)=O VDVLPSWVDYJFRW-UHFFFAOYSA-N 0.000 description 1
- QSZMZKBZAYQGRS-UHFFFAOYSA-N lithium;bis(trifluoromethylsulfonyl)azanide Chemical compound [Li+].FC(F)(F)S(=O)(=O)[N-]S(=O)(=O)C(F)(F)F QSZMZKBZAYQGRS-UHFFFAOYSA-N 0.000 description 1
- IGILRSKEFZLPKG-UHFFFAOYSA-M lithium;difluorophosphinate Chemical compound [Li+].[O-]P(F)(F)=O IGILRSKEFZLPKG-UHFFFAOYSA-M 0.000 description 1
- VLXXBCXTUVRROQ-UHFFFAOYSA-N lithium;oxido-oxo-(oxomanganiooxy)manganese Chemical compound [Li+].[O-][Mn](=O)O[Mn]=O VLXXBCXTUVRROQ-UHFFFAOYSA-N 0.000 description 1
- URIIGZKXFBNRAU-UHFFFAOYSA-N lithium;oxonickel Chemical compound [Li].[Ni]=O URIIGZKXFBNRAU-UHFFFAOYSA-N 0.000 description 1
- 229920002521 macromolecule Polymers 0.000 description 1
- 229910052749 magnesium Inorganic materials 0.000 description 1
- 229910001425 magnesium ion Inorganic materials 0.000 description 1
- 239000007769 metal material Substances 0.000 description 1
- 229910021382 natural graphite Inorganic materials 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- 239000004745 nonwoven fabric Substances 0.000 description 1
- 238000004806 packaging method and process Methods 0.000 description 1
- 150000003013 phosphoric acid derivatives Chemical class 0.000 description 1
- 230000000704 physical effect Effects 0.000 description 1
- 239000002985 plastic film Substances 0.000 description 1
- 229920006255 plastic film Polymers 0.000 description 1
- 229920005569 poly(vinylidene fluoride-co-hexafluoropropylene) Polymers 0.000 description 1
- 229920002239 polyacrylonitrile Polymers 0.000 description 1
- 229920000642 polymer Polymers 0.000 description 1
- 229920002223 polystyrene Polymers 0.000 description 1
- 229920002451 polyvinyl alcohol Polymers 0.000 description 1
- 229920000036 polyvinylpyrrolidone Polymers 0.000 description 1
- 239000001267 polyvinylpyrrolidone Substances 0.000 description 1
- 235000013855 polyvinylpyrrolidone Nutrition 0.000 description 1
- 239000004627 regenerated cellulose Substances 0.000 description 1
- 230000001105 regulatory effect Effects 0.000 description 1
- 238000012958 reprocessing Methods 0.000 description 1
- 238000007493 shaping process Methods 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- 239000011871 silicon-based negative electrode active material Substances 0.000 description 1
- 239000002153 silicon-carbon composite material Substances 0.000 description 1
- 229910052709 silver Inorganic materials 0.000 description 1
- 239000004332 silver Substances 0.000 description 1
- 239000011734 sodium Substances 0.000 description 1
- 235000019812 sodium carboxymethyl cellulose Nutrition 0.000 description 1
- 229920001027 sodium carboxymethylcellulose Polymers 0.000 description 1
- SUKJFIGYRHOWBL-UHFFFAOYSA-N sodium hypochlorite Chemical compound [Na+].Cl[O-] SUKJFIGYRHOWBL-UHFFFAOYSA-N 0.000 description 1
- 239000008107 starch Substances 0.000 description 1
- 235000019698 starch Nutrition 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 229940014800 succinic anhydride Drugs 0.000 description 1
- 229920005608 sulfonated EPDM Polymers 0.000 description 1
- JBQYATWDVHIOAR-UHFFFAOYSA-N tellanylidenegermanium Chemical compound [Te]=[Ge] JBQYATWDVHIOAR-UHFFFAOYSA-N 0.000 description 1
- BFKJFAAPBSQJPD-UHFFFAOYSA-N tetrafluoroethene Chemical group FC(F)=C(F)F BFKJFAAPBSQJPD-UHFFFAOYSA-N 0.000 description 1
- 239000002562 thickening agent Substances 0.000 description 1
- 239000002733 tin-carbon composite material Substances 0.000 description 1
- 239000010936 titanium Substances 0.000 description 1
- 229910052719 titanium Inorganic materials 0.000 description 1
- YZYKZHPNRDIPFA-UHFFFAOYSA-N tris(trimethylsilyl) borate Chemical compound C[Si](C)(C)OB(O[Si](C)(C)C)O[Si](C)(C)C YZYKZHPNRDIPFA-UHFFFAOYSA-N 0.000 description 1
- QJMMCGKXBZVAEI-UHFFFAOYSA-N tris(trimethylsilyl) phosphate Chemical compound C[Si](C)(C)OP(=O)(O[Si](C)(C)C)O[Si](C)(C)C QJMMCGKXBZVAEI-UHFFFAOYSA-N 0.000 description 1
- 238000009461 vacuum packaging Methods 0.000 description 1
- 229910001935 vanadium oxide Inorganic materials 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
- 238000003466 welding Methods 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/052—Li-accumulators
- H01M10/0525—Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/13—Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/62—Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Definitions
- the present application relates to the field of battery technology, and more particularly, to an electrode, a secondary battery and an electronic device.
- Lithium-ion batteries are widely used in digital electronic products, energy storage, drones, power tools, electric vehicles and other products due to their high energy density, long cycle life, high safety, and fast charging capabilities. As the demand for thinner and lighter products becomes more and more urgent, batteries need to have higher and higher energy density.
- the increase in electrode thickness means that the lithium ion transmission distance increases, the conductive network is insufficient, the ionic conductivity and conductive effect will be significantly reduced, and the polarization will increase, which will lead to poor battery cell rate performance.
- the present application provides an electrode, a secondary battery and an electronic device.
- the electrode still has good ionic conductivity and conductive effect under the condition of a large surface density, so that the battery cell has good rate performance.
- the present application provides an electrode, comprising: an electrode active material layer, wherein the surface density CW of the electrode active material layer is 8 mg/cm 2 to 40 mg/cm 2 , and the thickness H of the electrode active material layer is 25 ⁇ m to 80 ⁇ m,
- the electrode active material layer comprises, by mass percentage, 95% to 99.3% of electrode active material and 0.2% to 5% of conductive agent.
- the conductive agent includes carbon nanotube clusters and discrete carbon nanotubes, the carbon nanotube clusters are composed of a plurality of carbon nanotube units arranged in bundles, and the diameter of the carbon nanotube clusters is greater than 0.2 ⁇ m.
- the energy density of the battery cell is increased by increasing the surface density and thickness of the electrode active material layer in the electrode, and carbon nanotube clusters and discrete carbon nanotubes are used as conductive agents at the same time.
- the carbon nanotube clusters and discrete carbon nanotubes can synergistically form a stable conductive network, wherein the carbon nanotube clusters can mainly form a long-range conductive path, and the discrete carbon nanotubes can further collect the electrode active material microcurrent, and the two synergistically make the electrode have a good conductive effect; in addition, the conductive network formed by the conductive agent can improve the wettability of the electrolyte in the active material layer, thereby improving the ionic conductivity of the electrode.
- the thick electrode has a high energy density, good conductive effect and ionic conductivity, reduces electrode polarization, and improves the rate performance of the battery cell.
- the average diameter d of the carbon nanotube unit satisfies 5nm ⁇ d ⁇ 20nm.
- the carbon nanotube unit is a multi-walled carbon nanotube unit.
- the average diameter D of the carbon nanotube cluster is ⁇ 0.5 ⁇ m
- the average diameter D of the carbon nanotube cluster satisfies 0.5 ⁇ m ⁇ D ⁇ 3 ⁇ m.
- the average length L of the carbon nanotube cluster is ⁇ 3 ⁇ m
- the average length L of the carbon nanotube cluster is ⁇ 5 ⁇ m
- the average length L of the carbon nanotube cluster satisfies 5 ⁇ m ⁇ L ⁇ 30 ⁇ m.
- a mass ratio of the carbon nanotube clusters to the discrete carbon nanotubes is 1:0.01 to 1.
- the conductive agent further includes a third conductive agent, the third conductive agent is selected from carbon black and/or graphene, and the mass ratio of the carbon nanotube cluster to the third conductive agent is 1:0.01 to 1.
- the electrode active material layer further includes 0.5% to 3% of a binder by mass percentage.
- the weight average molecular weight Mw of the binder is 700,000 to 2,800,000;
- the binder has a weight average molecular weight Mw of 1,100,000 to 2,200,000.
- the number average molecular weight Mn of the binder and the weight average molecular weight Mw of the binder satisfy: 1.5 ⁇ Mw/Mn ⁇ 3;
- the electrode active material layer comprises, by mass percentage, 0.2% to 2% conductive agent, 0.5% to 1.5% binder, and 96.5% to 99.3% electrode active material;
- the electrode active material layer comprises, by mass percentage, 0.5% to 1% of a conductive agent, 0.7% to 1.3% of a binder, and 97.7% to 98.8% of an electrode active material.
- the melting point T1 of the binder is 160°C to 185°C; and/or
- the thermal decomposition temperature T2 of the binder is 460°C to 495°C;
- the melting point T1 of the binder is 172°C to 180°C; and/or
- the thermal decomposition temperature T2 of the binder is 480°C to 490°C.
- the compaction density PD of the electrode active material layer is 3.8 mg/cm 3 to 4.3 mg/cm 3 ;
- the compaction density PD of the electrode active material layer is 3.95 mg/cm 3 to 4.15 mg/cm 3 .
- Dv99 of the electrode active material and the thickness H of the electrode active material layer satisfy 0.6 ⁇ H/Dv99 ⁇ 3;
- Dv99 of the electrode active material and the thickness H of the electrode active material layer satisfy 1 ⁇ H/Dv99 ⁇ 1.8.
- a second aspect of the present application provides a secondary battery, comprising: a positive electrode, a negative electrode, a separator and an electrolyte;
- At least one of the positive electrode and the negative electrode is the electrode described in any embodiment of the first aspect.
- the positive electrode is the electrode according to any embodiment of the first aspect.
- a third aspect of the present application provides an electronic device, comprising: a secondary battery according to any embodiment of the second aspect.
- FIG1 is a low-magnification scanning electron microscope image of the electrode provided in an embodiment of the present application.
- FIG. 2 is a high-magnification scanning electron microscope image of the electrode provided in an embodiment of the present application.
- the terms “installed”, “connected”, “connected”, and “attached” should be understood in a broad sense, for example, it can be a fixed connection, a detachable connection, or an integral connection; it can be a direct connection, or an indirect connection through an intermediate medium, or it can be the internal communication of two elements.
- installed should be understood in a broad sense, for example, it can be a fixed connection, a detachable connection, or an integral connection; it can be a direct connection, or an indirect connection through an intermediate medium, or it can be the internal communication of two elements.
- a and/or B can represent: A exists alone, A and B exist at the same time, and B exists alone.
- the character "/" in this application generally indicates that the associated objects before and after are in an "or" relationship.
- the battery cell may include a lithium-ion secondary battery cell, a lithium-ion primary battery cell, a lithium-sulfur battery cell, a sodium-lithium-ion battery cell, a sodium-ion battery cell or a magnesium-ion battery cell, etc., and the embodiments of the present application do not limit this.
- the battery cell may be cylindrical, flat, rectangular or other shapes, etc., and the embodiments of the present application do not limit this.
- an effective way to increase the energy density of the battery cell is to increase the surface density of the electrode active material layer.
- the compaction density of the electrode active material layer is not easy to be too large, the most direct means is to increase the thickness of the electrode active material layer.
- the disadvantage of thick electrodes is that, using conventional conductive agents, a stable conductive network cannot be formed in the thick electrode, resulting in a deterioration in the conductive effect of the thick electrode; thick electrodes also mean an increase in the ion transmission distance, resulting in a deterioration in ionic conductivity. Therefore, the problem with thick electrodes in the prior art is that the conductive effect and ionic conductivity of the electrode are poor, thereby increasing polarization and reducing rate performance.
- the inventors have provided a thick electrode using carbon nanotube clusters and discrete carbon nanotube clusters with a diameter greater than 0.2 ⁇ m as a conductive agent.
- the conductive agent can form a stable conductive network in the electrode active material layer, and the conductive network can improve the wettability of the electrolyte in the electrode, so that the thick electrode has good conductive effect and ion conductivity.
- it can reduce the impact of thick electrode polarization on the battery cell, so that the secondary battery has good rate performance.
- the present application provides an electrode, comprising: an electrode active material layer, wherein the surface density CW of the electrode active material layer is 8 mg/cm 2 to 40 mg/cm 2 , and the thickness H of the electrode active material layer is 25 ⁇ m to 80 ⁇ m,
- the electrode active material layer comprises, by mass percentage, 95% to 99.3% of electrode active material and 0.2% to 5% of conductive agent.
- the conductive agent includes carbon nanotube clusters and discrete carbon nanotubes.
- the carbon nanotube clusters are composed of a plurality of carbon nanotube units arranged in bundles.
- the diameter of the carbon nanotube clusters is greater than 0.2 ⁇ m.
- the energy density of the battery cell is increased by increasing the surface density and thickness of the electrode active material layer in the electrode, and carbon nanotube clusters and discrete carbon nanotubes are used as conductive agents at the same time.
- the carbon nanotube clusters and discrete carbon nanotubes can synergistically form a stable conductive network, wherein the carbon nanotube clusters can mainly form a long-range conductive path, and the discrete carbon nanotubes can further collect the electrode active material microcurrent, and the two synergistically make the electrode have a good conductive effect; in addition, the conductive network formed by the conductive agent can improve the wettability of the electrolyte, thereby improving the ionic conductivity of the electrode.
- the thick electrode has a high energy density, has a good conductive effect and ionic conductivity, reduces electrode polarization, and improves the rate performance of the battery cell.
- carbon nanotube cluster refers to a structure composed of a plurality of carbon nanotube units arranged and combined in bundles, wherein the long axes of the carbon nanotube units are parallel to each other and combined and the diameter is greater than 0.2 ⁇ m.
- Figures 1 and 2 they are scanning electron microscope images of electrodes at different magnifications in some embodiments of the present application. From Figure 1, it can be clearly seen that the above-mentioned carbon nanotube cluster exists in the electrode, and from Figure 2, it can be seen that the carbon nanotube cluster is composed of a plurality of carbon nanotube units arranged and combined in bundles.
- Discrete carbon nanotubes refers to a structure in which a single carbon nanotube unit or a plurality of carbon nanotube units are combined with each other and the diameter is much less than 0.2 ⁇ m.
- carbon nanotubes Prior to the present application, carbon nanotubes have been used as conductive agents in electrode active material layers. Since carbon nanotubes have a large aspect ratio and specific surface area, they are prone to agglomeration. Therefore, conventional carbon nanotube raw materials are usually provided in the form of agglomerates. According to the relevant teachings before the present application, in order to exert the conductive effect of carbon nanotubes, carbon nanotubes are required to be uniformly dispersed in the electrode active material layer in the form of single carbon nanotube units.
- a dispersion of a carbon nanotube conductive agent in a dispersant is generally prepared first, and the dispersion conditions used enable the carbon nanotube units to be fully dispersed in the dispersant, and carbon nanotube clusters will not be formed or substantially formed in the dispersion (that is, even if carbon nanotube clusters similar to those provided in the present application are formed unintentionally, their content is very low); then such a carbon nanotube conductive agent dispersion is fully mixed with an electrode active material and other additives to form an electrode active material slurry, and then the electrode active material slurry is coated and dried to form an electrode active material layer.
- the carbon nanotubes are substantially uniformly dispersed in the electrode active material layer in the form of carbon nanotube units, and play a conductive role in the form of discrete carbon nanotubes, and carbon nanotube clusters with a diameter greater than 0.2 ⁇ m do not exist or substantially do not exist (that is, even if carbon nanotube clusters similar to those provided in the present application are formed unintentionally, their mass percentage in the electrode active material layer does not meet the requirements of the present application).
- the diameter of the carbon nanotube cluster contained in the conductive agent is greater than 0.2 ⁇ m, has high mechanical strength, and can form a stable conductive network in the electrode active material layer.
- the carbon nanotube units constituting the carbon nanotube cluster are single-walled carbon nanotubes or multi-walled carbon nanotubes, they are not easily affected by the volume change of the active material during the charge and discharge process of the battery core; at the same time, the conductive network can also inhibit the volume change of the electrode active material during the charge and discharge process, thereby preventing the electrode active material from cracking, and even if the electrode active material cracks, the carbon nanotube cluster can pass through the crack to connect the electrode active material to ensure the normal path of the conductive network; in addition, when the carbon nanotube cluster with a larger diameter is dispersed in the electrode active material slurry, its structure is not easy to bend or entangle, and due to its high strength, it is not easy to break, so that a stable long-range conductive network can be obtained, so that the electrode has a
- the diameter of the carbon nanotube cluster is too small, its flexibility is strong, which may cause it to agglomerate itself in the electrode active material slurry, or entangle on the surface of the electrode active material, thereby affecting the formation of the long-range conductive network and the conductive effect of the electrode.
- the conductive agent also contains discrete carbon nanotubes, which are preferably single-chain carbon nanotubes, and the single-chain carbon nanotubes may include single-chain single-walled carbon nanotubes and single-chain multi-walled carbon nanotubes. Most preferably, it may be single-chain single-walled carbon nanotubes.
- the carbon nanotube clusters in the conductive agent mainly function to form a stable long-range conductive network, so that the current collector of the electrode and the electrode active material, and the electron conduction between the electrode active material and the electrode active material, and since the carbon nanotube clusters have high strength, they are not prone to bending and winding, so the ability to collect the microcurrent of the electrode active material is not strong, and further adding discrete carbon nanotubes to the conductive agent is to utilize its high aspect ratio, have good flexibility, and be in closer contact with the electrode active material, so as to be conducive to collecting the microcurrent of the electrode active material, and stabilize the conduction of the electrode active material and the long-range conductive network, so the short-range conductive path formed by the discrete carbon nanotubes and the long-range conductive network formed by the carbon nanotube clusters together form a conductive network, which can effectively improve the conductive effect of the thick electrode.
- discrete carbon nanotubes are not limited in this application.
- the average diameter of discrete carbon nanotubes can be 1nm to 50nm, and the average length can be 1 ⁇ m to 100 ⁇ m.
- Discrete carbon nanotubes with high aspect ratio are more flexible and have better effect in collecting microcurrent of electrode active materials.
- highly flexible discrete carbon nanotubes such as single-chain single-walled carbon nanotubes, can be wrapped around the surface of electrode active materials, which can not only collect microcurrents, but also significantly inhibit the volume changes of electrode active materials during charging and discharging, thereby improving the stability of the conductive network.
- the above-mentioned conductive agent has a good conductive effect, a relatively small amount added in the electrode active material layer can form a better conductive network, thereby increasing the content of the electrode active material in the electrode active material layer, and further increasing the energy density of the electrode; in addition, although the conductive effect of the electrode is better as the amount of conductive agent added in the electrode active material layer increases, its addition amount should not be too high, because too high an addition amount will lead to a relatively low content of the electrode active material.
- the mass percentage of the conductive agent in the electrode active material layer can be controlled to be 0.2% to 5%.
- the mass percentage of the carbon nanotube clusters in the electrode active material layer can be 0.2%, 0.3%, 0.4%, 0.5%, 1%, 1.5%, 2%, 2.5%, 3%, 3.5%, 4%, 4.5%, 5% or within the range of any of the above values.
- the above-mentioned conductive agent can form a stable conductive network, it can inhibit the peeling of the electrode active material and the current collector, improve the electrode adhesion, reduce the amount of binder added, or even add no binder, thereby improving the wettability of the electrolyte and further improving the ionic conductivity of the electrode.
- the surface density C.W and thickness H of the electrode active material layer have the meanings commonly known in the art and can be measured using methods and instruments known in the art.
- the average diameter d of the carbon nanotube units satisfies 3nm ⁇ d ⁇ 40nm.
- the average diameter of the carbon nanotube units can be 3nm, 4nm, 5nm, 8nm, 10nm, 12nm, 14nm, 16nm, 18nm, 20nm, 25nm, 30nm, 35nm, 40nm, or within a range of any of the above values.
- the carbon nanotube cluster is formed by carbon nanotube units combined with each other.
- the carbon nanotube unit with too small diameter is relatively soft and is easy to be entangled with other carbon nanotube units, making it difficult to obtain a carbon nanotube cluster with a certain strength and a diameter greater than 0.2 ⁇ m; and when the average diameter of the carbon nanotube unit is too large, in the process of preparing the carbon nanotube cluster, the carbon nanotube unit with too large diameter is easy to deform or even break, resulting in the length of the obtained carbon nanotube cluster being difficult to meet the requirements of forming a long-range conductive network, or even failing to obtain a carbon nanotube cluster. Therefore, the average diameter d of the carbon nanotube unit in the carbon nanotube cluster satisfies 3nm ⁇ d ⁇ 40nm, preferably 5nm ⁇ d ⁇ 20nm.
- the average diameter d of the carbon nanotube units in the carbon nanotube cluster described in the present application refers to the average value of the diameters of the first 100 carbon nanotube units with larger diameters and the last 100 carbon nanotube units with larger diameters when the prepared electrode is observed by a scanning electron microscope (SEM).
- the carbon nanotube unit is a multi-walled carbon nanotube unit. Since single-walled carbon nanotubes can be described as seamless hollow cylinders formed by rolling up a single-layer graphene sheet, and their diameter is generally 1nm to 2nm, single-walled carbon nanotubes with larger diameters will lead to unstable structures and an increase in the number of defects, and the length of single-walled carbon nanotubes is generally in the micrometer level, so they have a very high aspect ratio, and thus have strong flexibility.
- Multi-walled carbon nanotubes can be regarded as concentric arrangements of single-walled carbon nanotubes, i.e., tubular structures seamlessly rolled up from multi-layer graphene sheets, which are generally larger in diameter and have a certain strength, and are not easy to bend, twist, kink or buckle, so they are not easy to be entangled, and it is easier to produce carbon nanotube clusters with a diameter greater than 0.2 ⁇ m.
- carbon nanotube clusters composed of multi-walled carbon nanotube units are easier to form a conductive network in the electrode active material layer, thereby improving the conductive properties of the electrode. Therefore, in some embodiments according to the present application, it is preferred to use a carbon nanotube cluster obtained by combining multi-walled carbon nanotube units as a conductive agent.
- the average diameter D of the carbon nanotube clusters is ⁇ 0.5 ⁇ m.
- the average diameter of the carbon nanotube clusters may be 0.5 ⁇ m, 1 ⁇ m, 1.5 ⁇ m, 2 ⁇ m, 2.5 ⁇ m, 3 ⁇ m, 3.5 ⁇ m, or any range thereof.
- the average diameter D of the carbon nanotube cluster when the average diameter D of the carbon nanotube cluster is ⁇ 0.5 ⁇ m, its strength is relatively high and it is not easy to entangle with other carbon nanotube clusters or electrode active materials, so it can form a long-range conductive network.
- the carbon nanotube clusters with larger diameters can effectively prevent the influence of the volume change of the electrode active material on the conductive network, so that the conductive network can be efficiently maintained during the charge and discharge process of the battery cell, thereby smoothing the electron conduction, reducing polarization, and improving electrical performance.
- the average diameter D of the carbon nanotube cluster satisfies 0.5 ⁇ m ⁇ D ⁇ 3 ⁇ m. This is because if the diameter of the carbon nanotube cluster is too large, it is easy to agglomerate, resulting in the need to add more carbon nanotube clusters to make them evenly dispersed in the electrode active material layer to form a conductive network, thereby affecting the energy density of the electrode. Therefore, the diameter of the carbon nanotube cluster should not be too long.
- the average diameter D of the carbon nanotube cluster described in this application refers to the average value of the diameters of the first 100 carbon nanotube clusters with larger diameters and the last 100 carbon nanotube clusters with larger diameters when the prepared electrode is observed by SEM.
- the average length L of the carbon nanotube clusters is ⁇ 3 ⁇ m.
- the average length of the carbon nanotubes can be 3 ⁇ m, 4 ⁇ m, 5 ⁇ m, 6 ⁇ m, 7 ⁇ m, 8 ⁇ m, 9 ⁇ m, 10 ⁇ m, 12 ⁇ m, 14 ⁇ m, 16 ⁇ m, 18 ⁇ m, 20 ⁇ m, 25 ⁇ m, 30 ⁇ m, or within a range of any of the above values.
- the average length of the carbon nanotube cluster in order to form a long-range conductive network in the electrode active material layer, can be ⁇ 3 ⁇ m. It should be noted that for those skilled in the art, the average length of the carbon nanotube cluster can be adjusted accordingly according to the thickness of the electrode active material layer and the particle size of the electrode active material. Generally speaking, the longer the average length, the easier it is to form a long-range conductive network. Therefore, it is further preferred that the average length L of the carbon nanotube cluster is ⁇ 5 ⁇ m. However, if the average length is too long, agglomeration may occur easily, and particle scratches or electrode bumps may be formed during the preparation of the electrode, which is not conducive to the further processing and utilization of the electrode. Therefore, it is most preferred that the average length L of the carbon nanotube cluster satisfies 5 ⁇ m ⁇ L ⁇ 30 ⁇ m.
- the average length L of the carbon nanotube cluster described in this application refers to the average length of the first 100 carbon nanotube clusters with longer length and the last 100 carbon nanotube clusters with longer length when the prepared electrode is observed by SEM.
- the mass ratio of carbon nanotube clusters to discrete carbon nanotubes is 1:0.01 to 1.
- the mass ratio of carbon nanotube clusters to discrete carbon nanotubes can be 1:0.01, 1:0.05, 1:0.1, 1:0.2, 1:0.3, 1:0.4, 1:0.5, 1:0.6, 1:0.7, 1:0.8, 1:0.9, 1:1 or within a range thereof.
- the mass ratio of carbon nanotube clusters to discrete carbon nanotubes in the conductive agent is specifically defined.
- the conductive agent that meets this condition can form a conductive network that can both ensure the formation of a stable long-range conductive path and effectively collect the microcurrent of the electrode active material, thereby making the electrode have a good conductive effect.
- the mass ratio of carbon nanotube clusters to discrete carbon nanotubes can be 1:0.1 to 0.5.
- a third conductive agent may be further added to the conductive agent, and the third conductive agent may be carbon black and/or graphene.
- the addition of carbon black may synergize with discrete carbon nanotubes to improve the efficiency of collecting microcurrents of electrode active materials, further reduce electrode resistance, and inhibit damage to electrode active materials when winding electrodes;
- the addition of graphene may form a tighter conductive network with carbon nanotube clusters and discrete carbon nanotubes, improve the compaction density of the electrode, and further improve the conductive effect of the electrode.
- the mass ratio of the carbon nanotube cluster to the third conductive agent in the conductive agent is further defined, and the third conductive agent needs to be added to exert the above effect without affecting the formation of a complete long-range conductive network of the carbon nanotube cluster.
- the mass ratio of the carbon nanotube cluster to the third conductive agent may be 1:0.1 to 0.5.
- the present application does not limit the specific specifications of carbon black and graphene. Those skilled in the art can select carbon black and graphene that can be used as conductive agents in the prior art according to needs and actual conditions.
- the average particle size Dv50 of carbon black can be 1nm to 500nm, preferably, the average particle size Dv50 can be 10nm to 250nm; Dv50 has a meaning well known in the art, Dv50 means that in the volume-based particle size distribution, 50% of the particles have a particle size less than this value, and Dv50 can be measured using methods and instruments known in the art.
- the electrode provided in the present application may include a current collector, and the present application does not limit the current collector, and a metal foil, a porous metal plate or a composite current collector may be used.
- the composite current collector may include a polymer material base and a metal layer formed on at least one surface of a polymer material substrate.
- the composite current collector may be formed by forming a metal material (copper, copper alloy, nickel, nickel alloy, titanium, titanium alloy, silver and silver alloy, etc.) on a polymer material substrate (such as a substrate of polypropylene (PP), polyethylene terephthalate (PET), polybutylene terephthalate (PBT), polystyrene (PS), polyethylene (PE), etc.).
- PP polypropylene
- PET polyethylene terephthalate
- PBT polybutylene terephthalate
- PS polystyrene
- PE polyethylene
- the electrode is the positive electrode of a lithium ion battery
- the positive electrode current collector is aluminum foil
- the lithium-containing phosphate with olivine structure may include one or more of lithium iron phosphate, a composite material of lithium iron phosphate and carbon, lithium manganese phosphate, a composite material of lithium manganese phosphate and carbon, lithium iron manganese phosphate, a composite material of lithium iron manganese phosphate and carbon, and modified compounds thereof.
- These positive electrode active materials may be used alone or in combination of two or more.
- the negative electrode active material may use one or more of carbonaceous materials, metal compounds that can be alloyed with lithium, metal oxides that can be doped and undoped with lithium, and composites including metal compounds and carbonaceous materials.
- the carbonaceous material may include one or more of artificial graphite, natural graphite, graphitized carbon fiber, and amorphous carbon;
- the metal compound that can be alloyed with lithium may include one or more of silicon (Si), aluminum (Al), tin (Sn), lead (Pb), zinc (Zn), bismuth (Bi), indium (In), magnesium (Mg), gallium (Ga), cadmium (Cd), Si alloy, Sn alloy, or Al alloy;
- the metal oxide that can be doped and undoped with lithium may include one or more of SiOv (0 ⁇ v ⁇ 2), SnO 2 , vanadium oxide, and lithium vanadium oxide;
- the composite including metal compounds and carbonaceous materials may include Si-C composites and/or Sn-C composite
- the conductive network formed by the conductive agent can improve the adhesion of the electrode active material layer to a certain extent, the amount of conductive agent added to meet the adhesion requirements is too much, and excessive addition of the conductive agent will also have an adverse effect on the electrode, and the cost of the conductive agent is higher than that of the binder. Therefore, the amount of conductive agent added can be added according to the standard of forming a stable conductive network, and the binder is further added to meet the requirements of electrode adhesion.
- the weight average molecular weight Mw of the binder can be 700,000 to 2,800,000.
- the weight average molecular weight Mw of the binder can be 700,000, 800,000, 900,000, 1,000,000, 1,100,000, 1,200,000, 1,300,000, 1,400,000, 1,600,000, 1,800,000, 2,000,000, 2,200,000, 2,400,000, 2,600,000, 2,800,000, or any range thereof.
- the weight average molecular weight of the binder is further limited.
- the weight average molecular weight of the binder is too low, the viscosity of the binder is low, which is not conducive to the improvement of the bonding performance of the binder, but when the weight average molecular weight is too high, it is not easy to dissolve and causes processing difficulties, which is also not conducive to the improvement of the bonding performance of the binder.
- the weight average molecular weight of the binder is not easy to be too high. Taking into account the weight average molecular weight of the binder, the binder with good bonding can be obtained, so that the amount of the binder added can be relatively reduced, thereby improving the ionic conductivity of the electrode. Further preferably, the weight average molecular weight Mw of the binder can be 1,100,000 to 2,200,000.
- the number average molecular weight Mn of the binder and the weight average molecular weight Mw of the binder may satisfy: 1.5 ⁇ Mw/Mn ⁇ 3.
- Mw/Mn may be 1.6, 1.7, 1.8, 1.9, 2.1, 2.2, 2.3, 2.4, 2.5, 2.6, 2.7, 2.8, 2.9, 3 or within the range of any of the above values.
- the relationship between the number average molecular weight Mn of the binder and the weight average molecular weight Mw of the binder is further defined, and the value of Mw/Mn can represent the molecular weight distribution of the binder.
- Mw/Mn the value of Mw/Mn can represent the molecular weight distribution of the binder.
- Mw/Mn is too large, it means that some of the molecular weights in the binder are too large and some are too small.
- the binder molecules with large molecular weight are not easy to dissolve, and the small molecule binder is easy to agglomerate in the electrode active material slurry, which is not conducive to improving the bonding performance of the binder; when Mw/Mn is too small, it means that the molecular weights in the binder are relatively uniform.
- the molecular weight of the binder is generally required to be higher. Therefore, if the molecular weight of the binder is too uniform and there are no binder molecules with relatively low molecular weight, on the one hand, the viscosity of the electrode active material slurry will be too high under the action of the conductive agent and the binder, making it difficult to disperse and coat, affecting processing.
- the number average molecular weight Mn of the binder has a meaning well known in the art, and Mn represents the molecular weight result of the binder weighted by number, and the number average molecular weight Mn of the binder can be measured by methods and instruments known in the art.
- the number average molecular weight Mn of the binder can be measured by gel chromatography (GPC).
- the electrode active material layer may include, by mass percentage, 0.2% to 2% of a conductive agent, 0.5% to 1.5% of a binder, and 96.5% to 99.3% of an electrode active material.
- the mass percentages of the conductive agent, the binder and the electrode active material in the electrode active material layer are further defined.
- the above conductive agent only a small amount of addition is required to form a stable conductive network, ensuring that the electrode has a good conductive effect.
- the amount of binder used can be relatively reduced.
- the electrode active material slurry and the electrode have good processability, and have good bonding properties, thereby further reducing the amount of binder used.
- the compaction density PD of the electrode active material layer meets 3.8mg/ cm3 to 4.3mg/ cm3 , the conductive effect and ion conductivity of the electrode are better. More preferably, the compaction density PD of the electrode active material layer may be 3.95 mg/cm 3 to 4.15 mg/cm 3 .
- Dv99 of the electrode active material and the thickness H of the electrode active material layer may satisfy 0.6 ⁇ H/Dv99 ⁇ 3.
- H/Dv99 may be 0.6, 0.7, 0.8, 0.9, 1.0, 1.1, 1.2, 1.3, 1.4, 1.5, 1.6, 1.7, 1.8, 1.9, 2.0, 2.1, 2.3, 2.4, 2.5, 2.6, 2.7, 2.8, 2.9, 3 or within a range of any of the above values.
- Dv99 of the electrode active material has a meaning known in the art, and Dv99 means that in the particle size distribution of the electrode active material on a volume basis, 99% of the particles have a particle size smaller than this value.
- the Dv99 of the electrode active material can be measured by methods and instruments known in the art. For example, it can be measured with reference to GB/T 19077-2016 particle size distribution laser diffraction method, using a laser particle size analyzer (e.g., Malvern Mastersizer 2000E, UK).
- the relationship between the thickness of the electrode active material layer and the maximum particle size of the electrode active material is specifically defined. If the H/Dv99 value is too small, the electrode will be difficult to process, and part of the electrode active material will break during the cold pressing process, thereby affecting the integrity of the conductive network in the electrode and adversely affecting the conductive effect of the electrode; if the H/Dv99 value is too large, that is, the particle size of the electrode active material is small, then the electrode active materials in the electrode after cold pressing are too close to each other. During the charge and discharge process, as the volume of the electrode active material changes, it is not conducive to the formation of a stable ion path, thereby reducing the rate performance of the electrode.
- H/Dv99 can be controlled to 0.6 to 3, at which time the electrode has good conductive effect and ionic conductivity.
- Dv99 of the electrode active material and the thickness H of the electrode active material layer can satisfy 1 ⁇ H/Dv99 ⁇ 1.8.
- the present application also provides a method for manufacturing an electrode, which may include the following steps:
- S20 adds the carbon nanotube cluster dispersion, the discrete carbon nanotube dispersion, and the electrode active material into a solvent to form an electrode active material slurry.
- step S10 may specifically include:
- the dispersion medium may include dimethylformamide (DMF), diethylformamide, dimethylacetamide (DMAc), N-methylpyrrolidone (NMP), such as methanol, ethanol, 1-propanol, 2-propanol (isopropanol), 1-butanol (n-butanol), 2-methyl-1-propanol (isobutanol), 2-butanol (sec-butanol), 1-methyl-2-propanol (tert-butanol), pentanol, hexanol, heptanol or octanol; glycols such as ethylene glycol, diethylene glycol, triethylene glycol, propylene glycol, 1,3 -propylene glycol, 1,3-butylene glycol, 1,5-pentanediol, hexylene glycol, glycerine, trimethylolpropane, pentaerythrito
- dispersion media can be used alone or in combination of two or more.
- the dispersion medium can be N-methyl pyrrolidone (NMP).
- NMP N-methyl pyrrolidone
- Conventional carbon nanotube raw materials and carbon nanotube clusters have good dispersibility in the above-mentioned dispersion medium.
- the conventional carbon nanotube raw material may be a bonded body or an aggregate of carbon nanotube units.
- the conventional carbon nanotube raw material may be an aggregate of multi-walled carbon nanotube units.
- the mass ratio of the conventional carbon nanotube raw material to the dispersant can be 1:0.1 to 10. Under this condition, the conventional carbon nanotube raw material is dispersed at an appropriate level in the mixed solution to form carbon nanotube clusters of appropriate specifications, while improving the dispersion stability of the carbon nanotube clusters. As an example, the mass ratio of the conventional carbon nanotube raw material to the dispersant can be 1:2.
- the above ball milling conditions are used to properly disperse the conventional carbon nanotube raw material, especially to exclude the conditions for dispersing the conventional carbon nanotube raw material into carbon nanotube clusters or single-chain carbon nanotubes with a diameter not exceeding 0.2 ⁇ m. That is, the ball milling conditions are used to properly disperse the conventional carbon nanotube raw material to form carbon nanotube clusters in which the carbon nanotube units are combined side by side to obtain a carbon nanotube cluster with a diameter greater than 0.2 ⁇ m. This can only be achieved by strictly controlling the composition of the mixed solution, the conditions of the dispersion process, etc.
- the average diameter of the carbon nanotube clusters is mainly controlled by the average diameter of the sanding balls, the rotation speed and the ball milling time.
- the diameter of the sanding balls is appropriately increased, the rotation speed and the ball milling time are reduced, and the average diameter of the carbon nanotube clusters is increased on the premise that the conventional carbon nanotube raw materials are dispersed to obtain the carbon nanotube clusters.
- the average length of the carbon nanotube clusters is mainly determined by the length of the carbon nanotube units in the conventional carbon nanotube raw materials. Those skilled in the art can make corresponding selections and adjustments as needed.
- the solid content of the electrode active material slurry is 50 wt % to 80 wt %.
- a second aspect of the present application provides a secondary battery, comprising: a positive electrode, a negative electrode, a separator and an electrolyte;
- At least one of the positive electrode or the negative electrode of the secondary battery is an electrode as described in any embodiment of the first aspect.
- the embodiments of the electrode have been described and explained in detail above and will not be repeated here. It can be understood that the secondary battery of the present application can achieve the beneficial effects of any of the above embodiments of the electrode of the present application.
- the positive electrode is an electrode according to any embodiment of the first aspect.
- the electrolyte plays a role in conducting active ions between the positive electrode and the negative electrode.
- the electrolyte that can be used in the secondary of the present application can be an electrolyte known in the prior art.
- the electrolyte may include an organic solvent, an electrolyte salt, and optional additives.
- the types of the organic solvent, the lithium salt, and the additives are not subject to specific limitations and may be selected according to requirements.
- the electrochemical device is a sodium ion battery
- the electrolyte salt may include a sodium salt.
- the sodium salt may be selected from at least one of NaPF 6 , NaClO 4 , NaBCl 4 , NaSO 3 CF 3 and Na(CH 3 )C 6 H 4 SO 3 .
- the organic solvent includes but is not limited to ethylene carbonate (EC), propylene carbonate (PC), ethyl methyl carbonate (EMC), diethyl carbonate (DEC), dimethyl carbonate (DMC), dipropyl carbonate (DPC), methyl propyl carbonate (MPC), ethyl propyl carbonate (EPC), butylene carbonate (BC), fluoroethylene carbonate (FEC), methyl formate (MF), methyl acetate (MA), ethyl acetate (EA), propyl acetate (PA), methyl propionate (MP), ethyl propionate (EP), propyl propionate (PP), methyl butyrate (MB), ethyl butyrate (EB), 1,4-butyrolactone (GBL), cyclopentane (SF), dimethyl sulfone (MSM), methyl ethyl sulfone (EMS) and diethyl sul
- the additives may include negative electrode film-forming additives, positive electrode film-forming additives, and may also include additives that can improve certain battery properties, such as additives that improve battery overcharge performance, additives that improve battery high or low temperature performance, etc.
- the use of a conductive agent added with carbon nanotube clusters can make the electrode have better conductivity and ion conductivity, thereby having a faster charging speed at a high charging rate and having good energy efficiency.
- Example 4 By comparing Example 4 with Examples 35 to 39, it can be seen that although the more conductive agent is added, the better the conductive effect of the electrode, too much addition may cause difficulties in ion conduction, which will reduce the rate performance of the battery cell. Therefore, under the premise of ensuring the formation of a complete conductive network, the amount of conductive agent is appropriately reduced to ensure that the thick electrode has good conductive effect and ionic conductivity.
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Manufacturing & Machinery (AREA)
- Battery Electrode And Active Subsutance (AREA)
Abstract
本申请实施例提供一种电极、二次电池和电子设备,该电极包括:电极活性材料层,所述电极活性材料层的面密度为8mg/cm 2至40mg/cm 2,所述电极活性材料层的厚度H为25μm至80μm,所述电极活性材料层以质量百分比计,包括95%至99.3%电极活性材料和0.2%至5%导电剂,其中,所述导电剂包括碳纳米管簇和离散碳纳米管,所述碳纳米管簇由多根束状排列的碳纳米管单元组成,所述碳纳米管簇的直径>0.2μm。该电极具有较高能量密度的同时,具有良好的导电效果和离子电导率,减少电极极化,提升电芯倍率性能。
Description
本申请涉及电池技术领域,并且更具体地,涉及一种电极、二次电池和电子设备。
锂离子电池由于具备高能量密度,长循环寿命,高安全性,快速充电能力等特性而被广泛应用于数码电子产品,储能,无人机,电动工具,电动车等产品上。随着产品的轻薄化需求越来越迫切,需要电池有越来越高的能量密度。通过提高电极表面涂覆的面密度,将电极做厚,从而降低正负极基材和隔膜的用量,也是业内提升能量密度的手段之一。但是电极厚度增加之后,意味着锂离子传输路程增加、导电网络不足,离子电导率以及导电效果会显著降低,极化增大,进而导致电芯倍率性能差。
因此,如何提升厚电极的倍率性能是本领域需要解决的问题。
发明内容
本申请提供了一种电极、二次电池和电子设备,该电极在较大面密度的条件下,仍然具有良好的离子电导率以及导电效果,从而使电芯具有良好的倍率性能。
本申请第一方面提供了一种电极,包括:电极活性材料层,所述电极活性材料层的面密度C.W为8mg/cm
2至40mg/cm
2,所述电极活性材料层的厚度H为25μm至80μm,
所述电极活性材料层以质量百分比计,包括95%至99.3%电极活性材料和0.2%至5%导电剂,
其中,所述导电剂包括碳纳米管簇和离散碳纳米管,所述碳纳米管簇由多根束状排列的碳纳米管单元组成,所述碳纳米管簇的直径> 0.2μm。
根据本申请,通过提高电极中电极活性材料层的面密度和厚度,来提高电芯的能量密度,同时使用碳纳米管簇和离散碳纳米管作为导电剂,碳纳米管簇和离散碳纳米管可协同组成稳定的导电网络,其中碳纳米管簇主要可形成长程的导电通路,离散碳纳米管可进一步收集电极活性材料微电流,两者协同使电极具有良好的导电效果;另外,该导电剂形成的导电网络可以提高活性材料层中电解液的浸润性,从而提高电极的离子电导率。从而使厚电极具有较高能量密度的同时,具有良好的导电效果和离子电导率,减少电极极化,提升电芯倍率性能。
在本申请的一些实施例中,所述碳纳米管单元的平均直径d满足3nm≤d≤40nm;
可选的,所述碳纳米管单元的平均直径d满足5nm≤d≤20nm。
在本申请的一些实施例中,所述碳纳米管单元为多壁碳纳米管单元。
在本申请的一些实施例中,所述碳纳米管簇的平均直径D≥0.5μm;
可选的,所述碳纳米管簇的平均直径D满足0.5μm≤D≤3μm。
在本申请的一些实施例中,所述碳纳米管簇的平均长度L≥3μm;
可选的,所述碳纳米管簇的平均长度L≥5μm;
可选的,所述碳纳米管簇的平均长度L满足5μm≤L≤30μm。
在本申请的一些实施例中,所述碳纳米管簇与所述离散碳纳米管的质量比为1:0.01至1。
在本申请的一些实施例中,所述导电剂还包括第三导电剂,所述第三导电剂选自炭黑和/或石墨烯,所述碳纳米管簇与所述第三导电剂的质量比为1:0.01至1。
在本申请的一些实施例中,所述电极活性材料层以质量百分比计,还包括0.5%至3%粘结剂。
在本申请的一些实施例中,所述粘结剂的重均分子量Mw为700,000至2,800,000;
可选的,所述粘结剂的重均分子量Mw为1,100,000至2,200,000。
在本申请的一些实施例中,所述粘结剂的数均分子量Mn与所述粘结剂的重均分子量Mw满足:1.5≤Mw/Mn≤3;
可选的,所述粘结剂的数均分子量Mn与所述粘结剂的重均分子量Mw满足:2.1≤Mw/Mn≤2.4。
在本申请的一些实施例中,所述电极活性材料层以质量百分比计,包括0.2%至2%导电剂、0.5%至1.5%粘结剂、96.5%至99.3%电极活性材料;
可选的,所述电极活性材料层以质量百分比计,包括0.5%至1%导电剂、0.7%至1.3%粘结剂、97.7%至98.8%电极活性材料。
在本申请的一些实施例中,所述粘结剂的熔点T
1为160℃至185℃;和/或
所述粘结剂的热分解温度T
2为460℃至495℃;
可选的,所述粘结剂的熔点T
1为172℃至180℃;和/或
所述粘结剂的热分解温度T
2为480℃至490℃。
在本申请的一些实施例中,所述电极活性材料层的压实密度P.D为3.8mg/cm
3至4.3mg/cm
3;
可选的,所述电极活性材料层的压实密度P.D为3.95mg/cm
3至4.15mg/cm
3。
在本申请的一些实施例中,所述电极活性材料的Dv99和所述电极活性材料层的厚度H满足0.6≤H/Dv99≤3;
可选的,所述电极活性材料的Dv99和所述电极活性材料层的厚度H满足1≤H/Dv99≤1.8。
本申请第二方面提供了一种二次电池,包括:正极、负极、隔膜和电解液;
其中,所述正极和所述负极中的至少一个为根据第一方面任一实施例所述的电极。
在本申请的一些实施例中,所述正极为根据第一方面任一实施例所述的电极。
本申请第三方面提供了一种电子设备,包括:根据第二方面任一实施例所述的二次电池。
为了更清楚地说明本申请实施例的技术方案,下面将对本申请实施例中所需要使用的附图作简单地介绍,显而易见地,下面所描述的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据附图获得其他的附图。
图1为本申请实施例提供的电极的低倍率扫描电镜图。
图2为本申请实施例提供的电极的高倍率扫描电镜图。
为使本申请实施例的目的、技术方案和优点更加清楚,下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚地描述,显然,所描述的实施例是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
除非另有定义,本申请所使用的所有的技术和科学术语与属于本申请的技术领域的技术人员通常理解的含义相同;本申请中在申请的说明书中所使用的术语只是为了描述具体的实施例的目的,不是旨在于限制本申请;本申请的说明书和权利要求书及上述附图说明中的术语“包括”和“具有”以及它们的任何变形,意图在于覆盖不排他的包含。本申请的说明书和权利要求书或上述附图中的术语“第一”、“第二”等是用于区别不同对象,而不是用于描述特定顺序或主次关系。
在本申请中提及“实施例”意味着,结合实施例描述的特定特征、结构或特性可以包含在本申请的至少一个实施例中。在说明书中的各个位置出现该短语并不一定均是指相同的实施例,也不是与其它实施例互斥的独立的或备选的实施例。
在本申请的描述中,需要说明的是,除非另有明确的规定和限定, 术语“安装”、“相连”、“连接”、“附接”应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或一体地连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本申请中的具体含义。
本申请中术语“和/或”,仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,本申请中字符“/”,一般表示前后关联对象是一种“或”的关系。
在本申请的实施例中,相同的附图标记表示相同的部件,并且为了简洁,在不同实施例中,省略对相同部件的详细说明。应理解,附图示出的本申请实施例中的各种部件的厚度、长宽等尺寸,以及集成装置的整体厚度、长宽等尺寸仅为示例性说明,而不应对本申请构成任何限定。
本申请中出现的“多个”指的是两个以上(包括两个)。
本申请中,电池单体可以包括锂离子二次电池单体、锂离子一次电池单体、锂硫电池单体、钠锂离子电池单体、钠离子电池单体或镁离子电池单体等,本申请实施例对此并不限定。电池单体可呈圆柱体、扁平体、长方体或其它形状等,本申请实施例对此也不限定。
如背景技术所述,目前提高电芯能量密度的一个有效方法是通过提高电极活性材料层的面密度,但是由于电极活性材料层的压实密度不易过大,因此最直接的手段是提高电极活性材料层的厚度。但厚电极的缺点在于,使用常规的导电剂,无法在厚电极中形成稳定的导电网络,导致厚电极的导电效果变差;厚电极也意味着离子传输距离增加,导致离子电导率变差。由此,现有技术中厚电极的问题在于,电极的导电效果以及离子电导率差,从而极化增加,倍率性能降低。
对此,发明人经过深入思考和大量实验,提供了一种使用直径大于0.2μm的碳纳米管簇和离散碳纳米管簇作为导电剂的厚电极,该导电剂可以在电极活性材料层中形成稳定的导电网络,同时该导电网络可以提高电解液在电极中的浸润性,从而使厚电极具有良好的导电效果和离子电导率。应用于二次电池中,可以降低厚电极极化对电芯的影响,使二次电池具有 良好的倍率性能。
电极
本申请第一方面提供了一种电极,包括:电极活性材料层,电极活性材料层的面密度C.W为8mg/cm
2至40mg/cm
2,电极活性材料层的厚度H为25μm至80μm,
电极活性材料层以质量百分比计,包括95%至99.3%电极活性材料和0.2%至5%导电剂,
其中,导电剂包括碳纳米管簇和离散碳纳米管,碳纳米管簇由多根束状排列的碳纳米管单元组成,碳纳米管簇的直径>0.2μm。
根据本申请,通过提高电极中电极活性材料层的面密度和厚度,来提高电芯的能量密度,同时使用碳纳米管簇和离散碳纳米管作为导电剂,碳纳米管簇和离散碳纳米管可协同组成稳定的导电网络,其中碳纳米管簇主要可形成长程的导电通路,离散碳纳米管可进一步收集电极活性材料微电流,两者协同使电极具有良好的导电效果;另外,该导电剂形成的导电网络可以提高电解液的浸润性,从而提高电极的离子电导率。从而使厚电极具有较高能量密度的同时,具有良好的导电效果和离子电导率,减少电极极化,提升电芯倍率性能。
在本申请中的上下文中,“碳纳米管簇”是指由多根碳纳米管单元束状排列并结合组成,其中所述碳纳米管单元的长轴彼此平行结合且直径>0.2μm的结构,如图1、2所示,为本申请一些实施例中电极不同放大倍数下的扫描电镜图,从图1中可以清楚看到电极中存在上述碳纳米管簇,从图2可以看到该碳纳米管簇是由多根碳纳米管单元束状排列并结合组成。“离散碳纳米管”是指单根碳纳米管单元或多根碳纳米管单元彼此结合且直径远小于0.2μm的结构。在本申请之前,碳纳米管已被用作电极活性材料层中的导电剂。由于碳纳米管具有极大的长径比和比表面积,容易发生团聚。因此,常规碳纳米管原料通常是以团聚体的形式提供。根据本申请之前的相关教导,为了发挥碳纳米管的导电作用,要求碳纳米管以单根碳纳米管单元的形式均匀地分散在电极活性材料层中。为此,一般先制备碳纳米管导电剂在分散剂中的分散体,所使用的分散条件使得碳纳米管单元 能够充分分散在分散剂中,在该分散体中不会形成或基本不会形成(即,即使无意中形成了类似本申请提供的碳纳米管簇,其含量也是很低的)碳纳米管簇;然后将这样的碳纳米管导电剂分散体与电极活性材料以及其它添加剂充分混合形成电极活性材料浆料,再将电极活性材料浆料经涂布和干燥形成电极活性材料层。如上所述,在这样形成的电极活性材料层中,碳纳米管基本上以碳纳米管单元的形式均匀地分散在电极活性材料层中,以离散碳纳米管的形式发挥导电作用,而不存在或基本不存在(即,即使无意中形成了类似本申请提供的碳纳米管簇,其在电极活性材料层中的质量百分比也达不到本申请的要求)直径>0.2μm的碳纳米管簇。
根据本申请,将电极中电极活性材料层的面密度C.W控制在8mg/cm
2至40mg/cm
2,厚度H控制在25μm至80μm,较厚的电极活性材料层可以包含更多电极活性材料,从而降低电芯中正负极基材和隔膜的用量,提高能量密度。
导电剂中含有的碳纳米管簇的直径大于0.2μm,具有较高的机械强度,可在电极活性材料材料层中形成稳定的导电网络,无论组成碳纳米管簇的碳纳米管单元是单壁碳纳米管或多壁碳纳米管,其在电芯充放电过程中,均不易受活性材料体积变化的影响;同时导电网络还能抑制电极活性材料在充放电过程中体积的变化,从而可以防止电极活性材料出现裂纹,且即使电极活性材料出现裂纹,碳纳米管簇也能穿过裂纹连接电极活性材料,保证导电网络正常通路;另外,直径较大的碳纳米管簇在电极活性材料浆料中分散时,其结构不易发生弯曲、缠绕,且由于具有较高的强度,也不易发生断裂,从而可得到稳定的长程导电网络,使电极具有良好的导电效果。若碳纳米管簇的直径过小,其柔韧性强,导致其在电极活性材料浆料可能会自身结团,或缠绕在电极活性材料表面,从而影响长程导电网络的形成,影响电极的导电效果。
根据本申请,导电剂还含有离散碳纳米管,离散碳纳米管优选可以为单链碳纳米管,单链碳纳米管可以包括单链单壁碳纳米管、单链多壁碳纳米管。最优选可以为单链单壁碳纳米管。由于导电剂中碳纳米管簇主要作用在于形成稳定的长程导电网络,使电极的集流体与电极活性材料之 间、电极活性材料与电极活性材料之间的电子导通,而由于碳纳米管簇强度较高,不易发生弯曲、缠绕,因此对于电极活性材料微电流的收集能力不强,而在导电剂中进一步添加离散碳纳米管,则是利用其较高的长径比,具有很好的柔韧性,与电极活性材料接触更加紧密,从而有利于收集电极活性材料的微电流,且稳定电极活性材料与长程导电网络的导通,因此离散碳纳米管形成的短程导电通路与碳纳米管簇形成的长程导电网络共同组成的导电网络,能够有效提高厚电极的导电效果。
本申请中并未对离散碳纳米管的规格进行限定,例如离散碳纳米管的平均直径可以为1nm至50nm,平均长度可以为1μm至100μm。高长径比的离散碳纳米管柔性更好,收集电极活性材料微电流的效果更好。
值得一提的是,高柔性的离散碳纳米管,例如单链单壁碳纳米管,其可缠绕在电极活性材料表面,不仅可以收集微电流,还可以显著抑制电极活性材料在充放电过程中体积的变化,提高导电网络的稳定性。
另一方面,由于上述导电剂具有良好的导电效果,在电极活性材料层中较少的添加量,即可形成较好的导电网络,从而可以提高电极活性材料层中电极活性材料的含量,进而提高电极的能量密度;另外,虽然随着导电剂在电极活性材料层的添加量增加,电极的导电效果越好,但是其添加量也不宜过高,其原因在于,添加量过高会导致电极活性材料的含量相对降低,另外由于碳纳米管簇的强度较高,且在电极活性材料层中形成导电网络,添加量过高首先会导致电极活性材料浆料不易涂布,还会导致电极活性材料层的强度过高,不宜后续对电极进行再加工,如卷取处理等。因此,在本申请的技术方案中,可以导电剂在电极活性材料层中的质量百分比控制为0.2%至5%。例如,碳纳米管簇在电极活性材料层中的质量百分比可以为0.2%、0.3%、0.4%、0.5%、1%、1.5%、2%、2.5%、3%、3.5%、4%、4.5%、5%或处于上述任意数值所组成的范围内。
从电极的离子电导率而言,由于上述导电剂可形成稳定的导电网络,可以抑制电极活性材料与集流体的剥离,提高电极粘附性,减少粘结剂的添加量,甚至是不添加粘结剂,由此可以提高电解液的浸润性,进而提高电极的离子电导率。
本申请中,电极活性材料层的面密度C.W以及厚度H具有本领域公知的含义,可采用本领域已知的方法和仪器测定。
在一些实施例中,碳纳米管单元的平均直径d满足3nm≤d≤40nm。例如,碳纳米管单元的平均直径可以为3nm,4nm,5nm,8nm,10nm,12nm,14nm,16nm,18nm,20nm,25nm,30nm,35nm,40nm或处于上述任意数值所组成的范围内。
在上述一些实施例中,碳纳米管簇由碳纳米管单元彼此相互结合而成,当碳纳米管单元的平均直径过小时,在制备碳纳米管簇的过程中,由于直径过小的碳纳米管单元比较柔软,容易与其他碳纳米管单元发生结团缠绕,难以得到具有一定强度且直径大于0.2μm的碳纳米管簇;而当碳纳米管单元的平均直径过大时,在制备碳纳米管簇的过程中,直径过大碳纳米管单元容易发生变形甚至断裂,导致得到的碳纳米管簇的长度较难满足形成长程导电网络的要求,甚至是无法得到碳纳米管簇。因此在碳纳米管簇中的碳纳米管单元的平均直径d满足3nm≤d≤40nm,优选的是5nm≤d≤20nm。
需要说明的是,除特殊说明外,本申请中所述的碳纳米管簇中的碳纳米管单元的平均直径d是指,当通过扫描电镜(SEM)观察所制备的电极时,前100个具有较大直径的碳纳米管单元和后100个具有较大直径的碳纳米管单元的直径的平均值。
在一些实施例中,碳纳米管单元为多壁碳纳米管单元。由于单壁碳纳米管可以被描述为单层石墨烯片卷起形成的无缝空心圆柱筒,其直径一般为1nm至2nm,更大直径的单壁碳纳米管会导致自身结构不稳定,缺陷数量增加,且单壁碳纳米管的长度一般在微米级,因此其具有很高的长径比,由此具有很强的柔韧性,在制备碳纳米管簇的过程中,极易发生结团缠绕,较难得到直径大于0.2μm的碳纳米管簇;另一方面,发明人发现,以单壁碳纳米管单元组成的碳纳米管簇在应用于电极活性材料浆料中时,易在其他碳纳米管簇或电极活性材料表面发生缠绕,从而影响电极的导电效果。而多壁碳纳米管可以视为单壁碳纳米管的同心排列,即由多层石墨烯片无缝卷起的管状结构,其直径一般较大,且具有一定的强度,不容易 弯曲、扭曲、扭结或屈曲,因此不易发生结团缠绕,更易制得直径大于0.2μm的碳纳米管簇,另外由多壁碳纳米管单元组成的碳纳米管簇更易在电极活性材料层中形成导电网络,提高电极的导电性能。因而,在根据本申请的一些实施例中,优选使用多壁碳纳米管单元结合得到的碳纳米管簇作为导电剂。
另外值得一提的是,单壁碳纳米管由于其制作工艺相较于多壁碳纳米管更加复杂,因此相较于多壁碳纳米管高产量低、成本高,使用多壁碳纳米管单元组成碳纳米管簇,能够有效节约成本。
在一些实施例中,碳纳米管簇的平均直径D≥0.5μm。例如,碳纳米管簇的平均直径可以为0.5μm,1μm,1.5μm,2μm,2.5μm,3μm,3.5μm或处于上述任意数值所组成的范围内。
在电极活性材料层中,当碳纳米管簇的平均直径D≥0.5μm时,其强度较高,不易与其他碳纳米管簇或电极活性材料发生缠绕,可以形成长程导电网络,且直径较大的碳纳米管簇可以有效防止电极活性材料体积变化对导电网络的影响,使得电芯在充放电过程中,导电网络能够高效保持,从而电子导通顺畅,减少极化,提升电性能。
进一步优选的,所述碳纳米管簇的平均直径D满足0.5μm≤D≤3μm。这是由于碳纳米管簇的直径过大,容易出现团聚,导致需要添加更多的碳纳米管簇使其均匀分散在电极活性材料层中,以形成导电网络,从而影响电极的能量密度,因此碳纳米管簇的直径也不宜过长。
需要说明的是,除特殊说明外,本申请中所述的碳纳米管簇的平均直径D是指,当通过SEM观察所制备的电极时,前100个具有较大直径的碳纳米管簇和后100个具有较大直径的碳纳米管簇的直径的平均值。
在一些实施例中,所述碳纳米管簇的平均长度L≥3μm。例如,碳纳米管的平均长度可以为3μm,4μm,5μm,6μm,7μm,8μm,9μm,10μm,12μm,14μm,16μm,18μm,20μm,25μm,30μm或处于上述任意数值所组成的范围内。
在上述一些实施例中,为了在电极活性材料层中形成长程导电网络,碳纳米管簇的平均长度可以≥3μm,需要说明的是,对本领域技术人 员而言,碳纳米管簇的平均长度可以根据电极活性材料层的厚度以及电极活性材料的粒径进行相应调整,一般而言,平均长度越长,越容易形成长程导电网络,因而进一步优选的,所述碳纳米管簇的平均长度L≥5μm。但是若平均长度过长,可能容易出现团聚,在电极制备的过程中形成颗粒划痕或电极凸点稳定,不利于电极的进一步加工利用,因而最优选的,所述碳纳米管簇的平均长度L满足5μm≤L≤30μm。
需要说明的是,除特殊说明外,本申请中所述的碳纳米管簇的平均长度L是指,当通过SEM观察所制备的电极时,前100个具有较长长度的碳纳米管簇和后100个具有较长长度的碳纳米管簇的长度的平均值。
在一些实施例中,碳纳米管簇与离散碳纳米管的质量比为1:0.01至1。例如,碳纳米管簇与离散碳纳米管的质量比可以为1:0.01,1:0.05,1:0.1,1:0.2,1:0.3,1:0.4,1:0.5,1:0.6,1:0.7,1:0.8,1:0.9,1:1或处于上述任意数值所组成的范围内。
在上述一些实施例中,具体限定了导电剂中碳纳米管簇与离散碳纳米管的质量比,满足此条件的导电剂,形成的导电网络既能保证形成稳定的长程导电通路,又能有效收集电极活性材料的微电流,从而使电极具有良好的导电效果。进一步优选的,碳纳米管簇与离散碳纳米管的质量比可以为1:0.1至0.5。
在一些实施例中,导电剂还可以包括第三导电剂,第三导电剂可以选自炭黑和/或石墨烯,碳纳米管簇与第三导电剂的质量比可以为1:0.01至1。例如,碳纳米管簇与第三导电剂的质量比可以为1:0.01,1:0.05,1:0.1,1:0.2,1:0.3,1:0.4,1:0.5,1:0.6,1:0.7,1:0.8,1:0.9,1:1或处于上述任意数值所组成的范围内。
在上述一些实施例中,还可以在导电剂中进一步添加第三导电剂,第三导电剂可以是炭黑和/或石墨烯。其中炭黑的加入可以与离散碳纳米管协同作用,提高收集电极活性材料微电流的效率,进一步降低电极电阻,还可以抑制在卷绕电极时电极活性材料的损伤;石墨烯的加入则可以与碳纳米管簇、离散碳纳米管形成更加紧密的导电网络,改善电极的压实密度,进一步改善电极的导电效果。在实施例中,还进一步限定了导电剂中碳纳 米管簇与第三导电剂的质量比,需要在不影响碳纳米管簇形成完整长程导电网络的基础上,添加第三导电剂以发挥上述效果。进一步优选的,碳纳米管簇与第三导电剂的质量比可以为1:0.1至0.5。
本申请对炭黑、石墨烯的具体规格不做限定,本领域技术人员可以根据需要和实际情况选择现有技术中可作为导电剂的炭黑和石墨烯。具体的,炭黑的平均粒径Dv50可以为1nm至500nm,优选的,平均粒径Dv50可以为10nm至250nm;Dv50具有本领域公知的含义,Dv50表示电在体积基准的粒度分布中,50%的颗粒粒径小于该值,Dv50可采用本领域已知的方法和仪器测定。例如,可以参照GB/T 19077-2016粒度分布激光衍射法,采用激光粒度分析仪(例如英国马尔文Mastersizer 2000E)测定。石墨烯的平均厚度可以为0.3nm至300nm,优选的,平均厚度可以为1nm至50nm。在通过SEM观察到的电极中,平均厚度对应于前100个具有较厚厚度的石墨烯的厚度和后100个具有较薄厚度的石墨烯的厚度平均值。
本申请提供的电极中,可以包括集流体,本申请对集流体不做限定,可以使用金属箔材、多孔金属板或复合集流体。复合集流体可包括高分子材料基层和形成于高分子材料基材至少一个表面上的金属层。复合集流体可通过将金属材料(铜、铜合金、镍、镍合金、钛、钛合金、银及银合金等)形成在高分子材料基材(如聚丙烯(PP)、聚对苯二甲酸乙二醇酯(PET)、聚对苯二甲酸丁二醇酯(PBT)、聚苯乙烯(PS)、聚乙烯(PE)等的基材)上而形成。作为一个示例,电极为锂离子电池的正极,正极集流体为铝箔。
在一些实施例中,集流体具有在自身厚度方向上相对的两个表面,电极活性材料层可以设置在集流体的一个表面,也可以同时设置在集流体的两个表面。例如,集流体具有在其自身厚度方向相对的两个表面,负极活性材料层设置在集流体相对的两表中的任意一个表面或两个表面上。
在一些实施例中,电极活性材料可以是本领域中通常使用的正极活性材料或负极活性材料,且对具体类型没有特别限制。
例如,正极活性材料可以使用包括锂过渡金属氧化物、橄榄石结构的含锂磷酸盐及其各自的改性化合物中的一种或几种。上述各正极活性 材料的改性化合物可以是对正极活性材料进行掺杂改性、表面包覆改性、或掺杂同时表面包覆改性。作为示例,锂过渡金属氧化物可以包括锂钴氧化物、锂镍氧化物、锂锰氧化物、锂镍钴氧化物、锂锰钴氧化物、锂镍锰氧化物、锂镍钴锰氧化物、锂镍钴铝氧化物及其改性化合物中的一种或几种。作为示例,橄榄石结构的含锂磷酸盐可以包括磷酸铁锂、磷酸铁锂与碳的复合材料、磷酸锰锂、磷酸锰锂与碳的复合材料、磷酸锰铁锂、磷酸锰铁锂与碳的复合材料及其改性化合物中的一种或几种。这些正极活性材料可以仅单独使用一种,也可以将两种以上组合使用。
负极活性材料可以使用包括碳质材料、可与锂合金化的金属化合物、可以掺杂和不掺杂锂的金属氧化物以及包括金属化合物和碳质材料的复合物中一种或几种。作为示例,碳质材料可以包括人造石墨、天然石墨、石墨化碳纤维和无定形碳中一种或几种;可与锂合金化的金属化合物可以包括硅(Si)、铝(Al)、锡(Sn)、铅(Pb)、锌(Zn)、铋(Bi)、铟(In)、镁(Mg)、镓(Ga)、镉(Cd)、Si合金、Sn合金或Al合金中一种或几种;可以掺杂和不掺杂锂的金属氧化物可以包括SiOv(0<v<2)、SnO
2、钒氧化物和锂钒氧化物中一种或几种;包括金属化合物和碳质材料的复合物可以包括Si-C复合物和/或Sn-C复合物。这些负极极活性材料可以仅单独使用一种,也可以将两种以上组合使用。
在一些实施例中,电极活性材料层以质量百分比计,还可以包括0.5%至3%粘结剂。例如,粘结剂在电极活性材料层的质量百分比可以为0.5%、1%、1.5%、2%、2.5%、3%或处于上述任意数值所组成的范围内。
在上述一些实施例中,为了确保电极活性材料颗粒之间的粘附性或者电极活性材料和集流体之间的粘附性,在电极活性材料层中进一步添加0.5%至3%粘结剂。虽然本申请的技术方案中,导电剂形成的导电网络能在一定程度上提高电极活性材料层的粘附性,但是要满足粘附要求所需导电剂的添加量过多,导电剂过量添加同样会对电极产生不利影响,且导电剂成本相对粘结剂更高,因此导电剂的添加量可按形成稳定导电网络的标准进行添加,进一步添加粘结剂以满足电极粘附性的要求。
其中,可以使用本领域中所用的普通粘结剂,并且对其类型没有 特别限制。粘结剂例如可以包括聚偏二氟乙烯-六氟丙烯共聚物、聚乙烯醇、聚丙烯腈、淀粉、羟丙基纤维素、再生纤维素、聚乙烯吡咯烷酮、四氟乙烯、聚乙烯、聚丙烯、乙烯-丙烯-二烯聚合物(EPDM)、磺化的EPDM、羧甲基纤维素、丁苯橡胶、氟橡胶、或它们的各种共聚物中一种或几种。这些粘结剂可以仅单独使用一种,也可以将两种以上组合使用。
在一些实施例中,粘结剂的重均分子量Mw可以为700,000至2,800,000。例如,粘结剂的重均分子量Mw可以为700,000、800,000、900,000、1,000,000、1,100,000、1,200,000、1,300,000、1,400,000、1,600,000、1,800,000、2,000,000、2,200,000、2,400,000、2,600,000、2,800,000或处于上述任意数值所组成的范围内。
在上述一些实施例中,没有限制粘结剂的类型,仍然可以使用上文中记载的粘结剂中的一种或几种,对粘结剂的重均分子量进行了进一步限定。粘结剂的重均分子量过低时,粘结剂的粘度偏低,不利于粘结剂粘结性能的提升,但重均分子量过高时,不易溶解而导致加工困难,同样不利于粘结剂粘结性能的提升。同时在本申请中,还需要进一步考虑到导电剂形成的导电网络的作用,在一些实施例中,粘结剂的重均分子量不易太高,综合考虑控制粘结剂的重均分子量在700,000至2,800,000,可以得到粘结性良好的粘结剂,从而可以相对降低粘结剂的添加量,进而提高电极的离子电导率。进一步优选的,粘结剂的重均分子量Mw可以为1,100,000至2,200,000。
需要说明的是,本申请中,粘结剂的重均分子量Mw具有本领域公知的含义,Mw表示粘结剂以质量作为加权进行统计的分子量结果,粘结剂的重均分子量Mw可采用本领域已知的方法和仪器测定。例如,可以使用凝胶色谱法(GPC)对粘结剂的重均分子量Mw进行测定。
在一些实施例中,粘结剂的数均分子量Mn与粘结剂的重均分子量Mw可以满足:1.5≤Mw/Mn≤3。例如,Mw/Mn可以为1.6,1.7,1.8,1.9,2.1,2.2,2.3,2.4,2.5,2.6,2.7,2.8,2.9,3或处于上述任意数值所组成的范围内。
在上述一些实施例中,进一步限定的粘结剂的数均分子量Mn与 粘结剂的重均分子量Mw满足的关系,Mw/Mn的数值可以表示粘结剂的分子量分布,数值越大说明粘结剂的分子量分布越宽,数值越小说明粘结剂的分子量分布越窄。具体而言,当Mw/Mn过大时,说明粘结剂中有部分分子量过大,还有部分分子量过小,而分子量大的粘结剂分子不易溶解,小分子粘结剂在电极活性材料浆料中容易团聚,不利于粘结剂粘结性能的提升;当Mw/Mn过小时,说明粘结剂中各分子量相对均一,但是由于为了减少粘结剂的添加量,一般要求粘结剂的分子量较高,因而若粘结剂分子量过于均一,没有分子量相对较低的粘结剂分子,一方面会导致电极活性材料浆料在导电剂和粘结剂的作用下,粘度过高不易分散涂布,影响加工,另一方面涂布干燥后,电极在冷压过程中,由于大分子粘结剂的强粘结作用,导致颗粒之间作用力大,无法有效滑移,在高压实密度下对集流体破坏严重,甚至导致电极脆断。因此控制Mw/Mn在1.5至3的范围内,在此条件下,可以保证粘结剂粘结性能的同时,小分子粘结剂可以提高电极活性材料浆料的可加工性,同时使干燥后电极中颗粒可以相对滑移,可提高电极的压实密度,在相同面密度下降低电极厚度,另外,小分子粘结剂还可以提高电解液的浸润性,从而提高离子电导率,提高电芯的倍率性能。进一步优选的,粘结剂的数均分子量Mn与粘结剂的重均分子量Mw可以满足:2.1≤Mw/Mn≤2.4。
需要说明的是,本申请中,粘结剂的数均分子量Mn具有本领域公知的含义,Mn表示粘结剂以数目为加权进行统计的分子量结果,粘结剂的数均分子量Mn可采用本领域已知的方法和仪器测定。例如,可以使用凝胶色谱法(GPC)对粘结剂的数均分子量Mn进行测定。
在一些实施例中,电极活性材料层以质量百分比计,可以包括0.2%至2%导电剂、0.5%至1.5%粘结剂、96.5%至99.3%电极活性材料。
在上述一些实施例中,进一步限定了电极活性材料层中导电剂、粘结剂以及电极活性材料的质量百分比,使用上述导电剂,只需要较少的添加量,即可形成稳定的导电网络,保证电极具有较好的导电效果,同时由于导电网络的存在,可以相对降低粘结剂的使用量,更进一步,使用满足上述重均分子量及数均分子量的粘结剂,通过高低分子量的搭配,在满 足电极活性材料浆料和电极具有良好可加工性的前提下,具有良好的粘结性能,从而进一步降低粘结剂的使用量。从而在电极活性材料层中导电剂和粘结剂的质量百分比可控制在较低水平,进一步提高电极的能量密度;同时减少粘结剂的添加量,可以增加离子的传输路径,减少电极极化。因此,在本申请的一些实施例中,可以将电极活性材料层中的各组分的质量百分比控制在上述范围时,电极具有良好的倍率性能。进一步优选的,电极活性材料层以质量百分比计,可以包括0.5%至1%导电剂、0.7%至1.3%粘结剂、97.7%至98.8%电极活性材料。进一步优化各组分的含量,保证电极导电效果以及离子电导率的前提下,提高电极的能量密度。
在一些实施例中,粘结剂的熔点T
1可以为160℃至185℃;和/或粘结剂的热分解温度T
2可以为460℃至495℃。
在上述一些实施例中,满足上述重均分子量及数均分子量的粘结剂同时具有合适的熔点和热分解温度,因此具有较好的稳定性,使电极在加工或使用过程中具有较好的稳定性。进一步优选的,粘结剂的熔点T
1可以为172℃至180℃;和/或粘结剂的热分解温度T
2可以为480℃至490℃。
本申请中,粘结剂的熔点T
1以及热分解温度T
2具有本领域公知的含义,可采用本领域已知的方法和仪器测定。
在一些实施例中,电极活性材料层的压实密度P.D可以为3.8mg/cm
3至4.3mg/cm
3。
在上述一些实施例中,电极活性材料层的压实密度P.D具有本领域公知的含义,可采用本领域已知的方法和仪器测定。电极活性材料层的压实密度与电极的能量密度具有较大关系,其计算方式为电极活性材料层的面密度比电极活性材料层的厚度,因此在面密度一定的前提下,可以通过提高压实密度来降低电极活性材料层的厚度,由此可以降低离子传输路程,提高离子电导率;但是若压实密度过高,电解液不易浸润电极,无法形成完整的离子通路,反而会降低离子电导率。通过使用上述导电剂、粘结剂,其中导电剂除却保证电极的导电效果外,可降低粘结剂的使用量,大分子和小分子搭配的粘结剂,能在保证形成完成离子通路的前提下,进一步提高压实密度,由此当电极活性材料层的压实密度P.D满足3.8mg/cm
3 至4.3mg/cm
3时,电极的导电效果以及离子电导率较好。进一步优选的,电极活性材料层的压实密度P.D可以为3.95mg/cm
3至4.15mg/cm
3。
在一些实施例中,电极活性材料的Dv99和电极活性材料层的厚度H可以满足0.6≤H/Dv99≤3。例如,H/Dv99可以为0.6,0.7,0.8,0.9,1.0,1.1,1.2,1.3,1.4,1.5,1.6,1.7,1.8,1.9,2.0,2.1,2.3,2.4,2.5,2.6,2.7,2.8,2.9,3或处于上述任意数值所组成的范围内。
本申请中,电极活性材料的Dv99具有本领域公知的含义,Dv99表示电极活性材料在体积基准的粒度分布中,99%的颗粒粒径小于该值,电极活性材料的Dv99可采用本领域已知的方法和仪器测定。例如,可以参照GB/T 19077-2016粒度分布激光衍射法,采用激光粒度分析仪(例如英国马尔文Mastersizer 2000E)测定。
在上述一些实施例中,具体限定了电极活性材料层的厚度与电极活性材料最大粒径的关系,若H/Dv99值过小,会导致电极不易加工,在冷压过程中部分电极活性材料发生破裂,从而影响电极中导电网络的完整性,对电极的导电效果产生不利影响;若H/Dv99值过大,即电极活性材料的粒径较小,则冷压后电极中的电极活性材料之间过于紧密,在充放电过程中,随着电极活性材料体积的变化,不利于形成稳定的离子通路,由此会降低电极的倍率性能。由此,可以将H/Dv99控制在0.6至3,此时电极具有良好的导电效果以及离子电导率。进一步优选的,电极活性材料的Dv99和电极活性材料层的厚度H可以满足1≤H/Dv99≤1.8。
制造电极的方法
本申请还提供了一种制造电极的方法,可以包括以下步骤:
S10制备碳纳米管簇、离散碳纳米管的分散体;
S20将碳纳米管簇分散体、离散碳纳米管分散体和电极活性材料添加到溶剂中电极活性材料浆料。
【碳纳米管分散体的制备】
在一些实施例中,步骤S10具体可以包括:
S11将常规碳纳米管原料和分散剂添加到分散介质得到混合溶液;
S12通过混合溶液施加剪切力来分散常规碳纳米管原料得到碳纳 米管簇的分散体。
在一些实施例中,步骤S11中,分散介质可以包括二甲基甲酰胺(DMF)、二乙基甲酰胺、二甲基乙酰胺(DMAc)、N-甲基吡咯烷酮(NMP)、如甲醇、乙醇、1-丙醇、2-丙醇(异丙醇)、1-丁醇(正丁醇)、2-甲基-1-丙醇(异丁醇)、2-丁醇(仲丁醇)、1-甲基-2-丙醇(叔丁醇)、戊醇、己醇、庚醇或辛醇;二醇,诸如乙二醇、二乙二醇、三乙二醇、丙二醇、1,3-丙二醇、1,3-丁二醇、1,5-戊二醇、己二醇、甘油、三羟甲基丙烷、季戊四醇、山梨糖醇、乙二醇单甲醚、二乙二醇单甲醚、三乙二醇单甲醚、四乙二醇单甲醚、乙二醇单乙醚、二乙二醇单乙醚、三乙二醇单乙醚、四乙二醇单乙醚、乙二醇单丁醚、二乙二醇单丁醚、三乙二醇单丁醚、四乙二醇单丁醚、丙酮、甲基乙基酮、甲基丙基酮、环戊酮、乙酸乙酯、γ-丁内酯和ε-丙内酯中一种或几种。这些分散介质可以仅单独使用一种,也可以将两种以上组合使用。作为一个示例的,分散介质可以是N-甲基吡咯烷酮(NMP)。常规碳纳米管原料以及碳纳米管簇在上述分散介质中具有良好的分散性。
在一些实施例中,步骤S11中,分散剂可以包括氢化丁腈橡胶、聚偏二氟乙烯和羧甲基纤维素中的一种或几种。作为一个示例的,分散剂可以是氢化丁腈橡胶。分散剂可以提高常规碳纳米管原料以及碳纳米管簇在分散介质中的分散稳定性。
在一些实施例中,步骤S11中,常规碳纳米管原料可以是碳纳米管单元的键合体或聚集体,作为一个示例的,常规碳纳米管原料可以是多壁碳纳米管单元的聚集体。
在一些实施例中,步骤S11中,常规碳纳米管原料在混合溶液中的质量百分比可以为1%至4%。在此条件下,常规碳纳米管原料在混合溶液中以适当的水平分散,形成适当规格的碳纳米管簇。作为一个示例的,常规碳纳米管原料在混合溶液中的质量百分比可以为1.5%。
在一些实施例中,步骤S11中,常规碳纳米管原料与分散剂的质量比可以为1:0.1至10。在此条件下,常规碳纳米管原料在混合溶液中以适当的水平分散,形成适当规格的碳纳米管簇,同时提高碳纳米管簇的分散稳定性。作为一个示例的,常规碳纳米管原料与分散剂的质量比可以为 1:2。
在一些实施例中,步骤S11中,混合溶液中的固含量为1.5wt%至20wt%。在此条件下,常规碳纳米管原料在混合溶液中以适当的水平分散,形成适当规格的碳纳米管簇,同时提高碳纳米管簇的分散稳定性。
在一些实施例中,步骤S12中,可以通过使用如均化器、珠磨机、球磨机、砂磨机、篮式粉碎机、磨碎机、通用搅拌器、透明混合机、钉磨机、TK混合机的混合装置或超声分散设备来对混合溶液施加剪切力来分散常规碳纳米管原料得到碳纳米管簇的分散体。特别的,使用球磨法可以控制碳纳米管簇的直径,从而得到满足本申请第一方面任一实施例中碳纳米管簇的要求。
在一些实施例中,步骤S12可以具体包括:将混合溶液添加到包含砂磨球的容器中,旋转容器得到碳纳米管簇的分散体,
其中,砂磨球的平均直径可以为0.5至2.5mm,容器的转速可以为500至6000rpm,球磨的时间可以为0.5至2h。在此条件下,能够不破坏碳纳米管单元的结构且能够适当调控碳纳米管簇的直径。球磨的时间是指使用球磨的总时间,例如,如果执行多次球磨,则球磨的时间是指多次球磨的总时间。
上述球磨条件时用于将常规碳纳米管原料适当分散,特别是排除将常规碳纳米管原料分散为直径不超过0.2μm碳纳米管簇或单链碳纳米管的条件。即球磨条件用于将常规碳纳米管原料适当分散,以形成其中碳纳米管单元彼此并排结合得到直径大于0.2μm的碳纳米管簇。仅在严格地控制混合溶液的组成、分散工序的条件等,才能实现。
需要说明的是,对于碳纳米管簇的平均直径主要通过砂磨球的平均直径、转速以及球磨时间控制,一般而言,适当提高磨砂球的直径,降低转速和球磨时间,在分散常规碳纳米管原料得到碳纳米管簇的前提下,提高碳纳米管簇的平均直径。另外碳纳米管簇的平均长度主要通过常规碳纳米管原料中碳纳米管单元的长度决定。本领域技术人员可以根据需要进行相应选择调整。
【离散碳纳米管分散体的制备】
在制备包含第一方面实施例的常规碳纳米管原料、分散介质和分散剂的混合溶液后,可以通过使用如均化器、珠磨机、球磨机、砂磨机、篮式粉碎机、磨碎机、通用搅拌器、透明混合机、钉磨机、TK混合机的混合装置或超声分散设备来对混合溶液施加剪切力来分散常规碳纳米管原料得到离散碳纳米管的分散体。分散介质和分散剂可以与上述碳纳米管簇分散体的制备中所用的分散介质和分散剂相同,在此不做重复描述。
在一些实施例中,步骤S20中,电极活性材料浆料中还可以添加第三导电剂和/或粘结剂。需要说明的是,电极活性材料、第三导电剂、粘结剂可以参照第一方面的实施例进行选择。当添加第三导电剂时,第三导电剂可以选自炭黑和/或石墨烯,步骤S10中还包括炭黑、石墨烯的分散体的还制备。
【炭黑分散体的制备】
在制备包含第一方面实施例的炭黑原料、分散介质和分散剂的混合溶液后,可以通过使用如均化器、珠磨机、球磨机、砂磨机、篮式粉碎机、磨碎机、通用搅拌器、透明混合机、钉磨机、TK混合机的混合装置或超声分散设备来对混合溶液施加剪切力来分散炭黑原料得到炭黑的分散体。分散介质和分散剂可以与上述碳纳米管簇分散体的制备中所用的分散介质和分散剂相同,在此不做重复描述。
【石墨烯的制备】
在制备包含第一方面实施例的石墨烯原料、分散介质和分散剂的混合溶液后,可以通过使用如均化器、珠磨机、球磨机、砂磨机、篮式粉碎机、磨碎机、通用搅拌器、透明混合机、钉磨机、TK混合机的混合装置或超声分散设备来对混合溶液施加剪切力来分散石墨烯原料得到石墨烯的分散体。分散介质和分散剂可以与上述碳纳米管簇分散体的制备中所用的分散介质和分散剂相同,在此不做重复描述。
溶剂可以包括二甲基甲酰胺(DMF)、二乙基甲酰胺、二甲基乙酰胺(DMAc)、N-甲基吡咯烷酮(NMP)、如甲醇、乙醇、1-丙醇、2-丙醇(异丙醇)、1-丁醇(正丁醇)、2-甲基-1-丙醇(异丁醇)、2-丁醇(仲丁醇)、1-甲基-2-丙醇(叔丁醇)、戊醇、己醇、庚醇或辛醇;二醇,诸如乙二醇、二乙二醇、 三乙二醇、丙二醇、1,3-丙二醇、1,3-丁二醇、1,5-戊二醇、己二醇、甘油、三羟甲基丙烷、季戊四醇、山梨糖醇、乙二醇单甲醚、二乙二醇单甲醚、三乙二醇单甲醚、四乙二醇单甲醚、乙二醇单乙醚、二乙二醇单乙醚、三乙二醇单乙醚、四乙二醇单乙醚、乙二醇单丁醚、二乙二醇单丁醚、三乙二醇单丁醚、四乙二醇单丁醚、丙酮、甲基乙基酮、甲基丙基酮、环戊酮、乙酸乙酯、γ-丁内酯和ε-丙内酯中一种或几种。这些溶剂可以仅单独使用一种,也可以将两种以上组合使用。溶剂可以与分散介质相同或不同。作为一个示例的,溶剂可以为N-甲基吡咯烷酮(NMP)。
在一些实施例中,电极活性材料浆料中固含量为50wt%至80wt%。
电极的制备方法还可以包括:将电极活性材料浆料干燥得到电极活性材料层。具体的,电极活性材料层可以通过将电极活性材料浆料涂覆在集流体上然后干燥所涂覆的集流体的方法来形成,或者可以通过将电极活性材料浆料浇铸在单独的载体上然后将从载体分离出的膜层压在集流体上的方法来形成。进一步,通过控制电极活性材料涂覆在集流体上的添加量,来调整电极活性材料层的面密度。
如果需要,在通过上述方法形成电极活性材料层之后,可以进一步执行辊压工序。在这种情况下,考虑到最终制备的电极的物理性质,如电极中活性材料层的厚度,可以在适当的条件下执行干燥和辊压,并没有特别限制。
二次电池
本申请第二方面提供了一种二次电池,包括:正极、负极、隔膜和电解液;
其中,所述正极和所述负极中的至少一个为根据第一方面任一实施例所述的电极。
本申请的技术方案中,二次电池的正极或负极至少一个为第一方面任一实施例所述的电极,上文已对电极的实施例进行详细描述和说明,在此不再重复。可以理解的是,本申请的二次电池可以实现本申请的电极的上述任一实施例的有益效果。
在一些实施例中,正极为根据第一方面任一实施例所述的电极。
在上述一些实施例中,使用第一方面任一实施例的电极作为正极,这是由于现有技术中目前大量使用的负极活性材料为石墨,其自身具有良好的导电性,相较之下将第一方面的电极作为正极更具有现实意义,但是本申请并不限于将其应用于正极中,将其作为以石墨为电极活性材料的负极,电极依然具有第一方面的有益效果,另外对于非石墨的负极,如硅基负极活性材料,本申请提供的电极作为负极同样具有很好的应用前景。
同时需要说明的是,提高电芯的能量密度并不仅仅是提高单一电极的能量密度,当使用厚电极作为电芯正极时,需要适应性提高负极的容量,这是本领域技术人员所公知的。
【隔膜】
隔膜设置在正极和负极之间,主要起到防止正负极短路的作用,同时可以使活性离子通过。本申请对隔膜的种类没有特别的限制,可以选用任意公知的具有良好的化学稳定性和机械稳定性的多孔结构隔膜。
在一些实施方式中,隔膜的材质可以选自玻璃纤维、无纺布、聚乙烯、聚丙烯、聚偏氟乙烯中的一种或几种,但不仅限于这些。可选地,隔膜的材质可以包括聚乙烯和/或聚丙烯。隔膜可以是单层薄膜,也可以是多层复合薄膜。隔膜为多层复合薄膜时,各层的材料相同或不同。在一些实施方式中,隔膜上还可以设置陶瓷涂层、金属氧化物涂层。
【电解液】
电解液在正极和负极之间起到传导活性离子的作用。可用于本申请二次的电解液可以为现有技术已知的电解液。
在一些实施例中,所述电解液可包括有机溶剂、电解质盐和可选的添加剂,有机溶剂、锂盐和添加剂的种类均不受到具体的限制,可根据需求进行选择。
在一些实施例中,电化学装置为锂离子电池,所述电解质盐可以包括锂盐。作为示例,所述锂盐包括但不限于LiPF
6(六氟磷酸锂)、LiBF
6(四氟硼酸锂)、LiClO
4(高氯酸锂)、LiFSI(双氟磺酰亚胺锂)、LiTFSI(双三氟甲磺酰亚胺锂)、LiTFS(三氟甲磺酸锂)、LiDFOB(二氟草酸硼酸锂)、LiBOB(二草酸硼酸锂)、LiPO
2F
2(二氟磷酸锂)、LiDFOP(二氟 二草酸磷酸锂)及LiTFOP(四氟草酸磷酸锂)中的至少一种。上述锂盐可以单独使用一种,也可以同时使用两种或两种以上。
在一些实施例中,电化学装置为钠离子电池,所述电解质盐可以包括钠盐。作为示例,钠盐可选自NaPF
6、NaClO
4、NaBCl
4、NaSO
3CF
3及Na(CH
3)C
6H
4SO
3中的至少一种。
在一些实施例中,作为示例,所述有机溶剂包括但不限于碳酸亚乙酯(EC)、碳酸亚丙酯(PC)、碳酸甲乙酯(EMC)、碳酸二乙酯(DEC)、碳酸二甲酯(DMC)、碳酸二丙酯(DPC)、碳酸甲丙酯(MPC)、碳酸乙丙酯(EPC)、碳酸亚丁酯(BC)、氟代碳酸亚乙酯(FEC)、甲酸甲酯(MF)、乙酸甲酯(MA)、乙酸乙酯(EA)、乙酸丙酯(PA)、丙酸甲酯(MP)、丙酸乙酯(EP)、丙酸丙酯(PP)、丁酸甲酯(MB)、丁酸乙酯(EB)、1,4-丁内酯(GBL)、环丁砜(SF)、二甲砜(MSM)、甲乙砜(EMS)及二乙砜(ESE)中的至少一种。上述有机溶剂可以单独使用一种,也可以同时使用两种或两种以上。可选地,上述有机溶剂同时使用两种或两种以上。
在一些实施例中,所述添加剂可以包括负极成膜添加剂、正极成膜添加剂,还可以包括能够改善电池某些性能的添加剂,例如改善电池过充性能的添加剂、改善电池高温或低温性能的添加剂等。
作为示例,所述添加剂包括但不限于氟代碳酸乙烯酯(FEC)、碳酸亚乙烯酯(VC)、乙烯基碳酸乙烯酯(VEC)、硫酸乙烯酯(DTD)、硫酸丙烯酯、亚硫酸乙烯酯(ES)、1,3-丙磺酸内酯(PS)、1,3-丙烯磺酸内酯(PST)、磺酸酯环状季铵盐、丁二酸酐、丁二腈(SN)、己二腈(AND)、三(三甲基硅烷)磷酸酯(TMSP)、三(三甲基硅烷)硼酸酯(TMSB)中的至少一种。
电解液可以按照本领域常规的方法制备。例如,可以将有机溶剂、电解质盐、可选的添加剂混合均匀,得到电解液。各物料的添加顺序并没有特别的限制,例如,将电解质盐、可选的添加剂加入到有机溶剂中混合均匀,得到电解液;或者,先将电解质盐加入有机溶剂中,然后再将可选的添加剂加入有机溶剂中混合均匀,得到电解液。
电子设备
本申请第三方面提供了一种电子设备,包括本申请第二方面的二次电池。
本申请的电子设备没有特别限定,其可以是用于现有技术中已知的任何电子设备。在一些实施例中,电子设备可以包括但不限于,笔记本电脑、笔输入型计算机、移动电脑、电子书播放器、便携式电话、便携式传真机、便携式复印机、便携式打印机、头戴式立体声耳机、录像机、液晶电视、手提式清洁器、便携CD机、迷你光盘、收发机、电子记事本、计算器、存储卡、便携式录音机、收音机、备用电源、电机、汽车、摩托车、助力自行车、自行车、照明器具、玩具、游戏机、钟表、电动工具、闪光灯、照相机、家庭用大型蓄电池和锂离子电容器等。
以下,说明本申请的实施例。下面描述的实施例是示例性的,仅用于解释本申请,而不能理解为对本申请的限制。实施例中未注明具体技术或条件的,按照本领域内的文献所描述的技术或条件或者按照产品说明书进行。所用试剂或仪器未注明生产厂商者,均为可以通过市购获得的常规产品。
碳纳米管簇分散体的制备:
将由平均直径在3nm以上且平均长度在3μm以上的多壁碳纳米管单元组成的常规多壁碳纳米管原料和氢化丁腈橡胶混合在NMP中得到混合溶液,其中混合溶液中固含量为1.5wt%至20wt%,常规多壁碳纳米管原料与氢化丁腈橡胶的质量比为1:0.1至10。
将混合溶液添加到包含砂磨球的容器中,旋转容器得到碳纳米管簇的分散体,其中,砂磨球的平均直径可以为0.5至2.5mm,容器的转速可以为500至6000rpm,球磨的时间可以为0.5至2h。
通过控制常规多壁碳纳米管原料的规格以及球磨的条件得到不同规格碳纳米管簇的分散体备用。
离散碳纳米管分散体的制备:
将由平均直径在10nm至35nm以上且平均长度在0.7μm至4μm的多壁碳纳米管单元组成的离散碳纳米管原料和聚偏二氟乙烯混合在NMP 中得到混合溶液,其中混合溶液中固含量为1.5wt%至20wt%,离散碳纳米管原料与聚偏二氟乙烯的质量比为1:0.1至10。
将混合溶液添加到包含砂磨球的容器中,旋转容器得到碳离散碳纳米管的分散体,其中,砂磨球的平均直径可以为0.5至2.5mm,容器的转速可以为500至6000rpm,球磨的时间可以为0.5至2h。
通过控制离散碳纳米管原料的规格以及球磨的条件得到不同规格离散碳纳米管的分散体备用。
炭黑分散体的制备:将由平均直径在40nm且比表面积为62m
2/g的炭黑粉末和聚偏二氟乙烯混合在NMP中得到混合溶液,其中混合溶液中固含量为1.5wt%至20wt%,常规炭黑粉末原料与聚偏二氟乙烯的质量比为1:0.1至10。
将混合溶液添加到包含砂磨球的容器中,旋转容器得到炭黑的分散体,其中,砂磨球的平均直径可以为0.5至2.5mm,容器的转速可以为500至6000rpm,球磨的时间可以为0.5至2h。
通过控制常规炭黑原料的规格以及球磨的条件得到不同规格炭黑的分散体备用。
石墨烯分散体的制备:将由平均片径在5μm至15μm且片层在7至20层的石墨烯和聚偏二氟乙烯混合在NMP中得到混合溶液,其中混合溶液中固含量为1.5wt%至20wt%,常规石墨烯原料与聚偏二氟乙烯的质量比为1:0.1至10。
将混合溶液添加到包含砂磨球的容器中,旋转容器得到石墨烯的分散体,其中,砂磨球的平均直径可以为0.5至2.5mm,容器的转速可以为500至6000rpm,球磨的时间可以为0.5至2h。
通过控制石墨烯的规格以及球磨的条件得到不同规格石墨烯的分散体备用。
锂离子电池倍率性能测试:
充电100%SOC时间测试方法
在(25±3)℃的环境下,电池分别用不同倍率(1.0C,1.5C,3C,6C,10C)电流进行恒流充电至电压为设定值(对于正极活性材料为LCO电 压为4.5V,4.52V,4.53V,4.55V,4.58V),之后改为恒压充电至截止电流0.05C,得到电池状态为100%SOC,达到此状态的充电时间为100%SOC满充充电时间。
1C放电容量保持率(1C DC ratio)测试方法
在(25±3)℃的环境下,电池首先使用0.5C倍率电流进行恒流充电至电压为设定值(对于正极活性材料为LCO电压为4.5V,4.52V,4.53V,4.55V,4.58V),之后改为恒压充电至截止电流0.025C,搁置30min,使用0.2C倍率电流进行放电至电压为设定值(对于正极活性材料为LCO电压为3.0V),放电容量为D0;搁置5min,使用0.5C倍率电流进行恒流充电至电压为设定值(对于正极活性材料为LCO电压为4.5V,4.52V,4.53V,4.55V,4.58V),之后改为恒压充电至截止电流0.025C,搁置30min,使用1.0C倍率电流进行放电至电压为设定值(对于正极活性材料为LCO电压为3.0V),放电容量为D1,则1C放电容量保持率(1C DC ratio)=D1/D0*100%
实施例1
正极的制备:
将质量比为98.1:0.8:1.1的正极活性材料、导电剂、粘结剂混合在NMP中得到正极活性浆料,其中,正极活性材料Dv99为38μm的钴酸锂(LCO),导电剂为质量比为1:0.2的碳纳米管簇和离散碳纳米管的混合物,正极活性浆料的固含量为72wt%,碳纳米管簇的平均直径D、平均长度L以及其包含的碳纳米管簇单元的平均直径d如表1所示,粘结剂为重均分子量Mw为220,分子量分布Mw/Mn为2.2、熔点为176.1℃、热分解温度为482℃的聚偏二氟乙烯;将正极活性浆料涂覆在铝箔上,将铝箔在95℃烘干,经过冷压、裁片、分切后,在85℃的真空条件下干燥4h,得到正极活性材料层的面密度C.W
1、厚度H
1、压实密度P.D如表1所示的正极。
负极的制备:
将质量比为96.4:1.5:0.5:1.6的人造石墨负极活性材料、导电剂Super P、增稠剂羧甲基纤维素钠(CMC)、粘结剂丁苯橡胶(SBR)混合 在去离子水中得到负极活性浆料,其中负极活性浆料的固含量为54wt%;将负极活性浆料涂覆在铜箔上,将铜箔在85℃下烘干,然后经过冷压、裁片、分切后,在80℃的真空条件下干燥12h,得到正极活性材料层的面密度C.W
2、厚度H
2如表1所示的负极。
电解液制备:选用常规1.5mol/L浓度六氟磷酸锂电解液。
隔离膜的制备:选用7μm厚的聚乙烯(PE)隔离膜基材涂覆3μm陶瓷涂层。
锂离子电池的制备:将正极、隔离膜、负极按顺序叠好,使隔离膜处于正、负极之间起到隔离的作用,然后卷绕得到裸电芯;焊接极耳后将裸电芯置于外包装箔铝塑膜中,将上述制备好的电解液注入到干燥后的裸电芯中,经过真空封装、静置、化成(0.02C恒流充电到3.3V,再以0.1C恒流充电到3.6V)、整形、容量测试等工序,获得软包锂离子电池。
实施例2至17
正极的制备与实施例1类似,区别仅在于面密度C.W
1、厚度H
1、压实密度P.D、碳纳米管簇规格不同,具体如表1所示。
负极的制备与实施例1类似,区别仅在于面密度C.W
2、厚度H
2不同,具体如表1所示。
电解液、隔离膜以及锂离子电池的制备与实施例1相同。
对比例1至10
正极的制备与实施例1类似,区别仅在于导电剂为离散碳纳米管,面密度C.W
1、厚度H
1、压实密度P.D不同,具体如表1所示。
负极的制备与实施例1类似,区别仅在于面密度C.W
2、厚度H
2不同,具体如表1所示。
电解液、隔离膜以及锂离子电池的制备与实施例1相同。
性能测试
对实施例1至17和对比例1至10得到的锂离子电池进行倍率性 能测试,结果如表1。
表1
注:表1中“/”表示无该组分。
从表1的结果可知,通过将实施例1至5与对比例1至10可知,在相同的压实密度条件下,含有碳纳米管簇作为导电剂的锂离子电池的倍率性能更好,尤其是相较于对比例1至5,厚电极的充电速率以及能量效率均高于薄电极,说明使用一定比例的碳纳米管簇和离散碳纳米管的混合物作为导电剂,即使在厚电极中,依然能形成良好的导电网络,能够提高电解液的浸润性,提高电极的离子电导率,从而使厚电极的导电效果和离子电导率高于薄电极,在提高能量密度的同时,不影响电芯的倍率性能,甚至是更好。
通过将实施例4与实施例6至11、15至17可知,导电剂中碳纳米管簇的长度、直径以及所包含碳纳米管单元的直径,对电极的导电效果以及离子电导率具有一定的影响,为了得到倍率性能更好的电芯,应该将碳纳米管的规格控制在一定范围内,其中可能的原因在上文中以进行过相应描述,在此便不再重复说明。
将实施例4与实施例12至14对比可知,电极的压实密度对锂离子电池的倍率性能具有一定的影响,应当根据导电剂、粘结剂、电极活性材料选择合适的压实密度。过大的压实密度不利于离子的导通,而过小的压实密度则会增加离子的运输路程,因此需要将在增加电极厚度的同时,控制压实密度在一定范围内。
实施例18至32
正极的制备与实施例4类似,区别仅在于粘结剂为重均分子量Mw、分子量分布Mw/Mn、熔点T
1、热分解温度T
2不同的聚偏二氟乙烯,以及粘结剂、正极活性材料在电极活性材料层的添加量不同,具体如表2所示。
负极、电解液、隔离膜以及锂离子电池的制备与实施例4相同。
性能测试
对实施例18至32得到的锂离子电池进行倍率性能测试,结果如表2,为了进行比较将表1中实施例4的结果也表2中表示出。
表2
注:表2中仅示出粘结剂在正极活性材料层中质量百分比,正极活性材料层中导电剂的质量百分比为0.8%不变,其余为正极活性材料。
从表2的结果可知,将实施例4与实施例18至26、30至32进行对比,说明粘结剂的重均分子量以及分子量分布对电芯的倍率性能具有一定影响,其可能的原因在上文中已经进行了分析,在此不再重复。为了在较低添加量的前提下,具有良好的粘结性能,保证电极活性材料之间以及电极活性材料层与集流体之间具有良好的粘附性,需要将重均分子量以及分子量分布控制在一定范围内,以得到导电效果和离子电导率良好的电极,以提高电芯的倍率性能。
将实施例4与实施例27至29进行对比,粘结剂的含量对电芯的倍率性能影响相对较小,在保证电极活性材料之间以及电极活性材料层与集流体之间具有良好的粘附性的前提下,可以相对降低粘结剂的添加量,但不宜过多。
实施例33
正极的制备与实施例4类似,区别仅在于导电剂为质量比为1:0.1:0.1的碳纳米管簇、离散碳纳米管和炭黑的混合物。
负极、电解液、隔离膜以及锂离子电池的制备与实施例4相同。
实施例34
正极的制备与实施例4类似,区别仅在于导电剂为质量比为1:0.1:0.1的碳纳米管簇、离散碳纳米管和石墨烯的混合物。
负极、电解液、隔离膜以及锂离子电池的制备与实施例4相同。
实施例35至39
正极的制备与实施例4类似,区别仅在于导电剂在正极活性材料层中质量百分比不同,具体见表3。
负极、电解液、隔离膜以及锂离子电池的制备与实施例4相同。
对比例11
正极的制备与实施例4类似,区别仅在于导电剂为质量比为1:1的离散碳纳米管和炭黑的混合物。
负极、电解液、隔离膜以及锂离子电池的制备与实施例4相同。
对比例12
正极的制备与实施例4类似,区别仅在于导电剂为质量比为1:1的离散碳纳米管和石墨烯的混合物。
负极、电解液、隔离膜以及锂离子电池的制备与实施例4相同。
对比例13
正极的制备与实施例4类似,区别仅在于导电剂为质量比为1:1的炭黑和石墨烯的混合物。
负极、电解液、隔离膜以及锂离子电池的制备与实施例4相同。
性能测试
对实施例4、33至39,对比例11至13得到的锂离子电池进行倍率性能测试,结果如表3。
表3
注:表3中仅示出导电剂在正极活性材料层中质量百分比,正极活性材料层中粘结剂剂的质量百分比为1.1%不变,其余为正极活性材料。
从表3的结果可知,实施例4得到的锂离子电池在不同的充电倍率下,均具有较快的充电速率,同时能量效率较高,说明使用本发明提供的导电剂以及粘合剂得到的厚电极,在提升电芯能量密度的同时,还能使电芯具有良好的倍率性能。
将各实施例与对比例进行对比可知,使用添加有碳纳米管簇的导电剂可以使电极具有更好的导电效果和离子电导率,从而在高充电倍率下具有更快的充电速度,同时具有良好的能量效率。
将实施例4与实施例33、34对比可知,离散碳纳米管相较于炭黑具有更好的微电流收集作用,更有利于形成短程导电通路,而当同时使用碳纳米管簇、离散碳纳米管与石墨烯作为导电剂时,得到电芯的倍率性能最好,这可能是由于石墨烯的加入进一步提高导电网络的紧密度和稳定性,从而使厚电极的导电效果和离子电导率进一步提高,进而使电芯具有更好的倍率性能。
将实施例4与实施例35至39对比可知,虽然导电剂的添加量越多,电极的导电效果越好,但是添加量过多可能会导致离子导通困难,反而会使电芯的倍率性能降低,因此在保证形成完整导电网络的前提下,适当降低导电剂的用量,保证厚电极具有良好的导电效果和离子电导率。
需要说明的是,在不冲突的情况下,本申请中的实施例及实施例中的特征可以相互组合。
最后应说明的是:以上实施例仅用以说明本申请的技术方案,而非对其限制;尽管参照前述实施例对本申请进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换,但这些修改或者替换,并不使相应技术方案的本质脱离本申请各实施例技术方案的精神和范围。
Claims (17)
- 一种电极,包括:电极活性材料层,所述电极活性材料层的面密度为8mg/cm 2至40mg/cm 2,所述电极活性材料层的厚度H为25μm至80μm,所述电极活性材料层以质量百分比计,包括95%至99.3%电极活性材料和0.2%至5%导电剂,其中,所述导电剂包括碳纳米管簇和离散碳纳米管,所述碳纳米管簇由多根束状排列的碳纳米管单元组成,所述碳纳米管簇的直径>0.2μm。
- 根据权利要求1所述的电极,其中,所述碳纳米管单元的平均直径d满足3nm≤d≤40nm;可选的,所述碳纳米管单元的平均直径d满足5nm≤d≤20nm。
- 根据权利要求2所述的电极,其中,所述碳纳米管单元为多壁碳纳米管单元。
- 根据权利要求1所述的电极,其中,所述碳纳米管簇的平均直径D≥0.5μm;可选的,所述碳纳米管簇的平均直径D满足0.5μm≤D≤3μm。
- 根据权利要求1所述的电极,其中,所述碳纳米管簇的平均长度L≥3μm;可选的,所述碳纳米管簇的平均长度L≥5μm;可选的,所述碳纳米管簇的平均长度L满足5μm≤L≤30μm。
- 根据权利要求1所述的电极,其中,所述碳纳米管簇与所述离散碳纳米管的质量比为1:0.01至1。
- 根据权利要求6所述的电极,其中,所述导电剂还包括第三导电剂,所述第三导电剂选自炭黑和/或石墨烯,所述碳纳米管簇与所述第三导电剂的质量比为1:0.01至1。
- 根据权利要求1所述的电极,其中,所述电极活性材料层以质量百分比计,还包括0.5%至3%粘结剂。
- 根据权利要求8所述的电极,其中,所述粘结剂的重均分子量Mw为700,000至2,800,000;可选的,所述粘结剂的重均分子量Mw为1,100,000至2,200,000。
- 根据权利要求9所述的电极,其中,所述粘结剂的数均分子量Mn与所述粘结剂的重均分子量Mw满足:1.5≤Mw/Mn≤3;可选的,所述粘结剂的数均分子量Mn与所述粘结剂的重均分子量Mw满足:2.1≤Mw/Mn≤2.4。
- 根据权利要求10所述的电极,其中,所述电极活性材料层以质量百分比计,包括0.2%至2%导电剂、0.5%至1.5%粘结剂、96.5%至99.3%电极活性材料;可选的,所述电极活性材料层以质量百分比计,包括0.5%至1%导电剂、0.7%至1.3%粘结剂、97.7%至98.8%电极活性材料。
- 根据权利要求10所述的电极,其中,所述粘结剂的熔点T 1为160至185℃;和/或所述粘结剂的热分解温度T 2为460℃至495℃;可选的,所述粘结剂的熔点T 1为172℃至180℃;和/或所述粘结剂的热分解温度T 2为480℃至490℃。
- 根据权利要求1至12任一项所述的电极,其中,所述电极活性材料层的压实密度为3.8mg/cm 3至4.3mg/cm 3;可选的,所述电极活性材料层的压实密度为3.95mg/cm 3至4.15mg/cm 3。
- 根据权利要求13所述的电极,其中,所述电极活性材料的Dv99和所述电极活性材料层的厚度H满足0.6≤H/Dv99≤3;可选的,所述电极活性材料的Dv99和所述电极活性材料层的厚度H 满足1≤H/Dv99≤1.8。
- 一种二次电池,包括:正极、负极、隔膜和电解液;其中,所述正极和所述负极中的至少一个为根据权利要求1至14任一项所述的电极。
- 根据权利要求15所述的二次电池,其中,所述正极为根据权利要求1至14任一项所述的电极。
- 一种电子设备,包括:根据权利要求15或16所述的二次电池。
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202280091830.2A CN118696438A (zh) | 2022-12-30 | 2022-12-30 | 电极、二次电池和电子设备 |
PCT/CN2022/144359 WO2024138749A1 (zh) | 2022-12-30 | 2022-12-30 | 电极、二次电池和电子设备 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/CN2022/144359 WO2024138749A1 (zh) | 2022-12-30 | 2022-12-30 | 电极、二次电池和电子设备 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2024138749A1 true WO2024138749A1 (zh) | 2024-07-04 |
Family
ID=91716298
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2022/144359 WO2024138749A1 (zh) | 2022-12-30 | 2022-12-30 | 电极、二次电池和电子设备 |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN118696438A (zh) |
WO (1) | WO2024138749A1 (zh) |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2018179760A1 (ja) * | 2017-03-31 | 2018-10-04 | 国立研究開発法人産業技術総合研究所 | カーボンナノチューブ分散液 |
CN111542955A (zh) * | 2018-02-23 | 2020-08-14 | 株式会社Lg化学 | 二次电池 |
CN111587499A (zh) * | 2018-02-07 | 2020-08-25 | 株式会社Lg化学 | 正极和包括所述正极的二次电池 |
CN114300686A (zh) * | 2022-03-07 | 2022-04-08 | 宁德新能源科技有限公司 | 二次电池及电子装置 |
CN114342108A (zh) * | 2021-03-30 | 2022-04-12 | 宁德新能源科技有限公司 | 一种电化学装置和电子装置 |
-
2022
- 2022-12-30 CN CN202280091830.2A patent/CN118696438A/zh active Pending
- 2022-12-30 WO PCT/CN2022/144359 patent/WO2024138749A1/zh active Application Filing
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2018179760A1 (ja) * | 2017-03-31 | 2018-10-04 | 国立研究開発法人産業技術総合研究所 | カーボンナノチューブ分散液 |
CN111587499A (zh) * | 2018-02-07 | 2020-08-25 | 株式会社Lg化学 | 正极和包括所述正极的二次电池 |
CN111542955A (zh) * | 2018-02-23 | 2020-08-14 | 株式会社Lg化学 | 二次电池 |
CN114342108A (zh) * | 2021-03-30 | 2022-04-12 | 宁德新能源科技有限公司 | 一种电化学装置和电子装置 |
CN114300686A (zh) * | 2022-03-07 | 2022-04-08 | 宁德新能源科技有限公司 | 二次电池及电子装置 |
Also Published As
Publication number | Publication date |
---|---|
CN118696438A (zh) | 2024-09-24 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN113410432B (zh) | 一种负极片、制备方法及包含其的锂离子电池 | |
JP6517344B2 (ja) | リチウム二次電池の正極形成用組成物の製造方法、及びこれを利用して製造した正極及びリチウム二次電池 | |
US9401505B2 (en) | Separator including coating layer of inorganic and organic mixture, and battery including the same | |
CN113066961B (zh) | 负极极片、电化学装置和电子装置 | |
CN116111046B (zh) | 负极片、二次电池和电子设备 | |
WO2022142241A1 (zh) | 负极活性材料、电化学装置和电子装置 | |
WO2022262287A1 (zh) | 电化学装置和电子装置 | |
WO2023164794A1 (zh) | 电化学装置及包含该电化学装置的电子装置 | |
CN112106233A (zh) | 锂离子二次电池用正极组合物、锂离子二次电池用正极以及锂离子二次电池 | |
WO2022198577A1 (zh) | 电化学装置和电子装置 | |
WO2022120833A1 (zh) | 一种电化学装置和电子装置 | |
KR20160073822A (ko) | 리튬 이차전지의 음극 형성용 조성물의 제조방법, 이를 이용하여 제조한 리튬 이차전지용 음극 및 리튬 이차전지 | |
WO2023102766A1 (zh) | 电极、电化学装置和电子装置 | |
JP7466981B2 (ja) | 負極及びこれを含む二次電池 | |
JP2022541837A (ja) | 高ニッケル電極シートおよびその製造方法 | |
CN116072817B (zh) | 电化学装置及用电装置 | |
WO2023088133A1 (zh) | 正极补锂添加剂及其制备方法与应用 | |
WO2024138749A1 (zh) | 电极、二次电池和电子设备 | |
WO2024138751A1 (zh) | 电极、二次电池和电子设备 | |
CN116111101B (zh) | 正极片、二次电池以及电子设备 | |
CN116111096B (zh) | 安全涂层组合物、正极片、二次电池和电子设备 | |
CN116111043B (zh) | 正极片、二次电池以及电子设备 | |
CN116111098B (zh) | 负极片、二次电池以及电子设备 | |
WO2024221217A1 (zh) | 负极集流体、二次电池和用电装置 | |
CN116093258A (zh) | 正极片、二次电池以及电子设备 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 22969889 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 202280091830.2 Country of ref document: CN |