WO2024138128A2 - Conjugués d'agent de dégradation de céréblon et leurs utilisations - Google Patents

Conjugués d'agent de dégradation de céréblon et leurs utilisations Download PDF

Info

Publication number
WO2024138128A2
WO2024138128A2 PCT/US2023/085698 US2023085698W WO2024138128A2 WO 2024138128 A2 WO2024138128 A2 WO 2024138128A2 US 2023085698 W US2023085698 W US 2023085698W WO 2024138128 A2 WO2024138128 A2 WO 2024138128A2
Authority
WO
WIPO (PCT)
Prior art keywords
och
degrader
cereblon
alkyldiyl
antibody
Prior art date
Application number
PCT/US2023/085698
Other languages
English (en)
Inventor
Thomas Harden Pillow
Original Assignee
Genentech, Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Genentech, Inc. filed Critical Genentech, Inc.
Publication of WO2024138128A2 publication Critical patent/WO2024138128A2/fr

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/50Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates
    • A61K47/51Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent
    • A61K47/68Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an antibody, an immunoglobulin or a fragment thereof, e.g. an Fc-fragment
    • A61K47/6889Conjugates wherein the antibody being the modifying agent and wherein the linker, binder or spacer confers particular properties to the conjugates, e.g. peptidic enzyme-labile linkers or acid-labile linkers, providing for an acid-labile immuno conjugate wherein the drug may be released from its antibody conjugated part in an acidic, e.g. tumoural or environment
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/50Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates
    • A61K47/51Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent
    • A61K47/68Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an antibody, an immunoglobulin or a fragment thereof, e.g. an Fc-fragment
    • A61K47/6801Drug-antibody or immunoglobulin conjugates defined by the pharmacologically or therapeutically active agent
    • A61K47/6803Drugs conjugated to an antibody or immunoglobulin, e.g. cisplatin-antibody conjugates
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D401/00Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom
    • C07D401/14Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom containing three or more hetero rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D471/00Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, at least one ring being a six-membered ring with one nitrogen atom, not provided for by groups C07D451/00 - C07D463/00
    • C07D471/12Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, at least one ring being a six-membered ring with one nitrogen atom, not provided for by groups C07D451/00 - C07D463/00 in which the condensed system contains three hetero rings
    • C07D471/16Peri-condensed systems
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D487/00Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, not provided for by groups C07D451/00 - C07D477/00
    • C07D487/02Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, not provided for by groups C07D451/00 - C07D477/00 in which the condensed system contains two hetero rings
    • C07D487/04Ortho-condensed systems

Definitions

  • CEREBLON DEGRADER CONJUGATES, AND USES THEREOF CROSS REFERENCE TO RELATED APPLICATIONS This application claims the benefit of priority to U.S. Provisional Application No. 63/435,142, filed December 23, 2022, and U.S. Provisional Application No.63/525,282, filed on July 6, 2023, the content of each of which is incorporated by reference in its entirety.
  • FIELD The disclosure relates generally to cereblon degrader antibody conjugates (cDACs) compositions, intermediates for their manufacture, and methods of their use.
  • the cDACs are useful for facilitating intracellular degradation of target proteins.
  • Cereblon is a 442-amino acid multifunctional protein located in the cytoplasm, nucleus and peripheral membrane of the human brain and other tissues (Wada et al., Biochem. & Biophys. Res. Comm.477:388-94 (2016)). Cereblon ensures normal metabolic function and normal physiological function of ion channels, which are important to maintaining cell growth and proliferation. Cereblon is also involved in the occurrence of many diseases, such as cancer (Shi et al, (2017) J. Immunol. Res. Article ID 9130608).
  • Cereblon interacts with the DNA damage-binding protein-1 (DDB1), Cullin 4 (Cul4A and Cul4B), and regulator of Cullins 1 (RoC 1 ) to form the functional E3 ubiquitin ligase complex, which is known as the CRL4/CRBN E3 ubiquitin ligase complex. Cereblon's role as part of this complex includes a number of targeting proteins for proteolysis (degradation) via a ubiquitin-proteasome pathway (Chang et al, (2011) Int. J. Biochem. Mol. Biol.2(3):287-94). This complex ubiquitinates a number of other proteins.
  • Cereblon is also implicated in the development of cerebral tissues and because of its expression in the hippocampus among other areas, is associated with memory and learning processes (Higgins, et al, (2004) Neurol.63(10):1927-31). Cereblon is a target for immunomodulatory drugs (IMiDs) which adjust immune responses and contain a glutarimide functional group (Kazantsev, A. et al, (2022) Expert Opinion on Therapeutic Patents, 32:2, 171-190; Kronke et al., (2015) Nature 523:183-8; Hagner et al., (2016) Blood 126(6):779-89).
  • IMDs immunomodulatory drugs
  • the IMiD class includes thalidomide and analogues: lenalidomide, pomalidomide, iberdomide, and apremilast.
  • Thalidomide is approved by the FDA for treatment of multiple myeloma.
  • Lenalidomide (REVLIMID®) and pomalidomide (POMALYST®) are approved by the FDA for treatment of multiple myeloma and other diseases. Cytokine modulation and T cell co-stimulation by IMiDs results in interleukin-2 production in T cells (Schafer et al., (2003) J. Pharmacol. & Exper. Ther.305:1222-32).
  • IMiDs have pleiotropic effects on a wide range of immune cells including natural killer (NK) cell activation and B cell and monocyte inhibition (Corral et al., (1999) J. Immunol.163:380-6).
  • Approved drugs, thalidomide and derivatives lenalidomide and pomalidomide have been repurposed as immunomodulatory drugs (IMiDs) for blood cancers (Ito T, et al (2020) Proc Jpn Acad Ser B Phys Biol Sci.96(6):189–203).Structural studies have shown that IMiDs such as thalidomide, lenalidomide and pomalidomide bind in a shallow hydrophobic pocket on the surface of cereblon, and that the binding is mediated by the glutarimide ring.
  • Cereblon As the binding protein for IMiDs, cereblon is responsible for the multiple effects of IMiDs like thalidomide and its analogs (P. Ottis, et al (2017) ACS Chem. Biol.12 (4): 892-898; Shi Q, et al (2017) J Immunol Res.2017:9130608; Sperling AS, et al (2019) Blood 134(2):160– 170). Cereblon expression can affect cell metabolism and can be a causative effect of a disease even in the absence of IMiDs. Cereblon orthologs are highly conserved from plants to humans, which underscores its physiological importance (Zhihua H, et al (2011) Annu Rev Plant Biol.
  • the ATP-dependent ubiquitin-proteasome system is the main pathway for intracellular protein degradation.
  • the UPS system which includes ubiquitin (Ub), proteasomes, catalytic enzymes, and specific substrates, plays an important role in various biological processes. Ubiquitination occurs through a cascade of enzymatic events, particularly in the synergistic action of Ub-activating enzyme (E1), ubiquitin-conjugating enzyme (E2), and ubiquitin-ligase enzyme (E3). Once the substrate protein is polyubiquitinated, it will be recognized and degraded by the proteasome and UPS can digest the substrate protein into small peptides.
  • E3 plays an important role in determining the specificity of Ub-mediated protein degradation (B.E. Smith, et al, (2019), Nat. Commun.10 (1):131; K.M. Sakamoto, (2010) Pediatr. Res.67 (5):505-508; M. Scheepstra, et al, (2019), Comput. Struct. Biotechnol. J.17:160-176; P. Ottis, et al, (2017) ACS Chem. Biol.12 (4):892-898).
  • PROTACs Proteolysis-targeting chimeras
  • the main mechanism of PROTACs technology is to use UPS to degrade proteins of interest (POI) such as targeted proteins that are themselves disease mediators by bringing in proximity the E3 ubiquitin ligase with a POI that is to be targeted for degradation leading to degradation of the targeted protein (Lu et al, (2015) Cell Cancer 22(6):755-63; Wang, C. et al (2021) Eur J Med Chem.225:113749).
  • POI proteins of interest
  • the E3 ligase ligand of PROTAC can hijack the E3 ligase and label the POI with ubiquitin.
  • PROTAC itself is not degraded but is recycled to promote ubiquitination and degradation of other target proteins (M.L. Drummond, et al (2019), J. Chem. Inf. Model.59(4):1634-1644; S. An, et al (2016), EBioMedicine 36:553-562; W. Farnaby, et al, (2019), Nat. Chem. Biol.15(7):672-680; M.S. Gadd, et al, (2017), Nat. Chem. Biol.13(5):514-521; R.P. Nowak, et al, (2016) Nat.
  • Molecular glue are degrader constructs which mediate proximity-induced protein degradation interacting with the ligase (more frequently) or the target POI by inducing or stabilizing the protein-protein interaction between the E3 ubiquitin ligase and the POI to form ternary complexes that induce ubiquitination and degradation of target protein POIs (den Besten, W. et al (2020) Nature Chemical Biology 16:1158).
  • molecular glues can degrade otherwise unligandable proteins by orchestrating direct interactions between target and ligase (Mayor- Ruiz, C. et al (2020) Nature Chemical Biology 16:1199–1207; Dong G, et al (2021) J Med Chem.64(15):10606-10620).
  • the molecular glue degrader may target nuclear receptor GSPT1 (Huber, A.D., et al (2022) ACS Med. Chem. Lett.13:1311-1320).
  • both molecular glue and PROTACs are bifunctional protein degraders, they have different mechanisms of action and structural requirements (den Besten, W., et al (2020) Nat Chem Biol 16:1157–1158).
  • cereblon ligands can be components of both PROTAC and molecular glue degraders that recruit targeted POIs to CRL4/CRBN E3 ubiquitin ligase for degradation of the POI (Lu et al, (2015) Cell Cancer 22(6):755-63; Wang, C. et al (2021) Eur J Med Chem.225:113749).
  • Certain glutarimide compounds such as thalidomide, lenalidomide, and pomalidomide function as a molecular glue to enhance or induce interactions between E3 ligase and the target protein and thereby trigger ubiquitination and degradation (Dong G, et al (2021) J Med Chem.64(15):10606-10620).
  • BRD4 bromodomain-containing protein 4
  • Certain small- molecule BRD4 inhibitors interfere with protein-protein interactions and have been the subject of antitumor drug development. Limitations include reversible binding of BRD4 inhibitors (e.g. JQ1, OTX015) requiring large systemic drug concentrations and sustained exposure to ensure adequate functional inhibition (J. Shi, et al (2016) Mol. Pharm.15 (9):4139-4147).
  • Target protein ligands have been employed in PROTACs with pomalidomide through a PEG linker to various BRD4 target-protein ligands which induced significant degradation of BRD4 in BL (Burkitt's lymphoma) cells, with a DC50 value below 1 nM (J. Lu, et al (2015) Chem. Biol.22(6):755-763).
  • PROTACs with other BRD4 and BET target protein ligands showed significant effects on c-MYC, AML (acute myeloid leukemia) cells, and downstream cell proliferation and apoptosis induction in BL cells. (E.W. Georg, et al, (2015) Science 348 (6241):1376-1381).
  • Linkers can be classified into cleavable and non-cleavable linkers according to their chemical properties (Beck A, et al, (2017) Nat Rev Drug Discov.16(6):315–37; Tsuchikama K, et al, (2016) Protein Cell.9:33–46).
  • Non-cleavable linkers consist of stable bonds resistant to proteolytic degradation, so that cleavage occurs only after lysosome internalization and complete degradation of the antibody. These linkers have higher stability than cleavable ones, but can suffer from lower membrane permeability.
  • cleavage of cleavable linkers can depend on external pH (acid-labile linkers), specific lysosomal proteases (protease-cleavable linkers) or glutathione reduction of disulfide linkers (Shen B-Q, et al, (2012) Nat Biotechnol; Bargh JD, et al, (2019) Chem Soc Rev.48:4361–74).
  • some linkers may be labile in the blood stream, releasing unacceptable amounts of the drug prior to internalization in a target cell (Khot, A. et al, (2015) Bioanalysis 7(13):1633–1648) while other linkers may provide stability in the bloodstream, but intracellular release effectiveness may be negatively impacted.
  • linkers that provide for desired intracellular release may have poor stability in the bloodstream.
  • the amount of drug moiety loaded on the antibody, quantified as the drug to antibody ratio (DAR), the amount of aggregate that is formed in the conjugation reaction, and the yield of final purified conjugate that can be obtained are other parameters that need to be addressed and are often interrelated. Accordingly, there is a continuing need for improvements in the design of antibody conjugates including linkers and attachment chemistry to provide for optimized safety and efficacy. Additionally, there is a need for enhanced and targeted delivery of cereblon ligand containing PROTACs and molecular glues to cells that contain the protein target.
  • the disclosure is generally directed to a conjugate composition, referred to as a cereblon degrader antibody conjugate or “cDAC”, where a cereblon degrader moiety is covalently attached to an antibody by an antibody linker.
  • the cereblon degrader moiety comprises a target protein ligand covalently attached to a cereblon-binding, E3 ubiquitin ligase ligand by a degrader linker.
  • the cereblon degrader moiety is a molecular glue.
  • the cereblon degrader moiety of the disclosed cDAC is targeted to the appropriate target cell and released as a cereblon degrader compound, thereby carrying out its function to stimulate/induce ubiquitination of a target protein and effect its degradation by the ubiquitin-proteasome system (UPS).
  • the cDAC may have enhanced therapeutic benefit in patients suffering from a variety of hyperproliferative disorders such as cancer.
  • a cereblon degrader antibody conjugate comprising a cereblon degrader moiety covalently attached to an antibody by a linker (e.g., an antibody linker) wherein the cereblon degrader moiety is a target protein ligand covalently attached to a cereblon-binding, E3 ubiquitin ligase ligand by a degrader linker, or molecular glue, and the antibody is a thiol-containing antibody.
  • a linker e.g., an antibody linker
  • a cDAC having a structure of Formula I: I or a pharmaceutically acceptable salt thereof, wherein: Ab is an antibody; cD is a cereblon degrader moiety; L 1 is a linker attached to the Ab and the cD; and p is an integer from 1 to 14.
  • a cereblon degrader-linker intermediate having a structure of Formula II: wherein: X is a thiol-reactive group; L 3 is a linker selected from: (i) a protease-cleavable, non-peptide linker having the formula: wherein Str is a stretcher unit covalently attached to X, PM is a peptidomimetic unit, and IM is an immolator unit covalently attached to cD; (ii) a disulfide linker selected from the formulae: and (iii) a linker having the formula: wherein * indicates the point of attachment to X, R 4a , R 4b , R 5a , and R 5a are each independently selected from H and C 1 -C 6 alkyl, or R 4a and R 4b together with the carbon atom to which they are bound form a three-, four-, or five- membered cycloalkyl or heterocyclyl, optionally substituted
  • Another aspect of the disclosure is a cDAC prepared by conjugation of an antibody with a cereblon degrader intermediate of Formula II.
  • Another aspect of the disclosure is a process for preparing a cDAC comprising reacting a thiol-containing antibody with a cereblon degrader intermediate of Formula II.
  • Another aspect of the disclosure is a pharmaceutical composition comprising a therapeutically effective amount of the cDAC and one or more pharmaceutically acceptable diluent, vehicle, carrier or excipient.
  • Another aspect of the disclosure is a method for treating cancer comprising administering to a patient in need thereof a therapeutically effective amount of the cDAC.
  • Another aspect of the disclosure is use of the cDAC in the manufacture of a medicament for the treatment of cancer in a mammal.
  • FIG. 1 shows an anti-proliferative effect of in vitro potency by a BRD4-cereblon degrader against KPL-4 and SK-BR-3 cells at 5 days. Cell viability as percent of control is plotted in a graph versus the concentration of cereblon degrader compound cD-5 (nM).
  • Figure 2A shows anti-proliferative effects of in vitro potency by treatment after 5 days of HER2+ KPL-4 cells with anti-HER27C2 and anti-CD33 BRD4-cereblon degrader antibody conjugates cDAC-3, cDAC-4, cDAC-5, and cDAC-6 from Table 3. Cell viability as percent of control is plotted in a graph versus the concentration of cDAC ( ⁇ g/mL).
  • Figure 2B shows anti-proliferative effects of in vitro potency by treatment after 5 days of HER2+ SK-BR-3 cells with anti-HER27C2 and anti-CD33 BRD4-cereblon degrader antibody conjugates cDAC-3, cDAC-4, cDAC-5, and cDAC-6.
  • FIG. 3A shows anti-proliferative effects of in vitro potency by treatment after 5 days of HER2-low/ER+ CAMA1 cells with anti-HER27C2 and anti-CD33 BRD4-cereblon degrader antibody conjugates cDAC-3, cDAC-4, cDAC-5, and cDAC-6.
  • Cell viability as percent of control is plotted in a graph versus the concentration of cDAC ( ⁇ g/mL).
  • Figure 3B shows anti-proliferative effects of in vitro potency by treatment after 5 days of HER2-low/ER+ EFM19 cells with anti-HER27C2 and anti-CD33 BRD4-cereblon degrader antibody conjugates cDAC-3, cDAC-4, cDAC-5, and cDAC-6. Cell viability as percent of control is plotted in a graph versus the concentration of cDAC ( ⁇ g/mL).
  • Figure 4 shows anti-proliferative effects of in vitro potency by treatment after 7 days of various AML cell lines with anti-CD33 BRD4-cereblon degrader antibody conjugate cDAC-3.
  • the AML cell lines were MV-4-11, EOL-1, Molm-13, Nomo-1, HL-60, and OCI-AML-2.
  • Cell viability as percent of control is plotted in a graph versus the concentration of cDAC ( ⁇ g/mL).
  • Figure 5A shows anti-proliferative effects of in vitro potency by treatment after 5 days of EOL-1 AML cells with anti-HER27C2 and anti-CD33 BRD4-cereblon degrader antibody conjugates cDAC-3, cDAC-4, cDAC-5, and cDAC-6.
  • Cell viability as percent of control is plotted in a graph versus the concentration of cDAC ( ⁇ g/mL).
  • Figure 5B shows anti-proliferative effects of in vitro potency by treatment after 5 days of HL-60 AML cells with anti-HER27C2 and anti-CD33 cereblon degrader antibody conjugates cDAC-3, cDAC-4, cDAC-5, and cDAC-6. Cell viability as percent of control is plotted in a graph versus the concentration of cDAC ( ⁇ g/mL).
  • Figure 6A shows anti-proliferative effects of in vitro potency by treatment after 3 days of Molm-13 AML cells with anti-HER27C2 and anti-CD33 BRD4-cereblon degrader antibody conjugates cDAC-3, cDAC-4, cDAC-5, and cDAC-6.
  • Cell viability as percent of control is plotted in a graph versus the concentration of cDAC ( ⁇ g/mL).
  • Figure 6B shows anti-proliferative effects of in vitro potency by treatment after 3 days of MV-4-11 AML cells with anti-HER27C2 and anti-CD33 BRD4-cereblon degrader antibody conjugates cDAC-3, cDAC-4, cDAC-5, and cDAC-6.
  • Cell viability as percent of control is plotted in a graph versus the concentration of cDAC ( ⁇ g/mL).
  • Figure 7 shows the in vivo efficacies of anti-CD33 BRD4-cereblon degrader antibody conjugates cDAC-3, cDAC-4, cDAC-5, and cDAC-6 at the following doses in reducing tumor volume over time (21 days) in a HL-60 xenograft mice model.
  • antibody is used in the broadest sense and specifically encompasses monoclonal antibodies (including full length monoclonal antibodies), polyclonal antibodies, multispecific antibodies (e.g., bispecific antibodies), and antibody fragments so long as they exhibit the desired biological activity.
  • Antibody fragment and all grammatical variants thereof as used herein are defined as a portion of an intact antibody comprising the antigen binding site or variable region of the intact antibody, wherein the portion is free of the constant heavy chain domains (i.e., CH 2 , CH 3 , and CH4, depending on antibody isotype) of the Fc region of the intact antibody.
  • constant heavy chain domains i.e., CH 2 , CH 3 , and CH4, depending on antibody isotype
  • antibody fragments include Fab, Fab ⁇ , Fab ⁇ -SH, F(ab ') 2 , and Fv fragments; diabodies; any antibody fragment that is a polypeptide having a primary structure consisting of one uninterrupted sequence of contiguous amino acid residues (referred to herein as a “single-chain antibody fragment” or “single chain polypeptide”), including without limitation (1) single-chain Fv (scFv) molecules; (2) single chain polypeptides containing only one light chain variable domain, or a fragment thereof that contains the three CDRs of the light chain variable domain, without an associated heavy chain moiety; (3) single chain polypeptides containing only one heavy chain variable region, or a fragment thereof containing the three CDRs of the heavy chain variable region, without an associated light chain moiety; (4) nanobodies comprising single Ig domains from non-human species or other specific single-domain binding modules; and (5) multispecific or multivalent structures formed from antibody fragments.
  • the heavy chain(s) can contain any constant domain sequence (e.g., CH1 in the IgG isotype) found in a non-Fc region of an intact antibody, and/or can contain any hinge region sequence found in an intact antibody, and/or can contain a leucine zipper sequence fused to or situated in the hinge region sequence or the constant domain sequence of the heavy chain(s).
  • “Antibody” refers to a polypeptide comprising an antigen binding region (including the complementarity determining region (CDRs)) from an immunoglobulin gene or fragments thereof.
  • antibody specifically encompasses monoclonal antibodies (including full length monoclonal antibodies), polyclonal antibodies, multispecific antibodies (e.g., bispecific antibodies), and antibody fragments that exhibit the desired biological activity.
  • An exemplary immunoglobulin (antibody) structural unit comprises a tetramer. Each tetramer is composed of two identical pairs of polypeptide chains, each pair having one “light” (about 25 kDa) and one “heavy” chain (about 50-70 kDa) connected by disulfide bonds. Each chain is composed of structural domains, which are referred to as immunoglobulin domains.
  • variable domains or regions on the light and heavy chains VL and VH, respectively
  • constant domains or regions on the light and heavy chains C L and C H , respectively.
  • the N-terminus of each chain defines a variable region of about 100 to 110 or more amino acids, referred to as the paratope, primarily responsible for antigen recognition, i.e., the antigen binding domain.
  • Light chains are classified as either kappa or lambda.
  • Heavy chains are classified as gamma, mu, alpha, delta, or epsilon, which in turn define the immunoglobulin classes, IgG, IgM, IgA, IgD and IgE, respectively.
  • IgG antibodies are large molecules of about 150 kDa composed of four peptide chains.
  • IgG antibodies contain two identical class ⁇ heavy chains of about 50 kDa and two identical light chains of about 25 kDa, thus a tetrameric quaternary structure. The two heavy chains are linked to each other and to a light chain each by disulfide bonds. The resulting tetramer has two identical halves, which together form the Y-like shape. Each end of the fork contains an identical antigen binding domain.
  • IgG subclasses IgG1, IgG2, IgG3, and IgG4 in humans, named in order of their abundance in serum (i.e., IgG1 is the most abundant).
  • an antibody that targets a particular antigen includes a bispecific or multispecific antibody with at least one antigen binding region that targets the particular antigen.
  • the targeted monoclonal antibody is a bispecific antibody with at least one antigen binding region that targets tumor cells.
  • “Antibody construct” refers to an antibody or a fusion protein comprising (i) an antigen binding domain and (ii) an Fc domain.
  • the binding agent is an antigen-binding antibody “fragment,” which is a construct that comprises at least an antigen-binding region of an antibody, alone or with other components that together constitute the antigen-binding construct.
  • fragments are known in the art, including, for instance, (i) a Fab fragment, which is a monovalent fragment consisting of the VL, VH, C L , and CH 1 domains, (ii) a F(ab’) 2 fragment, which is a bivalent fragment comprising two Fab fragments linked by a disulfide bridge at the hinge region, (iii) a Fv fragment consisting of the VL and VH domains of a single arm of an antibody, (iv) a Fab’ fragment, which results from breaking the disulfide bridge of an F(ab’) 2 fragment using mild reducing conditions, (v) a disulfide-stabilized Fv fragment (dsFv), and (vi) a single chain Fv (scFv), which is a monovalent molecule consisting of the two domains of the Fv fragment (i.e., VL and VH) joined by a synthetic linker which enables the two domains to be synthesized as
  • the antibody or antibody fragments can be part of a larger construct, for example, a conjugate or fusion construct of the antibody fragment to additional regions.
  • the antibody fragment can be fused to an Fc region as described herein.
  • the antibody fragment e.g., a Fab or scFv
  • the antibody fragment can be part of a chimeric antigen receptor or chimeric T-cell receptor, for instance, by fusing to a transmembrane domain (optionally with an intervening linker or “stalk” (e.g., hinge region)) and optional intercellular signaling domain.
  • the antibody fragment can be fused to the gamma and/or delta chains of a T-cell receptor, so as to provide a T-cell receptor like construct that binds TROP2.
  • the antibody fragment is part of a bispecific T-cell engager (BiTEs) comprising a CD1 or CD3 binding domain and linker.
  • BiTEs bispecific T-cell engager
  • Epitope means any antigenic determinant or epitopic determinant of an antigen to which an antigen binding domain binds (i.e., at the paratope of the antigen binding domain).
  • Antigenic determinants usually consist of chemically active surface groupings of molecules, such as amino acids or sugar side chains, and usually have specific three dimensional structural characteristics, as well as specific charge characteristics.
  • Fc receptor refers to a receptor that binds to the Fc region of an antibody.
  • Fc ⁇ R which binds to IgG
  • Fc ⁇ R which binds to IgA
  • Fc ⁇ R which binds to IgE.
  • the Fc ⁇ R family includes several members, such as Fc ⁇ I (CD64), Fc ⁇ RIIA (CD32A), Fc ⁇ RIIB (CD32B), Fc ⁇ RIIIA (CD16A), and Fc ⁇ RIIIB (CD16B).
  • the Fc ⁇ receptors differ in their affinity for IgG and also have different affinities for the IgG subclasses (e.g., IgG1, IgG2, IgG3, and IgG4).
  • Amino acid refers to any monomeric unit that can be incorporated into a peptide, polypeptide, or protein. Amino acids include naturally occurring ⁇ -amino acids and their stereoisomers, as well as unnatural (non-naturally occurring) amino acids and their stereoisomers.
  • “Stereoisomers” of a given amino acid refer to isomers having the same molecular formula and intramolecular bonds but different three-dimensional arrangements of bonds and atoms (e.g., an L-amino acid and the corresponding D-amino acid).
  • the amino acids can be glycosylated (e.g., N-linked glycans, O-linked glycans, phosphoglycans, C-linked glycans, or glypication) or deglycosylated.
  • Amino acids may be referred to herein by either the commonly known three letter symbols or by the one-letter symbols recommended by the IUPAC-IUB Biochemical Nomenclature Commission.
  • Naturally occurring amino acids are those encoded by the genetic code, as well as those amino acids that are later modified, e.g., hydroxyproline, ⁇ -carboxyglutamate, and O-phosphoserine.
  • Naturally occurring ⁇ -amino acids include, but are not limited to, alanine (Ala), arginine (Arg), asparagine (Asn), aspartic acid (Asp), cysteine (Cys), glutamic acid (Glu), glutamine (Gln), glycine (Gly), histidine (His), isoleucine (Ile), leucine (Leu), lysine (Lys), methionine (Met), phenylalanine (Phe), proline (Pro), serine (Ser), threonine (Thr), tryptophan (Trp), tyrosine (Tyr), valine (Val), and combinations thereof.
  • Stereoisomers of naturally- occurring ⁇ -amino acids include, without limitation, D-alanine (D-Ala), D-cysteine (D-Cys), D-aspartic acid (D-Asp), D-glutamic acid (D-Glu), D-phenylalanine (D-Phe), D-histidine (D-His), D-isoleucine (D-Ile), D-arginine (D-Arg), D-lysine (D-Lys), D-leucine (D-Leu), D-methionine (D-Met), D-asparagine (D-Asn), D-proline (D-Pro), D-glutamine (D-Gln), D-serine (D-Ser), D-threonine (D-Thr), D-valine (D-Val), D-tryptophan (D-Trp), D-tyrosine (D-Tyr), and combinations thereof.
  • D-Ala D-c
  • Naturally occurring amino acids include those formed in proteins by post-translational modification, such as citrulline (Cit).
  • Unnatural (non-naturally occurring) amino acids include, without limitation, amino acid analogs, amino acid mimetics, synthetic amino acids, N-substituted glycines, and N-methyl amino acids in either the L- or D-configuration that function in a manner similar to the naturally occurring amino acids.
  • amino acid analogs can be unnatural amino acids that have the same basic chemical structure as naturally occurring amino acids (i.e., a carbon that is bonded to a hydrogen, a carboxyl group, an amino group) but have modified side-chain groups or modified peptide backbones, e.g., homoserine, norleucine, methionine sulfoxide, and methionine methyl sulfonium.
  • Amino acid mimetics refer to chemical compounds that have a structure that is different from the general chemical structure of an amino acid, but that functions in a manner similar to a naturally occurring amino acid.
  • amino acid side chain refers to the group of an amino acid which defines the amino acid and distinguishes one amino acid from other amino acids.
  • side chains for a group of representative amino acids are: glycine ( ⁇ H), alanine ( ⁇ CH 3 ), phenylalanine ( ⁇ CH 2 (C 6 H 5 )), lysine ( ⁇ CH 2 CH 2 CH 2 CH 2 NH 2 ), arginine ( ⁇ CH 2 CH 2 CH 2 NHC(NH)NH 2 ), leucine ⁇ CH 2 CH(CH 3 ) 2 , and citrulline ( ⁇ CH 2 CH 2 CH 2 NHC(O)NH 2 ).
  • Linker refers to a functional group that covalently links two or more moieties in a compound or material.
  • the linking moiety can serve to covalently bond a drug moiety to an antibody construct in conjugate provided herein or between two or more ligand binding moieties.
  • Linking moiety refers to a functional group that covalently bonds two or more moieties in a compound.
  • the linking moiety can serve to covalently bond a drug moiety to an antibody in a conjugate.
  • Useful bonds for connecting linking moieties to proteins and other materials include, but are not limited to, amides, amines, esters, carbamates, disulfides, ureas, thioethers, thiocarbamates, thiocarbonates, and thioureas.
  • “Divalent” refers to a chemical moiety that contains two points of attachment for linking two moieties; polyvalent linking moieties can have additional points of attachment for linking further functional groups. Divalent radicals may be denoted with the suffix “diyl”.
  • divalent linking moieties include divalent polymer moieties such as divalent poly(ethylene glycol), divalent cycloalkyl, divalent heterocycloalkyl, divalent aryl, and divalent heteroaryl group.
  • a “divalent cycloalkyl, heterocycloalkyl, aryl, or heteroaryl group” refers to a cycloalkyl, heterocycloalkyl, aryl, or heteroaryl group having two points of attachment for covalently linking two moieties in a molecule or material. Cycloalkyl, heterocycloalkyl, aryl, or heteroaryl groups can be substituted or unsubstituted.
  • Cycloalkyl, heterocycloalkyl, aryl, or heteroaryl groups can be substituted with one or more groups selected from halo, hydroxy, amino, alkylamino, amido, acyl, nitro, cyano, and alkoxy.
  • a wavy line (“ ”) represents a point of attachment of the specified chemical moiety. If the specified chemical moiety has two wavy lines (“ ”) present, it will be understood that the chemical moiety can be used bilaterally, i.e., as read from left to right or from right to left. In some embodiments, a specified moiety having two wavy lines present is considered to be used as read from left to right.
  • Alkyl refers to a straight (linear) or branched, saturated, aliphatic radical having the number of carbon atoms indicated. Alkyl can include any number of carbons, for example from one to twelve. Examples of alkyl groups include, but are not limited to, methyl (Me, -CH 3 ), ethyl (Et, -CH 2 CH 3 ), 1-propyl (n-Pr, n-propyl, -CH 2 CH 2 CH 3 ), 2-propyl (i-Pr, i-propyl, -CH(CH 3 ) 2 ), 1- butyl (n-Bu, n-butyl, -CH 2 CH 2 CH 2 CH 3 ), 2-methyl-1-propyl (i-Bu, i-butyl, -CH 2 CH(CH 3 ) 2 ), 2- butyl (s-Bu, s-butyl, -CH(CH 3 )CH 2 CH 3 ), 2-methyl-2-propyl (t-Bu
  • alkyldiyl refers to a divalent alkyl radical.
  • alkyldiyl groups include, but are not limited to, methylene (-CH 2 -), ethylene (-CH 2 CH 2 -), propylene (- CH 2 CH 2 CH 2 -), and the like.
  • An alkyldiyl group may also be referred to as an “alkylene” group.
  • alkyldiyl groups can be geminally substituted where a carbon atom of the alkyl forms a spiro, cycloalkyl group such as cyclopropyl, cyclobutyl, cyclopentyl, or cyclohexyl.
  • Alkenyl refers to a straight (linear) or branched, unsaturated, aliphatic radical having the number of carbon atoms indicated and at least one carbon-carbon double bond, sp2. Alkenyl can include from two to about 12 or more carbons atoms.
  • Alkenyl groups are radicals having “cis” and “trans” orientations, or alternatively, “E” and “Z” orientations.
  • alkenylene or “alkenyldiyl” refer to a linear or branched-chain divalent hydrocarbon radical.
  • Alkynyl refers to a straight (linear) or branched, unsaturated, aliphatic radical having the number of carbon atoms indicated and at least one carbon-carbon triple bond, sp. Alkynyl can include from two to about 12 or more carbons atoms.
  • C 2 -C 6 alkynyl includes, but is not limited to ethynyl propynyl (propargyl, butynyl, pentynyl, hexynyl, and isomers thereof.
  • alkynylene or “alkynyldiyl” refer to a divalent alkynyl radical.
  • carrier refers to a saturated or partially unsaturated, monocyclic, fused bicyclic, spiro, or bridged polycyclic ring assembly containing from 3 to 12 ring atoms, or the number of atoms indicated.
  • Saturated monocyclic carbocyclic rings include, for example, cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl, and cyclooctyl.
  • Saturated bicyclic and polycyclic carbocyclic rings include, for example, norbornane, [2.2.2] bicyclooctane, decahydronaphthalene and adamantane.
  • Carbocyclic groups can also be partially unsaturated, having one or more double or triple bonds in the ring.
  • carbocyclic groups that are partially unsaturated include, but are not limited to, cyclobutene, cyclopentene, cyclohexene, cyclohexadiene (1,3- and 1,4-isomers), cycloheptene, cycloheptadiene, cyclooctene, cyclooctadiene (1,3-, 1,4- and 1,5-isomers), norbornene, and norbornadiene.
  • cycloalkyldiyl refers to a divalent cycloalkyl radical.
  • Aryl refers to a monovalent aromatic hydrocarbon radical of 6-20 carbon atoms (C 6 ⁇ C 20 ) derived by the removal of one hydrogen atom from a single carbon atom of a parent aromatic ring system.
  • Aryl groups can be monocyclic, fused to form bicyclic or tricyclic groups, or linked by a bond to form a biaryl group.
  • Representative aryl groups include phenyl, naphthyl and biphenyl.
  • Other aryl groups include benzyl, having a methylene linking group.
  • Some aryl groups have from 6 to 12 ring members, such as phenyl, naphthyl or biphenyl.
  • aryl groups have from 6 to 10 ring members, such as phenyl or naphthyl.
  • heterocycle refers to a saturated or a partially unsaturated (i.e., having one or more double and/or triple bonds within the ring) carbocyclic radical of 3 to about 20 ring atoms in which at least one ring atom is a heteroatom selected from nitrogen, oxygen, phosphorus and sulfur, the remaining ring atoms being C, where one or more ring atoms is optionally substituted independently with one or more substituents described below.
  • a heterocycle may be a monocycle having 3 to 7 ring members (2 to 6 carbon atoms and 1 to 4 heteroatoms selected from N, O, P, and S) or a bicycle having 7 to 10 ring members (4 to 9 carbon atoms and 1 to 6 heteroatoms selected from N, O, P, and S), for example: a bicyclo [4,5], [5,5], [5,6], or [6,6] system, or more rings.
  • Heterocycles are described in Paquette, Leo A.; “Principles of Modern Heterocyclic Chemistry” (W.A.
  • Heterocyclyl also includes radicals where heterocycle radicals are fused with a saturated, partially unsaturated ring, or aromatic carbocyclic or heterocyclic ring.
  • heterocyclic rings include, but are not limited to, morpholin-4-yl, piperidin-1- yl, piperazinyl, piperazin-4-yl-2-one, piperazin-4-yl-3-one, pyrrolidin-1-yl, thiomorpholin-4-yl, S-dioxothiomorpholin-4-yl, azocan-1-yl, azetidin-1-yl, octahydropyrido[1,2-a]pyrazin-2-yl, [1,4]diazepan-1-yl, pyrrolidinyl, tetrahydrofuranyl, dihydrofuranyl, tetrahydrothienyl, tetrahydropyranyl, dihydropyranyl, tetrahydrothiopyranyl, piperidino, morpholino, thiomorpholino, thioxanyl, piperazinyl, homopiperazinyl,
  • Spiro heterocyclyl moieties are also included within the scope of this definition.
  • spiro heterocyclyl moieties include azaspiro[2.5]octanyl and azaspiro[2.4]heptanyl.
  • the heterocycle groups herein are optionally substituted independently with one or more substituents described herein.
  • heteroaryl refers to a monovalent aromatic radical of 5-, 6-, or 7-membered rings, and includes fused ring systems (at least one of which is aromatic) of 5-20 atoms, containing one or more heteroatoms independently selected from nitrogen, oxygen, and sulfur.
  • heteroaryl groups are pyridinyl (including, for example, 2-hydroxypyridinyl), imidazolyl, imidazopyridinyl, pyrimidinyl (including, for example, 4-hydroxypyrimidinyl), pyrazolyl, triazolyl, pyrazinyl, tetrazolyl, furyl, thienyl, isoxazolyl, thiazolyl, oxadiazolyl, oxazolyl, isothiazolyl, pyrrolyl, quinolinyl, isoquinolinyl, tetrahydroisoquinolinyl, indolyl, benzimidazolyl, benzofuranyl, cinnolinyl, indazolyl, indolizinyl, phthalazinyl, pyridazinyl, triazinyl, isoindolyl, pteridinyl, purinyl, oxadiazol
  • Heteroaryl groups are optionally substituted independently with one or more substituents described herein.
  • the heterocycle or heteroaryl groups may be carbon (carbon-linked), or nitrogen (nitrogen-linked) bonded where such is possible.
  • carbon bonded heterocycles or heteroaryls are bonded at position 2, 3, 4, 5, or 6 of a pyridine, position 3, 4, 5, or 6 of a pyridazine, position 2, 4, 5, or 6 of a pyrimidine, position 2, 3, 5, or 6 of a pyrazine, position 2, 3, 4, or 5 of a furan, tetrahydrofuran, thiofuran, thiophene, pyrrole or tetrahydropyrrole, position 2, 4, or 5 of an oxazole, imidazole or thiazole, position 3, 4, or 5 of an isoxazole, pyrazole, or isothiazole, position 2 or 3 of an aziridine, position 2, 3, or 4 of an azetidine
  • nitrogen bonded heterocycles or heteroaryls are bonded at position 1 of an aziridine, azetidine, pyrrole, pyrrolidine, 2-pyrroline, 3-pyrroline, imidazole, imidazolidine, 2-imidazoline, 3-imidazoline, pyrazole, pyrazoline, 2-pyrazoline, 3- pyrazoline, piperidine, piperazine, indole, indoline, 1H-indazole, position 2 of an isoindole, or isoindoline, position 4 of a morpholine, and position 9 of a carbazole, or ⁇ -carboline.
  • halo and halogen refer to a fluorine, chlorine, bromine, or iodine atom.
  • chiral refers to molecules which have the property of non-superimposability of the mirror image partner, while the term “achiral” refers to molecules which are superimposable on their mirror image partner.
  • stereoisomers refers to compounds which have identical chemical constitution, but differ with regard to the arrangement of the atoms or groups in space.
  • “Diastereomer” refers to a stereoisomer with two or more centers of chirality and whose molecules are not mirror images of one another. Diastereomers have different physical properties, e.g. melting points, boiling points, spectral properties, and reactivities. Mixtures of diastereomers may separate under high resolution analytical procedures such as electrophoresis and chromatography.
  • Enantiomers refer to two stereoisomers of a compound which are non-superimposable mirror images of one another. Stereochemical definitions and conventions used herein generally follow S. P.
  • the compounds described herein may contain asymmetric or chiral centers, and therefore exist in different stereoisomeric forms. It is intended that all stereoisomeric forms of the compounds described herein, including but not limited to, diastereomers, enantiomers and atropisomers, as well as mixtures thereof such as racemic mixtures, form part of the present disclosure.
  • Many organic compounds exist in optically active forms, i.e., they have the ability to rotate the plane of plane-polarized light.
  • the prefixes D and L, or R and S are used to denote the absolute configuration of the molecule about its chiral center(s).
  • the prefixes d and l or (+) and (-) are employed to designate the sign of rotation of plane-polarized light by the compound, with (-) or 1 meaning that the compound is levorotatory.
  • a compound prefixed with (+) or d is dextrorotatory.
  • these stereoisomers are identical except that they are mirror images of one another.
  • a specific stereoisomer may also be referred to as an enantiomer, and a mixture of such isomers is often called an enantiomeric mixture.
  • a 50:50 mixture of enantiomers is referred to as a racemic mixture or a racemate, which may occur where there has been no stereoselection or stereospecificity in a chemical reaction or process.
  • the terms “racemic mixture” and “racemate” refer to an equimolar mixture of two enantiomeric species, devoid of optical activity.
  • Enantiomers may be separated from a racemic mixture by a chiral separation method, such as supercritical fluid chromatography (SFC). Assignment of configuration at chiral centers in separated enantiomers may be tentative, and depicted in Table 1 structures for illustrative purposes, while stereochemistry is definitively established, such as from x-ray crystallographic data.
  • treat refers to any indicia of success in the treatment or amelioration of an injury, pathology, condition (e.g., cancer), or symptom (e.g., cognitive impairment), including any objective or subjective parameter such as abatement; remission; diminishing of symptoms or making the symptom, injury, pathology, or condition more tolerable to the patient; reduction in the rate of symptom progression; decreasing the frequency or duration of the symptom or condition; or, in some situations, preventing the onset of the symptom.
  • the treatment or amelioration of symptoms can be based on any objective or subjective parameter, including, for example, the result of a physical examination.
  • cancer refers to cells which exhibit autonomous, unregulated growth, such that the cells exhibit an aberrant growth phenotype characterized by a significant loss of control over cell proliferation.
  • Cells of interest for detection, analysis, and/or treatment in the context of the present disclosure include cancer cells (e.g., cancer cells from an individual with cancer), malignant cancer cells, pre-metastatic cancer cells, metastatic cancer cells, and non-metastatic cancer cells. Cancers of virtually every tissue are known.
  • cancer burden refers to the quantum of cancer cells or cancer volume in a subject. Reducing cancer burden accordingly refers to reducing the number of cancer cells or the cancer cell volume in a subject.
  • cancer cell refers to any cell that is a cancer cell (e.g., from any of the cancers for which an individual can be treated, e.g., isolated from an individual having cancer) or is derived from a cancer cell, e.g., clone of a cancer cell.
  • a cancer cell can be from an established cancer cell line, can be a primary cell isolated from an individual with cancer, can be a progeny cell from a primary cell isolated from an individual with cancer, and the like.
  • the term can also refer to a portion of a cancer cell, such as a sub-cellular portion, a cell membrane portion, or a cell lysate of a cancer cell.
  • cancers are known to those of skill in the art, including solid tumors such as carcinomas, sarcomas, glioblastomas, melanomas, lymphomas, and myelomas, and circulating cancers such as leukemias.
  • solid tumors such as carcinomas, sarcomas, glioblastomas, melanomas, lymphomas, and myelomas
  • circulating cancers such as leukemias.
  • cancer includes any form of cancer, including but not limited to, solid tumor cancers (e.g., skin, lung, prostate, breast, gastric, bladder, colon, ovarian, pancreas, kidney, liver, glioblastoma, medulloblastoma, leiomyosarcoma, head & neck squamous cell carcinomas, melanomas, and neuroendocrine) and liquid cancers (e.g., hematological cancers); carcinomas; soft tissue tumors; sarcomas; teratomas; melanomas; leukemias; lymphomas; and brain cancers, including minimal residual disease, and including both primary and metastatic tumors.
  • solid tumor cancers e.g., skin, lung, prostate, breast, gastric, bladder, colon, ovarian
  • pancreas kidney, liver, glioblastoma, medulloblastoma, leiomyosarcoma, head & neck squamous cell carcinomas, melan
  • phrases “effective amount” and “therapeutically effective amount” refer to a dose or amount of a therapeutic agent that produces therapeutic effects for which it is administered. The exact dose will depend on the purpose of the treatment, and will be ascertainable by one skilled in the art using known techniques (see, e.g., Lieberman, Pharmaceutical Dosage Forms (vols. 1-3, 1992); Lloyd, The Art, Science and Technology of Pharmaceutical Compounding (1999); Pickar, Dosage Calculations (1999); Goodman & Gilman’s The Pharmacological Basis of Therapeutics, 11 th Edition (McGraw-Hill, 2006); and Remington: The Science and Practice of Pharmacy, 22 nd Edition, (Pharmaceutical Press, London, 2012)).
  • the therapeutically effective amount of the therapeutic agent may reduce the number of cancer cells; reduce the tumor size; inhibit (i.e., slow to some extent and preferably stop) cancer cell infiltration into peripheral organs; inhibit (i.e., slow to some extent and preferably stop) tumor metastasis; inhibit, to some extent, tumor growth; and/or relieve to some extent one or more of the symptoms associated with the cancer.
  • the therapeutic agent may prevent growth and/or kill existing cancer cells, it may be cytostatic and/or cytotoxic.
  • efficacy can, for example, be measured by assessing the time to disease progression (TTP) and/or determining the response rate (RR)
  • TTP time to disease progression
  • RR response rate
  • Recipient “individual,” “subject,” “host,” and “patient” are used interchangeably and refer to any mammalian subject for whom diagnosis, treatment, or therapy is desired (e.g., humans).
  • “Mammal” for purposes of treatment refers to any animal classified as a mammal, including humans, domestic and farm animals, and zoo, sports, or pet animals, such as dogs, horses, cats, cows, sheep, goats, pigs, camels, etc. In certain embodiments, the mammal is human.
  • a "patient” or “individual” or “subject” is a mammal.
  • Mammals include, but are not limited to, domesticated animals (e.g., cows, sheep, cats, dogs, and horses), primates (e.g., humans and non-human primates such as monkeys), rabbits, and rodents (e.g., mice and rats).
  • the patient, individual, or subject is a human.
  • the patient may be a "cancer patient,” i.e. one who is suffering or at risk for suffering from one or more symptoms of cancer.
  • a "patient population” refers to a group of cancer patients.
  • administering refers to parenteral, intravenous, intraperitoneal, intramuscular, intratumoral, intralesional, intranasal, or subcutaneous administration, oral administration, administration as a suppository, topical contact, intrathecal administration, or the implantation of a slow-release device, e.g., a mini-osmotic pump, to the subject.
  • a slow-release device e.g., a mini-osmotic pump
  • covalently bound or “covalently linked” refers to a chemical bond formed by sharing of one or more pairs of electrons.
  • peptidomimetic or PM as used herein means a non-peptide chemical moiety as part of a linker. Whereas peptides are short chains (two or more) of amino acid monomers linked by peptide (amide) bonds, a peptidomimetic chemical moiety includes non-amino acid chemical moieties. A peptidomimetic chemical moiety may also include one or more amino acid that are separated by one or more non-amino acid chemical units. A peptidomimetic chemical moiety does not contain in any portion of its chemical structure two or more adjacent amino acids that are linked by peptide bonds.
  • the cereblon degrader antibody conjugate (cDAC) comprises at least one (p) cereblon degrader moiety (cD) covalently attached to an antibody (Ab) by an antibody linker (L 1 ).
  • the cereblon degrader antibody conjugates (cDAC) induce target-specific degradation of tumor-associated proteins and bring specificity to minimize off-target toxicity effects.
  • the cD forms a cereblon-based ternary complex between a target protein and the E3 ubiquitin ligase, cereblon.
  • Exemplary embodiments of cDAC have a structure of Formula I: I or a pharmaceutically acceptable salt thereof, wherein: Ab is the antibody; L 1 is the antibody linker; cD is the cereblon degrader moiety; and p is an integer from 1 to 14.
  • L 1 comprises an immolator moiety.
  • L 1 is L 1 a- IM, wherein IM is an immolator moiety, and L 1 a is any remainder of the L 1 antibody linker.
  • L 1 is an immolator moiety, IM.
  • cD comprises a cereblon-binding, E3 ubiquitin ligase ligand, E3UL.
  • cD is E3UL-cDa, wherein E3UL is the cereblon-binding, E3 ubiquitin ligase ligand of the cereblon degrader moiety, and cD a is any remainder of the cD.
  • cD a is TPL ⁇ L 2 ⁇ , wherein TPL is a target protein ligand and L 2 is a degrader linker.
  • TPL comprises a ligand that binds BRD4.
  • Exemplary embodiments of cDAC have a structure of Formula I’: I’
  • the cereblon degrader moiety (cD) of the cDAC is covalently linked through an aminal group to the antibody linker (L 1 ).
  • L 1 comprises an immolator moiety, IM, selected from: , wherein * indicates the point of attachment to L 1 a, ** indicates the point of attachment to cDa, and the wavy line indicates the point of attachment to E3UL.
  • Exemplary embodiments of cDAC have a structure of Formula I-A wherein Ab is an antibody; L 1a is an antibody linker; ring A is selected from C 6 -C 20 aryl, C 3 -C 20 carbocyclyl, C 3 -C 20 heterocyclyl, and C 3 -C 20 heteroaryl; the dashed line indicates an optional double bond; Z 1 is selected from C(R 1 ) 2 , CR 1 , N, and NR 1a , and Z 2 is selected from C(R 2 ) 2 , CR 2 , N, and NR 2a , wherein R 1 and R 2 are each independently selected from the group consisting of H, F, Cl, Br, I, ⁇ CN, C 1 ⁇ C 12 alkyl, C 2 ⁇ C 12 alkenyl, C 2 ⁇ C 12 alkynyl, (C 1 -C 6 alkyldiyl)-(C 6 -C 20 aryl), ⁇ (C 1 -C 6 alkyl
  • Z 1 is CR 1
  • Z 2 is CR 2
  • R 1 and R 2 are each H.
  • ring A is C 3 -C 20 heteroaryl.
  • the antibody is a thiol-containing antibody.
  • the thiol-containing antibody binds to a tumor-associated antigen or cell-surface receptor.
  • the antibody is a cysteine-engineered antibody.
  • the cysteine-engineered antibody comprising one or more cysteine mutation is selected from HC A118C, LC K149C, HC A140C, LC V205C, LC S121C, HC L174C, HC L 1 77C, and HC Y373C.
  • L 1 a is a protease-cleavable, non-peptide linker.
  • cDa is TPL ⁇ L 2 ⁇ , wherein TPL is a target protein ligand and L 2 is a degrader linker.
  • TPL comprises a ligand that binds BRD4.
  • AA is selected from H, ⁇ CH 3 , ⁇ CH 2 (C 6 H 5 ), ⁇ CH 2 CH 2 CH 2 CH 2 NH 2 , ⁇ CH 2 CH 2 CH 2 NHC(NH)NH 2 , ⁇ CH 2 CH(CH 3 ) 2 , and ⁇ CH 2 CH 2 CH 2 NHC(O)NH 2 .
  • R 1 is C 5 alkylene.
  • R 2 and R 3 together form a C4 cycloalkyl ring.
  • AA is ⁇ CH 3 or ⁇ CH 2 CH 2 CH 2 NHC(O)NH 2 .
  • R 1 is C 5 alkylene; R 2 and R 3 together form a C4 cycloalkyl ring; and AA is ⁇ CH 3 or ⁇ CH 2 CH 2 CH 2 NHC(O)NH 2 .
  • cDa comprises (i) a target protein ligand covalently attached to a degrader linker, or (ii) a molecular glue moiety.
  • cD a is TPL ⁇ L 2 ⁇ , wherein TPL is a target protein ligand and L 2 is a degrader linker.
  • TPL comprises a ligand that binds BRD4.
  • p is 1, 2, 3, 4, 5, or 6.
  • Exemplary embodiments of cDAC have a structure of Formula I-B I-B wherein Ab is an antibody; L 1a is an antibody linker; ring A is selected from C 6 -C 20 aryl, C 3 -C 20 carbocyclyl, C 2 -C 20 heterocyclyl, and C 1 -C 20 heteroaryl; the dashed line indicates an optional double bond; Z 1 is selected from C(R 1 ) 2 , CR 1 , N, and NR 1a , and Z 2 is selected from C(R 2 ) 2 , CR 2 , N, and NR 2a , wherein R 1 and R 2 are each independently selected from the group consisting of H, F, Cl, Br, I, ⁇ CN, C 1 ⁇ C 12 alkyl, C 2 ⁇ C 12 alkenyl, C 2 ⁇ C 12 alkynyl, (C 1 -C 6 alkyldiyl)-(C 6 -C 20 aryl), ⁇ (C 1 -C 6
  • Z 1 is CR 1
  • Z 2 is CR 2
  • R 1 and R 2 are each H.
  • ring A is C 3 -C 20 heteroaryl.
  • cDa is TPL ⁇ L 2 ⁇ , wherein TPL is a target protein ligand andL 2 is a degrader linker.
  • TPL comprises a ligand that binds BRD4.
  • the antibody is a thiol-containing antibody.
  • the thiol-containing antibody binds to a tumor-associated antigen or cell-surface receptor.
  • the antibody is a cysteine-engineered antibody.
  • the cysteine-engineered antibody has a cysteine mutation site selected from one or more of HC A118C, LC K149C, HC A140C, LC V205C, LC S121C, HC L174C, HC L 1 77C, and HC Y373C.
  • L 1a is a protease-cleavable, non-peptide linker.
  • AA is selected from H, ⁇ CH 3 , ⁇ CH 2 (C 6 H 5 ), ⁇ CH 2 CH 2 CH 2 CH 2 NH 2 , ⁇ CH 2 CH 2 CH 2 NHC(NH)NH 2 , ⁇ CH 2 CH(CH 3 ) 2 , and ⁇ CH 2 CH 2 CH 2 NHC(O)NH 2 .
  • R 1 is C 5 alkylene.
  • R 2 and R 3 together form a C 4 cycloalkyl ring.
  • AA is ⁇ CH 3 or ⁇ CH 2 CH 2 CH 2 NHC(O)NH 2 .
  • R 1 is C 5 alkylene; R 2 and R 3 together form a C 4 cycloalkyl ring; and AA is ⁇ CH 3 or ⁇ CH 2 CH 2 CH 2 NHC(O)NH 2 .
  • cDa comprises (i) a target protein ligand covalently attached to a degrader linker, or (ii) a molecular glue moiety.
  • cDa is TPL ⁇ L 2 ⁇ , wherein TPL is a target protein ligand and L 2 is a degrader linker.
  • TPL comprises a ligand that binds BRD4.
  • p is 1, 2, 3, 4, 5, or 6.
  • L 1 is an immolator moiety, IM.
  • exemplary embodiments of cDAC have a structure of Formula I”:
  • IM is: , wherein * indicates the point of attachment to Ab, ** indicates the point of attachment to cD a , and the wavy line indicates the point of attachment to E3UL.
  • R 4a , R 4b , R 5a , and R 5a are independently selected from H and C 1 -C 6 alkyl, or R 4a and R 4b together with the carbon atom to which they are bound form a three-, four-, or five-membered cycloalkyl or heterocyclyl, optionally substituted with F, Cl, and C 1 -C 6 alkyl, wherein C 1 -C 6 alkyl is independently and optionally substituted with one or more groups selected from F, Cl, ⁇ CN, ⁇ NH 2 , ⁇ CH 2 NH 2 , ⁇ OH, ⁇ OCH 3 , ⁇ OCH 2 CH 3 , ⁇ OCH 2 CH 2 OCH 3 , ⁇ OCH 2 CH 2 OH, ⁇ OCH 2 CH 2 N(CH 3 ) 2 , ⁇ OCH 2 F, ⁇ OCHF 2 , ⁇ OCF 3 , ⁇ OP(O)(OH) 2 , ⁇ S(O) 2 N(CH
  • Exemplary embodiments of cDAC have a structure of Formula I-C wherein Ab is an antibody; R 4a , R 4b , R 5a , and R 5a are each independently selected from H and C 1 -C 6 alkyl, or R 4a and R 4b together with the carbon atom to which they are bound form a three-, four-, or five- membered cycloalkyl or heterocyclyl, optionally substituted with F, Cl, and C 1 -C 6 alkyl, where C 1 -C 6 alkyl is independently and optionally substituted with one or more groups selected from F, Cl, ⁇ CN, ⁇ NH 2 , ⁇ CH 2 NH 2 , ⁇ OH, ⁇ OCH 3 , ⁇ OCH 2 CH 3 , ⁇ OCH 2 CH 2 OCH 3 , ⁇ OCH 2 CH 2 OH, ⁇ OCH 2 CH 2 N(CH 3 ) 2 , ⁇ OCH 2 F, ⁇ OCHF 2 , ⁇ OCF 3 , ⁇
  • the sulfur is conjugated to a cysteine thiol of Ab to form a disulfide linkage.
  • Z 1 is CR 1
  • Z 2 is CR 2
  • R 1 and R 2 are each H.
  • ring A is C 3 -C 20 heteroaryl.
  • cD a is TPL ⁇ L 2 ⁇ , wherein TPL is a target protein ligand and L 2 is a degrader linker.
  • TPL comprises a ligand that binds BRD4.
  • the cDAC of Formula I-C includes the structure of Formula I-C’ wherein Ab is an antibody; R 4a , R 4b , R 5a , and R 5a are each independently selected from H and C 1 -C 6 alkyl, or R 4a and R 4b together with the carbon atom to which they are bound form a three-, four-, or five- membered cycloalkyl or heterocyclyl, optionally substituted with F, Cl, and C 1 -C 6 alkyl, where C 1 -C 6 alkyl is independently and optionally substituted with one or more groups selected from F, Cl, ⁇ CN, ⁇ NH 2 , ⁇ CH 2 NH 2 , ⁇ OH, ⁇ OCH 3 , ⁇ OCH 2 CH 3 , ⁇ OCH 2 CH 2 OCH 3 , ⁇ OCH 2 CH 2 OH, ⁇ OCH 2 CH 2 N(CH 3 ) 2 , ⁇ OCH 2 F, ⁇ OCHF 2 , ⁇ OCF
  • the antibody is a thiol-containing antibody. In some embodiments, the thiol-containing antibody binds to a tumor-associated antigen or cell-surface receptor. In some embodiments, the antibody is a cysteine-engineered antibody. In some embodiments, the cysteine-engineered antibody comprises one or more cysteine mutations selected from HC A118C, LC K149C, HC A140C, LC V205C, LC S121C, HC L174C, HC L 1 77C, and HC Y373C. In some embodiments, cD a comprises (i) a target protein ligand covalently attached to a degrader linker, or (ii) a molecular glue moiety.
  • cD a is TPL ⁇ L 2 ⁇ , wherein TPL is a target protein ligand and L 2 is a degrader linker.
  • TPL comprises a ligand that binds BRD4.
  • p is 1, 2, 3, 4, 5, or 6.
  • CEREBLON DEGRADER-LINKER INTERMEDIATES A cereblon degrader-linker intermediate (cDLI) is a reagent for the process of making a cereblon degrader antibody conjugate (cDAC) by conjugation with a thiol-containing antibody.
  • the cereblon degrader-linker intermediate has a thiol-reactive functional group (X).
  • a cereblon degrader-linker intermediate has the structure of Formula II: wherein: X is a thiol-reactive group covalently attached to L 3 ; L 3 is a linker covalently attached to X and cD; and cD is a cereblon degrader moiety covalently attached to L 3 .
  • cD may be a heterobifunctional bivalent cereblon degrader moiety or a molecular glue cereblon degrader moiety.
  • L 3 comprises an immolator moiety.
  • L 3 is L 3a - IM, wherein IM is an immolator moiety, and L 3a is any remainder of the L 3 linker. In embodiments, L 3 is an immolator moiety, IM.
  • cD comprises a cereblon-binding, E3 ubiquitin ligase ligand, E3UL. In some embodiments, cD is E3UL-cDa, wherein E3UL is the cereblon-binding, E3 ubiquitin ligase ligand of the cereblon degrader moiety, cD, and cD a is any remainder of the cD.
  • cDa is TPL ⁇ L 2 ⁇ , wherein TPL is a target protein ligand and L 2 is a degrader linker.
  • TPL comprises a ligand that binds BRD4.
  • Exemplary embodiments of cDLI have a structure of Formula II’:
  • the cereblon degrader moiety (cD) of the cDLI is linked through an aminal group to the antibody linker (L 3 ).
  • L 3 comprises an immolator moiety, IM, selected from: , wherein * indicates the point of attachment to any remainder of the L 3 linker, L 3a , ** indicates the point of attachment to cD a , and the wavy line indicates the point of attachment to E3UL.
  • IM immolator moiety
  • Exemplary embodiments of cDLI have a structure of Formula II-A II-A wherein X is a thiol-reactive group; L 3a is a linker; ring A is selected from C 6 -C 20 aryl, C 3 -C 20 carbocyclyl, C 3 -C 20 heterocyclyl, and C 3 -C 20 heteroaryl; the dashed line indicates an optional double bond; Z 1 is selected from C(R 1 ) 2 , CR 1 , N, and NR 1a , and Z 2 is selected from C(R 2 ) 2 , CR 2 , N, and NR 2a , wherein R 1 and R 2 are each independently selected from the group consisting of H, F, Cl, Br, I, ⁇ CN, C 1 ⁇ C 12 alkyl, C 2 ⁇ C 12 alkenyl, C 2 ⁇ C 12 alkynyl, (C 1 -C 6 alkyldiyl)-(C 6 -C 20 aryl
  • Z 1 is CR 1
  • Z 2 is CR 2
  • R 1 and R 2 are each H.
  • ring A is C 3 -C 20 heteroaryl.
  • cDa is TPL ⁇ L 2 ⁇ , wherein TPL is a target protein ligand and L 2 is a degrader linker.
  • TPL comprises a ligand that binds BRD4.
  • AA is selected from H, ⁇ CH 3 , ⁇ CH 2 (C 6 H 5 ), ⁇ CH 2 CH 2 CH 2 CH 2 NH 2 , ⁇ CH 2 CH 2 CH 2 NHC(NH)NH 2 , ⁇ CH 2 CH(CH 3 ) 2 , and ⁇ CH 2 CH 2 CH 2 NHC(O)NH 2 .
  • R 1 is C 5 alkylene.
  • R 2 and R 3 together form a C 4 cycloalkyl ring.
  • AA is ⁇ CH 3 or ⁇ CH 2 CH 2 CH 2 NHC(O)NH 2 .
  • R 1 is C 5 alkylene; R 2 and R 3 together form a C 4 cycloalkyl ring; and AA is ⁇ CH 3 or ⁇ CH 2 CH 2 CH 2 NHC(O)NH 2 .
  • cDa comprises (i) a target protein ligand covalently attached to a degrader linker, or (ii) a molecular glue moiety.
  • cDa is TPL ⁇ L 2 ⁇ , wherein TPL is a target protein ligand and L 2 is a degrader linker.
  • TPL comprises a ligand that binds BRD4.
  • Exemplary embodiments of cDLI have a structure of Formula II-B wherein X is a thiol-reactive group; L 3a is a linker; ring A is selected from C 6 -C 20 aryl, C 3 -C 20 carbocyclyl, C 2 -C 20 heterocyclyl, and C 1 -C 20 heteroaryl; the dashed line indicates an optional double bond; Z 1 is selected from C(R 1 ) 2 , CR 1 , N, and NR 1a , and Z 2 is selected from C(R 2 ) 2 , CR 2 , N, and NR 2a , wherein R 1 and R 2 are each independently selected from the group consisting of H, F, Cl, Br, I, ⁇ CN, C 1 ⁇ C 12 alkyl, C 2 ⁇ C 12 alkenyl, C 2 ⁇ C 12 alkynyl, (C 1 -C 6 alkyldiyl)-(C 6 -C 20 aryl), ⁇
  • Z 1 is CR 1
  • Z 2 is CR 2
  • R 1 and R 2 are each H.
  • ring A is C 3 -C 20 heteroaryl.
  • cDa is TPL ⁇ L 2 ⁇ , wherein TPL is a target protein ligand and L 2 is a degrader linker.
  • TPL comprises a ligand that binds BRD4.
  • the cDLI of Formula II-B includes the structure of Formula II-B’
  • X is a thiol-reactive group
  • L 3a is a linker
  • L 3a is a protease-cleavable, non-peptide linker.
  • AA is selected from H, ⁇ CH 3 , ⁇ CH 2 (C 6 H 5 ), ⁇ CH 2 CH 2 CH 2 CH 2 NH 2 , ⁇ CH 2 CH 2 CH 2 NHC(NH)NH 2 , ⁇ CH 2 CH(CH 3 ) 2 , and ⁇ CH 2 CH 2 CH 2 NHC(O)NH 2 .
  • R 1 is C 5 alkylene.
  • R 2 and R 3 together form a C4 cycloalkyl ring.
  • AA is ⁇ CH 3 or ⁇ CH 2 CH 2 CH 2 NHC(O)NH 2 .
  • R 1 is C 5 alkylene; R 2 and R 3 together form a C4 cycloalkyl ring; and AA is ⁇ CH 3 or ⁇ CH 2 CH 2 CH 2 NHC(O)NH 2 .
  • cDa comprises (i) a target protein ligand covalently attached to a degrader linker, or (ii) a molecular glue moiety.
  • cD a is TPL ⁇ L 2 ⁇ , wherein TPL is a target protein ligand and L 2 is a degrader linker.
  • TPL comprises a ligand that binds BRD4.
  • X-IM comprises , wherein ** indicates the point of attachment to cDa, and the wavy line indicates the point of attachment to E3UL.
  • R 4a , R 4b , R 5a , and R 5a are independently selected from H and C 1 -C 6 alkyl, or R 4a and R 4b together with the carbon atom to which they are bound form a three-, four-, or five-membered cycloalkyl or heterocyclyl, optionally substituted with F, Cl, and C 1 -C 6 alkyl, wherein C 1 -C 6 alkyl is independently and optionally substituted with one or more groups selected from F, Cl, ⁇ CN, ⁇ NH 2 , ⁇ CH 2 NH 2 , ⁇ OH, ⁇ OCH 3 , ⁇ OCH 2 CH 3 , ⁇ OCH 2 CH 2 OCH 3 , ⁇ OCH 2 CH 2 OH,
  • Exemplary embodiments of cDLI have a structure of Formula II-C II-C wherein R 4a , R 4b , R 5a , and R 5a are each independently selected from H and C 1 -C 6 alkyl, or R 4a and R 4b together with the carbon atom to which they are bound form a three-, four-, or five- membered cycloalkyl or heterocyclyl, optionally substituted with F, Cl, and C 1 -C 6 alkyl, where C 1 -C 6 alkyl is independently and optionally substituted with one or more groups selected from F, Cl, ⁇ CN, ⁇ NH 2 , ⁇ CH 2 NH 2 , ⁇ OH, ⁇ OCH 3 , ⁇ OCH 2 CH 3 , ⁇ OCH 2 CH 2 OCH 3 , ⁇ OCH 2 CH 2 OH, ⁇ OCH 2 CH 2 N(CH 3 ) 2 , ⁇ OCH 2 F, ⁇ OCHF 2 , ⁇ OCF 3 , ⁇ OP
  • Z 1 is CR 1
  • Z 2 is CR 2
  • R 1 and R 2 are each H.
  • ring A is C 3 -C 20 heteroaryl.
  • cDa is TPL ⁇ L 2 ⁇ , wherein TPL is a target protein ligand and L 2 is a degrader linker.
  • TPL comprises a ligand that binds BRD4.
  • the cDLI of Formula II-C includes the structure of Formula II-C’ wherein R 4a , R 4b , R 5a , and R 5a are each independently selected from H and C 1 -C 6 alkyl, or R 4a and R 4b together with the carbon atom to which they are bound form a three-, four-, or five- membered cycloalkyl or heterocyclyl, optionally substituted with F, Cl, and C 1 -C 6 alkyl, where C 1 -C 6 alkyl is independently and optionally substituted with one or more groups selected from F, Cl, ⁇ CN, ⁇ NH 2 , ⁇ CH 2 NH 2 , ⁇ OH, ⁇ OCH 3 , ⁇ OCH 2 CH 3 , ⁇ OCH 2 CH 2 OCH 3 , ⁇ OCH 2 CH 2 OH, ⁇ OCH 2 CH 2 N(CH 3 ) 2 , ⁇ OCH 2 F, ⁇ OCHF 2 , ⁇ OCF 3 ,
  • cDa comprises (i) a target protein ligand covalently attached to a degrader linker, or (ii) a molecular glue moiety.
  • cDa is TPL ⁇ L 2 ⁇ , wherein TPL is a target protein ligand and L 2 is a degrader linker.
  • TPL comprises a ligand that binds BRD4.
  • CEREBLON-BINDING, E3 UBIQUITIN LIGASE LIGANDS The cereblon-binding, E3 ubiquitin ligase ligand (E3UL) is a moiety that binds to cereblon in the E3 ubiquitin ligase complex.
  • the E3UL comprises a glutarimide group.
  • the cereblon degrader moiety (cD) of an antibody conjugate (cDAC) has a structure selected from the formulae: wherein the wavy line indicates the point of attachment to the antibody linker L 1 of Formula I or the linker L 3 of Formula II, and the dashed line indicates an optional double bond; Z 1 is selected from C(R 1 ) 2 , CR 1 , N, and NR 1a ; Z 2 is selected from C(R 2 ) 2 , CR 2 , N, and NR 2a ; R is selected from H and C 1 -C 6 alkyl; R 1 and R 2 are independently selected from the group consisting of H, F, Cl, Br, I, ⁇ CN, C 1 ⁇ C 12 alkyl, C 2 ⁇ C 12 alkenyl, C 2 ⁇ C 12 alkynyl, (C 1 -C 6 alkyldiyl)-(C 6 -C 20
  • Z 1 and Z 2 are each CR 1 , and R 1 and R 2 are each H. In some embodiments, R is H. In some embodiments, A is C 6 -C 20 aryl. In some embodiments, Z 1 and Z 2 are each CR 1 , wherein R 1 and R 2 are each H; R is H; and A is C 6 -C 20 aryl.
  • ANTIBODY LINKERS The antibody linker (L 1 ) is a bifunctional linker that covalently attaches the antibody (Ab) to the cereblon degrader moiety (cD).
  • the disclosed antibody linkers provide stability of the cDAC in the bloodstream and while allowing efficient cleavage upon internalization into targeted cells.
  • the specific design of the antibody linker influence aspects of cDAC pharmacology including drug stability into circulation, tumor cell permeability, drug-to-antibody ratio (DAR) i.e. the number of payload molecules carried by each antibody), and extent of the bystander effect.
  • the disclosed antibody linkers may comprise a cleavable non-peptidic peptidomimetic unit (PM).
  • the PM may be a substrate for lysosomal proteases although not containing a peptide (WO 2015/095227; WO 2015/095124; WO 2015/095223).
  • the cyclobutane-1,1-dicarboxamide-containing peptidomimetic linker is hydrolyzed predominantly by cathepsin B while the valine ⁇ citrulline dipeptide linker is not.
  • Antibody-drug conjugates bearing the PM linker may be as efficacious and stable in vivo as those with a dipeptide linker (Wei et al, (2016) J. Med. Chem.61:989-1000).
  • L 1 is a protease-cleavable, non-peptide linker having the formula: wherein Str is a stretcher unit covalently attached to the antibody; PM is a peptidomimetic unit, and IM is an immolator unit covalently attached to the cereblon degrader moiety.
  • Str is selected from the following: wherein * indicates the point of attachment to a cysteine thiol of the antibody.
  • the C 1 -C 12 alkylene is C 1 -C 5 alkylene.
  • R 1 is (CH 2 ) 5 or C 5 alkylene.
  • PM has the formula: where R 2 and R 3 together form a C 3 -C 7 cycloalkyl ring optionally substituted with one or more groups selected from F, Cl, ⁇ CN, ⁇ NH 2 , ⁇ CH 2 NH 2 , ⁇ OH, ⁇ OCH 3 , ⁇ OCH 2 CH 3 , ⁇ OCH 2 CH 2 OCH 3 , ⁇ OCH 2 CH 2 OH, ⁇ OCH 2 CH 2 N(CH 3 ) 2 , ⁇ OCH 2 F, ⁇ OCHF 2 , ⁇ OCF 3 , ⁇ OP(O)(OH) 2 , ⁇ S(O) 2 N(CH 3 ) 2 , ⁇ SCH 3 , ⁇ S(O) 2 CH 3 , and ⁇ S(O) 3 H, and AA is a side chain of an amino acid selected from the group consisting of alanine, arginine, asparagine, aspartic acid, cysteine, glutamic acid, glutamine, and ⁇ S(
  • AA is selected from H, ⁇ CH 3 , ⁇ CH 2 (C 6 H 5 ), ⁇ CH 2 CH 2 CH 2 CH 2 NH 2 , ⁇ CH 2 CH 2 CH 2 NHC(NH)NH 2 , ⁇ CH 2 CH(CH 3 ) 2 , and ⁇ CH 2 CH 2 CH 2 NHC(O)NH 2 .
  • R 2 and R 3 together form a C4 cycloalkyl ring; and AA is ⁇ CH 3 .
  • R 2 and R 3 together form a C4 cycloalkyl ring; and AA is ⁇ CH 2 CH 2 CH 2 NHC(O)NH 2 .
  • Formula I comprises an immolator moiety selected from: wherein * indicates the point of attachment to the remainder of L 1 , and the wavy line indicates point of attachment to cD;
  • R 4a , R 4b , R 5a , and R 5a are independently selected from H and C 1 -C 6 alkyl, or R 4a and R 4b together with the carbon atom to which they are bound form a three-, four-, or five-membered cycloalkyl or heterocyclyl, optionally substituted with F, Cl, and C 1 -C 6 alkyl; and C 1 -C 6 alkyl is independently and optionally substituted with one or more groups selected from F, Cl, ⁇ CN, ⁇ NH 2 , ⁇ CH 2 NH 2 , ⁇ OH, ⁇ OCH 3 , ⁇ OCH 2 CH 3 , ⁇ OCH 2 CH 2 OCH 3 , ⁇ OCH 2 CH 2 OH, ⁇ OCH 2 CH 2 N(CH 3 ) 2 ,
  • the cereblon degrader moiety (cD) of the cDAC is linked through an aminal group of the nitrogen atom of the glutarimide group of the cD to the antibody linker (L 1 ).
  • the IM ⁇ cD of an antibody conjugate (cDAC) comprises a structure selected from: wherein the wavy line indicates the point of attachment to the the remainder of the linker, L 1 , of a heterobifunctional cD of Formula I or the remainder of the linker, L 3 , of a molecular glue cD of Formula II.
  • Z 1 and Z 2 are each CR 1
  • R 1 and R 2 are each H.
  • R is H.
  • A is C 6 -C 20 aryl.
  • Z 1 and Z 2 are each CR 1 , wherein R 1 and R 2 are each H; R is H; and A is C 6 -C 20 aryl.
  • IM comprises a group selected from 4-aminobenzyl, 4- aminobenzyloxycarbonyl, and (4-aminobenzyl)methylcarbamate.
  • L 1 forms a disulfide linkage with a cysteine thiol of the antibody.
  • Formula I is selected from the formulae: ,
  • L 1 is a linker having the formula: wherein R 4a and R 4b are each independently selected from H and C 1 -C 6 alkyl, or R 4a and R 4b , together with the carbon atom to which they are bound, form a three-, four-, or five-membered cycloalkyl or heterocyclyl, optionally substituted with F, Cl, and C 1 -C 6 alkyl, where C 1 -C 6 alkyl is independently and optionally substituted with one or more groups selected from F, Cl, ⁇ CN, ⁇ OH, ⁇ OCH 3 , ⁇ OCH 2 CH 3 , ⁇ OCH 2 CH 2 OCH 3 , ⁇ OCH 2 CH 2 OH, ⁇ OCH 2 CH 2 N(CH 3 ) 2 , ⁇ OCH 2 F, ⁇ OCHF 2 , ⁇ OCF 3 , ⁇ OP(O)(OH) 2 , ⁇ S(O) 2 N(CH 3 ) 2 , ⁇ OP(O)(
  • L 1 is selected from the formulae: wherein R 4a , R 4b , R 5a , and R 5a are each independently selected from H and C 1 -C 6 alkyl, or R 4a and R 4b , together with the carbon atom to which they are bound, form a three-, four-, or five- membered cycloalkyl or heterocyclyl, optionally substituted with F, Cl, and C 1 -C 6 alkyl, where C 1 -C 6 alkyl is independently and optionally substituted with one or more groups selected from F, Cl, ⁇ CN, ⁇ OH, ⁇ OCH 3 , ⁇ OCH 2 CH 3 , ⁇ OCH 2 CH 2 OCH 3 , ⁇ OCH 2 CH 2 OH, ⁇ OCH 2 CH 2 N(CH 3 ) 2 , ⁇ OCH 2 F, ⁇ OCHF 2 , ⁇ OCF 3 , ⁇ OP(O)(OH) 2 , ⁇ S(O) 2 N(CH 3
  • R 4a and R 4b are each ⁇ CH 3 .
  • R 5a and R 5b are each H.
  • R 6 is H.
  • R 4a and R 4b are each ⁇ CH 3
  • R 5a and R 5b are each H
  • R 6 is H.
  • CEREBLON DEGRADER MOIETIES the cD is a bivalent heterobifunctional cD or a molecular glue cD.
  • the cereblon degrader moiety has the formula: E3UL ⁇ cD a wherein E3UL is the cereblon-binding, E3 ubiquitin ligase ligand; cDa is a molecular glue moiety; or cD a is TPL ⁇ L 2 ⁇ , wherein TPL is the target protein ligand, and L 2 is the degrader linker.
  • cD comprises a cereblon-binding, E3 ubiquitin ligase ligand (E3UL) covalently attached to a target protein ligand (TPL) by a degrader linker (L 2 ) to form a bivalent heterobifunctional cD.
  • E3UL E3 ubiquitin ligase ligand
  • TPL target protein ligand
  • L 2 degrader linker
  • the cereblon degrader moiety has the formula: TPL ⁇ L 2 ⁇ E3UL wherein: TPL is a target protein ligand; E3UL is the cereblon-binding, E3 ubiquitin ligase ligand; L 2 is a degrader linker; and one of TPL, E3UL and L 2 is attached to L 1 .
  • TARGET PROTEIN LIGANDS A target-protein ligand (TPL) is a moiety that binds to a protein of interest to be tagged and degraded by the E3 ubiquitin ligase/proteasome system.
  • the TPL is covalently attached to the cereblon-binding, E3 ubiquitin ligase ligand by the degrader linker.
  • An exemplary target protein of the cereblon degrader antibody conjugate (cDAC) is BRD4.
  • BRD4 is a member of the bromodomain and extra terminal domain (BET) family and is an attractive target in a variety of pathological situations, particularly cancer including solid tumors and hematological malignancies.
  • Prostate and AML (acute myeloid leukemia) cell lines show sensitivity to inhibition of BRD4 (S.E. Lochrin, et al (2014) Canc. Biol. Ther.15 (12):1583-1585).
  • exemplary target proteins of the cereblon degrader antibody conjugate include but are not limited to GSPT1, BET, BRM (SMARCA2), KRAS, and SHP2 (Wang, C. et al (2021) Eur J Med Chem.225:113749).
  • a TPL has the structure of the formula: wherein R x is selected from F, Cl, and Br; and n is 0, 1, 2 or 3; R y is selected from H and C 1 -C 6 alkyl; and the wavy line indicates the point of attachment to L 2 .
  • a TPL has the structure: where the wavy line indicates the point of attachment to L 2 .
  • a TPL has the structure: where the wavy line indicates the point of attachment to L 2 .
  • An exemplary target protein of the cereblon degrader antibody conjugate (cDAC) is GSPT1 (G1 To S phase transition protein 1 homologue), a translation termination factor (Huber, A. et al (2022) ACS Med. Chem. Lett., 13:1311 ⁇ 1320; Powell, C.E. et al (2020) ACS Chem. Biol.15:2722 ⁇ 2730; Matyskiela, M.E. (2016) Nature 535(7611):252-257).
  • GSPT1 is upregulated in many cancers, particularly hematopoietic malignancies, and acute leukemia cells have been shown to be highly sensitive to GSPT1 degradation. GSPT1 is therefore a potential drug target for future chemotherapies (Matyskiela, M. E. et al, (2016) Nature 535 (7611), 252 ⁇ 7; Surka, C.; et al, (2021) Blood 137(5) 661 ⁇ 677; Takwale, A.D. et al (2022) Bioorganic Chemistry 127:105923; Hansen JD, et al (2021) J Med Chem.64(4):1835-1843).
  • the degrader linker (L 2 ) is any suitable bifunctional or trifunctional linker unit that covalently attaches to the target protein ligand (TPL) and the cereblon-binding, E3 ubiquitin ligase ligand (E3UL).
  • the degrader linker may be covalently attached to the antibody linker L 1 to form the cereblon degrader antibody conjugate (cDAC).
  • cereblon degrader moiety (cD) of an antibody conjugate (cDAC) is a molecular glue cereblon degrader moiety.
  • the molecular glue cereblon degrader moiety (cD) comprises an E3UL covalently attached to a molecular glue moiety (cD a ) to form a molecular glue cD.
  • the molecular glue cD comprises a structure selected from the formulae: wherein the wavy line indicates the point of attachment to the antibody linker L 1 of Formula I or the linker L 3 of Formula II; cD a is a molecular glue moiety; the dashed line indicates an optional double bond; Z 1 is selected from C(R 1 ) 2 , CR 1 , N, and NR 1a ; Z 2 is selected from C(R 2 ) 2 , CR 2 , N, and NR 2a ; R 1 and R 2 are independently selected from the group consisting of H, F, Cl, Br, I, ⁇ CN, C 1 ⁇ C 12 alkyl, C 2 ⁇ C 12 alkenyl, C 2 ⁇ C 12 alkynyl, (C 1 -C 6 alkyldiyl)-(C 6 -C 20 aryl), ⁇ (C 1 -C 6 alkyldiyl) ⁇ NR a R b , ⁇ (C
  • Z 1 and Z 2 are each CR 1 , and R 1 and R 2 are each H. In some embodiments, R is H. In some embodiments, A is C 6 -C 20 aryl. In some embodiments, Z 1 and Z 2 are each CR 1 , wherein R 1 and R 2 are each H; R is H; and A is C 6 -C 20 aryl.
  • CEREBLON DEGRADER-LINKER INTERMEDIATES A cereblon degrader-linker intermediate (cDLI) is a reagent for the process of making a cereblon degrader antibody conjugate (cDAC) by conjugation with a thiol-containing antibody.
  • the cereblon degrader-linker intermediate has a thiol-reactive functional group (X).
  • the thiol- reactive functional group (X) is covalently attached to the cereblon degrader moiety (cD) by a linker (L 3 ).
  • a cereblon degrader-linker intermediate has the structure of Formula II: X ⁇ L 3 ⁇ cD II wherein: X is a thiol-reactive group; L 3 is a linker selected from: (i) a protease-cleavable, non-peptide linker having the formula: ⁇ Str ⁇ PM ⁇ Y ⁇ wherein Str is a stretcher unit covalently attached to X, PM is a peptidomimetic unit, and Y is a spacer unit covalently attached to cD; (ii) a disulfide linker selected from the formulae: (iii) a linker having the formula: wherein * indicates the point of attachment to X, R 4a , R 4b , R 5a , and R 5a are independently selected from H and C 1 -C 6 alkyl, or R 4a and R 4b together with the carbon atom to which they are bound form a three-, four-, or five-membered cycl
  • the attachment of L 3 to cD comprises a carbamate ( ⁇ OC(O)NH ⁇ ) or methylcarbamate ( ⁇ OC(O)NHCH 2 ⁇ ) group.
  • X is selected from a group consisting of maleimide, bromoacetamide, toluenesulfonyl sulfide, and 2-pyridyldisulfide where the pyridyl is optionally substituted with one or two nitro groups.
  • the cereblon degrader-linker intermediate has the formula: wherein IM comprises a group selected from 4-aminobenzyl, 4- aminobenzyloxycarbonyl, and (4-aminobenzyl)methylcarbamate, and AA is a side chain of an amino acid selected from the group consisting of alanine, arginine, asparagine, aspartic acid, cysteine, glutamic acid, glutamine, glycine, histidine, isoleucine, leucine, lysine, methionine, phenylalanine, proline, serine, threonine, tryptophan, tyrosine, valine, and citrulline.
  • IM comprises a group selected from 4-aminobenzyl, 4- aminobenzyloxycarbonyl, and (4-aminobenzyl)methylcarbamate
  • AA is a side chain of an amino acid selected from the group consisting of alanine, arginine, asparagine, as
  • AA is selected from H, ⁇ CH 3 , ⁇ CH 2 (C 6 H 5 ), ⁇ CH 2 CH 2 CH 2 CH 2 NH 2 , ⁇ CH 2 CH 2 CH 2 NHC(NH)NH 2 , ⁇ CH 2 CH(CH 3 ) 2 , and ⁇ CH 2 CH 2 CH 2 NHC(O)NH 2 .
  • AA is ⁇ CH 3 or ⁇ CH 2 CH 2 CH 2 NHC(O)NH 2 .
  • the cereblon degrader-linker intermediate includes the formula: wherein L 3 is a protease-cleavable, non-peptide linker having the formula: ⁇ Str ⁇ PM ⁇ IM ⁇ wherein Str is a stretcher unit covalently attached to X, PM is a peptidomimetic unit, and IM is an immolator unit covalently attached to cD and has the formula: where the wavy line is the attachment to PM.
  • the cereblon degrader-linker intermediate includes the formula: wherein L 3 is a protease-cleavable, non-peptide linker having the formula: ⁇ Str ⁇ PM ⁇ IM ⁇ wherein Str is a stretcher unit covalently attached to X, PM is a peptidomimetic unit, and IM is an immolator unit covalently attached to L 2 of cD and has the formula: where the wavy line is the attachment to PM.
  • Certain cDLI in Table 2 were prepared which did not possess the necessary properties of stability, cleavage efficiency, and conjugation efficiency with antibodies.
  • the sulfonyl-thio cDLI-1 compound failed to react with an antibody under conditions described in Example 102, including pH 8.5 with 3 and 10 equivalents for 3 hours and overnight.
  • Analysis by mass spectrometry (LC/MS) showed none of the expected conjugate product cDAC, opening of the glutarimide ring, addition of water (+18 mass units), and addition of Tris buffer to the glutarimide ring.
  • the carbamate functional group formed by the glutarimide nitrogen in cDLI-1 is too unstable under these conditions for conjugation.
  • Sulfenamide cDLI-2 and bromo-lenalidomide cDLI-3 compounds did not conjugate to antibodies.
  • the nitro group of para-nitrobenzyloxymethyl lenalidomide cDLI-7 was reduced to amine in a model study. No cleavage of the para-aminobenzyloxy group was observed by the appearance of lenalidomide was detected.
  • the disulfide group of para-nitropyridyl disulfidemethyl lenalidomide cDLI-8 was reduced in a model study. No cleavage of the disulfide group was observed by the appearance of lenalidomide was detected.
  • Sulfonyl-thio cDLI-9 with and without methyl adjacent to the glutarimide nitrogen, cleaved to release detectable lenalidomide but was not stable, generating hydrolysis products.
  • the cereblon degrader-linker intermediate includes TPL selected from the formulae: wherein R x is selected from F, Cl, and Br, and n is 0, 1, 2 or 3; R y is selected from H and C 1 -C 6 alkyl; ( where the wavy lines indicate the point of attachment of L 2 .
  • Exemplary cereblon degrader-linker intermediates (cDLI) are selected from:
  • the cereblon degrader-linker intermediates (cDLI) in Table 3 were prepared which possessed the necessary properties of stability, cleavage efficiency, and conjugation efficiency with antibodies. Each cDLI in Table 3 was characterized by NMR and shown to have sufficient purity and the correct mass by LC/MS. Table 3 Examples of cereblon degrader-linker intermediates (cDLI) ANTIBODIES
  • the cereblon degrader antibody conjugate (cDAC) provided herein comprises an antibody. Included in the scope of the embodiments of the antibody are functional variants of antibody constructs and antigen binding domains described herein.
  • the antibody portion of a cDAC can target a cell that expresses an antigen whereby the antigen specific cDAC is delivered intracellularly to the target cell, typically through endocytosis. While a cDAC that comprise an antibody directed to an antigen that is not found on the cell surface may result in less specific intracellular delivery of the cereblon-degrader moiety into the cell, the cDAC may still undergo pinocytosis. cDACs and methods of their use described herein advantageously utilize antibody recognition at the cellular surface and/or endocytosis of the cDAC to deliver the cereblon degrader moiety portion inside cells.
  • immunoconjugates e.g., cDACs
  • an anti-HER2 antibody of the cDAC comprises a humanized anti-HER2 antibody, e.g., huMAb4D5-1, huMAb4D5-2, huMAb4D5-3, huMAb4D5-4, huMAb4D5-5, huMAb4D5-6, huMAb4D5-7 and huMAb4D5-8, as described in Table 3 of US 5821337, which is specifically incorporated by reference herein.
  • Those antibodies contain human framework regions with the complementarity-determining regions of a murine antibody (4D5) that binds to HER2.
  • the humanized antibody huMAb4D5-8 is also referred to as trastuzumab, commercially available under the tradename HERCEPTINTM (Genentech, Inc.).
  • the antibody construct or antigen binding domain comprises the CDR regions of trastuzumab.
  • the anti-HER2 antibody further comprises the framework regions of the trastuzumab.
  • the anti-HER2 antibody further comprises one or both variable regions of trastuzumab. 7C2, Anti-HER2 Antibody Anti-HER2 murine antibody 7C2 binds to an epitope in domain I of HER2. See, e.g., PCT Publication No. WO 98/17797.
  • This epitope is distinct from the epitope bound by trastuzumab, which binds to domain IV of HER2, and the epitope bound by pertuzumab, which binds to domain II of HER2.
  • trastuzumab disrupts ligand-independent HER2-HER3 complexes, thereby inhibiting downstream signaling (e.g. PI3K/AKT).
  • pertuzumab binding to domain II prevents ligand-driven HER2 interaction with other HER family members (e.g. HER3, HER1 or HER4), thus also preventing downstream signal transduction.
  • Binding of MAb 7C2 to domain I does not result in interference of trastuzumab or pertuzumab binding to domains IV and II, respectively, thereby offering the potential of combining a MAb 7C2 ADC (antibody drug conjugate) with trastuzumab, trastuzumab emtansine (T-DM1), and/or pertuzumab.
  • Murine antibody 7C2, 7C2.B9 is described in WO 1998/017797.
  • An anti-HER27C2 humanized antibody is disclosed in WO 2016/040723.
  • an anti-HER2 antibody of the cDAC described herein comprises a humanized 7C2 anti-HER2 antibody.
  • a humanized 7C2 antibody is an anti-HER2 antibody.
  • the cDAC described herein comprises an anti-HER2 antibody comprising at least one, two, three, four, five, or six HVRs selected from (a) HVR-H1 comprising the amino acid sequence of SEQ ID NO: 6; (b) HVR-H2 comprising the amino acid sequence of SEQ ID NO: 7, 11, or 12; (c) HVR-H3 comprising the amino acid sequence of SEQ ID NO: 8 or 13; (d) HVR-L1 comprising the amino acid sequence of SEQ ID NO: 3; (e) HVR- L 2 comprising the amino acid sequence of SEQ ID NO: 4; and (f) HVR-L3 comprising the amino acid sequence of SEQ ID NO: 5.
  • HVR-H1 comprising the amino acid sequence of SEQ ID NO: 6
  • HVR-H2 comprising the amino acid sequence of SEQ ID NO: 7, 11, or 12
  • HVR-H3 comprising the amino acid sequence of SEQ ID NO: 8 or 13
  • HVR-L1 comprising the amino acid sequence of SEQ ID
  • the cDAC described herein comprises an anti-HER2 antibody comprising at least one, two, three, four, five, or six HVRs selected from (a) HVR-H1 comprising the amino acid sequence of SEQ ID NO: 6; (b) HVR-H2 comprising the amino acid sequence of SEQ ID NO: 7; (c) HVR-H3 comprising the amino acid sequence of SEQ ID NO: 8; (d) HVR-L1 comprising the amino acid sequence of SEQ ID NO: 3; (e) HVR-L 2 comprising the amino acid sequence of SEQ ID NO: 4; and (f) HVR-L3 comprising the amino acid sequence of SEQ ID NO: 5.
  • HVR-H1 comprising the amino acid sequence of SEQ ID NO: 6
  • HVR-H2 comprising the amino acid sequence of SEQ ID NO: 7
  • HVR-H3 comprising the amino acid sequence of SEQ ID NO: 8
  • HVR-L1 comprising the amino acid sequence of SEQ ID NO: 3
  • HVR-L 2
  • the cDAC described herein comprises an antibody that comprises at least one, at least two, or all three VH HVR sequences selected from (a) HVR-H1 comprising the amino acid sequence of SEQ ID NO: 6; (b) HVR-H2 comprising the amino acid sequence of SEQ ID NO: 7, 11, or 12; and (c) HVR-H3 comprising the amino acid sequence of SEQ ID NO: 8 or 13.
  • the cDAC described herein comprises an antibody that comprises at least one, at least two, or all three VH HVR sequences selected from (a) HVR-H1 comprising the amino acid sequence of SEQ ID NO: 6; (b) HVR-H2 comprising the amino acid sequence of SEQ ID NO: 7; and (c) HVR-H3 comprising the amino acid sequence of SEQ ID NO: 8.
  • the antibody comprises (a) HVR-H1 comprising the amino acid sequence of SEQ ID NO: 6; (b) HVR-H2 comprising the amino acid sequence of SEQ ID NO: 7, 11, or 12; and (c) HVR-H3 comprising the amino acid sequence of SEQ ID NO: 8 or 13.
  • the antibody comprises (a) HVR-H1 comprising the amino acid sequence of SEQ ID NO: 6; (b) HVR-H2 comprising the amino acid sequence of SEQ ID NO: 7; and (c) HVR-H3 comprising the amino acid sequence of SEQ ID NO: 8.
  • the cDAC described herein comprises an antibody that comprises at least one, at least two, or all three VL HVR sequences selected from (a) HVR-L1 comprising the amino acid sequence of SEQ ID NO: 3; (b) HVR-L 2 comprising the amino acid sequence of SEQ ID NO: 4; and (c) HVR-L3 comprising the amino acid sequence of SEQ ID NO: 5.
  • the antibody comprises (a) HVR-L1 comprising the amino acid sequence of SEQ ID NO: 3; (b) HVR-L 2 comprising the amino acid sequence of SEQ ID NO: 4; and (c) HVR-L3 comprising the amino acid sequence of SEQ ID NO: 5.
  • the cDAC described herein comprises an antibody comprising (a) a VH domain comprising at least one, at least two, or all three VH HVR sequences selected from (i) HVR-H1 comprising the amino acid sequence of SEQ ID NO: 6, (ii) HVR-H2 comprising the amino acid sequence of SEQ ID NO: 7, 11, or 12, and (iii) HVR-H3 comprising an amino acid sequence selected from SEQ ID NO: 8 or 13; and (b) a VL domain comprising at least one, at least two, or all three VL HVR sequences selected from (i) HVR-L1 comprising the amino acid sequence of SEQ ID NO: 3, (ii) HVR-L 2 comprising the amino acid sequence of SEQ ID NO: 4, and (c) HVR-L3 comprising the amino acid sequence of SEQ ID NO: 5.
  • the cDAC described herein comprises: (a) a VH domain comprising at least one, at least two, or all three VH HVR sequences selected from (i) HVR-H1 comprising the amino acid sequence of SEQ ID NO: 6, (ii) HVR-H2 comprising the amino acid sequence of SEQ ID NO: 7, and (iii) HVR-H3 comprising an amino acid sequence selected from SEQ ID NO: 8; and (b) a VL domain comprising at least one, at least two, or all three VL HVR sequences selected from (i) HVR-L1 comprising the amino acid sequence of SEQ ID NO: 3, (ii) HVR-L 2 comprising the amino acid sequence of SEQ ID NO: 4, and (c) HVR-L3 comprising the amino acid sequence of SEQ ID NO: 5.
  • the cDAC described herein comprises an antibody that comprises (a) HVR-H1 comprising the amino acid sequence of SEQ ID NO: 6; (b) HVR-H2 comprising the amino acid sequence of SEQ ID NO: 7, 11, or 12; (c) HVR-H3 comprising the amino acid sequence of SEQ ID NO: 8 or 13; (d) HVR-L1 comprising the amino acid sequence of SEQ ID NO: 3; (e) HVR-L 2 comprising the amino acid sequence of SEQ ID NO: 4; and (f) HVR-L3 comprising the amino acid sequence of SEQ ID NO: 5.
  • the cDAC described herein comprises an antibody that comprises (a) HVR-H1 comprising the amino acid sequence of SEQ ID NO: 6; (b) HVR-H2 comprising the amino acid sequence of SEQ ID NO: 7; (c) HVR-H3 comprising the amino acid sequence of SEQ ID NO: 8; (d) HVR-L1 comprising the amino acid sequence of SEQ ID NO: 3; (e) HVR-L 2 comprising the amino acid sequence of SEQ ID NO: 4; and (f) HVR-L3 comprising the amino acid sequence of SEQ ID NO: 5.
  • an anti-HER2 antibody of an antibody-drug conjugate is humanized.
  • an anti-HER2 antibody of an antibody-drug conjugate comprises HVRs as in any of the above embodiments, and further comprises a human acceptor framework, e.g. a human immunoglobulin framework or a human consensus framework.
  • an anti-HER2 antibody of an antibody-drug conjugate comprises a heavy chain variable domain (VH) sequence having at least 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% sequence identity to the amino acid sequence of SEQ ID NO: 18.
  • VH heavy chain variable domain
  • a VH sequence having at least 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, or 99% identity to the amino acid sequence of SEQ ID NO: 2 contains substitutions (e.g., conservative substitutions), insertions, or deletions relative to the reference sequence, but an anti-HER2 antibody comprising that sequence retains the ability to bind to HER2.
  • a total of 1 to 10 amino acids have been substituted, inserted and/or deleted in SEQ ID NO: 2.
  • a total of 1 to 5 amino acids have been substituted, inserted and/or deleted in SEQ ID NO: 2.
  • the anti- HER2 antibody comprises the VH sequence of SEQ ID NO: 2, including post-translational modifications of that sequence.
  • the VH comprises one, two or three HVRs selected from: (a) HVR-H1 comprising the amino acid sequence of SEQ ID NO: 6, (b) HVR-H2 comprising the amino acid sequence of SEQ ID NO: 7, and (c) HVR-H3 comprising the amino acid sequence of SEQ ID NO: 8.
  • an anti-HER2 antibody of an antibody-drug conjugate comprising a light chain variable domain (VL) having at least 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% sequence identity to the amino acid sequence of SEQ ID NO: 1.
  • VL light chain variable domain
  • a VL sequence having at least 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, or 99% identity to the amino acid sequence of SEQ ID NO: 1 contains substitutions (e.g., conservative substitutions), insertions, or deletions relative to the reference sequence, but an anti-HER2 antibody comprising that sequence retains the ability to bind to HER2.
  • the anti-HER2 antibody comprises the VL sequence of SEQ ID NO: 1, including post-translational modifications of that sequence.
  • the VL comprises one, two or three HVRs selected from (a) HVR-L1 comprising the amino acid sequence of SEQ ID NO: 3; (b) HVR-L 2 comprising the amino acid sequence of SEQ ID NO: 4; and (c) HVR-L3 comprising the amino acid sequence of SEQ ID NO: 5.
  • an antibody-drug conjugate comprising an anti-HER2 antibody is provided, wherein the antibody comprises a VH as in any of the embodiments provided above, and a VL as in any of the embodiments provided above.
  • an antibody-drug conjugate comprising an antibody comprising an antibody
  • the antibody comprises the VH and VL sequences in SEQ ID NO: 2 and SEQ ID NO: 1, respectively, including post-translational modifications of those sequences.
  • an antibody-drug conjugate comprising an antibody is provided, wherein the antibody comprises the humanized 7C2.v2.2.LA (hu7C2) K149C kappa light chain sequence of SEQ ID NO: 14
  • an antibody-drug conjugate comprising an antibody is provided, wherein the antibody comprises the Hu7C2 A118C IgG1 heavy chain sequence of SEQ ID NO: 15.
  • antibody-drug conjugates comprising antibodies that bind to the same epitope as an anti-HER2 antibody provided herein.
  • an immunoconjugate comprising an antibody that binds to the same epitope as an anti-HER2 antibody comprising a VH sequence of SEQ ID NO: 2 and a VL sequence of SEQ ID NO: 1, respectively.
  • the anti-HER2 antibody of the cDACs according to any of the above embodiments is a monoclonal antibody, including a human antibody.
  • an anti-HER2 antibody of an immunoconjugate is an antibody fragment, e.g., a Fv, Fab, Fab’, scFv, diabody, or F(ab’) 2 fragment.
  • an immunoconjugate comprises an antibody that is a substantially full length antibody, e.g., an IgG1 antibody, IgG2a antibody or other antibody class or isotype as defined herein.
  • the anti-HER2 antibody is a full length antibody.
  • the anti-CD33 antibody 15G15.33 of cDAC in Table 4 and Table 5 comprises three light chain hypervariable regions (HVR-L1, HVR-L 2 and HVR-L3) and three heavy chain hypervariable regions (HVR-H1, HVR-H2 and HVR-H3), SEQ ID NO:16-21.
  • the anti-CD33 antibody 15G15.33 of cDAC in Table 4 and Table 5 comprises the light chain variable region of SEQ ID NO:22 and/or the heavy chain variable region of SEQ ID NO:23.
  • the anti-CD33 antibody 9C 3 comprises three light chain hypervariable regions (HVR- L 1 , HVR-L 2 and HVR-L3) and three heavy chain hypervariable regions (HVR-H1, HVR-H2 and HVR-H3), SEQ ID NO:24-29, and following VL and VH sequences SEQ ID NO:30-37.
  • the cDAC described herein comprises an anti-CD33 antibody comprising at least one, two, three, four, five, or six HVRs selected from (a) HVR-H1 comprising the amino acid sequence of SEQ ID NO:27; (b) HVR-H2 comprising the amino acid sequence of SEQ ID NO:28; (c) HVR-H3 comprising the amino acid sequence of SEQ ID NO:29; (d) HVR-L1 comprising the amino acid sequence of SEQ ID NO:24; (e) HVR-L 2 comprising the amino acid sequence of SEQ ID NO:25; and (f) HVR-L3 comprising the amino acid sequence of SEQ ID NO:26.
  • HVR-H1 comprising the amino acid sequence of SEQ ID NO:27
  • HVR-H2 comprising the amino acid sequence of SEQ ID NO:28
  • HVR-H3 comprising the amino acid sequence of SEQ ID NO:29
  • HVR-L1 comprising the amino acid sequence of SEQ ID NO:24
  • the cDAC described herein comprises an antibody comprising at least one, at least two, or all three VH HVR sequences selected from (a) HVR-H1 comprising the amino acid sequence of SEQ ID NO:27; (b) HVR-H2 comprising the amino acid sequence of SEQ ID NO:28; and (c) HVR-H3 comprising the amino acid sequence of SEQ ID NO:29.
  • the antibody comprises HVR-H3 comprising the amino acid sequence of SEQ ID NO:29.
  • the antibody comprises HVR-H3 comprising the amino acid sequence of SEQ ID NO:29 and HVR-L3 comprising the amino acid sequence of SEQ ID NO:26.
  • the antibody comprises HVR-H3 comprising the amino acid sequence of SEQ ID NO:29, HVR-L3 comprising the amino acid sequence of SEQ ID NO:26, and HVR-H2 comprising the amino acid sequence of SEQ ID NO:28.
  • the antibody comprises (a) HVR-H1 comprising the amino acid sequence of SEQ ID NO:27; (b) HVR-H2 comprising the amino acid sequence of SEQ ID NO:28; and (c) HVR-H3 comprising the amino acid sequence of SEQ ID NO:29.
  • the cDAC described herein comprises at least one, at least two, or all three VL HVR sequences selected from (a) HVR-L1 comprising the amino acid sequence of SEQ ID NO:24; (b) HVR-L 2 comprising the amino acid sequence of SEQ ID NO:25; and (c) HVR-L3 comprising the amino acid sequence of SEQ ID NO:26.
  • the antibody comprises (a) HVR-L1 comprising the amino acid sequence of SEQ ID NO:24; (b) HVR-L 2 comprising the amino acid sequence of SEQ ID NO:25; and (c) HVR-L3 comprising the amino acid sequence of SEQ ID NO:26.
  • the anti-CD33 antibody comprises (a) a VH domain comprising at least one, at least two, or all three VH HVR sequences selected from (i) HVR-H1 comprising the amino acid sequence of SEQ ID NO:27, (ii) HVR-H2 comprising the amino acid sequence of SEQ ID NO:28, and (iii) HVR-H3 comprising an amino acid sequence selected from SEQ ID NO:29; and (b) a VL domain comprising at least one, at least two, or all three VL HVR sequences selected from (i) HVR-L1 comprising the amino acid sequence of SEQ ID NO:24, (ii) HVR-L 2 comprising the amino acid sequence of SEQ ID NO:25, and (c) HVR-L3 comprising the amino acid sequence of SEQ ID NO:26.
  • the cDAC described herein comprises: (a) HVR-H1 comprising the amino acid sequence of SEQ ID NO:27; (b) HVR-H2 comprising the amino acid sequence of SEQ ID NO:28; (c) HVR-H3 comprising the amino acid sequence of SEQ ID NO:29; (d) HVR- L 1 comprising the amino acid sequence of SEQ ID NO:24; (e) HVR-L 2 comprising the amino acid sequence of SEQ ID NO:25; and (f) HVR-L3 comprising the amino acid sequence of SEQ ID NO:26.
  • an anti-CD33 antibody is humanized.
  • an anti-CD33 antibody comprises HVRs as in any of the above embodiments, and further comprises a human acceptor framework, e.g. a human immunoglobulin framework or a human consensus framework.
  • the human acceptor framework is the human VL kappa I consensus (VL KI ) framework and/or the VH framework VH 1 .
  • the human acceptor framework is the human VL kappa I consensus (VLKI) framework and/or the VH framework VH1 comprising any one of the following mutations.
  • an anti-CD33 antibody comprises a heavy chain variable domain (VH) sequence having at least 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% sequence identity to the amino acid sequence of SEQ ID NO:31, SEQ ID NO:33, SEQ ID NO:35, and/or SEQ ID NO:37.
  • VH heavy chain variable domain
  • a VH sequence having at least 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, or 99% identity to the amino acid sequence of SEQ ID NO:31, SEQ ID NO:33, SEQ ID NO:35, and/or SEQ ID NO:37 contains substitutions (e.g., conservative substitutions), insertions, or deletions relative to the reference sequence, but an anti-CD33 antibody comprising that sequence retains the ability to bind to CD33.
  • a total of 1 to 10 amino acids have been substituted, inserted and/or deleted in SEQ ID NO:31, SEQ ID NO:33, SEQ ID NO:35, and/or SEQ ID NO:37.
  • the anti- CD33 antibody comprises the VH sequence of SEQ ID NO:31, SEQ ID NO:33, SEQ ID NO:35, and/or SEQ ID NO:37, including post-translational modifications of that sequence.
  • the VH comprises one, two or three HVRs selected from: (a) HVR-H1 comprising the amino acid sequence of SEQ ID NO:27, (b) HVR-H2 comprising the amino acid sequence of SEQ ID NO:28, and (c) HVR-H3 comprising the amino acid sequence of SEQ ID NO:29.
  • an anti-CD33 antibody is provided, wherein the antibody comprises a light chain variable domain (VL) having at least 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% sequence identity to the amino acid sequence of SEQ ID NO:30, SEQ ID NO:32, SEQ ID NO:34, and/or SEQ ID NO:36.
  • VL light chain variable domain
  • a VL sequence having at least 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, or 99% identity to the amino acid sequence of SEQ ID NO:30, SEQ ID NO:32, SEQ ID NO:34, and/or SEQ ID NO:36 contains substitutions (e.g., conservative substitutions), insertions, or deletions relative to the reference sequence, but an anti-CD33 antibody comprising that sequence retains the ability to bind to CD33.
  • a total of 1 to 10 amino acids have been substituted, inserted and/or deleted in SEQ ID NO:30, SEQ ID NO:32, SEQ ID NO:34, and/or SEQ ID NO:36.
  • the anti-CD33 antibody comprises the VL sequence of SEQ ID NO:30, SEQ ID NO:32, SEQ ID NO:34, and/or SEQ ID NO:36, including post-translational modifications of that sequence.
  • the VL comprises one, two or three HVRs selected from (a) HVR-L1 comprising the amino acid sequence of SEQ ID NO:24; (b) HVR-L 2 comprising the amino acid sequence of SEQ ID NO:25; and (c) HVR-L3 comprising the amino acid sequence of SEQ ID NO:26.
  • an anti-CD33 antibody is provided, wherein the antibody comprises a VH as in any of the embodiments provided above, and a VL as in any of the embodiments provided above.
  • the antibody comprises the VH and VL sequences in SEQ ID NO:31 and SEQ ID NO:30, respectively, including post-translational modifications of those sequences.
  • the antibody comprises the VH and VL sequences in SEQ ID NO:33 and SEQ ID NO:32, respectively, including post-translational modifications of those sequences. In one embodiment, the antibody comprises the VH and VL sequences in SEQ ID NO:35 and SEQ ID NO:34, respectively, including post-translational modifications of those sequences. In one embodiment, the antibody comprises the VH and VL sequences in SEQ ID NO:37 and SEQ ID NO:36, respectively, including post-translational modifications of those sequences. In a further aspect, provided herein are antibodies that bind to the same epitope as an anti-CD33 antibody provided herein.
  • an antibody that binds to the same epitope as an anti-CD33 antibody comprising a VH sequence of SEQ ID NO:31, SEQ ID NO:33, SEQ ID NO:35, and/or SEQ ID NO:37 and a VL sequence of SEQ ID NO:30, SEQ ID NO:32, SEQ ID NO:34, and/or SEQ ID NO:36, respectively.
  • the anti-CD33 antibody is a monoclonal antibody, including a human antibody.
  • an anti-CD33 antibody is an antibody fragment, e.g., a Fv, Fab, Fab’, scFv, diabody, or F(ab’) 2 fragment.
  • the antibody is a substantially full length antibody, e.g., an IgG1 antibody, IgG2a antibody or other antibody class or isotype as defined herein.
  • the anti-CD33 anibody is a full length antibody.
  • an anti-CD33 antibody according to any of the above embodiments may incorporate any of the features, singly or in combination, as described below. Cysteine engineered antibody variants
  • the substituted residues occur at sites of the antibody that are available for conjugation.
  • any one or more of the following residues may be substituted with cysteine: K149 (Kabat numbering) of the light chain; V205 (Kabat numbering) of the light chain; A118 (EU numbering) of the heavy chain; A140 (EU numbering) of the heavy chain; L174 (EU numbering) of the heavy chain; Y373 (EU numbering) of the heavy chain; and S400 (EU numbering) of the heavy chain Fc region.
  • the antibodies described herein comprise the HC-A140C (EU numbering) cysteine substitution. In specific embodiments, the antibodies described herein comprise the LC-K149C (Kabat numbering) cysteine substitution. In specific embodiments, the antibodies described herein comprise the HC-A118C (EU numbering) cysteine substitution. Cysteine engineered antibodies may be generated as described, e.g., in US 7521541. In certain embodiments, the antibody comprises one of the following heavy chain cysteine substitutions: In certain embodiments, the antibody comprises one of the following light chain cysteine substitutions:
  • a nonlimiting exemplary hu7C2.v2.2.LA light chain (LC) K149C THIOMABTM has the heavy chain and light chain amino acid sequences of SEQ ID NOs: 10 and 14, respectively.
  • a nonlimiting exemplary hu7C2.v2.2.LA heavy chain (HC) A118C THIOMABTM has the heavy chain and light chain amino acid sequences of SEQ ID NOs: 15 and 9, respectively.
  • the antibody of a cereblon degrader antibody conjugate is capable of binding to one or more tumor-associated antigens (TAA), cell-surface receptors, and immune-specific antigens to confer specificity to the targeting of the cereblon degrader antibody conjugate and enable safe and systemic delivery of an active drug moiety.
  • TAA tumor-associated antigens
  • cell-surface receptors cell-surface receptors
  • immune-specific antigens to confer specificity to the targeting of the cereblon degrader antibody conjugate and enable safe and systemic delivery of an active drug moiety.
  • tumor-associated antigens are known in the art, and can be prepared for use in generating antibodies using methods and information which are well known in the art.
  • TAAs include, but are not limited to, those listed below including (1)-(55).
  • TAAs targeted by antibodies include all amino acid sequence variants and isoforms possessing at least about 70%, 80%, 85%, 90%, or 95% sequence identity relative to the sequences identified in the cited references, and/or which exhibit substantially the same biological properties or characteristics as a TAA having a sequence found in the cited references.
  • a TAA having a variant sequence generally is able to bind specifically to an antibody that binds specifically to the TAA with the corresponding sequence listed.
  • the sequences and disclosure in the reference specifically recited herein are expressly incorporated by reference.
  • the sequences and disclosure in the references specifically recited herein are expressly incorporated by reference.
  • Sema 5b (FLJ10372, KIAA1445, Mm.42015, SEMA5B, SEMAG, Semaphorin 5b Hlog, sema domain, seven thrombospondin repeats (type 1 and type 1-like), transmembrane domain (TM) and short cytoplasmic domain, (semaphorin) 5B, Genbank accession no. AB040878) Nagase T., et al.
  • MSG783 (RNF124, hypothetical protein FLJ20315, Genbank accession no. NM_017763); WO2003104275 (Claim 1); WO2004046342 (Example 2); WO2003042661 (Claim 12); WO2003083074 (Claim 14; Page 61); WO2003018621 (Claim 1); WO2003024392 (Claim 2; Fig 93); WO200166689 (Example 6); Cross-references: LocusID:54894; NP_060233.2; NM_017763_1.
  • STEAP2 (HGNC_8639, IPCA-1, PCANAP1, STAMP1, STEAP2, STMP, prostate cancer associated gene 1, prostate cancer associated protein 1, six transmembrane epithelial antigen of prostate 2, six transmembrane prostate protein, Genbank accession no. AF455138) Lab.
  • TrpM4 (BR22450, FLJ20041, TRPM4, TRPM4B, transient receptor potential cation channel, subfamily M, member 4, Genbank accession no. NM_017636) Xu, X.Z., et al. Proc. Natl. Acad. Sci. U.S.A.98 (19):10692-10697 (2001), Cell 109 (3):397-407 (2002), J. Biol.
  • NP_003203 or NM_003212 Ciccodicola, A., et al. EMBO J.8 (7):1987-1991 (1989), Am. J. Hum. Genet.49 (3):555-565 (1991)); US2003224411 (Claim 1); WO2003083041 (Example 1); WO2003034984 (Claim 12); WO200288170 (Claim 2; Page 52- 53); WO2003024392 (Claim 2; Fig 58); WO200216413 (Claim 1; Page 94-95, 105); WO200222808 (Claim 2; Fig 1); US5854399 (Example 2; Col 17-18); US5792616 (Fig 2); Cross-references: MIM:187395; NP_003203.1; NM_003212_1.
  • CD21 (CR2 (Complement receptor 2) or C 3 DR (C 3 d/Epstein Barr virus receptor) or Hs.73792 Genbank accession no. M26004) Fujisaku et al. (1989) J. Biol. Chem.264 (4):2118- 2125); Weis J.J., et al. J. Exp. Med.167, 1047-1066, 1988; Moore M., et al. Proc. Natl. Acad. Sci. U.S.A.84, 9194-9198, 1987; Barel M., et al. Mol. Immunol.35, 1025-1031, 1998; Weis J.J., et al. Proc. Natl. Acad. Sci.
  • FcRH2 (IFGP4, IRTA4, SPAP1A (SH2 domain containing phosphatase anchor protein 1a), SPAP1B, SPAP1C, Genbank accession no. NM_030764, AY358130) Genome Res. 13 (10):2265-2270 (2003), Immunogenetics 54 (2):87-95 (2002), Blood 99 (8):2662-2669 (2002), Proc. Natl. Acad. Sci. U.S.A.98 (17):9772-9777 (2001), Xu, M.J., et al. (2001) Biochem. Biophys. Res.
  • NCA CEACAM6, Genbank accession no. M18728
  • Barnett T. et al. Genomics 3, 59-66, 1988
  • Tawaragi Y. et al. Biochem. Biophys. Res. Commun.150, 89-96, 1988
  • Strausberg R.L. et al. Proc. Natl. Acad. Sci.
  • PSCA Prostate stem cell antigen precursor, Genbank accession no. AJ297436
  • Reiter R.E. et al. Proc. Natl. Acad. Sci. U.S.A.95, 1735-1740, 1998; Gu Z., et al. Oncogene 19, 1288-1296, 2000; Biochem. Biophys. Res. Commun.
  • CD22 B-cell receptor CD22-B isoform, BL-CAM, Lyb-8, Lyb8, SIGLEC-2, FLJ22814, Genbank accession No. AK026467); Wilson et al. (1991) J. Exp. Med.173:137-146; WO2003072036 (Claim 1; Fig 1); Cross-references: MIM:107266; NP_001762.1; NM_001771_1.
  • CD79a (CD79A, CD79 ⁇ , immunoglobulin-associated alpha, a B cell-specific protein that covalently interacts with Ig beta (CD79B) and forms a complex on the surface with Ig M molecules, transduces a signal involved in B-cell differentiation), pI: 4.84, MW: 25028 TM: 2 [P] Gene Chromosome: 19q13.2, Genbank accession No. NP_001774.10) WO2003088808, US20030228319; WO2003062401 (claim 9); US2002150573 (claim 4, pages 13-14); WO9958658 (claim 13, Fig 16); WO9207574 (Fig 1); US5644033; Ha et al. (1992) J.
  • CXCR5 Bokitt's lymphoma receptor 1, a G protein-coupled receptor that is activated by the CXCL 1 3 chemokine, functions in lymphocyte migration and humoral defense, plays a role in HIV-2 infection and perhaps development of AIDS, lymphoma, myeloma, and leukemia); 372 aa, pI: 8.54 MW: 41959 TM: 7 [P] Gene Chromosome: 11q23.3, Genbank accession No.
  • NP_001707.1 WO 2004040000; WO2004/015426; US2003105292 (Example 2); US6555339 (Example 2); WO 2002/61087 (Fig 1); WO200157188 (Claim 20, page 269); WO200172830 (pages 12-13); WO 2000/22129 (Example 1, pages 152-153, Example 2, pages 254-256); WO 199928468 (claim 1, page 38); US 5440021 (Example 2, col 49-52); WO9428931 (pages 56-58); WO 1992/17497 (claim 7, Fig 5); Dobner et al. (1992) Eur. J. Immunol.22:2795-2799; Barella et al.
  • HLA-DOB Beta subunit of MHC class II molecule (Ia antigen) that binds peptides and presents them to CD4+ T lymphocytes); 273 aa, pI: 6.56 MW: 30820 TM: 1 [P] Gene Chromosome: 6p21.3, Genbank accession No. NP_002111.1) Tonnelle et al. (1985) EMBO J. 4(11):2839-2847; Jonsson et al. (1989) Immunogenetics 29(6):411-413; Beck et al. (1992) J. Mol. Biol.228:433-441; Strausberg et al.
  • P2X5 Purinergic receptor P2X ligand-gated ion channel 5, an ion channel gated by extracellular ATP, may be involved in synaptic transmission and neurogenesis, deficiency may contribute to the pathophysiology of idiopathic detrusor instability
  • 422 aa pI: 7.63, MW: 47206 TM: 1
  • Gene Chromosome 17p13.3, Genbank accession No. NP_002552.2) Le et al. (1997) FEBS Lett.418(1-2):195-199; WO2004047749; WO2003072035 (claim 10); Touchman et al.
  • LY64 Lymphocyte antigen 64 (RP105), type I membrane protein of the leucine rich repeat (LRR) family, regulates B-cell activation and apoptosis, loss of function is associated with increased disease activity in patients with systemic lupus erythematosus); 661 aa, pI: 6.20, MW: 74147 TM: 1 [P] Gene Chromosome: 5q12, Genbank accession No. NP_005573.1) US2002193567; WO9707198 (claim 11, pages 39-42); Miura et al. (1996) Genomics 38(3):299- 304; Miura et al.
  • FcRH1 Fc receptor-like protein 1, a putative receptor for the immunoglobulin Fc domain that contains C 2 type Ig-like and ITAM domains, may have a role in B-lymphocyte differentiation
  • IRTA2 Immunoglobulin superfamily receptor translocation associated 2, a putative immunoreceptor with possible roles in B cell development and lymphomagenesis; deregulation of the gene by translocation occurs in some B cell malignancies; 977 aa, pI: 6.88 MW: 106468 TM: 1 [P] Gene Chromosome: 1q21, Genbank accession No.
  • TENB2 (TMEFF 2 , tomoregulin, TPEF, HPP1, TR, putative transmembrane proteoglycan, related to the EGF/heregulin family of growth factors and follistatin); 374 aa, NCBI Accession: AAD55776, AAF91397, AAG49451, NCBI RefSeq: NP_057276; NCBI Gene: 23671; OMIM: 605734; SwissProt Q9UIK5; Genbank accession No.
  • TMEFF1 transmembrane protein with EGF-like and two follistatin-like domains 1; Tomoregulin-1); H7365; C9orf2; C9ORF 2 ; U19878; X83961; NM_080655; NM_003692; Harms, P.W. (2003) Genes Dev.17 (21), 2624-2629; Gery, S. et al. (2003) Oncogene 22 (18):2723-2727.
  • GDNF-Ra1 GDNF family receptor alpha 1; GFRA1; GDNFR; GDNFRA; RETL 1 ; TRNR1; RET1L; GDNFR-alpha1; GFR-ALPHA-1
  • Ly6E lymphocyte antigen 6 complex, locus E; Ly67,RIG-E,SCA-2,TSA-1
  • NP_002337.1 NM_002346.2
  • de Nooij-van Dalen A.G. et al. (2003) Int. J. Cancer 103 (6), 768-774
  • Zammit D.J. et al. (2002) Mol. Cell. Biol.22 (3):946-952.
  • TMEM46 shisa homolog 2 (Xenopus laevis); SHISA2); NP_001007539.1; NM_001007538.1; Furushima, K. et al. (2007) Dev.
  • Ly6G6D lymphocyte antigen 6 complex, locus G6D; Ly6-D, MEGT1; NP_067079.2; NM_021246.2; Mallya, M. et al. (2002) Genomics 80 (1):113-123; Ribas, G. et al. (1999) J. Immunol.163 (1):278-287. (43) LGR5 (leucine-rich repeat-containing G protein-coupled receptor 5; GPR49, GPR67); NP_003658.1; NM_003667.2; Salanti, G. et al.
  • RET ret proto-oncogene
  • MEN2A HSCR1; MEN2B; MTC 1 ; PTC; CDHF12; Hs.168114; RET51; RET-ELE1
  • NP_066124.1 NM_020975.4
  • LY6K lymphocyte antigen 6 complex, locus K; LY6K; HSJ001348; FLJ35226; NP_059997.3; NM_017527.3; Ishikawa, N. et al. (2007) Cancer Res.67 (24):11601-11611; de Nooij-van Dalen, A.G. et al. (2003) Int. J. Cancer 103 (6):768-774.
  • GPR19 G protein-coupled receptor 19; Mm.4787
  • NP_006134.1 G protein-coupled receptor 19; Mm.4787
  • NP_006134.1 NM_006143.2
  • GPR54 KISS1 receptor; KISS1R; GPR54; HOT7T175; AXOR12; NP_115940.2; NM_032551.4; Navenot, J.M. et al. (2009) Mol. Pharmacol.75 (6):1300-1306; Hata, K. et al. (2009) Anticancer Res.29 (2):617-623.
  • ASPHD1 aspartate beta-hydroxylase domain containing 1; LOC 2 53982
  • TMEM118 ring finger protein, transmembrane 2; RNFT2; FLJ14627); NP_001103373.1; NM_001109903.1; Clark, H.F. et al.
  • GPR172A G protein-coupled receptor 172A; GPCR41; FLJ11856; D15Ertd747e); NP_078807.1; NM_024531.3; Ericsson, T.A. et al. (2003) Proc. Natl. Acad. Sci. U.S.A.100 (11):6759-6764; Takeda, S. et al. (2002) FEBS Lett.520 (1-3):97-101.
  • CD33 a member of the sialic acid binding, immunoglobulin-like lectin family, is a 67-kDa glycosylated transmembrane protein. CD33is expressed on most myeloid and monocytic leukemia cells in addition to committed myelomonocytic and erythroid progenitor cells. It is not seen on the earliest pluripotent stem cells, mature granulocytes, lymphoid cells, or nonhematopoietic cells (Sabbath et al., (1985) J. Clin. Invest.75:756-56; Andrews et al., (1986) Blood 68:1030-5).
  • CD33 contains two tyrosine residues on its cytoplasmic tail, each of which is followed by hydrophobic residues similar to the immunoreceptor tyrosine-based inhibitory motif (ITIM) seen in many inhibitory receptors.
  • CLL-1 (CLEC 1 2A, MICL, and DCAL 2 ), encodes a member of the C-type lectin/C- type lectin-like domain (CTL/CTLD) superfamily.
  • CTL/CTLD C-type lectin/C- type lectin-like domain
  • Members of this family share a common protein fold and have diverse functions, such as cell adhesion, cell-cell signaling, glycoprotein turnover, and roles in inflammation and immune response.
  • the protein encoded by this gene is a negative regulator of granulocyte and monocyte function.
  • CLL-1 has been shown to be a type II transmembrane receptor comprising a single C-type lectin-like domain (which is not predicted to bind either calcium or sugar), a stalk region, a transmembrane domain and a short cytoplasmic tail containing an ITIM motif.
  • TROP2 tumor-associated calcium signal transducer 2
  • TACSTD2 transmembrane glycoprotein encoded by the TACSTD2 gene
  • TROP2 is an intracellular calcium signal transducer that is differentially expressed in many cancers. It signals cells for self-renewal, proliferation, invasion, and survival. It has stem cell-like qualities. TROP2 is expressed in many normal tissues, though in contrast, it is overexpressed in many cancers (Ohmachi T, et al., (2006) Clin.
  • TROP2 Overexpression of TROP2 is of prognostic significance. Several ligands have been proposed that interact with TROP2. TROP2 signals the cells via different pathways and it is transcriptionally regulated by a complex network of several transcription factors.
  • Human TROP2 (TACSTD2: tumor-associated calcium signal transducer 2, GA733-1, EGP-1, M1S1; hereinafter, referred to as hTROP2) is a single-pass transmembrane type 1 cell membrane protein consisting of 323 amino acid residues. While the presence of a cell membrane protein involved in immune resistance, which is common to human trophoblasts and cancer cells (Faulk W P, et al. (1978), Proc. Natl. Acad.
  • an antigen molecule recognized by a monoclonal antibody against a cell membrane protein in a human choriocarcinoma cell line was identified and designated as TROP2 as one of the molecules expressed in human trophoblasts (Lipinski M, et al. (1981), Proc. Natl. Acad. Sci. 78(8), 5147-5150).
  • TROP2 an antigen molecule recognized by a monoclonal antibody against a cell membrane protein in a human choriocarcinoma cell line
  • This molecule was also designated as tumor antigen GA733-1 recognized by a mouse monoclonal antibody GA733 (Linnenbach A J, et al., (1989) Proc. Natl. Acad. Sci.
  • NM_002353 and NP_002344 (NCBI).
  • NBI nude mouse xenograft models
  • an unconjugated antibody that exhibits in itself antitumor activity in nude mouse xenograft models (WO 2008/144891; WO 2011/145744; WO 2011/155579; WO 2013/077458) as well as an antibody that exhibits antitumor activity as ADC with a cytotoxic drug (WO 2003/074566; WO 2011/068845; WO 2013/068946; US 7999083).
  • TROP2 expression in cancer cells has been correlated with drug resistance.
  • Several strategies target TROP2 on cancer cells that include antibodies, antibody fusion proteins, chemical inhibitors, nanoparticles, etc.
  • the in vitro studies and pre-clinical studies, using these various therapeutic treatments, have resulted in significant inhibition of tumor cell growth both in vitro and in vivo in mice.
  • Clinical studies have explored the potential application of Trop2 as both a prognostic biomarker and as a therapeutic target to reverse resistance.
  • CD123 (IL-4, IL3RA, IL3ry, IL3RAY, interleukin-3 receptor) is a protein found on cells which helps transmit the signal of interleukin-3, a soluble cytokine important in the immune system.
  • the gene coding for the receptor is located in the pseudoautosomal region of the X and Y chromosomes.
  • the receptor belongs to the type I cytokine receptor family and is a heterodimer with a unique alpha chain paired with the common beta (beta c or CD131) subunit.
  • the gene for the alpha subunit is 40 kilobases long and has 12 exons.
  • CD123 is the 70 kD transmembrane ⁇ chain of the IL-3 receptor.
  • CD123 binds IL-3 with low affinity; when CD123 associates with CDw131 (common ⁇ chain), it binds IL-3 with high affinity. CD123 does not transduce intracellular signals upon binding IL-3 and requires the ⁇ chain for this function.
  • CD123 serves as a diagnostic, prognostic and therapeutic marker in some hematologic malignancies, especially acute leukemia CD123 and TCF4 coexpression by immunohistochemistry is highly specific and sensitive for blastic plasmacytoid dendritic cell neoplasm (BPDCN) (Sun Q, et al. (1996) Blood 87:83; Herling M, et al. (2003) Blood 101:5007; Charles N, et al. (2010) Nat.
  • BPDCN blastic plasmacytoid dendritic cell neoplasm
  • the antibody target are HER2 and CD33.
  • the antibody has a free cysteine thiol group available for conjugation with an electrophilic group of a cereblon degrader-linker intermediate (cDLI).
  • the thiol-containing antibody may be a native cysteine thiol or a reduced intrachain or interchain disulfide amino acid residue.
  • the thiol-containing antibody may be a cysteine-engineered antibody where one or more cysteine residues have been introduced by mutagenesis based on known techniques and provide for site-specific conjugation of the cereblon degrader-linker intermediate through cysteine substitutions at sites where the engineered cysteines are available for conjugation while not perturbing immunoglobulin folding and assembly or altering antigen binding and effector functions (Junutula, et al., (2008) Nature Biotech., 26(8):925-932; Dornan et al. (2009) Blood 114(13):2721-2729; Shen, B. et al (2012) Nat.
  • cysteine-engineered antibody One, two, three or more cysteine amino acids may be introduced into the cysteine-engineered antibody.
  • a cDAC may be formed by conjugating one or more antibody cysteine thiol groups to a molar excess of a cereblon degrader-linker intermediate (cDLI) of Formula II. Due to their symmetrical structure, a cysteine-engineered IgG antibody may allow conjugation of up to two cDLI with each mutant cysteine site.
  • cysteine-engineered antibody with one mutant cysteine site allows conjugation of up to two cDLI to give a theoretical maximum DAR of 2.
  • a cysteine-engineered antibody with two mutant cysteine sites allows conjugation of up to four cDLI to give a theoretical maximum DAR of 4.
  • a cysteine-engineered antibody with three mutant cysteine sites allows conjugation of up to six cDLI to give a theoretical maximum DAR of 6.
  • Cysteine thiols are reactive nucleophiles at neutral pH, unlike most amines which are protonated and less nucleophilic near pH 7.
  • coli culture supernatants, or partially or completely purified protein
  • unpaired Cys residues on the surface of the protein can pair and oxidize to form intermolecular disulfides, and hence protein dimers or multimers.
  • Disulfide dimer formation renders the new Cys unreactive for conjugation to a drug, ligand, or other label.
  • the protein oxidatively forms an intramolecular disulfide bond between the newly engineered Cys and an existing Cys residue, both Cys groups are unavailable for active site participation and interactions.
  • the protein may be rendered inactive or non-specific, by mis-folding or loss of tertiary structure (Zhang et al. (2002) Anal. Biochem.311:1-9).
  • cysteine-engineered antibodies may have a reactive cysteine thiol residue introduced at a site on the light chain, such as the 149-lysine site (LC K149C), or on the heavy chain such as the 122-serine site (HC S122C), as numbered by Kabat numbering.
  • the cysteine-engineered antibodies have a cysteine residue introduced at the 118- alanine site (EU numbering) of the heavy chain (HC A118C). This mutation site is alternatively numbered 121 by Sequential numbering or 114 by Kabat numbering.
  • the cysteine-engineered antibodies have a mutant cysteine residue introduced in: (i) the light chain at G64C, R142C, K188C, L201C, T129C, S114C, V205C, or E105C according to Kabat numbering; (ii) the heavy chain at D101C, A140C, L177C, V184C, T205C, or S122C according to Kabat numbering; or (iii) other cysteine-mutant antibodies, as described in Bhakta, S.
  • the cysteine-engineered antibody comprises one or more cysteine mutations selected from HC A118C, LC K149C, HC A140C, LC V205C, LC S121C, HC L174C, HC L 1 77C, HC Y373C.
  • an antibody provided herein may be further modified to contain additional nonproteinaceous moieties that are known in the art and readily available.
  • the moieties suitable for derivatization of the antibody include, but are not limited to, water soluble polymers.
  • water soluble polymers include, but are not limited to, polyethylene glycol (PEG), copolymers of ethylene glycol/propylene glycol, carboxymethylcellulose, dextran, polyvinyl alcohol, polyvinyl pyrrolidone, poly-1,3-dioxolane, poly-1,3,6-trioxane, ethylene/maleic anhydride copolymer, polyaminoacids (either homopolymers or random copolymers), and dextran or poly(n-vinyl pyrrolidone)polyethylene glycol, propropylene glycol homopolymers, polypropylene oxide/ethylene oxide co-polymers, polyoxyethylated polyols (e.g.,
  • the polymer may be of any molecular weight, and may be branched or unbranched.
  • the number of polymers attached to the antibody may vary, and if more than one polymer is attached, they can be the same or different molecules. In general, the number and/or type of polymers used for derivatization can be determined based on considerations including, but not limited to, the particular properties or functions of the antibody to be improved, whether the antibody derivative will be used in a therapy under defined conditions, etc.
  • cDAC is a mixture of the cereblon degrader antibody conjugate compounds, wherein the average drug loading per antibody in the mixture of cereblon degrader antibody conjugate compounds is about 2 to about 6.
  • Drug loading is represented by p, the number of cereblon degrader moieties (CD) per antibody (Ab) in a cereblon degrader antibody conjugate (cDAC)of Formula I.
  • Loading (p) may range from 1 to about 8 CD moieties per antibody.
  • cDAC of Formula I include mixtures or collections of antibodies conjugated with a range of cD moieties, from 1 to about 8.
  • the number of cD moieties that can be conjugated to an antibody is limited by the number of reactive or available amino acid side chain residues such as lysine and cysteine.
  • free cysteine residues are introduced into the antibody amino acid sequence by the methods described herein.
  • p may be 1, 2, 3, 4, 5, 6, 7, or 8, and ranges thereof, such as from 1 to 8 or from 2 to 6.
  • Exemplary cDACs of Formula I include, but are not limited to, antibodies that have 1, 2, 3, or 4 engineered cysteine amino acids (Lyon, R. et al. (2012) Methods in Enzym.502:123-138).
  • one or more free cysteine residues are already present in an antibody forming intra-chain and inter-chain disulfide bonds (native disulfide groups), without the use of engineering, in which case the existing free, reduced cysteine residues may be used to conjugate the antibody to a drug.
  • an antibody is exposed to reducing conditions prior to conjugation of the antibody in order to generate one or more free native cysteine residues.
  • p may be limited by the number of attachment sites on the antibody.
  • an antibody may have only one or a limited number of cysteine thiol groups, or may have only one or a limited number of sufficiently reactive thiol groups, to which the drug may be attached.
  • one or more lysine amino groups in the antibody may be available and reactive for conjugation with a cereblon degrader-linker intermediate of Formula II.
  • higher drug loading e.g. p >5, may cause aggregation, insolubility, toxicity, or loss of cellular permeability of certain antibody-drug conjugates.
  • the average cD loading for an cDAC ranges from 1 to about 8; from about 2 to about 6; or from about 3 to about 5.
  • an antibody is subjected to denaturing conditions to reveal reactive nucleophilic groups such as lysine or cysteine.
  • the loading (drug/antibody ratio) of an cDAC may be controlled in different ways, and for example, by: (i) limiting the molar excess of the cereblon degrader-linker intermediate compound relative to antibody, (ii) limiting the conjugation reaction time or temperature, and (iii) partial or limiting reductive denaturing conditions for optimized antibody reactivity.
  • the resulting product is a mixture of cDAC compounds with a distribution of one or more drug moieties attached to an antibody.
  • the average number of drugs per antibody (DAR) may be calculated from the mixture by a dual ELISA antibody assay, which is specific for antibody and specific for the drug.
  • Individual cDAC molecules may be identified in the mixture by mass spectroscopy and separated by HPLC, e.g. hydrophobic interaction chromatography (see, e.g., McDonagh et al. (2006) Prot. Engr. Design & Selection 19(7):299- 307; Hamblett et al, (2004) Clin.
  • a homogeneous cDAC with a single loading value may be isolated from the conjugation mixture by electrophoresis or chromatography.
  • the cereblon degrader moiety of a cDAC has the formula: TPL ⁇ L 2 ⁇ E3UL wherein: TPL is a target protein ligand; E3UL is the cereblon-binding, E3 ubiquitin ligase ligand; L 2 is a degrader linker; and one of TPL, E3UL and L 2 is attached to L 1 ; or the cereblon degrader moiety is a molecular glue.
  • TPL has the formula:
  • R x is selected from F, Cl, and Br, and n is 0, 1, 2 or 3; R y is selected from H and C 1 -C 6 alkyl; and the wavy line indicates the point of attachment of L 2 .
  • TPL has the formula: where the wavy line indicates the point of attachment of L 2 .
  • TPL has the formula: where the wavy line indicates the point of attachment of L 2 .
  • TPL targets BRD4, GSPT1, BET, BRM (SMARCA2), KRAS, and SHP2.
  • E3UL comprises a glutarimide group.
  • the cereblon degrader antibody conjugate has the formula: wherein L 1 is a protease-cleavable, non-peptide linker having the formula: ⁇ Str ⁇ PM ⁇ IM ⁇ wherein Str is a stretcher unit covalently attached to X, PM is a peptidomimetic unit, and IM is an immolator unit covalently attached to the glutarimide group of E3UL and has the formula: where the wavy line is the attachment to PM.
  • the cereblon degrader antibody conjugate has the formula:
  • L 1 is a protease-cleavable, non-peptide linker having the formula: ⁇ Str ⁇ PM ⁇ IM ⁇ wherein Str is a stretcher unit covalently attached to X, PM is a peptidomimetic unit, and IM is an immolator unit covalently attached to L 2 of cD and has the formula: where the wavy line is the attachment to PM.
  • a cDAC of Formula I is selected from:
  • p of cDAC is 1, 2, 3, 4, 5, or 6.
  • Table 4 shows exemplary cDACs prepared with cereblon degrader-linker intermediates from Table 2 and their assay data.
  • cDAC cereblon degrader antibody conjugates
  • the cytotoxic or cytostatic activity of a cereblon degrader antibody conjugate (cDAC) is measured by exposing mammalian cells having receptor proteins, e.g. HER2, to the antibody of the cDAC in a cell culture medium; culturing the cells for a period from about 6 hours to about 5 days and measuring cell viability.
  • cDACs described herein were used to measure viability (proliferation), cytotoxicity, and induction of apoptosis (caspase activation) of the cDAC described herein.
  • the in vitro potency of cDACs described herein was measured by a cell proliferation assay such as described in Example 103.
  • the cDACs described herein showed surprising and unexpected potency in inhibition of tumor cell proliferation. Potency of the cDACs was correlated with target antigen expression of the cells.
  • the tested conjugates are capable of binding to the specific antigen expressed on the surface of cells and causing the death of those cells in vitro.
  • the CellTiter-Glo ® Luminescent Cell Viability Assay is a commercially available (Promega Corp., Madison, WI), homogeneous assay method based on the recombinant expression of Coleoptera luciferase (US 5583024; US5674713; US5700670). This cell proliferation assay determines the number of viable cells in culture based on quantitation of the ATP present, an indicator of metabolically active cells (Crouch et al (1993) J. Immunol. Meth. 160:81-88; US 6602677).
  • the CellTiter-Glo ® Assay was conducted in 96 well format, making it amenable to automated high-throughput screening (HTS) (Cree et al (1995) AntiCancer Drugs 6:398-404).
  • the homogeneous assay procedure involves adding the single reagent (CellTiter- Glo ® Reagent) directly to cells cultured in serum-supplemented medium. Cell washing, removal of medium and multiple pipetting steps are not required.
  • the system detects as few as 15 cells/well in a 384-well format in 10 minutes after adding reagent and mixing.
  • the cells may be treated continuously with the cDAC, or they may be treated and separated from the cDAC.
  • the assay may be conducted in 96- or 384-well format, making it amenable to automated high-throughput screening (HTS). See Cree et al. (1995) AntiCancer Drugs 6:398- 404.
  • the assay procedure involves adding a single reagent (CellTiter-Glo ® Reagent) directly to cultured cells. This results in cell lysis and generation of a luminescent signal produced by a luciferase reaction. The luminescent signal is proportional to the amount of ATP present, which is directly proportional to the number of viable cells present in culture. Data can be recorded by luminometer or CCD camera imaging device.
  • the luminescence output is expressed as relative light units (RLU).
  • RLU relative light units
  • the homogeneous “add-mix-measure” format results in cell lysis and generation of a luminescent signal proportional to the amount of ATP present.
  • the amount of ATP is directly proportional to the number of cells present in culture.
  • the CellTiter-Glo ® Assay generates a “glow-type” luminescent signal, produced by the luciferase reaction, which has a half-life generally greater than five hours, depending on cell type and medium used. Viable cells are reflected in relative luminescence units (RLU).
  • the substrate Beetle Luciferin
  • the substrate is oxidatively decarboxylated by recombinant firefly luciferase with concomitant conversion of ATP to AMP and generation of photons.
  • Cell-based in vitro assays are used to measure viability (proliferation), cytotoxicity, and induction of apoptosis (caspase activation) of the cDAC described herein.
  • the cytotoxic or cytostatic activity of a cDAC is measured by: exposing mammalian cells expressing antigen such as HER2, ER (estrogen receptor) or CD33 polypeptide to cDAC in a cell culture medium; culturing the cells for a period from about 6 hours to about 5 days; and measuring cell viability.
  • Figure 1 shows an anti-proliferative effect of in vitro potency by a BRD4-cereblon degrader against KPL-4 and SK-BR-3 cells at 5 days. Cell viability as percent of control is plotted in a graph versus the concentration of cereblon degrader compound cD-5 from Table 1 (nM). The IC50 against KPL-4 was 0.65 nM.
  • FIG. 2A shows anti-proliferative effects of in vitro potency by treatment after 5 days of HER2+ KPL-4 cells with anti-HER27C2 and anti-CD33 BRD4-cereblon degrader antibody conjugates cDAC-3, cDAC-4, cDAC-5, and cDAC-6 from Table 4. Cell viability as percent of control is plotted in a graph versus the concentration of cDAC ( ⁇ g/mL).
  • Figure 2B shows anti- proliferative effects of in vitro potency by treatment after 5 days of HER2+ SK-BR-3 cells with anti-HER27C2 and anti-CD33 BRD4-cereblon degrader antibody conjugates cDAC-3, cDAC-4, cDAC-5, and cDAC-6 from Table 3.
  • Cell viability as percent of control is plotted in a graph versus the concentration of cDAC ( ⁇ g/mL).
  • Figure 3A shows anti-proliferative effects of in vitro potency by treatment after 5 days of HER2-low/ER+ CAMA1 cells with anti-HER27C2 and anti-CD33 BRD4-cereblon degrader antibody conjugates cDAC-3, cDAC-4, cDAC-5, and cDAC-6 from Table 4.
  • Cell viability as percent of control is plotted in a graph versus the concentration of cDAC ( ⁇ g/mL).
  • Figure 3B shows anti-proliferative effects of in vitro potency by treatment after 5 days of HER2-low/ER+ EFM19 cells with anti-HER27C2 and anti-CD33 BRD4-cereblon degrader antibody conjugates cDAC-3, cDAC-4, cDAC-5, and cDAC-6 from Table 4.
  • Cell viability as percent of control is plotted in a graph versus the concentration of cDAC ( ⁇ g/mL).
  • Table 5 shows that the anti-HER2 cDACs are active in both HER2+ and HER2-low breast cancer cell lines whereas the off-target anti-CD33 cDACs are not active.
  • FIG. 4 shows anti-proliferative effects of in vitro potency by treatment after 7 days of AML cell lines with anti-CD33 BRD4-cereblon degrader antibody conjugate cDAC-3.
  • AML cell lines were MV-4-11, EOL-1, Molm-13, Nomo-1, HL-60, and OCI-AML-2.
  • Cell viability as percent of control is plotted in a graph versus the concentration of cDAC ( ⁇ g/mL).
  • Table 6 shows that cDAC-3 is active in inhibiting various AML cell lines
  • Table 6 In vitro potency of anti-CD33 BRD4-cereblon degrader antibody conjugate cDAC-3 in various AML cell lines
  • Figure 5A shows anti-proliferative effects of in vitro potency by treatment after 5 days of EOL-1 AML cells with anti-HER27C2 and anti-CD33 BRD4-cereblon degrader antibody conjugates cDAC-3, cDAC-4, cDAC-5, and cDAC-6 from Table 4.
  • Cell viability as percent of control is plotted in a graph versus the concentration of cDAC ( ⁇ g/mL).
  • Figure 5B shows anti- proliferative effects of in vitro potency by treatment after 5 days of HL-60 AML cells with anti- HER2 7C2 and anti-CD33 BRD4-cereblon degrader antibody conjugates cDAC-3, cDAC-4, cDAC-5, and cDAC-6 from Table 4.
  • Cell viability as percent of control is plotted in a graph versus the concentration of cDAC ( ⁇ g/mL).
  • Table 6 shows EC50 values for the cDAC of Figures 5A and 5B.
  • Figure 6A shows anti-proliferative effects of in vitro potency by treatment after 3 days of Molm-13 AML cells with anti-HER27C2 and anti-CD33 BRD4-cereblon degrader antibody conjugates cDAC-3, cDAC-4, cDAC-5, and cDAC-6 from Table 4.
  • Cell viability as percent of control is plotted in a graph versus the concentration of cDAC ( ⁇ g/mL).
  • Figure 6B shows anti- proliferative effects of in vitro potency by treatment after 3 days of MV-4-11 AML cells with anti-HER27C2 and anti-CD33 BRD4-cereblon degrader antibody conjugates cDAC-3, cDAC-4, cDAC-5, and cDAC-6 from Table 4.
  • cDAC-3 and cDAC-5 comprise thio human anti-CD33 antibodies
  • cDAC-4 and cDAC-6 comprise thio human anti-7C2 (HER2) antibodies.
  • cDAC 3 and cDAC-5 have a concentration-dependent effect on AML cells with CD33 receptors whereas untargeted cDAC-4 and cDAC-6 have the expected lower potency.
  • Table 8 Cell killing assay of BRD4-cereblon degrader antibody conjugates cDAC 3 -6 in AML cell lines measured in IC50 (ng/ml)
  • the in vitro anti-proliferative effects of the exemplary cDACs indicate that cDAC described herein are biologically active comprised of a broad variety of antibodies, including those binding to the tumor-associated antigens and cell surface receptor proteins described herein.
  • the exemplary cDACs of Table 3 comprise antibodies binding to tumor-associated antigens HER2 and CD33.
  • HER2 is highly expressed at a level of several million copy numbers per cell in certain solid tumors such as breast cancer and gastric cancer.
  • CD33 is expressed in a far lower copy number of about 10,00 per cell in hematological malignancies such as leukemia and lymphoma.
  • the mechanisms of recycling and internalization differ between the HER2 and CD33 cell surface proteins.
  • the demonstration of significant in vitro potency of the exemplary cDACs comprising HER2 and CD33 reasonably suggests that the cDACs described herein comprising other antibodies besides anti-HER2 and anti-CD33 will be similarly biologically active.
  • the in vivo efficacy of cDAC were measured in tumor xenograft studies in mice (Examples 104-105).
  • the cDAC described herein showed surprising and unexpected, target- dependent and dose-dependent potency in inhibition of tumor growth. Efficacy of the cDACs may be correlated with target antigen expression of the tumor cells.
  • the efficacy of the cDACs provided herein is measured in vivo by implanting allografts or xenografts of cancer cells in rodents and treating the tumors with cDAC. Variable results are to be expected depending on the cell line, the specificity of antibody binding of the cDAC to receptors present on the cancer cells, dosing regimen, and other factors.
  • the in vivo efficacy of the cDAC can be measured using a transgenic explant mouse model expressing moderate to high levels of a tumor-associated antigen, including HER2-expressing KPL4, and CD22-expressing BJAB. Subjects may be treated once with cDAC and monitored over 3-6 weeks to measure the time to tumor doubling, log cell kill, and tumor shrinkage. Follow up dose-response and multi- dose experiments may be conducted.
  • the in vivo efficacy of an anti-HER2 cDAC described herein can be measured by a high expressing HER2 transgenic explant mouse model (Phillips et al (2008) Cancer Res.68:9280-90).
  • An allograft is propagated from the Fo5 mmtv transgenic mouse which does not respond to, or responds poorly to, HERCEPTIN ⁇ (Genentech, Inc.) therapy.
  • Subjects are treated once or more with cDAC at certain dose levels (mg/kg) and placebo buffer control (Vehicle) and monitored over two weeks or more to measure the time to tumor doubling, log cell kill, and tumor shrinkage, conducted according to Examples 104-105.
  • Figure 7 shows the in vivo efficacies of anti-CD33 BRD4-cereblon degrader antibody conjugates cDAC-3, cDAC-4, cDAC-5, and cDAC-6 at the following doses in reducing tumor volume over time (21 days) in a HL-60 xenograft mice model.
  • cDAC-5 showed higher efficacy than cDAC-3 (line 7 vs. line 3 in Figure).
  • the amine of the glutarimide group of the cereblon degrader moiety of cDAC-5 is linked to the antibody linker through an aminal structure (Table 3, cDLI-5), whereas the indolinone group of the cereblon degrader moiety of cDAC-3 is linked to the antibody linker through a carbamate group (Table 3, cDLI-1).
  • both cDAC-3 and cDAC-5 resulted in tumor volume below the limit of quantification.
  • Figure 7 also illustrates that tumors from the non-target HER2-controls cDAC-4 and cDAC-6 at the matched 3 mg/kg groups (line 2 and line 6, respectively) had an initial response, but eventually grew out by the end of study (>21 days).
  • This contrast demonstrated the target- specific efficacy of the BRD4-cereblon degrader antibody conjugates provided herein (e.g., cDAC-3 and cDAC-5).
  • the LALA-PG mutation within the Fc domain of the anti-CD33 antibody ablates Fc-FcR mediated effector functions without affecting desired affinity (Schlothauer, T. et al (2016) Protein Engineering, Design & Selection, 29(10):457–466).
  • cDAC-3 and cDAC-5 were tolerated in mice.
  • In vivo and whole blood stability of cDAC can be measured and assessed according to standard assays, including Example 104.
  • the stability of cDAC-4 and cDAC-6 were measured in buffer, Cynomolgus monkey whole blood, Human whole blood, Mouse whole blood, and Rat whole blood according to the whole blood assay of Example 104.
  • samples were subject to capture by the biotinylated extra-cellular domain (ECD) of HER2 antigen immobilized on streptavidin magnetic beads.
  • ECD biotinylated extra-cellular domain
  • compositions e.g., a pharmaceutically or pharmacologically acceptable composition or formulation, comprising an cereblon degrader antibody conjugate (cDAC) or a plurality of cDACs as described herein and a pharmaceutically or pharmacologically acceptable carrier.
  • cDAC cereblon degrader antibody conjugate
  • a cDAC can be formulated for parenteral administration, such as intradermal, subcutaneous (subcut), intramuscular (IM), or intravenous (IV) injections, infusion, or administration into a body cavity or lumen of an organ.
  • compositions for injection will commonly comprise a solution of the cDAC dissolved in a pharmaceutically acceptable carrier.
  • acceptable vehicles and solvents that can be employed are water and an isotonic solution of one or more salts such as sodium chloride, e.g., Ringer's solution.
  • sterile fixed oils can conventionally be employed as a solvent or suspending medium.
  • any bland fixed oil can be employed, including synthetic monoglycerides or diglycerides.
  • fatty acids such as oleic acid can likewise be used in the preparation of injectables.
  • compositions desirably are sterile and generally free of undesirable matter. These compositions can be sterilized by conventional, well known sterilization techniques.
  • the compositions can contain pharmaceutically acceptable auxiliary substances as required to approximate physiological conditions such as pH adjusting and buffering agents, toxicity adjusting agents, e.g., sodium acetate, sodium chloride, potassium chloride, calcium chloride, sodium lactate and the like.
  • the composition may contain any suitable concentration of the cDACs.
  • concentration of the cDAC in the composition can vary widely, and will be selected primarily based on fluid volumes, viscosities, body weight, and the like, in accordance with the particular mode of administration selected and the patient's needs.
  • the concentration of an cDAC in a solution formulation for injection will range from about 0.1% (w/w) to about 10% (w/w).
  • cDAC cereblon degrader antibody conjugate
  • the cDAC direct a tumor-associated antigen-binding antibody to a cell that expresses the antigen and deliver a cereblon-degrading (cD) moiety to the target cell.
  • a target protein is ubiquitinated and subsequently degraded.
  • cDAC cereblon degrader antibody conjugates
  • the method includes administering a therapeutically effective amount of ancDAC as described herein to a subject in need thereof, such as a patient that has cancer and is in need of treatment for the cancer.
  • the method includes administering a therapeutically effective amount of a cDAC selected from Table 3.
  • the disclosed cDACs include those with anticancer activity.
  • the cDAC selectively delivers an effective dose of an active form of the cereblon degrader moiety to tumor tissue, whereby greater selectivity (i.e., a lower efficacious dose) may be achieved while increasing the therapeutic index (“therapeutic window”) relative to an unconjugated cereblon degrader compound.
  • the disclosed cDACs may be used to treat various hyperproliferative diseases or disorders, e.g. characterized by the overexpression of a tumor antigen.
  • hyperproliferative disorders include benign or malignant solid tumors and hematological disorders such as leukemia and lymphoid malignancies.
  • cancers to be treated herein include, but are not limited to, carcinoma, lymphoma, blastoma, sarcoma, leukemia or lymphoid malignancies including acute myeloid leukemia, squamous cell cancer, epithelial squamous cell cancer, lung cancer including small- cell lung cancer, non-small cell lung cancer, adenocarcinoma of the lung and squamous carcinoma of the lung, cancer of the peritoneum, hepatocellular cancer, gastric or stomach cancer including gastrointestinal cancer, pancreatic cancer, glioblastoma, cervical cancer, ovarian cancer, liver cancer, bladder cancer, hepatoma, breast cancer, colon cancer, rectal cancer, colorectal cancer, endometrial or uterine carcinoma, salivary gland carcinoma, kidney or renal cancer, prostate cancer, vulval cancer, thyroid cancer, hepatic carcinoma, anal carcinoma, penile carcinoma, and head and neck cancer.
  • carcinoma lymphoma, blastoma, sarcoma
  • a cDAC for use as a medicament is provided.
  • cDACs described herein for use in a method of treating an individual comprising administering to the individual an effective amount of the cDAC.
  • the method further comprises administering to the individual an effective amount of at least one additional therapeutic agent, e.g., as described herein.
  • uses of a cDAC described herein in the manufacture or preparation of a medicament in one embodiment, the medicament is for treatment of cancer, the method comprising administering to an individual having cancer an effective amount of the medicament.
  • the method further comprises administering to the individual an effective amount of at least one additional therapeutic agent, e.g., as described herein.
  • Dosing can be by any suitable route, e.g. by injections, such as intravenous or subcutaneous injections, depending in part on whether the administration is brief or chronic.
  • Various dosing schedules including but not limited to single or multiple administrations over various time-points, bolus administration, and pulse infusion are contemplated herein.
  • the cDAC dose can range from about 5 mg/kg (body weight) to about 50 mg/kg, from about 10 ⁇ g/kg to about 5 mg/kg, or from about 100 ⁇ g/kg to about 1 mg/kg.
  • the cDAC dose can be about 100, 200, 300, 400, or 500 ⁇ g/kg.
  • the cDAC dose can be about 1, 2, 3, 4, 5, 6, 7, 8, 9, or 10 mg/kg.
  • the cDAC dose can also be outside of these ranges, depending on the particular conjugate as well as the type and severity of the cancer or disorder being treated. Frequency of administration can range from a single dose to multiple doses per week, or more frequently. In some embodiments, the cDAC is administered from about once per month to about five times per week. In some embodiments, the cDAC is administered once per week.
  • the disclosed cDACs can be used either alone or in combination with other therapeutic agents in a therapy regimen.
  • cDAC may be administered concurrently in a regimen with one or more other drugs during the same treatment cycle, on the same day of treatment as the one or more other drugs, and, optionally, at the same time as the one or more other drugs.
  • the concurrently administered drugs are each administered on day-1 of a 3-week cycle.
  • a cDAC may be co-administered with at least one additional therapeutic agent, such as a chemotherapeutic agent.
  • Such combination therapies encompass combined administration (where two or more therapeutic agents are included in the same or separate formulations), and separate administration, in which case, administration of the cDAC can occur prior to, simultaneously, and/or following, administration of the additional therapeutic agent.
  • cDACs can also be used in combination with radiation therapy.
  • the disclosed cDACs may be useful in treating a HER2-positive (HER2+) cancer comprising cancer cells which have higher than normal levels of HER2.
  • HER2- positive cancer include HER2-positive breast cancer and HER2-positive gastric cancer.
  • HER2-positive cancer has an immunohistochemistry (IHC) score of 2+ or 3+ by in situ hybridization (ISH) amplification ratio.
  • IHC immunohistochemistry
  • ISH in situ hybridization
  • HER2-positive cell refers to a cell that expresses HER2 on its surface.
  • cDAC may also be useful in treating HER2-low tumor types.
  • No.3779-29-1) was converted by limited saponification with aqueous base to the half acid/ester 1,1-cyclobutanedicarboxylic acid, 1-ethyl ester (CAS Reg No.54450-84-9) and activation with a coupling reagent such as TBTU (O-(Benzotriazol-1-yl)-N,N,N′,N′-tetramethyluronium tetrafluoroborate, also called: N,N,N′,N′-Tetramethyl-O-(benzotriazol-1-yl)uronium tetrafluoroborate, CAS No.125700-67-6, Sigma-Aldrich B-2903), and N-hydroxysuccinimide to the NHS ester, 1-(2,5-dioxopyrrolidin-1-yl) 1-ethyl cyclobutane-1,1-dicarboxylate.
  • a coupling reagent such as TBTU (O-
  • Example cD-6 Synthesis of 4-((3-cyclopropyl-1-ethyl-1H-pyrazol-5-yl)amino)-7- (3,5-dimethylisoxazol-4-yl)-N-(5-((2-(2,6-dioxopiperidin-3-yl)-1-oxoisoindolin-4- yl)amino)pentyl)-6-methoxy-9H-pyrimido[4,5-b]indole-2-carboxamide, cD-6
  • Example cDLI-1 Synthesis of 4-((S)-2-(1-((5-(2,5-dioxo-2,5-dihydro-1H-pyrrol-1- yl)pentyl)carbamoyl)cyclobutane-1-carboxamido)propanamido)benzyl (7-(4-(3,5- difluoropyridin-2-yl)-10-methyl-7-((
  • the mixture was concentrated and purified by reverse phase chromatography (Xtimate C 1 8® (Welch Materials, Inc.) 150*25mm*5um, acetonitrile 60- 80.6/0.225% FA in water) to afford cDLI-6g (110 mg, 38%) as a white solid.
  • the engineered cysteine residues in antibodies exist as mixed disulfides with cellular thiols (e.g., glutathione) and are thus unavailable for conjugation. Partial reduction of these antibodies (e.g., with DTT), purification, and reoxidation with dehydroascorbic acid (DHAA) gives antibodies with free cysteine sulfhydryl groups available for conjugation, as previously described (Junutula et al. (2008) Nat. Biotechnol.26:925-932; US 2011/0301334). Briefly, the antibodies were combined with a cereblon degrader-linker intermediate to allow conjugation to the free cysteine residues of the antibody.
  • cellular thiols e.g., glutathione
  • the cereblon degrader antibody conjugate is purified.
  • the cysteine engineered antibodies were made reactive for conjugation with the cereblon degrader-linker intermediate by treatment with a reducing agent such as DTT (Cleland's reagent, dithiothreitol) or TCEP (tris(2-carboxyethyl)phosphine hydrochloride (Getz et al, (1999) Anal. Biochem.273:73-80; Soltec Ventures, Beverly, MA) in 50 mM Tris pH 7.5 with 2 mM EDTA for 3 hrs at 37 °C or overnight at room temperature.
  • a reducing agent such as DTT (Cleland's reagent, dithiothreitol) or TCEP (tris(2-carboxyethyl)phosphine hydrochloride (Getz et al, (1999) Anal. Biochem.273:73-80; Soltec Ventures, Beverly, MA) in
  • THIOMABTM Full length, cysteine engineered monoclonal antibodies (THIOMABTM) expressed in CHO cells (Gomez et al, (2010) Biotechnology and Bioeng.105(4):748-760; Gomez et al, (2010) Biotechnol. Prog.26:1438-1445) were reduced, for example with about a 50 fold excess of DTT overnight at room temperature to reduce disulfide bonds which may form between the newly introduced cysteine residues and the cysteine present in the culture media.
  • the reduced THIOMABTM was diluted and loaded onto a HiTrap S column in 10 mM sodium acetate, pH 5, and eluted with PBS containing 0.3M sodium chloride.
  • the antibody was acidified by addition of 1/20 th volume of 10% acetic acid, diluted with 10 mM succinate pH 5, loaded onto the column and then washed with 10 column volumes of succinate buffer. The column was eluted with 50 mM Tris pH7.5, 2 mM EDTA.
  • Light chain amino acids are numbered according to Kabat (Kabat et al., Sequences of proteins of immunological interest, (1991) 5th Ed., US Dept of Health and Human Service, National Institutes of Health, Bethesda, MD).
  • Heavy chain amino acids are numbered according to the EU numbering system (Edelman et al, (1969) Proc. Natl. Acad.
  • cysteine engineered monoclonal antibodies THIOMABTM expressed in CHO cells bear cysteine adducts (cystines) or glutathionylated on the engineered cysteines due to cell culture conditions.
  • cysteine adducts cysteines
  • glutathionylated glutathionylated on the engineered cysteines due to cell culture conditions.
  • the THIOMABTM was dissolved in 500 mM sodium borate and 500 mM sodium chloride at about pH 8.0 and reduced with about a 50-100 fold excess of 1 mM TCEP for about 1-2 hrs at 37 oC.
  • DTT was used as reducing agent.
  • the formation of inter-chain disulfide bonds was monitored either by non-reducing SDS-PAGE or by denaturing reverse phase HPLC PLRP column chromatography.
  • the reduced THIOMABTM was diluted and loaded onto a HiTrap SP FF column in 10 mM sodium acetate, pH 5, and eluted with PBS containing 0.3M sodium chloride, or 50 mM Tris-Cl, pH 7.5 containing 150 mM sodium chloride. Disulfide bonds were reestablished between cysteine residues present in the parent Mab by carrying out reoxidation.
  • the eluted reduced THIOMABTM was treated with 15X or 2 mM dehydroascorbic acid (dhAA) at pH 7 for about 3 hours or for about 3 hrs in 50 mM Tris-Cl, pH 7.5, or with 200 nM to 2 mM aqueous copper sulfate (CuSO4) at room temperature overnight.
  • Other oxidants i.e. oxidizing agents, and oxidizing conditions, which are known in the art may be used.
  • Ambient air oxidation may also be effective. This mild, partial reoxidation step forms intrachain disulfides efficiently with high fidelity.
  • the buffer was exchanged by elution over Sephadex G25 resin and eluted with PBS with 1mM DTPA.
  • the thiol/ antibody value was checked by determining the reduced antibody concentration from the absorbance at 280 nm of the solution and the thiol concentration by reaction with DTNB (Aldrich, Milwaukee, WI) and determination of the absorbance at 412 nm.
  • Liquid chromatography/Mass Spectrometric Analysis was performed on a TSQ Quantum Triple quadrupoleTM mass spectrometer with extended mass range (Thermo Electron, San Jose California). Samples were chromatographed on a PRLP-S®, 1000 A, microbore column (50mm ⁇ 2.1mm, Polymer Laboratories, Shropshire, UK) heated to 75 °C.
  • HIC Hydrophobic Interaction Chromatography
  • Example 102 Conjugation of cereblon degrader-linker intermediates (cDLI) and antibodies
  • cDLI cereblon degrader-linker intermediates
  • PBS phosphate buffered saline
  • a thiol-reactive group such as pyridyl disulfide, maleimide, or bromoacetamide
  • the cereblon degrader-linker intermediate was added from a DMSO stock at a concentration of about 20 mM in 50 mM Tris, pH 8, to the antibody and monitored until the reaction is complete from about 1 to about 24 hours as determined by LC-MS analysis of the reaction mixture.
  • a capping reagent such as ethyl maleimide was added to quench the reaction and cap any unreacted antibody thiol groups.
  • the conjugation mixture may be loaded and eluted through a HiTrap SP FF column to remove excess drug and other impurities.
  • the reaction mixture was concentrated by centrifugal ultrafiltration and the resulting cysteine engineered cereblon degrader antibody conjugate (cDAC) was purified and desalted by elution through G25 resin in PBS, filtered through 0.2 ⁇ m filters under sterile conditions, and frozen for storage.
  • cDAC cysteine engineered cereblon degrader antibody conjugate
  • the crude cDAC was applied to a cation exchange column after dilution with 20 mM sodium succinate, pH 5.
  • the column was washed with at least 10 column volumes of 20 mM sodium succinate, pH 5, and the antibody was eluted with PBS.
  • the cDAC were formulated into 20 mM His/acetate, pH 5, with 240 mM sucrose using gel filtration columns.
  • the cDAC was characterized by UV spectroscopy to determine protein concentration, analytical SEC (size-exclusion chromatography) for aggregation analysis and LC-MS before and after treatment with Lysine C endopeptidase. Size exclusion chromatography is performed using a Shodex KW802.5 column in 0.2M potassium phosphate pH 6.2 with 0.25 mM potassium chloride and 15% IPA at a flow rate of 0.75 ml/min. Aggregation state of the cDAC was determined by integration of eluted peak area absorbance at 280 nm. LC-MS analysis may be performed using an Agilent QTOF 6520 ESI instrument.
  • the cDAC is treated with 1:500 w/w Endoproteinase Lys C (Promega) in Tris, pH 7.5, for 30 min at 37°C.
  • the resulting cleavage fragments are loaded onto a 1000 ⁇ (Angstrom), 8 ⁇ m (micron) PLRP-S (highly cross-linked polystyrene) column heated to 80 °C and eluted with a gradient of 30% B to 40% B in 5 minutes.
  • Mobile phase A was H 2 O with 0.05% TFA and mobile phase B was acetonitrile with 0.04% TFA.
  • the flow rate was 0.5ml/min.
  • Example 103 In vitro cell proliferation assay Efficacy of the cDAC was measured by a cell proliferation assay employing the following protocol (CELLTITER GLOTM Luminescent Cell Viability Assay, Promega Corp. Technical Bulletin TB288; Mendoza et al. (2002) Cancer Res.62:5485-5488): 1.
  • the protocol is a modification of the CELLTITER GLOTM Luminescent Cell. Cell lines may be grown in media including RPMI- 1640, 20% HI-FBS, 2mM L-Glutamine.
  • Example 104 Whole Blood Stability Assay Whole blood incubation: Matrix collected in lithium heparin-containing tubes (was shipped by the vendor (BioIVT, Westbury NY). Unfrozen plasma and whole blood were collected in the afternoon and shipped cold (2-8°C) overnight so as to arrive within 18 h of collection, while frozen plasma was collected and shipped frozen with normal delivery conditions.
  • cDAC source material was formulated to 1mg/mL in Buffer (1X PBS [pH 7.4], 0.5% bovine serum albumin, 15 parts per million Proclin TM ) and then further diluted to a final concentration of 100 ⁇ g/mL. Once mixed, 150 ⁇ L of the whole blood/Buffer stability samples was aliquoted into two separate sets of tubes for the two different time-points.
  • the 0 h time- points were then placed in a ⁇ 80°C.
  • Whole blood samples were generated, with two aliquots of 150 ⁇ L for 0 and 24 h time-points for whole blood.
  • the 0 h samples were immediately placed in a ⁇ 80°C freezer and while 24 h were shaken (about 700 rpm) in 37 °C incubator. Aliquots were collected at 24 h stored in ⁇ 80 °C freezer until affinity capture LC-MS was performed.
  • the matrices used to generate the samples were mouse (CB17 SCID), rat (Sprague-Dawley), monkey (cynomolgus) and human.
  • Streptavdin (SA)-coated magnetic beads (Thermo Fisher Scientific, catalog #60210) were washed 2x with HBS-EP buffer (GE Healthcare Life Sciences, catalog #BR-1001-88), then mixed with either biotinylated extracellular domain of target (e.g., human HER2) or anti-idiotypic antibody for specific capture or biotinylated human IgG for generic capture using a KingFisher Flex (Thermo Fisher Scientific) and incubated for 2 h at room temperature with gentle agitation.
  • target e.g., human HER2
  • biotinylated extracellular domain of target e.g., human HER2
  • anti-idiotypic antibody for specific capture
  • biotinylated human IgG for generic capture using a KingFisher Flex
  • the SA-bead/Biotin-capture probe complex was then washed 2x with HBS-EP buffer, mixed with cDAC or precursor stability samples pre- diluted 1:16 with HBS-EP buffer and incubated for 2 h at room temperature with gentle agitation. After the 2 h, the SA-bead/Biotin-capture probe/sample complex was washed 2x with HBS-EP buffer, and then deglycosylated via overnight incubation with PNGase F (New England Biolabs, catalog #P0704B).
  • the SA-bead/Biotin-capture probe/sample complex was then washed 2x with HBS-EP buffer, followed by 2x washes of water (OptimaTM LC/MS Grade, Fisher Chemical, catalog #W6-1) and finally 1x wash with 10% acetonitrile.
  • the beads were placed in 30% acetonitrile/0.1% formic acid for elution for 30 min at room temperature with gentle agitation before the beads were collected.
  • the eluted samples were then loaded on to the LC-MS (Thermo Scientific Q-Exactive Plus) for analysis.10 ⁇ L of cDAC samples was injected and loaded onto a Waters C4 column (1000 ⁇ m ⁇ 10 cm) maintained at 65 °C.
  • the cDAC was separated on the column using a Waters Acquity UPLC system at a flow rate of 20 ⁇ L/min with the following gradient: 20% B (100% acetonitrile + 0.1% formic acid) at 0–2 min; 35% B at 2.5 min; 65% B at 5 min; 95% B at 5.5 min; 5% B at 6 min.
  • the column was directly coupled for online detection with a Thermo Scientific Q-Exactive Plus mass spectrometer operated in positive electrospray ionization mode with an acquisition mass range from m/z 500 to 4000 Da.
  • Example 105 Tumor growth inhibition, in vivo efficacy in CD33 expressing HL-60 mice
  • Tumors were established and allowed to grow in CD33 expressing, HL-60 mice to 150- 200 mm 3 in volume (as measured using calipers) before a single treatment on day 0.
  • Mice were euthanized before tumor volume reached 3000 mm 3 or when tumors showed signs of impending ulceration.
  • Data collected from each experimental group (10 mice per group) is expressed as mean + SE.
  • the Fo5 mouse mammary tumor model was employed to evaluate the in vivo efficacy of the anti-HER2 cereblon degrader antibody conjugates (cDAC) after single dose intravenous injections, and as described previously (Phillips GDL, Li GM, Dugger DL, et al. Targeting HER2-Positive Breast Cancer with Trastuzumab-DM1, an Antibody-Cytotoxic Drug Conjugate. (2008) Cancer Res.68:9280-90), incorporated by reference herein.
  • cDAC cereblon degrader antibody conjugates
  • Anti-HER2 cDACs were tested with the Fo5 model, a transgenic mouse model in which the human HER2 gene is over-expressed in mammary epithelium under transcriptional regulation of the murine mammary tumor virus promoter (MMTV-HER2).
  • the HER2 over-expression causes spontaneous development of a mammary tumor.
  • the mammary tumor of one of these founder animals (founder #5 [Fo5]) is propagated in subsequent generations of FVB mice by serial transplantation of tumor fragments ( ⁇ 2 x 2 mm in size). All studies are conducted in accordance with the Guide for the Care and Use of Laboratory Animals.
  • Each cDAC single dose
  • Initial tumor size is about 200 mm 3 volume.
  • Other mammary fat pad transplant efficacy models may be employed as described (Chen et al. (2007) Cancer Res.67:4924-4932), evaluating tumor volume after a single intravenous dose and using tumors excised from a mouse bearing an intraperitoneal tumor, then serially passaged into the mammary fat pads of recipient mice. All references, including publications, patent applications, and patents, cited herein are hereby incorporated by reference to the same extent as if each reference were individually and specifically indicated to be incorporated by reference and were set forth in its entirety herein.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Engineering & Computer Science (AREA)
  • Veterinary Medicine (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Medicinal Chemistry (AREA)
  • Immunology (AREA)
  • Epidemiology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Peptides Or Proteins (AREA)

Abstract

L'invention concerne des conjugués d'anticorps-agent de dégradation de céréblon (cDAC) comprenant une fraction de dégradation de céréblon fixée de manière covalente à un anticorps. Le cDAC cible des protéines pour la dégradation intracellulaire et peut être utile pour traiter des maladies et des troubles.
PCT/US2023/085698 2022-12-23 2023-12-22 Conjugués d'agent de dégradation de céréblon et leurs utilisations WO2024138128A2 (fr)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US202263435142P 2022-12-23 2022-12-23
US63/435,142 2022-12-23
US202363525282P 2023-07-06 2023-07-06
US63/525,282 2023-07-06

Publications (1)

Publication Number Publication Date
WO2024138128A2 true WO2024138128A2 (fr) 2024-06-27

Family

ID=89843299

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US2023/085698 WO2024138128A2 (fr) 2022-12-23 2023-12-22 Conjugués d'agent de dégradation de céréblon et leurs utilisations

Country Status (1)

Country Link
WO (1) WO2024138128A2 (fr)

Citations (256)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US798959A (en) 1904-12-19 1905-09-05 George W Goss Corn-husker.
WO1991002536A1 (fr) 1989-08-23 1991-03-07 Scripps Clinic And Research Foundation Compositions et procedes de detection et de traitement de l'infection due au virus d'epstein-barr et de troubles immuns
WO1992007574A1 (fr) 1990-10-25 1992-05-14 Tanox Biosystems, Inc. Glycoproteines associees a des immunoglobulines a liaison membranaire et utilisees comme cibles anticorpales sur des cellules b
WO1992017497A1 (fr) 1991-03-29 1992-10-15 Genentech, Inc. Receptor humain pf4a et leur utilisation
EP0522868A1 (fr) 1991-07-12 1993-01-13 SHIONOGI SEIYAKU KABUSHIKI KAISHA trading under the name of SHIONOGI & CO. LTD. Récepteur de l'éndothéline humain
JPH053790B2 (fr) 1983-11-02 1993-01-18 Canon Kk
WO1994010312A1 (fr) 1992-10-23 1994-05-11 Chugai Seiyaku Kabushiki Kaisha Codage de genes pour potentiateur de megacaryocyte
WO1994028931A1 (fr) 1993-06-11 1994-12-22 Genentech, Inc. Methodes de traitement de troubles inflammatoires
US5440021A (en) 1991-03-29 1995-08-08 Chuntharapai; Anan Antibodies to human IL-8 type B receptor
WO1996030514A1 (fr) 1995-03-31 1996-10-03 University Of Washington Domaine intracellulaire de la proteine her-2/neu pour la prevention ou le traitement de tumeurs malignes
US5583024A (en) 1985-12-02 1996-12-10 The Regents Of The University Of California Recombinant expression of Coleoptera luciferase
WO1997007198A2 (fr) 1995-08-11 1997-02-27 Genetics Institute, Inc. Sequences d'adn et proteines secretees codees par celles-ci
US5644033A (en) 1992-12-22 1997-07-01 Health Research, Inc. Monoclonal antibodies that define a unique antigen of human B cell antigen receptor complex and methods of using same for diagnosis and treatment
US5677171A (en) 1988-01-12 1997-10-14 Genentech, Inc. Monoclonal antibodies directed to the HER2 receptor
WO1997044452A1 (fr) 1996-05-17 1997-11-27 Schering Corporation Antigenes de lymphocytes b humains, reactifs apparentes
US5700670A (en) 1995-04-13 1997-12-23 Mitsubishi Chemical Corporation Method for producing optically active ester of γ-substituted-β-hydroxybutyric acid
WO1998017797A1 (fr) 1996-10-18 1998-04-30 Genentech, Inc. ANTICORPS ANTI-ErbB2
US5773223A (en) 1993-09-02 1998-06-30 Chiron Corporation Endothelin B1, (ETB1) receptor polypeptide and its encoding nucleic acid methods, and uses thereof
US5792616A (en) 1990-05-29 1998-08-11 The United States Of America Antibodies to human cripto protein
WO1998037193A1 (fr) 1997-02-20 1998-08-27 Zymogenetics, Inc. Recepteur 'zcytor7' de cytokine
WO1998040403A1 (fr) 1997-03-10 1998-09-17 The Regents Of The University Of California Antigene de cellule souche prostatique (psca)
US5821337A (en) 1991-06-14 1998-10-13 Genentech, Inc. Immunoglobulin variants
EP0875569A1 (fr) 1997-04-28 1998-11-04 Smithkline Beecham Corporation Transporteur humain de phosphate, dépendant de sodium (IPT-1)
WO1998051805A1 (fr) 1997-05-15 1998-11-19 Abbott Laboratories Reactifs et procedes utiles pour detecter des maladies de la prostate
WO1998051824A1 (fr) 1997-05-15 1998-11-19 Abbott Laboratories Reactifs et procedes utiles au depistage de maladies du tractus urinaire
US5854399A (en) 1991-08-23 1998-12-29 The United States Of America As Represented By The Department Of Health And Human Services Antibodies specific for human cripto-related polypeptide CR-3
US5869445A (en) 1993-03-17 1999-02-09 University Of Washington Methods for eliciting or enhancing reactivity to HER-2/neu protein
WO1999028468A1 (fr) 1997-12-02 1999-06-10 The Regents Of The University Of California Modulation des interactions entre le lymphocyte b et le recepteur de la chemokine
WO1999046284A2 (fr) 1998-03-13 1999-09-16 The Burnham Institute Molecules se logeant dans divers organes ou tissus
US5976551A (en) 1991-11-15 1999-11-02 Institut Pasteur And Institut Nationale De La Sante Et De La Recherche Medicale Altered major histocompatibility complex (MHC) determinant and method of using the determinant
WO1999058658A2 (fr) 1998-05-13 1999-11-18 Epimmune, Inc. Vecteurs d'expression destines a stimuler une reponse immunitaire et procedes de leur utilisation
WO2000012130A1 (fr) 1998-08-27 2000-03-09 Smithkline Beecham Corporation Agonistes et antagonistes de rp105
WO2000014228A1 (fr) 1998-09-03 2000-03-16 Japan Science And Technology Corporation Transporteur d'acides amines neutres et gene correspondant
WO2000020579A1 (fr) 1998-10-02 2000-04-13 Mcmaster University Forme epissee de l'oncogene erbb-2/neu
WO2000022129A1 (fr) 1998-10-13 2000-04-20 Arena Pharmaceuticals, Inc. Recepteurs couples a la proteine g humaine non endogenes et actives de façon constitutive
US6054297A (en) 1991-06-14 2000-04-25 Genentech, Inc. Humanized antibodies and methods for making them
WO2000032752A1 (fr) 1998-12-02 2000-06-08 The Regents Of The University Of California Antigene de cellule souche prostatique et ses utilisations
WO2000044899A1 (fr) 1999-01-29 2000-08-03 Corixa Corporation Proteines de fusion her-2/neu
WO2000055351A1 (fr) 1999-03-12 2000-09-21 Human Genome Sciences, Inc. Sequences et polypeptides geniques associes au cancer du colon chez l'homme
US6153408A (en) 1991-11-15 2000-11-28 Institut Pasteur And Institut National De La Sante Et De La Recherche Medicale Altered major histocompatibility complex (MHC) determinant and methods of using the determinant
WO2000075655A1 (fr) 1999-06-03 2000-12-14 Takeda Chemical Industries, Ltd. Procede de criblage avec cd100
WO2000053216A3 (fr) 1999-03-05 2001-01-11 Smithkline Beecham Biolog Nouvelles utilisations
WO2000040614A3 (fr) 1998-12-30 2001-02-22 Beth Israel Hospital Caracterisation d'une famille de canaux calciques
WO2000036107A3 (fr) 1998-12-17 2001-02-22 Corixa Corp Compositions et procedes destines a la therapie et au diagnostic du cancer de l"ovaire
WO2001016318A2 (fr) 1999-09-01 2001-03-08 Genentech, Inc. Polypeptides secretes et transmembranaires et acides nucleiques codant pour ceux-ci
WO2001041787A1 (fr) 1999-12-10 2001-06-14 Epimmune Inc. Induction de reponses immunes cellulaires a her2/neu a l'aide de compositions renfermant des peptides et des acides nucleiques
WO2001046261A1 (fr) 1999-12-23 2001-06-28 Zymogenetics, Inc. Methode destinee a traiter l'inflammation
WO2001048204A1 (fr) 1999-12-23 2001-07-05 Agresearch Limited Recepteur mutant de bmp 1b comme regulateur du taux d'ovulation
WO2001000244A3 (fr) 1999-06-25 2001-10-04 Genentech Inc Techniques de traitement utilisant des conjugues maytansinoides-anticorps anti-erbb
WO2001040309A3 (fr) 1999-10-29 2001-11-29 Genentech Inc Compositions a base d'anticorps diriges contre l'antigene de cellules souches de la prostate (psca) et procedes d'utilisation associes
WO2001040269A3 (fr) 1999-11-30 2001-12-13 Corixa Corp Compositions et methodes destinees au traitement et au diagnostic du cancer du sein
WO2001038490A3 (fr) 1999-11-29 2001-12-27 Univ Columbia ISOLEMENT DE CINQ NOUVEAUX GENES CODANT POUR DES NOUVEAUX RECEPTEURS Fc DE TYPE MELANOME INTERVENANT DANS LA PATHOGENESE DU LYMPHOME MALIN ET DU MELANOME
US20010055751A1 (en) 1997-03-10 2001-12-27 Reiter Robert E PSCA: Prostate stem cell antigen and uses thereof
WO2002002587A1 (fr) 2000-06-30 2002-01-10 Human Genome Sciences, Inc. Polynucléotides du type b7, polypeptides et anticorps en rapport
US6339142B1 (en) 1998-05-06 2002-01-15 Genentech, Inc. Protein purification
WO2001072962A3 (fr) 2000-03-24 2002-01-17 Fahri Saatcioglu Molecules d'acide nucleique specifiques de la prostate ou des testicules, polypeptides, techniques de diagnostic, et traitement therapeutique
WO2002010187A1 (fr) 2000-07-27 2002-02-07 Mayo Foundation For Medical Education And Research B7-h3 et b7-h4, nouvelles molecules immunoregulatrices
WO2001053463A3 (fr) 2000-01-21 2002-02-14 Corixa Corp COMPOSES ET PROCEDES DE PREVENTION ET DE TRAITEMENT DE MALIGNITES ASSOCIEES A HER-2/neu
WO2001046232A3 (fr) 1999-12-23 2002-02-21 Zymogenetics Inc Recepteur soluble de l'interleukine-20
WO2001057188A3 (fr) 2000-02-03 2002-02-28 Hyseq Inc Nouveaux acides nucleiques et polypeptides
US20020034749A1 (en) 1997-11-18 2002-03-21 Billing-Medel Patricia A. Reagents and methods useful for detecting diseases of the breast
WO2002022636A1 (fr) 2000-09-15 2002-03-21 Isis Pharmaceuticals, Inc. Modulation antisens de l'expression de her-2
US20020042366A1 (en) 1999-12-23 2002-04-11 Penny Thompson Method for treating inflammation
WO2001062794A3 (fr) 2000-02-22 2002-05-02 Millennium Pharm Inc Nouveaux canaux calciques humains 18607
WO2001090304A3 (fr) 2000-05-19 2002-05-10 Human Genome Sciences Inc Acides nucleiques, proteines et anticorps
WO2001066689A3 (fr) 2000-03-07 2002-05-30 Hyseq Inc Nouveaux acides nucleiques et polypeptides
WO2001072830A3 (fr) 2000-03-31 2002-06-20 Ipf Pharmaceuticals Gmbh Medicament et moyen diagnostique pour analyser le proteome de surface de cellules tumorales et inflammatoires, et pour traiter des maladies tumorales et inflammatoires, de preference au moyen d'une analyse specifique des recepteurs de chimiokines et de l'interaction de ligands recepteurs de chimiokines
WO2002002624A3 (fr) 2000-06-30 2002-07-04 Amgen Inc Molecules de type b7 et utilisation de ces molecules
WO2002054940A2 (fr) 2001-01-12 2002-07-18 University Of Medicine & Dentistry Of New Jersey Proteine morphogenetique osseuse 2 (bmp-2) utilisee dans le traitement et le diagnostic du cancer
WO2002059377A2 (fr) 2001-01-24 2002-08-01 Protein Design Labs Procedes de diagnostic du cancer du sein, compositions et procedes de criblage de modulateurs du cancer du sein
WO2002060317A2 (fr) 2001-01-30 2002-08-08 Corixa Corporation Compositions et methodes pour le traitement et le diagnostic du cancer du pancreas
WO2002061087A2 (fr) 2000-12-19 2002-08-08 Lifespan Biosciences, Inc. Peptides antigeniques destines a des recepteurs couples a la proteine g (gpcr), anticorps s'y rapportant, et systeme d'identification desdits peptides antigeniques
WO2002064798A1 (fr) 2001-02-12 2002-08-22 Bionomics Limited Sequences d'adn exprimees de façon differentielle dans des lignees cellulaires tumorales
WO2002071928A2 (fr) 2001-03-14 2002-09-19 Millennium Pharmaceuticals, Inc. Molecules d'acide nucleique et proteines destinees a l'identification, l'evaluation, la prevention et la therapie du cancer des ovaires
WO2002072596A1 (fr) 2001-03-09 2002-09-19 Incyte Genomics, Inc. Proteine associee a la steap
WO2002078524A2 (fr) 2001-03-28 2002-10-10 Zycos Inc. Determination de profils translationnels
US20020150573A1 (en) 2000-11-10 2002-10-17 The Rockefeller University Anti-Igalpha-Igbeta antibody for lymphoma therapy
WO2002081646A2 (fr) 2001-04-06 2002-10-17 Mannkind Corporation Sequences d'epitopes
WO2002083866A2 (fr) 2001-04-17 2002-10-24 The Board Of Trustees Of The University Of Arkansas Sequences repetees du gene ca125 et leurs utilisations dans des interventions diagnostiques et therapeutiques
WO2002086443A2 (fr) 2001-04-18 2002-10-31 Protein Design Labs, Inc Procedes de diagnostic du cancer du poumon, compositions et procedes de criblage de modulateurs du cancer du poumon
WO2002088170A2 (fr) 2001-04-26 2002-11-07 Biogen, Inc. Anticorps de blocage cripto et utilisations correspondantes
WO2002089747A2 (fr) 2001-05-09 2002-11-14 Corixa Corporation Compositions et procedes pour la therapie et le diagnostic du cancer de la prostate
WO2002092836A2 (fr) 2001-05-11 2002-11-21 Sloan-Kettering Institute For Cancer Research Sequence nucleotidique codant un antigene ovarien ca125 et ses utilisations
WO2002094852A2 (fr) 2001-05-24 2002-11-28 Zymogenetics, Inc. Proteines hybrides taci-immunoglobuline
WO2002016413A3 (fr) 2000-08-24 2002-12-05 Smithkline Beecham Biolog Vaccins
WO2002099122A1 (fr) 2001-06-05 2002-12-12 Exelixis, Inc. Modificateurs de la voie p53 et methodes d'utilisation
WO2002098358A2 (fr) 2001-06-04 2002-12-12 Eos Biotechnology, Inc. Procedes de diagnostic et de traitement du cancer prostatique androgene-dependant, cancer prostatique subissant un retrait d'androgenes et cancer prostatique androgene-independant
WO2002099074A2 (fr) 2001-06-05 2002-12-12 Exelixis, Inc. Slc7s utilises en tant que modificateurs de la voie p53 et procedes d'utilisation correspondants
US20020193567A1 (en) 1995-08-11 2002-12-19 Genetics Institute, Inc. Secreted proteins and polynucleotides encoding them
WO2002101075A2 (fr) 2001-06-13 2002-12-19 Millennium Pharmaceuticals, Inc. Identification, evaluation, prevention et traitement du cancer du col de l'uterus : nouveaux genes, nouvelles compositions, nouvelles trousses et nouvelles methodes
WO2002013847A3 (fr) 2000-08-14 2002-12-19 Corixa Corp Methodes diagnostiques et therapeutiques des tumeurs malignes d'origine hematologiques et virales
WO2002102235A2 (fr) 2001-06-18 2002-12-27 Eos Biotechnology Inc. Procedes de diagnostic du cancer ovarien, compositions et procedes de criblage de modulateurs du cancer ovarien
WO2002016429A3 (fr) 2000-08-24 2003-01-03 Genentech Inc Compositions et procedes de diagnostic et traitement de tumeurs
WO2003000842A2 (fr) 2001-06-04 2003-01-03 Curagen Corporation Nouvelles proteines et acides nucleiques codant pour de telles proteines
WO2001098351A3 (fr) 2000-06-16 2003-01-09 Incyte Genomics Inc Recepteurs couples a la proteine g
WO2003002717A2 (fr) 2001-06-28 2003-01-09 Schering Corporation Activite biologique de ak155
WO2003004989A2 (fr) 2001-06-21 2003-01-16 Millennium Pharmaceuticals, Inc. Compositions, trousses, et procedes d'identification, d'evaluation, de prevention, et de therapie pour le cancer du sein
WO2003004529A2 (fr) 2001-07-02 2003-01-16 Licentia Ltd. Materiaux de recepteur ephrine-tie et leurs procedes
WO2002022808A3 (fr) 2000-09-18 2003-01-16 Biogen Inc Mutant cripto et utilisations de ce dernier
WO2003003906A2 (fr) 2001-07-03 2003-01-16 Eos Biotechnology, Inc. Procede de diagnostic du cancer de la vessie, compositions et procedes de criblage de modulateurs du cancer de la vessie
WO2003003984A2 (fr) 2001-07-05 2003-01-16 Curagen Corporation Nouvelles proteines et nouveaux acides nucleiques codant ces proteines
WO2001077172A3 (fr) 2000-04-07 2003-01-30 Arena Pharm Inc Recepteurs connus couples a la proteine g non endogenes a activation constitutive
WO2002002634A3 (fr) 2000-06-30 2003-01-30 Incyte Genomics Inc Molécules de matrice extracellulaire et d'adhésion cellulaire
WO2003009814A2 (fr) 2001-07-25 2003-02-06 Millennium Pharmaceuticals, Inc. Nouveaux genes, compositions, trousses et methodes d'identification, evaluation, prevention, et traitement du cancer de la prostate
US6518404B1 (en) 1994-10-17 2003-02-11 Human Genome Sciences, Inc. Human endothelin-bombesin receptor antibodies
WO2003014294A2 (fr) 2001-08-03 2003-02-20 Genentech, Inc. Polypeptides taci et br3 et leurs utilisations
WO2003016494A2 (fr) 2001-08-16 2003-02-27 Vitivity, Inc. Diagnostic et traitement de maladies vasculaires
WO2003016475A2 (fr) 2001-08-14 2003-02-27 The General Hospital Corporation Sequences d'acides nucleiques et d'acides amines intervenant dans la douleur
WO2003018621A2 (fr) 2001-08-23 2003-03-06 Oxford Biomedica (Uk) Limited Genes
WO2003023013A2 (fr) 2001-09-13 2003-03-20 Nuvelo, Inc. Nouveaux acides nucleiques et polypeptides
WO2003022995A2 (fr) 2001-09-06 2003-03-20 Agensys, Inc. Acide nucleique et proteine correspondante designes par steap-1 utiles dans le traitement et la detection du cancer
EP1295944A2 (fr) 1996-03-19 2003-03-26 Otsuka Pharmaceutical Co., Ltd. Protéine stimulant la dissociation du GDP, protéine d'assemblage de nucléosome spécifique au cerveau, enzyme de conjugaison d'ubiquitine spécifique aux muscles du squelette, protéine de prolifération de cellule, phosphatidylinositolkinase, protéines apparentés à nel
WO2003025228A1 (fr) 2001-09-18 2003-03-27 Proteologics, Inc. Procede et composition permettant de traiter des affections en lien avec la proteine hcap
WO2003025138A2 (fr) 2001-09-17 2003-03-27 Protein Design Labs, Inc. Procedes de diagnostic du cancer, compositions et procedes de criblage de modulateurs du cancer
US20030060612A1 (en) 1997-10-28 2003-03-27 Genentech, Inc. Compositions and methods for the diagnosis and treatment of tumor
WO2003024392A2 (fr) 2001-09-18 2003-03-27 Genentech, Inc. Compositions et procedes pour le diagnostic et le traitement des tumeurs
WO2003025148A2 (fr) 2001-09-19 2003-03-27 Nuvelo, Inc. Nouveaux acides nucleiques et polypeptides
US20030064397A1 (en) 1998-05-22 2003-04-03 Incyte Genomics, Inc. Transmembrane protein differentially expressed in prostate and lung tumors
WO2003026493A2 (fr) 2001-09-28 2003-04-03 Bing Yang Diagnostic et traitement de maladies induites par des mutations dans le gene cd72
US20030065143A1 (en) 1998-12-30 2003-04-03 Genentech, Inc. Secreted and transmembrane polypeptides and nucleic acids encoding the same
WO2003029262A2 (fr) 2001-08-29 2003-04-10 Vanderbilt University Recepteurs de mob-5 humains (il-24) et utilisations de ceux-ci
WO2003029421A2 (fr) 2001-10-03 2003-04-10 Origene Technologies, Inc. Genes regules du cancer du sein
WO2003029277A2 (fr) 2001-10-03 2003-04-10 Rigel Pharmaceuticals, Inc. Modulateurs de l'activation et de la migration des lymphocytes
WO2002012341A3 (fr) 2000-08-03 2003-04-17 Corixa Corp Protéines de fusion her-2/neu
WO2003035846A2 (fr) 2001-10-24 2003-05-01 National Jewish Medical And Research Center Structures tridimensionnelles de tall-1 et de ses recepteurs parents, proteines modifiees et procedes associes
WO2003034984A2 (fr) 2001-10-19 2003-05-01 Genentech, Inc. Compositions et procedes pour le diagnostic et le traitement d'affections intestinales inflammatoires
WO2001088133A3 (fr) 2000-05-18 2003-05-08 Lexicon Genetics Inc Nouveaux homologues humains de semaphorine et polynucleotides codant ceux-ci
US20030091580A1 (en) 2001-06-18 2003-05-15 Mitcham Jennifer L. Compositions and methods for the therapy and diagnosis of ovarian cancer
WO2003042661A2 (fr) 2001-11-13 2003-05-22 Protein Design Labs, Inc. Methodes de diagnostic du cancer, compositions et methodes de criblage des modulateurs du cancer
WO2001075177A3 (fr) 2000-04-03 2003-05-22 Us Gov Health & Human Serv Marqueurs tumoraux pour le cancer des ovaires
US20030096961A1 (en) 2001-06-01 2003-05-22 Genentech, Inc. Secreted and transmembrane polypeptides and nucleic acids encoding the same
WO2003045422A1 (fr) 2001-11-29 2003-06-05 Genset S.A. Agonistes et antagonistes de la prolixine pour le traitement des troubles metaboliques
WO2003048202A2 (fr) 2001-12-03 2003-06-12 Asahi Kasei Pharma Corporation Gène activant le facteur nucléaire kappa b
WO2002022153A3 (fr) 2000-09-15 2003-06-19 Zymogenetics Inc Procede permettant de traiter l'inflammation
US20030119121A1 (en) 2000-09-15 2003-06-26 Genentech, Inc. Secreted and transmembrane polypeptides and nucleic acids encoding the same
US20030119125A1 (en) 2001-01-16 2003-06-26 Genentech, Inc. Secreted and transmembrane polypeptides and nucleic acids encoding the same
US20030118592A1 (en) 2001-01-17 2003-06-26 Genecraft, Inc. Binding domain-immunoglobulin fusion proteins
US20030119122A1 (en) 1999-05-11 2003-06-26 Genentech, Inc. Secreted and transmembrane polypeptides and nucleic acids encoding the same
US20030119130A1 (en) 1999-08-17 2003-06-26 Genentech, Inc. Secreted and transmembrane polypeptides and nucleic acids encoding the same
US20030119126A1 (en) 2001-01-16 2003-06-26 Genentech, Inc. Secreted and transmembrane polypeptides and nucleic acids encoding the same
US20030119129A1 (en) 1999-08-10 2003-06-26 Genentech, Inc. Secreted and transmembrane polypeptides and nucleic acids encoding the same
US20030119131A1 (en) 2000-01-20 2003-06-26 Genentech, Inc. Secreted and transmembrane polypeptides and nucleic acids encoding the same
US20030119128A1 (en) 1999-07-20 2003-06-26 Genentech, Inc. Secreted and transmembrane polypeptides and nucleic acids encoding the same
WO2002006317A3 (fr) 2000-07-17 2003-07-03 Corixa Corp Compositions et procedes utilises dans la therapie et le diagnostic du cancer des ovaires
US20030124140A1 (en) 1998-12-17 2003-07-03 Corixa Corporation Compositions and methods for the therapy and diagnosis of ovarian cancer
WO2003054152A2 (fr) 2001-12-10 2003-07-03 Nuvelo, Inc. Nouveaux acides nucleiques et polypeptides
US20030124579A1 (en) 2001-09-05 2003-07-03 Eos Biotechnology, Inc. Methods of diagnosis of ovarian cancer, compositions and methods of screening for modulators of ovarian cancer
WO2003055439A2 (fr) 2001-07-18 2003-07-10 The Regents Of The University Of California Antigene cible her2/neu et son utilisation pour stimuler une reponse immunitaire
US20030129192A1 (en) 1999-09-10 2003-07-10 Corixa Corporation Compositions and methods for the therapy and diagnosis of ovarian cancer
WO2003055443A2 (fr) 2001-10-31 2003-07-10 Alcon, Inc. Proteines morphogeniques osseuses (bmp), recepteurs desdites proteines et proteines de liaison de ces proteines, et leur utilisation pour le diagnostic et le traitement du glaucome
WO2002022660A3 (fr) 2000-09-11 2003-07-17 Hyseq Inc Noveaux acides nucleiques et polypeptides
US20030134790A1 (en) 2002-01-11 2003-07-17 University Of Medicine And Dentistry Of New Jersey Bone Morphogenetic Protein-2 And Bone Morphogenetic Protein-4 In The Treatment And Diagnosis Of Cancer
US20030143557A1 (en) 2002-01-25 2003-07-31 Reinhold Penner Methods of screening for TRPM4b modulators
WO2003062401A2 (fr) 2002-01-22 2003-07-31 Corixa Corporation Compositions et methodes de detection, de diagnostic et de traitement des malignites hematologiques
WO2002024909A3 (fr) 2000-09-18 2003-07-31 Biogen Inc Acides nucleiques et polypeptides de nouveau recepteur
WO2002006339A3 (fr) 2000-07-03 2003-07-31 Curagen Corp Nouvelles proteines et acides nucleiques les codant
US6602677B1 (en) 1997-09-19 2003-08-05 Promega Corporation Thermostable luciferases and methods of production
WO2001094641A3 (fr) 2000-06-09 2003-08-21 Idec Pharma Corp Nouvelles cibles geniques et ligands se fixant a celles-ci pour le traitement et le diagnostic de carcinomes ovariens
US20030157089A1 (en) 1997-02-25 2003-08-21 Corixa Corporation Compositions and methods for the therapy and diagnosis of prostate cancer
US20030165504A1 (en) 1999-09-24 2003-09-04 Retter Marc W. Compositions and methods for the therapy and diagnosis of ovarian cancer
WO2003072036A2 (fr) 2002-02-21 2003-09-04 Duke University Methodes therapeutiques utilisant des anticorps anti-cd22
WO2003072035A2 (fr) 2002-02-22 2003-09-04 Genentech, Inc. Compositions et methodes de traitement de maladies relatives au systeme immunitaire
WO2003074566A2 (fr) 2002-03-01 2003-09-12 Immunomedics, Inc. Anticorps rs7
WO2002014503A3 (fr) 2000-08-14 2003-09-18 Corixa Corp Compositions et methodes de traitement et de diagnostic de cancers associes a her-2/neu
EP1347046A1 (fr) 2002-03-22 2003-09-24 Research Association for Biotechnology Séquences d'ADN complémentaire entières
WO2003077836A2 (fr) 2001-11-06 2003-09-25 Corixa Corporation Compositions et procedes pour la detection, le diagnostic et la therapie de malignites hematologiques
US20030186372A1 (en) 2000-02-11 2003-10-02 Genentech, Inc. Secreted and transmembrane polypeptides and nucleic acids encoding the same
US20030185830A1 (en) 1997-02-25 2003-10-02 Corixa Corporation Compositions and methods for the therapy and diagnosis of prostate cancer
WO2003081210A2 (fr) 2002-03-21 2003-10-02 Sunesis Pharmaceuticals, Inc. Identification d'inhibiteurs de kinase
WO2003083047A2 (fr) 2002-03-01 2003-10-09 Exelixis, Inc. Genes mp53 en tant que modificateurs de la voie des proteines p53 et methodes d'utilisation
WO2002010382A3 (fr) 2000-07-28 2003-10-09 Ulrich Wissenbach Marqueurs trp8, trp9 et trp10 associes au cancer
WO2003083041A2 (fr) 2002-03-22 2003-10-09 Biogen, Inc. Anticorps specifiques au cripto
WO2003083074A2 (fr) 2002-03-28 2003-10-09 Idec Pharmaceuticals Corporation Nouvelles cibles geniques et ligands se liant a celles-ci pour le traitement et le diagnostic de carcinomes du colon
US20030194704A1 (en) 2002-04-03 2003-10-16 Penn Sharron Gaynor Human genome-derived single exon nucleic acid probes useful for gene expression analysis two
WO2003087768A2 (fr) 2002-04-12 2003-10-23 Mitokor Cibles pour une intervention therapeutique identifiee dans le proteome mitochondrial
WO2003087306A2 (fr) 2002-04-05 2003-10-23 Agensys, Inc. Acide nucleique et proteine correspondante 98p4b6 utilises dans le traitement et la detection du cancer
WO2003089904A2 (fr) 2002-04-17 2003-10-30 Baylor College Of Medicine Aib1 utilise en tant que marqueur pronostique et predicteur de la resistance a l'endocrinotherapie
WO2003088808A2 (fr) 2002-04-16 2003-10-30 Genentech, Inc. Compositions et methodes permettant de diagnostiquer et de traiter une tumeur
WO2003089624A2 (fr) 2002-03-25 2003-10-30 Uab Research Foundation Elements de la famille des genes homologues des recepteurs de fc (fcrh1-3, 6), reactifs associes et utilisations de ces derniers
US20030206918A1 (en) 1999-09-10 2003-11-06 Corixa Corporation Compositions and methods for the therapy and diagnosis of ovarian cancer
WO2003093444A2 (fr) 2002-05-03 2003-11-13 Incyte Corporation Transporteurs et canaux ioniques
US20030219806A1 (en) 2000-02-22 2003-11-27 Millennium Pharmaceuticals, Inc. Novel 18607, 15603, 69318, 12303, 48000, 52920, 5433, 38554, 57301, 58324, 55063, 52991, 59914, 59921 and 33751 molecules and uses therefor
WO2003097803A2 (fr) 2002-05-15 2003-11-27 Avalon Pharmaceuticals Gene lie au cancer utilise comme cible pour la chimiotherapie
US20030224454A1 (en) 2002-05-30 2003-12-04 Ryseck Rolf Peter Human solute carrier family 7, member 11 (hSLC7A11)
US20030224411A1 (en) 2003-03-13 2003-12-04 Stanton Lawrence W. Genes that are up- or down-regulated during differentiation of human embryonic stem cells
WO2003101400A2 (fr) 2002-06-04 2003-12-11 Avalon Pharmaceuticals, Inc. Gene lie au cancer comme cible de chimiotherapie
WO2003101283A2 (fr) 2002-06-04 2003-12-11 Incyte Corporation Marqueurs diagnostiques du cancer du poumon
US20030232350A1 (en) 2001-11-13 2003-12-18 Eos Biotechnology, Inc. Methods of diagnosis of cancer, compositions and methods of screening for modulators of cancer
US20030232056A1 (en) 1999-09-10 2003-12-18 Corixa Corporation Compositions and methods for the therapy and diagnosis of ovarian cancer
WO2003104270A2 (fr) 2002-06-06 2003-12-18 Ingenium Pharmaceuticals Ag Genes de la duduline 2, produits d'expression, modele animal non humain : utilisations dans les maladies hematologiques humaines
WO2003104399A2 (fr) 2002-06-07 2003-12-18 Avalon Pharmaceuticals, Inc Gene lie au cancer servant de cible en chimiotherapie
WO2003104275A2 (fr) 2002-06-06 2003-12-18 Oncotherapy Science, Inc. Genes et polypeptides en rapport avec les cancers du colon chez l'homme
WO2003105758A2 (fr) 2002-06-12 2003-12-24 Avalon Pharmaceuticals, Inc. Gene lie au cancer utilise comme cible pour la chimiotherapie
WO2004000221A2 (fr) 2002-06-20 2003-12-31 The Regents Of The University Of California Compositions et procedes de modulation de l'activite lymphocytaire
WO2002038766A3 (fr) 2000-11-07 2003-12-31 Zymogenetics Inc Récepteur humain de facteur de nécrose tumorale
WO2004000997A2 (fr) 2002-03-19 2003-12-31 Curagen Corporation Polypeptides therapeutiques, acides nucleiques les codant et principes d'utilisation
WO2004001004A2 (fr) 2002-06-21 2003-12-31 Johns Hopkins University School Of Medicine Marqueurs de l'endothelium tumoral associe a une membrane
US20040005538A1 (en) 2001-04-11 2004-01-08 Xiaojiang Chen Three-dimensional structure of complement receptor type 2 and uses thereof
US20040005563A1 (en) 2001-06-18 2004-01-08 Eos Biotechnology, Inc. Methods of diagnosis of ovarian cancer, compositions and methods of screening for modulators of ovarian cancer
WO2004009622A2 (fr) 2002-07-19 2004-01-29 Cellzome Ag Complexes de proteiniques de reseaux cellulaires fondant le developpement du cancer et d'autres maladies
US20040022727A1 (en) 2002-06-18 2004-02-05 Martin Stanton Aptamer-toxin molecules and methods for using same
WO2004011611A2 (fr) 2002-07-25 2004-02-05 Genentech, Inc. Anticorps anti-taci et utilisations de ceux-ci
WO2004015426A1 (fr) 2002-08-06 2004-02-19 Bayer Healthcare Ag Agents diagnostiques et therapeutiques contre des maladies associees au recepteur 5 de la chemokine cxc humain (cxcr5)
WO2004016225A2 (fr) 2002-08-19 2004-02-26 Genentech, Inc. Compositions et methodes de diagnostic et de traitement des tumeurs
EP1394274A2 (fr) 2002-08-06 2004-03-03 Genox Research, Inc. Méthodes pour tester l'asthme ou la maladie chronique d'obstruction des poumons (COPD)
US20040044179A1 (en) 2000-07-25 2004-03-04 Genentech, Inc. Secreted and transmembrane polypeptides and nucleic acids encoding the same
WO2004020583A2 (fr) 2002-08-27 2004-03-11 Bristol-Myers Squibb Company Identification de polynucleotides pour predire l'activite de composes interagissant avec et/ou modulant des proteines tyrosine kinases et/ou des voies de proteines tyrosine kinases dans des cellules mammaires
WO2004020595A2 (fr) 2002-08-29 2004-03-11 Five Prime Therapeutics, Inc. Nouveaux polypeptides humains codes par des polynucleotides
WO2004022778A1 (fr) 2002-09-05 2004-03-18 Garvan Institute Of Medical Research Procedes pour diagnostiquer et pronostiquer un cancer de l'ovaire
WO2004022709A2 (fr) 2002-09-06 2004-03-18 Mannkind Corporation Sequences de sites antigeniques
WO2004027049A2 (fr) 2002-09-20 2004-04-01 Astral, Inc. Procedes et compositions pour generer et controler le profil effecteur de lymphocytes t par le chargement et l'activation de sous-ensembles selectionnes de cellules presentant l'antigene
WO2004031238A2 (fr) 2002-10-03 2004-04-15 Mcgill Univeristy Agents de liaison d'antigenes carcinoembryonnaires (cea) permettant d'inverser les effets tumorigenes a mediation cea sur des cellules cancereuses humaines et leurs utilisations
JP2004113151A (ja) 2002-09-27 2004-04-15 Sankyo Co Ltd 癌遺伝子及びその用途
WO2004032842A2 (fr) 2002-10-04 2004-04-22 Van Andel Research Institute Sous classification moleculaire de tumeurs renales et decouverte de nouveaux marqueurs diagnostiques
WO2004040000A2 (fr) 2002-09-09 2004-05-13 Nura, Inc Recepteurs couples a la proteine g et leurs utilisations
WO2004042346A2 (fr) 2002-04-24 2004-05-21 Expression Diagnostics, Inc. Methodes et compositions permettant de diagnostiquer et de surveiller le rejet d'un greffon
WO2004044178A2 (fr) 2002-11-13 2004-05-27 Genentech, Inc. Procedes et compositions pour diagnostiquer une dysplasie
WO2004043361A2 (fr) 2002-11-08 2004-05-27 Genentech, Inc. Compositions et procedes de traitement des maladies liees aux cellules k naturelles
WO2004045553A2 (fr) 2002-11-15 2004-06-03 The Board Of Trustees Of The University Of Arkansas Gene ca125 et utilisation de celui-ci aux fins d'interventions diagnostiques et therapeutiques
WO2004045516A2 (fr) 2002-11-15 2004-06-03 Genentech, Inc. Compositions et methodes pour le diagnostic et le traitement d'une tumeur
WO2004046342A2 (fr) 2002-11-20 2004-06-03 Biogen Idec Inc. Nouvelles cibles geniques et ligands se liant a ces cibles dans le traitement et le diagnostic de carcinomes
WO2004045520A2 (fr) 2002-11-15 2004-06-03 Musc Foundation For Research Development Modulateurs de complement cibles sur le recepteur 2 de complement
WO2004047749A2 (fr) 2002-11-21 2004-06-10 University Of Utah Research Foundation Modulation purinergique d'odeur
WO2004048938A2 (fr) 2002-11-26 2004-06-10 Protein Design Labs, Inc. Procedes de detection du sarcome des tissus mous, compositions et procedes de criblage des modulateurs du sarcome des tissus mous
WO2004053079A2 (fr) 2002-12-06 2004-06-24 Diadexus, Inc. Compositions, variants d'epissage et methodes concernant des genes et des proteines specifiques des ovaires
WO2004058309A1 (fr) 2002-12-23 2004-07-15 Human Genome Sciences, Inc. Conjugue neutrokine-alpha, complexe neutrokine-alpha, et leurs utilisations
EP1439393A2 (fr) 2002-12-13 2004-07-21 Bayer Healthcare LLC Procédés de détection utilisants TIMP 1 pour le diagnostic du cancer du colon
WO2004063355A2 (fr) 2003-01-10 2004-07-29 Protein Design Labs, Inc. Nouveaux procedes de diagnostic d'un cancer metastatique, compositions et procedes de depister des modulateurs du cancer metastatique
WO2004063709A2 (fr) 2003-01-08 2004-07-29 Bristol-Myers Squibb Company Biomarqueurs et methodes de determination d'une sensibilite aux modulateurs du facteur de croissance epidermique
WO2004063362A2 (fr) 2003-01-10 2004-07-29 Cyclacel Limited Proteines de la progression du cycle cellulaire
WO2004065576A2 (fr) 2003-01-15 2004-08-05 Millennium Pharmaceuticals, Inc. Methodes et compositions de traitement de troubles urologiques a l'aide de genes 44390, 54181, 211, 5687, 884, 1405, 636, 4421, 5410, 30905, 2045, 16405, 18560, 2047, 33751, 52872, 14063, 20739, 32544, 43239, 44373, 51164, 53010, 16852, 1587, 2207, 22245, 2387, 52908, 69112, 14990, 18547, 115, 579, 15985, 15625, 760, 18603,
WO2004065577A2 (fr) 2003-01-14 2004-08-05 Bristol-Myers Squibb Company Polynucleotides et polypeptides associes a la voie nf-$g(k)b
WO2002030268A3 (fr) 2000-10-13 2004-08-26 Eos Biotechnology Inc Procedes de diagnostic du cancer de la prostate, compositions et procedes de criblage de modulateurs du cancer de la prostate
WO2004074320A2 (fr) 2003-02-14 2004-09-02 Sagres Discovery, Inc. Nouvelles cibles therapeutiques pour le cancer
US6800738B1 (en) 1991-06-14 2004-10-05 Genentech, Inc. Method for making humanized antibodies
US20040197325A1 (en) 2002-12-20 2004-10-07 Debbie Law Antibodies against GPR64 and uses thereof
US20040249130A1 (en) 2002-06-18 2004-12-09 Martin Stanton Aptamer-toxin molecules and methods for using same
WO2008144891A1 (fr) 2007-05-30 2008-12-04 F. Hoffmann-La Roche Ag Anticorps anti-trop-2 humanisés et chimériques qui activent la cytotoxicité contre les cellules cancéreuses
US7521541B2 (en) 2004-09-23 2009-04-21 Genetech Inc. Cysteine engineered antibodies and conjugates
WO2009052249A1 (fr) 2007-10-19 2009-04-23 Genentech, Inc. Anticorps anti-tenb2 modifiés par des cystéines et conjugués anticorps-médicament
US7723485B2 (en) 2007-05-08 2010-05-25 Genentech, Inc. Cysteine engineered anti-MUC16 antibodies and antibody drug conjugates
WO2011068845A1 (fr) 2009-12-02 2011-06-09 Immunomedics, Inc. Combinaison de radioimmunotherapie et conjugues anticorps-medicament pour une meilleure therapie du cancer
US7999083B2 (en) 2002-12-13 2011-08-16 Immunomedics, Inc. Immunoconjugates with an intracellularly-cleavable linkage
WO2011145744A1 (fr) 2010-05-17 2011-11-24 株式会社リブテック Anticorps anti-trop-2 humain ayant une activité anticancéreuse in vivo
US20110301334A1 (en) 2010-06-08 2011-12-08 Sunil Bhakta Cysteine engineered antibodies and conjugates
WO2011155579A1 (fr) 2010-06-10 2011-12-15 北海道公立大学法人札幌医科大学 ANTICORPS ANTI-Trop-2
US20120121615A1 (en) 2010-11-17 2012-05-17 Flygare John A Alaninyl maytansinol antibody conjugates
WO2013068946A2 (fr) 2011-11-11 2013-05-16 Rinat Neuroscience Corp. Anticorps spécifiques de trop-2 et leurs utilisations
WO2013077458A1 (fr) 2011-11-22 2013-05-30 株式会社リブテック Anticorps anti-trop-2 humain présentant une activité antitumorale in vivo
WO2015095124A1 (fr) 2013-12-16 2015-06-25 Genentech Inc. Composés peptidomimétiques et conjugués anticorps-médicament de ceux-ci
WO2015095227A2 (fr) 2013-12-16 2015-06-25 Genentech, Inc. Composés peptidomimétiques et conjugués anticorps-médicament de ceux-ci
WO2015095223A2 (fr) 2013-12-16 2015-06-25 Genentech, Inc. Composés peptidomimétiques et conjugués anticorps-médicament de ceux-ci
WO2016040825A1 (fr) 2014-09-12 2016-03-17 Genentech, Inc. Intermédiaires disulfure d'anthracycline, conjugué anticorps-médicaments et procédés
WO2016040723A1 (fr) 2014-09-12 2016-03-17 Genentech, Inc. Anticorps et immunoconjugués anti-her2
WO2017214024A1 (fr) 2016-06-06 2017-12-14 Genentech, Inc. Médicaments conjugués d'anticorps silvestrol et procédés d'utilisation
WO2020030426A1 (fr) 2018-08-07 2020-02-13 R. Stahl Schaltgeräte GmbH Dispositif de décompression et boîtier pourvu d'un tel dispositif

Patent Citations (279)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US798959A (en) 1904-12-19 1905-09-05 George W Goss Corn-husker.
JPH053790B2 (fr) 1983-11-02 1993-01-18 Canon Kk
US5674713A (en) 1985-12-02 1997-10-07 The Regents Of The University Of California DNA sequences encoding coleoptera luciferase activity
US5583024A (en) 1985-12-02 1996-12-10 The Regents Of The University Of California Recombinant expression of Coleoptera luciferase
US6165464A (en) 1988-01-12 2000-12-26 Genetech, Inc. Monoclonal antibodies directed to the HER2 receptor
US5677171A (en) 1988-01-12 1997-10-14 Genentech, Inc. Monoclonal antibodies directed to the HER2 receptor
WO1991002536A1 (fr) 1989-08-23 1991-03-07 Scripps Clinic And Research Foundation Compositions et procedes de detection et de traitement de l'infection due au virus d'epstein-barr et de troubles immuns
US5792616A (en) 1990-05-29 1998-08-11 The United States Of America Antibodies to human cripto protein
WO1992007574A1 (fr) 1990-10-25 1992-05-14 Tanox Biosystems, Inc. Glycoproteines associees a des immunoglobulines a liaison membranaire et utilisees comme cibles anticorpales sur des cellules b
WO1992017497A1 (fr) 1991-03-29 1992-10-15 Genentech, Inc. Receptor humain pf4a et leur utilisation
US5440021A (en) 1991-03-29 1995-08-08 Chuntharapai; Anan Antibodies to human IL-8 type B receptor
US6719971B1 (en) 1991-06-14 2004-04-13 Genentech, Inc. Method for making humanized antibodies
US5821337A (en) 1991-06-14 1998-10-13 Genentech, Inc. Immunoglobulin variants
US6639055B1 (en) 1991-06-14 2003-10-28 Genentech, Inc. Method for making humanized antibodies
US6800738B1 (en) 1991-06-14 2004-10-05 Genentech, Inc. Method for making humanized antibodies
US6407213B1 (en) 1991-06-14 2002-06-18 Genentech, Inc. Method for making humanized antibodies
US6054297A (en) 1991-06-14 2000-04-25 Genentech, Inc. Humanized antibodies and methods for making them
EP0522868A1 (fr) 1991-07-12 1993-01-13 SHIONOGI SEIYAKU KABUSHIKI KAISHA trading under the name of SHIONOGI & CO. LTD. Récepteur de l'éndothéline humain
US5854399A (en) 1991-08-23 1998-12-29 The United States Of America As Represented By The Department Of Health And Human Services Antibodies specific for human cripto-related polypeptide CR-3
US6011146A (en) 1991-11-15 2000-01-04 Institut Pasteur Altered major histocompatibility complex (MHC) determinant and methods of using the determinant
US6153408A (en) 1991-11-15 2000-11-28 Institut Pasteur And Institut National De La Sante Et De La Recherche Medicale Altered major histocompatibility complex (MHC) determinant and methods of using the determinant
US5976551A (en) 1991-11-15 1999-11-02 Institut Pasteur And Institut Nationale De La Sante Et De La Recherche Medicale Altered major histocompatibility complex (MHC) determinant and method of using the determinant
WO1994010312A1 (fr) 1992-10-23 1994-05-11 Chugai Seiyaku Kabushiki Kaisha Codage de genes pour potentiateur de megacaryocyte
US5644033A (en) 1992-12-22 1997-07-01 Health Research, Inc. Monoclonal antibodies that define a unique antigen of human B cell antigen receptor complex and methods of using same for diagnosis and treatment
US5869445A (en) 1993-03-17 1999-02-09 University Of Washington Methods for eliciting or enhancing reactivity to HER-2/neu protein
WO1994028931A1 (fr) 1993-06-11 1994-12-22 Genentech, Inc. Methodes de traitement de troubles inflammatoires
US5773223A (en) 1993-09-02 1998-06-30 Chiron Corporation Endothelin B1, (ETB1) receptor polypeptide and its encoding nucleic acid methods, and uses thereof
US20030109676A1 (en) 1994-10-17 2003-06-12 Human Genome Sciences, Inc. Human endothelin-bombesin receptor
US6518404B1 (en) 1994-10-17 2003-02-11 Human Genome Sciences, Inc. Human endothelin-bombesin receptor antibodies
WO1996030514A1 (fr) 1995-03-31 1996-10-03 University Of Washington Domaine intracellulaire de la proteine her-2/neu pour la prevention ou le traitement de tumeurs malignes
US5700670A (en) 1995-04-13 1997-12-23 Mitsubishi Chemical Corporation Method for producing optically active ester of γ-substituted-β-hydroxybutyric acid
WO1997007198A2 (fr) 1995-08-11 1997-02-27 Genetics Institute, Inc. Sequences d'adn et proteines secretees codees par celles-ci
US20020193567A1 (en) 1995-08-11 2002-12-19 Genetics Institute, Inc. Secreted proteins and polynucleotides encoding them
EP1295944A2 (fr) 1996-03-19 2003-03-26 Otsuka Pharmaceutical Co., Ltd. Protéine stimulant la dissociation du GDP, protéine d'assemblage de nucléosome spécifique au cerveau, enzyme de conjugaison d'ubiquitine spécifique aux muscles du squelette, protéine de prolifération de cellule, phosphatidylinositolkinase, protéines apparentés à nel
WO1997044452A1 (fr) 1996-05-17 1997-11-27 Schering Corporation Antigenes de lymphocytes b humains, reactifs apparentes
WO1998017797A1 (fr) 1996-10-18 1998-04-30 Genentech, Inc. ANTICORPS ANTI-ErbB2
WO1998037193A1 (fr) 1997-02-20 1998-08-27 Zymogenetics, Inc. Recepteur 'zcytor7' de cytokine
US20030185830A1 (en) 1997-02-25 2003-10-02 Corixa Corporation Compositions and methods for the therapy and diagnosis of prostate cancer
US20030157089A1 (en) 1997-02-25 2003-08-21 Corixa Corporation Compositions and methods for the therapy and diagnosis of prostate cancer
US20010055751A1 (en) 1997-03-10 2001-12-27 Reiter Robert E PSCA: Prostate stem cell antigen and uses thereof
WO1998040403A1 (fr) 1997-03-10 1998-09-17 The Regents Of The University Of California Antigene de cellule souche prostatique (psca)
US6555339B1 (en) 1997-04-14 2003-04-29 Arena Pharmaceuticals, Inc. Non-endogenous, constitutively activated human protein-coupled receptors
US20030105292A1 (en) 1997-04-14 2003-06-05 Liaw Chen W. Non-endogenous, constitutively activated human G protein-coupled receptors
EP0875569A1 (fr) 1997-04-28 1998-11-04 Smithkline Beecham Corporation Transporteur humain de phosphate, dépendant de sodium (IPT-1)
US20040018553A1 (en) 1997-05-15 2004-01-29 Patricia A. Billing-Medel Reagents and methods useful for detecting diseases of the prostate
WO1998051824A1 (fr) 1997-05-15 1998-11-19 Abbott Laboratories Reactifs et procedes utiles au depistage de maladies du tractus urinaire
WO1998051805A1 (fr) 1997-05-15 1998-11-19 Abbott Laboratories Reactifs et procedes utiles pour detecter des maladies de la prostate
US6602677B1 (en) 1997-09-19 2003-08-05 Promega Corporation Thermostable luciferases and methods of production
US20030060612A1 (en) 1997-10-28 2003-03-27 Genentech, Inc. Compositions and methods for the diagnosis and treatment of tumor
US20020034749A1 (en) 1997-11-18 2002-03-21 Billing-Medel Patricia A. Reagents and methods useful for detecting diseases of the breast
WO1999028468A1 (fr) 1997-12-02 1999-06-10 The Regents Of The University Of California Modulation des interactions entre le lymphocyte b et le recepteur de la chemokine
WO1999046284A2 (fr) 1998-03-13 1999-09-16 The Burnham Institute Molecules se logeant dans divers organes ou tissus
US7074404B2 (en) 1998-05-06 2006-07-11 Genentech, Inc. Protein purification
US6339142B1 (en) 1998-05-06 2002-01-15 Genentech, Inc. Protein purification
WO1999058658A2 (fr) 1998-05-13 1999-11-18 Epimmune, Inc. Vecteurs d'expression destines a stimuler une reponse immunitaire et procedes de leur utilisation
US6534482B1 (en) 1998-05-13 2003-03-18 Epimmune, Inc. Expression vectors for stimulating an immune response and methods of using the same
US20030064397A1 (en) 1998-05-22 2003-04-03 Incyte Genomics, Inc. Transmembrane protein differentially expressed in prostate and lung tumors
WO2000012130A1 (fr) 1998-08-27 2000-03-09 Smithkline Beecham Corporation Agonistes et antagonistes de rp105
WO2000014228A1 (fr) 1998-09-03 2000-03-16 Japan Science And Technology Corporation Transporteur d'acides amines neutres et gene correspondant
WO2000020579A1 (fr) 1998-10-02 2000-04-13 Mcmaster University Forme epissee de l'oncogene erbb-2/neu
WO2000022129A1 (fr) 1998-10-13 2000-04-20 Arena Pharmaceuticals, Inc. Recepteurs couples a la proteine g humaine non endogenes et actives de façon constitutive
WO2000032752A1 (fr) 1998-12-02 2000-06-08 The Regents Of The University Of California Antigene de cellule souche prostatique et ses utilisations
WO2000036107A3 (fr) 1998-12-17 2001-02-22 Corixa Corp Compositions et procedes destines a la therapie et au diagnostic du cancer de l"ovaire
US20030124140A1 (en) 1998-12-17 2003-07-03 Corixa Corporation Compositions and methods for the therapy and diagnosis of ovarian cancer
WO2000040614A3 (fr) 1998-12-30 2001-02-22 Beth Israel Hospital Caracterisation d'une famille de canaux calciques
US20030065143A1 (en) 1998-12-30 2003-04-03 Genentech, Inc. Secreted and transmembrane polypeptides and nucleic acids encoding the same
WO2000044899A1 (fr) 1999-01-29 2000-08-03 Corixa Corporation Proteines de fusion her-2/neu
WO2000053216A3 (fr) 1999-03-05 2001-01-11 Smithkline Beecham Biolog Nouvelles utilisations
WO2000055351A1 (fr) 1999-03-12 2000-09-21 Human Genome Sciences, Inc. Sequences et polypeptides geniques associes au cancer du colon chez l'homme
US20030119122A1 (en) 1999-05-11 2003-06-26 Genentech, Inc. Secreted and transmembrane polypeptides and nucleic acids encoding the same
WO2000075655A1 (fr) 1999-06-03 2000-12-14 Takeda Chemical Industries, Ltd. Procede de criblage avec cd100
WO2001000244A3 (fr) 1999-06-25 2001-10-04 Genentech Inc Techniques de traitement utilisant des conjugues maytansinoides-anticorps anti-erbb
US20030119128A1 (en) 1999-07-20 2003-06-26 Genentech, Inc. Secreted and transmembrane polypeptides and nucleic acids encoding the same
US20030119129A1 (en) 1999-08-10 2003-06-26 Genentech, Inc. Secreted and transmembrane polypeptides and nucleic acids encoding the same
US20030119130A1 (en) 1999-08-17 2003-06-26 Genentech, Inc. Secreted and transmembrane polypeptides and nucleic acids encoding the same
WO2001016318A2 (fr) 1999-09-01 2001-03-08 Genentech, Inc. Polypeptides secretes et transmembranaires et acides nucleiques codant pour ceux-ci
US20030232056A1 (en) 1999-09-10 2003-12-18 Corixa Corporation Compositions and methods for the therapy and diagnosis of ovarian cancer
US20030206918A1 (en) 1999-09-10 2003-11-06 Corixa Corporation Compositions and methods for the therapy and diagnosis of ovarian cancer
US20030129192A1 (en) 1999-09-10 2003-07-10 Corixa Corporation Compositions and methods for the therapy and diagnosis of ovarian cancer
US20030165504A1 (en) 1999-09-24 2003-09-04 Retter Marc W. Compositions and methods for the therapy and diagnosis of ovarian cancer
WO2001040309A3 (fr) 1999-10-29 2001-11-29 Genentech Inc Compositions a base d'anticorps diriges contre l'antigene de cellules souches de la prostate (psca) et procedes d'utilisation associes
WO2001038490A3 (fr) 1999-11-29 2001-12-27 Univ Columbia ISOLEMENT DE CINQ NOUVEAUX GENES CODANT POUR DES NOUVEAUX RECEPTEURS Fc DE TYPE MELANOME INTERVENANT DANS LA PATHOGENESE DU LYMPHOME MALIN ET DU MELANOME
WO2001040269A3 (fr) 1999-11-30 2001-12-13 Corixa Corp Compositions et methodes destinees au traitement et au diagnostic du cancer du sein
US20040101899A1 (en) 1999-11-30 2004-05-27 Corixa Corporation Compositions and methods for the therapy and diagnosis of breast cancer
WO2001041787A1 (fr) 1999-12-10 2001-06-14 Epimmune Inc. Induction de reponses immunes cellulaires a her2/neu a l'aide de compositions renfermant des peptides et des acides nucleiques
US20020042366A1 (en) 1999-12-23 2002-04-11 Penny Thompson Method for treating inflammation
US20040005320A1 (en) 1999-12-23 2004-01-08 Penny Thompson Method for treating inflammation
WO2001046232A3 (fr) 1999-12-23 2002-02-21 Zymogenetics Inc Recepteur soluble de l'interleukine-20
WO2001046261A1 (fr) 1999-12-23 2001-06-28 Zymogenetics, Inc. Methode destinee a traiter l'inflammation
WO2001048204A1 (fr) 1999-12-23 2001-07-05 Agresearch Limited Recepteur mutant de bmp 1b comme regulateur du taux d'ovulation
US20030119131A1 (en) 2000-01-20 2003-06-26 Genentech, Inc. Secreted and transmembrane polypeptides and nucleic acids encoding the same
WO2001053463A3 (fr) 2000-01-21 2002-02-14 Corixa Corp COMPOSES ET PROCEDES DE PREVENTION ET DE TRAITEMENT DE MALIGNITES ASSOCIEES A HER-2/neu
WO2001057188A3 (fr) 2000-02-03 2002-02-28 Hyseq Inc Nouveaux acides nucleiques et polypeptides
US20030186372A1 (en) 2000-02-11 2003-10-02 Genentech, Inc. Secreted and transmembrane polypeptides and nucleic acids encoding the same
US20030219806A1 (en) 2000-02-22 2003-11-27 Millennium Pharmaceuticals, Inc. Novel 18607, 15603, 69318, 12303, 48000, 52920, 5433, 38554, 57301, 58324, 55063, 52991, 59914, 59921 and 33751 molecules and uses therefor
WO2001062794A3 (fr) 2000-02-22 2002-05-02 Millennium Pharm Inc Nouveaux canaux calciques humains 18607
WO2001066689A3 (fr) 2000-03-07 2002-05-30 Hyseq Inc Nouveaux acides nucleiques et polypeptides
WO2001072962A3 (fr) 2000-03-24 2002-01-17 Fahri Saatcioglu Molecules d'acide nucleique specifiques de la prostate ou des testicules, polypeptides, techniques de diagnostic, et traitement therapeutique
WO2001072830A3 (fr) 2000-03-31 2002-06-20 Ipf Pharmaceuticals Gmbh Medicament et moyen diagnostique pour analyser le proteome de surface de cellules tumorales et inflammatoires, et pour traiter des maladies tumorales et inflammatoires, de preference au moyen d'une analyse specifique des recepteurs de chimiokines et de l'interaction de ligands recepteurs de chimiokines
WO2001075177A3 (fr) 2000-04-03 2003-05-22 Us Gov Health & Human Serv Marqueurs tumoraux pour le cancer des ovaires
WO2001077172A3 (fr) 2000-04-07 2003-01-30 Arena Pharm Inc Recepteurs connus couples a la proteine g non endogenes a activation constitutive
WO2001088133A3 (fr) 2000-05-18 2003-05-08 Lexicon Genetics Inc Nouveaux homologues humains de semaphorine et polynucleotides codant ceux-ci
WO2001090304A3 (fr) 2000-05-19 2002-05-10 Human Genome Sciences Inc Acides nucleiques, proteines et anticorps
WO2001094641A3 (fr) 2000-06-09 2003-08-21 Idec Pharma Corp Nouvelles cibles geniques et ligands se fixant a celles-ci pour le traitement et le diagnostic de carcinomes ovariens
WO2001098351A3 (fr) 2000-06-16 2003-01-09 Incyte Genomics Inc Recepteurs couples a la proteine g
WO2002002587A1 (fr) 2000-06-30 2002-01-10 Human Genome Sciences, Inc. Polynucléotides du type b7, polypeptides et anticorps en rapport
WO2002002634A3 (fr) 2000-06-30 2003-01-30 Incyte Genomics Inc Molécules de matrice extracellulaire et d'adhésion cellulaire
WO2002002624A3 (fr) 2000-06-30 2002-07-04 Amgen Inc Molecules de type b7 et utilisation de ces molecules
WO2002006339A3 (fr) 2000-07-03 2003-07-31 Curagen Corp Nouvelles proteines et acides nucleiques les codant
WO2002006317A3 (fr) 2000-07-17 2003-07-03 Corixa Corp Compositions et procedes utilises dans la therapie et le diagnostic du cancer des ovaires
US20040044179A1 (en) 2000-07-25 2004-03-04 Genentech, Inc. Secreted and transmembrane polypeptides and nucleic acids encoding the same
WO2002010187A1 (fr) 2000-07-27 2002-02-07 Mayo Foundation For Medical Education And Research B7-h3 et b7-h4, nouvelles molecules immunoregulatrices
WO2002010382A3 (fr) 2000-07-28 2003-10-09 Ulrich Wissenbach Marqueurs trp8, trp9 et trp10 associes au cancer
WO2002012341A3 (fr) 2000-08-03 2003-04-17 Corixa Corp Protéines de fusion her-2/neu
WO2002014503A3 (fr) 2000-08-14 2003-09-18 Corixa Corp Compositions et methodes de traitement et de diagnostic de cancers associes a her-2/neu
WO2002013847A3 (fr) 2000-08-14 2002-12-19 Corixa Corp Methodes diagnostiques et therapeutiques des tumeurs malignes d'origine hematologiques et virales
WO2002016413A3 (fr) 2000-08-24 2002-12-05 Smithkline Beecham Biolog Vaccins
WO2002016429A3 (fr) 2000-08-24 2003-01-03 Genentech Inc Compositions et procedes de diagnostic et traitement de tumeurs
WO2002022660A3 (fr) 2000-09-11 2003-07-17 Hyseq Inc Noveaux acides nucleiques et polypeptides
US20030186373A1 (en) 2000-09-15 2003-10-02 Genentech, Inc. Secreted and transmembrane polypeptides and nucleic acids encoding the same
WO2002022153A3 (fr) 2000-09-15 2003-06-19 Zymogenetics Inc Procede permettant de traiter l'inflammation
WO2002022636A1 (fr) 2000-09-15 2002-03-21 Isis Pharmaceuticals, Inc. Modulation antisens de l'expression de her-2
US20030119121A1 (en) 2000-09-15 2003-06-26 Genentech, Inc. Secreted and transmembrane polypeptides and nucleic acids encoding the same
WO2002022808A3 (fr) 2000-09-18 2003-01-16 Biogen Inc Mutant cripto et utilisations de ce dernier
WO2002024909A3 (fr) 2000-09-18 2003-07-31 Biogen Inc Acides nucleiques et polypeptides de nouveau recepteur
US20040005598A1 (en) 2000-09-26 2004-01-08 Genentech, Inc. PUMPCn compositions and uses thereof
WO2002026822A3 (fr) 2000-09-26 2003-03-13 Genentech Inc Compositions pumpcn et leurs utilisations
WO2002030268A3 (fr) 2000-10-13 2004-08-26 Eos Biotechnology Inc Procedes de diagnostic du cancer de la prostate, compositions et procedes de criblage de modulateurs du cancer de la prostate
WO2002038766A3 (fr) 2000-11-07 2003-12-31 Zymogenetics Inc Récepteur humain de facteur de nécrose tumorale
US20020150573A1 (en) 2000-11-10 2002-10-17 The Rockefeller University Anti-Igalpha-Igbeta antibody for lymphoma therapy
WO2002061087A2 (fr) 2000-12-19 2002-08-08 Lifespan Biosciences, Inc. Peptides antigeniques destines a des recepteurs couples a la proteine g (gpcr), anticorps s'y rapportant, et systeme d'identification desdits peptides antigeniques
WO2002054940A2 (fr) 2001-01-12 2002-07-18 University Of Medicine & Dentistry Of New Jersey Proteine morphogenetique osseuse 2 (bmp-2) utilisee dans le traitement et le diagnostic du cancer
US20030119126A1 (en) 2001-01-16 2003-06-26 Genentech, Inc. Secreted and transmembrane polypeptides and nucleic acids encoding the same
US20030119125A1 (en) 2001-01-16 2003-06-26 Genentech, Inc. Secreted and transmembrane polypeptides and nucleic acids encoding the same
US20030118592A1 (en) 2001-01-17 2003-06-26 Genecraft, Inc. Binding domain-immunoglobulin fusion proteins
WO2002059377A2 (fr) 2001-01-24 2002-08-01 Protein Design Labs Procedes de diagnostic du cancer du sein, compositions et procedes de criblage de modulateurs du cancer du sein
WO2002060317A2 (fr) 2001-01-30 2002-08-08 Corixa Corporation Compositions et methodes pour le traitement et le diagnostic du cancer du pancreas
WO2002064798A1 (fr) 2001-02-12 2002-08-22 Bionomics Limited Sequences d'adn exprimees de façon differentielle dans des lignees cellulaires tumorales
WO2002072596A1 (fr) 2001-03-09 2002-09-19 Incyte Genomics, Inc. Proteine associee a la steap
WO2002071928A2 (fr) 2001-03-14 2002-09-19 Millennium Pharmaceuticals, Inc. Molecules d'acide nucleique et proteines destinees a l'identification, l'evaluation, la prevention et la therapie du cancer des ovaires
WO2002078524A2 (fr) 2001-03-28 2002-10-10 Zycos Inc. Determination de profils translationnels
WO2003008537A2 (fr) 2001-04-06 2003-01-30 Mannkind Corporation Sequences d'epitope
WO2002081646A2 (fr) 2001-04-06 2002-10-17 Mannkind Corporation Sequences d'epitopes
US20040005538A1 (en) 2001-04-11 2004-01-08 Xiaojiang Chen Three-dimensional structure of complement receptor type 2 and uses thereof
WO2002083866A2 (fr) 2001-04-17 2002-10-24 The Board Of Trustees Of The University Of Arkansas Sequences repetees du gene ca125 et leurs utilisations dans des interventions diagnostiques et therapeutiques
WO2002086443A2 (fr) 2001-04-18 2002-10-31 Protein Design Labs, Inc Procedes de diagnostic du cancer du poumon, compositions et procedes de criblage de modulateurs du cancer du poumon
WO2002088170A2 (fr) 2001-04-26 2002-11-07 Biogen, Inc. Anticorps de blocage cripto et utilisations correspondantes
WO2002089747A2 (fr) 2001-05-09 2002-11-14 Corixa Corporation Compositions et procedes pour la therapie et le diagnostic du cancer de la prostate
WO2002092836A2 (fr) 2001-05-11 2002-11-21 Sloan-Kettering Institute For Cancer Research Sequence nucleotidique codant un antigene ovarien ca125 et ses utilisations
WO2002094852A2 (fr) 2001-05-24 2002-11-28 Zymogenetics, Inc. Proteines hybrides taci-immunoglobuline
US20040044180A1 (en) 2001-06-01 2004-03-04 Genentech, Inc. Secreted and transmembrane polypeptides and nucleic acids encoding the same
US20030096961A1 (en) 2001-06-01 2003-05-22 Genentech, Inc. Secreted and transmembrane polypeptides and nucleic acids encoding the same
WO2003000842A2 (fr) 2001-06-04 2003-01-03 Curagen Corporation Nouvelles proteines et acides nucleiques codant pour de telles proteines
WO2002098358A2 (fr) 2001-06-04 2002-12-12 Eos Biotechnology, Inc. Procedes de diagnostic et de traitement du cancer prostatique androgene-dependant, cancer prostatique subissant un retrait d'androgenes et cancer prostatique androgene-independant
WO2002099122A1 (fr) 2001-06-05 2002-12-12 Exelixis, Inc. Modificateurs de la voie p53 et methodes d'utilisation
WO2002099074A2 (fr) 2001-06-05 2002-12-12 Exelixis, Inc. Slc7s utilises en tant que modificateurs de la voie p53 et procedes d'utilisation correspondants
WO2002101075A2 (fr) 2001-06-13 2002-12-19 Millennium Pharmaceuticals, Inc. Identification, evaluation, prevention et traitement du cancer du col de l'uterus : nouveaux genes, nouvelles compositions, nouvelles trousses et nouvelles methodes
US20030091580A1 (en) 2001-06-18 2003-05-15 Mitcham Jennifer L. Compositions and methods for the therapy and diagnosis of ovarian cancer
WO2002102235A2 (fr) 2001-06-18 2002-12-27 Eos Biotechnology Inc. Procedes de diagnostic du cancer ovarien, compositions et procedes de criblage de modulateurs du cancer ovarien
US20040005563A1 (en) 2001-06-18 2004-01-08 Eos Biotechnology, Inc. Methods of diagnosis of ovarian cancer, compositions and methods of screening for modulators of ovarian cancer
WO2003004989A2 (fr) 2001-06-21 2003-01-16 Millennium Pharmaceuticals, Inc. Compositions, trousses, et procedes d'identification, d'evaluation, de prevention, et de therapie pour le cancer du sein
WO2003002717A2 (fr) 2001-06-28 2003-01-09 Schering Corporation Activite biologique de ak155
WO2003004529A2 (fr) 2001-07-02 2003-01-16 Licentia Ltd. Materiaux de recepteur ephrine-tie et leurs procedes
WO2003003906A2 (fr) 2001-07-03 2003-01-16 Eos Biotechnology, Inc. Procede de diagnostic du cancer de la vessie, compositions et procedes de criblage de modulateurs du cancer de la vessie
WO2003003984A2 (fr) 2001-07-05 2003-01-16 Curagen Corporation Nouvelles proteines et nouveaux acides nucleiques codant ces proteines
WO2003055439A2 (fr) 2001-07-18 2003-07-10 The Regents Of The University Of California Antigene cible her2/neu et son utilisation pour stimuler une reponse immunitaire
WO2003009814A2 (fr) 2001-07-25 2003-02-06 Millennium Pharmaceuticals, Inc. Nouveaux genes, compositions, trousses et methodes d'identification, evaluation, prevention, et traitement du cancer de la prostate
WO2003014294A2 (fr) 2001-08-03 2003-02-20 Genentech, Inc. Polypeptides taci et br3 et leurs utilisations
WO2003016475A2 (fr) 2001-08-14 2003-02-27 The General Hospital Corporation Sequences d'acides nucleiques et d'acides amines intervenant dans la douleur
WO2003016494A2 (fr) 2001-08-16 2003-02-27 Vitivity, Inc. Diagnostic et traitement de maladies vasculaires
WO2003018621A2 (fr) 2001-08-23 2003-03-06 Oxford Biomedica (Uk) Limited Genes
WO2003029262A2 (fr) 2001-08-29 2003-04-10 Vanderbilt University Recepteurs de mob-5 humains (il-24) et utilisations de ceux-ci
US20030124579A1 (en) 2001-09-05 2003-07-03 Eos Biotechnology, Inc. Methods of diagnosis of ovarian cancer, compositions and methods of screening for modulators of ovarian cancer
WO2003022995A2 (fr) 2001-09-06 2003-03-20 Agensys, Inc. Acide nucleique et proteine correspondante designes par steap-1 utiles dans le traitement et la detection du cancer
WO2003023013A2 (fr) 2001-09-13 2003-03-20 Nuvelo, Inc. Nouveaux acides nucleiques et polypeptides
WO2003025138A2 (fr) 2001-09-17 2003-03-27 Protein Design Labs, Inc. Procedes de diagnostic du cancer, compositions et procedes de criblage de modulateurs du cancer
WO2003024392A2 (fr) 2001-09-18 2003-03-27 Genentech, Inc. Compositions et procedes pour le diagnostic et le traitement des tumeurs
WO2003025228A1 (fr) 2001-09-18 2003-03-27 Proteologics, Inc. Procede et composition permettant de traiter des affections en lien avec la proteine hcap
WO2003025148A2 (fr) 2001-09-19 2003-03-27 Nuvelo, Inc. Nouveaux acides nucleiques et polypeptides
WO2003026493A2 (fr) 2001-09-28 2003-04-03 Bing Yang Diagnostic et traitement de maladies induites par des mutations dans le gene cd72
WO2003029421A2 (fr) 2001-10-03 2003-04-10 Origene Technologies, Inc. Genes regules du cancer du sein
WO2003029277A2 (fr) 2001-10-03 2003-04-10 Rigel Pharmaceuticals, Inc. Modulateurs de l'activation et de la migration des lymphocytes
WO2003034984A2 (fr) 2001-10-19 2003-05-01 Genentech, Inc. Compositions et procedes pour le diagnostic et le traitement d'affections intestinales inflammatoires
WO2003035846A2 (fr) 2001-10-24 2003-05-01 National Jewish Medical And Research Center Structures tridimensionnelles de tall-1 et de ses recepteurs parents, proteines modifiees et procedes associes
WO2003055443A2 (fr) 2001-10-31 2003-07-10 Alcon, Inc. Proteines morphogeniques osseuses (bmp), recepteurs desdites proteines et proteines de liaison de ces proteines, et leur utilisation pour le diagnostic et le traitement du glaucome
WO2003077836A2 (fr) 2001-11-06 2003-09-25 Corixa Corporation Compositions et procedes pour la detection, le diagnostic et la therapie de malignites hematologiques
US20030232350A1 (en) 2001-11-13 2003-12-18 Eos Biotechnology, Inc. Methods of diagnosis of cancer, compositions and methods of screening for modulators of cancer
WO2003042661A2 (fr) 2001-11-13 2003-05-22 Protein Design Labs, Inc. Methodes de diagnostic du cancer, compositions et methodes de criblage des modulateurs du cancer
WO2003045422A1 (fr) 2001-11-29 2003-06-05 Genset S.A. Agonistes et antagonistes de la prolixine pour le traitement des troubles metaboliques
WO2003048202A2 (fr) 2001-12-03 2003-06-12 Asahi Kasei Pharma Corporation Gène activant le facteur nucléaire kappa b
WO2003054152A2 (fr) 2001-12-10 2003-07-03 Nuvelo, Inc. Nouveaux acides nucleiques et polypeptides
US20030134790A1 (en) 2002-01-11 2003-07-17 University Of Medicine And Dentistry Of New Jersey Bone Morphogenetic Protein-2 And Bone Morphogenetic Protein-4 In The Treatment And Diagnosis Of Cancer
WO2003062401A2 (fr) 2002-01-22 2003-07-31 Corixa Corporation Compositions et methodes de detection, de diagnostic et de traitement des malignites hematologiques
US20030143557A1 (en) 2002-01-25 2003-07-31 Reinhold Penner Methods of screening for TRPM4b modulators
WO2003072036A2 (fr) 2002-02-21 2003-09-04 Duke University Methodes therapeutiques utilisant des anticorps anti-cd22
WO2003072035A2 (fr) 2002-02-22 2003-09-04 Genentech, Inc. Compositions et methodes de traitement de maladies relatives au systeme immunitaire
WO2003074566A2 (fr) 2002-03-01 2003-09-12 Immunomedics, Inc. Anticorps rs7
WO2003083047A2 (fr) 2002-03-01 2003-10-09 Exelixis, Inc. Genes mp53 en tant que modificateurs de la voie des proteines p53 et methodes d'utilisation
WO2004000997A2 (fr) 2002-03-19 2003-12-31 Curagen Corporation Polypeptides therapeutiques, acides nucleiques les codant et principes d'utilisation
WO2003081210A2 (fr) 2002-03-21 2003-10-02 Sunesis Pharmaceuticals, Inc. Identification d'inhibiteurs de kinase
WO2003083041A2 (fr) 2002-03-22 2003-10-09 Biogen, Inc. Anticorps specifiques au cripto
EP1347046A1 (fr) 2002-03-22 2003-09-24 Research Association for Biotechnology Séquences d'ADN complémentaire entières
WO2003089624A2 (fr) 2002-03-25 2003-10-30 Uab Research Foundation Elements de la famille des genes homologues des recepteurs de fc (fcrh1-3, 6), reactifs associes et utilisations de ces derniers
WO2003083074A2 (fr) 2002-03-28 2003-10-09 Idec Pharmaceuticals Corporation Nouvelles cibles geniques et ligands se liant a celles-ci pour le traitement et le diagnostic de carcinomes du colon
US20030194704A1 (en) 2002-04-03 2003-10-16 Penn Sharron Gaynor Human genome-derived single exon nucleic acid probes useful for gene expression analysis two
WO2003087306A2 (fr) 2002-04-05 2003-10-23 Agensys, Inc. Acide nucleique et proteine correspondante 98p4b6 utilises dans le traitement et la detection du cancer
US20040101874A1 (en) 2002-04-12 2004-05-27 Mitokor Inc. Targets for therapeutic intervention identified in the mitochondrial proteome
WO2003087768A2 (fr) 2002-04-12 2003-10-23 Mitokor Cibles pour une intervention therapeutique identifiee dans le proteome mitochondrial
WO2003088808A2 (fr) 2002-04-16 2003-10-30 Genentech, Inc. Compositions et methodes permettant de diagnostiquer et de traiter une tumeur
US20030228319A1 (en) 2002-04-16 2003-12-11 Genentech, Inc. Compositions and methods for the diagnosis and treatment of tumor
WO2003089904A2 (fr) 2002-04-17 2003-10-30 Baylor College Of Medicine Aib1 utilise en tant que marqueur pronostique et predicteur de la resistance a l'endocrinotherapie
WO2004042346A2 (fr) 2002-04-24 2004-05-21 Expression Diagnostics, Inc. Methodes et compositions permettant de diagnostiquer et de surveiller le rejet d'un greffon
WO2003093444A2 (fr) 2002-05-03 2003-11-13 Incyte Corporation Transporteurs et canaux ioniques
WO2003097803A2 (fr) 2002-05-15 2003-11-27 Avalon Pharmaceuticals Gene lie au cancer utilise comme cible pour la chimiotherapie
US20030224454A1 (en) 2002-05-30 2003-12-04 Ryseck Rolf Peter Human solute carrier family 7, member 11 (hSLC7A11)
WO2003101400A2 (fr) 2002-06-04 2003-12-11 Avalon Pharmaceuticals, Inc. Gene lie au cancer comme cible de chimiotherapie
WO2003101283A2 (fr) 2002-06-04 2003-12-11 Incyte Corporation Marqueurs diagnostiques du cancer du poumon
WO2003104270A2 (fr) 2002-06-06 2003-12-18 Ingenium Pharmaceuticals Ag Genes de la duduline 2, produits d'expression, modele animal non humain : utilisations dans les maladies hematologiques humaines
WO2003104275A2 (fr) 2002-06-06 2003-12-18 Oncotherapy Science, Inc. Genes et polypeptides en rapport avec les cancers du colon chez l'homme
WO2003104399A2 (fr) 2002-06-07 2003-12-18 Avalon Pharmaceuticals, Inc Gene lie au cancer servant de cible en chimiotherapie
WO2003105758A2 (fr) 2002-06-12 2003-12-24 Avalon Pharmaceuticals, Inc. Gene lie au cancer utilise comme cible pour la chimiotherapie
US20040249130A1 (en) 2002-06-18 2004-12-09 Martin Stanton Aptamer-toxin molecules and methods for using same
US20040022727A1 (en) 2002-06-18 2004-02-05 Martin Stanton Aptamer-toxin molecules and methods for using same
WO2004000221A2 (fr) 2002-06-20 2003-12-31 The Regents Of The University Of California Compositions et procedes de modulation de l'activite lymphocytaire
WO2004001004A2 (fr) 2002-06-21 2003-12-31 Johns Hopkins University School Of Medicine Marqueurs de l'endothelium tumoral associe a une membrane
WO2004009622A2 (fr) 2002-07-19 2004-01-29 Cellzome Ag Complexes de proteiniques de reseaux cellulaires fondant le developpement du cancer et d'autres maladies
WO2004011611A2 (fr) 2002-07-25 2004-02-05 Genentech, Inc. Anticorps anti-taci et utilisations de ceux-ci
EP1394274A2 (fr) 2002-08-06 2004-03-03 Genox Research, Inc. Méthodes pour tester l'asthme ou la maladie chronique d'obstruction des poumons (COPD)
WO2004015426A1 (fr) 2002-08-06 2004-02-19 Bayer Healthcare Ag Agents diagnostiques et therapeutiques contre des maladies associees au recepteur 5 de la chemokine cxc humain (cxcr5)
WO2004016225A2 (fr) 2002-08-19 2004-02-26 Genentech, Inc. Compositions et methodes de diagnostic et de traitement des tumeurs
WO2004020583A2 (fr) 2002-08-27 2004-03-11 Bristol-Myers Squibb Company Identification de polynucleotides pour predire l'activite de composes interagissant avec et/ou modulant des proteines tyrosine kinases et/ou des voies de proteines tyrosine kinases dans des cellules mammaires
WO2004020595A2 (fr) 2002-08-29 2004-03-11 Five Prime Therapeutics, Inc. Nouveaux polypeptides humains codes par des polynucleotides
WO2004022778A1 (fr) 2002-09-05 2004-03-18 Garvan Institute Of Medical Research Procedes pour diagnostiquer et pronostiquer un cancer de l'ovaire
WO2004022709A2 (fr) 2002-09-06 2004-03-18 Mannkind Corporation Sequences de sites antigeniques
WO2004040000A2 (fr) 2002-09-09 2004-05-13 Nura, Inc Recepteurs couples a la proteine g et leurs utilisations
WO2004027049A2 (fr) 2002-09-20 2004-04-01 Astral, Inc. Procedes et compositions pour generer et controler le profil effecteur de lymphocytes t par le chargement et l'activation de sous-ensembles selectionnes de cellules presentant l'antigene
JP2004113151A (ja) 2002-09-27 2004-04-15 Sankyo Co Ltd 癌遺伝子及びその用途
WO2004031238A2 (fr) 2002-10-03 2004-04-15 Mcgill Univeristy Agents de liaison d'antigenes carcinoembryonnaires (cea) permettant d'inverser les effets tumorigenes a mediation cea sur des cellules cancereuses humaines et leurs utilisations
WO2004032842A2 (fr) 2002-10-04 2004-04-22 Van Andel Research Institute Sous classification moleculaire de tumeurs renales et decouverte de nouveaux marqueurs diagnostiques
WO2004043361A2 (fr) 2002-11-08 2004-05-27 Genentech, Inc. Compositions et procedes de traitement des maladies liees aux cellules k naturelles
WO2004044178A2 (fr) 2002-11-13 2004-05-27 Genentech, Inc. Procedes et compositions pour diagnostiquer une dysplasie
WO2004045553A2 (fr) 2002-11-15 2004-06-03 The Board Of Trustees Of The University Of Arkansas Gene ca125 et utilisation de celui-ci aux fins d'interventions diagnostiques et therapeutiques
WO2004045516A2 (fr) 2002-11-15 2004-06-03 Genentech, Inc. Compositions et methodes pour le diagnostic et le traitement d'une tumeur
WO2004045520A2 (fr) 2002-11-15 2004-06-03 Musc Foundation For Research Development Modulateurs de complement cibles sur le recepteur 2 de complement
WO2004046342A2 (fr) 2002-11-20 2004-06-03 Biogen Idec Inc. Nouvelles cibles geniques et ligands se liant a ces cibles dans le traitement et le diagnostic de carcinomes
WO2004047749A2 (fr) 2002-11-21 2004-06-10 University Of Utah Research Foundation Modulation purinergique d'odeur
WO2004048938A2 (fr) 2002-11-26 2004-06-10 Protein Design Labs, Inc. Procedes de detection du sarcome des tissus mous, compositions et procedes de criblage des modulateurs du sarcome des tissus mous
WO2004053079A2 (fr) 2002-12-06 2004-06-24 Diadexus, Inc. Compositions, variants d'epissage et methodes concernant des genes et des proteines specifiques des ovaires
EP1439393A2 (fr) 2002-12-13 2004-07-21 Bayer Healthcare LLC Procédés de détection utilisants TIMP 1 pour le diagnostic du cancer du colon
US7999083B2 (en) 2002-12-13 2011-08-16 Immunomedics, Inc. Immunoconjugates with an intracellularly-cleavable linkage
US20040197325A1 (en) 2002-12-20 2004-10-07 Debbie Law Antibodies against GPR64 and uses thereof
WO2004058309A1 (fr) 2002-12-23 2004-07-15 Human Genome Sciences, Inc. Conjugue neutrokine-alpha, complexe neutrokine-alpha, et leurs utilisations
WO2004063709A2 (fr) 2003-01-08 2004-07-29 Bristol-Myers Squibb Company Biomarqueurs et methodes de determination d'une sensibilite aux modulateurs du facteur de croissance epidermique
WO2004063355A2 (fr) 2003-01-10 2004-07-29 Protein Design Labs, Inc. Nouveaux procedes de diagnostic d'un cancer metastatique, compositions et procedes de depister des modulateurs du cancer metastatique
WO2004063362A2 (fr) 2003-01-10 2004-07-29 Cyclacel Limited Proteines de la progression du cycle cellulaire
WO2004065577A2 (fr) 2003-01-14 2004-08-05 Bristol-Myers Squibb Company Polynucleotides et polypeptides associes a la voie nf-$g(k)b
WO2004065576A2 (fr) 2003-01-15 2004-08-05 Millennium Pharmaceuticals, Inc. Methodes et compositions de traitement de troubles urologiques a l'aide de genes 44390, 54181, 211, 5687, 884, 1405, 636, 4421, 5410, 30905, 2045, 16405, 18560, 2047, 33751, 52872, 14063, 20739, 32544, 43239, 44373, 51164, 53010, 16852, 1587, 2207, 22245, 2387, 52908, 69112, 14990, 18547, 115, 579, 15985, 15625, 760, 18603,
WO2004074320A2 (fr) 2003-02-14 2004-09-02 Sagres Discovery, Inc. Nouvelles cibles therapeutiques pour le cancer
US20030224411A1 (en) 2003-03-13 2003-12-04 Stanton Lawrence W. Genes that are up- or down-regulated during differentiation of human embryonic stem cells
US7521541B2 (en) 2004-09-23 2009-04-21 Genetech Inc. Cysteine engineered antibodies and conjugates
US7723485B2 (en) 2007-05-08 2010-05-25 Genentech, Inc. Cysteine engineered anti-MUC16 antibodies and antibody drug conjugates
WO2008144891A1 (fr) 2007-05-30 2008-12-04 F. Hoffmann-La Roche Ag Anticorps anti-trop-2 humanisés et chimériques qui activent la cytotoxicité contre les cellules cancéreuses
WO2009052249A1 (fr) 2007-10-19 2009-04-23 Genentech, Inc. Anticorps anti-tenb2 modifiés par des cystéines et conjugués anticorps-médicament
WO2011068845A1 (fr) 2009-12-02 2011-06-09 Immunomedics, Inc. Combinaison de radioimmunotherapie et conjugues anticorps-medicament pour une meilleure therapie du cancer
WO2011145744A1 (fr) 2010-05-17 2011-11-24 株式会社リブテック Anticorps anti-trop-2 humain ayant une activité anticancéreuse in vivo
US9000130B2 (en) 2010-06-08 2015-04-07 Genentech, Inc. Cysteine engineered antibodies and conjugates
WO2011156328A1 (fr) 2010-06-08 2011-12-15 Genentech, Inc. Anticorps et conjugués modifiés par la cystéine
US20110301334A1 (en) 2010-06-08 2011-12-08 Sunil Bhakta Cysteine engineered antibodies and conjugates
WO2011155579A1 (fr) 2010-06-10 2011-12-15 北海道公立大学法人札幌医科大学 ANTICORPS ANTI-Trop-2
US20120121615A1 (en) 2010-11-17 2012-05-17 Flygare John A Alaninyl maytansinol antibody conjugates
WO2013068946A2 (fr) 2011-11-11 2013-05-16 Rinat Neuroscience Corp. Anticorps spécifiques de trop-2 et leurs utilisations
WO2013077458A1 (fr) 2011-11-22 2013-05-30 株式会社リブテック Anticorps anti-trop-2 humain présentant une activité antitumorale in vivo
WO2015095124A1 (fr) 2013-12-16 2015-06-25 Genentech Inc. Composés peptidomimétiques et conjugués anticorps-médicament de ceux-ci
WO2015095227A2 (fr) 2013-12-16 2015-06-25 Genentech, Inc. Composés peptidomimétiques et conjugués anticorps-médicament de ceux-ci
WO2015095223A2 (fr) 2013-12-16 2015-06-25 Genentech, Inc. Composés peptidomimétiques et conjugués anticorps-médicament de ceux-ci
WO2016040825A1 (fr) 2014-09-12 2016-03-17 Genentech, Inc. Intermédiaires disulfure d'anthracycline, conjugué anticorps-médicaments et procédés
WO2016040723A1 (fr) 2014-09-12 2016-03-17 Genentech, Inc. Anticorps et immunoconjugués anti-her2
WO2017214024A1 (fr) 2016-06-06 2017-12-14 Genentech, Inc. Médicaments conjugués d'anticorps silvestrol et procédés d'utilisation
WO2020030426A1 (fr) 2018-08-07 2020-02-13 R. Stahl Schaltgeräte GmbH Dispositif de décompression et boîtier pourvu d'un tel dispositif

Non-Patent Citations (226)

* Cited by examiner, † Cited by third party
Title
"Antibody-Drug Conjugates, Methods in Molecular Biology", vol. 1045, 2013, article "Engineering THIOMABs for Site-Specific Conjugation of Thiol-Reactive Linkers", pages: 189 - 203
"Genbank", Database accession no. NP_001774.10
"McGraw-Hill Dictionary of Chemical Terms", 1984, MCGRAW-HILL BOOK COMPANY
"NCBI", Database accession no. NP_002344
"The Chemistry of Heterocyclic Compounds, A series of Monographs", vol. 13,14,16,19,28, 1950, JOHN WILEY & SONS
AM. J. HUM. GENET., vol. 49, no. 3, 1991, pages 555 - 565
ANDREWS ET AL., BLOOD, vol. 68, 1986, pages 1030 - 5
ANNU. REV. NEUROSCI., vol. 21, 1998, pages 309 - 345
ARAI H. ET AL., J. BIOL. CHEM., vol. 268, 1993, pages 3463 - 3470
ARAI H. ET AL., JPN. CIRC. J., vol. 56, 1992, pages 1303 - 1307
ATTIE T ET AL., HUM. MOL. GENET., vol. 4, 1995, pages 2407 - 2409
AURICCHIO A. ET AL., HUM. MOL. GENET., vol. 5, 1996, pages 355 - 357
B.E. SMITH ET AL., NAT. COMMUN., vol. 10, no. 1, 2019, pages 131
BAKKER AB ET AL., CANCER RES., vol. 64, no. 22, 2005, pages 8443 - 50
BAREL M. ET AL., MOL. IMMUNOL., vol. 35, 1998, pages 1025 - 1031
BARELLA ET AL., BIOCHEM. J., vol. 309, 1995, pages 773 - 779
BARGH JD ET AL., CHEM SOC REV., vol. 48, 2019, pages 4361 - 74
BARNETT T. ET AL., GENOMICS, vol. 3, 1988, pages 59 - 66
BECK A ET AL., NAT REV DRUGDISCOV., vol. 16, no. 6, 2017, pages 315 - 37
BECK ET AL., J. MOL. BIOL., vol. 255, 1996, pages 1 - 13
BECK, MOL. BIOL., vol. 228, 1992, pages 433 - 441
BISHOP, D.T. ET AL., NAT. GENET., vol. 41, no. 8, 2009, pages 920 - 925
BLOOD, vol. 100, no. 9, 2002, pages 3068 - 3076
BLUMBERG H. ET AL., CELL, vol. 104, 2001, pages 9 - 19
BOURGEOIS C. ET AL., J. CLIN. ENDOCRINOL. METAB., vol. 82, 1997, pages 3116 - 3123
C. QIN ET AL., J. MED. CHEM., vol. 61, no. 15, 2018, pages 6685 - 1000
CALABRESE G ET AL., CYTOGENET CELL GENET., vol. 92, no. 1-2, 2001, pages 164 - 5
CANCER RES., vol. 61, no. 15, 2001, pages 5857 - 5860
CELL, vol. 109, no. 3, 2002, pages 397 - 407
CHAN, J.WATT, V.M., ONCOGENE, vol. 6, no. 6, 1991, pages 1057 - 1061
CHANG ET AL., INT. J. BIOCHEM. MOL. BIOL., vol. 2, no. 3, 2011, pages 287 - 94
CHARLES N ET AL., NAT. MED., vol. 16, 2010, pages 701
CHEN CH, BLOOD, vol. 107, no. 4, 2006, pages 1459 - 67
CICCODICOLA, A. ET AL., EMBO J., vol. 8, no. 7, 1989, pages 1987 - 1991
CLARK, H.F. ET AL., GENOME RES., vol. 13, no. 10, 2003, pages 2265 - 2270
COUSSENS L. ET AL., SCIENCE, vol. 230, no. 4730, 1985, pages 1132 - 1139
CREE ET AL., ANTICANCER DRUGS, vol. 6, 1995, pages 398 - 404
CROUCH ET AL., J. IMMUNOL. METH., vol. 160, 1993, pages 81 - 88
DAVIS ET AL., PROC. NATL. ACAD. SCI USA, vol. 98, no. 17, 2001, pages 9772 - 9777
DE NOOIJ-VAN DALEN, A.G. ET AL., INT. J. CANCER, vol. 103, no. 6, 2003, pages 768 - 774
DEN BESTEN, W. ET AL., NAT CHEM BIOL, vol. 16, 2020, pages 1157 - 1158
DIJKE, P. ET AL., SCIENCE, vol. 264, no. 5155, 1994, pages 101 - 104
DOBNER ET AL., EUR. J. IMMUNOL., vol. 22, no. 6, 1992, pages 2795 - 2799
DOMAN ET AL., BLOOD, vol. 114, no. 13, 2009, pages 2721 - 2729
DONG G ET AL., J MED CHEM., vol. 64, no. 15, 2021, pages 10606 - 10620
DONG G ET AL., JMED CHEM., vol. 64, no. 15, 2021, pages 10606 - 10620
DRICKAMER K, CURR. OPIN. STRUCT. BIOL., vol. 9, no. 5, 1999, pages 585 - 90
DUMOUTIER L. ET AL., J. IMMUNOL., vol. 167, 2001, pages 3545 - 3549
EDELMAN ET AL., PROC. NATL. ACAD. OF SCI., vol. 63, no. 1, 1969, pages 78 - 85
EHSANI A. ET AL., GENOMICS, vol. 15, 1993, pages 426 - 429
ELSHOURBAGY N.A. ET AL., J. BIOL. CHEM., vol. 268, no. 16, 1992, pages 11267 - 11273
ERICSSON, T.A. ET AL., PROC. NATL. ACAD. SCI. U.S.A., vol. 100, no. 11, 2003, pages 6759 - 6764
FAULK W P ET AL., PROC. NATL. ACAD. SCI., vol. 75, no. 4, 1978, pages 1947 - 1951
FEBS LETT., vol. 418, no. 1-2, 1997, pages 195 - 199
FIELD, J.A. ET AL., BIOCHEM. BIOPHYS. RES. COMMUN., vol. 266, no. 3, 1999, pages 593 - 602
FONG D ET AL., BR. J. CANCER, vol. 99, no. 8, 2008, pages 1290 - 1295
FONG D ET AL., MOD. PATHOL., vol. 21, no. 2, 2008, pages 186 - 191
FORNARO M ET AL., INT. J. CANCER, vol. 62, no. 5, 1995, pages 610 - 618
FUCHS S. ET AL., MOL. MED., vol. 7, 2001, pages 115 - 124
FUJISAKU ET AL., J. BIOL. CHEM., vol. 264, no. 4, 1989, pages 2118 - 2125
FURUSHIMA, K. ET AL., DEV. BIOL., vol. 306, no. 2, 2007, pages 480 - 492
GARY S.C. ET AL., GENE, vol. 256, 2000, pages 139 - 147
GENOMICS, vol. 62, no. 2, 1999, pages 281 - 284
GERHARD, D.S. ET AL., GENOME RES., vol. 14, no. 10B, 2004, pages 2121 - 2127
GERY, S. ET AL., ONCOGENE, vol. 22, no. 18, 2003, pages 2723 - 2727
GETZ ET AL., ANAL. BIOCHEM., vol. 273, 1999, pages 73 - 80
GLYNNE-JONES ET AL., INT J CANCER. OCT 15, vol. 94, no. 2, 2001, pages 178 - 84
GOMEZ ET AL., BIOTECHNOL. PROG., vol. 26, 2010, pages 1438 - 1445
GOMEZ ET AL., BIOTECHNOLOGY AND BIOENG., vol. 105, no. 4, 2010, pages 748 - 760
GU Z. ET AL., ONCOGENE, vol. 19, 2000, pages 1288 - 1296
HAENDLER B. ET AL., J. CARDIOVASC. PHARMACOL., vol. 20, 1992
HAGNER ET AL., BLOOD, vol. 126, no. 6, 2016, pages 779 - 89
HAMBLETT ET AL., CLIN. CANCER RES., vol. 10, 2004, pages 7063 - 7070
HAMBLETT, K.J. ET AL.: "2004 Annual Meeting, March 27-31, 2004, Proceedings of the AACR", vol. 45, March 2004, AMERICAN ASSOCIATION FOR CANCER RESEARCH, article "Effect of drug loading on the pharmacology, pharmacokinetics, and toxicity of an anti-CD30 antibody-drug conjugate"
HANSEN JD ET AL., JMEDCHEM., vol. 64, no. 4, 2021, pages 1835 - 1843
HARMS, P.W., GENES DEV., vol. 17, no. 21, 2003, pages 2624 - 2629
HASHIMOTO ET AL., IMMUNOGENETICS, vol. 40, no. 4, 1994, pages 287 - 295
HATA, K., ANTICANCER RES., vol. 29, no. 2, 2009, pages 617 - 623
HERLING M ET AL., BLOOD, vol. 101, 2003, pages 5007
HIGGINS ET AL., NEUROL., vol. 63, no. 10, 2004, pages 1927 - 31
HOFSTRA R.M.W. ET AL., EUR. J. HUM. GENET., vol. 5, 1997, pages 180 - 185
HOFSTRA R.M.W. ET AL., NAT. GENET., vol. 12, 1996, pages 445 - 447
HORIE ET AL., GENOMICS, vol. 67, 2000, pages 146 - 152
HUBER, A.D. ET AL., ACSMED. CHEM. LETT., vol. 13, 2022, pages 1311 - 1320
HUBERT, R.S. ET AL., PROC. NATL. ACAD. SCI. U.S.A., vol. 96, no. 20, 1999, pages 11531 - 11536
IMMUNOGENETICS, vol. 54, no. 2, 2002, pages 87 - 95
INT. REV. CYTOL., vol. 196, 2000, pages 177 - 244
ISHIKAWA, N. ET AL., CANCER RES., vol. 67, no. 24, 2007, pages 11601 - 11611
ITO T ET AL., PROC JPN ACAD SER B PHYS BIOL SCI., vol. 96, no. 6, 2020, pages 189 - 203
J. AM. CHEM. SOC., vol. 82, 1960, pages 5566
J. BIOL. CHEM., vol. 270, no. 37, 1995, pages 21984 - 21990
J. BIOL. CHEM., vol. 276, no. 29, 2001, pages 27371 - 27375
J. BIOL. CHEM., vol. 278, no. 33, 2003, pages 30813 - 30820
J. LU ET AL., CHEM. BIOL., vol. 22, no. 6, 2015, pages 755 - 763
J. SHI ET AL., MOL. PHARM., vol. 15, no. 9, 2018, pages 4139 - 4147
J. ZHANG ET AL., BIOORG. CHEM., vol. 99, 2020, pages 103817
JUNUTULA ET AL., NAT. BIOTECHNOL., vol. 26, no. 191732-72-6, 2008, pages 925 - 932
JUNUTULA ET AL., NATURE BIOTECH., vol. 26, no. 8, 2008, pages 925 - 932
K.M. SAKAMOTO, PEDIATR. RES., vol. 67, no. 5, 2010, pages 505 - 508
K.M. SAKOMOTO ET AL., PROC. NATL. ACAD. SCI. USA, vol. 98, no. 15, 2001, pages 8554 - 8559
KABAT ET AL.: "Sequences of proteins of immunological interest,", 1991, US DEPT OF HEALTH AND HUMAN SERVICE, NATIONAL INSTITUTES OF HEALTH
KASAHARA ET AL., IMMUNOGENETICS, vol. 30, no. 1, 1989, pages 411 - 413
KAZANTSEV, A. ET AL., EXPERT OPINION ON THERAPEUTIC PATENTS, vol. 32, no. 2, 2022, pages 171 - 190
KHOT, A. ET AL., BIOANALYSIS, vol. 7, no. 13, 2015, pages 1633 - 1648
KIM, M.H. ET AL., MOL. CELL. BIOL., vol. 29, no. 8, 2009, pages 2264 - 2277
KRONKE ET AL., NATURE, vol. 523, 2015, pages 183 - 8
KUHNS J.J. ET AL., J. BIOL. CHEM., vol. 274, 1999, pages 36422 - 36427
KUMMER, M.P. ET AL., J. BIOL. CHEM., vol. 284, no. 4, 2009, pages 2296 - 2306
L. BAI ET AL., CANC. RES., vol. 77, no. 9, 2017, pages 2476 - 2487
LAB. INVEST., vol. 82, no. 11, 2002, pages 1573 - 1582
LARHAMMAR ET AL., J. BIOL. CHEM., vol. 260, no. 26, 1985, pages 14111 - 14119
LIANG ET AL., CANCER RES., vol. 60, 2000, pages 4907 - 12
LINNENBACH A J ET AL., PROC. NATL. ACAD. SCI., vol. 86, no. 1, 1989, pages 27 - 31
LINNENBACH AJ ET AL., MOL CELL BIOL., vol. 13, no. 3, 1993, pages 1507 - 15
LIPINSKI M ET AL., PROC. NATL. ACAD. SCI., vol. 78, no. 8, 1981, pages 5147 - 5150
LLOYD, THE ART, SCIENCE AND TECHNOLOGY OF PHARMACEUTICAL COMPOUNDING, 1999
LU ET AL., CELL CANCER, vol. 22, no. 6, 2015, pages 755 - 63
M. SCHEEPSTRA ET AL., COMPUT. STRUCT. BIOTECHNOL. J., vol. 17, 2019, pages 160 - 176
M. TOURE ET AL., ANGEW CHEM. INT. ED. ENGL., vol. 55, no. 6, 2016, pages 1966 - 1973
M.L. DRUMMOND ET AL., J. CHEM. INF. MODEL., vol. 59, no. 4, 2019, pages 1634 - 1644
M.S. GADD ET AL., NAT. CHEM. BIOL., vol. 13, no. 5, 2017, pages 514 - 521
MALLYA, M. ET AL., GENOMICS, vol. 80, no. 1, 2002, pages 113 - 123
MARSHALL AS ET AL., EUR. J. IMMUNOL., vol. 36, no. 8, 2006, pages 2159 - 69
MARSHALL AS ET AL., J. BIOL. CHEM., vol. 279, no. 15, 2004, pages 14792 - 802
MARTIN-GAYO E ET AL., BLOOD, vol. 115, 2010, pages 5366
MATYSKIELA, M. E. ET AL., NATURE, vol. 535, no. 7611, 2016, pages 252 - 257
MAYOR-RUIZ, C. ET AL., NATURE CHEMICAL BIOLOGY, vol. 16, 2020, pages 1199 - 1207
MCDONAGH ET AL., PROT. ENGR. DESIGN & SELECTION, vol. 19, no. 7, 2006, pages 299 - 307
MCGLINCHEY, R.P. ET AL., PROC. NATL. ACAD. SCI. U.S.A., vol. 106, no. 33, 2009, pages 13731 - 13736
MENDOZA ET AL., CANCER RES., vol. 62, 2002, pages 5485 - 5488
METHODS IN ENZYM., vol. 502, 2012, pages 123 - 138
MIURA ET AL., BLOOD, vol. 92, no. 8, 1998, pages 2815 - 2822
MIURA ET AL., GENOMICS, vol. 38, no. 3, 1996, pages 299 - 304
MONTPETIT, A.SINNETT, D., HUM. GENET., vol. 105, no. 1-2, 1999, pages 162 - 164
MOORE M. ET AL., PROC. NATL. ACAD. SCI. U.S.A., vol. 84, 1987, pages 9194 - 9198
MUELLER ET AL., EUR. J. BIOCHEM., vol. 22, 1992, pages 1621 - 1625
MUHLMANN G ET AL., J. CLIN. PATHOL., vol. 62, no. 2, 2009, pages 152 - 158
MUNGALL A.J. ET AL., NATURE, vol. 425, 2003, pages 805 - 811
NAGASE T. ET AL., DNA RES., vol. 7, no. 2, 2000, pages 143 - 150
NAKAYAMA ET AL., BIOCHEM. BIOPHYS. RES. COMMUN., vol. 277, no. 1, 2000, pages 124 - 127
NAN, H., J. CANCER, vol. 125, no. 4, 2009, pages 909 - 917
NARITA, N. ET AL., ONCOGENE, vol. 28, no. 34, 2009, pages 3058 - 3068
NARUSE ET AL., TISSUE ANTIGENS, vol. 59, 2002, pages 512 - 519
NATURE, vol. 395, no. 6699, 1998, pages 288 - 291
NAVENOT, J.M. ET AL., MOL. PHARMACOL., vol. 75, no. 6, 2009, pages 1300 - 1306
NING S ET AL., NEUROL. SCI., vol. 34, no. 10, 2013, pages 1745 - 1750
O'DOWD, B.F. ET AL., FEBS LETT., vol. 394, no. 3, 1996, pages 325 - 329
OGAWA Y, BIOPHYS. RES. COMMUN., vol. 178, 1991, pages 248 - 255
OHMACHI T ET AL., CLIN. CANCER RES., vol. 12, no. 10, 2006, pages 3057 - 3063
OKAMOTO Y. ET AL., BIOL. CHEM., vol. 272, 1997, pages 21589 - 21596
ONCOGENE, vol. 10, no. 5, 1995, pages 897 - 905
ONCOGENE, vol. 14, no. 11, 1997, pages 1377 - 1382
P. MARTIN-ACOSTA, EUR. J. MED. CHEM., vol. 210, 2021, pages 112981
P. OTTIS ET AL., ACS CHEM. BIOL., vol. 12, no. 4, 2017, pages 892 - 898
PAQUETTE, LEO A.: "Principles of Modern Heterocyclic Chemistry", 1968, W.A. BENJAMIN
PARRISH-NOVAK ET AL., J. BIOL. CHEM., vol. 277, no. 22, 2002, pages 47517 - 47523
PHILLIPS GDLLI GMDUGGER DL ET AL.: "Targeting HER2-Positive Breast Cancer with Trastuzumab-DM1, an Antibody-Cytotoxic Drug Conjugate", CANCER RES., vol. 68, 2008, pages 9280 - 90, XP055013498, DOI: 10.1158/0008-5472.CAN-08-1776
PICKAR, DOSAGE CALCULATIONS, 1999
PINGAULT V ET AL., HUM. GENET., vol. 111, 2002, pages 198 - 206
PLETNEV S. ET AL., BIOCHEMISTRY, vol. 42, 2003, pages 12617 - 12624
POWELL, C.E. ET AL., ACS CHEM. BIOL., vol. 15, 2020, pages 2722 - 2730
PREUD'HOMME ET AL., CLIN. EXP. IMMUNOL., vol. 90, no. 1, 1992, pages 141 - 146
PROC. NATL. ACAD. SCI. U.S.A., vol. 93, no. 1, 1996, pages 136 - 140
PROC. NATL. ACAD. SCI. U.S.A., vol. 98, no. 17, 2001, pages 9772 - 9777
PUFFENBERGER E.G. ET AL., CELL, vol. 79, 1994, pages 1257 - 1266
R.P. NOWAK ET AL., NAT. CHEM. BIOL., vol. 14, no. 7, 2018, pages 706 - 714
REITER R.E. ET AL., PROC. NATL. ACAD. SCI. U.S.A., vol. 95, 1998, pages 1735 - 1740
RIBAS, G. ET AL., J. IMMUNOL., vol. 163, no. 1, 1999, pages 278 - 287
S. AN ET AL., EBIOMEDICINE, vol. 36, 2018, pages 553 - 562
S.E. LOCHRIN ET AL., CANC. BIOL. THER., vol. 15, no. 12, 2014, pages 1583 - 1585
SABBATH ET AL., J. CLIN. INVEST., vol. 75, 1985, pages 756 - 56
SAKAGUCHI ET AL., EMBO J., vol. 7, no. 11, 1988, pages 3457 - 3464
SAKAMOTO A.YANAGISAWA M. ET AL., BIOCHEM. BIOPHYS. RES. COMMUN., vol. 178, 1991, pages 656 - 663
SALANTI, G. ET AL., AM. J. EPIDEMIOL., vol. 170, no. 5, 2009, pages 537 - 545
SCHAFER ET AL., J. PHARMACOL. & EXPER. THER., vol. 305, 2003, pages 1222 - 32
SCHERER, S.E. ET AL., NATURE, vol. 440, no. 7082, 2006, pages 346 - 351
SCHLOTHAUER, T. ET AL., PROTEIN ENGINEERING, DESIGN & SELECTION, vol. 29, no. 10, 2016, pages 457 - 466
SEMBA K. ET AL., PROC. NATL. ACAD. SCI. U.S.A., vol. 82, 1985, pages 6497 - 6501
SERVENIUS ET AL., J. BIOL. CHEM., vol. 262, 1987, pages 8759 - 8766
SHEIKH F. ET AL., J. IMMUNOL., vol. 172, 2004, pages 2006 - 2010
SHEN B-Q ET AL., NAT BIOTECHNOL, 2012
SHEN, B. ET AL., NAT. BIOTECHNOL., vol. 30, no. 2, 2012, pages 184 - 189
SHI ET AL., J. IMMUNOL. RES., 2017
SHI M ET AL., CARDIOVASC HEMATOL DISORD DRUG TARGETS, vol. 19, no. 3, 2019, pages 195 - 204
SHI Q ET AL., J IMMUNOL RES., vol. 2017, 2017, pages 9130608
SINHA S.K. ET AL., J. IMMUNOL., vol. 150, 1993, pages 5311 - 5320
SLAMON ET AL., NEW ENGL. J. MED., vol. 344, 2001, pages 783 - 792
SLAMON ET AL., SCIENCE, vol. 244, 1989, pages 707 - 12
SPERLING AS ET AL., BLOOD, vol. 134, no. 2, 2019, pages 160 - 170
STRAUSBERG ET AL., PROC. NATL. ACAD. SCI USA, vol. 99, 2002, pages 16899 - 16903
STRAUSBERG R.L. ET AL., PROC. NATL. ACAD. SCI. U.S.A., vol. 99, no. 26, 2002, pages 16899 - 16903
SUKUMARAN ET AL., PHARM RES, vol. 32, 2015, pages 1884 - 1893
SUN Q ET AL., BLOOD, vol. 87, 1996, pages 83
SURKA, C. ET AL., BLOOD, vol. 137, no. 5, 2021, pages 661 - 677
SVENSSON P.J. ET AL., HUM. GENET., vol. 103, 1998, pages 145 - 148
SWIERCZ J.M. ET AL., J. CELL BIOL., vol. 165, pages 869 - 880
T.A. BEMIS ET AL., CHEM. COMMUN., vol. 57, no. 8, 2021, pages 1026 - 1029
TAKEDA, S. ET AL., FEBS LETT., vol. 520, no. 1-3, 2002, pages 97 - 101
TAKWALE, A.D. ET AL., BIOORGANIC CHEMISTRY, vol. 127, 2022, pages 105923
TAWARAGI Y. ET AL., BIOCHEM. BIOPHYS. RES. COMMUN., vol. 150, 1988, pages 89 - 96
TESTA U ET AL., CANCERS, vol. 11, no. 9, 2019, pages 1358 - 1388
THOMPSON, J.S. ET AL., SCIENCE, vol. 293, no. 5537, 2001, pages 2108 - 2111
TONNELLE ET AL., EMBO J., vol. 4, no. 11, 1985, pages 2839 - 2847
TOUCHMAN ET AL., GENOME RES., vol. 10, 2000, pages 165 - 173
TREANOR, J.J., NATURE, vol. 382, no. 6586, 1996, pages 80 - 83
TSUCHIKAMA K ET AL., PROTEIN CELL, vol. 9, 2018, pages 33 - 46
TSUKAMOTO, H. ET AL., CANCER SCI., vol. 100, no. 10, 2009, pages 1895 - 1901
TSUTSUMI M. ET AL., GENE, vol. 228, 1999, pages 43 - 49
VAN RHENEN A ET AL., BLOOD, vol. 110, no. 7, 2007, pages 2659 - 66
VERHEIJ J.B. ET AL., AM. J. MED. GENET., vol. 108, 2002, pages 223 - 225
VON HOEGEN ET AL., J. IMMUNOL., vol. 144, no. 12, 1990, pages 4870 - 4877
W. FARNABY ET AL., NAT. CHEM. BIOL., vol. 15, no. 7, 2019, pages 672 - 680
WADA ET AL., BIOCHEM. & BIOPHYS. RES. COMM., vol. 477, 2016, pages 388 - 94
WANG, C. ET AL., EUR J MED CHEM., vol. 225, 2021, pages 113749
WEIS J.J. ET AL., J. EXP. MED., vol. 167, 1988, pages 1047 - 1066
WEIS J.J. ET AL., PROC. NATL. ACAD. SCI. U.S.A., vol. 83, 1986, pages 5639 - 5643
WILSON ET AL., J. EXP. MED., vol. 173, 1991, pages 137 - 146
XU, M.J. ET AL., BIOCHEM. BIOPHYS. RES. COMMUN., vol. 280, no. 3, 2001, pages 768 - 775
XU, X.Z, NATL. ACAD. SCI. U.S.A., vol. 98, no. 19, 2001, pages 10692 - 10697
YAMAGUCHI, N. ET AL., BIOL. CHEM., vol. 269, no. 2, 1994, pages 805 - 808
YAMAMOTO T. ET AL., NATURE, vol. 319, 1986, pages 230 - 234
YAMAMOTO, Y. ET AL., HEPATOLOGY, vol. 37, no. 3, 2003, pages 528 - 533
YU ET AL., J. IMMUNOL., vol. 148, no. 2, 1992, pages 1526 - 1531
ZAMMIT, D.J. ET AL., MOL. CELL. BIOL., vol. 22, no. 3, 2002, pages 946 - 952
ZHANG ET AL., BIOCHEM., vol. 311, 2002, pages 1 - 9
ZHIHUA H ET AL., ANNU REV PLANT BIOL., vol. 62, no. 1, 2011, pages 299 - 334

Similar Documents

Publication Publication Date Title
US11104673B2 (en) Quaternary amine compounds and antibody-drug conjugates thereof
EP3033111B1 (fr) Conjugués anticorps-médicament dimérique 1-(chlorométhyl)-2,3-dihydro-1 h-benzo [e]indole, et méthodes d'utilisation et de traitement
US9999681B2 (en) Peptidomimetic compounds and antibody-drug conjugates thereof
JP2022137034A (ja) システイン操作抗体及びコンジュゲート
EP3362100B1 (fr) Conjugués médicamenteux à pont disulfure encombré
US11576979B2 (en) Pyrrolobenzodiazepine prodrugs and antibody conjugates thereof
EP3082876B1 (fr) Composés conjugués anticorps-médicament dimérique à base de 1-(chlorométhyl)-2,3-dihydro-1 h-benzo [e]indole, et méthodes d'utilisation et de traitement
US11648315B2 (en) Silvestrol antibody-drug conjugates and methods of use
US10730900B2 (en) Calicheamicin-antibody-drug conjugates and methods of use
EP3522933B1 (fr) Procédés de préparation de conjugués anticorps-médicament
WO2024138128A2 (fr) Conjugués d'agent de dégradation de céréblon et leurs utilisations