WO2024135686A1 - レンズ鏡筒及び撮像装置 - Google Patents

レンズ鏡筒及び撮像装置 Download PDF

Info

Publication number
WO2024135686A1
WO2024135686A1 PCT/JP2023/045513 JP2023045513W WO2024135686A1 WO 2024135686 A1 WO2024135686 A1 WO 2024135686A1 JP 2023045513 W JP2023045513 W JP 2023045513W WO 2024135686 A1 WO2024135686 A1 WO 2024135686A1
Authority
WO
WIPO (PCT)
Prior art keywords
drip
frame
lens barrel
optical axis
proof member
Prior art date
Application number
PCT/JP2023/045513
Other languages
English (en)
French (fr)
Inventor
清水邦彦
浜崎拓司
中野拓海
長岡弘仁
Original Assignee
株式会社ニコン
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ニコン filed Critical 株式会社ニコン
Publication of WO2024135686A1 publication Critical patent/WO2024135686A1/ja

Links

Images

Definitions

  • Optical devices such as lens barrels are equipped with a lens movement device that moves the lens groups during magnification changes and focusing operations.
  • the lens barrel comprises a first frame that holds a lens, a drive unit that includes a drive shaft and drives the first frame in the optical axis direction, and a second frame that has at least two guide parts that guide the drive of the first frame in the optical axis direction, and in a plane perpendicular to the optical axis, at least one of the at least two guide parts is arranged on a second line that is perpendicular to a first line that passes through the axis of the drive shaft and the optical axis and passes through the optical axis.
  • the lens barrel includes a first frame that holds a lens, a drive unit that includes a drive shaft and drives the first frame in the optical axis direction, a second frame that has at least two guide units that guide the drive of the first frame in the optical axis direction, an inner ring fixed to the first frame, and an outer ring that can rotate relatively to the inner ring, and the outer peripheral surface of the outer ring abuts against the guide units.
  • the lens barrel is a lens barrel having a first frame and a second frame that move relative to each other in the optical axis direction, and has at least two drip-proof members provided in a gap between the first frame and the second frame that communicates with the outside and the inside of the lens barrel.
  • an imaging device includes the lens barrel described above.
  • FIG. 8 is a diagram for explaining the arrangement of the first to third guide grooves.
  • FIG. 9(A) is a diagram showing a schematic arrangement example of the first guide groove to the third guide groove in a comparative example
  • FIG. 9(B) is a diagram for explaining the reason for arranging the first guide groove and the second guide groove on the second straight line.
  • FIG. 10A is an enlarged view of a portion C2 enclosed by a dotted line in FIG. 1A
  • FIG. 10B is a cross-sectional view showing a drip-proof structure according to a comparative example.
  • FIGS. 1(A) and 1(B) are cross-sectional views showing the configuration of a camera 1 equipped with a lens barrel 2 according to one embodiment, with FIG. 1(A) showing the infinity state and FIG. 1(B) showing the close-up state.
  • the camera 1 comprises a camera body 3 and a lens barrel 2.
  • the lens barrel 2 has a lens mount LM at the rear (base end), and is removably attached to the camera body 3 by engaging the lens mount LM with a body mount (not shown) of the camera body 3.
  • the lens barrel 2 is detachable from the camera body 3, but this is not limited thereto, and the lens barrel 2 and the camera body 3 may be integrated.
  • the camera body 3 includes an image sensor IS and a control unit (not shown) inside.
  • the image sensor IS is composed of a photoelectric conversion element such as a CCD (Charge Coupled Device), and converts the subject image formed by the imaging optical system (the lens barrel 2 attached to the camera body 3) into an electrical signal.
  • CCD Charge Coupled Device
  • the control unit includes a CPU (Central Processing Unit) and generally controls the overall operation of the camera 1 related to photography, including the focusing drive of the camera body 3 and the attached lens barrel 2.
  • CPU Central Processing Unit
  • the lens barrel 2 comprises a fixed tube 13, a focus ring 12, and an optical system block section 100 that moves in the direction of the optical axis OA in response to operation of the focus ring 12 or user operation via the camera body 3, etc.
  • a first fixed tube member 13a and a second fixed tube member 13b are arranged within the fixed tube 13.
  • the optical system block section 100 is an example of a first frame, and the first fixed tube member 13a is an example of a second frame.
  • FIG. 2 is a perspective view of the first fixed barrel member 13a.
  • a first guide groove 11a, a second guide groove 11b, and a third guide groove 11c are formed on the inner circumference of the first fixed barrel member 13a to guide the optical system block portion 100 in the optical axis OA direction.
  • Each of the first guide groove 11a to the third guide groove 11c is a straight groove extending in the optical axis OA direction, and the bottom surface thereof is stepped such that the bottom surface on the object side is located on the outer diameter side of the bottom surface on the image plane side (see FIG. 1(A) and FIG. 1(B)).
  • the arrangement of the first guide groove 11a to the third guide groove 11c will be described in detail later.
  • the first guide groove 11a to the third guide groove 11c are an example of a guide portion.
  • FIG. 3 is an exploded perspective view of the optical system block section 100.
  • the optical system block section 100 includes a lens holding frame F1, a lens group L1, an aperture mechanism 40, a moving block section 200, a lens holding frame F2, and a lens group L2.
  • Lens groups L1 and L2 are sequentially arranged along a common optical axis OA, with lens group L1 held in lens holding frame F1 and lens group L2 held in lens holding frame F2.
  • Lens groups L1 and L2 are focus lens groups.
  • optical system block 100 including lens groups L1 and L2 moves in the direction of optical axis OA in response to operation of focus operation ring 12 or user operation via camera body 3, etc.
  • the lens barrel 2 according to this embodiment employs a focusing method of the entire extension type in which the entire optical system is driven as a focus group. This allows the overall length of the lens barrel 2 in the direction of optical axis OA to be shorter than, for example, when an inner focus method is employed. In other words, the lens barrel 2 can be made smaller.
  • each of lens groups L1 and L2 may be composed of one lens, or may be composed of multiple lenses. Also, while a lens barrel composed of two lens groups will be described as an example, there may be one lens group, or three or more lens groups.
  • Aperture mechanism 40 is disposed between lens groups L1 and L2.
  • FIG. 4(A) is an exploded perspective view of the moving block portion 200
  • FIG. 4(B) is a perspective view of the moving block portion 200 seen from the image surface side.
  • FIG. 5 is an enlarged view of a portion C1 surrounded by a dotted line in FIG. 1(A).
  • the moving block portion 200 comprises a connecting portion 10, a moving portion 20, and a biasing portion holding portion 30.
  • the biasing part holding part 30 holds the first biasing member 81 and the second biasing member 82, and is fixed to the connecting part 10 by a screw 73. As shown in FIG. 5, a part of the moving part 20 is disposed between the connecting part 10 and the biasing part holding part 30.
  • the first biasing member 81 is a coil spring. As shown in FIG. 5, the first biasing member 81 is housed in a hole 20b provided in the moving part 20, with one end contacting the bottom 20c of the hole 20b and the other end contacting the biasing part holding part 30. As a result, as shown by arrow A2 in FIG. 5, the moving part 20 is biased toward the connecting part 10, so that play in the optical axis direction between the moving part 20 and the connecting part 10 is suppressed, and when the moving part 20 moves in the optical axis direction, the connecting part 10 also moves in the optical axis direction. Note that the first biasing member 81 is not limited to a coil spring as long as it can bias the moving part 20 toward the connecting part 10, and may be a leaf spring or the like.
  • the second biasing member 82 is a coil spring, one end of which contacts the moving part 20 and the other end of which contacts the biasing part holding part 30. As a result, as shown by arrow A1 in Figure 5, the moving part 20 is biased towards the lead screw 302, which will be described later.
  • the second biasing member 82 is not limited to a coil spring as long as it can bias towards the lead screw 302, and may be a leaf spring or the like.
  • lens holding frame F1 and lens holding frame F2 are connected to connecting portion 10. Specifically, lens holding frame F1 is fixed to connecting portion 10 by screw 71, and lens holding frame F2 is fixed to connecting portion 10 by screw 72.
  • the connecting portion 10 is connected to the moving portion 20 by the first biasing member 81 and the biasing portion holding portion 30.
  • the lens holding frames F1 and F2 move in the direction of the optical axis OA.
  • the connecting portion 10 includes a cylindrical portion 10a, and a first groove engaging portion 101a, a second groove engaging portion 101b, and a third groove engaging portion 101c that protrude radially from the cylindrical portion 10a.
  • the first groove engagement portion 101a has a front protrusion 112a and a rear protrusion 113a that protrude in the radial direction and are spaced apart in the direction of the optical axis OA, as well as a front bearing 102a and a rear bearing 103a.
  • the outer periphery of the front protrusion 112a fits into the inner ring of the front bearing 102a
  • the outer periphery of the rear protrusion 113a fits into the inner ring of the rear bearing 103a.
  • the front bearing 102a and the rear bearing 103a are spaced apart in the direction of the optical axis OA.
  • the front bearing 102a and the rear bearing 103a engage with the first guide groove 11a.
  • the front bearing 102a and the rear bearing 103a move along the first guide groove 11a while rotating.
  • the friction generated when the first groove engagement part 101a moves within the first guide groove 11a is rolling friction. Therefore, compared to, for example, when the front protrusion 112a and the rear protrusion 113a engage with the first guide groove 11a without the use of a bearing, the sliding resistance is reduced when the first groove engagement part 101a moves within the first guide groove 11a, and the load on the drive part (the stepping motor 301 described later) for moving the moving part 20 in the optical axis OA direction can be reduced.
  • the second groove engagement portion 101b like the first groove engagement portion 101a, has a front protrusion 112b (not shown) and a rear protrusion 113b (not shown) that protrude radially and are spaced apart in the direction of the optical axis OA, as well as a front bearing 102b and a rear bearing 103b.
  • the outer periphery of the front protrusion 112b fits into the inner ring of the front bearing 102b
  • the outer periphery of the rear protrusion 113b fits into the inner ring of the rear bearing 103b.
  • the front bearing 102b and the rear bearing 103b are spaced apart in the direction of the optical axis OA.
  • the front bearing 102b and the rear bearing 103b engage with the second guide groove 11b.
  • the friction that occurs when the second groove engagement part 101b moves within the second guide groove 11b is rolling friction. Therefore, the load on the stepping motor 301 when the second groove engagement part 101b moves within the second guide groove 11b can be reduced compared to, for example, when the front protrusion 112b and the rear protrusion 113b engage with the second guide groove 11b without the use of a bearing.
  • the third groove engagement portion 101c like the first groove engagement portion 101a, has a front protrusion 112c and a rear protrusion 113c (see Figures 1(A) and 1(B)) that protrude radially and are spaced apart in the direction of the optical axis OA, a front bearing 102c, and a rear bearing 103c.
  • the outer periphery of the front protrusion 112c fits into the inner ring of the front bearing 102c
  • the outer periphery of the rear protrusion 113c fits into the inner ring of the rear bearing 103c.
  • the front bearing 102c and the rear bearing 103c are spaced apart in the direction of the optical axis OA.
  • the front bearing 102c and the rear bearing 103c engage with the third guide groove 11c.
  • the friction that occurs when the third groove engagement part 101c moves within the third guide groove 11c is rolling friction. Therefore, the load on the stepping motor 301 when the third groove engagement part 101c moves within the third guide groove 11c can be reduced compared to, for example, when the front protrusion 112c and the rear protrusion 113c engage with the third guide groove 11c without the use of a bearing.
  • the rear bearing 103a is located on the inner diameter side of the front bearing 102a
  • the rear bearing 103b is located on the inner diameter side of the front bearing 102b
  • the rear bearing 103c is located on the inner diameter side of the front bearing 102c.
  • the distance between the front bearing 102a and the rear bearing 103a, the distance between the front bearing 102b and the rear bearing 103b, and the distance between the front bearing 102c and the rear bearing 103c may be the same or different.
  • the focusing method of the lens barrel 2 according to this embodiment is a full extension method, so the optical system block unit 100 protrudes from the lens barrel 2.
  • an impact is applied directly to the focus lens group.
  • the moving section 20 is formed with a hole 20a that houses the lead screw engagement section 303 of the drive mechanism 300 that drives the optical system block section 100, and a hole 20b that houses the first biasing member 81 described above.
  • the drive mechanism 300 that drives the optical system block section 100 will be described.
  • FIG. 6 is a perspective view for explaining the configuration of the drive mechanism 300, and is a perspective view of the drive mechanism 300 and the optical system block unit 100 as viewed from the image surface side.
  • FIG. 7 is a cross-sectional view for explaining the configuration of the drive mechanism 300.
  • FIG. 8 is a diagram for explaining the arrangement of the first to third guide grooves, and is a plan view of the optical system block unit 100 and the first fixed barrel member 13a as viewed from the object side.
  • the drive mechanism 300 includes a stepping motor 301, a lead screw 302, and a lead screw engagement portion 303.
  • a stepping motor 301 is used as the drive source for the lead screw 302.
  • an internal lens control unit (not shown) rotates the lead screw 302 according to the amount of operation, causing the optical system block unit 100 to move in the direction of the optical axis OA.
  • the position of the optical system block unit 100 is controlled by open-loop control of the stepping motor 301.
  • the position of the optical system block unit 100 is not detected and fed back to the lens internal control unit.
  • the position of the optical system block unit 100 is represented by the number of steps (number of rotations) of the stepping motor 301, and therefore position data represented by the number of steps is transmitted to the camera body 3 or the lens internal control unit as necessary.
  • the output shaft 301a of the stepping motor 301 and the lead screw 302 are connected via gears 305a to 305c.
  • the output shaft 301a is disposed on the object side of the stepping motor 301.
  • Gear 305a is attached to the object side end of the output shaft 301a of the stepping motor 301
  • gear 305b is attached to the object side end of the lead screw 302
  • gear 305c which engages with gears 305a and 305b, is disposed between the gears 305a and 305b.
  • the combined optical axis length of the stepping motor 301 and the output shaft 301a is approximately equal to the optical axis length of the lead screw 302.
  • the stepping motor 301, its output shaft 301a, and the lead screw 302 are disposed parallel to each other on the image side of the gears 305a to 305c.
  • a rotational force is transmitted from the object side end of the output shaft 301a of the stepping motor 301 to the object side end of the lead screw 302 via the gear 305c.
  • the output shaft 301a of the stepping motor 301 and the lead screw 302 are folded and arranged, so the overall length of the lens barrel 2 in the optical axis OA direction can be shortened compared to when the output shaft and the lead screw are directly connected.
  • the combined optical axis length of the stepping motor 301 and the output shaft 301a and the optical axis length of the lead screw 302 can be changed as appropriate.
  • the lead screw 302 is rotatably supported by the lead screw support mechanism 304 and the first fixed cylinder member 13a.
  • the lead screw support mechanism 304 rotatably supports one end of the lead screw 302 via a bearing 304a
  • the first fixed cylinder member 13a rotatably supports the other end of the lead screw 302 via a bearing 304b.
  • the load on the stepping motor 301 is reduced to improve the position control accuracy of the optical system block unit 100.
  • the lead screw engagement portion 303 includes an annular member 303a and a bearing 303b.
  • the outer periphery of the annular member 303a fits into the inner ring of the bearing 303b.
  • the outer periphery of the bearing 303b fits into the inner periphery of a hole 20a in the moving portion 20.
  • a groove 313 that comes into contact with the thread groove of the lead screw 302 is formed on the inner circumference of the annular member 303a.
  • the groove 313 is a circumferential groove that is formed around the entire inner circumference of the annular member 303a.
  • the annular member 303a is urged by the second urging member 82 toward the lead screw 302 in a direction perpendicular to the axis AX1 of the lead screw 302, as shown by arrow A1 in FIG. 7. This causes the groove 313 of the annular member 303a to be pressed against the thread groove of the lead screw 302, suppressing play between the annular member 303a and the lead screw 302.
  • the lead screw engagement portion 303 is housed in a hole 20a formed in the moving portion 20, so that the moving portion 20 and the lead screw engagement portion 303 are connected.
  • the annular member 303a Since the annular member 303a is supported rotatably, when the lead screw 302 rotates, the annular member 303a is pushed by the flank surface of the thread groove of the lead screw 302 and moves in the axial direction of the lead screw 302 while rotating. This causes the moving part 20, which engages with the lead screw engagement part 303, to also move in the axial direction of the lead screw 302. As the moving part 20 moves, the optical system block part 100 moves in the direction of the optical axis OA, guided by the first guide groove 11a to the third guide groove 11c provided in the first fixed barrel member 13a.
  • the first guide groove 11a and the second guide groove 11b are arranged on a second straight line LN2 that passes through the optical axis OA and is perpendicular to a first straight line LN1 that passes through the axis AX1 of the lead screw 302 and the optical axis OA, in a plane perpendicular to the optical axis OA.
  • the third guide groove 11c is arranged on the first straight line LN1.
  • FIG. 9A is a diagram showing an example of the arrangement of the first guide groove 901a, the second guide groove 901b, and the third guide groove 901c according to a comparative example.
  • the first guide groove 901a to the third guide groove 901c are arranged at intervals of 120 degrees.
  • the backlash gap between the first guide groove 901a to the third guide groove 901c and, for example, the front bearings 102a to 102c is a
  • the third guide groove 11c on the first straight line LN1 is involved in the wobble in the yaw direction in FIG. 9A, but due to the positional relationship of the fulcrum, it does not affect the driving performance near the optical axis center.
  • the direction of the third guide groove 11c is vertical in FIG. 9A, so there is minimal wobble and the wobble in the yaw direction is also small, so it does not greatly affect the driving accuracy.
  • FIG. 9B is a diagram for explaining another reason for arranging the first guide groove 11a and the second guide groove 11b on the second straight line LN2.
  • the first guide groove 901a to the third guide groove 901c are arranged at 120 degree intervals.
  • the position of the rotation center RC1 is shifted by an amount indicated by D from the center position of the lens group.
  • the shift amount D is a shift in the optical axis direction due to the inclination of the lens, and is an accuracy error.
  • the accuracy error caused by the position of the rotation center of the lens barrel 2 can be reduced.
  • the third guide groove 11c on the first straight line LN1 is involved in the wobble in the yaw direction in Fig. 9(A), but due to the positional relationship of the fulcrum, it does not affect the drive performance near the center of the optical axis. Also, even in the drive performance of the peripheral area away from the optical axis, the orientation of the third guide groove 11c portion is vertical in Fig. 9(A), so there is minimal wobble and the wobble in the yaw direction is also small, so it does not have a significant effect on accuracy errors.
  • the load on the stepping motor 301 is reduced, and by arranging the first guide groove 11a to the third guide groove 11c as described above, the position control accuracy of the optical system block unit 100 is improved.
  • the optical system block portion 100 moves in the direction of the optical axis OA, and as shown in Fig. 1B, the lens holding frame F1 may protrude from the lens barrel 2.
  • the lens barrel 2 is provided with a drip-proof structure that prevents water droplets that have adhered to the lens holding frame F1 from penetrating into the inside of the lens barrel 2.
  • FIG. 10(A) is a diagram for explaining the drip-proof structure 90 according to this embodiment, and is an enlarged view of part C2 surrounded by the dotted line in FIG. 1(A).
  • the lens barrel 2 includes a lens holding frame F1 that moves in the optical axis direction, and a second fixed barrel member 13b that is disposed radially outside the lens holding frame F1.
  • the positional relationship between the lens holding frame F1 and the second fixed barrel member 13b in the optical axis direction changes relatively.
  • a space S is formed as a gap that connects the outside and the inside of the lens barrel 2.
  • the space S is provided with a drip-proof structure 90.
  • the drip-proof structure 90 includes a first drip-proof member 91 and a second drip-proof member 92 that is formed from a material different from the first drip-proof member 91.
  • the lens holding frame F1 is an example of a first frame
  • the second fixed barrel member 13b is an example of a second frame.
  • the lens holding frame F1 is movable in the direction of the optical axis OA relative to the second fixed barrel member 13b, and the lens holding frame F1 and the second fixed barrel member 13b do not rotate relative to each other in the circumferential direction.
  • the first drip-proof member 91 and the second drip-proof member 92 are arranged side by side in the optical axis direction, with the first drip-proof member 91 being arranged closer to the object side than the second drip-proof member 92.
  • the first drip-proof member 91 is an elastic member (a member having cushioning properties) having water absorption properties, and is arranged so as to surround the outer periphery of the lens holding frame F1.
  • materials for the first drip-proof member 91 include a nonwoven fabric structure, synthetic leather, raised fabric, or flocked fabric.
  • the first drip-proof member 91 is a nonwoven fabric structure with a water repellent applied to the surface facing the lens holding frame F1.
  • the thickness of the first drip-proof member 91 is approximately constant in the optical axis direction, and the cross section of the first drip-proof member 91 is rectangular.
  • a gap is provided between the first drip-proof member 91 and the lens holding frame F1.
  • the first drip-proof member 91 and the lens holding frame F1 are not in contact with each other. This results in less sliding resistance compared to when the first drip-proof member 91 is in contact with the lens holding frame F1, and it is possible to reduce the drive load when the optical system block unit 100 moves in the direction of the optical axis OA. This stabilizes the position of the optical system block unit 100, improving the optical performance of the lens barrel 2 and reducing the load on the stepping motor 301. This improves the position control accuracy of the optical system block unit 100.
  • the second drip-proof member 92 is an elastic member coated with a paint that improves slipperiness, and is formed in a ring shape.
  • the second drip-proof member 92 is, for example, a rubber sheet coated with a paint that improves slipperiness.
  • the second drip-proof member 92 has a substantially constant thickness, and is arranged so that it has an inverted L-shaped cross section. One end of the inner circumferential surface of the second drip-proof member 92 is fixed in contact with the lens holding frame F1, and the other end is fixed to the object side of the lead screw support mechanism 304 that is fixed to the second fixed cylinder member 13b.
  • the drip-proof structure 90 prevents water droplets adhering to the lens holding frame F1 from penetrating into the lens barrel 2 when the optical system block 100 is moved, for example, from a close distance to an infinity distance, due to the water repellency of the first drip-proof member 91. Even if water droplets penetrate into the interior of the lens barrel 2 (space S in FIG. 10A), the second drip-proof member 92 can prevent the water droplets from penetrating further inside the lens barrel 2 (the image surface side of the lead screw support mechanism 304 and the second fixed barrel member 13b). Water droplets that penetrate into the space S are absorbed by the water-absorbent first drip-proof member 91, and evaporate from the first drip-proof member 91 over time. Even if there are water droplets that are not absorbed by the first drip-proof member 91, the provision of the second drip-proof member 92 can reliably prevent them from penetrating into the interior of the lens barrel 2.
  • the drip-proof structure 90 can achieve drip-proof performance equivalent to that of a drip-proof structure in which the nonwoven fabric structure 991 is crushed and brought into contact with the lens holding frame F1, as in the comparative example shown in FIG. 10B. If the nonwoven fabric structure 991 is crushed and brought into contact with the lens holding frame F1, friction occurs between the nonwoven fabric structure 991 and the lens holding frame F1 when the optical system block unit 100 moves in the optical axis OA direction, causing drive resistance and placing a load on the stepping motor 301. If a load is placed on the stepping motor 301, even if the stepping motor 301 is driven a predetermined amount, the amount of movement of the optical system block unit 100 may not accurately correspond to the predetermined amount due to the drive resistance. In this embodiment, the first drip-proof member 91 is not in contact with the lens holding frame F1, so the load on the stepping motor 301 can be reduced. This improves the position control accuracy of the optical system block unit 100.
  • crushing the nonwoven fabric structure 991 means that the cross-sectional height of the nonwoven fabric structure 991 when assembled to the lens barrel is smaller than the cross-sectional height of the nonwoven fabric structure 991 when not assembled to the lens barrel.
  • the lens barrel 2 comprises an optical system block portion 100 that holds the lens groups L1 and L2, a drive mechanism 300 that includes a lead screw 302 and drives the optical system block portion 100 in the direction of the optical axis OA, and a first fixed cylinder member 13a having a first guide groove 11a to a third guide groove 11c that guide the drive of the optical system block portion 100 in the direction of the optical axis OA, and in a plane perpendicular to the optical axis OA, the first guide groove 11a and the second guide groove 11b of the first guide groove 11a to the third guide groove 11c are perpendicular to the first straight line LN1 that passes through the axis AX1 of the lead screw 302 and the optical axis OA, and are arranged on a second straight line LN2 that passes through the optical axis OA.
  • the driving accuracy of the optical system block unit 100 can be improved and accuracy errors can be reduced, thereby improving the position control accuracy of the optical system block unit 100.
  • the first guide groove 11a to the third guide groove 11c are linear grooves arranged along the optical axis OA direction
  • the optical system block unit 100 has front protrusions 112a to 112c and rear protrusions 113a to 113c that protrude radially outward and are guided along the linear grooves. This allows the optical system block unit 100 to be guided in the optical axis OA direction.
  • the optical system block 100 has front bearings 102a-102c that can rotate around the center of the front protrusions 112a-112c, and rear bearings 103a-103c that can rotate around the center of the rear protrusions 113a-113c.
  • the first guide groove 11a to the third guide groove 11c include the first guide groove 11a and the second guide groove 11b arranged on the second straight line LN2, and the third guide groove 11c which is different from the first guide groove 11a and the second guide groove 11b. Because the optical system block portion 100 is supported by three guide members, the strength of the lens barrel 2 against impacts can be increased compared to, for example, a case in which it is supported by two or less guide members.
  • the third guide groove 11c is disposed on the first straight line LN1. That is, the third guide groove 11c is disposed in a position facing the lead screw 302 in a plane perpendicular to the optical axis OA (disposed 180° apart).
  • the third guide groove 11c is involved in the rattle in the yaw direction in FIG. 9A, but due to the positional relationship of the fulcrum, it does not affect the driving performance near the optical axis center.
  • the third guide groove 11c is oriented in the vertical direction in FIG. 9A, so there is minimal rattle and the rattle in the yaw direction is also small, so there is no effect on the driving accuracy of the optical system block unit 100. Therefore, the optical system block unit 100 can be supported without significantly affecting the driving accuracy of the optical system block unit 100, and the strength against impact of the lens barrel 2 can be increased.
  • the annular member 303a moves in the direction of the axis AX1 of the lead screw 302 while rotating, so the friction generated between the annular member 303a and the lead screw 302 becomes rolling friction. This reduces the load on the stepping motor 301 when moving the optical system block unit 100 in the axial direction of the lead screw 302, thereby improving the position control accuracy of the optical system block unit 100.
  • the lens barrel 2 includes a lens holding frame F1 and a second fixed barrel member 13b that move relatively in the direction of the optical axis OA, and a first drip-proof member 91 and a second drip-proof member 92 that are provided in a gap between the lens holding frame F1 and the second fixed barrel member 13b that communicates with the outside and the inside of the lens barrel 2.
  • the lens barrel 2 includes the lens holding frame F1 that holds the lens group L1, the second fixed barrel member 13b that is arranged radially outside the lens holding frame F1 and whose position in the direction of the optical axis OA changes relatively with respect to the lens holding frame F1, and the first drip-proof member 91 and the second drip-proof member 92 that are arranged in the gap between the lens holding frame F1 and the second fixed barrel member 13b.
  • the first drip-proof member 91 has higher water repellency than the second drip-proof member 92. This makes it possible to prevent water droplets from entering due to the water repellency of the first drip-proof member 91.
  • the first drip-proof member 91 and the second drip-proof member 92 are arranged side by side in the direction of the optical axis OA, with the first drip-proof member 91 being arranged closer to the object side than the second drip-proof member 92.
  • the second drip-proof member 92 is arranged closer to the image plane side than the first drip-proof member 91.
  • the thickness T1 of at least a portion of the first drip-proof member 91 in a plane perpendicular to the optical axis is greater than the thickness T2 of at least a portion of the second drip-proof member 92.
  • a gap is provided between the first drip-proof member 91 and the lens holding frame F1. This reduces the load on the stepping motor 301 compared to when the first drip-proof member 91 and the lens holding frame F1 come into contact with each other, thereby improving the position control accuracy of the optical system block unit 100.
  • the stepping motor 301 is used as a drive source for rotating the lead screw 302.
  • an ultrasonic motor or a VCM motor may be used instead of the stepping motor 301.
  • a position detection unit may be provided to perform feedback control.
  • the linear guide mechanism may be a combination of a shaft-shaped guide bar and an engagement portion that engages with the guide bar. In that case, two or more linear guide mechanisms are required, and two linear guide mechanisms may be disposed on the second straight line LN2.
  • the front bearings 102a-102c and the rear bearings 103a-103c engage with the first guide groove 11a-third guide groove 11c in the first groove engagement portion 101a-third groove engagement portion 101c, but the front bearings 102a-102c and the rear bearings 103a-103c may be omitted, and the front protrusions 112a-112c and the rear protrusions 113a-113c may engage with the first guide groove 11a-third guide groove 11c.
  • one of the front bearing 102a and the rear bearing 103a may be omitted, one of the front bearing 102b and the rear bearing 103b may be omitted, or one of the front bearing 102c and the rear bearing 103c may be omitted.
  • the first guide groove 11a and the second guide groove 11b are arranged on the second straight line LN2, so the effect of suppressing the tilt of the moving part 20 can be maintained.
  • the first guide groove 11a and the second guide groove 11b are arranged on the second straight line LN2, but they may be arranged at a position offset from the second straight line LN2 within a predetermined range.
  • at least a part of the first guide groove 11a may be arranged on the second straight line LN2, and at least a part of the second guide groove 11b may also be arranged on the second straight line LN2.
  • the angle between the second straight line LN2 and the straight line connecting the optical axis OA and the center of the first guide groove 11a may be within a range of ⁇ 15°.
  • the angle between the second straight line LN2 and the straight line connecting the optical axis OA and the center of the second guide groove 11b may be within a range of ⁇ 15°.
  • the third guide groove 11c may be omitted. Furthermore, although the third guide groove 11c is disposed on the first straight line LN1, it may be disposed at a position offset from the first straight line LN1 within a specified range. For example, in a plane perpendicular to the optical axis OA, it is sufficient that at least a portion of the third guide groove 11c is disposed on the first straight line LN1. Specifically, in a plane perpendicular to the optical axis OA, it is sufficient that the angle between the straight line connecting the optical axis OA and the center of the third guide groove 11c and the first straight line LN1 is within a range of ⁇ 15°.
  • the drip-proof structure 90 has two drip-proof members, the first drip-proof member 91 and the second drip-proof member 92, but it may have three or more drip-proof members.
  • the first drip-proof member 91 is disposed closer to the object than the second drip-proof member 92 in the direction of the optical axis OA, but the second drip-proof member 92 may be disposed closer to the object than the first drip-proof member 91.
  • the focusing method of the lens barrel 2 is described as a full extension method, but the configuration according to this embodiment can be adopted even if the focusing method of the lens barrel 2 is other than a full extension method.
  • the optical system block unit 100 may be supported by the first guide groove 11a to the third guide groove 11c.
  • the first drip-proof member 91 and the second drip-proof member 92 are provided between the lens holding frame F1, which is movable relative to the optical axis OA direction and does not rotate relative to the circumferential direction, and the second fixed barrel member 13b, but this is not limited to the above.
  • the drip-proof structure 90 may be applied to a gap between two frames that are movable relative to the optical axis OA direction and rotate relative to the circumferential direction, such as the gap between the lens holding frame and the focus operation ring.
  • the stepping motor 301 is positioned above the center of the optical axis in FIG. 8, this can be changed as appropriate depending on the positional relationship with other members inside the lens barrel 2. For example, it is preferable to position the stepping motor 301 in a position that does not interfere with the electrical contacts with the camera body 3 in the lens barrel 2, or with a board that is positioned perpendicular to the optical axis.

Abstract

レンズ鏡筒は、レンズを保持する第1枠と、駆動軸を含み、前記第1枠を光軸方向に駆動する駆動部と、前記第1枠の光軸方向の駆動を案内する少なくとも2つの案内部を有する第2枠と、を備え、光軸に直交する平面において、前記少なくとも2つの案内部のうち少なくとも一つは、前記駆動軸の軸と前記光軸とを通る第1直線に直交し、前記光軸を通過する第2直線上に配置されている。

Description

レンズ鏡筒及び撮像装置
 レンズ鏡筒及び撮像装置に関する。
 レンズ鏡筒等の光学装置では、変倍動作や合焦動作の際にレンズ群を移動させるレンズ移動装置が搭載されている。
 レンズ群の位置制御精度の向上が望まれている。
国際公開第2018/105200号
 第1の態様によれば、レンズ鏡筒は、レンズを保持する第1枠と、駆動軸を含み、前記第1枠を光軸方向に駆動する駆動部と、前記第1枠の光軸方向の駆動を案内する少なくとも2つの案内部を有する第2枠と、を備え、光軸に直交する平面において、前記少なくとも2つの案内部のうち少なくとも一つは、前記駆動軸の軸と前記光軸とを通る第1直線に直交し、前記光軸を通過する第2直線上に配置されている。
 第2の態様によれば、レンズ鏡筒は、レンズを保持する第1枠と、駆動軸を含み、前記第1枠を光軸方向に駆動する駆動部と、前記第1枠の光軸方向の駆動を案内する少なくとも2つの案内部を有する第2枠と、前記第1枠に固定される内輪と、前記内輪に対して相対的に回転可能な外輪と、を備え、前記外輪の外周面は前記案内部と当接する。
 第3の態様によれば、レンズ鏡筒は、光軸方向に相対移動する第1枠と第2枠とを備えるレンズ鏡筒であって、前記第1枠と前記第2枠との間であって、前記レンズ鏡筒の外部と内部とを連通する隙間に設けられた少なくとも2つの防滴部材を備える。
 第4の態様によれば、撮像装置は、上記レンズ鏡筒を備える。
 なお、後述の実施形態の構成を適宜改良しても良く、また、少なくとも一部を他の構成物に代替させても良い。更に、その配置について特に限定のない構成要件は、実施形態で開示した配置に限らず、その機能を達成できる位置に配置することができる。
図1(A)及び図1(B)は、一実施形態に係るレンズ鏡筒を備えるカメラの構成を示す断面図であり、図1(A)は無限遠の状態、図1(B)は至近の状態を示す。 図2は、第1固定筒部材の斜視図である。 図3は、光学系ブロック部の分解斜視図である。 図4(A)は、移動ブロック部の分解斜視図であり、図4(B)は、移動ブロック部を像面側から見た斜視図である。 図5は、図1(A)において、点線で囲まれた部分C1を拡大した図である。 図6は、駆動機構の構成について説明するための斜視図である。 図7は、駆動機構の構成について説明するための断面図である。 図8は、第1~第3案内溝の配置について説明するための図である。 図9(A)は、比較例に係る第1案内溝~第3案内溝の配置例を概略的に示す図であり、図9(B)は、第1案内溝及び第2案内溝を第2直線上に配置する理由について説明するための図である。 図10(A)は、図1(A)において点線で囲まれた部分C2を拡大した図であり、図10(B)は、比較例に係る防滴構造を示す断面図である。
 以下、実施形態に係るレンズ鏡筒について、図面を参照し、詳細に説明する。なお、実施形態に示す各部の形状や、長さ、厚みなどの縮尺は必ずしも実物と一致するものではなく、また、各図において、理解を容易にするため、一部の要素の図示を省略している場合がある。また、断面図において一部の要素のハッチングを省略している場合がある。
 図1(A)及び図1(B)は、一実施形態に係るレンズ鏡筒2を備えるカメラ1の構成を示す断面図であり、図1(A)は無限遠の状態、図1(B)は至近の状態を示している。
 図1(A)及び図1(B)に示すように、カメラ1は、カメラボディ3とレンズ鏡筒2とを備える。レンズ鏡筒2は、後部(基端部)にレンズマウントLMを有し、レンズマウントLMがカメラボディ3のボディマウント(不図示)と係合することで、カメラボディ3に着脱可能に装着されている。なお、本実施形態において、レンズ鏡筒2は、カメラボディ3に対して着脱可能であるが、これに限定されず、レンズ鏡筒2とカメラボディ3とは一体であってもよい。
 カメラボディ3は、内部に撮像素子IS及び制御部(不図示)等を備えている。撮像素子ISは、たとえばCCD(Charge Coupled Device)等の光電変換素子によって構成され、結像光学系(カメラボディ3に装着されたレンズ鏡筒2)によって結像された被写体像を電気信号に変換する。
 制御部は、CPU(Central Processing Unit)等を備え、カメラボディ3及び装着されたレンズ鏡筒2における合焦駆動を含む撮影に係る当該カメラ1全体の動作を統括制御する。
 レンズ鏡筒2は、固定筒13と、フォーカス操作環12と、フォーカス操作環12の操作や、カメラボディ3などを介したユーザーの操作に応じて光軸OA方向に移動する光学系ブロック部100と、を備える。固定筒13内に、第1固定筒部材13aと第2固定筒部材13bとが配置されている。光学系ブロック部100は、第1枠の一例であり、第1固定筒部材13aは第2枠の一例である。
 図2は、第1固定筒部材13aの斜視図である。図2に示すように、第1固定筒部材13aの内周には、光学系ブロック部100を光軸OA方向に案内するための第1案内溝11a、第2案内溝11b、及び第3案内溝11cが形成されている。第1案内溝11a~第3案内溝11c各々は、光軸OA方向に延伸する直線溝であり、その底面は、物体側の底面が、像面側の底面よりも外径側に位置する階段状となっている(図1(A)及び図1(B)参照)。第1案内溝11a~第3案内溝11cの配置の詳細については後述する。第1案内溝11a~第3案内溝11cは、案内部の一例である。
 図3は、光学系ブロック部100の分解斜視図である。図1(A)、図1(B)及び図3に示すように、光学系ブロック部100は、レンズ保持枠F1と、レンズ群L1と、絞り機構40と、移動ブロック部200と、レンズ保持枠F2と、レンズ群L2と、を含む。
 レンズ群L1及びL2は、共通の光軸OAに沿って順次配列されており、レンズ群L1は、レンズ保持枠F1に保持され、レンズ群L2は、レンズ保持枠F2に保持されている。レンズ群L1及びL2は、フォーカスレンズ群である。上述したように、レンズ群L1及びL2を含む光学系ブロック部100は、フォーカス操作環12の操作や、カメラボディ3などを介したユーザーの操作に応じて光軸OA方向に移動する。すなわち、本実施形態に係るレンズ鏡筒2は、光学系全体をフォーカス群として駆動する全体繰り出し方式のフォーカシング方式を採用している。これにより、レンズ鏡筒2の光軸OA方向の全長を、例えば、インナーフォーカス方式を採用する場合と比較して短くできる。すなわち、レンズ鏡筒2を小型化できる。
 なお、レンズ群L1及びL2は、それぞれ1枚のレンズで構成されていてもよいし、複数のレンズで構成されていてもよい。また、2つのレンズ群で構成されたレンズ鏡筒を例に説明するが、レンズ群は1つでもよいし、3つ以上あってもよい。
 絞り機構40は、レンズ群L1とL2との間に配置されている。
 図4(A)は、移動ブロック部200の分解斜視図であり、図4(B)は、移動ブロック部200を像面側から見た斜視図である。また、図5は、図1(A)において、点線で囲まれた部分C1を拡大した図である。図4(A)及び図4(B)に示すように、移動ブロック部200は、連結部10と、移動部20と、付勢部保持部30と、を備える。
 付勢部保持部30は、第1付勢部材81と、第2付勢部材82と、を保持し、ねじ73により連結部10に固定される。図5に示すように、連結部10と付勢部保持部30との間には、移動部20の一部が配置される。
 図5に示すように、本実施形態において、第1付勢部材81はコイルばねである。図5に示すように、第1付勢部材81は、移動部20に設けられた孔20bに収容され、一端が孔20bの底部20cに接触し、他端が付勢部保持部30に接触する。これにより、図5において矢印A2で示すように、移動部20は、連結部10に向かって付勢されるため、移動部20と連結部10との間の光軸方向のガタが抑制され、移動部20が光軸方向に移動すると、連結部10も光軸方向に移動する。なお、第1付勢部材81は、移動部20を連結部10に向かって付勢できるのであればコイルばねに限られるものではなく、板ばね等でもよい。
 図4(B)及び図5に示すように、第2付勢部材82はコイルばねであり、一端は移動部20に接触し、他端は付勢部保持部30に接触する。これにより、図5において矢印A1で示すように、移動部20は、後述するリードスクリュー302に向かって付勢される。なお、第2付勢部材82は、リードスクリュー302に向かって付勢できるのであればコイルばねに限られるものではなく、板ばね等でもよい。
 図3に示すように、連結部10には、レンズ保持枠F1及びレンズ保持枠F2が連結されている。具体的には、レンズ保持枠F1は、ねじ71により連結部10に固定され、レンズ保持枠F2は、ねじ72により連結部10に固定されている。
 上述したように、連結部10は、第1付勢部材81と付勢部保持部30とにより、移動部20と接続されている。これにより、移動部20が光軸OA方向に移動すると、レンズ保持枠F1及びF2が光軸OA方向に移動する。
 また、図4(A)及び図4(B)等に示すように、連結部10は、円筒部10aと、円筒部10aから径方向に突出する第1溝係合部101a、第2溝係合部101b、及び第3溝係合部101cと、を備える。
 第1溝係合部101aは、径方向に突出し、光軸OA方向に離間して配置された前方突部112a及び後方突部113aと、前方ベアリング102aと、後方ベアリング103aと、を有する。前方突部112aの外周は前方ベアリング102aの内輪と嵌合し、後方突部113aの外周は後方ベアリング103aの内輪と嵌合する。これにより、前方ベアリング102aと後方ベアリング103aとは、光軸OA方向に離間して配置される。
 前方ベアリング102aと後方ベアリング103aとは、第1案内溝11aと係合する。前方ベアリング102aと後方ベアリング103aは、回転しながら第1案内溝11aに沿って移動する。これにより、第1溝係合部101aが第1案内溝11a内を移動するときに生じる摩擦は転がり摩擦となる。このため、例えば、ベアリングを介さずに、前方突部112aと、後方突部113aとが、第1案内溝11aと係合する場合と比較して、第1溝係合部101aが第1案内溝11a内を移動するときに摺動抵抗が減り、移動部20を光軸OA方向に移動させるための駆動部(後述するステッピングモータ301)にかかる負荷を低減することができる。
 第2溝係合部101bは、第1溝係合部101aと同様に、径方向に突出し、光軸OA方向に離間して配置される前方突部112b(不図示)及び後方突部113b(不図示)と、前方ベアリング102bと、後方ベアリング103bと、を有する。前方突部112bの外周は前方ベアリング102bの内輪と嵌合し、後方突部113bの外周は後方ベアリング103bの内輪と嵌合する。これにより、前方ベアリング102bと後方ベアリング103bとは、光軸OA方向に離間して配置される。
 前方ベアリング102bと、後方ベアリング103bとは、第2案内溝11bと係合する。これにより、第2溝係合部101bが第2案内溝11b内を移動するときに生じる摩擦は転がり摩擦となる。このため、例えば、ベアリングを介さずに、前方突部112bと、後方突部113bとが、第2案内溝11bと係合する場合と比較して、第2溝係合部101bが第2案内溝11b内を移動するときにステッピングモータ301にかかる負荷を低減することができる。
 第3溝係合部101cは、第1溝係合部101aと同様に、径方向に突出し、光軸OA方向に離間して配置される前方突部112c及び後方突部113c(図1(A)及び図1(B)参照)と、前方ベアリング102cと、後方ベアリング103cと、を有する。前方突部112cの外周は前方ベアリング102cの内輪と嵌合し、後方突部113cの外周は後方ベアリング103cの内輪と嵌合する。これにより、前方ベアリング102cと後方ベアリング103cとは、光軸OA方向に離間して配置される。
 前方ベアリング102cと、後方ベアリング103cとは、第3案内溝11cと係合する。これにより、第3溝係合部101cが第3案内溝11c内を移動するときに生じる摩擦は転がり摩擦となる。このため、例えば、ベアリングを介さずに、前方突部112cと、後方突部113cとが、第3案内溝11cと係合する場合と比較して、第3溝係合部101cが第3案内溝11c内を移動するときにステッピングモータ301にかかる負荷を低減することができる。
 また、本実施形態において、後方ベアリング103aは、前方ベアリング102aよりも内径側に位置し、後方ベアリング103bは、前方ベアリング102bよりも内径側に位置し、後方ベアリング103cは、前方ベアリング102cよりも内径側に位置する。これにより、図1(B)に示すように、後方ベアリング103a~103cの外周側にフレキシブル基板等の他の部材を配置可能なスペースを確保できる。また、当該構成により、前方ベアリング102aと後方ベアリング103aとの間の距離、前方ベアリング102bと後方ベアリング103bとの間の距離、前方ベアリング102cと後方ベアリング103cとの間の距離を長くできる。これにより、レンズ群L1及びL2の中心軸が光軸OAに対して傾くことを抑制できるため、レンズ鏡筒2の光学性能を向上させることができる。なお、前方ベアリング102aと後方ベアリング103aとの間の距離、前方ベアリング102bと後方ベアリング103bとの間の距離、前方ベアリング102cと後方ベアリング103cとの間の距離は、同じでもよいし、それぞれ異なっていてもよい。
 上述したように本実施形態に係るレンズ鏡筒2のフォーカシング方式は、全体繰り出し方式であるため、光学系ブロック部100がレンズ鏡筒2から突出する。この場合、レンズ鏡筒2の落下時、フォーカスレンズ群に衝撃が直接加わることとなる。本実施形態に係る第1案内溝11a~第3案内溝11cと、第1溝係合部101a~第3溝係合部101cと、によって光学系ブロック部100を支持することにより、例えば1本のガイドバーで光学系ブロック部100を支持する場合よりも、衝撃に対する強度を高くすることができる。
 図4(A)に示すように、移動部20には、光学系ブロック部100を駆動する駆動機構300が備えるリードスクリュー係合部303を収容する孔20aと、上述した第1付勢部材81を収容する孔20bと、が形成されている。ここで、光学系ブロック部100を駆動する駆動機構300について説明する。
 図6は、駆動機構300の構成について説明するための斜視図であり、駆動機構300と光学系ブロック部100とを像面側から見た斜視図である。図7は、駆動機構300の構成について説明するための断面図である。図8は、第1~第3案内溝の配置について説明するための図であり、光学系ブロック部100と、第1固定筒部材13aと、を物体側から見た平面図である。
 図6に示すように、駆動機構300は、ステッピングモータ301と、リードスクリュー302と、リードスクリュー係合部303と、を備える。
 本実施形態では、リードスクリュー302の駆動源としてステッピングモータ301を用いる。ユーザーがフォーカス操作環12の操作や、カメラボディ3などを介した操作を行うと、不図示のレンズ内制御部が操作量に応じてリードスクリュー302を回転させることにより、光学系ブロック部100は光軸OA方向に移動する。
 本実施形態では、ステッピングモータ301のオープンループ制御によって、光学系ブロック部100の位置を制御する。つまり、光学系ブロック部100の位置を検出してレンズ内制御部にフィードバックしていない。これにより、光学系ブロック部100の位置をフィードバック制御するための位置検出部(フィードバックセンサ等)を省略することができるため、レンズ鏡筒2の小型化やコストダウンにつながる。光学系ブロック部100の位置は、ステッピングモータ301のステップ数(回転数)により表されるので、必要に応じてステップ数から表される位置データがカメラボディ3やレンズ内制御部に送信される。
 図8に示すように、本実施形態において、ステッピングモータ301の出力軸301aと、リードスクリュー302とは、ギア305a~305cを介して接続される。具体的には、図8に示すように、ステッピングモータ301の物体側に出力軸301aが配置される。ステッピングモータ301の出力軸301aの物体側端部にギア305aを装着し、リードスクリュー302の物体側端部にギア305bを装着し、ギア305aとギア305bとに係合するギア305cを、ギア305aとギア305bとの間に配置する。ステッピングモータ301と出力軸301aとを合わせた光軸方向の長さと、リードスクリュー302の光軸方向の長さはほぼ同等である。従って、ギア305a~305cより像側に、ステッピングモータ301およびその出力軸301aと、リードスクリュー302とは平行に配置される。これにより、ステッピングモータ301の出力軸301aの物体側端部からギア305cを介して、リードスクリュー302の物体側端部に回転力が伝達される。当該構成により、ステッピングモータ301の出力軸301aとリードスクリュー302とが折り畳まれて配置されるので、出力軸とリードスクリューを直接連結する場合と比較して、レンズ鏡筒2の光軸OA方向の全長を短くすることができる。ステッピングモータ301と出力軸301aとを合わせた光軸方向の長さや、リードスクリュー302の光軸方向の長さは適宜変更可能である。
 図7に示すように、リードスクリュー302は、リードスクリュー支持機構304と、第1固定筒部材13aとによって、回転可能に支持されている。本実施形態では、リードスクリュー支持機構304は、ベアリング304aを介して、リードスクリュー302の一端部を回転可能に支持し、第1固定筒部材13aは、ベアリング304bを介して、リードスクリュー302の他端部を回転可能に支持する。このようにリードスクリュー302の両端をベアリングで支持することにより、リードスクリュー302を回転させるときにステッピングモータ301にかかる負荷を低減することができる。本実施形態では、ステッピングモータ301のオープンループ制御により、光学系ブロック部100の位置を制御する。このため、ステッピングモータ301に過剰な負荷がかかると、ステッピングモータ301の所定の駆動量に対して、光学系ブロック部100の所望の移動量を得ることができない場合がある。したがって、本実施形態では、ステッピングモータ301にかかる負荷を低減することによって、光学系ブロック部100の位置制御精度を向上させている。
 リードスクリュー係合部303は、図7に示すように、環状部材303aと、ベアリング303bと、を備える。環状部材303aの外周は、ベアリング303bの内輪と嵌合している。ベアリング303bの外周は、移動部20が備える孔20aの内周に嵌合している。
 環状部材303aの内周には、リードスクリュー302のねじ溝と接触する溝313が形成されている。溝313は、環状部材303aの内周の全周にわたって形成される周溝である。
 環状部材303aは、第2付勢部材82によって、図7において矢印A1で示すように、リードスクリュー302の軸AX1方向と直交する方向にリードスクリュー302に向かって付勢される。これにより、環状部材303aの溝313がリードスクリュー302のねじ溝に押し付けられるため、環状部材303aとリードスクリュー302との間のガタが抑制される。また、リードスクリュー係合部303は、移動部20に形成された孔20aに収容されるため、移動部20とリードスクリュー係合部303とが接続される。
 環状部材303aは回転可能に支持されているため、リードスクリュー302が回転すると、環状部材303aは、リードスクリュー302のねじ溝のフランク面に押されて回転しながらリードスクリュー302の軸方向に移動する。これにより、リードスクリュー係合部303と係合する移動部20もリードスクリュー302の軸方向に移動する。光学系ブロック部100は、移動部20の移動に伴い、第1固定筒部材13aが備える第1案内溝11a~第3案内溝11cに案内されて光軸OA方向に移動する。
 環状部材303aは、回転しながらリードスクリュー302の軸AX1方向に移動するため、環状部材303aとリードスクリュー302との間に生じる摩擦は、転がり摩擦となる。これにより、光学系ブロック部100をリードスクリュー302の軸方向に移動させるときにステッピングモータ301にかかる負荷を低減することができるので、光学系ブロック部100の位置制御精度を向上させることができる。なお、リードスクリュー係合部303の構造として、特願2021-156263に開示された構造を適用してもよい。
 次に、第1固定筒部材13aが有する第1案内溝11a~第3案内溝11cの配置について説明する。本実施形態では、図8に示すように、第1案内溝11aと第2案内溝11bと、は、光軸OAと直交する平面において、リードスクリュー302の軸AX1と光軸OAとを通過する第1直線LN1に直交し、光軸OAを通過する第2直線LN2上に配置されている。また、第3案内溝11cは、第1直線LN1上に配置されている。
 第1案内溝11a~第3案内溝11cを上記のように配置する理由について説明する。図9(A)は、比較例に係る第1案内溝901a、第2案内溝901b、及び第3案内溝901cの配置例を概略的に示す図である。比較例では、第1案内溝901a~第3案内溝901cは、120度間隔で配置されている。このとき、第1案内溝901a~第3案内溝901cと、例えば、前方ベアリング102a~102cとの間のガタ隙間をaとすると、リードスクリュー302の軸AX1と光軸OAとを通る第1直線LN1と平行な方向におけるガタ隙間bは、例えば、第1案内溝901aにおいて、b=a/cosθとなり、設計時のガタ隙間aより大きくなるため、光学系ブロック部100は、図9(A)におけるピッチ方向のガタつきが大きくなってしまい、その分駆動精度に影響を及ぼす。したがって、本実施形態では、b=aとなるθ=0°の位置、すなわち、第1直線LN1と直交する第2直線LN2上に第1案内溝11a及び第2案内溝11bを配置している。このようにして光学系ブロック部100の倒れを抑制して、光学系ブロック部100の位置精度を向上させている。また、第1直線LN1上にある第3案内溝11cは、図9(A)におけるヨー方向のガタつきに関与するが、支点の位置関係上、光軸センター付近の駆動性能への影響は無い。また、光軸から離れた周辺部の駆動性能においても、第3案内溝11cの向きが図9(A)における鉛直方向にある為、最小のガタで済み、ヨー方向のガタつきも小さく済むため、駆動精度に大きく影響しない。
 図9(B)は、第1案内溝11a及び第2案内溝11bを第2直線LN2上に配置する他の理由について説明するための図である。図9(A)と同様に、第1案内溝901a~第3案内溝901cは、120度間隔で配置されている。ここで、図9(B)の右側の図に示すように、第1案内溝901a又は第2案内溝901bが設けられた位置(回転中心RC1)を中心にレンズ鏡筒2全体が傾いたとする。この場合、回転中心RC1の位置がレンズ群の中心位置からDで示す量ずれてしまう。当該ずれ量Dは、レンズの倒れによる光軸方向のズレであり、精度誤差となる。第2直線LN2上に第1案内溝11a及び第2案内溝11bを配置することで、レンズ鏡筒2の回転中心の位置に起因する精度誤差を低減することができる。また、第1直線LN1上にある第3案内溝11cは、図9(A)におけるヨー方向のガタつきに関与するが、支点の位置関係上、光軸センター付近の駆動性能への影響は無い。また、光軸から離れた周辺部の駆動性能においても、第3案内溝11c部の向きが図9(A)における鉛直方向にある為、最小のガタで済み、ヨー方向のガタつきも小さく済むため、精度誤差に大きく影響しない。
 このように、本実施形態では、ステッピングモータ301にかかる負荷を低減するとともに、第1案内溝11a~第3案内溝11cを上記のように配置することで、光学系ブロック部100の位置制御精度を向上させている。
<防滴構造>
 本実施形態に係るレンズ鏡筒2では、光学系ブロック部100が光軸OA方向に移動し、図1(B)に示すように、レンズ保持枠F1がレンズ鏡筒2から突出する場合がある。このとき、降雨等によってレンズ保持枠F1に付着した水滴が、第2固定筒部材13bとレンズ保持枠F1との間の隙間を通ってレンズ鏡筒2の内部に浸入することは好ましくない。そこで、レンズ鏡筒2は、レンズ保持枠F1に付着した水滴がレンズ鏡筒2の内部に浸入することを防止する防滴構造を備えている。
 図10(A)は、本実施形態に係る防滴構造90を説明するための図であり、図1(A)の点線で囲まれた部分C2を拡大した図である。
 図10(A)に示すように、本実施形態に係るレンズ鏡筒2は、光軸方向に移動するレンズ保持枠F1と、レンズ保持枠F1の径方向外側に配置される第2固定筒部材13bとを備える。レンズ保持枠F1が光軸方向に移動することにより、レンズ保持枠F1と第2固定筒部材13bとの光軸方向の位置関係は相対的に変化する。レンズ保持枠F1と第2固定筒部材13bとの間であって、レンズ鏡筒2の外部と内部とを連通する隙間として空間Sが形成される。空間Sには、防滴構造90が備えられる。防滴構造90は、第1防滴部材91と、第1防滴部材91とは異なる素材から形成される第2防滴部材92と、を含む。レンズ保持枠F1は、第1枠の一例であり、第2固定筒部材13bは、第2枠の一例である。本実施形態において、レンズ保持枠F1は、第2固定筒部材13bに対して光軸OA方向に移動可能であり、レンズ保持枠F1と第2固定筒部材13bとは周方向に相対回転しない。
 第1防滴部材91と、第2防滴部材92とは、光軸方向に並んで配置されており、第1防滴部材91は、第2防滴部材92よりも物体側に配置されている。
 本実施形態において、第1防滴部材91は、吸水性を有する弾性部材(クッション性を有する部材)であり、レンズ保持枠F1の外周を取り囲むように配置されている。第1防滴部材91の材料としては、例えば、不織布構造体、合成皮革、起毛布または植毛布があげられる。本実施形態では、第1防滴部材91は、レンズ保持枠F1と対向する面に撥水剤を塗布した不織布構造体である。光軸方向において第1防滴部材91の厚みはほぼ一定であり、第1防滴部材91の断面は長方形である。
 第1防滴部材91とレンズ保持枠F1との間には隙間が設けられている。すなわち、第1防滴部材91と、レンズ保持枠F1とは接触していない。これにより、第1防滴部材91がレンズ保持枠F1と接触している場合と比較して摺動抵抗が少なく、光学系ブロック部100が光軸OA方向に移動するときの駆動負荷を低減することができる。そのため、光学系ブロック部100の姿勢が安定するので、レンズ鏡筒2の光学性能が向上するとともに、ステッピングモータ301にかかる負荷を抑えることができる。これにより、光学系ブロック部100の位置制御精度を向上させることができる。
 第2防滴部材92は、滑り性を向上させる塗装が施された弾性部材であり、環状に形成されている。第2防滴部材92は、例えば、滑り性を向上させる塗装が施されたゴムシートである。第2防滴部材92の厚みは略一定であり、逆L字形状の断面となるように配置されている。第2防滴部材92の内周面の一端部はレンズ保持枠F1と接触して固定され、他端部は第2固定筒部材13bに固定されるリードスクリュー支持機構304の物体側面に固定されている。
 上記防滴構造90により、光学系ブロック部100を、例えば至近の状態から無限遠状態に移動させたときに、第1防滴部材91の撥水性によって、レンズ保持枠F1に付着した水滴のレンズ鏡筒2の内部への浸入が抑制される。また、水滴がレンズ鏡筒2の内部(図10(A)の空間S)へ浸入した場合でも、第2防滴部材92によって、水滴がレンズ鏡筒2のさらに内部(リードスクリュー支持機構304及び第2固定筒部材13bよりも像面側)に浸入することを防止することができる。空間S内に浸入した水滴は、吸水性を有する第1防滴部材91によって吸収され、時間の経過とともに第1防滴部材91から蒸発する。また、仮に第1防滴部材91によって吸収されなかった水滴があったとしても、第2防滴部材92を備えることにより確実にレンズ鏡筒2の内部への侵入を防止することができる。
 これにより、防滴構造90では、例えば、図10(B)に示す比較例のように、例えば不織布構造体991を押しつぶしてレンズ保持枠F1に接触させた防滴構造と同程度の防滴性能を得ることができる。不織布構造体991を押しつぶしてレンズ保持枠F1に接触させると、光学系ブロック部100が光軸OA方向に移動するときに、不織布構造体991とレンズ保持枠F1との間で摩擦が生じて駆動抵抗となり、ステッピングモータ301に負荷がかかってしまう。ステッピングモータ301に負荷がかかると、ステッピングモータ301を所定量駆動しても、駆動抵抗により光学系ブロック部100の移動量が当該所定量に正確に対応した移動量とならない場合が生じる。本実施形態では、第1防滴部材91はレンズ保持枠F1と接触していないため、ステッピングモータ301にかかる負荷を低減できる。これにより、光学系ブロック部100の位置制御精度を向上することができる。
 なお、不織布構造体991を押しつぶすとは、レンズ鏡筒に組み付けた状態における不織布構造体991の断面の高さが、レンズ鏡筒に組み付けていない状態における不織布構造体991の断面の高さよりも小さいことを意味する。
 以上、詳細に説明したように、本実施形態によれば、レンズ鏡筒2は、レンズ群L1及びL2を保持する光学系ブロック部100と、リードスクリュー302を含み、光学系ブロック部100を光軸OA方向に駆動する駆動機構300と、光学系ブロック部100の光軸OA方向の駆動を案内する第1案内溝11a~第3案内溝11cを有する第1固定筒部材13aと、を備え、光軸OAに直交する平面において、第1案内溝11a~第3案内溝11cのうち第1案内溝11a及び第2案内溝11bは、リードスクリュー302の軸AX1と光軸OAとを通る第1直線LN1に直交し、光軸OAを通過する第2直線LN2上に配置されている。
 これにより、図9(A)及び図9(B)を参照して説明したように、光学系ブロック部100の駆動精度を向上させ、さらに精度誤差を低減できるため、光学系ブロック部100の位置制御精度を向上させることができる。
 また、本実施形態によれば、第1案内溝11a~第3案内溝11cは、光軸OA方向に沿って配置された直線溝であり、光学系ブロック部100は、径方向外側に突出して直線溝に沿って案内される前方突部112a~112c及び後方突部113a~113cを有する。これにより、光学系ブロック部100を光軸OA方向に案内することができる。
 また、本実施形態によれば、光学系ブロック部100は、前方突部112a~112cの中心を軸に回転可能である前方ベアリング102a~102c及び後方突部113a~113cの中心を軸に回転可能である後方ベアリング103a~103cを有する。
 これにより、光学系ブロック部100が光軸OA方向に移動するときにステッピングモータ301にかかる負荷を低減することができるため、光学系ブロック部100の位置制御精度を向上させることができる。
 また、本実施形態によれば、第1案内溝11a~第3案内溝11cは、第2直線LN2上に配置された第1案内溝11a及び第2案内溝11bと、第1案内溝11a及び第2案内溝11bとは異なる第3案内溝11cと、を含む。光学系ブロック部100を3つの案内部材で支持するため、例えば2つ以下の案内部材で支持する場合と比較して、レンズ鏡筒2の衝撃に対する強度を高めることができる。
 また、第3案内溝11cは、第1直線LN1上に配置されている。つまり、第3案内溝11cは、光軸OAに直交する平面において、リードスクリュー302と対向する位置に配置されている(180°離れて配置されている)。第3案内溝11cは、図9(A)におけるヨー方向のガタつきに関与するが、支点の位置関係上、光軸センター付近の駆動性能への影響は無い。また、光軸から離れた周辺部の駆動性能においても、第3案内溝11c部の向きが図9(A)における鉛直方向にある為、最小のガタで済み、ヨー方向のガタつきも小さく済むため、光学系ブロック部100の駆動精度に影響を与えない。したがって、光学系ブロック部100の駆動精度に大きな影響を与えることなく、光学系ブロック部100を支持することができ、レンズ鏡筒2の衝撃に対する強度を高めることができる。
 また、本実施形態において、リードスクリュー302が回転すると、環状部材303aは、回転しながらリードスクリュー302の軸AX1方向に移動するため、環状部材303aとリードスクリュー302との間に生じる摩擦は、転がり摩擦となる。これにより、光学系ブロック部100をリードスクリュー302の軸方向に移動させるときにステッピングモータ301にかかる負荷を低減することができるため、光学系ブロック部100の位置制御精度を向上させることができる。
 また、本実施形態によれば、レンズ鏡筒2は、光軸OA方向に相対移動するレンズ保持枠F1と第2固定筒部材13bと、レンズ保持枠F1と第2固定筒部材13bとの間であって、レンズ鏡筒2の外部と内部とを連通する隙間に設けられた第1防滴部材91及び第2防滴部材92と、を備える。言い換えると、レンズ鏡筒2は、レンズ群L1を保持するレンズ保持枠F1と、レンズ保持枠F1の径方向外側に配置され、レンズ保持枠F1に対して光軸OA方向の位置が相対的に変化する第2固定筒部材13bと、レンズ保持枠F1と第2固定筒部材13bとの間の隙間に配置された第1防滴部材91と第2防滴部材92と、を備える。
 これにより、レンズ保持枠F1と第2固定筒部材13bとの間の隙間を介してレンズ鏡筒2の外部からレンズ鏡筒2の内部に水滴が侵入することを抑制することができる。また、レンズ保持枠F1と第2固定筒部材13bとの間の隙間から光が進入することを抑制することができる。
 また、本実施形態において、第1防滴部材91は、第2防滴部材92よりも撥水性が高い。これにより、第1防滴部材91の撥水性によって水滴が侵入することを抑制することができる。
 また、本実施形態において、第1防滴部材91と、第2防滴部材92と、は、光軸OA方向に並んで配置され、第1防滴部材91は、第2防滴部材92よりも物体側に配置されている。すなわち、第2防滴部材92は、第1防滴部材91よりも像面側に配置されている。これにより、第1防滴部材91によって浸入を防ぎきれなかった水滴が存在する場合であっても、第2防滴部材92によって水滴がレンズ鏡筒2のさらに内部に浸入することを抑制することができる。
 また、本実施形態において、光軸と直交する面内における第1防滴部材91の少なくとも一部の厚みT1は、第2防滴部材92の少なくとも一部の厚みT2よりも大きい。物体側に配置される第1防滴部材91の厚みT1を第2防滴部材92の厚みT2より大きくすることにより、レンズ保持枠F1と第2固定筒部材13bとの間の隙間の物体側から水滴が侵入することを効果的に抑制することができる。
 また、本実施形態において、第1防滴部材91とレンズ保持枠F1との間には隙間が設けられている。これにより、第1防滴部材91とレンズ保持枠F1とが接触する場合と比較して、ステッピングモータ301にかかる負荷を低減することができるため、光学系ブロック部100の位置制御精度を向上させることができる。
 なお、上記実施形態において、リードスクリュー302を回転駆動する駆動源としてステッピングモータ301を用いていたが、ステッピングモータ301に代えて、例えば、超音波モータやVCMモータ等を用いてもよい。また、位置検出部を設けてフィードバック制御を行っても良い。
 また、上記実施形態において、第1案内溝~第3案内溝11a~11cと第1溝係合部101a~第3溝係合部101cが係合することとしたが、直進案内機構として、軸状のガイドバーとガイドバーに係合する係合部との組み合わせでもよい。その場合、直進案内機構は2以上あればよく、第2直線LN2上に2つの直進案内機構をそれぞれ配置すればよい。
 また、上記実施形態において、第1溝係合部101a~第3溝係合部101cにおいて、前方ベアリング102a~102c及び後方ベアリング103a~103cが、第1案内溝11a~第3案内溝11cと係合していたが、前方ベアリング102a~102c及び後方ベアリング103a~103cを省略し、前方突部112a~112c及び後方突部113a~113cが第1案内溝11a~第3案内溝11cと係合するようにしてもよい。また、前方ベアリング102aと後方ベアリング103aの一方を省略してもよく、前方ベアリング102bと後方ベアリング103bの一方を省略してもよく、前方ベアリング102cと後方ベアリング103cの一方を省略してもよい。特に、前方ベアリング102cと後方ベアリング103cの少なくとも一方を省略した場合であっても、第2直線LN2上に第1案内溝11aと第2案内溝11bを配置しているので移動部20の倒れを抑制する効果は維持できる。
 また、上記実施形態において、第1案内溝11a及び第2案内溝11bは、第2直線LN2上に配置されていたが、所定範囲内であれば第2直線LN2からずれた位置に配置されていてもよい。例えば、光軸OAに直行する平面において、第1案内溝11aの少なくとも一部が第2直線LN2上に配置されていればよく、第2案内溝11bの少なくとも一部も第2直線LN2上に配置されていればよい。具体的には、光軸OAに直交する平面において、光軸OAと第1案内溝11aの中心とを結ぶ直線と、第2直線LN2とのなす角度が±15°の範囲内にあればよい。また、光軸OAと第2案内溝11bの中心とを結ぶ直線と、第2直線LN2とのなす角度が±15°の範囲内にあればよい。
 また、上記実施形態において、第3案内溝11cを省略してもよい。また、第3案内溝11cは、第1直線LN1上に配置されていたが、所定範囲内であれば第1直線LN1からずれた位置に配置されていてもよい。例えば、光軸OAに直行する平面において、第3案内溝11cの少なくとも一部が第1直線LN1上に配置されていればよい。具体的には、光軸OAに直交する平面において、光軸OAと第3案内溝11cの中心とを結ぶ直線と、第1直線LN1とのなす角度が±15°の範囲内にあればよい。
 また、上記実施形態において、防滴構造90は、第1防滴部材91及び第2防滴部材92の2つの防滴部材を有していたが、3つ以上の防滴部材を備えていてもよい。
 また、上記実施形態において、第1防滴部材91は、光軸OA方向において第2防滴部材92よりも物体側に配置されていたが、第2防滴部材92を第1防滴部材91よりも物体側に配置してもよい。
 なお、上記実施形態において、レンズ鏡筒2のフォーカシング方式が、全体繰り出し方式である場合について説明したが、レンズ鏡筒2のフォーカシング方式が全体繰り出し方式以外であっても、本実施形態に係る構成を採用できる。例えば、光学系ブロック部100が備えるレンズ群L1及びL2が、撮像光学系内の中間部であるインナーフォーカス方式であっても、第1案内溝11a~第3案内溝11cにより光学系ブロック部100を支持してもよい。
 また、上記実施形態において、光軸OA方向に相対移動可能であり、周方向に相対回転しないレンズ保持枠F1と第2固定筒部材13bとの間に第1防滴部材91と第2防滴部材92とを設けていたがこれに限られるものではない。例えば、光軸OA方向に相対移動可能であり、周方向に相対回転する2つの枠の間の隙間、例えば、レンズ保持枠とフォーカス操作環との間の隙間に防滴構造90を適用してもよい。
 また、ステッピングモータ301は図8において光軸中心より上側に配置しているが、レンズ鏡筒2内の他の部材との位置関係で適宜変更可能である。例えば、ステッピングモータ301は、レンズ鏡筒2におけるカメラボディ3との電気接点や、光軸と直交方向に配置される基板とは干渉しない位置に配置するのが好ましい。
 上述した実施形態は好適な実施の例である。但し、これに限定されるものではなく、要旨を逸脱しない範囲内において種々変形実施可能であり、任意の構成要件を組み合わせてもよい。
 1 カメラ
 2 レンズ鏡筒
 13 固定筒
 13a 第1固定筒部材
 13b 第2固定筒部材
 11a~11c 第1~第3案内溝
 20 移動部
 82 第2付勢部材
 91 第1防滴部材
 92 第2防滴部材
 100 光学系ブロック部
 101a~101c 第1~第3溝係合部
 102a~102c 前方ベアリング
 103a~103c 後方ベアリング
 112a~112c 前方突部
 113a~113c 後方突部
 300 駆動機構
 301 ステッピングモータ
 302 リードスクリュー
 303a 環状部材
 L1,L2 レンズ群
 F1 レンズ保持枠
 LN1 第1直線
 LN2 第2直線
 OA 光軸
 AX1 軸

Claims (18)

  1.  レンズを保持する第1枠と、
     駆動軸を含み、前記第1枠を光軸方向に駆動する駆動部と、
     前記第1枠の光軸方向の駆動を案内する少なくとも2つの案内部を有する第2枠と、
    を備え、
     光軸に直交する平面において、前記少なくとも2つの案内部のうち少なくとも一つは、前記駆動軸と前記光軸とを通る第1直線に直交し、前記光軸を通過する第2直線上に配置されている、
    レンズ鏡筒。
  2.  前記少なくとも2つの案内部のうち少なくとも一つは、前記光軸方向に沿って配置された直線溝を有し、
     前記第1枠は、外周から外側に突出して前記直線溝に沿って案内される突部を有する、
    請求項1に記載のレンズ鏡筒。
  3.  前記直線溝の前記光軸方向における物体側の底面は、前記直線溝の像面側の底面よりも外径側に位置する
    請求項2に記載のレンズ鏡筒。
  4.  前記第1枠は、前記突部に設けられ、回転可能である回転部を有する、
    請求項2に記載のレンズ鏡筒。
  5.  前記回転部は前記突部に固定される内輪と、前記内輪に対して相対的に回転可能な外輪とを有し、
     前記外輪の外周面は前記直線溝と当接する、
    請求項4に記載のレンズ鏡筒。
  6.  前記少なくとも2つの案内部は、前記第2直線上に配置された第1及び第2の案内部と、前記第1及び第2の案内部とは異なる第3の案内部と、を含む、
    請求項1に記載のレンズ鏡筒。
  7.  前記第3の案内部は、前記第1直線上に配置されている、
    請求項6に記載のレンズ鏡筒。
  8.  前記駆動部は、
      リードスクリューと、
      環状部材と、
      前記環状部材を回転可能に保持し、前記リードスクリューの回転に伴って前記リードスクリューの軸方向に移動する移動部材と、
      前記リードスクリューの前記軸方向と直交する方向において、前記環状部材を前記リードスクリューに向けて付勢する付勢部と、
    を有する、
    請求項1に記載のレンズ鏡筒。
  9.  レンズを保持する第1枠と、
     駆動軸を含み、前記第1枠を光軸方向に駆動する駆動部と、
     前記第1枠の光軸方向の駆動を案内する少なくとも2つの案内部を有する第2枠と、
     前記第1枠に固定される内輪と、
     前記内輪に対して相対的に回転可能な外輪と、
    を備え、
     前記外輪の外周面は前記案内部と当接する、
    レンズ鏡筒。
  10.  光軸方向に相対移動する第1枠と第2枠とを備えるレンズ鏡筒であって、
     前記第1枠と前記第2枠との間であって、前記レンズ鏡筒の外部と内部とを連通する隙間に設けられた少なくとも2つの防滴部材を備える、
    レンズ鏡筒。
  11.  前記第1枠は、レンズを保持し、
     前記第2枠は、前記第1枠の外周側に配置されている、
    請求項10に記載のレンズ鏡筒。
  12.  前記少なくとも2つの防滴部材は、第1防滴部材と、第2防滴部材と、を含み、
     前記第1防滴部材は、前記第2防滴部材よりも撥水性が高い、
    請求項10又は請求項11に記載のレンズ鏡筒。
  13.  前記第1防滴部材と、前記第2防滴部材と、は、光軸方向に並んで配置され、
     前記第1防滴部材は、前記第2防滴部材よりも物体側に配置されている、
    請求項12に記載のレンズ鏡筒。
  14.  前記第1防滴部材と、前記第2防滴部材と、は、光軸方向に並んで配置され、
     前記第2防滴部材は、前記第1防滴部材よりも物体側に配置されている、
    請求項12に記載のレンズ鏡筒。
  15.  前記第1防滴部材と、前記第2防滴部材と、は、光軸方向に並んで配置され、
     前記第1防滴部材の少なくとも一部の厚みは、前記第2防滴部材の少なくとも一部の厚みよりも大きい、
    請求項12に記載のレンズ鏡筒。
  16.  前記第1枠は、前記第2枠に対して光軸方向に移動可能であり、前記第1枠と前記第2枠は周方向に相対回転しない、
    請求項12に記載のレンズ鏡筒。
  17.  前記第1防滴部材と前記第1枠との間には隙間が設けられている、
    請求項12に記載のレンズ鏡筒。
  18.  請求項1から請求項17のいずれか1項に記載のレンズ鏡筒を備える撮像装置。
PCT/JP2023/045513 2022-12-23 2023-12-19 レンズ鏡筒及び撮像装置 WO2024135686A1 (ja)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2022-206955 2022-12-23

Publications (1)

Publication Number Publication Date
WO2024135686A1 true WO2024135686A1 (ja) 2024-06-27

Family

ID=

Similar Documents

Publication Publication Date Title
US7670066B2 (en) Camera device
US7466504B1 (en) Lens barrel and imaging apparatus
US20100321804A1 (en) Lens driving device and electronic device
US8355212B2 (en) Lens unit and image sensing apparatus incorporated with the same
JP2018151492A (ja) レンズ鏡筒及び撮像装置
WO2024135686A1 (ja) レンズ鏡筒及び撮像装置
US20150323759A1 (en) Optical apparatus and image pickup apparatus
US10802241B2 (en) Lens apparatus and image pickup apparatus
JP6708583B2 (ja) レンズ鏡筒および光学機器
JP2007041151A (ja) レンズ駆動装置
US11586003B2 (en) Lens apparatus and image pickup apparatus
JP2023010855A (ja) レンズ鏡筒及び撮像装置
JP6701797B2 (ja) レンズ鏡筒及び光学機器
JP7505280B2 (ja) レンズ鏡筒及び撮像装置
JP2000266981A (ja) レンズ鏡筒
JP2020194027A (ja) レンズ装置および撮像装置
WO2021251142A1 (ja) レンズ鏡筒及び撮像装置
JP6750883B2 (ja) レンズ鏡筒および光学機器
US20230367095A1 (en) Lens apparatus and image pickup apparatus having the same
US20230393364A1 (en) Lens barrel and imaging device
US20240111123A1 (en) Lens mechanism and lens device
US20230367094A1 (en) Driving apparatus and lens apparatus having the same
JP2021196472A (ja) レンズ鏡筒及び撮像装置
JPH07218805A (ja) レンズ鏡筒
JP2019040092A (ja) レンズ鏡筒および撮像装置