WO2024131824A1 - 空调洗碗设备的控制方法、空调洗碗设备和存储介质 - Google Patents

空调洗碗设备的控制方法、空调洗碗设备和存储介质 Download PDF

Info

Publication number
WO2024131824A1
WO2024131824A1 PCT/CN2023/140158 CN2023140158W WO2024131824A1 WO 2024131824 A1 WO2024131824 A1 WO 2024131824A1 CN 2023140158 W CN2023140158 W CN 2023140158W WO 2024131824 A1 WO2024131824 A1 WO 2024131824A1
Authority
WO
WIPO (PCT)
Prior art keywords
flow path
water
control method
heat exchanger
temperature
Prior art date
Application number
PCT/CN2023/140158
Other languages
English (en)
French (fr)
Inventor
殷鹏飞
王海胜
张铭
徐文堂
李泽聚
Original Assignee
青岛海尔空调器有限总公司
青岛海尔空调电子有限公司
海尔智家股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN202223428538.1U external-priority patent/CN219367842U/zh
Priority claimed from CN202211641295.1A external-priority patent/CN118224663A/zh
Application filed by 青岛海尔空调器有限总公司, 青岛海尔空调电子有限公司, 海尔智家股份有限公司 filed Critical 青岛海尔空调器有限总公司
Publication of WO2024131824A1 publication Critical patent/WO2024131824A1/zh

Links

Definitions

  • the present application relates to the technical field of smart home appliances, for example, to a control method of an air-conditioned dishwasher, an air-conditioned dishwasher and a storage medium.
  • a kitchen air conditioner is provided, and the compressor and condenser of the kitchen air conditioner are arranged under the cabinet.
  • the compressor and condenser are cooled by cold water in the water pipe of the sink, and the water in the water pipe is heated by the waste heat and can be used directly.
  • the cabinet space is occupied, which reduces the available space in the kitchen and affects the user experience.
  • the embodiments of the present disclosure provide a control method for an air-conditioned dishwasher, an air-conditioned dishwasher, and a storage medium, which improve the utilization rate of refrigerant and reduce energy consumption.
  • the air-conditioned dishwashing device includes a refrigerant circulation component and a water system
  • the refrigerant circulation component includes a compressor, a four-way valve, an outdoor heat exchanger and an indoor heat exchange flow path connected in sequence to form a refrigerant flow path
  • the indoor heat exchange flow path includes a first flow path and a second flow path connected in parallel to each other, the first flow path includes an indoor heat exchanger, the second flow path includes a heat exchange heat exchanger, and the water system exchanges heat with the heat exchange heat exchanger
  • the control method includes: in response to a water use request, obtaining a target water use temperature T0 and a water temperature T after heat exchange with the water system; according to the target water use temperature T 0 and the water temperature T control the flow rate of the refrigerant in the second flow path.
  • the water system includes a heating element
  • the indoor heat exchange flow path also includes a third flow path, and both ends of the third flow path are respectively connected to the indoor heat exchanger and the heat exchange heat exchanger; before the step of obtaining the target water temperature T0 and the water temperature T after heat exchange with the water system, it also includes: obtaining the operating status of the compressor; based on the compressor being in a shutdown state, controlling the first flow path and the third flow path to close, controlling the second flow path to open, and starting the compressor.
  • control method also includes: obtaining an operating mode of an air-conditioning function based on that the compressor is in a turned-on state; and obtaining an indoor target setting temperature t0 and an indoor temperature t; and controlling the connectivity of the first flow path, the second flow path and the third flow path according to the operating mode, the target setting temperature t0 and the indoor temperature t.
  • the operation mode is a heating mode
  • the step of controlling the connectivity of the first flow path, the second flow path and the third flow path according to the target setting temperature t0 and the indoor temperature t includes: calculating the difference ⁇ t between t0 and t; based on ⁇ t ⁇ t1 °C, controlling the first flow path and the second flow path to be closed, and controlling the third flow path to be connected; based on t1 °C ⁇ ⁇ t ⁇ t2 °C, controlling the first flow path and the second flow path to be connected, and controlling the third flow path to be closed; based on ⁇ t> t2 °C, controlling the first flow path to be connected, and controlling the second flow path and the third flow path to be closed.
  • the operation mode is a cooling mode
  • the step of controlling the connection states of the first flow path, the second flow path and the third flow path according to the target setting temperature t0 and the indoor temperature t comprises: calculating a difference ⁇ t between t and t0 ; based on ⁇ t ⁇ t3 , controlling the four-way valve to switch to operate the heating mode, and controlling the first flow path and the third flow path to be closed, and controlling the second flow path to be connected; in response to a water outlet end request, controlling the second flow path and the third flow path to be closed, controlling the four-way valve to switch to operate the cooling mode, and controlling the first flow path to be connected; based on ⁇ t> t3 , controlling the first flow path to be connected, and controlling the second flow path and the third flow path to be closed.
  • the water system also includes a hot water storage tank and a water outlet connected to the water tank, the heat exchanger is arranged in the water tank, and the control method also includes obtaining the water volume in the hot water storage tank and the current time according to a preset time; determining a target water consumption according to the current time; and filling the hot water storage tank with water based on the water volume being less than the target water consumption.
  • the step of determining the target water consumption based on the current time includes: obtaining the user's daily water consumption data; determining the target water consumption based on the current time and the daily water consumption data; wherein the daily water consumption data includes multiple preset time periods and a preset water consumption corresponding to each preset time period.
  • an air-conditioned dishwashing device comprising a processor and a memory storing program instructions, wherein the processor is configured to execute the control method as described above when executing the program instructions.
  • a storage medium includes a stored program, wherein the program executes the control method as described above when it is executed.
  • control method of the air-conditioned dishwasher, the air-conditioned dishwasher, and the storage medium can achieve the following technical effects:
  • the air-conditioned dishwashing device includes a refrigerant circulation component and a water system.
  • the refrigerant circulation component includes a compressor, a four-way valve, an outdoor heat exchanger and an indoor heat exchange flow path that are connected in sequence to form a refrigerant flow path.
  • the indoor heat exchange flow path includes a first flow path and a second flow path that are connected in parallel.
  • the first flow path includes an indoor heat exchanger for adjusting the indoor ambient temperature.
  • the second flow path includes a heat exchange heat exchanger, and the water system exchanges heat with the heat exchange heat exchanger to achieve the heating of dishwashing water through the refrigerant circulation component.
  • the air-conditioned dishwashing device utilizes the refrigerant circulation component to heat the water in the water system, thereby improving the utilization rate of the refrigerant.
  • the present disclosure utilizes heat exchange with the refrigerant to heat the water system, thereby avoiding the compressor and condenser being built indoors, reducing the occupation of the kitchen space, and improving the utilization rate of the kitchen space.
  • the control method of the air-conditioned dishwasher comprises: receiving a water use request from a user. Obtaining a target water use temperature set by the user and the water temperature of the outlet water after heat exchange with a refrigerant circulation component. According to the target water use temperature and the water temperature after heat exchange, controlling the flow rate of the refrigerant in the second flow path to adjust the water temperature after heat exchange to meet the water use demand of the user.
  • the control method provided by the present disclosure by realizing heat exchange between the dishwasher water and the refrigerant circulation component of the air conditioner, the utilization rate of the refrigerant is improved, the energy consumption is reduced, and the user experience is improved.
  • FIG1 is a schematic structural diagram of an air-conditioned dishwashing device provided by an embodiment of the present disclosure
  • FIG2 is a schematic structural diagram of an air-conditioned dishwashing device provided by another embodiment of the present disclosure.
  • FIG3 is a schematic structural diagram of a host of an air-conditioned dishwasher provided by an embodiment of the present disclosure
  • FIG4 is a schematic diagram of the installation of a host provided by the embodiment shown in FIG3 ;
  • FIG5 is a schematic diagram of installation of the host provided by the embodiment shown in FIG4 from another angle;
  • FIG6 is a front view of the embodiment shown in FIG4;
  • FIG7 is a flow chart of a control method of an air-conditioned dishwashing device provided by an embodiment of the present disclosure
  • FIG8 is a flow chart of a control method of an air-conditioned dishwashing device provided by an embodiment of the present disclosure
  • FIG. 9 is a schematic structural diagram of an air-conditioned dishwashing device provided by an embodiment of the present disclosure.
  • the present disclosure provides an air-conditioned dishwashing device 1, comprising a refrigerant circulation component 20 and a water system 30.
  • the refrigerant circulation component 20 comprises a compressor 202, a four-way valve 204, an outdoor heat exchanger 206 and an indoor heat exchange flow path which are sequentially connected to form a refrigerant flow path.
  • the indoor heat exchange flow path comprises a first flow path 210 and a second flow path 220 which are connected in parallel to each other, and the first flow path 210 comprises an indoor heat exchanger 211 for adjusting the indoor ambient temperature.
  • the second flow path 220 comprises a heat exchange heat exchanger 208, and the water system 30 exchanges heat with the heat exchange heat exchanger 208 to achieve heating of dishwashing water through the refrigerant circulation component 20.
  • the air-conditioned dishwasher 1 utilizes the refrigerant circulation component 20 to heat the water in the water system 30, thereby improving the utilization rate of the refrigerant.
  • the present disclosure utilizes heat exchange with the refrigerant to heat the water system 30, thereby avoiding placing the compressor 202 and the condenser indoors, reducing the occupation of the kitchen space, and improving the utilization rate of the kitchen space.
  • the indoor heat exchange flow path further includes a third flow path 230 , and both ends of the third flow path 230 are respectively connected to the indoor heat exchanger 211 and the heat exchanger 208 .
  • the connectivity state of the third flow path 230 is controlled according to the functional requirements of the user and the operating parameters of the device to meet the user's usage requirements and improve the user's usage experience.
  • the water system 30 includes a water inlet pipeline 302 and a water outlet 304.
  • the water inlet pipeline 302 exchanges heat with the heat exchanger 208, and the water outlet 304 is connected to the water outlet end of the water inlet pipeline 302, and the water outlet 304 is used to discharge water.
  • the water inlet pipeline 302 is provided to achieve heat exchange with the heat exchanger 208 to heat the water in the water inlet pipeline 302 so as to meet the user's usage needs through the water outlet 304 .
  • the water outlet 304 includes a water outlet pipeline and a heating element 308.
  • One end of the water outlet pipeline is connected to the water outlet end of the water inlet pipeline 302, and the other end of the water outlet pipeline is used to discharge water.
  • the heating element 308 is arranged in the water outlet pipeline to heat the water in the water outlet pipeline.
  • the air-conditioned dishwashing device 1 further includes a first temperature sensor 50 disposed at the water outlet 304 for detecting water temperature.
  • a heating element 308 is provided in the water outlet pipe.
  • the heating element 308 is turned on to auxiliary heat the water in the water outlet pipe to improve the user's use requirements.
  • auxiliary heating by the heating element 308 can increase the water temperature and reduce the energy consumption.
  • a flow meter is also included, which is arranged in the water outlet pipeline and is used to detect the water outlet flow rate of the water outlet pipeline.
  • the water system 30 further includes: a water pump 306 , one end of which is connected to an external water source, and the other end of which is connected to the water inlet pipeline 302 .
  • a water pump 306 is provided in the water inlet pipe 302 to increase the water flow rate and water volume, thereby improving the user's usage needs.
  • the heat exchanger 208 includes a first pipeline and a second pipeline arranged in parallel, the first pipeline is connected to the refrigerant flow path, and the second pipeline is connected to the water inlet pipeline 302.
  • the heat exchanger 208 includes a first pipeline and a second pipeline arranged in parallel.
  • the second pipeline exchanges heat with the first pipeline to heat the domestic water in the second pipeline.
  • the heat exchanger 208 includes a plate heat exchanger or a shell and tube heat exchanger.
  • the refrigerant circulation component 20 further includes: an indoor heat exchanger 211 , which is arranged in parallel with the heat exchanger 208 .
  • the indoor heat exchanger 211 is connected in parallel with the heat exchanger 208.
  • the temperature of the indoor environment is regulated and the dishwashing water is heated, thereby improving the utilization rate of the refrigerant.
  • the air-conditioned dishwasher 1 further comprises a host 10 and an air-conditioning indoor unit 40.
  • the host 10 comprises an air-conditioning outdoor unit 110 and a dishwasher unit 120 connected to the air-conditioning outdoor unit 110.
  • the outdoor heat exchanger 206 is disposed in the air conditioner outdoor unit 110, and the heat exchanger 208 and the water system 30 are disposed in the dishwasher unit 120.
  • the indoor heat exchanger 211 is disposed in the air conditioner indoor unit 40.
  • the host 10 includes an air conditioner outdoor body 110 and a dishwasher body 120.
  • the dishwasher body 120 is connected to the air conditioner outdoor body 110.
  • the compressor 202, the four-way valve 204 and the outdoor heat exchanger 206 are all arranged on the air conditioner outdoor body 110.
  • the heat exchanger 208 and the water system 30 are all arranged on the dishwasher body 120.
  • the air conditioner indoor unit 40 is arranged indoors. It is used to adjust the temperature of the indoor environment.
  • the present disclosure reduces the occupation of the kitchen space and improves the utilization rate of the kitchen space by connecting the dishwasher body 120 and the air conditioner outdoor body 110, the air conditioner outdoor body 110 is located outdoors, and the dishwasher body 120 is installed indoors or embedded in the wall 2.
  • the air-conditioned dishwashing device 1 further includes a second temperature sensor 60 , which is disposed in the air-conditioning indoor unit 40 and is used to detect the indoor ambient temperature.
  • an installation space is reserved on the wall 2.
  • the host 10 is installed in the installation space.
  • the air conditioner outdoor unit 110 is installed on the outdoor side.
  • the dishwasher body 120 is embedded into the installation space of the wall 2 from the indoor side. In this way, the occupation of the kitchen space can be reduced and the space utilization rate can be improved.
  • the refrigerant circulation component 20 also includes: a first liquid separator 212, including a first collecting port, a first dividing port and a second dividing port, the first collecting port is connected to one end of the outdoor heat exchanger 206, the first dividing port is connected to one end of the indoor heat exchanger 211, and the second dividing port is connected to one end of the heat exchanger 208; a second liquid separator 214, including a second collecting port, a first dividing port and a second dividing port, the second collecting port is connected to the four-way valve 204, the first dividing port is connected to the other end of the indoor heat exchanger 211, and the second dividing port is connected to the other end of the heat exchanger 208.
  • a first liquid separator 212 including a first collecting port, a first dividing port and a second dividing port, the first collecting port is connected to one end of the outdoor heat exchanger 206, the first dividing port is connected to one end of the indoor heat exchanger 211, and the second
  • the indoor heat exchanger 211 and the heat exchanger 208 are arranged in parallel to form an indoor heat exchange flow path.
  • the first liquid distributor 212 and the second liquid distributor 214 are respectively arranged at both ends of the indoor heat exchange flow path.
  • the first liquid distributor 212 and the second liquid distributor 214 can realize the flow division and collection of the refrigerant flow path, thereby forming a variety of refrigerant flow paths to meet different functional requirements.
  • the refrigerant circulation component 20 also includes: a third liquid distributor 216, including a third liquid collecting port, a first port and a second port, the first liquid collecting port is connected to one end of the heat exchanger 208, the first port is connected to the second liquid distributor port, and the second port is connected to the other end of the indoor heat exchanger 211.
  • a third liquid distributor 216 including a third liquid collecting port, a first port and a second port, the first liquid collecting port is connected to one end of the heat exchanger 208, the first port is connected to the second liquid distributor port, and the second port is connected to the other end of the indoor heat exchanger 211.
  • the connection relationship between the indoor heat exchanger 211 and the heat exchanger 208 is adjusted to meet the needs of different usage scenarios.
  • the refrigerant circulation assembly 20 further includes a first valve body 221 and a second valve body 222 .
  • the first valve body 221 is disposed in the flow path between the first port and the second liquid separation port.
  • the second valve body 222 is disposed in the flow path between the second port and the other end of the indoor heat exchanger 211 .
  • the connection relationship between the indoor heat exchanger 211 and the heat exchanger 208 is adjusted by setting the first valve body 221 and the second valve body 222. Specifically, when the first valve body 221 is closed and the second valve body 222 is opened, a series flow path is formed between the indoor heat exchanger 211 and the heat exchanger 208. When the first valve body 221 is opened and the second valve body 222 is closed, a parallel flow path is formed between the indoor heat exchanger 211 and the heat exchanger 208.
  • the connection state of the first valve body 221 and the second valve body 222 the refrigerant flow path is adjusted, and the flexibility of the control of the refrigerant circulation component 20 is improved.
  • the refrigerant circulation component 20 also includes: a third valve body 223, which is arranged in the flow path between the first branch port and the other end of the indoor heat exchanger 211; and a fourth valve body 224, which is arranged in the flow path between the second branch port and the other end of the heat exchanger 208.
  • the third valve body 223 and the fourth valve body 224 are used to control the connectivity of the refrigerant flow paths of the indoor heat exchanger 211 and the heat exchanger 208 to meet different usage scenarios.
  • the opening or closing of the first valve body 221 and the fourth valve body 224 is controlled to control the conduction or closing of the second flow path 220.
  • the opening or closing of the third valve body 223 is controlled to control the conduction or closing of the first flow path 210.
  • the opening or closing of the second valve body 222 and the fourth valve body 224 is controlled to control the conduction or closing of the third flow path 230.
  • first valve body 221 , the second valve body 222 , the third valve body 223 and the fourth valve body 224 may be electronic expansion valves.
  • the compressor 202 includes an exhaust port and a return port.
  • the four-way valve 204 includes a first interface, a second interface, a third interface and a fourth interface.
  • the first interface and the second interface are respectively connected to the exhaust port and the return port.
  • One end of the outdoor heat exchanger 206 is connected to the third interface.
  • One end of the indoor heat exchange flow path is connected to the other end of the outdoor heat exchanger 206, and the other end of the indoor heat exchange flow path is connected to the fourth interface.
  • the water system 30 further includes a hot water storage tank and a water outlet 304 connected to the water tank, and the heat exchanger 208 is disposed in the water tank.
  • the hot water storage tank is provided to store hot water to meet the user's water usage requirements and improve the user's usage experience.
  • an air-conditioned dishwashing device further comprising a processor and a memory storing program instructions, wherein the processor is configured to execute the control method as described above when executing the program instructions.
  • a control method for an air-conditioned dishwashing device in combination with FIG. 1 and FIG. 2 , includes:
  • the processor in response to a water use request, obtains the target water use temperature T0 and the water temperature T after heat exchange of the water system.
  • S704 The processor controls the flow rate of the refrigerant in the second flow path according to the target water temperature T0 and the water temperature T.
  • the control method of the air-conditioned dishwasher comprises: receiving a water use request from a user. Obtaining a target water use temperature set by the user and the water temperature of the outlet water after heat exchange with a refrigerant circulation component. According to the target water use temperature and the water temperature after heat exchange, controlling the flow rate of the refrigerant in the second flow path to adjust the water temperature after heat exchange to meet the water use demand of the user.
  • the control method provided by the present disclosure by realizing heat exchange between the dishwasher water and the refrigerant circulation component of the air conditioner, the utilization rate of the refrigerant is improved, the energy consumption is reduced, and the user experience is improved.
  • the target water temperature T0 is compared with the water temperature T, and according to the comparison result, the working state of the heating element and the flow rate of the second flow path are adjusted to adjust the water temperature T to meet the user's water demand.
  • T 0 >T it means that the water temperature after heat exchange is lower than the target water temperature required by the user, and auxiliary heating is performed by starting the heating element to meet the user's usage needs. By heating the water after heat exchange, the water temperature rise rate can be increased, and compared with dishwashers that are completely heated by electricity, energy consumption can be reduced.
  • T 0 ⁇ T it means that the water temperature after heat exchange is higher than the user's target water temperature.
  • the second flow path is controlled to maintain the current flow rate.
  • a control method for an air-conditioned dishwashing device in combination with FIG. 1 and FIG. 2 , includes:
  • the operating status of the compressor is obtained to determine whether the air conditioning function is currently activated. According to the result of determining whether the air conditioning function is turned on, the flow path of the refrigerant circulation component is adjusted to improve the compatibility of the air conditioning function and the dishwashing function to meet the user's usage needs.
  • the compressor When the compressor is in the stopped state, it is determined that the air conditioning function is not started. In this case, in order to meet the user's dishwashing water needs In order to meet the requirements, the compressor is controlled to start, the first flow path and the third flow path are controlled to be closed, and the second flow path is controlled to be opened. And the interface state of the four-way valve is controlled to be connected in the heating mode. In this way, the refrigerant passes through the exhaust port of the compressor, through the four-way valve and the second liquid distributor, enters the heat exchanger, and then passes through the third liquid distributor and the first liquid distributor to enter the outdoor heat exchanger, and returns to the compressor through the return air port.
  • the water pump of the water system is controlled to start, and the water in the water inlet pipe exchanges heat with the heat exchanger, and then washes the dishes through the water outlet.
  • the compressor is controlled to stop. In this way, the utilization rate of the refrigerant is improved, the energy consumption is reduced, and the air conditioning function and the dishwashing function can be controlled and used separately, which improves the flexibility of use.
  • the third valve body is controlled to be closed so that the first flow path is in a closed state.
  • the second valve body is controlled to be closed so that the third flow path is in a closed state.
  • the first valve body and the fourth valve body are controlled to be opened so that the second flow path is in a conducting state.
  • the compressor When the compressor is in the on state, it is determined that the air conditioning function is in the on state. According to the operation mode of the air conditioning function, the target setting temperature t0 and the indoor temperature t, the connectivity of the first flow path, the second flow path and the third flow path is controlled to improve the coordination between the air conditioning function and the water demand and enhance the user experience.
  • the operation mode is a heating mode
  • the step of controlling the connection state of the first flow path, the second flow path, and the third flow path according to the target setting temperature t0 and the indoor temperature t includes: calculating the difference ⁇ t between t0 and t; based on ⁇ t ⁇ t1 °C, controlling the first flow path and the second flow path to be closed, and controlling the third flow path to be connected. Based on t1 °C ⁇ ⁇ t ⁇ t2 °C, controlling the first flow path and the second flow path to be connected, and controlling the third flow path to be closed. Based on ⁇ t> t2 °C, controlling the first flow path to be connected, and controlling the second flow path and the third flow path to be closed.
  • the second flow path in the heating mode, is in a conducting state.
  • the conducting path of the refrigerant circulation component is controlled to meet the heating and water use requirements and improve the user experience.
  • the difference ⁇ t between t0 and t is calculated, and the flow path of the refrigerant is determined according to the difference between the indoor temperature and the target set temperature to meet the user's usage requirements.
  • the indoor temperature is close to the target set temperature and the indoor heating demand is normal.
  • the first flow path and the second flow path are controlled to be closed, and the third flow path is controlled to be connected, so that the indoor heat exchanger and the heat exchange heat exchanger are in series mode.
  • the refrigerant comes out from the exhaust port of the compressor, passes through the four-way valve, the second liquid distributor, the heat exchange heat exchanger, the third liquid distributor, the indoor heat exchanger, the first liquid distributor, the outdoor heat exchanger, the four-way valve and the compressor to complete the circuit.
  • the first flow path and the second flow path are controlled to be closed, and the third flow path is controlled to be connected, specifically: the first valve body and the third valve body are controlled to be closed, and the second valve body and the fourth valve body are controlled to be opened.
  • the indoor heat exchanger and the heat exchanger are connected in parallel, and at the same time Carry out indoor heating and dishwashing water heating.
  • the refrigerant comes out from the exhaust port of the compressor and is divided into two flow paths after passing through the second liquid distributor. One of the flow paths enters the indoor heat exchanger, and the other enters the heat exchange heat exchanger. After the two flow paths are collected by the first liquid distributor, they pass through the outdoor heat exchanger and the four-way valve and return to the compressor to complete the flow path.
  • controlling the first flow path and the second flow path to be connected and controlling the third flow path to be closed includes: controlling the third valve body to remain in an open state, controlling the first valve body and the fourth valve body to be open, and controlling the second valve body to be closed.
  • the first flow path is controlled to be turned on, and the second and third flow paths are controlled to be turned off. That is, only the first flow path for indoor heating is controlled to be turned on to increase the amount of refrigerant in the first flow path, thereby increasing the heating speed of the room.
  • the water system in the dishwasher is controlled to be in standby mode. The indoor environment is heated first. Until t 1 °C ⁇ t ⁇ t 2 °C, the corresponding control logic is executed.
  • the value range of t1 is 2.5°C to 3.5°C, and the value of t1 can be 2.5°C, 3°C or 3.5°C.
  • the value range of t2 is 4.5°C to 5.5°C, and the value of t2 can be 4.5°C, 5°C or 5.5°C.
  • the operation mode is the cooling mode
  • the step of controlling the connection states of the first flow path, the second flow path and the third flow path according to the target setting temperature t0 and the indoor temperature t includes: calculating the difference ⁇ t between t and t0 ; based on ⁇ t ⁇ t3 , controlling the four-way valve to switch to operate the heating mode, and controlling the first flow path and the third flow path to be closed, and controlling the second flow path to be connected; in response to a water outlet end request, controlling the second flow path and the third flow path to be closed, controlling the four-way valve to switch to operate the cooling mode, and controlling the first flow path to be connected; based on ⁇ t> t3 , controlling the first flow path to be connected, and controlling the second flow path and the third flow path to be closed.
  • the operation mode is the cooling mode
  • the user's indoor set temperature t 0 and the current indoor ambient temperature t are obtained.
  • the difference ⁇ t between t and t 0 is calculated.
  • the conduction path of the refrigerant circulation component is controlled to meet the needs of cooling and water use, thereby improving the user's experience.
  • the heating mode is operated, and the first flow path and the third flow path are controlled to be closed, and the second flow path is controlled to be connected, so as to achieve heating of the water.
  • the water use function is turned off and switched to the cooling mode.
  • the four-way valve is controlled to switch to the cooling mode, and the first flow path is controlled to be connected, so as to achieve cooling of the room.
  • controlling the first flow path and the third flow path to be closed and controlling the second flow path to be connected specifically includes: controlling the second valve body and the third valve body to be closed and the first valve body and the fourth valve body to be opened.
  • the refrigerant is discharged from the exhaust port of the compressor, passes through the four-way valve, the second liquid distributor, the heat exchange heat exchanger, the third liquid distributor, the first liquid distributor, the outdoor heat exchanger, and returns to the compressor. Control the water system to run for dishwashing.
  • Control the second and third flow paths to close, control the four-way valve to switch to the cooling mode, and control the first flow path to be connected specifically including: control the third valve body to open, the first valve body, the second valve body and the fourth valve body to close, and control the four-way valve to switch to the cooling mode.
  • the refrigerant is discharged from the exhaust port of the compressor, passes through the four-way valve, the outdoor heat exchanger, the first liquid distributor, the indoor heat exchanger and the second liquid distributor, and returns to the compressor to achieve cooling of the indoor environment.
  • controlling the first flow path to be connected and controlling the second flow path and the third flow path to be closed includes: controlling the third valve body to be opened, and the first valve body, the second valve body and the fourth valve body to be closed.
  • the refrigerant is discharged from the exhaust port of the compressor, passes through the four-way valve, the outdoor heat exchanger, the first liquid distributor, the indoor heat exchanger and the second liquid distributor, and returns to the compressor to achieve cooling of the indoor environment. Until ⁇ t ⁇ t 3 , the above control logic is executed to run the dishwashing function.
  • the value range of t3 is 1.5°C to 2.5°C.
  • the value of t3 may be 1.5°C, 2°C or 2.5°C.
  • control method further includes: obtaining the amount of water in the hot water storage tank and the current time according to a preset time; determining a target water consumption according to the current time; and filling the hot water storage tank with water based on the water amount being less than the target water consumption.
  • a heat storage tank is provided to store the water after heat exchange.
  • heat collection is achieved.
  • the user's water demand is met.
  • the amount of water in the heat storage tank is obtained according to the preset time to achieve timely replenishment of the water in the heat storage tank to meet the user's usage needs.
  • the user's target water consumption within the preset time period is determined. If the target water consumption is greater than the current water volume in the heat storage tank, the water system is controlled to inject water, and the water is stored in the heat storage tank after heat exchange.
  • the water injection amount of the water system is equal to the difference between the target water consumption and the current water volume. In this way, the user's water demand within the preset time period can be met, and the user experience can be improved.
  • the step of determining the target water consumption according to the current time includes: obtaining the user's daily water consumption data; determining the target water consumption according to the current time and the daily water consumption data; wherein the daily water consumption data includes multiple preset time periods and preset water consumption corresponding to each preset time period.
  • the user's target water consumption within a preset time period is determined based on the user's daily water consumption data and the current time. According to the target water consumption, water is replenished in the heat storage tank in a timely manner to meet the user's usage needs and improve the user's usage experience.
  • the daily water usage data includes multiple time periods and preset water consumption in each preset time period.
  • the daily water consumption data of the user within a preset historical time period is obtained.
  • the daily water consumption data is constructed according to the preset historical time period and the daily water consumption data.
  • the daily water consumption data is updated at every preset historical time period.
  • the preset history duration includes 3 months, 1 month or 1 week.
  • the user can set it specifically, or adjust the preset history duration for the next stage according to the preset history duration and daily water consumption data. In this way, data can be updated in time according to the user's living habits to be closer to the user's actual life needs.
  • the daily water consumption data includes a plurality of preset time periods within a day and the actual water consumption within each preset time period.
  • the lifestyle characteristics include cooking time, cooking cycle, cleaning time and cleaning cycle, etc.
  • multiple preset time periods are set according to the user's living habits. For example, multiple preset time periods are set according to the user's three meals a day. Thus, the preset time periods include 6:00 to 9:00 a.m., 11:00 to 1:00 p.m., and 17:00 to 19:00 p.m.
  • the preset time for obtaining the amount of water in the hot water storage tank is set according to a plurality of preset time periods, so as to achieve timely replenishment of the water in the hot water storage tank to meet the usage needs of the user.
  • a preset interval is provided between the preset time and the upper limit of the preset time period, and the preset interval ranges from 10 minutes to 45 minutes.
  • the preset time may be 5:15 a.m., 5:30 a.m., or 5:50 a.m.
  • the preset time may be 10:15, 10:30 or 10:50.
  • the preset time may be 16:15, 16:30 or 16:50.
  • the embodiment of the present disclosure provides an air-conditioned dishwashing device 900, the structure of which is shown in FIG9 , including:
  • the processor 902 and the memory 904 may also include a communication interface 906 and a bus 908.
  • the processor 902, the communication interface 906, and the memory 904 may communicate with each other through the bus 908.
  • the communication interface 906 may be used for information transmission.
  • the processor 902 may call the logic instructions in the memory 904 to execute the control method of the air-conditioning dishwashing device of the above embodiment.
  • the memory 904 is a computer-readable storage medium that can be used to store software programs and computer executable programs, such as program instructions/modules corresponding to the method in the embodiment of the present disclosure.
  • the processor 902 executes the function application and data processing by running the program instructions/modules stored in the memory 904, that is, the control method of the air-conditioned dishwasher in the above method embodiment is implemented. Therefore, all the beneficial effects of the above embodiments are obtained, which will not be repeated here.
  • the memory 904 may include a program storage area and a data storage area, wherein the program storage area may store an operating system and an application required for at least one function; the data storage area may store data created according to the use of the terminal device, etc.
  • the memory 904 may include a high-speed random access memory and may also include a non-volatile memory.
  • An embodiment of the present disclosure provides a computer-readable storage medium storing computer-executable instructions, wherein the computer-executable instructions are configured to execute the control method of the air-conditioned dishwashing device.
  • the embodiment of the present disclosure provides a computer program, which, when executed by a computer, enables the computer to implement the control method of the air-conditioned dishwasher.
  • An embodiment of the present disclosure provides a computer program product, which includes computer instructions stored on a computer-readable storage medium.
  • the program instructions When executed by a computer, the computer implements the control method of the air-conditioned dishwasher.
  • the computer-readable storage medium mentioned above may be a transient computer-readable storage medium or a non-transitory computer-readable storage medium.
  • the first element can be called the second element, and similarly, the second element can be called the first element, as long as all occurrences of the "first element” are renamed consistently and all occurrences of the "second element” are renamed consistently.
  • the first element and the second element are both elements, but may not be the same element.
  • the words used in the present application are only used to describe the embodiments and are not used to limit the claims. As used in the description of the embodiments and claims, unless the context clearly indicates, the singular forms "a”, “an” and “the” are intended to include the plural forms as well. Similarly, the term “and/or” as used in this application refers to any and all possible combinations of one or more associated listings.
  • the term “comprise” and its variants “comprises” and/or comprising refer to the presence of stated features, wholes, steps, operations, elements, and/or components, but do not exclude the presence or addition of one or more other features, wholes, steps, operations, elements, components and/or groups of these.
  • the elements defined by the sentence “including one" do not exclude the presence of other identical elements in the process, method or device including the elements.
  • each embodiment may focus on the differences from other embodiments, and the same and similar parts between the embodiments may refer to each other. For the methods, products, etc. disclosed in the embodiments, if they correspond to the method part disclosed in the embodiments, then the relevant parts can refer to the description of the method part.
  • the disclosed methods and products can be implemented in other ways.
  • the device embodiments described above are only schematic.
  • the division of the units can be only a logical function division.
  • the coupling or direct coupling or communication connection between each other shown or discussed can be through some interfaces, indirect coupling or communication connection of devices or units, which can be electrical, mechanical or other forms.
  • each functional unit in the embodiment of the present disclosure may be integrated in a processing unit, or each unit may exist physically alone, or two or more units may be integrated in one unit.
  • each box in the flowchart or block diagram can represent a module, a program segment or a part of a code, and the module, a program segment or a part of the code contains one or more executable instructions for implementing the specified logical function.
  • the functions marked in the box can also occur in an order different from that marked in the accompanying drawings. For example, two consecutive boxes can actually be executed substantially in parallel, and they can also be executed in the opposite order in some cases, which can depend on the functions involved.

Landscapes

  • Air Conditioning Control Device (AREA)

Abstract

本申请涉及智能家电领域,公开了一种空调洗碗设备的控制方法、空调洗碗设备和存储介质。其中,空调洗碗设备包括冷媒循环组件和水系统,冷媒循环组件包括依次连接形成冷媒流路的压缩机、四通阀、室外换热器和室内换热流路;室内换热流路包括相互并联的第一流路和第二流路,第一流路包括室内换热器,第二流路包括热交换换热器,水系统与热交换换热器进行换热;控制方法包括:响应于用水请求,获取目标用水温度T0与水系统换热后的水温T;根据目标用水温度T0和水温T,控制第二流路内的冷媒的流量。通过本公开提供的控制方法,通过将洗碗用水与空调的冷媒循环组件实现换热,提升了冷媒利用率,且降低了能耗,提升了用户的使用体验。

Description

空调洗碗设备的控制方法、空调洗碗设备和存储介质
本申请基于申请号为202211641295.1、申请日为2022年12月20日的中国专利申请以及申请号为202223428538.1、申请日为2022年12月20日的中国专利申请提出,并要求该中国专利申请的优先权,该中国专利申请的全部内容在此引入本申请作为参考。
技术领域
本申请涉及智能家电技术领域,例如涉及一种空调洗碗设备的控制方法、空调洗碗设备和存储介质。
背景技术
相关技术中,通过设置厨房空调,将厨房空调的压缩机和冷凝器设置在橱柜下方。通过水槽的水管中冷水对压缩机和冷凝器进行散热,同时利用余热对水管中的水进行加热后可以直接使用。
在已公开的实施过程中,至少存在以下问题:
通过将压缩机和冷凝器设置在橱柜下方,占用了橱柜的空间,使得厨房的可用空间减少,影响用户的使用体验。
需要说明的是,在上述背景技术部分公开的信息仅用于加强对本申请的背景的理解,因此可以包括不构成对本领域普通技术人员已知的现有技术的信息。
发明内容
为了对披露的实施例的一些方面有基本的理解,下面给出了简单的概括。所述概括不是泛泛评述,也不是要确定关键/重要组成元素或描绘这些实施例的保护范围,而是作为后面的详细说明的序言。
本公开实施例提供了的空调洗碗设备的控制方法、空调洗碗设备和存储介质,提升了冷媒利用率,且降低了能耗。
在一些实施例中,所述空调洗碗设备包括冷媒循环组件和水系统,所述冷媒循环组件包括依次连接形成冷媒流路的压缩机、四通阀、室外换热器和室内换热流路;所述室内换热流路包括相互并联的第一流路和第二流路,所述第一流路包括室内换热器,所述第二流路包括热交换换热器,所述水系统与所述热交换换热器进行换热;所述控制方法包括:响应于用水请求,获取目标用水温度T0与所述水系统换热后的水温T;根据目标用水温度 T0和所述水温T,控制所述第二流路内的冷媒的流量。
可选地,所述水系统包括加热件,所述根据目标用水温度T0和所述水温T,控制所述第二流路内的冷媒的流量的步骤,包括:基于T0>T,控制所述加热件开启;基于T0<T,减小所述第二流路的流量;基于T0=T,控制第二流路保持当前流量。
可选地,所述室内换热流路还包括第三流路,所述第三流路的两端分别与所述室内换热器和所述热交换换热器相连通;在所述获取目标用水温度T0与所述水系统换热后的水温T的步骤之前,还包括:获取所述压缩机的运行状态;基于所述压缩机处于停机状态,控制所述第一流路和所述第三流路关闭,控制所述第二流路开启,以及启动所述压缩机。
可选地,所述控制方法还包括:基于所述压缩机处于开机状态,获取空调功能的运行模式;以及获取室内的目标设定温度t0和室内温度t;根据所述运行模式、所述目标设定温度t0和所述室内温度t,控制所述第一流路、所述第二流路和所述第三流路的连通状态。
可选地,所述运行模式为制热模式,根据所述目标设定温度t0和所述室内温度t,控制所述第一流路、所述第二流路和所述第三流路的连通状态的步骤,包括:计算t0与t的差值Δt;基于Δt≤t1℃,控制所述第一流路和所述第二流路关闭,控制所述第三流路导通;基于t1℃<Δt≤t2℃,控制所述第一流路和所述第二流路导通,控制所述第三流路关闭;基于Δt>t2℃,控制所述第一流路导通,控制所述第二流路和所述第三流路关闭。
可选地,所述运行模式为制冷模式,根据所述目标设定温度t0和所述室内温度t,控制所述第一流路、所述第二流路和所述第三流路的连通状态的步骤,包括:计算t与t0的差值Δt;基于Δt≤t3,控制所述四通阀换向,运行制热模式,并控制所述第一流路和所述第三流路关闭,控制所述第二流路导通;响应于出水结束请求,控制所述第二流路和所述第三流路关闭,控制所述四通阀换向运行制冷模式,并控制所述第一流路导通;基于Δt>t3,控制所述第一流路导通,并控制所述第二流路和所述第三流路关闭。
可选地,所述水系统还包括蓄热水箱和与所述水箱相连通的出水部,所述热交换换热器设置于所述水箱,所述控制方法还包括按照预设时间获取蓄热水箱内的水量和当前时间;根据所述当前时间,确定目标用水量;基于所述水量小于所述目标用水量,向所述蓄热水箱注水。
可选地,所述根据所述当前时间,确定目标用水量的步骤包括:获取用户的日用水数据;根据所述当前时间和所述日用水数据,确定所述目标用水量;其中,所述日用水数据包括多个预设时间段和每个所述预设时间段对应的预设用水量。
在一些实施例中,提供了一种空调洗碗设备,包括处理器和存储有程序指令的存储器,所述处理器被配置为在执行所述程序指令时,执行如前述的控制方法。
在一些实施例中,提供了一种存储介质,所述存储介质包括存储的程序,其中,所述程序运行时执行如前述的控制方法。
本公开实施例提供的空调洗碗设备的控制方法、空调洗碗设备和存储介质,可以实现以下技术效果:
本公开提供的空调洗碗设备包括冷媒循环组件和水系统。冷媒循环组件包括依次连接形成冷媒流路的压缩机、四通阀、室外换热器和室内换热流路。室内换热流路包括相互并联的第一流路和第二流路,第一流路包括室内换热器,用于实现室内环境温度的调节。第二流路包括热交换换热器,水系统与热交换换热器进行换热,用于实现通过冷媒循环组件实现对洗碗用水的加热。本公开提供的空调洗碗设备利用冷媒循环组件对水系统内的用水进行加热,提升了冷媒利用率。相较于相关技术中将厨房空调的压缩机和冷凝器设置于室内的方式,本公开利用与冷媒换热进行水系统的加热,避免了将压缩机和冷凝器内置于室内,降低了对厨房空间的占用,提升了厨房空间的利用率。
本公开提供的空调洗碗设备的控制方法,包括:接收到用户的用水请求。获取用户设定的目标用水温度和经过与冷媒循环组件换热后的出水的水温。根据目标用水温度和换热后的水温,控制第二流路内的冷媒的流量,以实现对换热后的水温进行调节,以满足用户的用水需求。通过本公开提供的控制方法,通过将洗碗用水与空调的冷媒循环组件实现换热,提升了冷媒利用率,且降低了能耗,提升了用户的使用体验。
以上的总体描述和下文中的描述仅是示例性和解释性的,不用于限制本申请。
附图说明
一个或多个实施例通过与之对应的附图进行示例性说明,这些示例性说明和附图并不构成对实施例的限定,附图中具有相同参考数字标号的元件示为类似的元件,附图不构成比例限制,并且其中:
图1是本公开的一个实施例提供的空调洗碗设备的结构示意图;
图2是本公开的另一个实施例提供的空调洗碗设备的结构示意图;
图3是本公开的一个实施例提供的空调洗碗设备的主机的结构示意图;
图4是图3所示实施例提供的主机的安装示意图;
图5是图4所示实施例提供的主机的另一角度的安装示意图;
图6是图4所示实施例的主视图;
图7是本公开的一个实施例提供的空调洗碗设备的控制方法的流程示意图;
图8是本公开的一个实施例提供的空调洗碗设备的控制方法的流程示意图;
图9是本公开的一个实施例提供的空调洗碗设备的结构示意图。
附图标记:
1空调洗碗设备;2墙体;
10主机;110空调室外机体;120洗碗机体;
20冷媒循环组件;210第一流路;220第二流路;230第三流路;202压缩机;204四
通阀;206室外换热器;208热交换换热器;211室内换热器;212第一分液器;214第二分液器;216第三分液器;221第一阀体;222第二阀体;223第三阀体;224第四阀体;
30水系统;302进水管路;304出水部;306水泵;308加热件;
40空调室内机;50第一温度传感器;60第二温度传感器;
900:空调洗碗设备;902:处理器;904:存储器;906:通信接口;908:总线。
具体实施方式
为了能够更加详尽地了解本公开实施例的特点与技术内容,下面结合附图对本公开实施例的实现进行详细阐述,所附附图仅供参考说明之用,并非用来限定本公开实施例。在以下的技术描述中,为方便解释起见,通过多个细节以提供对所披露实施例的充分理解。然而,在没有这些细节的情况下,一个或多个实施例仍然可以实施。在其它情况下,为简化附图,熟知的结构和装置可以简化展示。
在一些实施例中,结合图1和图2所示,本公开提供了一种空调洗碗设备1,包括冷媒循环组件20和水系统30。冷媒循环组件20包括依次连接形成冷媒流路的压缩机202、四通阀204、室外换热器206和室内换热流路。室内换热流路包括相互并联的第一流路210和第二流路220,第一流路210包括室内换热器211,用于实现室内环境温度的调节。第二流路220包括热交换换热器208,水系统30与热交换换热器208进行换热,用于实现通过冷媒循环组件20实现对洗碗用水的加热。
本公开提供的空调洗碗设备1利用冷媒循环组件20对水系统30内的用水进行加热,提升了冷媒利用率。相较于相关技术中将厨房空调的压缩机202和冷凝器设置于室内的方式,本公开利用与冷媒换热进行水系统30的加热,避免了将压缩机202和冷凝器内置于室内,降低了对厨房空间的占用,提升了厨房空间的利用率。
可选地,结合图1和图2所示,室内换热流路还包括第三流路230,第三流路230的两端分别与室内换热器211和热交换换热器208相连通。
在该实施例中,通过设置第三流路230,根据用户的功能需求和设备的运行参数,以控制第三流路230的连通状态,以满足用户的使用需求,提升用户的使用体验。
可选地,结合图1和图2所示,水系统30包括进水管路302和出水部304。进水管路302与热交换换热器208进行换热,出水部304与进水管路302的出水端相连通,出水部304用于出水。
在该实施例中,通过设置进水管路302实现与热交换换热器208实现换热,以对进水管路302中的水进行加热,以用于通过出水部304满足用户的使用需求。
可选地,结合图2所示,出水部304包括出水管路和加热件308。出水管路的一端与进水管路302的出水端相连通,出水管路的另一端用于出水。加热件308设置于出水管路,用于对出水管路内的水进行加热。
可选地,结合图1和图2所示,空调洗碗设备1还包括第一温度传感器50,设置于出水部304,用于检测水温。
在该实施例中,在出水管路设置加热件308。当通过热交换换热器208进行换热后的水温不能满足用户的使用需求时,则开启加热件308对出水管路中的水进行辅助加热,提升用户的使用需求。并且,相对于相关技术中只通过换热或只通过加热件308进行加热的方式相比,通过加热件308辅助加热,能够提升水温,且降低使用能耗。
可选地,还包括流量计,设置于出水管路,用于检测出水管路的出水流量。
可选地,结合图1和图2所示,水系统30还包括:水泵306,一端连通外接水源,另一端与进水管路302相连通。
在该实施例中,通过在进水管路302设置水泵306,提升水流流速和水量,提升用户的使用需求。
可选地,热交换换热器208包括并联设置的第一管路和第二管路,第一管路与冷媒流路相连通,第二管路与进水管路302相连通。
在该实施例中,热交换换热器208包括并联设置的第一管路和第二管路。第二管路与第一管路进行换热,以加热第二管路中的生活用水。
可选地,热交换换热器208包括板式换热器或套管换热器。
可选地,结合图1和图2所示,冷媒循环组件20还包括:室内换热器211,与热交换换热器208并联设置。
在该实施例中,通过将室内换热器211与热交换换热器208进行并联设置。通过一组冷媒循环组件20,实现了对室内环境的温度调节和用于对洗碗用水进行加热,提升了冷媒的利用率。
可选地,空调洗碗设备1还包括主机10和空调室内机40。主机10包括空调室外机体110和与空调室外机体110相连接的洗碗机体120。其中,压缩机202、四通阀204和 室外换热器206设置于空调室外机体110,热交换换热器208和水系统30设置于洗碗机体120。室内换热器211设置于空调室内机40。
在该实施例中,结合图3至图6所示,主机10包括空调室外机体110和洗碗机体120。洗碗机体120和空调室外机体110相连接。压缩机202、四通阀204和室外换热器206均设置于空调室外机体110。热交换换热器208和水系统30均设置于洗碗机体120。空调室内机40设置于室内。用于对室内环境的温度进行调节。相较于相关技术中将厨房空调的压缩机202和冷凝器设置于室内的方式,本公开通过将洗碗机体120和空调室外机体110相连接,空调室外机体110位于室外,洗碗机体120安装于室内或嵌设于墙体2内,降低了对厨房空间的占用,提升了厨房空间的利用率。
可选地,结合图1和图2所示,空调洗碗设备1还包括第二温度传感器60,设置于空调室内机40,用于检测室内环境温度。
可选地,结合图4至图6所示,在墙体2上预留安装空间。将主机10安装于安装空间。其中,空调室外机体110安装于室外侧。洗碗机体120从室内侧嵌入至墙体2的安装空间内。这样,能够减小对厨房空间的占用,提升空间利用率。
可选地,结合图1和图2所示,冷媒循环组件20还包括:第一分液器212,包括第一集液口、第一分液口和第二分液口,第一集液口与室外换热器206的一端相连通,第一分液口与室内换热器211的一端相连通,第二分液口与热交换换热器208的一端相连通;第二分液器214,包括第二集液口、第一分口和第二分口,第二集液口与四通阀204相连通,第一分口与室内换热器211的另一端相连通,第二分口与热交换换热器208的另一端相连通。
在该实施例中,相互并联设置的室内换热器211和热交换换热器208形成了室内换热流路。通过在室内换液流路的两端分别设置有第一分液器212和第二分液器214。通过第一分液器212和第二分液器214,实现对冷媒流路的分流和集流,进而能够形成多种冷媒流通路径,以适应不同的功能需求。
可选地,结合图1和图2所示,冷媒循环组件20还包括:第三分液器216,包括第三集液口、第一端口和第二端口,第一集液口与热交换换热器208的一端相连通,第一端口与第二分液口相连通,第二端口与室内换热器211的另一端相连通。
在该实施例中,通过在室内换热器211和热交换换热器208之间设置第三分液器216,实现了室内换热器211和热交换换热器208之间的连通关系的调整,以满足不同的使用场景的需求。
可选地,结合图1和图2所示,冷媒循环组件20还包括第一阀体221和第二阀体222。 第一阀体221设置于第一端口与第二分液口之间的流路。第二阀体222设置于第二端口与室内换热器211的另一端之间的流路。
在该实施例中,通过设置第一阀体221和第二阀体222,实现室内换热器211和热交换换热器208之间的连通关系的调整。具体地,当第一阀体221关闭,第二阀体222开启时,室内换热器211和热交换换热器208之间形成串联流路。当第一阀体221开启,第二阀体222关闭时,室内换热器211和热交换换热器208之间形成并联流路。通过调整第一阀体221和第二阀体222的连通状态,以实现对冷媒流路的调整,提升了冷媒循环组件20控制的灵活性。
可选地,结合图1和图2所示,冷媒循环组件20还包括:第三阀体223,设置于第一分口与室内换热器211的另一端之间的流路;第四阀体224,设置于第二分口与热交换换热器208的另一端之间的流路。
在该实施例中,通过第三阀体223和第四阀体224,实现对室内换热器211和热交换换热器208的冷媒流通路径的连通状态的控制,以满足不同的使用场景。
其中,通过控制第一阀体221和第四阀体224的开启或关闭,以控制第二流路220的导通或关闭。通过控制第三阀体223的开启或关闭,以控制第一流路210的导通或关闭。通过控制第二阀体222和第四阀体224的开启或关闭,以控制第三流路230的导通或关闭。
可选地,第一阀体221、第二阀体222、第三阀体223和第四阀体224可以选用电子膨胀阀。
可选地,结合图1和图2所示,压缩机202包括排气口和回气口。四通阀204包括第一接口、第二接口、第三接口和第四接口。第一接口和第二接口分别与排气口和回气口相连通。室外换热器206一端与第三接口相连接。室内换热流路一端与室外换热器206的另一端相连通,室内换热流路的另一端与第四接口相连通。
可选地,水系统30还包括蓄热水箱和与水箱相连通的出水部304,热交换换热器208设置于水箱。通过设置蓄热水箱实现热水的存储,以满足用户的使用水量需求,以提升用户的使用体验。
在一些实施例中,提供了一种空调洗碗设备,还包括处理器和存储有程序指令的存储器,处理器被配置为在执行程序指令时,执行如前述的控制方法。
在一些实施例中,结合图1和图2所示,提供了一种空调洗碗设备的控制方法,结合图7所示,控制方法包括:
S702,响应于用水请求,处理器获取目标用水温度T0与水系统换热后的水温T。
S704,处理器根据目标用水温度T0和水温T,控制第二流路内的冷媒的流量。
本公开提供的空调洗碗设备的控制方法,包括:接收到用户的用水请求。获取用户设定的目标用水温度和经过与冷媒循环组件换热后的出水的水温。根据目标用水温度和换热后的水温,控制第二流路内的冷媒的流量,以实现对换热后的水温进行调节,以满足用户的用水需求。通过本公开提供的控制方法,通过将洗碗用水与空调的冷媒循环组件实现换热,提升了冷媒利用率,且降低了能耗,提升了用户的使用体验。
可选地,根据目标用水温度T0和水温T,控制第二流路内的冷媒的流量的步骤,包括:基于T0>T,控制加热件开启。基于T0<T,减小第二流路的流量。基于T0=T,控制第二流路保持当前流量。
在该实施例中,将目标用水温度T0和水温T进行比较,根据比较结果,调整加热件的工作状态以及调整第二流路的流量,以实现对水温T的调节,以满足用户的用水需求。
具体地,当T0>T时,说明换热后的水温低于用户需要的目标用水温度,则通过启动加热件进行辅助加热,以满足用户的使用需求。通过对换热后的水进行加热,能够提升水温升高速率,且相较于完全通过电加热的方式的洗碗机,能够降低能耗。当T0<T,说明换热后的水温高于用户的目标用水温度,通过减小第二流路的流量,以降低出水温度,使得出水水温更接近于用户的目标用水温度。当T0=T,即换热后的水温与用户的目标用水温度一致,则控制第二流路保持当前流量即可。
在一些实施例中,结合图1和图2所示,提供了一种空调洗碗设备的控制方法,结合图8所示,控制方法包括:
S802,响应于用水请求,获取压缩机的运行状态;
S804,基于压缩机处于停机状态,控制第一流路和第三流路关闭,控制第二流路开启,以及启动压缩机。
S806,基于压缩机处于开机状态,获取空调功能的运行模式。
S808,获取室内的目标设定温度t0和室内温度t。
S810,根据运行模式、目标设定温度t0和室内温度t,控制第一流路、第二流路和第三流路的连通状态。
S812,获取目标用水温度T0与水系统换热后的水温T。
S814,根据目标用水温度T0和水温T,控制第二流路内的冷媒的流量。
在该实施例中,在接收到用户的用水需求时,获取压缩机的运行状态,以确定当前是否启动了空调功能。根据确定空调功能是否开启的结果,调整冷媒循环组件的流路情况,以提升空调功能和洗碗功能的兼容性,满足用户的使用需求。
当压缩机处于停机状态,确定空调功能未启动。这种情况,为满足用户的洗碗用水需 求,控制压缩机启动,控制第一流路和第三流路关闭,控制第二流路开启。以及控制四通阀的接口状态为制热模式下的连通状态。这样,冷媒经压缩机的排气口,经四通阀和第二分液器进入到热交换换热器、再经过第三分液器和第一分液器进入室外换热器,经回气口回到压缩机。同时,控制水系统的水泵启动,进水水管中的水与热交换换热器进行换热后,通过出水部进行餐具清洗。当清洗完毕,则控制压缩机停机。这样,提升了冷媒利用率,降低了能耗,且空调功能和洗碗功能可以单独控制使用,提升了使用的灵活性。
其中,通过控制第三阀体关闭,以使得第一流路处于关闭状态。通过控制第二阀体关闭,以使得第三流路处于关闭状态。通过控制第一阀体和第四阀体开启,控制第二流路处于导通状态。
当压缩机处于开启状态,确定空调功能处于启动状态。根据空调功能的运行模式、目标设定温度t0和室内温度t,控制第一流路、第二流路和第三流路的连通状态,以提升空调功能和用水需求的协调性,提升用户的使用体验。
可选地,运行模式为制热模式,根据目标设定温度t0和室内温度t,控制第一流路、第二流路和第三流路的连通状态的步骤,包括:计算t0与t的差值Δt;基于Δt≤t1℃,控制第一流路和第二流路关闭,控制第三流路导通。基于t1℃<Δt≤t2℃,控制第一流路和第二流路导通,控制第三流路关闭。基于Δt>t2℃,控制第一流路导通,控制第二流路和第三流路关闭。
在该实施例中,在制热模式下,第二流路处于导通状态。根据室内温度t和用户设定的目标设定温度t0,对冷媒循环组件的导通路径的控制,实现制热和用水的需求,提升用户的使用体验。
具体地,计算t0与t的差值Δt,根据室内温度与目标设定温度之间的差值的大小,确定冷媒的流通路径,以满足用户的使用需求。
当Δt≤t1℃,则说明室内温度比较接近于目标设定温度,室内制热需求一般。则控制第一流路和第二流路关闭,控制第三流路导通,以使得室内换热器和热交换换热器处于串联模式。冷媒从压缩机的排气口出来,经四通阀、第二分液器、热交换换热器、第三分液器、室内换热器、第一分液器、室外换热器、四通阀和压缩机,完成回路。这样,先满足于用水温度需求,同时不会对室内温度造成下降影响,提升用户的使用需求。其中,控制第一流路和第二流路关闭,控制第三流路导通,具体为:控制第一阀体和第三阀体关闭,第二阀体和第四阀体开启。
当t1℃<Δt≤t2℃,则说明室内温度距离目标设定温度的具有一定的温差,则控制第一流路和第二流路导通,控制第三流路关闭。这样,室内换热器和热交换换热器并联,同时 进行室内的制热和对洗碗用水的加热。冷媒自压缩机的排气口出来,经第二分液器后分成两个流路。其中一个流路为,进入室内换热器,另一路进入热交换换热器。两个流路通过第一分液器集流后,经室外换热器、四通阀,返回压缩机,完成流路。其中,进入室内换热器的冷媒流路用于对室内环境进行制热,以提升室内环境温度。进入热交换换热器的冷媒流路用于对洗碗用水进行加热,以用于对洗碗用水进行加热,满足于洗碗需求。这样,能够同时满足于用户的制热需求和用水需求,提升用户的使用体验。其中,控制第一流路和第二流路导通,控制第三流路关闭包括:控制第三阀体保持开启状态,控制第一阀体和第四阀体开启,控制第二阀体关闭。
当Δt>t2℃,则说明室内温度较低,制热需求比较紧急。则控制第一流路导通,控制第二流路和第三流路关闭。即,仅控制室内制热的第一流路导通,以提升第一流路内的冷媒量,进而提升对室内的制热速度。并且,控制洗碗机体内的水系统处于待机状态。优先对室内环境进行制热。直至t1℃<Δt≤t2℃,再按照对应控制逻辑执行。
可选地,t1的取值范围为2.5℃至3.5℃,t1的取值可以为2.5℃、3℃或3.5℃。t2的取值范围为4.5℃至5.5℃,t2的取值可以为4.5℃、5℃或5.5℃。
可选地,运行模式为制冷模式,根据目标设定温度t0和室内温度t,控制第一流路、第二流路和第三流路的连通状态的步骤,包括:计算t与t0的差值Δt;基于Δt≤t3,控制四通阀换向,运行制热模式,并控制第一流路和第三流路关闭,控制第二流路导通;响应于出水结束请求,控制第二流路和第三流路关闭,控制四通阀换向运行制冷模式,并控制第一流路导通;基于Δt>t3,控制第一流路导通,并控制第二流路和第三流路关闭。
在该实施例中,当运行模式为制冷模式,获取用户的室内设定温度t0,和获取室内的当前环境温度t。计算t与t0的差值Δt。根据Δt,控制冷媒循环组件的导通路径,实现制冷和用水的需求,提升用户的使用体验。
具体地,当Δt≤t3,则确认此时室内制冷需求为一般,则优先满足用水需求。通过控制四通阀换向,运行制热模式,并控制第一流路和第三流路关闭,控制第二流路导通,以实现对用水进行加热。当接收到出水结束请求,则关闭用水功能,切换至制冷模式。通过控制第二流路和第三流路关闭,控制四通阀换向运行制冷模式,并控制第一流路导通,以实现对室内进行制冷。
其中,控制第一流路和第三流路关闭,控制第二流路导通,具体包括:控制第二阀体和第三阀体关闭,第一阀体和第四阀体开启。冷媒自压缩机的排气口排出,经过四通阀、第二分液器、热交换换热器、第三分液器、第一分液器、室外换热器,返回压缩机。控制水系统运行进行洗碗。
控制第二流路和第三流路关闭,控制四通阀换向运行制冷模式,并控制第一流路导通,具体包括:控制第三阀体开启,第一阀体、第二阀体和第四阀体关闭,控制四通阀换向运行制冷模式。冷媒经自压缩机的排气口排出,经过四通阀、室外换热器、第一分液器、室内换热器和第二分液器,返回至压缩机,实现对室内环境的制冷。
当Δt>t3,则确认此时室内制冷需求为紧急,优先满足室内温度调节。通过控制第一流路导通,并控制第二流路和第三流路关闭,实现对室内的温度进行调整。
其中,控制第一流路导通,并控制第二流路和第三流路关闭,包括:控制第三阀体开启,第一阀体、第二阀体和第四阀体关闭。冷媒经自压缩机的排气口排出,经过四通阀、室外换热器、第一分液器、室内换热器和第二分液器,返回至压缩机,实现对室内环境的制冷。直至Δt≤t3,执行上述控制逻辑,运行洗碗功能。
可选地,t3的取值范围为1.5℃至2.5℃。t3的取值可以为1.5℃、2℃或2.5℃。
可选地,控制方法还包括:按照预设时间获取蓄热水箱内的水量和当前时间;根据当前时间,确定目标用水量;基于水量小于目标用水量,向蓄热水箱注水。
在该实施例中,通过设置蓄热水箱,将换热后的水进行存储。一方面实现对热量收集。一方面,满足用户的用水量的需求。按照预设时间获取蓄热水箱内的水量,以实现对蓄热水箱内的水量进行及时补充,以满足用户的使用需求。通过获取当前时间,确定在预设时间段内,用户的目标用水量。如果目标用水量大于蓄热水箱内的当前水量,则控制水系统注水,换热后存储于蓄热水箱内。其中,水系统的注水量等于目标用水量与当前水量的差值。这样,以满足用户预设时间段内的用水需求,提升用户的使用体验。
可选地,根据当前时间,确定目标用水量的步骤包括:获取用户的日用水数据;根据当前时间和日用水数据,确定目标用水量;其中,日用水数据包括多个预设时间段和每个预设时间段对应的预设用水量。
在该实施例中,根据用户的日用水数据和当前时间,确定预设时间段内用户的目标用水量。以根据目标用水量,及时地向蓄热水箱内进行水量补充,以满足用户的使用需求,提升用户的使用体验。
其中,日用水数据包括多个时间段和每个预设时间段内的预设用水量。
具体地,获取预设历史时长内用户地每日用水数据。根据预设历史时长和每日用水数据,构建日用水数据。并每间隔预设历史时长,对日用水数据进行更新。
可选地,预设历史时长包括3个月,1个月或1周。具体可以用户进行设置,或者根据预设历史时长和每日用水数据,对下一个阶段的预设历史时长进行调整。这样,能够及时根据用户的生活习惯特征,及时进行数据更新,以更贴近用户的实际生活需求。
可选地,每日用水数据包括每日内多个预设时间段和每个预设时间段内的实际用水量。
可选地,生活习惯特征包括做饭时间、做饭周期、清洁时间和清洁周期等。
可选地,多个预设时间段根据用户的生活习惯特征进行设定。示例性的,根据用户每日三餐的时间设置多个预设时间段。这样,预设时间段包括上午6点至9点,中午11点至13点,晚上17点至19点。
可选地,获取蓄热水箱内水量的预设时间根据多个预设时间段进行设置,以实现对蓄热水箱内水量进行及时补给,以满足用户的使用需求。
可选地,预设时间与预设时间段的上限值之间间隔预设间隔。预设间隔的取值范围为10分钟至45分钟。
示例性的,针对预设时间段为上午6点至9点,预设时间可以为5点15分、5点30分或5点50分。
针对预设时间段为中午11点至13点,预设时间可以为10点15分、10点30分或10点50分。
针对预设时间段为晚上17点至19点,预设时间可以为16点15分、16点30分或16点50分。
本公开实施例提供了一种空调洗碗设备900,其结构如图9所示,包括:
处理器(processor)902和存储器(memory)904,还可以包括通信接口(Communication Interface)906和总线908。其中,处理器902、通信接口906、存储器904可以通过总线908完成相互间的通信。通信接口906可以用于信息传输。处理器902可以调用存储器904中的逻辑指令,以执行上述实施例的空调洗碗设备的控制方法。
存储器904作为一种计算机可读存储介质,可用于存储软件程序、计算机可执行程序,如本公开实施例中的方法对应的程序指令/模块。处理器902通过运行存储在存储器904中的程序指令/模块,从而执行功能应用以及数据处理,即实现上述方法实施例中的空调洗碗设备的控制方法。因此具有上述实施例的全部有益效果,在此不再赘述。
存储器904可包括存储程序区和存储数据区,其中,存储程序区可存储操作系统、至少一个功能所需的应用程序;存储数据区可存储根据终端设备的使用所创建的数据等。此外,存储器904可以包括高速随机存取存储器,还可以包括非易失性存储器。
本公开实施例提供了一种计算机可读存储介质,存储有计算机可执行指令,所述计算机可执行指令设置为执行上述空调洗碗设备的控制方法。
本公开实施例提供了一种计算机程序,当所述计算机程序被计算机执行时,使所述计算机实现上述空调洗碗设备的控制方法。
本公开实施例提供了一种计算机程序产品,所述计算机程序产品包括存储在计算机可读存储介质上的计算机指令,当所述程序指令被计算机执行时,使所述计算机实现上述空调洗碗设备的控制方法。
上述的计算机可读存储介质可以是暂态计算机可读存储介质,也可以是非暂态计算机可读存储介质。
以上描述和附图充分地示出了本公开的实施例,以使本领域的技术人员能够实践它们。其他实施例可以包括结构的、逻辑的、电气的、过程的以及其他的改变。实施例仅代表可能的变化。除非明确要求,否则单独的部件和功能是可选的,并且操作的顺序可以变化。一些实施例的部分和特征可以被包括在或替换其他实施例的部分和特征。本公开实施例的范围包括权利要求书的整个范围,以及权利要求书的所有可获得的等同物。当用于本申请中的情况下,虽然术语“第一”、“第二”等可能会在本申请中使用以描述各元件,但这些元件不应受到这些术语的限制。这些术语仅用于将一个元件与另一个元件区别开。比如,在不改变描述的含义的情况下,第一元件可以叫做第二元件,并且同样第,第二元件可以叫做第一元件,只要所有出现的“第一元件”一致重命名并且所有出现的“第二元件”一致重命名即可。第一元件和第二元件都是元件,但可以不是相同的元件。而且,本申请中使用的用词仅用于描述实施例并且不用于限制权利要求。如在实施例以及权利要求的描述中使用的,除非上下文清楚地表明,否则单数形式的“一个”(a)、“一个”(an)和“所述”(the)旨在同样包括复数形式。类似地,如在本申请中所使用的术语“和/或”是指包含一个或一个以上相关联的列出的任何以及所有可能的组合。另外,当用于本申请中的情况下,术语“包括”(comprise)及其变型“包括”(comprises)和/或包括(comprising)等指陈述的特征、整体、步骤、操作、元素,和/或组件的存在,但不排除一个或一个以上其它特征、整体、步骤、操作、元素、组件和/或这些的分组的存在或添加。在没有更多限制的情况下,由语句“包括一个…”限定的要素,并不排除在包括所述要素的过程、方法或者设备中还存在另外的相同要素。本文中,每个实施例重点说明的可以是与其他实施例的不同之处,各个实施例之间相同相似部分可以互相参见。对于实施例公开的方法、产品等而言,如果其与实施例公开的方法部分相对应,那么相关之处可以参见方法部分的描述。
本领域技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,可以取决于技术方案的特定应用和设计约束条件。所述技术人员可以对每个特定的应用来使用不同方法以实现所描述的功能,但是这种实现不应认为超出本公开实施例的范围。所述技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的 系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
本文所披露的实施例中,所揭露的方法、产品(包括但不限于装置、设备等),可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,可以仅仅为一种逻辑功能划分,实际实现的情况下可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另外,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例。另外,在本公开实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
附图中的流程图和框图显示了根据本公开实施例的系统、方法和计算机程序产品的可能实现的体系架构、功能和操作。在这点上,流程图或框图中的每个方框可以代表一个模块、程序段或代码的一部分,所述模块、程序段或代码的一部分包含一个或多个用于实现规定的逻辑功能的可执行指令。在有些作为替换的实现中,方框中所标注的功能也可以以不同于附图中所标注的顺序发生。例如,两个连续的方框实际上可以基本并行地执行,它们有的情况下也可以按相反的顺序执行,这可以依所涉及的功能而定。在附图中的流程图和框图所对应的描述中,不同的方框所对应的操作或步骤也可以以不同于描述中所披露的顺序发生,有的情况下不同的操作或步骤之间不存在特定的顺序。例如,两个连续的操作或步骤实际上可以基本并行地执行,它们有的情况下也可以按相反的顺序执行,这可以依所涉及的功能而定。框图和/或流程图中的每个方框、以及框图和/或流程图中的方框的组合,可以用执行规定的功能或动作的专用的基于硬件的系统来实现,或者可以用专用硬件与计算机指令的组合来实现。

Claims (12)

  1. 一种空调洗碗设备的控制方法,其特征在于,所述空调洗碗设备包括冷媒循环组件和水系统,所述冷媒循环组件包括依次连接形成冷媒流路的压缩机、四通阀、室外换热器和室内换热流路;所述室内换热流路包括相互并联的第一流路和第二流路,所述第一流路包括室内换热器,所述第二流路包括热交换换热器,所述水系统与所述热交换换热器进行换热;所述控制方法包括:
    响应于用水请求,获取目标用水温度T0与所述水系统换热后的水温T;
    根据目标用水温度T0和所述水温T,控制所述第二流路内的冷媒的流量。
  2. 根据权利要求1所述的控制方法,其特征在于,所述水系统包括加热件,所述根据目标用水温度T0和所述水温T,控制所述第二流路内的冷媒的流量的步骤,包括:
    基于T0>T,控制所述加热件开启;
    基于T0<T,减小所述第二流路的流量;
    基于T0=T,控制第二流路保持当前流量。
  3. 根据权利要求1或2所述的控制方法,其特征在于,所述室内换热流路还包括第三流路,所述第三流路的两端分别与所述室内换热器和所述热交换换热器相连通;在所述获取目标用水温度T0与所述水系统换热后的水温T的步骤之前,还包括:
    获取所述压缩机的运行状态;
    基于所述压缩机处于停机状态,控制所述第一流路和所述第三流路关闭,控制所述第二流路开启,以及启动所述压缩机。
  4. 根据权利要求3所述的控制方法,其特征在于,所述控制方法还包括:
    基于所述压缩机处于开机状态,获取空调功能的运行模式;以及
    获取室内的目标设定温度t0和室内温度t;
    根据所述运行模式、所述目标设定温度t0和所述室内温度t,控制所述第一流路、所述第二流路和所述第三流路的连通状态。
  5. 根据权利要求4所述的控制方法,其特征在于,所述运行模式为制热模式,根据所述目标设定温度t0和所述室内温度t,控制所述第一流路、所述第二流路和所述第三流路的连通状态的步骤,包括:
    计算t0与t的差值Δt;
    基于Δt≤t1℃,控制所述第一流路和所述第二流路关闭,控制所述第三流路导通;
    基于t1℃<Δt≤t2℃,控制所述第一流路和所述第二流路导通,控制所述第三流路关闭;
    基于Δt>t2℃,控制所述第一流路导通,控制所述第二流路和所述第三流路关闭。
  6. 根据权利要求4所述的控制方法,其特征在于,所述运行模式为制冷模式,根据所述目标设定温度t0和所述室内温度t,控制所述第一流路、所述第二流路和所述第三流路的连通状态的步骤,包括:
    计算t与t0的差值Δt;
    基于Δt≤t3,控制所述四通阀换向,运行制热模式,并控制所述第一流路和所述第三流路关闭,控制所述第二流路导通;
    响应于出水结束请求,控制所述第二流路和所述第三流路关闭,控制所述四通阀换向运行制冷模式,并控制所述第一流路导通;
    基于Δt>t3,控制所述第一流路导通,并控制所述第二流路和所述第三流路关闭。
  7. 根据权利要求2所述的控制方法,其特征在于,所述水系统还包括蓄热水箱和与所述水箱相连通的出水部,所述热交换换热器设置于所述水箱,所述控制方法还包括:
    按照预设时间获取蓄热水箱内的水量和当前时间;
    根据所述当前时间,确定目标用水量;
    基于所述水量小于所述目标用水量,向所述蓄热水箱注水。
  8. 根据权利要求7所述的控制方法,其特征在于,所述根据所述当前时间,确定目标用水量的步骤包括:
    获取用户的日用水数据;
    根据所述当前时间和所述日用水数据,确定所述目标用水量;
    其中,所述日用水数据包括多个预设时间段和每个所述预设时间段对应的预设用水量。
  9. 一种空调洗碗设备,包括处理器和存储有程序指令的存储器,其特征在于,所述处理器被配置为在执行所述程序指令时,执行如权利要求1至8中任一项所述的控制方法。
  10. 一种存储介质,其特征在于,所述存储介质包括存储的程序,其中,所述程序运行时执行权利要求1至8中任一项所述的控制方法。
  11. 一种计算机程序,当所述计算机程序被计算机执行时,使所述计算机实现如权利要求1至8中任一项所述的控制方法。
  12. 一种计算机程序产品,所述计算机程序产品包括存储在计算机可读存储介质上的计算机指令,当所述程序指令被计算机执行时,使所述计算机实现如权利要求1至8中任一项所述的控制方法。
PCT/CN2023/140158 2022-12-20 2023-12-20 空调洗碗设备的控制方法、空调洗碗设备和存储介质 WO2024131824A1 (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN202223428538.1U CN219367842U (zh) 2022-12-20 2022-12-20 空调和洗碗一体机
CN202211641295.1 2022-12-20
CN202223428538.1 2022-12-20
CN202211641295.1A CN118224663A (zh) 2022-12-20 2022-12-20 空调洗碗设备的控制方法、空调洗碗设备和存储介质

Publications (1)

Publication Number Publication Date
WO2024131824A1 true WO2024131824A1 (zh) 2024-06-27

Family

ID=91587688

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/140158 WO2024131824A1 (zh) 2022-12-20 2023-12-20 空调洗碗设备的控制方法、空调洗碗设备和存储介质

Country Status (1)

Country Link
WO (1) WO2024131824A1 (zh)

Similar Documents

Publication Publication Date Title
CN102840714B (zh) 带热水功能的热泵系统及其控制方法
CN108458487A (zh) 一种智能热水循环装置和系统及其控制方法
CN103574968A (zh) 多功能空气调节系统
CN103629859B (zh) 三位一体空调器
WO2024131824A1 (zh) 空调洗碗设备的控制方法、空调洗碗设备和存储介质
Frank et al. Heating, ventilation, domestic appliances–An energy integrated system concept for the household of the future
WO2023202103A1 (zh) 热泵热水器的除霜控制方法、装置、设备及介质
WO2024021439A1 (zh) 用于控制空调的方法、装置、空调和存储介质
CN110513874B (zh) 基于耗电量的热水机控制方法、装置及热水机
WO2023010956A1 (zh) 冷热源热泵集成系统及用于其控制的方法及装置
WO2024131040A1 (zh) 空调洗碗设备及其控制方法、可读的存储介质
CN219367842U (zh) 空调和洗碗一体机
CN118224663A (zh) 空调洗碗设备的控制方法、空调洗碗设备和存储介质
CN112361607B (zh) 一种热水机系统控制方法、装置及热水机系统
CN113237228B (zh) 一种热泵热水器及其加热运转控制方法
CN111397006B (zh) 中央空调系统及中央空调系统的控制方法
EP4144276A1 (en) Dishwashing device
CN114963278B (zh) 智能除霜控制方法、装置、电子设备及存储介质
CN110887262B (zh) 制冷系统及厨房电器
WO2024131041A1 (zh) 换热系统、空调和冷藏一体机及其控制方法、控制装置
CN201569215U (zh) 节能型热平衡水冷式制冷热回收控制装置
CN111397007B (zh) 中央空调系统及中央空调系统的控制方法
CN211120099U (zh) 一种多功能热泵机组
CN215765801U (zh) 一种智能控制热水供应系统
CN220507240U (zh) 空调系统