WO2023010956A1 - 冷热源热泵集成系统及用于其控制的方法及装置 - Google Patents

冷热源热泵集成系统及用于其控制的方法及装置 Download PDF

Info

Publication number
WO2023010956A1
WO2023010956A1 PCT/CN2022/094929 CN2022094929W WO2023010956A1 WO 2023010956 A1 WO2023010956 A1 WO 2023010956A1 CN 2022094929 W CN2022094929 W CN 2022094929W WO 2023010956 A1 WO2023010956 A1 WO 2023010956A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat
cold
heat exchanger
cooling
integrated system
Prior art date
Application number
PCT/CN2022/094929
Other languages
English (en)
French (fr)
Inventor
李鹏辉
李海军
王彩平
赵国胜
贾香慧
周洪进
Original Assignee
青岛海尔空调器有限总公司
青岛海尔空调电子有限公司
海尔智家股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 青岛海尔空调器有限总公司, 青岛海尔空调电子有限公司, 海尔智家股份有限公司 filed Critical 青岛海尔空调器有限总公司
Publication of WO2023010956A1 publication Critical patent/WO2023010956A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F5/00Air-conditioning systems or apparatus not covered by F24F1/00 or F24F3/00, e.g. using solar heat or combined with household units such as an oven or water heater
    • F24F5/0003Exclusively-fluid systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/40Fluid line arrangements

Definitions

  • the present application relates to the field of smart home technology, for example, to an integrated system of cold and heat source heat pumps and a method and device for its control.
  • both refrigeration equipment and heating equipment are equipped with a set of refrigeration cycle units to meet their own cooling/heating needs, and the waste energy generated is discharged at will, resulting in energy waste.
  • each of the refrigeration equipment and the heating equipment has high manufacturing costs.
  • the embodiment of the present disclosure provides a cold and heat source heat pump integrated system and its control method and device, and provides a new unified distribution mode of cold and heat, so that each heat-requiring equipment and each cooling-requiring equipment do not need to be configured separately Heat pump compressor, both heat and cold are effectively used.
  • the cold and heat source heat pump integrated system includes: a refrigeration cycle unit, including a first heat exchanger and a second heat exchanger; a heat output unit, including a heat exchange end and a plurality of heat output interfaces, so The heat exchange end realizes heat exchange with the first heat exchanger, and the plurality of heat output interfaces are used to communicate with the heat exchange device of the heat-requiring terminal;
  • the cooling capacity output unit includes a cooling capacity exchange end and a plurality of cold output interfaces , the cold capacity exchange end realizes heat exchange with the second heat exchanger, and a plurality of the cold output interfaces are used to communicate with the terminal heat exchanger that requires cooling;
  • the outdoor heat exchanger communicates with the second heat exchanger through the first pipeline group
  • the first heat exchanger is arranged in parallel, and the second pipeline group is arranged in parallel with the second heat exchanger; by conducting the first pipeline group or the second pipeline group, the parallel connection of the outdoor heat exchanger is realized into the refrigeration cycle unit.
  • the method includes: obtaining the total heat demand according to the heat demand of each heat demand terminal;
  • the second pipeline group is controlled to conduct, and the outdoor heat exchanger is connected to the refrigeration cycle unit and exchanges heat with the second in parallel;
  • the refrigeration cycle unit is controlled to start operation.
  • the device includes: a processor and a memory storing program instructions, wherein the processor is configured to, when executing the program instructions, perform the aforementioned method for integrating cold and heat source heat pumps. method of system control.
  • the cold and heat source heat pump integrated system includes: including the aforementioned device for controlling the cold and heat source heat pump integrated system.
  • the cold and heat source heat pump integrated system of the embodiment of the present disclosure provides a new unified distribution mode of cold and heat, so that each heat-requiring device and each cold-requiring device does not need to be equipped with a separate heat pump compressor, and a refrigeration cycle unit is used to coordinate heat output.
  • the unit and the cooling output unit are uniformly distributed, and the heat and cold generated by the two heat exchangers of the refrigeration cycle unit are effectively used, which changes the existing situation that each refrigeration equipment or heating equipment is equipped with a separate heat pump compressor.
  • the heating equipment and refrigeration equipment in a specific environmental space are unified, the waste heat is effectively recycled, and the cost is greatly saved. Moreover, energy consumption and noise are reduced.
  • Fig. 1 is a schematic diagram of a cold and heat source heat pump integrated system provided by an embodiment of the present disclosure
  • Fig. 2 is a schematic diagram of another cold and heat source heat pump integrated system provided by an embodiment of the present disclosure
  • Fig. 3 is a schematic diagram of another cold and heat source heat pump integrated system provided by an embodiment of the present disclosure
  • Fig. 4 is a schematic diagram of another cold and heat source heat pump integrated system provided by an embodiment of the present disclosure.
  • Fig. 5 is a schematic diagram of a method for controlling a cold and heat source heat pump integrated system provided by an embodiment of the present disclosure
  • Fig. 6 is a schematic diagram of a device for controlling a cold and heat source heat pump integrated system provided by an embodiment of the present disclosure.
  • Refrigeration cycle unit 11. First heat exchanger; 12. Second heat exchanger; 13. Compressor; 14. Throttle device; 20. Heat output unit; 21. Heat exchange end; 22. Heat output interface ; 23, heat circulation pipeline; 24, heat circulation pump; 30, cooling output unit; 31, cooling exchange end; 32, cold output interface; 33, cooling circulation pipeline; 34, cold circulation pump; 40, Outdoor heat exchanger; 411, heat pipeline I; 412, heat pipeline II; 413, heat control valve I; 414, heat control valve II; 421, cooling pipeline I; 422, cooling pipeline II; 423 . Cold control valve I; 424. Cold control valve II; 50. Forced cooling output unit; 51. Forced cooling output interface; 52. First communication pipeline; 53. Second communication pipeline; 60. Fluid supply device; 71 , need hot terminal; 72, need cold terminal; 73, need strong cold terminal.
  • A/B means: A or B.
  • a and/or B means: A or B, or, A and B, these three relationships.
  • an embodiment of the present disclosure provides a cold and heat source heat pump integrated system, including a refrigeration cycle unit 10 , a heat output unit 20 , a cold output unit 30 and an outdoor heat exchanger 40 .
  • the refrigeration cycle unit 10 It includes a first heat exchanger 11 and a second heat exchanger 12;
  • the heat output unit 20 includes a heat exchange end 21 and a plurality of heat output interfaces 22, the heat exchange end 21 realizes heat exchange with the first heat exchanger 11, and the plurality of heat
  • the output interface 22 is used to communicate with the heat exchange device of the heat demand terminal 71;
  • the cooling capacity output unit 30 includes a cooling capacity exchange end 31 and a plurality of cold output interfaces 32, and the cooling capacity exchange end 31 realizes heat exchange with the second heat exchanger 12,
  • a plurality of cold output interfaces 32 are used to communicate with the heat exchanger of the cooling terminal 72;
  • the outdoor heat exchanger 40 is arranged in parallel with the first heat exchanger 11 through the first pipeline group, and is connected with the second heat exchanger through the
  • the cold and heat source heat pump integrated system of the embodiment of the present disclosure is applicable to scenarios where there are terminals 72 requiring cooling and terminals 71 requiring heat in a specific environmental space, for example, a home environment, a residential area, or even a community.
  • the refrigeration cycle units 10 of each heat-requiring terminal 71 and each cold-requiring terminal 72 in the specific environmental space are separated and integrated into one refrigeration cycle unit 10, and the heat is transferred through the heat output unit 20 and the cooling capacity output unit 30 respectively.
  • the cooling capacity is output to the heat exchanger of the terminal 72 corresponding to the cooling requirement and the heat exchanger of the terminal 72 of the cooling requirement.
  • an outdoor heat exchanger 40 is added, and the first pipeline group and the second pipeline group can be switched.
  • the conduction of the group makes it parallel to the first heat exchanger 11 and connected to the refrigeration cycle unit 10 or parallel to the second heat exchanger 12 and connected to the refrigeration cycle unit 10, so as to consume excess heat or cold, and realize cooling
  • the cold and heat matching of the heat source heat pump integrated system ensures that each heat-requiring terminal 71 and cold-requiring terminal 72 can obtain their respective matching heat and cooling capacity.
  • the cold and heat source heat pump integrated system of the embodiment of the present disclosure provides a new unified distribution mode of cold and heat, so that each heat-requiring device and each cold-requiring device does not need to be equipped with a separate heat pump compressor, and a refrigeration cycle unit 10 is used to coordinate the heat.
  • the output unit 20 and the cooling capacity output unit 30 are uniformly distributed, and the heat and cooling capacity generated by the two heat exchangers of the refrigeration cycle unit 10 are effectively utilized, which changes the existing configuration of each refrigeration equipment or heating equipment.
  • the current situation of the heat pump compressor unifies the heating equipment and refrigeration equipment in a specific environmental space, effectively recycles waste heat, and greatly saves costs. Moreover, energy consumption and noise are reduced.
  • the refrigeration cycle unit 10 also includes structural components such as a compressor 13 and a throttling device 14.
  • the compressor 13, the second heat exchanger 12, the throttling device 14 and the first heat exchanger 11 are sequentially connected end to end to form a complete Refrigeration cycle system.
  • heat-requiring terminal 71 and the cooling-requiring terminal 72 are not heating equipment and refrigeration equipment in a complete sense, at least the heat pump compressor and a heat exchanger are canceled in the refrigeration cycle system.
  • the heat-requiring terminal 71 and the cooling-requiring terminal 72 can also be existing heating equipment and refrigeration equipment, and only need to transfer the heat-requiring space/cold-requiring space
  • the internal heat exchangers that provide heat/cooling capacity can be connected to the corresponding heat output interface 22 or cold output interface 32 .
  • the number of multiple heat output interfaces 22 is not limited, and is determined according to the number of heat exchange devices of the heat-demanding terminals 71 actually connected and pre-connected.
  • the heat-demanding terminal 71 may include any one or more of a heating device, a hot water device, a floor heating device, and a fan.
  • the heat exchange devices of the heat demand terminals 71 are the parts used for heat exchange in each heat demand terminal 71, for example, the terminal radiator in the heating device, the heat exchange coil/heat exchanger inside the hot water device, and the floor heating of the floor heating device. Pipelines, fan discs in fans, air conditioner indoor unit pipes in heating mode, etc.
  • the heat output interface 22 includes four heat output interfaces 22, which can be connected to the heat exchange coil/heat exchanger inside the water heater, the floor heating pipeline and the air-conditioning room respectively. Any four connections in the machine heat exchanger.
  • the heat output interface 22 is not limited to the four types listed, and it may also include air conditioners and grading terminals that require both heat and cold, which may also be connected to the cold output interface.
  • the number of multiple cooling output interfaces 32 is not limited, and is determined according to the number of heat exchange devices of the terminal 72 that needs to be cooled actually connected and pre-connected.
  • the cold-requiring terminal 72 includes any one or more of a refrigerator, a freezer, a freezer, a wine cooler, and a fan.
  • the heat exchange device of the terminal 72 that needs cooling is the parts used for heat exchange in each terminal 72 that needs cooling, for example, the heat exchanger/heat exchange coil in the refrigerator, freezer, freezer and wine cabinet, and the fan coil in the fan. wait. For example, as shown in FIG.
  • the cold output interface 32 includes three cold output interfaces 32 , which can communicate with the fan coil, the heat exchanger of the refrigerator, and the heat exchange coil of the wine cabinet respectively.
  • the heat exchanger of the indoor unit of the air conditioner needs both heat and cold.
  • the heat-requiring terminal 71 and the cooling-requiring terminal 72 include home terminal devices that can be applied to scenarios such as home environments, communities, and even communities, and are certainly not limited to home terminal devices.
  • both the heat output interface 22 and the cold output interface 32 have two ports, one is an inflow port, and the other is an outflow port.
  • two ports of the heat output interface 22 are respectively provided with flow control devices.
  • the heat output of the heat output interface 22 is controlled.
  • electrically controlled valves for example, electrically controlled valves.
  • flow control devices are respectively provided on the two ports of the cold output interface 32 .
  • the cold output of the cold output interface 32 is controlled.
  • electrically controlled valves for example, electrically controlled valves.
  • the structural form of the heat output unit 20 and the cooling capacity output unit 30 is not limited, as long as the energy transmission function is realized.
  • the heat output unit 20 includes a fluid medium circulation output unit
  • the cold output unit 30 includes a fluid medium circulation output unit.
  • the fluid medium circulation output unit includes an energy exchange end, a circulation pipeline and an energy output interface.
  • the energy exchange end is the heat exchange end 21 or the cold energy exchange end 31
  • the energy output interface is the heat output interface 22 or the cold output interface 32
  • the circulation pipeline is the heat circulation pipeline 23 or the cooling energy circulation pipeline 33
  • a corresponding circulation pump is also arranged on the circulation pipeline to realize fluid circulation.
  • heat circulation pump 24 and cold circulation pump 34 is also arranged on the circulation pipeline to realize fluid circulation.
  • the structural form of the energy exchange end (heat exchange end 21 or cold energy exchange end 31 ) of the fluid medium circulation output unit is determined according to the structural form of the first heat exchanger 11 or the second heat exchanger 12 for heat exchange.
  • the first heat exchanger 11 is taken as an example for description.
  • the fluid flow path is connected to the refrigeration cycle unit 10, and the heat exchange end 21 of the fluid medium circulation output unit is arranged on the surface of the first heat exchanger 11, for example , winding, etc.
  • the first heat exchanger 11 is a fluid-fluid heat exchange structure, that is, when it has two fluid flow paths, one fluid flow path is connected to the refrigeration cycle unit 10, and the heat exchange end 21 of the fluid medium circulation output unit is connected to the other. fluid flow path.
  • first heat exchanger 11 and the second heat exchanger 12 adopt a fluid-fluid heat exchange structure.
  • the fluid medium is not limited, as long as it can carry energy, such as water.
  • energy output interface 22 or cold output interface 32 There are multiple energy output interfaces (heat output interface 22 or cold output interface 32 ) of the fluid medium circulation output unit to connect to different terminals.
  • a plurality of energy output interfaces are arranged in parallel, and control valves are set on the energy inflow interface and the energy outflow interface of the energy output interface to adjust the fluid flow of each interface, and then adjust the energy output.
  • the cold and heat source heat pump integrated system further includes a fluid supply device 60 for supplying fluid medium to the heat output unit 20 and the cooling output unit 30 .
  • the heat output unit 20 and the cooling output unit 30 are water circulation output units, and the fluid supply device 60 supplies water to the heat output unit 20 and the cooling output unit 30 .
  • the fluid supply device 60 is a water pump.
  • first pipeline group and the second pipeline group are in a normally closed state, and the first pipeline group or the second pipeline group will be turned on only when needed.
  • the first pipeline group includes two heat pipelines and two heat control valves, and the two heat pipelines connect the two ports of the outdoor heat exchanger 40 to the two ports of the first heat exchanger 11 respectively.
  • the two heat control valves are respectively connected to their corresponding heat pipelines; through the linkage control of the two heat control valves to open or close, the outdoor heat exchanger 40 is controlled to connect or cut off in parallel with the first heat exchanger 11 .
  • the two heat pipelines are respectively denoted as heat pipeline I411 and heat pipeline II412, and the two heat control valves are respectively denoted as heat control valve I413 and heat control valve II414, and heat pipeline I411 is connected to outdoor heat exchange
  • the first port of the heat exchanger 40 is connected to the first port of the first heat exchanger 11, and the heat control valve I413 is connected to the heat pipeline I411;
  • the heat pipeline II412 is connected to the second port of the outdoor heat exchanger 40 and the first heat exchanger 11
  • the second port of the heat control valve II414 is connected to the heat pipeline II412.
  • the second pipeline group includes two cooling pipelines and two cooling control valves, and the two cooling pipelines connect the two ports of the outdoor heat exchanger 40 to the second heat exchanger 12 respectively.
  • the two cold control valves are respectively connected to the corresponding cold capacity pipelines; the two cold control valves are controlled to open or close through linkage, and the outdoor heat exchanger 40 is connected in parallel with the second heat exchanger 12 Connect or disconnect.
  • the two cooling pipelines are respectively denoted as cooling pipeline I421 and cooling pipeline II422, and the two cold control valves are respectively denoted as cold control valve I423 and cold control valve II424, and the cooling pipeline I421
  • the first port of the outdoor heat exchanger 40 is connected to the first port of the second heat exchanger 12
  • the cold control valve I423 is connected to the cooling pipeline I421
  • the cooling pipeline II422 is connected to the second port of the outdoor heat exchanger 40 and the At the second port of the second heat exchanger 12
  • the cold control valve II 424 is connected to the cooling pipeline II 422 .
  • the cold and heat source heat pump integrated system further includes a forced cooling output unit, including a forced cooling output interface 51, and the forced cooling output interface 51 is connected to the refrigeration cycle unit 10 in parallel with the second heat exchanger 12 , used to communicate with the heat exchanger device of the terminal 73 requiring forced cooling.
  • the terminal 73 requiring forced cooling includes refrigerators, freezers and other refrigeration equipment that require a freezing function.
  • the forced cooling output interface 51 includes a forced cooling inflow port and a forced cooling outflow port, which are respectively connected to the pipelines at both ends of the second heat exchanger 12 through communication pipelines.
  • the forced cooling inflow port is connected to the pipeline at the first end of the second heat exchanger 12 through the first communication pipeline 52, and the forced cooling outflow port is connected to the second heat exchanger through the second communication pipeline 53. In the pipeline at the second end of the heater 12.
  • the "interface" referred to includes two ports, one is an inflow port, and the other is an outflow port.
  • an embodiment of the present disclosure provides a method for controlling a cold and heat source heat pump integrated system, including:
  • the required heat of each heat-requiring terminal 71 is obtained through the operating parameters set by the user for each heat-requiring terminal 71
  • the required amount of each cooling-requiring terminal 72 is obtained through the operating parameters set by the user for each cooling-requiring terminal 72 .
  • the second pipeline group is controlled to conduct, and the outdoor heat exchanger 40 is connected to the refrigeration cycle unit 10 and connected in parallel with the second heat exchange.
  • the outdoor heat exchanger 40 operates in parallel with the second heat exchanger 12 to discharge excess cooling capacity.
  • the running pipeline of the heat pump integrated system is shown in Figure 2, and the heat pump integrated system in this case is defined as the main heat operation mode.
  • the method for controlling the integrated system of cold and heat source heat pumps further includes: adjusting the heat exchange capacity of each corresponding heat output interface 22 in the heat output unit 20 according to the heat demand of each heat demand terminal 71;
  • the demanded heat of each cold-requiring terminal 72 adjusts the exchange heat of each corresponding cold output interface 32 in the cooling capacity output unit 30 .
  • the adjustment of the exchange rate can be realized through the control valves arranged on each interface.
  • the cold output interface 32 communicates with the heat exchanger of the air conditioner, and the heat output interface 22 communicates with the heat exchanger of the air conditioner; when the air conditioner operates in cooling mode, the heat output interface 22 is controlled to be turned on according to the indoor humidity.
  • the cold output interface 32 communicates with the heat exchanger of the air conditioner to ensure the cooling demand.
  • the heat output interface 22 is properly opened to achieve the effect of heating the air and strengthen the dehumidification function.
  • the air conditioner indoor unit includes two heat exchangers, and the two heat exchangers are respectively communicated with the cold output interface 32 and the heat output interface 22 .
  • the heat output interface 22 of the heat exchanger close to the air intake side is controlled to be opened. In this way, the pre-drying of the air entering the heat exchanger near the air outlet is realized, and the dehumidification function is enhanced.
  • an embodiment of the present disclosure provides a device for controlling a heat pump integrated system with cold and heat sources, including a processor (processor) 80 and a memory (memory) 81 .
  • the device may also include a communication interface (Communication Interface) 82 and a bus 83.
  • Communication interface 82 may be used for information transfer.
  • the processor 80 can call the logic instructions in the memory 81 to execute the method for controlling the cold and heat source heat pump integrated system of the above-mentioned embodiments.
  • logic instructions in the memory 81 may be implemented in the form of software function units and when sold or used as an independent product, may be stored in a computer-readable storage medium.
  • the memory 81 can be used to store software programs and computer-executable programs, such as program instructions/modules corresponding to the methods in the embodiments of the present disclosure.
  • the processor 80 executes the program instructions/modules stored in the memory 81 to execute functional applications and data processing, that is, to implement the method for controlling the cold and heat source heat pump integrated system in the above embodiments.
  • the memory 81 may include a program storage area and a data storage area, wherein the program storage area may store an operating system and at least one application required by a function; the data storage area may store data created according to the use of the terminal device, and the like.
  • the memory 81 may include a high-speed random access memory, and may also include a non-volatile memory.
  • An embodiment of the present disclosure provides a cold and heat source heat pump integrated system, including the above-mentioned device for controlling the cold and heat source heat pump integrated system.
  • the cold and heat source heat pump integrated system of the embodiment of the present disclosure also includes the cold and heat source heat pump integrated system of any one of the foregoing embodiments.
  • An embodiment of the present disclosure provides a computer-readable storage medium, which stores computer-executable instructions, and the computer-executable instructions are configured to execute the above-mentioned method for controlling a cold-heat source heat pump integrated system.
  • An embodiment of the present disclosure provides a computer program product, the computer program product includes a computer program stored on a computer-readable storage medium, the computer program includes program instructions, and when the program instructions are executed by a computer, the The computer executes the above method for controlling the cold and heat source heat pump integrated system.
  • the above-mentioned computer-readable storage medium may be a transitory computer-readable storage medium, or a non-transitory computer-readable storage medium.
  • the technical solutions of the embodiments of the present disclosure can be embodied in the form of software products, which are stored in a storage medium and include one or more instructions to make a computer device (which can be a personal computer, a server, or a network equipment, etc.) to perform all or part of the steps of the method described in the embodiments of the present disclosure.
  • the aforementioned storage medium can be a non-transitory storage medium, including: U disk, mobile hard disk, read-only memory (ROM, Read-Only Memory), random access memory (RAM, Random Access Memory), magnetic disk or optical disc, etc.
  • the term “and/or” as used in this application is meant to include any and all possible combinations of one or more of the associated listed ones.
  • the term “comprise” and its variants “comprises” and/or comprising (comprising) etc. refer to stated features, integers, steps, operations, elements, and/or The presence of a component does not preclude the presence or addition of one or more other features, integers, steps, operations, elements, components and/or groupings of these.
  • an element defined by the statement “comprising a " does not exclude the presence of additional identical elements in the process, method or apparatus comprising said element.
  • the disclosed methods and products can be implemented in other ways.
  • the device embodiments described above are only illustrative.
  • the division of the units may only be a logical function division.
  • multiple units or components may be combined Or it can be integrated into another system, or some features can be ignored, or not implemented.
  • the mutual coupling or direct coupling or communication connection shown or discussed may be through some interfaces, and the indirect coupling or communication connection of devices or units may be in electrical, mechanical or other forms.
  • each functional unit in the embodiments of the present disclosure may be integrated into one processing unit, each unit may exist separately physically, or two or more units may be integrated into one unit.
  • each block in a flowchart or block diagram may represent a module, program segment, or part of code that includes one or more Executable instructions.
  • the functions noted in the block may occur out of the order noted in the figures.
  • two blocks in succession may, in fact, be executed substantially concurrently, or they may sometimes be executed in the reverse order, depending upon the functionality involved.
  • the operations or steps corresponding to different blocks may also occur in a different order than that disclosed in the description, and sometimes there is no specific agreement between different operations or steps.
  • each block in the block diagrams and/or flowcharts, and combinations of blocks in the block diagrams and/or flowcharts can be implemented by a dedicated hardware-based system that performs the specified function or action, or can be implemented by dedicated hardware implemented in combination with computer instructions.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Other Air-Conditioning Systems (AREA)
  • Compression-Type Refrigeration Machines With Reversible Cycles (AREA)
  • Air Conditioning Control Device (AREA)

Abstract

本申请涉及智慧家庭技术领域,公开一种冷热源热泵集成系统,包括:制冷循环单元,包括第一换热器和第二换热器;热量输出单元的热量交换端与第一换热器实现热交换,多个热输出接口外接需热终端换热装置;冷量输出单元的冷量交换端与第二换热器实现热交换,多个冷输出接口外接需冷终端换热器;室外换热器通过导通第一管路组或第二管路组,实现室外换热器并联接入制冷循环单元中。使得各需能设备集中由一个制冷循环单元配合热量输出单元和冷量输出单元统一配给,将两个换热器上产生的热量和冷量均有效利用起来,统一了特定环境空间内的制热设备和制冷设备,回收利用了余热,大大节省了成本。本申请还公开一种用于其控制的方法及装置。

Description

冷热源热泵集成系统及用于其控制的方法及装置
本申请基于申请号为202110886600.2、申请日为2021年8月3日的中国专利申请提出,并要求该中国专利申请的优先权,该中国专利申请的全部内容在此引入本申请作为参考。
技术领域
本申请涉及智慧家庭技术领域,例如涉及一种冷热源热泵集成系统及用于其控制的方法及装置。
背景技术
目前,制冷设备和制热设备均各自配置一套制冷循环单元,以满足自身制冷/制热需求,而产生的废弃能量则随意排放,造成能源浪费。而且各制冷设备和制热设备各自制造成本高。
在实现本公开实施例的过程中,发现相关技术中至少存在如下问题:
现有制冷设备和制热设备的产品形态造成极大的能源浪费,其没有有效且简单的利用废弃能源的方式。
发明内容
为了对披露的实施例的一些方面有基本的理解,下面给出了简单的概括。所述概括不是泛泛评述,也不是要确定关键/重要组成元素或描绘这些实施例的保护范围,而是作为后面的详细说明的序言。
本公开实施例提供了一种冷热源热泵集成系统及用于其控制的方法及装置,提供了一种新的冷热统一配给模式,使得各需热设备和各需冷设备不需要单独配置热泵压缩机,热量和冷量均有效利用起来。
在一些实施例中,所述冷热源热泵集成系统,包括:制冷循环单元,包括第一换热器和第二换热器;热量输出单元,包括热量交换端和多个热输出接口,所述热量交换端与所述第一换热器实现热交换,多个所述热输出接口用于与需热终端换热装置连通;冷量输出单元,包括冷量交换端和多个冷输出接口,所述冷量交换端与所述第二换热器实现热交换,多个所述冷输出接口用于与需冷终端换热器连通;室外换热器,通过第一 管路组与所述第一换热器并联设置,通过第二管路组与所述第二换热器并联设置;通过导通第一管路组或第二管路组,实现所述室外换热器并联接入所述制冷循环单元中。
在一些实施例中,所述方法包括:根据各需热终端的需热量,获取总需热量;
根据各需冷终端的需冷量,获取总需冷量;
在所述总需冷量大于所述总需热量的情况下,控制所述第一管路组导通,所述室外换热器接入所述制冷循环单元中且与所述第一换热并联;
在所述总需冷量小于所述总需热量的情况下,控制所述第二管路组导通,所述室外换热器接入所述制冷循环单元中且与所述第二换热并联;
在所述总需冷量等于所述总需热量的情况下,维持所述第一管路组和所述第二管路组关闭,控制所述制冷循环单元运行;
根据需求量大的总需热量或者总需冷量,控制制冷循环单元启动运行。
在一些实施例中,所述装置包括:处理器和存储有程序指令的存储器,其特征在于,所述处理器被配置为在执行所述程序指令时,执行前述的用于冷热源热泵集成系统控制的方法。
在一些实施例中,所述冷热源热泵集成系统包括:包括前述的用于冷热源热泵集成系统控制的装置。
本公开实施例提供的冷热源热泵集成系统及用于其控制的方法及装置,可以实现以下技术效果:
本公开实施例的冷热源热泵集成系统提供了一种新的冷热统一配给模式,使得各需热设备和各需冷设备不需要单独配置热泵压缩机,集中由一个制冷循环单元配合热量输出单元和冷量输出单元统一配给,将制冷循环单元的两个换热器上产生的热量和冷量均有效利用起来,改变了现有每一制冷设备或者制热设备均配置单独热泵压缩机的现状,统一了特定环境空间内的制热设备和制冷设备,有效回收利用了余热,大大节省了成本。而且,减低能耗以及噪音。
以上的总体描述和下文中的描述仅是示例性和解释性的,不用于限制本申请。
附图说明
一个或多个实施例通过与之对应的附图进行示例性说明,这些示例性说明和附图并不构成对实施例的限定,附图中具有相同参考数字标号的元件示为类似的元件,附图不构成比例限制,并且其中:
图1是本公开实施例提供的一种冷热源热泵集成系统的示意图;
图2是本公开实施例提供的另一种冷热源热泵集成系统的示意图;
图3是本公开实施例提供的另一种冷热源热泵集成系统的示意图;
图4是本公开实施例提供的另一种冷热源热泵集成系统的示意图;
图5是本公开实施例提供的一种用于冷热源热泵集成系统控制的方法的示意图;
图6是本公开实施例提供的一种用于冷热源热泵集成系统控制的装置的示意图。
附图标记:
10、制冷循环单元;11、第一换热器;12、第二换热器;13、压缩机;14、节流装置;20、热量输出单元;21、热量交换端;22、热输出接口;23、热量循环管路;24、热循环泵;30、冷量输出单元;31、冷量交换端;32、冷输出接口;33、冷量循环管路;34、冷循环泵;40、室外换热器;411、热量管路Ⅰ;412、热量管路Ⅱ;413、热控制阀门Ⅰ;414、热控制阀门Ⅱ;421、冷量管路Ⅰ;422、冷量管路Ⅱ;423、冷控制阀门Ⅰ;424、冷控制阀门Ⅱ;50、强冷输出单元;51、强冷输出接口;52、第一连通管路;53、第二连通管路;60、流体补给装置;71、需热终端;72、需冷终端;73、需强冷终端。
具体实施方式
为了能够更加详尽地了解本公开实施例的特点与技术内容,下面结合附图对本公开实施例的实现进行详细阐述,所附附图仅供参考说明之用,并非用来限定本公开实施例。在以下的技术描述中,为方便解释起见,通过多个细节以提供对所披露实施例的充分理解。然而,在没有这些细节的情况下,一个或多个实施例仍然可以实施。在其它情况下,为简化附图,熟知的结构和装置可以简化展示。
本公开实施例的说明书和权利要求书及上述附图中的术语“第一”、“第二”等是用于区别类似的对象,而不必用于描述特定的顺序或先后次序。应该理解这样使用的数据在适当情况下可以互换,以便这里描述的本公开实施例的实施例。此外,术语“包括”和“具有”以及他们的任何变形,意图在于覆盖不排他的包含。
除非另有说明,术语“多个”表示两个或两个以上。
本公开实施例中,字符“/”表示前后对象是一种“或”的关系。例如,A/B表示:A或B。
术语“和/或”是一种描述对象的关联关系,表示可以存在三种关系。例如,A和/ 或B,表示:A或B,或,A和B这三种关系。
需要说明的是,在不冲突的情况下,本公开实施例中的实施例及实施例中的特征可以相互组合。
结合图1至图4所示,本公开实施例提供一种冷热源热泵集成系统,包括制冷循环单元10、热量输出单元20、冷量输出单元30和室外换热器40,制冷循环单元10包括第一换热器11和第二换热器12;热量输出单元20包括热量交换端21和多个热输出接口22,热量交换端21与第一换热器11实现热交换,多个热输出接口22用于与需热终端71换热装置连通;冷量输出单元30包括冷量交换端31和多个冷输出接口32,冷量交换端31与第二换热器12实现热交换,多个冷输出接口32用于与需冷终端72换热器连通;室外换热器40通过第一管路组与第一换热器11并联设置,通过第二管路组与第二换热器12并联设置;通过切换第一管路组或第二管路组的导通,实现室外换热器40并联接入所述制冷循环单元10中。
本公开实施例的冷热源热泵集成系统适用于在一特定环境空间内即具有需冷终端72又具有需热终端71的场景,例如,家居环境、小区、甚至是社区等。将该特定环境空间内的各需热终端71和各需冷终端72的制冷循环单元10独立出来并集成于一个制冷循环单元10,并通过热量输出单元20和冷量输出单元30再分别将热量和冷量输出至各自对应的需冷终端72换热器和需冷终端72换热器。同时,结合在实际应用中,该特定环境空间内的需热量与需冷量并不会完全匹配的情况,增加设置了室外换热器40,可通过切换第一管路组和第二管路组的导通,使其与第一换热器11并联且接入制冷循环单元10或者与第二换热器12并联且接入制冷循环单元10,以消耗多余的热量或冷量,实现冷热源热泵集成系统的冷热匹配,保证各需热终端71和需冷终端72获得各自所匹配的热量和冷量。
本公开实施例的冷热源热泵集成系统提供了一种新的冷热统一配给模式,使得各需热设备和各需冷设备不需要单独配置热泵压缩机,集中由一个制冷循环单元10配合热量输出单元20和冷量输出单元30统一配给,将制冷循环单元10的两个换热器上产生的热量和冷量均有效利用起来,改变了现有每一制冷设备或者制热设备均配置单独热泵压缩机的现状,统一了特定环境空间内的制热设备和制冷设备,有效回收利用了余热,大大节省了成本。而且,减低能耗以及噪音。
制冷循环单元10,还包括压缩机13和节流装置14等结构件,压缩机13、第二换热器12、节流装置14和第一换热器11顺次首尾连通,构成一个完整的制冷循环系统。
本公开实施例中,需热终端71和需冷终端72内只需要在其相应需热空间/需冷空间内设置换热器,将换热器与热量输出单元20的热输出接口22或冷量输出单元30的冷输出接口32连通即可。可以理解的是,需热终端71和需冷终端72并非完整意义上制热设备和制冷设备,至少是制冷循环系统中取消了热泵压缩机和一个换热器。当然,在构建本公开实施例的冷热源热泵集成系统时,需热终端71和需冷终端72也可以是现有制热设备和制冷设备,只需将将向需热空间/需冷空间内提供热量/冷量的换热器接入各自对应的热输出接口22或冷输出接口32即可。
本公开实施例中,热量输出单元20中,多个热输出接口22的数量不限,依据实际接入和预接入的需热终端71换热装置的数量确定。其中,需热终端71可以包括暖气装置、热水装置、地暖装置和风机等中的任一种或多种。需热终端71换热装置则为各需热终端71内用于换热的部件,例如,暖气装置内的末端暖气片,热水装置内部的换热盘管/换热器,地暖装置的地暖管路,风机中的风机盘,制热模式下的空调室内机管等。例如,如图1所示,热输出接口22包括四个热输出接口22,可分别与风机盘管、暖气片、热水装置内部的换热盘管/换热器、地暖管路和空调室内机换热器中任意四种连通。当然,不限于列举的四种,还可以包括空调和分级属于即需热又需冷的终端,其也可与冷输出接口连通。
本公开实施例中,冷量输出单元30中,多个冷输出接口32的数量不限,依据实际接入和预接入的需冷终端72换热装置的数量确定。其中,需冷终端72包括冰箱、冰柜、冷藏柜、酒柜和风机等中的任一种或多种。需冷终端72换热装置则为各需冷终端72内用于换热的部件,例如,冰箱、冰柜、冷藏柜和酒柜内的换热器/换热盘管,风机中的风机盘管等。例如,如图1所示,冷输出接口32包括三个冷输出接口32,可分别与风机盘管、冷藏柜的换热器和酒柜换热盘管连通。当然,不限于列举的三种,还可以包括空调室内机换热器即需热又需冷的终端。
本公开实施例中,需热终端71和需冷终端72包括可应用至家居环境、小区、甚至是社区等场景的家用终端设备,当然不限于家用终端设备。
本公开实施例中,热输出接口22和冷输出接口32均具有两个端口,一个为流入端口,另一个为流出端口。
可选地,热输出接口22的两个端口上分别设置流量控制装置。控制热输出接口22的热量输出量。例如,电动控制阀门。
可选地,冷输出接口32的两个端口上分别设置流量控制装置。控制冷输出接口32 的冷量输出量。例如,电动控制阀门。
热量输出单元20和冷量输出单元30的结构形式不限,只要实现能量输送功能即可。可选地,热量输出单元20包括流体介质循环输出单元,和/或,冷量输出单元30包括流体介质循环输出单元。流体介质循环输出单元包括能量交换端、循环管路和能量输出接口。依据热交换的能量,能量交换端为热量交换端21或冷量交换端31,能量输出接口为热输出接口22或者冷输出接口32,循环管路为热量循环管路23或者冷量循环管路33,且循环管路上还设置有相应的循环泵,以实现流体循环。例如,热循环泵24和冷循环泵34。
流体介质循环输出单元的能量交换端(热量交换端21或者冷量交换端31)的结构形式依据进行热交换的第一换热器11或第二换热器12的结构形式确定。以第一换热器11为例进行说明。第一换热器11为风-流体式换热结构时,流体流路接入制冷循环单元10中,则流体介质循环输出单元的热量交换端21则设置于第一换热器11表面,例如,缠绕等。第一换热器11为流体-流体换热结构时,即具有两个流体流路时,则一个流体流路接入制冷循环单元10,流体介质循环输出单元的热量交换端21接入另一个流体流路。
可选地,第一换热器11和第二换热器12采用流体-流体的换热结构。
流体介质循环输出单元中,流体介质不限,能够携带能量的流体即可,例如,水。
流体介质循环输出单元的能量输出接口(热输出接口22或冷输出接口32)为多个,以接入不同的终端。多个能量输出接口并联设置,能量输出接口的能量流入接口和能量流出接口上均设置有控制阀门,以调节各个接口的流体流量,进而调节能量输出量。
在一些实施例中,冷热源热泵集成系统还包括流体补给装置60,用于为热量输出单元20和冷量输出单元30补给流体介质。可选地,热量输出单元20和冷量输出单元30为水循环输出单元,则流体补给装置60为热量输出单元20和冷量输出单元30补给水。可选地,流体补给装置60为水泵。
本公开实施例中,可以理解的是,第一管路组和第二管路组处于常闭状态,只有在需要时,才会导通第一管路组或第二管路组。
在一些实施例中,第一管路组包括两个热量管路和两个热控制阀门,两个热量管路将室外换热器40的两个端口分别连通至第一换热器11的两端口的管路上;两个热控制阀门分别接入各自对应的热量管路中;通过联动控制两个热控制阀门打开或关闭,控制室外换热器40与第一换热器11并联连通或者切断。如图1所示,两个热量管路分别 记为热量管路Ⅰ411和热量管路Ⅱ412,两个热控制阀门分别记为热控制阀门Ⅰ413和热控制阀门Ⅱ414,热量管路Ⅰ411连通室外换热器40的第一端口与第一换热器11的第一端口,热控制阀门Ⅰ413接入热量管路Ⅰ411;热量管路Ⅱ412连通室外换热器40的第二端口与第一换热器11的第二端口,热控制阀门Ⅱ414接入热量管路Ⅱ412。
在一些实施例中,第二管路组包括两个冷量管路和两个冷控制阀门,两个冷量管路将室外换热器40的两个端口分别连通至第二换热器12的两端口的管路上;两个冷控制阀门分别接入各自对应的冷量管路中;通过联动控制两个冷控制阀门打开或关闭,控制室外换热器40与第二换热器12并联连通或者切断。如图1所示,两个冷量管路分别记为冷量管路Ⅰ421和冷量管路Ⅱ422,两个冷控制阀门分别记为冷控制阀门Ⅰ423和冷控制阀门Ⅱ424,冷量管路Ⅰ421连通室外换热器40的第一端口与第二换热器12的第一端口,冷控制阀门Ⅰ423接入冷量管路Ⅰ421;冷量管路Ⅱ422连通室外换热器40的第二端口与第二换热器12的第二端口,冷控制阀门Ⅱ424接入冷量管路Ⅱ422。
在一些实施例中,冷热源热泵集成系统,还包括强冷输出单元,包括强冷输出接口51,该强冷输出接口51以与第二换热器12并联的方式接入制冷循环单元10,用于与需强冷终端73换热器装置连通。本实施例中,针对制冷空间温度需要在零下的需强冷终端73,例如,需强冷终端73包括冰箱、冰柜等需要冷冻功能的制冷设备。
本实施例中,强冷输出接口51包括强冷流入端口和强冷流出端口,分别通过连通管路接入第二换热器12的两端的管路中。如图1所示,强冷流入端口通过第一连通管路52接入第二换热器12的第一端的管路中,强冷流出端口通过第二连通管路53接入第二换热器12的第二端的管路中。
本公开实施例中,涉及的“接口”,均指包括两个端口,一个为流入端口,另一个为流出端口。
结合图5所示,本公开实施例提供一种用于冷热源热泵集成系统控制的方法,包括:
S110、根据各需热终端71的需热量,获取总需热量;根据各需冷终端72的需冷量,获取总需冷量。
各需热终端71的需热量通过用户对各需热终端71设定的运行参数获取,各需冷终端72的需热量通过用户对各需冷终端72设定的运行参数获取。
S120、在总需冷量大于总需热量的情况下,控制第一管路组导通,室外换热器40接入制冷循环单元10中且与第一换热并联。这里,室外换热器40与第一换热器11并 联运行,将多余的热量排出。该情况下热泵集成系统的运行管路走向如图3所示,并将该情况下的热泵集成系统定义为主冷运行模式。
在总需冷量小于总需热量的情况下,控制第二管路组导通,室外换热器40接入制冷循环单元10中且与第二换热并联。这里,室外换热器40与第二换热器12并联运行,将多余的冷量排出。该情况下热泵集成系统的运行管路走向如图2所示,并将该情况下的热泵集成系统定义为主热运行模式。
在总需冷量等于总需热量的情况下,维持第一管路组和第二管路组关闭,控制制冷循环单元10运行。这里,在总需冷量与总需热量平衡的情况下,不需要附加室外换热器40,仅制冷循环单元10的第一换热器11和第二换热器12即可满足冷热平衡。该情况下热泵集成系统的运行管路走向如图4所示。
S130、根据需求量大的总需热量或者总需冷量,控制制冷循环单元10启动运行。制冷循环单元10以较大的总需热量或者总需冷量为供能需求。当然,在总需冷量等于总需热量的情况下,以总需热量或者总需冷量为功能需求均可。
本公开实施例中,通过对总需热量和总需冷量的判定,确定是否引入室外换热器40及其并联方式,实现热泵集成系统的冷热平衡。
在一些实施例中,用于冷热源热泵集成系统控制的方法,还包括:根据各需热终端71的需热量,调节热量输出单元20中各自对应的热输出接口22的换热量;根据各需冷终端72的需热量,调节冷量输出单元30中各自对应的冷输出接口32的换热量。具体地,可以通过设置于各接口上的控制阀门来实现换热量的调节。
在一些实施例中,冷输出接口32与空调换热器连通,热输出接口22与空调换热器连通;在空调运行制冷模式时,依据室内湿度,控制开启热输出接口22。这里,在空调制冷运行时,冷输出接口32与空调换热器连通,保证制冷需求。同时依据室内湿度的判断,适度开启热输出接口22,达到对空气的加热效果,加强除湿功能。
本实施例中,空调室内机包括两个换热器,两个换热器均分别与冷输出接口32和热输出接口22连通。在实现上述控制方法时,控制靠近进风侧的换热器的热输出接口22开启。从而实现对进入靠近出风口侧的换热器的空气的预干燥,加强除湿功能。
结合图6所示,本公开实施例提供一种用于冷热源热泵集成系统控制的装置,包括处理器(processor)80和存储器(memory)81。可选地,该装置还可以包括通信接口(Communication Interface)82和总线83。其中,处理器80、通信接口82、存储器81可以通过总线83完成相互间的通信。通信接口82可以用于信息传输。处理器80可 以调用存储器81中的逻辑指令,以执行上述实施例的用于冷热源热泵集成系统控制的方法。
此外,上述的存储器81中的逻辑指令可以通过软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。
存储器81作为一种计算机可读存储介质,可用于存储软件程序、计算机可执行程序,如本公开实施例中的方法对应的程序指令/模块。处理器80通过运行存储在存储器81中的程序指令/模块,从而执行功能应用以及数据处理,即实现上述实施例中用于冷热源热泵集成系统控制的方法。
存储器81可包括存储程序区和存储数据区,其中,存储程序区可存储操作系统、至少一个功能所需的应用程序;存储数据区可存储根据终端设备的使用所创建的数据等。此外,存储器81可以包括高速随机存取存储器,还可以包括非易失性存储器。
本公开实施例提供了一种冷热源热泵集成系统,包含上述的用于冷热源热泵集成系统控制的装置。
本公开实施例的冷热源热泵集成系统,还包括前述任一实施例的冷热源热泵集成系统。
本公开实施例提供了一种计算机可读存储介质,存储有计算机可执行指令,所述计算机可执行指令设置为执行上述用于冷热源热泵集成系统控制的方法。
本公开实施例提供了一种计算机程序产品,所述计算机程序产品包括存储在计算机可读存储介质上的计算机程序,所述计算机程序包括程序指令,当所述程序指令被计算机执行时,使所述计算机执行上述用于冷热源热泵集成系统控制的方法。
上述的计算机可读存储介质可以是暂态计算机可读存储介质,也可以是非暂态计算机可读存储介质。
本公开实施例的技术方案可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括一个或多个指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本公开实施例所述方法的全部或部分步骤。而前述的存储介质可以是非暂态存储介质,包括:U盘、移动硬盘、只读存储器(ROM,Read-Only Memory)、随机存取存储器(RAM,Random Access Memory)、磁碟或者光盘等多种可以存储程序代码的介质,也可以是暂态存储介质。
以上描述和附图充分地示出了本公开的实施例,以使本领域的技术人员能够实践它们。其他实施例可以包括结构的、逻辑的、电气的、过程的以及其他的改变。实施例 仅代表可能的变化。除非明确要求,否则单独的部件和功能是可选的,并且操作的顺序可以变化。一些实施例的部分和特征可以被包括在或替换其他实施例的部分和特征。而且,本申请中使用的用词仅用于描述实施例并且不用于限制权利要求。如在实施例以及权利要求的描述中使用的,除非上下文清楚地表明,否则单数形式的“一个”(a)、“一个”(an)和“所述”(the)旨在同样包括复数形式。类似地,如在本申请中所使用的术语“和/或”是指包含一个或一个以上相关联的列出的任何以及所有可能的组合。另外,当用于本申请中时,术语“包括”(comprise)及其变型“包括”(comprises)和/或包括(comprising)等指陈述的特征、整体、步骤、操作、元素,和/或组件的存在,但不排除一个或一个以上其它特征、整体、步骤、操作、元素、组件和/或这些的分组的存在或添加。在没有更多限制的情况下,由语句“包括一个…”限定的要素,并不排除在包括所述要素的过程、方法或者设备中还存在另外的相同要素。本文中,每个实施例重点说明的可以是与其他实施例的不同之处,各个实施例之间相同相似部分可以互相参见。对于实施例公开的方法、产品等而言,如果其与实施例公开的方法部分相对应,那么相关之处可以参见方法部分的描述。
本领域技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,可以取决于技术方案的特定应用和设计约束条件。所述技术人员可以对每个特定的应用来使用不同方法以实现所描述的功能,但是这种实现不应认为超出本公开实施例的范围。所述技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
本文所披露的实施例中,所揭露的方法、产品(包括但不限于装置、设备等),可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,可以仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另外,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例。另外,在本公开实施例中 的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
附图中的流程图和框图显示了根据本公开实施例的系统、方法和计算机程序产品的可能实现的体系架构、功能和操作。在这点上,流程图或框图中的每个方框可以代表一个模块、程序段或代码的一部分,所述模块、程序段或代码的一部分包含一个或多个用于实现规定的逻辑功能的可执行指令。在有些作为替换的实现中,方框中所标注的功能也可以以不同于附图中所标注的顺序发生。例如,两个连续的方框实际上可以基本并行地执行,它们有时也可以按相反的顺序执行,这可以依所涉及的功能而定。在附图中的流程图和框图所对应的描述中,不同的方框所对应的操作或步骤也可以以不同于描述中所披露的顺序发生,有时不同的操作或步骤之间不存在特定的顺序。例如,两个连续的操作或步骤实际上可以基本并行地执行,它们有时也可以按相反的顺序执行,这可以依所涉及的功能而定。框图和/或流程图中的每个方框、以及框图和/或流程图中的方框的组合,可以用执行规定的功能或动作的专用的基于硬件的系统来实现,或者可以用专用硬件与计算机指令的组合来实现。

Claims (10)

  1. 一种冷热源热泵集成系统,其特征在于,包括:
    制冷循环单元,包括第一换热器和第二换热器;
    热量输出单元,包括热量交换端和多个热输出接口,所述热量交换端与所述第一换热器实现热交换,多个所述热输出接口用于与需热终端换热装置连通;
    冷量输出单元,包括冷量交换端和多个冷输出接口,所述冷量交换端与所述第二换热器实现热交换,多个所述冷输出接口用于与需冷终端换热器连通;
    室外换热器,通过第一管路组与所述第一换热器并联设置,通过第二管路组与所述第二换热器并联设置;通过导通第一管路组或第二管路组,实现所述室外换热器并联接入所述制冷循环单元中。
  2. 根据权利要求1所述的冷热源热泵集成系统,其特征在于,
    所述第一管路组,包括:
    两个热量管路,将所述室外换热器的两个接口分别连通至所述第一换热器的两端口的管路上;
    两个热控制阀门,分别接入对应的热量管路中;
    通过联动控制两个所述热控制阀门打开或关闭,控制所述室外换热器与所述第一换热器并联连通或者切断。
  3. 根据权利要求1所述的冷热源热泵集成系统,其特征在于,所述第二管路组,包括:
    两个冷量管路,将所述室外换热器的两个接口分别连通至所述第二换热器的两端口的管路上;
    两个冷控制阀门,分别接入对应的冷量管路中;
    通过联动控制两个所述冷控制阀门打开或关闭,控制所述室外换热器与所述第二换热器并联连通或者切断。
  4. 根据权利要求1、2或3所述的冷热源热泵集成系统,其特征在于,还包括:
    强冷输出单元,包括强冷输出接口,所述强冷输出接口以与所述第二换热器并联的方式接入所述制冷循环单元,用于与需强冷终端换热装置连通。
  5. 根据权利要求1、2或3所述的冷热源热泵集成系统,其特征在于,
    所述热量输出单元包括流体介质循环输出单元;和/或,所述冷量输出单元包括流体介质循环输出单元。
  6. 根据权利要求5所述的冷热源热泵集成系统,其特征在于,还包括:
    流体补给装置,用于为所述热量输出单元和/或所述冷量输出单元补充流体介质。
  7. 一种用于如权利要求1至6中任一项所述的冷热源热泵集成系统控制的方法,其特征在于,包括:
    根据各需热终端的需热量,获取总需热量;
    根据各需冷终端的需冷量,获取总需冷量;
    在所述总需冷量大于所述总需热量的情况下,控制所述第一管路组导通,所述室外换热器接入所述制冷循环单元中且与所述第一换热并联;
    在所述总需冷量小于所述总需热量的情况下,控制所述第二管路组导通,所述室外换热器接入所述制冷循环单元中且与所述第二换热并联;
    在所述总需冷量等于所述总需热量的情况下,维持所述第一管路组和所述第二管路组关闭,控制所述制冷循环单元运行;
    根据需求量大的总需热量或者总需冷量,控制制冷循环单元启动运行。
  8. 根据权利要求7所述的用于冷热源热泵集成系统控制的方法,其特征在于,还包括:
    根据各需热终端的需热量,调节热量输出单元中各自对应的热输出接口的换热量;
    根据各需冷终端的需热量,调节冷量输出单元中各自对应的冷输出接口的换热量。
  9. 一种用于冷热源热泵集成系统控制的装置,包括处理器和存储有程序指令的存储器,其特征在于,所述处理器被配置为在执行所述程序指令时,执行如权利要求7或8所述的用于冷热源热泵集成系统控制的方法。
  10. 一种冷热源热泵集成系统,其特征在于,包括如权利要求9所述的用于冷热源热泵集成系统控制的装置。
PCT/CN2022/094929 2021-08-03 2022-05-25 冷热源热泵集成系统及用于其控制的方法及装置 WO2023010956A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110886600.2A CN113654139B (zh) 2021-08-03 2021-08-03 冷热源热泵集成系统及用于其控制的方法及装置
CN202110886600.2 2021-08-03

Publications (1)

Publication Number Publication Date
WO2023010956A1 true WO2023010956A1 (zh) 2023-02-09

Family

ID=78478309

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/094929 WO2023010956A1 (zh) 2021-08-03 2022-05-25 冷热源热泵集成系统及用于其控制的方法及装置

Country Status (2)

Country Link
CN (1) CN113654139B (zh)
WO (1) WO2023010956A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113654139B (zh) * 2021-08-03 2023-08-18 青岛海尔空调器有限总公司 冷热源热泵集成系统及用于其控制的方法及装置

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002317979A (ja) * 2001-04-23 2002-10-31 Sanyo Electric Co Ltd 空気調和装置
CN201203296Y (zh) * 2008-05-16 2009-03-04 山东方亚地源热泵空调技术有限公司 地源热泵空调/制冷复合系统
CN101498499A (zh) * 2009-03-04 2009-08-05 上海新晃空调设备股份有限公司 冷热源一体机组
CN106996657A (zh) * 2015-09-16 2017-08-01 Lg电子株式会社 空气调节器
CN206449787U (zh) * 2017-01-24 2017-08-29 李钢 一种建筑一体化冷热交换系统
US20190186776A1 (en) * 2016-08-29 2019-06-20 Gd Midea Heating & Ventilating Equipment Co., Ltd. Air conditioner system and a control method for the same
CN113654139A (zh) * 2021-08-03 2021-11-16 青岛海尔空调器有限总公司 冷热源热泵集成系统及用于其控制的方法及装置

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04110574A (ja) * 1990-08-30 1992-04-13 Union Kogyo Kk 冷媒ガスを用いた加熱冷却方法及び装置
JPH0835731A (ja) * 1994-07-22 1996-02-06 Tokyo Gas Co Ltd ヒートポンプ装置
US5575159A (en) * 1995-06-02 1996-11-19 Dittell; Edward W. Heat energy transfer system
JP4711790B2 (ja) * 2005-09-26 2011-06-29 三洋電機株式会社 空気調和装置
CN103047796B (zh) * 2012-12-28 2015-04-08 黄春海 单元式空调地暖机及其电气控制方法
CN207922639U (zh) * 2018-01-31 2018-09-28 青岛海尔空调电子有限公司 一种热回收型热源塔热泵机组
CN208475731U (zh) * 2018-06-19 2019-02-05 中国大唐集团科学技术研究院有限公司西北分公司 一种家庭冷热负荷供应系统
CN108716744A (zh) * 2018-07-03 2018-10-30 南京工程学院 一种双冷热源热泵驱动的空调系统
CN109780912B (zh) * 2019-01-09 2021-05-25 青岛海尔空调器有限总公司 一种能源站及其控制方法和存储介质
CN109945374A (zh) * 2019-04-22 2019-06-28 北京晶海科技有限公司 一种空调器及其集成循环管路系统
FR3101134B1 (fr) * 2019-09-24 2021-10-08 X Terma Machine thermodynamique de type thermofrigopompe multisources et procede de fonctionnement

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002317979A (ja) * 2001-04-23 2002-10-31 Sanyo Electric Co Ltd 空気調和装置
CN201203296Y (zh) * 2008-05-16 2009-03-04 山东方亚地源热泵空调技术有限公司 地源热泵空调/制冷复合系统
CN101498499A (zh) * 2009-03-04 2009-08-05 上海新晃空调设备股份有限公司 冷热源一体机组
CN106996657A (zh) * 2015-09-16 2017-08-01 Lg电子株式会社 空气调节器
US20190186776A1 (en) * 2016-08-29 2019-06-20 Gd Midea Heating & Ventilating Equipment Co., Ltd. Air conditioner system and a control method for the same
CN206449787U (zh) * 2017-01-24 2017-08-29 李钢 一种建筑一体化冷热交换系统
CN113654139A (zh) * 2021-08-03 2021-11-16 青岛海尔空调器有限总公司 冷热源热泵集成系统及用于其控制的方法及装置

Also Published As

Publication number Publication date
CN113654139B (zh) 2023-08-18
CN113654139A (zh) 2021-11-16

Similar Documents

Publication Publication Date Title
WO2023142980A1 (zh) 一种热回收间接蒸发冷却装置及热回收方法
WO2023010956A1 (zh) 冷热源热泵集成系统及用于其控制的方法及装置
CN105890225A (zh) 一种部分热回收型空调冷热水及生活热水联合供应系统
CN104296480A (zh) 一种空调和冰箱一体机
CN112393348A (zh) 热泵空调系统及其控制方法和设计方法
CN204227620U (zh) 小型空调复合空气能热泵装置
CN204404677U (zh) 一种空调和冰箱一体机
WO2023279886A1 (zh) 用于热泵设备除霜的方法、装置和热水机组
CN114087740B (zh) 新风设备及其控制方法、计算机可读存储介质
CN111397006B (zh) 中央空调系统及中央空调系统的控制方法
CN114992803A (zh) 用于热泵空调补气增焓的控制方法、装置及热泵空调
CN107477902B (zh) 顺序式独立制冷制热式多联机
CN207688456U (zh) 多联式空调系统
CN219868466U (zh) 换热系统和热泵热水空调
CN221172542U (zh) 用于空调系统的室外机、空调系统
CN116734521A (zh) 空调装置、用于空调装置的控制方法及控制装置
CN117804031A (zh) 用于控制调温系统的方法及装置、调温系统、存储介质
CN113639415B (zh) 用于空调器除霜的方法和装置、空调器
CN218296312U (zh) 一种换热系统及空调热水器
CN220507240U (zh) 空调系统
CN220524225U (zh) 两管制热回收型空调系统
CN110887262B (zh) 制冷系统及厨房电器
CN214065124U (zh) 热泵空调系统
CN219243700U (zh) 空调系统和空调器
CN116105341A (zh) 用于控制空调的方法及装置、空调、存储介质

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22851673

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE