WO2024130788A1 - 智能穿戴式眼镜 - Google Patents

智能穿戴式眼镜 Download PDF

Info

Publication number
WO2024130788A1
WO2024130788A1 PCT/CN2022/144401 CN2022144401W WO2024130788A1 WO 2024130788 A1 WO2024130788 A1 WO 2024130788A1 CN 2022144401 W CN2022144401 W CN 2022144401W WO 2024130788 A1 WO2024130788 A1 WO 2024130788A1
Authority
WO
WIPO (PCT)
Prior art keywords
sound
hole
inverted
smart wearable
wearable glasses
Prior art date
Application number
PCT/CN2022/144401
Other languages
English (en)
French (fr)
Inventor
张欣
孟义明
孙舒远
黄翔
Original Assignee
瑞声声学科技(深圳)有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 瑞声声学科技(深圳)有限公司 filed Critical 瑞声声学科技(深圳)有限公司
Priority to US18/330,326 priority Critical patent/US20240201520A1/en
Publication of WO2024130788A1 publication Critical patent/WO2024130788A1/zh

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/01Head-up displays

Definitions

  • the present invention relates to the field of electroacoustic conversion, and in particular to a pair of smart wearable glasses used in portable mobile electronic products.
  • Smart wearable glasses are widely used in many fields such as communication, education, medical treatment, culture, manufacturing, etc. Therefore, the acoustic performance of smart wearable glasses has become an important factor in user experience.
  • the smart wearable glasses of the related technology include a frame, temples with a hollow structure extending from opposite sides of the frame, and a vibration component and a sound unit respectively installed and fixed in the temples.
  • the sound unit transmits medium and low frequency sounds to the human ear through the sound holes of the temples to ensure the sound quality effect.
  • the inner side of the vibration component can be directly attached to the skull, which is easy to transmit sound waves and transmit medium and high frequency sound waves to the human ear, thereby realizing sound playback of the smart wearable glasses.
  • the vibration component uses bone conduction open auditory interaction to reduce sound leakage and improve privacy, the vibration amplitude of bone conduction at low frequencies is too large, which can easily cause discomfort to the user.
  • SPL sound pressure level
  • the object of the present invention is to provide a kind of intelligent wearable glasses with good acoustic performance.
  • an embodiment of the present invention provides a smart wearable glasses, which comprises a frame and temples extending from opposite sides of the frame, wherein the temples are hollow structures, and the smart wearable glasses further comprise a vibration unit and a sound generating unit respectively installed and fixed in the temples;
  • the vibration unit comprises a bone conduction contact portion at least partially exposed from the temples, wherein the bone conduction contact portion is used to contact with bones of a user's head and transmit the vibration sound signal generated by the vibration unit to the user through bone conduction;
  • the sound generating unit comprises a shell having a receiving space and an inverted phase channel, a shell fixed to the receiving space, and a sound generating unit having a sound generating unit.
  • the housing comprises a sound-emitting unit in the housing and an inverted tube installed in the inverted channel, the housing is provided with a first sound outlet, a first inverted hole and a first leakage hole respectively penetrating therethrough, the sound-emitting unit divides the housing space into a front cavity and a coupled rear cavity, the front cavity is communicated with the outside world through the first sound outlet, the inverted tube is communicated with the outside world after passing through the inverted channel and the first inverted hole in sequence, and the coupled rear cavity is communicated with the outside world through the first leakage hole and the inverted tube respectively; the sound wave emitted by the sound-emitting unit through the first sound outlet is opposite in phase to the sound wave emitted by the sound-emitting unit through the first leakage hole.
  • the temple comprises a first temple body extending from the frame, a first temple cover which is fixed to the first temple body and together with the first temple body forms a first sound cavity, and a second sound outlet hole, a second inverted hole and a second leakage hole which respectively penetrate the first temple body; the sound-emitting unit is accommodated and fixed in the first sound cavity, the first sound outlet hole is connected to the outside world through the second sound outlet hole, the first inverted hole is connected to the outside world through the second inverted hole, and the first leakage hole is connected to the outside world through the second leakage hole.
  • the temple comprises a second temple body extending from the frame and a second temple cover fixed to the second temple body and forming a second sound cavity together with the second temple body, the shell is formed by extending the second temple body toward the second sound cavity, the sound unit is accommodated and fixed in the second sound cavity, and the first sound outlet hole, the first inverted hole and the first leakage hole respectively pass through the second temple body.
  • the temple comprises a lower surface for being placed on the ear of the user when worn, an upper surface opposite to the lower surface, and a first side surface and a second side surface connected to the upper surface and the lower surface and arranged opposite to each other; the second sound outlet hole and the second inverted hole are arranged at intervals on the lower surface; the second leakage hole is located on the upper surface; the first side surface is located on the side close to the user, and the first temple cover is located on the first side surface.
  • the first leakage holes include a plurality of holes
  • the second leakage holes include a plurality of holes
  • the first leakage holes correspond to the second leakage holes one by one.
  • the shell includes a bottom wall fixed to and accommodated in the first sound cavity, a side wall bent and extended from the periphery of the bottom wall toward the first sound cavity, a top cover covered on the side wall, a supporting wall extending from the bottom wall toward the top cover, and a bass reflex tube cover; the bottom wall, the side wall, the supporting wall and the bass reflex tube cover together form the bass reflex channel; the bottom wall, the side wall, the supporting wall and the top cover together form the accommodation space; the first sound outlet hole, the first bass reflex hole and the first leakage hole respectively pass through the side walls.
  • the size of the bass reflex tube is calculated by jointly calculating the volume of the front cavity, the volume of the coupled rear cavity and the TS parameters of the sound unit.
  • the vibration unit also includes a vibrator that generates the vibration sound signal, a vibration conduction layer attached to the surface of the vibrator, and a vibration coupling anvil attached to the vibration conduction layer, and the bone conduction contact portion is attached to a side of the vibration coupling anvil away from the vibration conduction layer, and the vibration coupling anvil is coupled to the bones of the user's head through the bone conduction contact portion to form a bone conduction structure.
  • the bone conduction contact portion is a flexible sound-conducting medium.
  • the vibration unit and the sound unit respectively generate sound by means of a frequency division design
  • the frequency division design includes physical frequency division and software frequency division.
  • the smart wearable glasses provided by the present invention are provided with a sound unit and a vibration unit in the temple.
  • the shell of the sound unit is provided with an inverted channel and a first inverted hole, and the inverted tube is installed in the inverted channel.
  • the inverted tube passes through the inverted channel and the first inverted hole in sequence and then communicates with the outside world; the structure adopts the acoustic structure of the inverted tube to greatly improve the low-frequency performance of the sound unit.
  • the shell is provided with a receiving space, a first sound outlet hole and a first leakage hole, and the receiving space is divided into a front cavity and a coupled rear cavity by a sound-emitting monomer.
  • the front cavity is connected to the outside world through the first sound outlet hole, and the coupled rear cavity is connected to the outside world through the first leakage hole and the inverted tube respectively.
  • the sound wave emitted by the sound unit through the first sound outlet hole is opposite to the phase of the sound wave emitted by the sound unit through the first leakage hole.
  • the structure utilizes the acoustic structure of the first sound outlet hole and the first leakage hole, and greatly reduces the low-frequency sound leakage of the sound unit according to the principle of anti-phase cancellation of sound waves.
  • the vibration unit transmits the sound to the ear directly through contact vibration with the bone conduction, avoiding sound leakage and ensuring the privacy of the mid-high frequency, so as to reduce the sound leakage of the whole frequency band and improve the privacy, thus making the user experience good. Therefore, the acoustic performance of the smart wearable glasses provided by the present invention is good.
  • FIG1 is a schematic diagram of an application of the smart wearable glasses of the present invention.
  • FIG2 is a schematic diagram of the three-dimensional structure of the smart wearable glasses according to the first embodiment of the present invention.
  • FIG3 is a schematic diagram of a partial exploded three-dimensional structure of the smart wearable glasses according to the first embodiment of the present invention.
  • FIG. 4 is a schematic diagram of a partial three-dimensional structure decomposition of the temples, the vibration unit, and the sound unit of the smart wearable glasses according to the first embodiment of the present invention
  • FIG5 is a schematic diagram of the three-dimensional structure of the vibration unit of the smart wearable glasses according to the first embodiment of the present invention.
  • Fig. 6 is a cross-sectional view along line A-A in Fig. 5;
  • FIG7 is a schematic diagram of the three-dimensional structure of the sound unit of the smart wearable glasses according to the first embodiment of the present invention.
  • FIG8 is a schematic diagram of a partial three-dimensional structure decomposition of a sound unit of the smart wearable glasses according to the first embodiment of the present invention.
  • FIG9 is a schematic diagram of another partial exploded three-dimensional structure of the sound unit of the smart wearable glasses according to the first embodiment of the present invention.
  • FIG10 is a comparison diagram of the sound pressure level-frequency relationship curves of the smart wearable glasses according to the first embodiment of the present invention and the smart wearable glasses of the related art;
  • FIG11 is a comparison diagram of the relationship between sound pressure level and frequency of the smart wearable glasses 100 according to the first embodiment of the present invention at the outside of the ear of the user and the smart wearable glasses of the related art at the inside of the ear;
  • FIG12 is a schematic diagram of the three-dimensional structure of the smart wearable glasses according to the second embodiment of the present invention.
  • FIG. 13 is a schematic diagram of a partial three-dimensional structure decomposition of the temples and the sound unit of the smart wearable glasses according to the second embodiment of the present invention.
  • the present invention provides a pair of smart wearable glasses 100 .
  • the smart wearable glasses 100 include a frame 1, temples 2, a vibration unit 3 and a sound unit 4.
  • the mirror frame 1 can be used to fix the lens. Of course, it is also possible not to install the lens.
  • the temples 2 extend from opposite sides of the mirror frame 1.
  • the temples 2 include two temples, which are symmetrically mirrored.
  • the temple foot 2 is a hollow structure and is used for mounting a vibration unit 3 and a sound unit 4 .
  • the temple 2 includes a first temple body 21 extending from the frame 1, a first temple cover 22 which is fixed to the first temple body 21 and together with the first temple body 21 forms a first sound cavity 20, and a second sound outlet hole 201, a second inverted hole 202 and a second leakage hole 203 which respectively penetrate the first temple body 21.
  • the temple 2 includes a lower surface S1 for being mounted on the ear of the user when worn, an upper surface S2 opposite to the lower surface S1, and a first side surface S3 and a second side surface S4 connected to the upper surface S2 and the lower surface S1 and arranged opposite to each other.
  • the second sound outlet 201 and the second inverted hole 202 are arranged at intervals on the lower surface S1. This position is conducive to reducing sound leakage.
  • the second leakage hole 203 is located on the upper surface S2.
  • the second leakage hole 203 and the second sound outlet hole 201 are respectively arranged on the upper surface S2 and the lower surface S1, and the low-frequency sound leakage of the sound-generating unit 4 is greatly reduced according to the principle of anti-phase cancellation of sound waves.
  • the first side surface S3 is located at a side close to the user.
  • the first temple cover 22 is located at the first side surface S3.
  • the vibration unit 3 is installed and fixed in the mirror leg 2. In the first embodiment, the vibration unit 3 is installed and fixed at one end of the mirror leg 2 away from the mirror frame 1.
  • the vibration unit 3 includes a bone conduction contact portion 31 , a vibrator 32 , a vibration conduction layer 33 and a vibration coupling anvil 34 .
  • the bone conduction contact portion 31 is at least partially exposed from the temple 2.
  • the bone conduction contact portion 31 is used to directly contact the user's skin.
  • the bone conduction contact portion 31 is used to contact the bones of the user's head and transmit the vibration sound signal generated by the vibration unit 3 to the user through bone conduction.
  • the bone conduction contact part 31 When the smart wearable glasses 100 are worn, the bone conduction contact part 31 directly contacts the skin near the human ear.
  • the bone conduction contact part 31 is made of a soft material.
  • the bone conduction contact part 31 is a flexible sound-conducting medium, specifically a rubber layer or a foam layer.
  • the wearing comfort of the smart wearable glasses 100 can be increased, and on the other hand, the vibration isolation between the vibration unit 3 and the temple 2 can be increased, so that the acoustic effect is better and the auditory comfort is better.
  • the vibrator 32 generates the vibration sound signal.
  • the vibrator 32 is one of a motor, an exciter, and a bone conduction transducer. More preferably, the vibrator 32 is an exciter of inertial vibration, which is used to specifically excite and generate the low-frequency vibration sound signal.
  • the vibration conducting layer 33 is attached to the surface of the vibrator 32.
  • the vibration conducting layer 33 and the vibration coupling anvil 34 can be separated or integrated.
  • the vibration coupling anvil 34 is attached to the vibration conducting layer 33.
  • the bone conduction contact portion 31 is attached to a side of the vibration coupling anvil 34 away from the vibration conducting layer 33.
  • the vibration coupling anvil 34 is coupled to the bones of the user's head via the bone conduction contact portion 31 to form a bone conduction structure.
  • the shape and size of the vibration coupling anvil 34 match the corresponding bone to be coupled thereto, that is, the vibration coupling anvil 34 can be coupled to the shape and size of the bone at the corresponding position of the human head, and it can be a non-metallic component with a certain rigidity, such as plastic.
  • the sound generating unit 4 is installed and fixed in the temple 2 .
  • the sound unit 4 includes a housing 41 , a sound unit 42 and a reflex tube 43 .
  • the housing 41 has a receiving space 401 and an inverted channel 402.
  • the housing 41 is provided with a first sound outlet hole 403, a first inverted hole 404 and a first leakage hole 405 respectively penetrating therethrough.
  • the first sound outlet hole 403 is connected to the outside through the second sound outlet hole 201.
  • the first inverted hole 404 is connected to the outside through the second inverted hole 202.
  • the first leakage hole 405 is connected to the outside through the second leakage hole 203.
  • the shell 41 includes a bottom wall 411 fixed to and accommodated in the first sound cavity 20, a side wall 412 bent and extended from the periphery of the bottom wall 411 toward the first sound cavity 20, a top cover 413 covering the side wall 412, a support wall 414 extending from the bottom wall 411 toward the top cover 413, and a bass reflex tube cover 415.
  • the bottom wall 411 , the side wall 412 , the support wall 414 , and the inverting tube cover 415 together form the inverting channel 402 .
  • the bottom wall 411 , the side wall 412 , the support wall 414 , and the top cover 413 together form the receiving space 401 .
  • the first sound outlet hole 403 , the first inverted hole 404 and the first leakage hole 405 respectively penetrate through the side wall 412 .
  • the sound unit 42 is fixed in the receiving space 401. Specifically, the sound unit 4 is received and fixed in the first sound cavity 20.
  • the sound-emitting monomer 42 divides the containing space 401 into a front cavity 406 and a coupled rear cavity 407.
  • the front cavity 406 is connected to the outside through the first sound outlet 403.
  • the sound signal emitted by the sound-emitting monomer 42 passes through the front cavity 406 and then through the first sound outlet 403, and propagates through the free field near field, so that the mid-high frequency sound signal is transmitted to the human ear.
  • the first sound outlet hole 403 is located at the position of the auricle of the human ear and is arranged in the direction of the human ear, that is, in order to cooperate with the first sound outlet hole 403, the second sound outlet hole 201 is arranged at the position of the temple 2 corresponding to the first sound outlet hole 403.
  • the second sound outlet hole 201 is located on the lower surface S1 of the temple 2, that is, the second sound outlet hole 201 is also located at the position of the auricle of the human ear and is arranged in the direction of the human ear.
  • the cross-sectional shape of the first sound outlet hole 403 is similar to the shape of the auricle of the human ear at the position where the first sound outlet hole 403 is located, and this structure enables the human ear to receive the sound signal of the sound-emitting unit 4 more effectively.
  • the coupling rear cavity 407 is communicated with the outside through the first leakage hole 405 and the inverter tube 43 respectively.
  • the phase of the sound wave emitted by the sound-emitting unit 4 through the first sound outlet hole 403 is opposite to that of the sound wave emitted by the sound-emitting unit 4 through the first leakage hole 405.
  • This structure utilizes the acoustic structure of the first sound outlet hole 403 and the first leakage hole 405, and greatly reduces the low-frequency sound leakage of the sound-emitting unit 4 according to the principle of anti-phase cancellation of sound waves, which can effectively prevent sound leakage and improve privacy, so that the acoustic performance of the smart wearable glasses 100 provided by the present invention is good.
  • the first leakage holes 405 include a plurality of holes.
  • the second leakage holes 203 include a plurality of holes.
  • the first leakage holes 405 correspond one to one with the second leakage holes 203.
  • This structure is conducive to the plurality of first leakage holes 405 jointly adjusting the sound leakage of the smart wearable glasses 100 provided by the present invention at various angles, so that the acoustic performance of the smart wearable glasses 100 provided by the present invention is good.
  • the inverted tube 43 is installed in the inverted channel 402.
  • the inverted tube 43 passes through the inverted channel 402 and the first inverted hole 404 in sequence and then communicates with the outside.
  • the acoustic structure of the inverted tube 43 used in this structure can greatly improve the low-frequency performance of the sound unit 4.
  • the sound unit 4 strengthens the sound and the bass through the inverted channel 402 and the first inverted hole 404. After the inverted tube 43 is installed, a relatively strong sound wave will be emitted from the first inverted hole 404.
  • the sound waves of the sound unit 4 from the first sound outlet hole 403 and the first inverted hole 404 are all utilized, so that the sound quality of the sound unit 4 is improved, so that the acoustic performance of the smart wearable glasses 100 provided by the present invention is good.
  • the size of the inverted tube 43 is calculated by the volume of the front cavity 406, the volume of the coupled rear cavity 407 and the TS parameter of the sound unit 42. Different devices of the sound unit 4 match different sizes of the inverted tube 43, and this structure can greatly improve the low-frequency response of the sound unit 4.
  • the vibration unit 3 and the sound unit 4 respectively make sounds by means of a frequency division design.
  • the frequency division design includes physical frequency division and software frequency division.
  • the sound unit 4 works in a medium-low frequency band
  • the vibration unit 3 works in a medium-high frequency band, so that the acoustic performance of the smart wearable glasses 100 provided by the present invention is good.
  • the vibration unit 3 and the sound unit 4 complement each other in frequency band advantages, and realize the broadband sound playback of the low frequency band and the medium-high frequency band of the smart wearable glasses 100, with a wide frequency band and good acoustic performance; at the same time, after the vibration unit 3 compensates for the low-frequency sound segment of the sound unit 4, the sound unit 4 does not need to increase in size to improve the low-frequency effect, thereby avoiding the leakage of medium-high frequency sounds, effectively improving the sound privacy problem of the smart wearable glasses 100, and obtaining a better user experience.
  • FIG. 10 is a comparison diagram of the sound pressure level-frequency relationship curves of the smart wearable glasses 100 according to the first embodiment of the present invention and the smart wearable glasses of the related art.
  • W1 is a sound pressure level frequency curve of the smart wearable glasses 100
  • W2 is a sound pressure level frequency curve of the smart wearable glasses of the related art.
  • the difference between the smart wearable glasses 100 of the first embodiment of the present invention and the smart wearable glasses of the related art is that:
  • the smart wearable glasses 100 of the first embodiment of the present invention add structures corresponding to the first leakage hole 405 and the first inverted hole 404 respectively.
  • the smart wearable glasses 100 in the present invention can greatly improve the low-frequency response, increase the frequency band below 450Hz, and the low-frequency improvement at 100Hz can reach 16dB.
  • FIG. 11 is a comparison diagram of the sound pressure level-frequency relationship curves of the smart wearable glasses 100 according to the first embodiment of the present invention at the external position of the ear of the user and the smart wearable glasses of the related art at the internal position of the ear.
  • W3 is the sound pressure level-frequency curve of the smart wearable glasses in the related art at the inner position of the ear
  • W4 is the sound pressure level-frequency curve of the smart wearable glasses 100 at 20 cm outside the ear.
  • the smart wearable glasses 100 of the first embodiment of the present invention add the structures corresponding to the first leakage hole 405 and the first inverted hole 404, respectively.
  • the difference in the audio response heard by the user between W3 and W4 is very large, which is greater than 25dB between 100Hz-4kHz, and the maximum difference value can be greater than 40dB, and the sound leakage effect is good.
  • the vibration device In the frequency band above 4kHz, the vibration device is mainly transmitted to the human ear through bone conduction, which is extremely private.
  • the smart wearable glasses 100 provided by the present invention adopts the acoustic structure of the inverted tube 43 to greatly improve the low-frequency performance of the sound unit 4, and greatly reduce the low-frequency sound leakage of the sound unit 4 according to the principle of sound wave anti-phase cancellation.
  • the vibration unit 3 transmits the sound to the ear directly through contact vibration with the bone conduction, thereby avoiding the sound leakage phenomenon and ensuring the privacy of the medium and high frequencies, so as to achieve the reduction of sound leakage in the whole frequency band and improve privacy, so as to make the user experience good, so that the acoustic performance of the smart wearable glasses 100 provided by the present invention is good.
  • the second embodiment of the present invention further provides a pair of smart wearable glasses 100a.
  • Figure 12 is a schematic diagram of the three-dimensional structure of the smart wearable glasses 100a of the second embodiment of the present invention
  • Figure 13 is a schematic diagram of the three-dimensional structure of the temples and the sound unit 4a of the smart wearable glasses 100a of the second embodiment of the present invention.
  • the smart wearable glasses 100a of the second embodiment have the same basic structure as the smart wearable glasses 100 of the first embodiment, and the difference between the two is that:
  • the temple foot 2a includes a second temple foot body 21a extending from the mirror frame 1a and a second temple foot cover 22a which is fixed to the second temple foot body 21a and encloses a second sound cavity 20a together with the second temple foot body 21a.
  • the housing 41a is formed by extending the second mirror base body 21a toward the second sound cavity 20a.
  • the sound generating unit 4a is received and fixed in the second sound cavity 20a.
  • the first sound outlet hole 403a, the first inverted hole 404a and the first leakage hole 405a respectively penetrate the second mirror base body 21a.
  • the smart wearable glasses 100a of the second embodiment design the housing 41a of the sound unit 4a and the temple 2a as one body. This structure simplifies the manufacturing process, reduces material costs and reduces the weight and volume of the smart wearable glasses 100a, making the smart wearable glasses 100a of the second embodiment small and light, thereby providing a good user experience.
  • the low-frequency performance of the sound unit can be greatly improved, and the leakage of low-frequency sound of the sound unit can be greatly reduced according to the principle of anti-phase cancellation of sound waves.
  • the vibration unit transmits the sound to the ear directly through contact vibration with the bone conduction, thereby avoiding the leakage of sound and ensuring the privacy of medium and high frequencies, so as to achieve the reduction of sound leakage in the whole frequency band and the improvement of privacy, so that the user experience is good and the acoustic performance of the smart wearable glasses provided by the present invention is good.
  • the smart wearable glasses provided by the present invention are provided with a sound unit and a vibration unit in the temple.
  • the shell of the sound unit is provided with an inverted channel and a first inverted hole, and the inverted tube is installed in the inverted channel.
  • the inverted tube passes through the inverted channel and the first inverted hole in sequence and then communicates with the outside world; the structure adopts the acoustic structure of the inverted tube to greatly improve the low-frequency performance of the sound unit.
  • the shell is provided with a receiving space, a first sound outlet hole and a first leakage hole, and the receiving space is divided into a front cavity and a coupled rear cavity by a sound-emitting monomer.
  • the front cavity is connected to the outside world through the first sound outlet hole, and the coupled rear cavity is connected to the outside world through the first leakage hole and the inverted tube respectively.
  • the sound wave emitted by the sound unit through the first sound outlet hole is opposite to the phase of the sound wave emitted by the sound unit through the first leakage hole.
  • the structure utilizes the acoustic structure of the first sound outlet hole and the first leakage hole, and greatly reduces the low-frequency sound leakage of the sound unit according to the principle of anti-phase cancellation of sound waves.
  • the vibration unit transmits the sound to the ear directly through contact vibration with the bone conduction, avoiding sound leakage and ensuring the privacy of the mid-high frequency, so as to reduce the sound leakage of the whole frequency band and improve the privacy, thus making the user experience better. Therefore, the acoustic performance of the smart wearable glasses provided by the present invention is good.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Soundproofing, Sound Blocking, And Sound Damping (AREA)
  • Details Of Audible-Bandwidth Transducers (AREA)

Abstract

一种声学性能好的智能穿戴式眼镜(100),其包括镜框(1)、镜脚(2)、振动单元(3)和发声单元(4);振动单元(3)包括至少部分外露于镜脚(2)的骨传导接触部(31);发声单元(4)包括具有收容空间(401)和倒相通道(402)的壳体(41)、固定于壳体(41)的发声单体(42)以及安装于倒相通道(402)内的倒相管(43),壳体(41)分别设有贯穿其上的第一出声孔(403)、第一倒相孔(404)和第一泄露孔(405),发声单体(42)将收容空间(401)分隔为前腔(406)和耦合后腔(407),前腔(406)通过第一出声孔(403)与外界连通,倒相管(43)依次穿过倒相通道(402)与第一倒相孔(404)后与外界连通,耦合后腔(407)分别通过第一泄露孔(405)和倒相管(43)与外界连通;发声单元(4)通过第一出声孔(403)发出的声波与发声单元(4)通过第一泄露孔(405)发出的声波的相位相反。

Description

智能穿戴式眼镜 技术领域
本发明涉及电声转换领域,尤其涉及一种运用于便携式移动电子产品的智能穿戴式眼镜。
背景技术
智能穿戴式眼镜广泛运用于通信、教育、医疗、文化、生产制造等多个领域都有非常广泛的应用。因此,智能穿戴式眼镜的声学性能成为用户体验感的重要因素。
相关技术的智能穿戴式眼镜,其包括镜框、由所述镜框的相对两侧延伸的呈中空结构的镜脚以及分别安装固定于所述镜脚内的振动组件和发声单元,所述发声单元通过所述镜脚的发声孔将中低频的声音传至人耳,保证音质效果,所述振动组件内侧可直接与头骨贴紧,易于声波传输将中高频的声波传至人耳,实现智能穿戴式眼镜的声音重放。
然而,相关技术的智能穿戴式眼镜的发声单元发出的声音通过所述镜脚的发声孔传导到使用者的耳朵的过程中,高频衰减,并且开放式的交互声音直接辐射向空气,不利于隐私保护,漏音严重,尤其在100Hz~450kHz范围内低频的声音的声压级较低。而振动组件采用骨传导开放式听觉交互虽然可以减小漏音,提升隐私性,但是骨传导在低频的振动幅度过大,易引起使用者的不适感。如何提高智能穿戴式眼镜在低频段声音传播,提高声压级(SPL)和减少漏音,从而提高智能穿戴式眼镜的声学指标是一个需要解决的技术问题。
因此,有必要提供一种新的智能穿戴式眼镜解决上述技术问题。
技术问题
本发明的目的在于提供一种声学性能好的智能穿戴式眼镜。
技术解决方案
为了达到上述目的,本发明实施例提供了一种智能穿戴式眼镜,其包括镜框和由所述镜框的相对两侧延伸的镜脚,所述镜脚呈中空结构,所述智能穿戴式眼镜还包括分别安装固定于所述镜脚内的振动单元和发声单元;所述振动单元包括至少部分外露于所述镜脚的骨传导接触部,所述骨传导接触部用于与使用者头部的骨骼接触并通过骨传导方式将所述振动单元产生的振动声信号传导至使用者;所述发声单元包括具有收容空间和倒相通道的壳体、固定于所述收容空间内的发声单体以及安装于所述倒相通道内的倒相管,所述壳体设有分别贯穿其上的第一出声孔、第一倒相孔和第一泄露孔,所述发声单体将所述收容空间分隔为前腔和耦合后腔,所述前腔通过所述第一出声孔与外界连通,所述倒相管依次穿过所述倒相通道与所述第一倒相孔后与外界连通,所述耦合后腔分别通过所述第一泄露孔和所述倒相管与外界连通;所述发声单元通过所述第一出声孔发出的声波与所述发声单元通过所述第一泄露孔发出的声波的相位相反。
优选的,所述镜脚包括由所述镜框延伸的第一镜脚本体、盖设固定于所述第一镜脚本体并与所述第一镜脚本体共同围成第一音腔的第一镜脚盖、以及分别贯穿所述第一镜脚本体的第二出声孔、第二倒相孔和第二泄露孔;所述发声单元收容且固定于所述第一音腔内,所述第一出声孔通过所述第二出声孔与外界连通,所述第一倒相孔通过所述第二倒相孔与外界连通,所述第一泄露孔通过所述第二泄露孔与外界连通。
优选的,所述镜脚包括由所述镜框延伸的第二镜脚本体和盖设固定于所述第二镜脚本体并与所述第二镜脚本体共同围成第二音腔的第二镜脚盖,所述壳体由所述第二镜脚本体向所述第二音腔延伸形成,所述发声单元收容且固定于所述第二音腔内,所述第一出声孔、所述第一倒相孔和所述第一泄露孔分别贯穿所述第二镜脚本体。
优选的,所述镜脚包括用于佩戴时架设于使用者耳部的下表面、与所述下表面相对的上表面以及连接在所述上表面与所述下表面且呈相对设置的第一侧面和第二侧面;所述第二出声孔和所述第二倒相孔间隔设置于所述下表面;所述第二泄露孔位于所述上表面;所述第一侧面位于靠近使用者的一侧,所述第一镜脚盖位于所述第一侧面。
优选的,所述第一泄露孔包括多个,所述第二泄露孔包括多个,所述第一泄露孔与所述第二泄露孔一一对应。
优选的,所述壳体包括固定于且收容于所述第一音腔内的底壁、由所述底壁的周缘向所述第一音腔弯折延伸的侧壁、盖设于所述侧壁的顶盖、由所述底壁向所述顶盖的方向延伸形成的支撑壁以及倒相管盖,所述底壁、所述侧壁、所述支撑壁以及所述倒相管盖共同围成所述倒相通道,所述底壁、所述侧壁、所述支撑壁以及所述顶盖共同围成所述收容空间;第一出声孔、第一倒相孔和第一泄露孔分别贯穿所述侧壁。
优选的,所述倒相管的尺寸通过所述前腔的体积、所述耦合后腔的体积以及所述发声单体的TS参数共同计算得出。
优选的,所述振动单元还包括产生所述振动声信号的振动器、贴合于所述振动器的表面的振动传导层以及贴合于所述振动传导层的振动耦合砧座,所述骨传导接触部贴设在所述振动耦合砧座远离所述振动传导层的一侧,所述振动耦合砧座经所述骨传导接触部与使用者头部的骨骼形成耦合以形成骨传导结构。
优选的,所述骨传导接触部为柔性导声介质。
优选的,所述振动单元和所述发声单元通过分频设计的方式分别进行发声,所述分频设计包括物理分频和软件分频。
有益效果
与相关技术相比,本发明提供的智能穿戴式眼镜通过在镜脚内设置发声单元和振动单元。将所述发声单元的壳体设置倒相通道和第一倒相孔,并将倒相管安装在倒相通道内,倒相管依次穿过所述倒相通道与所述第一倒相孔后与外界连通;该结构采用倒相管的声学结构可以大幅提升发声单元低频性能。将所述壳体设置收容空间、第一出声孔和第一泄露孔,通过发声单体将所述收容空间分隔为前腔和耦合后腔,所述前腔通过所述第一出声孔与外界连通,所述耦合后腔分别通过所述第一泄露孔和所述倒相管与外界连通,所述发声单元通过所述第一出声孔发出的声波与所述发声单元通过所述第一泄露孔发出的声波的相位相反。该结构利用所述第一出声孔与所述第一泄露孔的声学结构,并根据声波反相抵消原理大幅减小所述发声单元中低频的漏音。而所述振动单元由与骨传导直接通过接触振动将声音传至耳内,避免了漏音现象,保证了中高频的私密性,以达到全频段的漏音减小,私密性提升,从而使得使用者体验好。因此,从而使得本发明提供的智能穿戴式眼镜的声学性能好。
附图说明
为了更清楚地说明本发明实施例中的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其它的附图,其中:
图1为本发明的智能穿戴式眼镜的应用示意图;
图2为本发明实施例一的智能穿戴式眼镜的立体结构示意图;
图3为本发明实施例一的智能穿戴式眼镜的部分立体结构分解示意图;
图4为本发明实施例一的智能穿戴式眼镜的镜脚、振动单元和发声单元的部分立体结构分解示意图;
图5为本发明实施例一的智能穿戴式眼镜的振动单元的立体结构示意图;
图6为沿图5中A-A线的剖示图;
图7为本发明实施例一的智能穿戴式眼镜的发声单元的立体结构示意图;
图8为本发明实施例一的智能穿戴式眼镜的发声单元的部分立体结构分解示意图;
图9为本发明实施例一的智能穿戴式眼镜的发声单元的另一部分立体结构分解示意图;
图10为本发明实施例一的智能穿戴式眼镜与相关技术的智能穿戴式眼镜的声压级频率关系曲线对比图;
图11为本发明实施例一的智能穿戴式眼镜100在使用者的耳朵外部位置与相关技术的智能穿戴式眼镜在耳朵内部位置的声压级频率关系曲线对比图;
图12为本发明实施例二的智能穿戴式眼镜的立体结构示意图;
图13为本发明实施例二的智能穿戴式眼镜的镜脚和发声单元的部分立体结构分解示意图。
本发明的实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅是本发明的一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其它实施例,都属于本发明保护的范围。
(实施例一)
本发明提供了一种智能穿戴式眼镜100。
请同时参阅图1-9。
所述智能穿戴式眼镜100包括镜框1、镜脚2、振动单元3和发声单元4。
所述镜框1可用于固定镜片。当然,不安装镜片也是可以的。
所述镜脚2由所述镜框1的相对两侧延伸。所述镜脚2包括两个,两个所述镜脚2对称镜像设置。
所述镜脚2呈中空结构。所述镜脚2用于安装振动单元3和发声单元4。
具体的,所述镜脚2包括由所述镜框1延伸的第一镜脚本体21、盖设固定于所述第一镜脚本体21并与所述第一镜脚本体21共同围成第一音腔20的第一镜脚盖22、以及分别贯穿所述第一镜脚本体21的第二出声孔201、第二倒相孔202和第二泄露孔203。
所述镜脚2包括用于佩戴时架设于使用者耳部的下表面S1、与所述下表面S1相对的上表面S2以及连接在所述上表面S2与所述下表面S1且呈相对设置的第一侧面S3和第二侧面S4。所述第二出声孔201和所述第二倒相孔202间隔设置于所述下表面S1。该位置有利于减少漏音。
所述第二泄露孔203位于所述上表面S2。所述第二泄露孔203与所述第二出声孔201分别设置于所述上表面S2和所述下表面S1,根据声波反相抵消原理大幅减小所述发声单元4中低频的漏音。
所述第一侧面S3位于靠近使用者的一侧。所述第一镜脚盖22位于所述第一侧面S3。
所述振动单元3安装固定于所述镜脚2内。本实施例一中,所述振动单元3安装固定于所述镜脚2远离所述镜框1一端。
具体的,所述振动单元3包括骨传导接触部31、振动器32、振动传导层33以及振动耦合砧座34。
所述骨传导接触部31至少部分外露于所述镜脚2。所述骨传导接触部31用于与使用者皮肤直接接触。所述骨传导接触部31用于与使用者头部的骨骼接触并通过骨传导方式将所述振动单元3产生的振动声信号传导至使用者。
当所述智能穿戴式眼镜100戴好后,所述骨传导接触部31即直接接触人耳附近的皮肤。所述骨传导接触部31为软性材质制成,本实施例一中,所述骨传导接触部31为柔性导声介质,具体的可以是橡胶层或泡棉层。一方面可增加所述智能穿戴式眼镜100的佩戴舒适度,另一方面可以增加所述振动单元3与所述镜脚2之间的隔振,声学效果更优,听觉舒适度更好。
所述振动器32产生所述振动声信号。
本实施例一中,所述振动器32为马达、激励器、骨传导换能器中的一种。更优的,所述振动器32选用惯性振动的激励器,用以专门激励产生低频的所述振动声信号。
所述振动传导层33贴合于所述振动器32的表面。所述振动传导层33和所述振动耦合砧座34以是分离式的,也可以是一体式的。
所述振动耦合砧座34贴合于所述振动传导层33。所述骨传导接触部31贴设在所述振动耦合砧座34远离所述振动传导层33的一侧。所述振动耦合砧座34经所述骨传导接触部31与使用者头部的骨骼形成耦合以形成骨传导结构。
所述振动耦合砧座34的形状及尺寸和与其耦合对应的骨骼匹配,也就是说,所述振动耦合砧座34能够耦合到人体头部对应位置骨骼的形状和尺寸,其可以是具有一定刚度的非金属部件,如塑料。
所述发声单元4安装固定于所述镜脚2内。
具体的,所述发声单元4包括壳体41、发声单体42以及倒相管43。
所述壳体41具有收容空间401和倒相通道402。所述壳体41设有分别贯穿其上的第一出声孔403、第一倒相孔404和第一泄露孔405。其中,所述第一出声孔403通过所述第二出声孔201与外界连通。所述第一倒相孔404通过所述第二倒相孔202与外界连通。所述第一泄露孔405通过所述第二泄露孔203与外界连通。
所述壳体41包括固定于且收容于所述第一音腔20内的底壁411、由所述底壁411的周缘向所述第一音腔20弯折延伸的侧壁412、盖设于所述侧壁412的顶盖413、由所述底壁411向所述顶盖413的方向延伸形成的支撑壁414以及倒相管盖415。
所述底壁411、所述侧壁412、所述支撑壁414以及所述倒相管盖415共同围成所述倒相通道402。
所述底壁411、所述侧壁412、所述支撑壁414以及所述顶盖413共同围成所述收容空间401。
第一出声孔403、第一倒相孔404和第一泄露孔405分别贯穿所述侧壁412。
所述发声单体42固定于所述收容空间401内。具体的,所述发声单元4收容且固定于所述第一音腔20内。
所述发声单体42将所述收容空间401分隔为前腔406和耦合后腔407。所述前腔406通过所述第一出声孔403与外界连通。所述发声单体42发出的所述声音信号经所述前腔406再经所述第一出声孔403,通过自由场近场传播,将中高频的所述声音信号传至人耳中。
更优的,所述第一出声孔403位于人耳耳廓位置并朝向人耳方向设置,也就是说,为了与第一出声孔403配合,所述第二出声孔201在所述镜脚2对应第一出声孔403的位置设置。所述第二出声孔201位于所述镜脚2的所述下表面S1,即所述第二出声孔201同样位于人耳耳廓位置并朝向人耳方向设置。更优的,所述第一出声孔403的截面形状与所述第一出声孔403所在位置的人耳耳廓形产状相近似,该结构使得人耳接收所述发声单元4的所述声音信号效果更佳。
所述耦合后腔407分别通过所述第一泄露孔405和所述倒相管43与外界连通。
所述发声单元4通过所述第一出声孔403发出的声波与所述发声单元4通过所述第一泄露孔405发出的声波的相位相反。该结构利用所述第一出声孔403与所述第一泄露孔405的声学结构,并根据声波反相抵消原理大幅减小所述发声单元4中低频的漏音,可有效防止漏音,提升私密性,从而使得本发明提供的智能穿戴式眼镜100的声学性能好。
本实施例一中,所述第一泄露孔405包括多个。所述第二泄露孔203包括多个。所述第一泄露孔405与所述第二泄露孔203一一对应。该结构有利于多个所述第一泄露孔405共同调节本发明提供的智能穿戴式眼镜100在各个角度的漏音情况,从而使得本发明提供的智能穿戴式眼镜100的声学性能好。
所述倒相管43安装于所述倒相通道402内。所述倒相管43依次穿过所述倒相通道402与所述第一倒相孔404后与外界连通。该结构采用倒相管43的声学结构可以大幅提升发声单元4低频性能,所述发声单元4通过所述倒相通道402与所述第一倒相孔404将声音加强,重低音加强,安装所述倒相管43之后,就会有比较强的声波从所述第一倒相孔404发出,所述发声单元4从所述第一出声孔403和所述第一倒相孔404的声波都得到了利用,使所述发声单元4的音质提高,从而使得本发明提供的智能穿戴式眼镜100的声学性能好。
本实施例一中,所述倒相管43的尺寸通过所述前腔406的体积、所述耦合后腔407的体积以及所述发声单体42的TS参数共同计算得出。不同的所述发声单元4的器件所匹配的所述倒相管43的尺寸不同,该结构可大幅提升所述发声单元4的低频响应。
本实施例一中,所述振动单元3和所述发声单元4通过分频设计的方式分别进行发声。所述分频设计包括物理分频和软件分频。通过分频的方式,使发声单元4工作在中低频段,振动单元3工作在中高频段,从而使得本发明提供的智能穿戴式眼镜100的声学性能好。所述振动单元3与所述发声单元4形成频段优势互补,实现所述智能穿戴式眼镜100的低频段和中高频段的宽频声音重放,频段宽且声学性能好;同时,所述振动单元3补偿所述发声单元4的低频声段后使得所述发声单元4无需增尺寸提高低频效果,则避免了中高频声的外泄,有效改善了智能穿戴眼镜100的声音私密性问题,得使用者体验效果更优。
以下通过实施例一的智能穿戴式眼镜100原型机实测,通过实测曲线进行对比说明:
请参阅图10,图10为本发明实施例一的智能穿戴式眼镜100与相关技术的智能穿戴式眼镜的声压级频率关系曲线对比图。
图10中,W1为智能穿戴式眼镜100的声压级频率关系曲线,W2相关技术的智能穿戴式眼镜的声压级频率关系曲线。本发明实施例一的智能穿戴式眼镜100与相关技术的智能穿戴式眼镜的区别在于,
相对于相关技术的智能穿戴式眼镜,本发明实施例一的智能穿戴式眼镜100增加了第一泄露孔405和第一倒相孔404分别所对应的结构,由图10所得,通过本发明中的智能穿戴式眼镜100可大幅提升低频响应,可以增加450Hz一下频段,100Hz处低频提升可达16dB。
请参阅图11,图11为本发明实施例一的智能穿戴式眼镜100在使用者的耳朵外部位置与相关技术的智能穿戴式眼镜在耳朵内部位置的声压级频率关系曲线对比图。
图11中,W3为相关技术的智能穿戴式眼镜在耳朵内部位置的声压级频率关系曲线,W4为智能穿戴式眼镜100在耳外20cm处的声压级频率关系曲线。相对于相关技术的智能穿戴式眼镜,本发明实施例一的智能穿戴式眼镜100增加了第一泄露孔405和第一倒相孔404分别所对应的结构,由图11所得,W3和W4两者使用者所听到的音频响应差距极大,在100Hz-4kHz之间均大于25dB,最大差距值可大于40dB,漏音效果良好。而4kHz以上频段主要有振动器件通过骨传导的方式传输给人耳,私密性极强。
综上所述,本发明提供的智能穿戴式眼镜100采用倒相管43的声学结构可以大幅提升发声单元4的低频性能,并根据声波反相抵消原理大幅减小所述发声单元4中低频的漏音,所述振动单元3由与骨传导直接通过接触振动将声音传至耳内,避免了漏音现象,保证了中高频的私密性,以达到全频段的漏音减小,私密性提升,从而使得使用者体验好,从而使得本发明提供的智能穿戴式眼镜100的声学性能好。
(实施例二)
本发明实施例二还提供了一种智能穿戴式眼镜100a。请同时参阅图12-13,图12为本发明实施例二的智能穿戴式眼镜100a的立体结构示意图;图13为本发明实施例二的智能穿戴式眼镜100a的镜脚和发声单元4a的部分立体结构分解示意图。
本实施例二的智能穿戴式眼镜100 a与本实施例一的智能穿戴式眼镜100基本结构相同,两者的区别在于:
所述镜脚2a包括由所述镜框1a延伸的第二镜脚本体21a和盖设固定于所述第二镜脚本体21a并与所述第二镜脚本体21a共同围成第二音腔20a的第二镜脚盖22a。
所述壳体41a由所述第二镜脚本体21a向所述第二音腔20a延伸形成。
所述发声单元4a收容且固定于所述第二音腔20a内。
所述第一出声孔403a、所述第一倒相孔404a和所述第一泄露孔405a分别贯穿所述第二镜脚本体21a。
本实施例二的智能穿戴式眼镜100 a将所述发声单元4a的所述壳体41a与所述镜脚2a设计为一体。该结构简化制造工艺,减少材料成本和减轻智能穿戴式眼镜100 a重量和体积,使得本实施例二的智能穿戴式眼镜100 a的小型化好,重量轻,从而使得使用者体验感好。
通过上述的实施例一的智能穿戴式眼镜100和实施例二的智能穿戴式眼镜100 a的结构,可以大幅提升发声单元低频性能,并根据声波反相抵消原理大幅减小所述发声单元中低频的漏音,并通过所述振动单元由与骨传导直接通过接触振动将声音传至耳内,避免了漏音现象,保证了中高频的私密性,以达到全频段的漏音减小,私密性提升,从而使得使用者体验好从而使得本发明提供的智能穿戴式眼镜的声学性能好。
与相关技术相比,本发明提供的智能穿戴式眼镜通过在镜脚内设置发声单元和振动单元。将所述发声单元的壳体设置倒相通道和第一倒相孔,并将倒相管安装在倒相通道内,倒相管依次穿过所述倒相通道与所述第一倒相孔后与外界连通;该结构采用倒相管的声学结构可以大幅提升发声单元低频性能。将所述壳体设置收容空间、第一出声孔和第一泄露孔,通过发声单体将所述收容空间分隔为前腔和耦合后腔,所述前腔通过所述第一出声孔与外界连通,所述耦合后腔分别通过所述第一泄露孔和所述倒相管与外界连通,所述发声单元通过所述第一出声孔发出的声波与所述发声单元通过所述第一泄露孔发出的声波的相位相反。该结构利用所述第一出声孔与所述第一泄露孔的声学结构,并根据声波反相抵消原理大幅减小所述发声单元中低频的漏音。而所述振动单元由与骨传导直接通过接触振动将声音传至耳内,避免了漏音现象,保证了中高频的私密性,以达到全频段的漏音减小,私密性提升,从而使得使用者体验好。因此,从而使得本发明提供的智能穿戴式眼镜的声学性能好。
以上所述的仅是本发明的实施方式,在此应当指出,对于本领域的普通技术人员来说,在不脱离本发明创造构思的前提下,还可以做出改进,但这些均属于本发明的保护范围。

Claims (10)

  1. 一种智能穿戴式眼镜,其包括镜框和由所述镜框的相对两侧延伸的镜脚,所述镜脚呈中空结构,所述智能穿戴式眼镜还包括分别安装固定于所述镜脚内的振动单元和发声单元;所述振动单元包括至少部分外露于所述镜脚的骨传导接触部,所述骨传导接触部用于与使用者头部的骨骼接触并通过骨传导方式将所述振动单元产生的振动声信号传导至使用者;其特征在于,
    所述发声单元包括具有收容空间和倒相通道的壳体、固定于所述收容空间内的发声单体以及安装于所述倒相通道内的倒相管,所述壳体设有分别贯穿其上的第一出声孔、第一倒相孔和第一泄露孔,所述发声单体将所述收容空间分隔为前腔和耦合后腔,所述前腔通过所述第一出声孔与外界连通,所述倒相管依次穿过所述倒相通道与所述第一倒相孔后与外界连通,所述耦合后腔分别通过所述第一泄露孔和所述倒相管与外界连通;
    所述发声单元通过所述第一出声孔发出的声波与所述发声单元通过所述第一泄露孔发出的声波的相位相反。
  2. 根据权利要求1所述的智能穿戴式眼镜,其特征在于,所述镜脚包括由所述镜框延伸的第一镜脚本体、盖设固定于所述第一镜脚本体并与所述第一镜脚本体共同围成第一音腔的第一镜脚盖、以及分别贯穿所述第一镜脚本体的第二出声孔、第二倒相孔和第二泄露孔;所述发声单元收容且固定于所述第一音腔内,所述第一出声孔通过所述第二出声孔与外界连通,所述第一倒相孔通过所述第二倒相孔与外界连通,所述第一泄露孔通过所述第二泄露孔与外界连通。
  3. 根据权利要求1所述的智能穿戴式眼镜,其特征在于,所述镜脚包括由所述镜框延伸的第二镜脚本体和盖设固定于所述第二镜脚本体并与所述第二镜脚本体共同围成第二音腔的第二镜脚盖,所述壳体由所述第二镜脚本体向所述第二音腔延伸形成,所述发声单元收容且固定于所述第二音腔内,所述第一出声孔、所述第一倒相孔和所述第一泄露孔分别贯穿所述第二镜脚本体。
  4. 根据权利要求2所述的智能穿戴式眼镜,其特征在于,所述镜脚包括用于佩戴时架设于使用者耳部的下表面、与所述下表面相对的上表面以及连接在所述上表面与所述下表面且呈相对设置的第一侧面和第二侧面;所述第二出声孔和所述第二倒相孔间隔设置于所述下表面;所述第二泄露孔位于所述上表面;所述第一侧面位于靠近使用者的一侧,所述第一镜脚盖位于所述第一侧面。
  5. 根据权利要求2所述的智能穿戴式眼镜,其特征在于,所述第一泄露孔包括多个,所述第二泄露孔包括多个,所述第一泄露孔与所述第二泄露孔一一对应。
  6. 根据权利要求2所述的智能穿戴式眼镜,其特征在于,所述壳体包括固定于且收容于所述第一音腔内的底壁、由所述底壁的周缘向所述第一音腔弯折延伸的侧壁、盖设于所述侧壁的顶盖、由所述底壁向所述顶盖的方向延伸形成的支撑壁以及倒相管盖,所述底壁、所述侧壁、所述支撑壁以及所述倒相管盖共同围成所述倒相通道,所述底壁、所述侧壁、所述支撑壁以及所述顶盖共同围成所述收容空间;第一出声孔、第一倒相孔和第一泄露孔分别贯穿所述侧壁。
  7. 根据权利要求1所述的智能穿戴式眼镜,其特征在于,所述倒相管的尺寸通过所述前腔的体积、所述耦合后腔的体积以及所述发声单体的TS参数共同计算得出。
  8. 根据权利要求1所述的智能穿戴式眼镜,其特征在于,所述振动单元还包括产生所述振动声信号的振动器、贴合于所述振动器的表面的振动传导层以及贴合于所述振动传导层的振动耦合砧座,所述骨传导接触部贴设在所述振动耦合砧座远离所述振动传导层的一侧,所述振动耦合砧座经所述骨传导接触部与使用者头部的骨骼形成耦合以形成骨传导结构。
  9. 根据权利要求8所述的智能穿戴式眼镜,其特征在于,所述骨传导接触部为柔性导声介质。
  10. 根据权利要求1所述的智能穿戴式眼镜,其特征在于,所述振动单元和所述发声单元通过分频设计的方式分别进行发声,所述分频设计包括物理分频和软件分频。
PCT/CN2022/144401 2022-12-19 2022-12-31 智能穿戴式眼镜 WO2024130788A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US18/330,326 US20240201520A1 (en) 2022-12-19 2023-06-06 Smart wearable glasses

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202211634280.2 2022-12-19
CN202211634280.2A CN115826246A (zh) 2022-12-19 2022-12-19 智能穿戴式眼镜

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/330,326 Continuation US20240201520A1 (en) 2022-12-19 2023-06-06 Smart wearable glasses

Publications (1)

Publication Number Publication Date
WO2024130788A1 true WO2024130788A1 (zh) 2024-06-27

Family

ID=85516748

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/144401 WO2024130788A1 (zh) 2022-12-19 2022-12-31 智能穿戴式眼镜

Country Status (2)

Country Link
CN (1) CN115826246A (zh)
WO (1) WO2024130788A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN219041924U (zh) * 2022-03-28 2023-05-16 华为技术有限公司 扬声器模组及电子设备

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN209693024U (zh) * 2019-06-05 2019-11-26 深圳玉洋科技发展有限公司 一种音箱及眼镜
CN209982709U (zh) * 2019-06-29 2020-01-21 瑞声科技(南京)有限公司 智能穿戴式眼镜
CN110971732A (zh) * 2019-11-28 2020-04-07 歌尔股份有限公司 一种电子终端
CN111918167A (zh) * 2020-07-10 2020-11-10 瑞声新能源发展(常州)有限公司科教城分公司 智能穿戴式眼镜
CN113504663A (zh) * 2021-07-23 2021-10-15 歌尔光学科技有限公司 发声模组、发声模组的消声方法和智能眼镜
CN214896017U (zh) * 2021-03-26 2021-11-26 歌尔股份有限公司 智能眼镜
JP2022161011A (ja) * 2021-04-07 2022-10-20 オンキヨー株式会社 電子機器

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN209693024U (zh) * 2019-06-05 2019-11-26 深圳玉洋科技发展有限公司 一种音箱及眼镜
CN209982709U (zh) * 2019-06-29 2020-01-21 瑞声科技(南京)有限公司 智能穿戴式眼镜
CN110971732A (zh) * 2019-11-28 2020-04-07 歌尔股份有限公司 一种电子终端
CN111918167A (zh) * 2020-07-10 2020-11-10 瑞声新能源发展(常州)有限公司科教城分公司 智能穿戴式眼镜
CN214896017U (zh) * 2021-03-26 2021-11-26 歌尔股份有限公司 智能眼镜
JP2022161011A (ja) * 2021-04-07 2022-10-20 オンキヨー株式会社 電子機器
CN113504663A (zh) * 2021-07-23 2021-10-15 歌尔光学科技有限公司 发声模组、发声模组的消声方法和智能眼镜

Also Published As

Publication number Publication date
CN115826246A (zh) 2023-03-21

Similar Documents

Publication Publication Date Title
CN111918167B (zh) 智能穿戴式眼镜
KR20230058150A (ko) 소리생성장치
JP7082649B2 (ja) 骨伝導イヤホン
CN110568633A (zh) 一种智能头戴设备
JP7020398B2 (ja) ウェアラブル装置
CN108810761A (zh) 扬声器及便携终端
CN213694080U (zh) 一种智能头戴设备
CN113163297B (zh) 音频装置以及智能头戴设备
WO2024130788A1 (zh) 智能穿戴式眼镜
CN115396771A (zh) 一种贴耳的骨传导耳机及其使用方法
CN209982709U (zh) 智能穿戴式眼镜
WO2020124866A1 (zh) 音频输出模块和头戴式智能终端
US11962967B2 (en) Device for sound reproduction
WO2024087444A1 (zh) 一种开放式耳机
KR100807787B1 (ko) 진동 스피커가 구비된 산모용 복대
CN217363282U (zh) 开放式音频处理装置
KR102004360B1 (ko) 이어폰 모듈과 진동모듈이 결합된 2way 튜브형 음향 기기
US20240201520A1 (en) Smart wearable glasses
JP2010541366A (ja) 音叉タイプのサウンド振動子
CN217904636U (zh) 音腔结构及骨传导眼镜
CN219834371U (zh) 一种发声装置
CN220985818U (zh) 耳机
CN217656712U (zh) 一种骨传导发声单元及可穿戴设备
JP3224623U (ja) 補聴器付きイヤホン
RU2801637C1 (ru) Акустическое выходное устройство

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22969073

Country of ref document: EP

Kind code of ref document: A1