WO2024127635A1 - ヒートポンプ装置およびヒートポンプシステム - Google Patents

ヒートポンプ装置およびヒートポンプシステム Download PDF

Info

Publication number
WO2024127635A1
WO2024127635A1 PCT/JP2022/046381 JP2022046381W WO2024127635A1 WO 2024127635 A1 WO2024127635 A1 WO 2024127635A1 JP 2022046381 W JP2022046381 W JP 2022046381W WO 2024127635 A1 WO2024127635 A1 WO 2024127635A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat pump
heat
refrigerant
temperature sensor
pump device
Prior art date
Application number
PCT/JP2022/046381
Other languages
English (en)
French (fr)
Inventor
伸浩 和田
万誉 篠崎
祐治 本村
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to PCT/JP2022/046381 priority Critical patent/WO2024127635A1/ja
Publication of WO2024127635A1 publication Critical patent/WO2024127635A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B49/00Arrangement or mounting of control or safety devices
    • F25B49/02Arrangement or mounting of control or safety devices for compression type machines, plants or systems

Definitions

  • This disclosure relates to a heat pump device and a heat pump system that adjusts the temperature of a temperature-adjustable object based on the temperature of the refrigerant on the discharge side and the suction side of a compressor.
  • the refrigerant circuit of a heat pump device such as an air conditioner
  • a control device for the heat pump device controls the operation of controlled objects such as a compressor and a blower based on the measurement results from the multiple sensors (see Patent Document 1). That is, the control device derives the values of control parameters for controlling the compressor, blower, etc. based on the measurement results from each sensor, and performs control based on the derived values of the control parameters.
  • the control device will be unable to derive the values of the control parameters, and will become uncontrollable. As a result, the heat pump device will abnormally stop. It often takes a long time for the heat pump device to recover after it abnormally stops, and during that time the user cannot use the heat pump device, resulting in a lack of convenience.
  • the present disclosure has been made to solve the above problems, and aims to provide a heat pump device that can operate even if a sensor that measures the temperature of the refrigerant on the discharge side or suction side of the compressor breaks down, and a heat pump system that includes the heat pump device.
  • the heat pump device is a heat pump device that cools or heats a temperature adjustment target by a refrigerant circulating through a refrigerant circuit, and includes a load device having a load heat exchanger that exchanges heat between the temperature adjustment target and the refrigerant, a heat source device that adjusts the temperature of the refrigerant circulating through the load heat exchanger, a throttling device that reduces the pressure of the refrigerant and expands it, and a group of sensors that measure physical quantities of the refrigerant circulating through the refrigerant circuit, and the heat source device includes a compressor that compresses the refrigerant, and a heat source heat exchanger that exchanges heat between the refrigerant and a heat exchange target, and the compressor, the heat source heat exchanger, the throttling device, and the load heat exchanger are included in the refrigerant circuit, and the group of sensors includes a discharge pressure sensor that measures the pressure of the refrigerant on the discharge side of the compressor,
  • the heat pump device includes an intake temperature sensor that measures temperature, and a load temperature sensor that measures the temperature of the temperature control target flowing into the load heat exchanger, the discharge pressure sensor, the intake pressure sensor, the discharge temperature sensor, and the intake temperature sensor are provided in the heat source device, and the load temperature sensor is provided in the load device.
  • the heat pump device further includes a control device that controls the control target including the compressor based on the measurement results from the group of sensors, and when one of the discharge temperature sensor and the intake temperature sensor fails, the control device derives a provisional value based on the measurement results from at least one of the other of the discharge temperature sensor and the intake temperature sensor, the discharge pressure sensor, the intake pressure sensor, and the load temperature sensor, and controls the control target based on the provisional value instead of the measurement result from one of the discharge temperature sensor and the intake temperature sensor.
  • the heat pump system is a heat pump system having a plurality of heat pump devices that cool or heat a temperature adjustment target by a refrigerant circulating through a refrigerant circuit, and a management system for managing the plurality of heat pump devices, wherein the heat pump device comprises a compressor that compresses the refrigerant, a heat source heat exchanger that exchanges heat between the refrigerant and the heat exchange target, a throttling device that decompresses and expands the refrigerant, a load heat exchanger that exchanges heat between the refrigerant and the temperature adjustment target, a group of sensors that measure physical quantities of the refrigerant circulating through the refrigerant circuit, and a control device that controls a control target including the compressor based on the measurement results by the group of sensors, wherein the compressor, the heat source heat exchanger, the throttling device, and the load heat exchanger are included in the refrigerant circuit, and the group of sensors is connected to the discharge side or the suction side
  • the management system includes a heat source temperature sensor that measures the temperature of the refrigerant, and when the heat source temperature sensor of a first heat pump device, which is one of the heat pump devices among the plurality of heat pump devices, fails, and when a second heat pump device, which is one of the plurality of heat pump devices and is a heat pump device whose heat source temperature sensor is not failed, satisfies a predetermined specific condition, the management system instructs the control device of the first heat pump device to use the measurement result of the heat source temperature sensor of the second heat pump device as a provisional value in place of the measurement result of the heat source temperature sensor of the first heat pump device, and to control the control target in the first heat pump device based on the provisional value in place of the measurement result of the heat source temperature sensor in the first heat pump device.
  • the control device when both or one of the discharge temperature sensor and the intake temperature sensor fail, the control device derives a provisional value based on the measurement results of at least one of the other of the discharge temperature sensor and the intake temperature sensor, the discharge pressure sensor, the intake pressure sensor, and the load target temperature sensor. The control device then controls the control target based on the provisional value instead of the measurement result of one of the discharge temperature sensor and the intake temperature sensor, so that the heat pump device can operate even if both or one of the discharge temperature sensor and the intake temperature sensor fail.
  • the management system sets the measurement result of the heat source temperature sensor of the second heat pump device as a provisional value in place of the measurement result of the heat source temperature sensor of the first heat pump device.
  • the management system then instructs the control device of the first heat pump device to control the first heat pump device based on the provisional value instead of the measurement result of the heat source temperature sensor of the first heat pump device. Therefore, each heat pump device in the heat pump system can continue to operate even if the heat source temperature sensor fails.
  • FIG. 1 is a schematic diagram illustrating a configuration example of a heat pump device according to a first embodiment.
  • 4 is a flowchart illustrating a process for setting an emergency operation by the heat pump apparatus according to the first embodiment.
  • 4 is a flowchart illustrating a flow of a process of deriving a provisional value and a control process based on the provisional value, performed by the control device in the first embodiment.
  • 10 is a flowchart showing a first example of a process for deriving a provisional value by the control device when a faulty sensor is a discharge temperature sensor in the first embodiment.
  • 10 is a flowchart showing a second example of a process for deriving a provisional value by the control device when a faulty sensor in the first embodiment is a discharge temperature sensor.
  • 13 is a flowchart showing a third example of a process of deriving a provisional value by the control device when a faulty sensor in the first embodiment is a discharge temperature sensor.
  • 6 is a flowchart showing a first example of a process for deriving a provisional value by the control device in a case where a faulty sensor in the first embodiment is an intake temperature sensor.
  • 10 is a flowchart showing a second example of a process for deriving a provisional value by the control device in a case where a faulty sensor in the first embodiment is an intake temperature sensor.
  • FIG. 2 is a block diagram illustrating a hardware configuration of a control device according to the first embodiment.
  • FIG. FIG. 11 is a schematic diagram showing a configuration example of a heat pump device according to a second embodiment.
  • 11 is a flowchart illustrating a process of deriving a provisional value by a first control device according to a second embodiment.
  • 11 is a flowchart illustrating a process of determining whether or not there is a second heat source device that satisfies a specific condition, performed by a first control device in a second embodiment.
  • FIG. 11 is a block diagram illustrating a hardware configuration of a control device in a second embodiment.
  • FIG. 13 is a schematic diagram showing a configuration example of a heat pump system according to a third embodiment.
  • FIG. 13 is a flowchart showing a flow of a process of deriving a provisional value and a control process based on the provisional value in the third embodiment.
  • 13 is a flowchart illustrating a process of determining whether or not a second heat pump device that satisfies a specific condition is present, performed by a management system in a third embodiment.
  • FIG. 11 is a block diagram illustrating a hardware configuration of a management system according to a third embodiment.
  • 13 is a flowchart showing a first example of a process for determining whether or not there is device information of a second heat pump device that satisfies a specific condition, performed by the management system in embodiment 4.
  • 13 is a flowchart showing a second example of a process for determining whether or not there is device information of a second heat pump device that satisfies a specific condition, performed by the management system in embodiment 4.
  • FIG. 1 is a schematic diagram showing a configuration example of a heat pump device 100 according to the first embodiment.
  • the heat pump device 100 has a refrigerant circuit 1 in which a refrigerant circulates, and adjusts the temperature of the temperature adjustment target, such as indoor air or water supplied to a user, to a temperature desired by the user by exchanging heat between the refrigerant and the temperature adjustment target.
  • Examples of the heat pump device 100 include an air conditioner and a water heater.
  • FIG. 1 shows an example in which the heat pump device 100 is an air conditioner.
  • the refrigerant in the first embodiment is a non-azeotropic refrigerant.
  • the heat pump device 100 includes a heat source device 3 and a load device 4 connected by a refrigerant pipe 2 on a refrigerant circuit 1.
  • the heat source device 3 includes a compressor 30, a flow path switching device 31, a heat source heat exchanger 32, a heat source blower 33, and an accumulator 34.
  • the compressor 30, the flow path switching device 31, the heat source heat exchanger 32, the heat source blower 33, and the accumulator 34 are arranged inside a housing that forms the outer shell of the heat source device 3.
  • the housing of the heat source device 3 is diagrammatically indicated by a dashed square in FIG. 1.
  • the load device 4 includes a load heat exchanger 40, a load blower 41, and a throttling device 42.
  • the load heat exchanger 40, the load blower 41, and the throttling device 42 are arranged inside a housing that forms the outer shell of the load device 4.
  • the housing of the load device 4 is shown diagrammatically by a rectangle defined by a dashed line in FIG. 1.
  • the accumulator 34, the compressor 30, the flow path switching device 31, the heat source heat exchanger 32, the throttling device 42, and the load heat exchanger 40 are connected in sequence by the refrigerant piping 2.
  • the load heat exchanger 40 and the flow path switching device 31 are connected by the refrigerant piping 2.
  • the compressor 30 draws in refrigerant from the refrigerant pipe 2 and compresses the drawn refrigerant. The compressor 30 then discharges the compressed refrigerant into the refrigerant pipe 2.
  • the compressor 30 is a scroll type, rotary type, reciprocating type, screw type, or other compressor, and is an inverter compressor whose capacity can be controlled by an inverter.
  • the flow path switching device 31 is, for example, a four-way valve, and switches the refrigerant flow path and the flow direction, which is the direction in which the refrigerant flows.
  • the heat pump device 100 can switch between cooling operation and heating operation by switching processing by the flow path switching device 31.
  • cooling operation refers to an operation in which the heat pump device 100 cools an object to be temperature-adjusted, such as cooling operation.
  • heating operation refers to an operation in which the heat pump device 100 heats an object to be temperature-adjusted, such as heating operation.
  • the solid line portion of the flow path switching device 31 shown in FIG. 1 indicates the refrigerant flow path during cooling operation, and the dashed line portion indicates the refrigerant flow path during heating operation.
  • the solid line arrow in FIG. 1 indicates the direction in which the refrigerant flows during cooling operation
  • the dashed line arrow indicates the direction in which the refrigerant flows during heating operation.
  • the heat pump device 100 may perform only one of the cooling operation and the heating operation. If the heat pump device 100 performs only the cooling operation of the cooling operation and the heating operation, the heat pump device 100 includes a refrigerant flow path indicated by a solid line in the flow path switching device 31 in FIG. 1 and configured with a refrigerant flow path 2 instead of the flow path switching device 31. If the heat pump device 100 performs only the heating operation of the cooling operation and the heating operation, the heat pump device 100 includes a refrigerant flow path indicated by a dashed line in the flow path switching device 31 in FIG. 1 and configured with a refrigerant flow path 2 instead of the flow path switching device 31.
  • the heat source heat exchanger 32 performs heat exchange between the refrigerant and the heat exchange target.
  • the heat exchange target refers to air, water, etc., for adjusting the temperature of the refrigerant provided to the load heat exchanger 40 by heat exchange with the refrigerant.
  • heat exchange targets include air outdoors or around the refrigerator, and water discharged outdoors.
  • the heat source heat exchanger 32 functions as a condenser that cools and condenses the refrigerant, and during heating operation, it functions as an evaporator that heats and evaporates the refrigerant.
  • the heat source blower 33 includes a heat source fan motor 33A and a heat source fan 33B.
  • the heat source fan 33B is, for example, a propeller fan, a turbo fan, or a sirocco fan.
  • the heat source blower 33 guides the heat exchange target to the heat source heat exchanger 32 and sends the heat exchange target after heat exchange with the refrigerant to the outside of the heat source heat exchanger 32.
  • the heat pump device 100 may be equipped with a pump such as a water pump.
  • the accumulator 34 is provided on the suction side of the compressor 30, and stores excess refrigerant resulting from differences in the operating states of cooling and heating, or excess refrigerant resulting from transient changes in operation.
  • the accumulator 34 separates and stores liquid refrigerant from the inflowing refrigerant, and allows only gas refrigerant to flow to the compressor 30.
  • the load heat exchanger 40 exchanges heat between the refrigerant and the object to be temperature-adjusted, and adjusts the temperature of the object to the temperature desired by the user.
  • the load heat exchanger 40 functions as a condenser that condenses the refrigerant, and during cooling operation, it functions as an evaporator that evaporates the refrigerant.
  • the load blower 41 includes a load fan motor 41A and a load fan 41B.
  • the load fan 41B is, for example, a crossflow fan, a turbo fan, or a sirocco fan.
  • the load blower 41 guides the temperature adjustment target to the load heat exchanger 40, and sends the temperature adjustment target after heat exchange with the refrigerant into the room or the inside of a refrigerator, etc. If the temperature adjustment target is a liquid such as water, the heat pump device 100 does not need to be equipped with the load blower 41. In this case, the heat pump device 100 may be equipped with a pump such as a water pump.
  • the throttling device 42 is an expansion valve that reduces the pressure of the refrigerant to expand it.
  • the expansion valve is, for example, an electric expansion valve whose opening can be variably controlled. Note that while FIG. 1 shows an example in which the throttling device 42 is provided inside the housing of the load device 4, the throttling device 42 may also be provided outside the load device 4.
  • the state and flow of the refrigerant during cooling operation and heating operation by the heat pump device 100 will be described below.
  • the refrigerant sucked into the compressor 30 is compressed, becomes a high-temperature, high-pressure gas refrigerant, and is discharged from the compressor 30.
  • the gas refrigerant discharged from the compressor 30 flows into the heat source heat exchanger 32 via the flow path switching device 31.
  • the gas refrigerant that flows into the heat source heat exchanger 32 releases heat to the heat exchange target and condenses to become a high-pressure liquid refrigerant.
  • the liquid refrigerant that flows out of the heat source heat exchanger 32 flows out of the heat source device 3 and flows into the load device 4.
  • the high-pressure liquid refrigerant that flows into the load device 4 is decompressed by the throttling device 42, becomes a low-temperature, low-pressure two-phase gas-liquid refrigerant, and flows into the load heat exchanger 40 that functions as an evaporator.
  • the gas-liquid two-phase refrigerant that flows into the load heat exchanger 40 absorbs heat from the temperature adjustment target and vaporizes, cooling the temperature adjustment target and becoming a low-temperature, low-pressure gas refrigerant.
  • the gas refrigerant that flows out of the load heat exchanger 40 flows out of the load device 4 and flows into the heat source device 3.
  • the low-temperature, low-pressure gas refrigerant that flows into the heat source device 3 passes through the flow switching device 31 and the accumulator 34, and is sucked into the compressor 30.
  • the refrigerant sucked into the compressor 30 is compressed, becomes a high-temperature, high-pressure gas refrigerant, and is discharged from the compressor 30.
  • the gas refrigerant discharged from the compressor 30 flows into the load device 4 via the flow path switching device 31.
  • the high-temperature, high-pressure gas refrigerant that flows into the load device 4 flows into the load heat exchanger 40.
  • the gas-liquid two-phase refrigerant that flows into the load heat exchanger 40 releases heat to the temperature adjustment object, condenses, and cools the temperature adjustment object, becoming a high-pressure liquid refrigerant.
  • the liquid refrigerant that flows out of the load heat exchanger 40 is decompressed by the throttling device 42, becoming a low-temperature, low-pressure gas-liquid two-phase refrigerant.
  • the gas-liquid two-phase refrigerant that flows out of the throttling device 42 flows out of the load device 4 and flows into the heat source device 3.
  • the gas-liquid two-phase refrigerant that flows into the heat source device 3 flows into the heat source heat exchanger 32, absorbs heat from the heat exchange object, evaporates, and becomes a low-temperature, low-pressure gas refrigerant.
  • the gas refrigerant flowing out of the heat source heat exchanger 32 passes through the flow switching device 31 and the accumulator 34 and is sucked into the compressor 30.
  • the heat pump device 100 further includes a control device 6 that controls the compressor 30, the heat source blower 33, the load blower 41, and the throttling device 42.
  • the heat pump device 100 also includes a discharge pressure sensor 50, an intake pressure sensor 51, a discharge temperature sensor 52, an intake temperature sensor 53, a first load temperature sensor 54, a second load temperature sensor 55, and a load target temperature sensor 56.
  • the set of the discharge pressure sensor 50, the intake pressure sensor 51, the discharge temperature sensor 52, the intake temperature sensor 53, the first load temperature sensor 54, the second load temperature sensor 55, and the load target temperature sensor 56 may be referred to as a sensor group.
  • Each of the discharge temperature sensor 52 and the intake temperature sensor 53 may also be referred to as a heat source temperature sensor.
  • the control device 6 includes, for example, a microcontroller, and controls all or part of the operating frequency of the compressor 30, the operating frequency of the heat source blower 33, the operating frequency of the load blower 41, and the opening degree of the throttling device 42 based on both or either of the measurement results of all or part of the sensor group and instructions input to a remote controller (not shown).
  • the control device 6 also controls the flow path switching device 31 to switch the operating state based on both or either of the measurement results of all or part of the sensor group and instructions input to a remote controller (not shown).
  • each of the compressor 30, the heat source blower 33, the load blower 41, and the throttling device 42 that are the objects of control by the control device 6 may be described as the control object.
  • the control device 6 performs wired or wireless communication with each of the discharge pressure sensor 50, the suction pressure sensor 51, the discharge temperature sensor 52, the suction temperature sensor 53, the first load temperature sensor 54, the second load temperature sensor 55, and the load object temperature sensor 56 to acquire the measurement results.
  • the control device 6 also communicates by wire or wireless with each of the compressor 30, the flow path switching device 31, the heat source blower 33, the load blower 41, and the throttling device 42.
  • the control device 6 outputs control signals to each of the compressor 30, the flow path switching device 31, the heat source blower 33, the load blower 41, and the throttling device 42 to control them.
  • FIG. 1 shows an example in which the control device 6 is provided within the heat source device 3, the control device 6 may be provided outside the heat source device 3.
  • the control device 6 may be provided within the load device 4, or may be provided outside each of the heat source device 3 and the load device 4.
  • the control device 6 may be provided in separate parts. For example, a part of the control device 6 may be provided in the heat source device 3, and another part may be provided in the load device 4.
  • the discharge pressure sensor 50 and the suction pressure sensor 51 each measure the pressure of the refrigerant based on a piezoelectric element method, a resistive film method, a capacitance method, or the like.
  • the discharge temperature sensor 52, the suction temperature sensor 53, the first load temperature sensor 54, and the second load temperature sensor 55 each are configured with a thermistor, a thermocouple, a resistance temperature detector, or the like, and measure the temperature of the refrigerant.
  • the load target temperature sensor 56 is configured with a thermistor, a thermocouple, a resistance temperature detector, or the like, and measures the temperature of air, water, or the like.
  • the discharge pressure sensor 50, the suction pressure sensor 51, the discharge temperature sensor 52, and the suction temperature sensor 53 are provided in the heat source device 3.
  • the first load temperature sensor 54, the second load temperature sensor 55, and the load target temperature sensor 56 are provided in the load device 4.
  • the discharge pressure sensor 50 is provided in the refrigerant pipe 2 on the discharge side of the compressor 30, and measures the pressure of the high-temperature, high-pressure refrigerant discharged from the compressor 30.
  • the discharge pressure sensor 50 is provided, for example, in the refrigerant pipe 2 between the compressor 30 and the flow path switching device 31.
  • the discharge pressure sensor 50 is provided in the refrigerant pipe 2 between the compressor 30 and the heat source heat exchanger 32.
  • the discharge pressure sensor 50 is provided in the refrigerant pipe 2 between the compressor 30 and the load heat exchanger 40.
  • the suction pressure sensor 51 is provided in the refrigerant pipe 2 on the suction side of the compressor 30 and measures the pressure of the low-temperature, low-pressure refrigerant drawn into the compressor 30.
  • the suction pressure sensor 51 may be provided, for example, in the refrigerant pipe 2 between the compressor 30 and the accumulator 34. If the heat pump device 100 is provided with a flow path switching device 31, the suction pressure sensor 51 may be provided in the refrigerant pipe 2 between the flow path switching device 31 and the accumulator 34. If the heat pump device 100 does not have the flow path switching device 31 and performs only the cooling operation of the heating operation and the cooling operation, the suction pressure sensor 51 may be provided in the refrigerant pipe 2 between the accumulator 34 and the load heat exchanger 40. If the heat pump device 100 does not have the flow path switching device 31 and performs only the heating operation of the heating operation and the cooling operation, the suction pressure sensor 51 may be provided in the refrigerant pipe 2 between the accumulator 34 and the heat source heat exchanger 32
  • the discharge temperature sensor 52 is provided in the refrigerant pipe 2 on the discharge side of the compressor 30, and measures the temperature of the high-temperature, high-pressure refrigerant discharged from the compressor 30.
  • the discharge temperature sensor 52 is provided, for example, in the refrigerant pipe 2 between the compressor 30 and the flow path switching device 31.
  • the discharge temperature sensor 52 is provided in the refrigerant pipe 2 between the compressor 30 and the heat source heat exchanger 32.
  • the discharge temperature sensor 52 is provided in the refrigerant pipe 2 between the compressor 30 and the load heat exchanger 40.
  • the suction temperature sensor 53 is provided in the refrigerant pipe 2 on the suction side of the compressor 30, and measures the temperature of the low-temperature, low-pressure refrigerant suctioned into the compressor 30.
  • the suction temperature sensor 53 may be provided, for example, in the refrigerant pipe 2 between the compressor 30 and the accumulator 34. If the heat pump device 100 is provided with a flow path switching device 31, the suction temperature sensor 53 may be provided in the refrigerant pipe 2 between the flow path switching device 31 and the accumulator 34.
  • the suction temperature sensor 53 may be provided in the refrigerant pipe 2 between the accumulator 34 and the load heat exchanger 40. If the heat pump device 100 does not have the flow path switching device 31 and performs only the heating operation of the heating operation and the cooling operation, the suction temperature sensor 53 may be provided in the refrigerant pipe 2 between the accumulator 34 and the heat source heat exchanger 32.
  • the first load temperature sensor 54 measures the temperature of the refrigerant flowing into the load heat exchanger 40 during cooling operation, and measures the temperature of the refrigerant flowing out of the load heat exchanger 40 during heating operation.
  • the first load temperature sensor 54 may be provided in the refrigerant piping 2 between the load heat exchanger 40 and the throttling device 42, or may be provided at the refrigerant inlet of the load heat exchanger 40 during cooling operation.
  • the second load temperature sensor 55 measures the temperature of the refrigerant flowing out of the load heat exchanger 40 during cooling operation, and measures the temperature of the refrigerant flowing into the load heat exchanger 40 during heating operation.
  • the second load temperature sensor 55 may be provided in the refrigerant piping 2 downstream of the load heat exchanger 40 during cooling operation, or may be provided at the refrigerant outlet of the load heat exchanger 40 during cooling operation.
  • the load object temperature sensor 56 measures the temperature of the temperature-adjusted object flowing into the load heat exchanger 40, and is provided upstream of the load heat exchanger 40 in the flow path of the temperature-adjusted object, or at the inflow portion of the load heat exchanger 40 to the temperature-adjusted object.
  • the control device 6 in the first embodiment determines whether or not there is excess refrigerant in the accumulator 34 based on at least the measurement results of the suction pressure sensor 51 and the suction temperature sensor 53.
  • the control device 6 also derives information indicating the composition of the refrigerant, which is a non-azeotropic refrigerant whose composition can vary, by calculation or the like based on at least the measurement results of the suction pressure sensor 51 and the suction temperature sensor 53.
  • information indicating the composition of the refrigerant may also be referred to as composition information.
  • the control device 6 in the first embodiment controls both or one of the operating frequency of the compressor 30 and the operating frequency of the heat source blower 33 based on the composition information and the measurement results of the discharge pressure sensor 50 and the suction pressure sensor 51.
  • the control device 6 controls the opening of the throttling device 42 so that the degree of superheat of the refrigerant flowing out of the load heat exchanger 40, which functions as an evaporator, is constant.
  • the control device 6 derives the degree of superheat based on the saturation temperature of the refrigerant in the load heat exchanger 40 and the measurement results from the second load temperature sensor 55.
  • the control device 6 derives the saturation temperature of the refrigerant flowing out of the evaporator by calculation or the like based on the composition information and the measurement results from the suction pressure sensor 51.
  • the control device 6 controls the opening of the throttling device 42 so that the degree of subcooling of the refrigerant flowing out of the load heat exchanger 40 functioning as a condenser is constant.
  • the control device 6 derives the degree of subcooling by calculation or the like based on the saturation temperature of the refrigerant in the load heat exchanger 40 and the measurement results from the first load temperature sensor 54.
  • the control device 6 derives the saturation temperature of the refrigerant flowing out of the condenser by calculation or the like based on the composition information and the measurement results from the discharge pressure sensor 50.
  • the control device 6 when the control device 6 performs control based on the measurement results of the sensor group, if any of the sensor group fails, the control device 6 may become uncontrollable.
  • the device In a conventional heat pump device, if any of the sensor group fails and the control device becomes uncontrollable, the device abnormally stops. After such an abnormal stop, it is necessary to arrange for replacement parts in the recovery process, and it takes time to complete the work due to adjustments to the construction schedule, etc. During that time, the user cannot use the heat pump device, and as a result, the user's comfort is impaired.
  • the heat pump device 100 according to the first embodiment makes it possible to shorten the stop period when either the discharge temperature sensor 52 or the intake temperature sensor 53 of the sensor group fails, thereby reducing the user's discomfort. The configuration and functions of such a heat pump device 100 are described below.
  • the heat pump device 100 performs emergency operation when the heat source temperature sensor fails.
  • the control device 6 sets a provisional value in place of the measurement result from the failed heat source temperature sensor, and controls the control target based on the provisional value.
  • the failed heat source temperature sensor may be referred to as a failed sensor.
  • a heat source temperature sensor that is not failed may be referred to as a normal temperature sensor.
  • a sensor that is not failed among the group of sensors, including the normal temperature sensor may be referred to as a normal sensor.
  • FIG. 2 is a flow chart illustrating an example of the setting process for emergency operation by the heat pump device 100 according to embodiment 1. It is assumed that, prior to step S1, one of the heat source temperature sensors, the discharge temperature sensor 52 or the intake temperature sensor 53, is malfunctioning. The control device 6 determines that the heat source temperature sensor is abnormal based on an event such as the measured value by the heat source temperature sensor exceeding an upper limit or lower limit. The heat pump device 100 then enters abnormal stop mode and stops.
  • step S1 the control device 6 accepts the setting of the emergency operation mode by the dispatched serviceman. This activates the emergency operation mode.
  • the control device 6 is provided with an input device (not shown), and the serviceman may set the control device 6 via the input device. Alternatively, the serviceman may set the control device 6 via a remote controller (not shown).
  • step S2 the control device 6 accepts the setting of failure information indicating the faulty sensor.
  • the control device 6 is set to control the control target based on the derived provisional value, rather than the measurement result of the faulty sensor.
  • emergency operation is performed using control based on the provisional value instead of the measurement result of the faulty sensor. Note that control based on the provisional value may be performed after restarting the heat pump device 100.
  • FIG. 3 is a flowchart illustrating the flow of the process of deriving a provisional value and the control process based on the provisional value, performed by the control device 6 in the first embodiment. The process shown in FIG. 3 is executed after the process of step S2 described above.
  • step S11 the control device 6 determines whether the heat pump device 100 is in an operating state. Specifically, the control device 6 determines whether the heat pump device 100 is in an operating state by determining whether an instruction to start operation has been input to a remote controller (not shown) or whether the control device 6 is causing the controlled object to perform, for example, a defrosting operation based on the measurement results from the sensor group. If the heat pump device 100 is in a stopped state (step S11: NO), the control device 6 ends the process.
  • step S12 the control device 6 sets a limit on the value of the control parameter of the control object.
  • the control parameter refers to the operating frequency of the compressor 30 when the control object is the compressor 30, refers to the operating frequency of the heat source blower 33 when the control object is the heat source blower 33, and refers to the operating frequency of the load blower 41 when the control object is the load blower 41.
  • the control parameter refers to the opening degree of the throttling device 42 when the control object is the throttling device 42.
  • the control device 6 sets a limit on the value of the control parameter by setting both or one of an upper limit value and a lower limit value for the control parameter.
  • the control device 6 limits the maximum operating frequency of the compressor 30 to, for example, 70% of the maximum operating frequency during normal operation.
  • Normal operation refers to operation in a state where none of the sensors in the sensor group is broken.
  • the processing of step S12 may be omitted. In this case, when the control device 6 determines in step S11 that the heat pump device 100 is in an operating state, it proceeds to step S13.
  • step S13 the control device 6 determines whether or not control based on a provisional value instead of the measurement result of the faulty sensor is permitted. That is, the control device 6 determines whether an emergency operation mode is set and information indicating a faulty sensor is set. If control based on a provisional value is not permitted (step S13: NO), the control device 6 notifies an error in step S14. The control device 6 may also cause a remote controller (not shown) to notify the error. After processing in step S14, the control device 6 ends the processing.
  • step S15 the control device 6 determines whether or not a provisional value has been set.
  • the provisional value is set by a serviceman via the input device or remote controller. In this case, the control device 6 stores the set provisional value. If a provisional value has been set (step S15: YES), the control device 6 moves the process to step S17. If a provisional value has not been set (step S15: NO), in step S16 the control device 6 derives a provisional value. Note that if the control device 6 does not accept a provisional value setting from the serviceman, the process of step S15 may be omitted.
  • step S17 the control device 6 derives the value of the control parameter based on the provisional value and the measurement result by the normal sensor.
  • step S18 the control device 6 controls the control object based on the value of the control parameter derived in step S17. That is, if the control object is the compressor 30, the control device 6 operates the compressor 30 at the operating frequency derived in step S17. If the control object is the heat source blower 33, the control device 6 operates the heat source blower 33 at the operating frequency derived in step S17. If the control object is the throttling device 42, the control device 6 sets the opening degree of the throttling device 42 to the opening degree derived in step S17.
  • control device 6 If the control object is the load blower 41, the control device 6 operates the load blower 41 at the operating frequency derived in step S17. After the process of step S18, the control device 6 returns the process to step S11 after a predetermined period of time has elapsed.
  • Fig. 4 is a flow chart showing a first example of the process of deriving the provisional values by the control device 6 when the faulty sensor in the first embodiment is the discharge temperature sensor 52.
  • the control device 6 derives various physical quantities based on the latest measurement results of the discharge pressure sensor 50, the suction pressure sensor 51, and the suction temperature sensor 53. It is assumed that the control device 6 stores information corresponding to the Moliere diagram in advance. Hereinafter, the information corresponding to the Moliere diagram may be referred to as Moliere information.
  • the control device 6 derives various physical quantities from the measurement results of the discharge pressure sensor 50, the suction pressure sensor 51, and the suction temperature sensor 53 based on the Moliere information. It is assumed that the discharge pressure sensor 50, the suction pressure sensor 51, and the suction temperature sensor 53 are not faulty.
  • step S21 the control device 6 derives the entropy of the refrigerant drawn into the compressor 30 based on the measurement results of the suction pressure sensor 51 and the suction temperature sensor 53.
  • step S22 the control device 6 derives the discharge temperature, which is the temperature of the refrigerant discharged from the compressor 30, based on the entropy derived in step S21 and the measurement results of the discharge pressure sensor 50.
  • the discharge temperature derived in step S22 is a theoretical value, and the actual discharge temperature varies depending on the adiabatic efficiency of the refrigerant circuit 1. It is assumed that the control device 6 in the first embodiment has acquired the value of the adiabatic efficiency of the refrigerant circuit 1 in advance.
  • the theoretical value of the discharge temperature obtained by calculation or the like may also be referred to as the theoretical discharge temperature.
  • step S23 the control device 6 derives the discharge enthalpy, which is the enthalpy of the refrigerant discharged from the compressor 30, based on the theoretical discharge temperature derived in step S22 and the measurement results from the discharge pressure sensor 50.
  • the discharge enthalpy derived in step S23 is a theoretical value, and the actual discharge enthalpy varies depending on the adiabatic efficiency of the refrigerant circuit 1.
  • the theoretical value of the discharge enthalpy obtained by calculation or the like may also be referred to as the theoretical discharge enthalpy.
  • step S24 the control device 6 derives the discharge enthalpy based on the theoretical discharge enthalpy and the adiabatic efficiency, for example by multiplying the theoretical discharge enthalpy derived in step S23 by the adiabatic efficiency.
  • step S25 the control device 6 derives the discharge temperature as the provisional value based on the discharge enthalpy derived in step S24 and the measurement result by the discharge pressure sensor 50. After processing in step S25, the control device 6 ends the process of deriving the provisional value and moves the process to step S17 described above.
  • FIG. 5 is a flowchart showing a second example of the process of deriving provisional values by the control device 6 when the faulty sensor in embodiment 1 is the discharge temperature sensor 52.
  • the control device 6 derives various physical quantities based on the most recent measurement results acquired by the discharge pressure sensor 50. It is assumed that the discharge pressure sensor 50 is not faulty.
  • step S31 the control device 6 derives the condensation temperature of the refrigerant in the condenser based on the measurement result by the discharge pressure sensor 50.
  • step S32 the control device 6 derives the discharge temperature as the provisional value by adding the heat release temperature, which is a temperature according to the amount of heat released by the refrigerant in the condenser, to the condensation temperature obtained in step S31.
  • the heat release temperature may be determined based on the operating frequency of the compressor 30, for example, or may be a constant value preset in the control device 6.
  • the control device 6 ends the provisional value derivation process and moves the process to the above-mentioned step S17. In the provisional value derivation process shown in FIG. 5, the amount of processing, such as the amount of calculations, is reduced compared to the process shown in FIG. 4.
  • FIG. 6 is a flowchart showing a third example of the process of deriving provisional values by the control device 6 when the faulty sensor in embodiment 1 is the discharge temperature sensor 52.
  • the control device 6 derives various physical quantities based on the most recent measurement results of the load target temperature sensor 56.
  • the process shown in FIG. 6 is desirably performed during operation in which the refrigerant discharged from the compressor 30 flows into the load heat exchanger 40 without passing through the heat source heat exchanger 32 or the like.
  • the process shown in FIG. 6 is desirably performed in the flow direction of the refrigerant during heating operation. Note that in FIG. 6, it is assumed that the load target temperature sensor 56 is not faulty.
  • step S41 the control device 6 derives a provisional discharge temperature based on the temperature of the temperature adjustment target measured by the load object temperature sensor 56 and the heat dissipation temperature.
  • the control device 6 derives a provisional discharge temperature by adding the heat dissipation temperature to the measured temperature of the temperature adjustment target.
  • the control device 6 ends the provisional value derivation process and moves the process to the above-mentioned step S17.
  • the amount of processing such as the amount of calculations, is reduced compared to the process shown in FIG. 4.
  • FIG. 7 is a flowchart showing a first example of the process of deriving provisional values by the control device 6 when the faulty sensor in embodiment 1 is the intake temperature sensor 53.
  • the control device 6 stores the Moliere information.
  • the control device 6 derives various physical quantities based on the Moliere information from the most recent measurement results of the discharge pressure sensor 50, intake pressure sensor 51, and discharge temperature sensor 52. It is assumed that the discharge pressure sensor 50, intake pressure sensor 51, and discharge temperature sensor 52 are not faulty.
  • step S51 the control device 6 derives the discharge enthalpy based on the measurement results of the discharge pressure sensor 50 and the discharge temperature sensor 52.
  • step S52 the control device 6 derives the theoretical discharge enthalpy based on the discharge enthalpy and the adiabatic efficiency, for example by dividing the discharge enthalpy derived in step S51 by the adiabatic efficiency.
  • step S53 the control device 6 derives the discharge entropy, which is the entropy of the refrigerant discharged from the compressor 30, based on the theoretical discharge enthalpy derived in step S52 and the measurement results by the discharge pressure sensor 50.
  • the discharge entropy derived in step S53 is a theoretical value, and the actual discharge entropy changes depending on the adiabatic efficiency of the refrigerant circuit 1, etc.
  • the theoretical value of the discharge entropy obtained by calculation, etc. may be referred to as the theoretical discharge entropy.
  • step S54 the control device 6 derives the suction temperature, which is the temperature of the refrigerant sucked into the compressor 30, as the provisional value based on the theoretical discharge entropy derived in step S53 and the measurement results from the discharge pressure sensor 50. After processing in step S54, the control device 6 ends the process of deriving the provisional value and moves to the above-mentioned step S17.
  • FIG. 8 is a flowchart showing a second example of the process of deriving provisional values by the control device 6 when the faulty sensor in embodiment 1 is the intake temperature sensor 53.
  • the control device 6 derives various physical quantities based on the most recent measurement results of the intake pressure sensor 51. It is assumed that the intake pressure sensor 51 is not faulty.
  • step S61 the control device 6 derives the evaporation temperature of the refrigerant in the evaporator based on the measurement result by the suction pressure sensor 51.
  • step S62 the control device 6 derives the suction temperature as a provisional value based on the evaporation temperature obtained in step S61 and the heat absorption temperature.
  • the heat absorption temperature is a temperature according to the amount of heat absorbed by the refrigerant in the evaporator.
  • the heat absorption temperature may be determined based on the operating frequency of the compressor 30, for example, or may be preset in the control device 6 as a constant value.
  • step S62 the control device 6 derives the suction temperature by adding the heat absorption temperature to the evaporation temperature obtained in step S61.
  • step S62 the control device 6 ends the process of deriving the provisional value and moves the process to the above-mentioned step S17.
  • the amount of processing such as the amount of calculations, is reduced compared to the process shown in FIG. 7.
  • FIG. 9 is a block diagram illustrating an example of the hardware configuration of the control device 6 in the first embodiment.
  • the control device 6 can be configured by a first processor 60, a first memory 61, and an input/output interface circuit 62.
  • the first processor 60, the first memory 61, and the input/output interface circuit 62 are connected to each other by a first bus 63.
  • the first processor 60 can be, for example, a CPU (Central Processing Unit) or an MPU (Micro Processing Unit).
  • the first memory 61 can be, for example, a ROM (Read Only Memory) or a RAM (Random Access Memory).
  • the function of the control device 6 to derive provisional values can be realized by the first processor 60 reading and executing various programs, such as an emergency operation program, stored in the first memory 61.
  • the function of the control device 6 to acquire measurement results from the sensor group can be realized by the first processor 60 performing wired or wireless communication with the sensor group via the input/output interface circuit 62.
  • the function of the control device 6 to control the controlled object can be realized by the first processor 60 sending a control signal to the controlled object via the input/output interface circuit 62.
  • control device 6 may be obtained by cooperation between software and hardware as described above, or may be obtained by dedicated hardware.
  • all or part of the control device 6 may be configured by hardware such as a CPLD (Complex Programmable Logic Device) or an FPGA (Field Programmable Gate Array).
  • the heat pump device 100 cools or heats a temperature adjustment target by the refrigerant circulating through the refrigerant circuit 1.
  • the heat pump device 100 has a load device 4, a heat source device 3, a throttling device 42, a group of sensors, and a control device 6.
  • the load device 4 is equipped with a load heat exchanger 40 that exchanges heat between the temperature adjustment target and the refrigerant.
  • the heat source device 3 adjusts the temperature of the refrigerant circulating through the load heat exchanger 40.
  • the throttling device 42 reduces the pressure of the refrigerant to expand it.
  • the group of sensors measures the physical quantities of the refrigerant circulating through the refrigerant circuit 1.
  • the physical quantities include temperature and pressure.
  • the heat source device 3 is equipped with a compressor 30 and a heat source heat exchanger 32.
  • the compressor 30 compresses the refrigerant, and the heat source heat exchanger 32 exchanges heat between the refrigerant and the heat exchange target.
  • the compressor 30, the heat source heat exchanger 32, the throttling device 42, and the load heat exchanger 40 are included in the refrigerant circuit 1.
  • the sensor group includes a discharge pressure sensor 50, a suction pressure sensor 51, a discharge temperature sensor 52, a suction temperature sensor 53, and a load object temperature sensor 56.
  • the discharge pressure sensor 50 measures the pressure of the refrigerant on the discharge side of the compressor 30.
  • the suction pressure sensor 51 measures the pressure of the refrigerant on the suction side of the compressor 30.
  • the discharge temperature sensor 52 measures the temperature of the refrigerant on the discharge side of the compressor 30.
  • the suction temperature sensor 53 measures the temperature of the refrigerant on the suction side of the compressor 30.
  • the load object temperature sensor 56 measures the temperature of the temperature adjustment object flowing into the load heat exchanger 40.
  • the discharge pressure sensor 50, the suction pressure sensor 51, the discharge temperature sensor 52, and the suction temperature sensor 53 are provided in the heat source device 3, and the load object temperature sensor 56 is provided in the load device 4.
  • the control device 6 controls the control object including the compressor 30 based on the measurement results by the sensor group.
  • the control device 6 When one of the discharge temperature sensor 52 and the intake temperature sensor 53 fails, the control device 6 derives a provisional value based on the measurement results of the other of the discharge temperature sensor 52 and the intake temperature sensor 53, and at least one of the discharge pressure sensor 50, the intake pressure sensor 51, and the load object temperature sensor 56. The control device 6 then controls the controlled object based on the provisional value instead of the measurement result of the discharge temperature sensor 52 or the intake temperature sensor 53.
  • the control device 6 controls the controlled object based on a provisional value instead of the measurement result by the heat source temperature sensor. Therefore, even if one of the heat source temperature sensors, the discharge temperature sensor 52 and the suction temperature sensor 53, fails, the heat pump device 100 can operate and suppress a decrease in user comfort.
  • the temperature and pressure of the refrigerant on one of the discharge side and the suction side of the compressor 30 may be correlated.
  • the temperature of the refrigerant on one of the discharge side and the suction side of the compressor 30 may be correlated with both or one of the temperature and pressure of the refrigerant on the other side.
  • the temperature of the refrigerant on one of the discharge side and the suction side of the compressor 30 may be correlated with the temperature of the temperature adjustment object.
  • the control device 6 derives a provisional value based on the measurement results of at least one of the normal temperature sensors of the discharge temperature sensor 52 and the suction temperature sensor 53, the discharge pressure sensor 50, the suction pressure sensor 51, and the load target temperature sensor 56, and therefore can accurately derive a provisional value of the temperature of the refrigerant on either the discharge side or the suction side of the compressor 30. Therefore, the control device 6 can cause the heat pump device 100 to perform emergency operation according to the state of the refrigerant in the refrigerant circuit 1 by controlling based on the provisional value.
  • the control device 6 in the first embodiment stores Moliere information indicating the relationship between the pressure and enthalpy of the refrigerant at each position in the refrigerant circuit 1.
  • the control device 6 derives a provisional value based on the Moliere information. This allows the control device 6 to accurately obtain a provisional value of the temperature of the refrigerant on the discharge side or suction side of the compressor 30 in place of a faulty sensor. Therefore, the control device 6 can perform control according to the state of the refrigerant based on the provisional value.
  • the control device 6 when the suction temperature sensor 53 fails, the control device 6 derives the evaporation temperature of the refrigerant in the heat source heat exchanger 32 or the load heat exchanger 40, which function as an evaporator that evaporates the refrigerant, based on the measurement results from the suction pressure sensor 51. The control device 6 then derives a provisional value based on the evaporation temperature and the heat absorption temperature corresponding to the amount of heat absorbed by the refrigerant in the heat source heat exchanger 32 or the load heat exchanger 40, which function as an evaporator. The control device 6 controls the controlled object based on this provisional value instead of the measurement results from the suction temperature sensor 53.
  • control device 6 can accurately obtain a provisional value of the temperature of the refrigerant on the suction side of the compressor 30 instead of the failed sensor. Therefore, the control device 6 can perform control according to the state of the refrigerant based on the provisional value.
  • the endothermic temperature in the first embodiment is preset or determined by the control device 6 based on the operating frequency of the compressor 30. This allows the control device 6 to quickly and easily obtain a provisional value.
  • the control device 6 when the discharge temperature sensor 52 fails, the control device 6 derives the condensation temperature of the refrigerant in the heat source heat exchanger 32 or the load heat exchanger 40, which functions as a condenser that condenses the refrigerant, based on the measurement results from the discharge pressure sensor 50.
  • the control device 6 derives a provisional value based on the heat release temperature corresponding to the amount of heat released by the refrigerant in the heat source heat exchanger 32 or the load heat exchanger 40, which functions as a condenser, and the condensation temperature.
  • the control device 6 controls the controlled object based on this provisional value instead of the measurement results from the discharge temperature sensor 52.
  • control device 6 can accurately obtain a provisional value of the temperature of the refrigerant on the discharge side of the compressor 30 instead of the failed sensor. Therefore, the control device 6 can perform control according to the state of the refrigerant based on the provisional value.
  • the control device 6 in the first embodiment derives a provisional value based on the measurement result by the load object temperature sensor 56 and the heat release temperature corresponding to the amount of heat released by the refrigerant in the load heat exchanger 40.
  • the control device 6 controls the control object based on the provisional value instead of the measurement result by the discharge temperature sensor 52. This allows the control device 6 to accurately obtain a provisional value for the temperature of the refrigerant on the discharge side of the compressor 30 in place of the failed sensor. Therefore, the control device 6 can perform control according to the state of the refrigerant based on the provisional value.
  • the heat release temperature in the first embodiment is preset or determined by the control device 6 based on the operating frequency of the compressor 30. This allows the control device 6 to quickly and easily obtain a provisional value.
  • the control device 6 in the first embodiment controls the control target based on a provisional value instead of the measurement result by either the discharge temperature sensor 52 or the intake temperature sensor 53 indicated by the failure information. This enables the control device 6 to control the control target, and the heat pump device 100 to operate.
  • Embodiment 2 a heat pump device 100 according to embodiment 2 will be described.
  • the same components as those in embodiment 1 are denoted by the same reference numerals.
  • the same configurations as those in embodiment 1 and the same functions as those in embodiment 1 will not be described unless there are special circumstances.
  • FIG. 10 is a schematic diagram showing a configuration example of a heat pump device 100 according to embodiment 2.
  • the heat pump device 100 according to embodiment 2 includes a plurality of heat source devices 3 and one or more load devices 4.
  • the plurality of heat source devices 3 are connected in parallel to the one or more load devices 4.
  • the heat pump device 100 includes a plurality of load devices 4, the plurality of load devices 4 are connected in parallel.
  • FIG. 10 shows a configuration example of a heat pump device 100 in which a plurality of load devices 4 perform similar operations
  • the heat pump device 100 according to embodiment 2 may be configured such that some of the plurality of load devices 4 perform cooling operation while the remaining perform heating operation.
  • the heat pump device 100 is provided with a control device 6 for each of the multiple heat source devices 3.
  • the control devices 6 in each heat source device 3 communicate with each other by wire or wirelessly.
  • a heat source device 3 in which either the discharge temperature sensor 52 or the intake temperature sensor 53 is faulty may be referred to as a first heat source device, and the control device 6 of the first heat source device may be referred to as a first control device.
  • a heat source device 3 in which neither the discharge temperature sensor 52 nor the intake temperature sensor 53 is faulty may be referred to as a second heat source device, and the control device 6 of the second heat source device may be referred to as a second control device.
  • the first control device sets the measurement result of the discharge temperature sensor 52 of the second heat source device, which satisfies a specific predetermined condition, as a provisional value to replace the measurement result of the discharge temperature sensor 52 of the first heat source device. Also, if the intake temperature sensor 53 of the first heat source device is malfunctioning, the first control device sets the measurement result of the intake temperature sensor 53 of the second heat source device, which satisfies a specific condition, as a provisional value to replace the measurement result of the intake temperature sensor 53 of the first heat source device.
  • the specific conditions include a first condition, a second condition, a third condition, a fourth condition, and a fifth condition.
  • the first condition is that the second heat source device is in an operating state.
  • the second condition is that the capacity of the first heat source device is equal to the capacity of the second heat source device.
  • the capacity of the first heat source device is equal to the capacity of the second heat source device means that the difference between the capacity of the first heat source device and the capacity of the second heat source device is equal to or less than a predetermined first capacity difference, or that the ratio of the difference to the capacity of the first heat source device or the second heat source device is equal to or less than a first ratio.
  • the first ratio is predetermined, and is, for example, 0% to 10%.
  • the third condition is that the operating frequencies of the compressors 30 of the first heat source device and the second heat source device are equal.
  • the operating frequencies of the compressors 30 of the first heat source device and the second heat source device are equal means that the difference between the operating frequency of the compressor 30 of the first heat source device and the operating frequency of the compressor 30 of the second heat source device is equal to or less than a second percentage of the operating frequency of the compressor 30 of the first heat source device or the second heat source device.
  • the second percentage is determined in advance, and is, for example, 5% to 10%.
  • the fourth condition is that the pressures measured by the discharge pressure sensor 50 of each of the first heat source device and the second heat source device are equal.
  • the pressures measured by the discharge pressure sensor 50 of each of the first heat source device and the second heat source device are equal means that the differential pressure between the pressure measured by the discharge pressure sensor 50 of the first heat source device and the pressure measured by the discharge pressure sensor 50 of the second heat source device is equal to or less than a third percentage of the pressure measured by the discharge pressure sensor 50 of the first heat source device or the second heat source device.
  • the third percentage is determined in advance, and is, for example, 5% to 10%.
  • the fifth condition is that the pressures measured by the suction pressure sensors 51 of the first and second heat source devices are equal.
  • the pressures measured by the suction pressure sensors 51 of the first and second heat source devices are equal means that the differential pressure between the pressure measured by the suction pressure sensor 51 of the first heat source device and the pressure measured by the suction pressure sensor 51 of the second heat source device is equal to or less than a fourth percentage of the pressure measured by the suction pressure sensor 51 of the first or second heat source device.
  • the fourth percentage is determined in advance, and is, for example, 5% to 10%.
  • the first percentage, the second percentage, the third percentage, and the fourth percentage may be equal to each other or may be different.
  • the specific conditions further include the following sixth condition.
  • the sixth condition is a condition that the temperature measured by the normal temperature sensor in the first heat source device is equal to the temperature measured by the normally compatible sensor in the second heat source device.
  • the temperature measured by the normal temperature sensor and the temperature measured by the normally compatible sensor are equal to a condition that the difference between the temperature measured by the normal temperature sensor and the temperature measured by the normally compatible sensor is equal to or less than the fifth percentage of the temperature measured by the normal temperature sensor or the normally compatible sensor.
  • the fifth percentage is predetermined, and is, for example, 5% to 10%.
  • the fifth percentage may be equal to at least one of the first percentage, the second percentage, the third percentage, and the fourth percentage, or may be different from any of them.
  • the normally functioning sensor refers to the discharge temperature sensor 52 in the second heat source device if the non-faulty sensor in the first heat source device is the discharge temperature sensor 52, and refers to the intake temperature sensor 53 in the second heat source device if the non-faulty sensor in the first heat source device is the intake temperature sensor 53.
  • FIG. 2 The process up to the start of emergency operation by the first heat source device in embodiment 2 is shown in FIG. 2, and corresponds to the above description of FIG. 2 with the heat pump device 100 replaced with the first heat source device and the control device 6 replaced with the first control device.
  • FIG. 3 The flow of the process of deriving provisional values and the control process based on the provisional values by the first control device in embodiment 2 is shown in FIG. 3, and corresponds to the above description of FIG. 3 with the heat pump device 100 replaced with the first heat source device and the control device 6 replaced with the first control device.
  • FIG. 11 is a flowchart illustrating a process of deriving a provisional value by the first control device in the second embodiment.
  • the process in FIG. 11 corresponds to the process of step S16 in the second embodiment.
  • the first control device determines whether or not there is a second heat source device that satisfies a specific condition. If there is no second heat source device that satisfies the specific condition (step S71: NO), the first control device performs an individual derivation process in step S72.
  • the individual derivation process corresponds to the process shown in FIGS. 4 to 8, where the control device 6 is replaced with the first control device.
  • the first control device moves the process to step S17.
  • step S73 the first control device sets the value of the failure response sensor of the second heat source device that satisfies the specific condition as a provisional value to replace the measurement result of the failed sensor.
  • the failure response sensor refers to the discharge temperature sensor 52 in the second heat source device if the failed sensor in the first heat source device is the discharge temperature sensor 52, and refers to the intake temperature sensor 53 in the second heat source device if the failed sensor in the first heat source device is the intake temperature sensor 53.
  • the first control device moves the process to step S17.
  • FIG. 12 is a flow chart illustrating a process of determining whether or not there is a second heat source device that satisfies a specific condition, performed by the first control device in embodiment 2.
  • the process in FIG. 12 corresponds to the process of step S71 in FIG. 11.
  • step S81 the first control device determines whether or not there is a second heat source device that satisfies the first condition. If there is no second heat source device that satisfies the first condition (step S81: NO), the first control device moves the process to step S72.
  • step S82 the first control device determines whether or not there is a second heat source device that satisfies the second condition. Note that, if there is a second heat source device that satisfies the first condition in step S81, the first control device extracts the second heat source device that satisfies the first condition. In step S82, the first control device determines whether or not there is a second heat source device that satisfies the second condition from among one or more second heat source devices extracted in the process before step S82. If there is no second heat source device that satisfies the second condition (step S82: NO), the first control device proceeds to step S72.
  • step S83 the first control device determines whether there is a second heat source device that satisfies the third condition. If there is a second heat source device that satisfies the second condition in step S82, the first control device extracts the second heat source device that satisfies the second condition. In step S83, the first control device determines whether there is a second heat source device that satisfies the third condition from among the one or more second heat source devices extracted in the processing prior to step S83. If there is no second heat source device that satisfies the third condition (step S83: NO), the first control device proceeds to step S72.
  • step S84 the first control device determines whether there is a second heat source device that satisfies the fourth condition. If there is a second heat source device that satisfies the third condition in step S83, the first control device extracts the second heat source device that satisfies the third condition. In step S84, the first control device determines whether there is a second heat source device that satisfies the fourth condition from among the one or more second heat source devices extracted in the processing prior to step S84. If there is no second heat source device that satisfies the fourth condition (step S84: NO), the first control device proceeds to step S72.
  • step S85 the first control device determines whether there is a second heat source device that satisfies the fifth condition. If there is a second heat source device that satisfies the fourth condition in step S84, the first control device extracts the second heat source device that satisfies the fourth condition. In step S85, the first control device determines whether there is a second heat source device that satisfies the fifth condition from among the one or more second heat source devices extracted in the processing prior to step S85. If there is no second heat source device that satisfies the fifth condition (step S85: NO), the first control device proceeds to step S72.
  • step S86 the first control device determines whether there is a second heat source device that satisfies the sixth condition. If there is a second heat source device that satisfies the fifth condition in step S85, the first control device extracts the second heat source device that satisfies the fifth condition. In step S86, the first control device determines whether there is a second heat source device that satisfies the sixth condition from among the one or more second heat source devices extracted in the processing before step S86. If there is no second heat source device that satisfies the sixth condition (step S86: NO), the first control device moves the processing to step S72. If there is a second heat source device that satisfies the sixth condition (step S86: YES), the first control device determines that there is a second heat source device that satisfies the specific condition, and moves the processing to step S73.
  • step S86 in FIG. 12 If the specific conditions do not include the sixth condition, the process of step S86 in FIG. 12 is omitted. Then, if there is a second heat source device that satisfies the fifth condition in step S85, the first control device proceeds to step S73.
  • the first control device performs the processes from step S81 to step S86 in order, but the first control device may perform the processes from step S81 to step S86 in an order different from that shown in FIG. 12 to identify a second heat source device that satisfies the first to sixth conditions.
  • FIG. 13 is a block diagram illustrating an example of the hardware configuration of the control device 6 in the second embodiment.
  • the control device 6 includes a first communication interface circuit 64 connected to the first bus 63.
  • the function of the control devices 6 of the multiple heat source devices 3 communicating with each other can be realized by the first communication interface circuit 64.
  • each heat source device 3 includes a control device 6, but the heat pump device 100 may have one control device 6 that controls the compressors 30 and heat source blowers 33 in multiple heat source devices 3.
  • the above description of the first control device can be read as the control device 6.
  • the heat pump device 100 according to the second embodiment has a plurality of heat source devices 3 connected in parallel to the load device 4.
  • the control device 6 sets the measurement result of the discharge temperature sensor 52 of the second heat source device as a provisional value.
  • the control device 6 controls the control object including the compressor 30 in the first heat source device based on the provisional value instead of the measurement result of the discharge temperature sensor 52 of the first heat source device. This allows the first heat source device to operate.
  • the control device 6 can easily and quickly obtain a provisional value as the temperature of the refrigerant on the discharge side of the compressor 30 of the first heat source device by obtaining the measurement result of the discharge temperature sensor 52 of the second heat source device. Therefore, the processing amount of the control device 6 is suppressed.
  • the heat pump device 100 includes a plurality of heat source devices 3 connected in parallel to the load device 4.
  • the intake temperature sensor 53 of the first heat source device which is one of the plurality of heat source devices 3 fails
  • the second heat source device which is a heat source device 3 among the plurality of heat source devices 3, whose discharge temperature sensor 52 and intake temperature sensor 53 are not broken, satisfies a predetermined specific condition
  • the control device 6 uses the measurement result of the intake temperature sensor 53 of the second heat source device as a provisional value, and controls the control object including the compressor 30 in the first heat source device based on the provisional value instead of the measurement result of the intake temperature sensor 53 of the first heat source device. This allows the first heat source device to operate.
  • control device 6 can easily and quickly obtain a provisional value as the temperature of the refrigerant on the intake side of the compressor 30 of the first heat source device by obtaining the measurement result of the intake temperature sensor 53 of the second heat source device. Therefore, the processing amount of the control device 6 is suppressed.
  • the specific conditions in the second embodiment include a condition that the second heat source device is operating, a condition that the capacities of the first heat source device and the second heat source device are equal, a condition that the operating frequencies of the compressors 30 of the first heat source device and the second heat source device are equal, a condition that the refrigerant pressures on the discharge sides of the compressors 30 in the first heat source device and the second heat source device are equal, and a condition that the refrigerant pressures on the suction sides of the compressors 30 in the first heat source device and the second heat source device are equal. Therefore, the physical quantity of the refrigerant in the first heat source device can be approximated to the physical quantity of the refrigerant in the second heat source device that satisfies the specific conditions. Therefore, the control device 6 can easily and quickly obtain a provisional value that replaces the measurement result of the faulty sensor of the first heat source device with high accuracy.
  • the specific conditions in the second embodiment include a condition that, if the discharge temperature sensor 52 of the first heat source device is not broken, the temperature of the refrigerant on the discharge side of the compressor 30 in each of the first heat source device and the second heat source device is equal.
  • the specific conditions include a condition that, if the suction temperature sensor 53 of the first heat source device is not broken, the temperature of the refrigerant on the suction side of the compressor 30 in each of the first heat source device and the second heat source device is equal.
  • the temperature of the refrigerant on the discharge side of the compressor 30 correlates with the temperature of the refrigerant on the suction side.
  • the temperature of the refrigerant on the discharge side of the compressor 30 of the first heat source device can be approximated by the measurement value of the discharge temperature sensor 52 of the second heat source device that satisfies the specific conditions. Also, even if the suction temperature sensor 53 of the first heat source device is broken, the temperature of the refrigerant on the suction side of the compressor 30 of the first heat source device can be approximated by the measurement value of the suction temperature sensor 53 of the second heat source device that satisfies the specific conditions.
  • control device 6 can quickly and easily obtain a provisional value for the temperature of the refrigerant on the discharge side or suction side of the compressor 30 of the first heat source device from the measurement results of the discharge temperature sensor 52 or suction temperature sensor 53 of the second heat source device that meets specific conditions.
  • the heat exchange target in the second embodiment is outside air.
  • Each of the multiple heat source devices 3 further includes a heat source blower 33 that circulates the heat exchange target through the heat source heat exchanger 32.
  • the controlled target further includes the heat source blower 33.
  • the specific conditions further include a condition that the operating frequencies of the heat source blowers 33 of the first heat source device and the second heat source device are equal. This makes it possible for the physical quantity of the refrigerant in the first heat source device to be more approximate to the physical quantity of the refrigerant in the second heat source device that satisfies the specific conditions.
  • control device 6 can accurately, quickly, and easily obtain a provisional value of the temperature of the refrigerant on the discharge side or suction side of the compressor 30 of the first heat source device based on the measurement results of the failure response sensor of the second heat source device that satisfies the specific conditions.
  • Embodiment 3 A heat pump system 200 according to the third embodiment will be described below.
  • the same components as those in the first and second embodiments are denoted by the same reference numerals.
  • the same configurations as those in the first and second embodiments and the same functions as those in the first and second embodiments will not be described unless there are special circumstances.
  • FIG. 14 is a schematic diagram showing a configuration example of a heat pump system 200 according to embodiment 3.
  • the heat pump system 200 according to embodiment 3 has a plurality of heat pump devices 100 and a management system 7.
  • Each heat pump device 100 according to embodiment 3 is similar to embodiment 1, and includes one heat source device 3 and one load device 4. Note that embodiment 3 also shows an example in which the heat pump device 100 is an air conditioner.
  • All of the multiple heat pump devices 100 may simultaneously perform the same operation. That is, each of the multiple heat pump devices 100 may simultaneously perform a cooling operation or a heating operation. Alternatively, some of the multiple heat pump devices 100 may simultaneously perform a cooling operation while the rest perform a heating operation.
  • the management system 7 may be, for example, a cloud server or a collection of multiple computers with distributed functions. In the third embodiment, the management system 7 communicates with multiple control devices 6 in multiple heat pump devices 100 via wired communication, but the management system 7 may communicate wirelessly with all or some of the multiple control devices 6.
  • the management system 7 periodically acquires device information from each control device 6, including information indicating the operating state of each heat pump device 100 and measurement results from the sensor group.
  • the information indicating the operating state includes the operating frequency of the compressor 30, the operating frequency of the heat source blower 33, the operating frequency of the load blower 41, and the opening degree of the throttling device 42.
  • the device information may include information indicating whether the heat pump device 100 is operating.
  • the device information may be periodically transmitted from the control device 6 to the management system 7 only when the heat pump device 100 is operating. Alternatively, the device information may be periodically transmitted from the control device 6 to the management system 7 regardless of whether the heat pump device 100 is operating.
  • the heat pump device 100 is not an air conditioner, for example, and the temperature adjustment target is not air
  • the information indicating the operating state does not include the operating frequency of the load blower 41.
  • the heat exchange target is not air
  • the information indicating the operating state does not include the operating frequency of the heat source blower 33.
  • the management system 7 uses the measurement result of the heat source temperature sensor in a heat pump device 100 that satisfies specific conditions and has a healthy heat source temperature sensor as a provisional value to replace the measurement result of the failed heat source temperature sensor.
  • a heat pump device 100 in which both or one of the discharge temperature sensor 52 and the intake temperature sensor 53 are faulty may be referred to as a first heat pump device.
  • a heat pump device 100 in which neither the discharge temperature sensor 52 nor the intake temperature sensor 53 is faulty may be referred to as a second heat pump device.
  • the management system 7 sets the measurement result of the discharge temperature sensor 52 of the second heat pump device as a provisional value in place of the measurement result of the discharge temperature sensor 52 of the first heat pump device. Then, the management system 7 causes the control device 6 of the first heat pump device to execute control based on the provisional value. If the intake temperature sensor 53 in the first heat pump device is faulty, the management system 7 sets the measurement result of the intake temperature sensor 53 of the second heat pump device as a provisional value in place of the measurement result of the intake temperature sensor 53 of the first heat pump device. Then, the management system 7 causes the control device 6 of the first heat pump device to execute control based on the provisional value.
  • the first control device in the third embodiment is the control device 6 provided in the first heat pump device.
  • the second control device in the third embodiment is the control device 6 provided in the second heat pump device.
  • the failure response sensor in the third embodiment is the discharge temperature sensor 52 of the second heat pump device when the failure sensor in the first heat pump device is the discharge temperature sensor 52, and is the intake temperature sensor 53 of the second heat pump device when the failure sensor in the first heat pump device is the intake temperature sensor 53.
  • the normal response sensor in the third embodiment is the discharge temperature sensor 52 of the second heat pump device when the normal temperature sensor in the first heat pump device is the discharge temperature sensor 52, and is the intake temperature sensor 53 of the second heat pump device when the normal temperature sensor in the first heat pump device is the intake temperature sensor 53.
  • the specific conditions of the third embodiment include the following first, second, third, fourth, and fifth conditions.
  • the first condition of the third embodiment is that the second heat pump device is in an operating state.
  • the second condition of the third embodiment is that the capacity of the first heat pump device is equal to the capacity of the second heat pump device.
  • the capacity of the first heat pump device is equal to the capacity of the second heat pump device when the difference between the capacity of the first heat pump device and the capacity of the second heat pump device is equal to or less than the first capacity difference, or when the ratio of the difference to the capacity of the first heat pump device or the second heat pump device is equal to or less than the first ratio.
  • the third condition of the third embodiment is that the operating frequencies of the compressors 30 of the first heat pump device and the second heat pump device are equal. Furthermore, the operating frequencies of the compressors 30 of the first heat pump device and the second heat pump device are equal means that the difference between the operating frequency of the compressor 30 of the first heat pump device and the operating frequency of the compressor 30 of the second heat pump device is equal to or less than the second ratio of the operating frequency of the compressor 30 of the first heat pump device or the second heat pump device.
  • the fourth condition of the third embodiment is that the pressures measured by the discharge pressure sensor 50 of the first heat pump device and the second heat pump device are equal.
  • the pressures measured by the discharge pressure sensor 50 of the first heat pump device and the second heat pump device are equal means that the pressure difference between the pressure measured by the discharge pressure sensor 50 of the first heat pump device and the pressure measured by the discharge pressure sensor 50 of the second heat pump device is equal to or less than the third percentage of the pressure measured by the discharge pressure sensor 50 of the first heat pump device or the second heat pump device.
  • the fifth condition of the third embodiment is that the pressures measured by the suction pressure sensor 51 of the first heat pump device and the second heat pump device are equal. Furthermore, the pressures measured by the suction pressure sensor 51 of the first heat pump device and the second heat pump device are equal means that the pressure difference between the pressure measured by the suction pressure sensor 51 of the first heat pump device and the pressure measured by the suction pressure sensor 51 of the second heat pump device is equal to or less than the fourth percentage of the pressure measured by the suction pressure sensor 51 of the first heat pump device or the second heat pump device.
  • the specific conditions of the third embodiment may further include the following sixth condition.
  • the sixth condition of the third embodiment is a condition that the temperature measured by the normal temperature sensor in the first heat pump device is equal to the temperature measured by the normally compatible sensor in the second heat pump device.
  • the temperature measured by the normal temperature sensor is equal to the temperature measured by the normally compatible sensor when the difference between the temperature measured by the normal temperature sensor and the temperature measured by the normally compatible sensor is equal to or less than the fifth percentage of the temperature measured by the normal temperature sensor or the normally compatible sensor.
  • the specific conditions of the third embodiment further include the following seventh condition.
  • the seventh condition is that the operation mode of the first heat pump device and the operation mode of the second heat pump device are the same.
  • the heat pump device 100 according to the third embodiment may include the following eighth condition instead of the first condition.
  • the eighth condition is that the model name of the first heat pump device and the model name of the second heat pump device are the same.
  • the specific conditions of the third embodiment may include the following ninth condition.
  • the ninth condition is that the difference between the temperature of the heat exchange object flowing into the heat source heat exchanger 32 of the first heat pump device and the temperature of the heat exchange object flowing into the heat source heat exchanger 32 of the second heat pump device is equal to or less than a predetermined first temperature difference.
  • the first temperature difference is, for example, 1°C to 3°C.
  • each heat pump device 100 is equipped with a heat source object temperature sensor (not shown) that measures the temperature of the heat exchange object flowing into the heat source heat exchanger 32.
  • the specific conditions of the third embodiment may include the following tenth condition when each heat pump device 100 includes a heat source blower 33.
  • the tenth condition is a condition that the operating frequency of the heat source blower 33 of the first heat pump device is equal to the operating frequency of the heat source blower 33 of the second heat pump device.
  • the operating frequency of the heat source blower 33 of the first heat pump device is equal to the operating frequency of the heat source blower 33 of the second heat pump device when the difference between the operating frequency of the heat source blower 33 of the first heat pump device and the operating frequency of the heat source blower 33 of the second heat pump device is equal to or less than the sixth percentage of the operating frequency of the heat source blower 33 of the first heat pump device or the second heat pump device.
  • the sixth percentage is predetermined, and is, for example, 5% to 10%.
  • FIG. 2 The process up to the start of emergency operation by the first heat pump device in embodiment 3 is shown in FIG. 2, and corresponds to the above explanation of FIG. 2 with the control device 6 replaced with the first control device.
  • FIG. 15 is a flowchart showing the flow of the process of deriving a provisional value and the control process based on the provisional value in the third embodiment.
  • the management system 7 determines whether or not the first heat pump device is in operation. The management system 7 determines whether or not the first heat pump device is in operation based on device information from the first control device. If the first heat pump device is in a stopped state (step S91: NO), the management system 7 ends the process of deriving the provisional value.
  • step S92 the first control device sets a limit on the value of the control parameter of the control target.
  • the first control device may set a limit on the value of the control parameter based on an instruction from the management system 7.
  • the processing of step S92 may be omitted.
  • the first control device and management system 7 proceed to step S93 if it is determined in step S91 that the heat pump device 100 is in an operating state.
  • step S93 the first control device determines whether control based on provisional values instead of the measurement results of the faulty sensor is permitted. That is, the first control device determines whether emergency operation mode is set and information indicating a faulty sensor is set. If control based on provisional values is not permitted in step S93 (step S93: NO), the first control device transmits error information to the management system 7 in step S94. At this time, the first control device may notify the user of the error via the remote controller of the first heat pump device. After processing in step S94, the heat pump system 200 ends processing.
  • step S95 the first control device transmits permission information indicating that control based on the tentative value is permitted to the management system 7, and the management system 7 receives the permission information.
  • the permission setting for control based on the provisional values may be performed by the management system 7. That is, the management system 7 may acquire information indicating the state of the sensor group of each heat pump device 100 from each control device 6 at any time, and instruct the first control device to execute emergency operation if the discharge temperature sensor 52 and/or the intake temperature sensor 53 of any heat pump device 100 fails. In this case, the processing of steps S93 to S95 may be omitted.
  • step S96 the first control device determines whether a temporary value has been set by a serviceman or the like. If a temporary value has been set (step S96: YES), in step S97 the first control device transmits temporary value set information indicating that a temporary value has been set to the management system 7, and the management system 7 receives the temporary value set information. After processing in step S97, the first control device moves the process to step S103. If a temporary value has not been set (step S96: NO), in step S98 the first control device transmits temporary value not set information indicating that a temporary value has not been set to the management system 7, and the management system 7 receives the temporary value not set information. Note that the control device 6 may not accept temporary value settings from a serviceman, in which case the processes of steps S96 to S98 may be omitted.
  • step S99 the management system 7 determines whether or not there is a second heat pump device that satisfies the specific condition. If there is no second heat pump device that satisfies the specific condition (step S99: NO), in step S100, the management system 7 sends an instruction to the first control device to perform an individual derivation process. The first control device then executes any of the processes shown in Figures 3 to 8 to derive a provisional value. After the process of step S100, the heat pump system 200 proceeds to step S103.
  • step S101 the management system 7 sets the measurement result by the corresponding faulty sensor of the second heat pump device that satisfies the specific condition as a provisional value.
  • step S102 the management system 7 transmits the obtained provisional value to the first control device, and the first control device receives the provisional value.
  • step S103 the first control device derives the value of a control parameter based on the measurement result by the normal sensor and the provisional value.
  • step S104 the first control device controls the control target based on the obtained value of the control parameter.
  • the heat pump system 200 returns the processing to step S91 after a predetermined period of time has elapsed.
  • step S111 the management system 7 determines whether or not there is a second heat pump device that satisfies the first condition. If there is no second heat pump device that satisfies the first condition (step S111: NO), the management system 7 moves the process to step S100.
  • step S112 the management system 7 determines whether or not there is a second heat pump device that satisfies the second condition. If there is a second heat pump device that satisfies the first condition in step S111, the management system 7 extracts the second heat pump device that satisfies the first condition. In step S112, the management system 7 determines whether there is a second heat pump device that satisfies the second condition from among the one or more second heat pump devices extracted in the processing before step S112. If there is no second heat pump device that satisfies the second condition (step S112: NO), the management system 7 proceeds to step S100.
  • step S113 the management system 7 determines whether there is a second heat pump device that satisfies the seventh condition. If there is a second heat pump device that satisfies the second condition in step S112, the management system 7 extracts the second heat pump device that satisfies the second condition. In step S113, the management system 7 determines whether there is a second heat pump device that satisfies the seventh condition from among the one or more second heat pump devices extracted in the processing prior to step S113. If there is no second heat pump device that satisfies the seventh condition (step S113: NO), the management system 7 proceeds to step S100.
  • step S114 the management system 7 determines whether there is a second heat pump device that satisfies the third condition. If there is a second heat pump device that satisfies the seventh condition in step S113, the management system 7 extracts the second heat pump device that satisfies the seventh condition. In step S114, the management system 7 determines whether there is a second heat pump device that satisfies the third condition from among the one or more second heat pump devices extracted in the processing prior to step S114. If there is no second heat pump device that satisfies the third condition (step S114: NO), the management system 7 proceeds to step S100.
  • step S115 the management system 7 determines whether there is a second heat pump device that satisfies the fourth condition. If there is a second heat pump device that satisfies the third condition in step S114, the management system 7 extracts the second heat pump device that satisfies the third condition. In step S115, the management system 7 determines whether there is a second heat pump device that satisfies the fourth condition from among the one or more second heat pump devices extracted in the processing prior to step S115. If there is no second heat pump device that satisfies the fourth condition (step S115: NO), the management system 7 proceeds to step S100.
  • step S116 the management system 7 determines whether there is a second heat pump device that satisfies the fifth condition. If there is a second heat pump device that satisfies the fourth condition in step S115, the management system 7 extracts the second heat pump device that satisfies the fourth condition. In step S116, the management system 7 determines whether there is a second heat pump device that satisfies the fifth condition from among the one or more second heat pump devices extracted in the processing prior to step S116. If there is no second heat pump device that satisfies the fifth condition (step S116: NO), the management system 7 proceeds to step S100.
  • step S117 the management system 7 determines whether there is a second heat pump device that satisfies the sixth condition. If there is a second heat pump device that satisfies the fifth condition in step S116, the management system 7 extracts the second heat pump device that satisfies the fifth condition. In step S117, the management system 7 determines whether there is a second heat pump device that satisfies the sixth condition from among the one or more second heat pump devices extracted in the process before step S117. If there is no second heat pump device that satisfies the sixth condition (step S117: NO), the management system 7 moves the process to step S100. If there is a second heat pump device that satisfies the sixth condition (step S117: YES), the management system 7 determines that there is a second heat pump device that satisfies the specific condition, and moves the process to step S101.
  • step S117 in FIG. 16 If the specific conditions do not include the sixth condition, the processing of step S117 in FIG. 16 is omitted. Then, if there is a second heat pump device that satisfies the fifth condition in step S116, the management system 7 proceeds to step S101.
  • the management system 7 performs the processes from step S111 to step S117 in order, but the management system 7 may perform the processes from step S111 to step S117 in an order different from that shown in FIG. 16 to identify a second heat pump device that satisfies the first to seventh conditions.
  • FIG. 17 is a block diagram illustrating a hardware configuration of the management system 7 according to the third embodiment.
  • the hardware configuration of the control device 6 according to the third embodiment is shown in FIG. 13, as in the second embodiment.
  • the management system 7 can be configured by a second processor 70, a second memory 71, and a second communication interface circuit 72.
  • the second processor 70, the second memory 71, and the second communication interface circuit 72 are connected to each other by a second bus 73.
  • the second processor 70 can be, for example, a CPU or an MPU.
  • the second memory 71 can be, for example, a ROM or a RAM.
  • the function of the management system 7 to derive a provisional value can be realized by the second processor 70 reading and executing various programs, such as an emergency operation program, stored in the second memory 71.
  • the function of the management system 7 to communicate with each control device 6 can be realized by the second communication interface circuit 72.
  • the management system 7 can be configured with a plurality of second processors 70, a plurality of second memories 71, a plurality of second communication interface circuits 72, and a plurality of second buses 73.
  • Each second processor 70, each second memory 71, and each second communication interface circuit 72 is connected to each second bus 73.
  • the functions of the management system 7 may be obtained by cooperation between software and hardware as described above, or may be obtained by dedicated hardware.
  • all or part of the management system 7 may be configured by hardware such as a CPLD or FPGA.
  • the heat pump system 200 according to the third embodiment has a management system 7 and a plurality of heat pump devices 100.
  • the heat pump device 100 cools or heats a temperature adjustment target by using a refrigerant circulating through the refrigerant circuit 1.
  • the management system 7 is for managing the plurality of heat pump devices 100.
  • the heat pump device 100 includes a compressor 30, a heat source heat exchanger 32, a throttling device 42, a load heat exchanger 40, a sensor group, and a control device 6.
  • the compressor 30 compresses the refrigerant.
  • the heat source heat exchanger 32 exchanges heat between the refrigerant and the heat exchange target.
  • the throttling device 42 reduces the pressure of the refrigerant to expand it.
  • the load heat exchanger 40 exchanges heat between the refrigerant and the temperature adjustment target.
  • the sensor group measures the physical quantities of the refrigerant circulating through the refrigerant circuit 1.
  • the control device 6 controls the control target including the compressor 30 based on the measurement results by the sensor group.
  • the compressor 30, the heat source heat exchanger 32, the throttling device 42, and the load heat exchanger 40 are included in the refrigerant circuit 1.
  • the sensor group includes a heat source temperature sensor that measures the temperature of the refrigerant on the discharge side or the suction side of the compressor 30.
  • the management system 7 sets the measurement result by the heat source temperature sensor of the second heat pump device as a provisional value in place of the measurement result of the heat source temperature sensor of the first heat pump device. Then, the management system 7 instructs the control device 6 of the first heat pump device to control the control target in the first heat pump device based on the provisional value instead of the measurement result by the heat source temperature sensor in the first heat pump device.
  • the management system 7 sets the measurement result of the heat source temperature sensor of the second heat pump device that satisfies a specific condition as a provisional value in place of the measurement result of the heat source temperature sensor of the first heat pump device. Then, the management system 7 instructs the control device 6 of the first heat pump device to control the first heat pump device based on the provisional value instead of the measurement result of the heat source temperature sensor of the first heat pump device. Therefore, each heat pump device 100 in the heat pump system 200 can operate even if the heat source temperature sensor fails.
  • the specific conditions in the third embodiment include a condition that the second heat pump device is operating, a condition that the capacity of each of the first heat pump device and the second heat pump device is equal, a condition that the operating modes of each of the first heat pump device and the second heat pump device are equal, a condition that the operating frequencies of the compressors 30 of the first heat pump device and the second heat pump device are equal, a condition that the pressure of the refrigerant on the discharge side of the compressors 30 in each of the first heat pump device and the second heat pump device is equal, and a condition that the pressure of the refrigerant on the suction side of the compressors 30 in each of the first heat pump device and the second heat pump device is equal.
  • the sensor group in the third embodiment includes a discharge temperature sensor 52 and a suction temperature sensor 53.
  • the heat source temperature sensor is the discharge temperature sensor 52 or the suction temperature sensor 53.
  • the discharge temperature sensor 52 measures the temperature of the refrigerant on the discharge side of the compressor 30.
  • the suction temperature sensor 53 measures the temperature of the refrigerant on the suction side of the compressor 30.
  • the specific conditions include a condition that, if the discharge temperature sensor 52 of the first heat pump device is not malfunctioning, the temperatures of the refrigerant on the discharge side of the compressor 30 in each of the first heat pump device and the second heat pump device are equal.
  • the specific conditions include a condition that, if the suction temperature sensor 53 of the first heat pump device is not malfunctioning, the temperatures of the refrigerant on the suction side of the compressor 30 in each of the first heat pump device and the second heat pump device are equal.
  • the temperature of the refrigerant on the discharge side of the compressor 30 and the temperature of the refrigerant on the suction side are correlated. Therefore, even if the discharge temperature sensor 52 of the first heat pump device is broken, the temperature of the refrigerant on the discharge side of the compressor 30 of the first heat pump device can be approximated by the measurement value of the discharge temperature sensor 52 of the second heat pump device that satisfies a specific condition.
  • the management system 7 can accurately, quickly, and easily obtain a provisional value of the temperature of the refrigerant on the discharge side or suction side of the compressor 30 of the first heat pump device from the measurement result of the discharge temperature sensor 52 or suction temperature sensor 53 of the second heat pump device that satisfies a specific condition.
  • the heat exchange target in the third embodiment is outside air.
  • Each of the multiple heat pump devices 100 further includes a heat source blower 33 that circulates the heat exchange target through the heat source heat exchanger 32.
  • the controlled target further includes the heat source blower 33.
  • the specific conditions further include a condition that the operating frequencies of the heat source blowers 33 of the first heat pump device and the second heat pump device are equal.
  • the state of the refrigerant in the second heat pump device that satisfies the specific conditions becomes close to the state of the refrigerant in the first heat pump device, and the physical quantity of the refrigerant in the first heat pump device can be approximated to the physical quantity of the refrigerant in the second heat pump device that satisfies the specific conditions. Therefore, the management system 7 can accurately obtain a provisional value of the temperature of the refrigerant on the discharge side or suction side of the compressor 30 of the first heat pump device.
  • Embodiment 4 A heat pump system 200 according to embodiment 4 will be described below.
  • the same components as those in embodiments 1 to 3 are denoted by the same reference numerals.
  • the same configurations as those in embodiments 1 to 3 and the same functions as those in embodiments 1 to 3 will not be described unless there are special circumstances.
  • the heat pump system 200 according to the fourth embodiment is illustrated in FIG. 14, as in the third embodiment.
  • the hardware configuration of the control device 6 according to the fourth embodiment is illustrated in FIG. 13, as in the second to third embodiments.
  • the hardware configuration of the management system 7 according to the fourth embodiment is illustrated in FIG. 17, as in the third embodiment.
  • the specific conditions in the fourth embodiment are the specific conditions in the third embodiment with the first condition omitted.
  • the management system 7 accumulates and stores the device information acquired from each heat pump device 100.
  • the collection of accumulated device information may be referred to as a device database.
  • the first heat pump device is currently broken, it is considered to be included in the second heat pump device when it was not broken.
  • FIG. 2 The process up to the start of emergency operation by the first heat pump device in embodiment 4 is shown in FIG. 2, and corresponds to the above explanation of FIG. 2 with the control device 6 replaced with the first control device.
  • step S99 in FIG. 15 is a process of determining whether or not there is device information of a second heat pump device that satisfies a specific condition in the device database. Then, if there is no device information of a second heat pump device that satisfies a specific condition (step S99: NO), in step S100, the management system 7 sends an instruction to the first control device to perform individual derivation processing.
  • step S101 the management system 7 sets the measurement result by the corresponding failure sensor, which is included in the device information of the second heat pump device that satisfies the specific condition, as a provisional value.
  • FIG. 18 is a flowchart showing a first example of a process performed by the management system 7 in the fourth embodiment to determine whether or not there is device information for a second heat pump device that satisfies specific conditions.
  • the process in FIG. 18 corresponds to the process in step S99 in the fourth embodiment.
  • the example shown in FIG. 18 shows a case in which the specific conditions include the third to fifth conditions, the seventh condition, and the ninth to tenth conditions.
  • step S121 the management system 7 determines whether or not there is device information of a second heat pump device that satisfies the seventh condition in the device database. If there is no device information of a second heat pump device that satisfies the seventh condition (step S121: NO), the heat pump system 200 moves the process to step S100. If there is device information of a second heat pump device that satisfies the seventh condition (step S121: YES), in step S122, the management system 7 determines whether or not there is device information of a second heat pump device that satisfies the third condition.
  • step S121 If there is device information of a second heat pump device that satisfies the seventh condition in step S121, the management system 7 extracts the device information of the second heat pump device that satisfies the seventh condition.
  • step S122 the management system 7 determines whether there is device information of a second heat pump device that satisfies the third condition from the device information extracted in the process before step S122. If there is no device information of a second heat pump device that satisfies the third condition (step S122: NO), the heat pump system 200 moves the process to step S100.
  • step S123 the management system 7 determines whether there is device information of a second heat pump device that satisfies the tenth condition. If there is device information of a second heat pump device that satisfies the third condition in step S122, the management system 7 extracts the device information of the second heat pump device that satisfies the third condition. In step S123, the management system 7 determines whether there is device information of a second heat pump device that satisfies the tenth condition from the device information extracted in the processing before step S123. If there is no operating data of a second heat pump device that satisfies the tenth condition (step S123: NO), the heat pump system 200 moves the processing to step S100.
  • step S124 the management system 7 determines whether there is device information of a second heat pump device that satisfies the ninth condition. If there is device information of a second heat pump device that satisfies the tenth condition in step S123, the management system 7 extracts the device information of the second heat pump device that satisfies the tenth condition. In step S124, the management system 7 determines whether there is device information of a second heat pump device that satisfies the ninth condition from the device information extracted in the processing prior to step S124. If there is no device information of a second heat pump device that satisfies the ninth condition (step S124: NO), the heat pump system 200 moves the processing to step S100.
  • step S125 the management system 7 determines whether there is operating data of a normal heat pump device that satisfies the fourth condition. If there is device information of a second heat pump device that satisfies the ninth condition in step S124, the management system 7 extracts the device information of the second heat pump device that satisfies the ninth condition. In step S125, the management system 7 determines whether there is device information of a second heat pump device that satisfies the fourth condition from the device information extracted in the processing before step S125. If there is no device information of a normal heat pump device that satisfies the fourth condition (step S125: NO), the heat pump system 200 moves the processing to step S100.
  • step S126 the management system 7 determines whether there is device information of a second heat pump device that satisfies the fifth condition. If there is device information of a second heat pump device that satisfies the fourth condition in step S125, the management system 7 extracts the device information of the second heat pump device that satisfies the fourth condition. In step S126, the management system 7 determines whether there is device information of a second heat pump device that satisfies the fifth condition from the device information extracted in the processing prior to step S126. If there is no device information of a second heat pump device that satisfies the fifth condition (step S126: NO), the heat pump system 200 moves the processing to step S100.
  • step S126 If there is device information for a second heat pump device that satisfies the fifth condition (step S126: YES), the management system 7 determines that there is a second heat pump device that satisfies the specific condition and proceeds to step S101.
  • the management system 7 performs the processes from step S121 to step S126 in order, but the management system 7 may perform the processes from step S121 to step S126 in a different order to determine whether or not there is device information for a second heat pump device that satisfies a specific condition.
  • the process shown in FIG. 18 includes a process for determining whether or not there is device information for a second heat pump device that satisfies either the second or eighth condition. Note that the process for determining whether or not there is device information for a second heat pump device that satisfies either the second or eighth condition is performed on the device information extracted in the process prior to this determination process.
  • the sixth condition is omitted from the specific conditions, but the sixth condition may be included in the specific conditions.
  • the process shown in FIG. 18 includes a process for determining whether or not there is device information for a second heat pump device that satisfies the sixth condition. Note that the process for determining whether or not there is device information for a second heat pump device that satisfies the sixth condition is performed on the device information extracted in the process prior to this determination process.
  • FIG. 19 is a flowchart showing a second example of the process of determining whether or not there is device information for a second heat pump device that satisfies specific conditions, performed by the management system 7 in embodiment 4.
  • the process in FIG. 19 corresponds to the process of step S99 in embodiment 3, similar to the processes shown in FIGS. 16 and 18.
  • FIG. 19 shows an example in which the specific conditions include the third to tenth conditions.
  • step S131 the management system 7 determines whether or not there is device information of a second heat pump device that satisfies the eighth condition in the device database. If there is no device information of a second heat pump device that satisfies the eighth condition (step S131: NO), the heat pump system 200 moves the process to step S100. If there is device information of a second heat pump device that satisfies the eighth condition (step S131: YES), in step S132, the management system 7 determines whether or not there is operating data of a normal heat pump device that satisfies the seventh condition.
  • step S131 the management system 7 extracts the device information of the second heat pump device that satisfies the eighth condition.
  • the management system 7 determines whether there is device information of a second heat pump device that satisfies the seventh condition from among the device information extracted in the process before step S132. If there is no device information of a second heat pump device that satisfies the seventh condition (step S132: NO), the heat pump system 200 moves the process to step S100.
  • step S133 the management system 7 determines whether there is operating data of a normal heat pump device that satisfies the third condition. If there is device information of a second heat pump device that satisfies the seventh condition in step S132, the management system 7 extracts the device information of the second heat pump device that satisfies the seventh condition. In step S133, the management system 7 determines whether there is device information of a second heat pump device that satisfies the third condition from the device information extracted in the processing prior to step S133. If there is no device information of a normal heat pump device that satisfies the third condition (step S133: NO), the heat pump system 200 proceeds to step S100.
  • step S134 the management system 7 determines whether there is device information of a second heat pump device that satisfies the tenth condition. If there is device information of a second heat pump device that satisfies the third condition in step S133, the management system 7 extracts the device information of the second heat pump device that satisfies the third condition. In step S134, the management system 7 determines whether there is device information of a second heat pump device that satisfies the tenth condition from the device information extracted in the processing prior to step S134. If there is no device information of a second heat pump device that satisfies the tenth condition (step S134: NO), the heat pump system 200 moves the processing to step S100.
  • step S135 the management system 7 determines whether there is device information of a second heat pump device that satisfies the ninth condition. If there is device information of a second heat pump device that satisfies the tenth condition in step S134, the management system 7 extracts the device information of the second heat pump device that satisfies the tenth condition. In step S135, the management system 7 determines whether there is device information of a second heat pump device that satisfies the ninth condition from the device information extracted in the processing before step S135. If there is no device information of a second heat pump device that satisfies the ninth condition (step S135: NO), the heat pump system 200 moves the processing to step S100.
  • step S136 the management system 7 determines whether there is device information of a second heat pump device that satisfies the fourth condition. If there is device information of a second heat pump device that satisfies the ninth condition in step S135, the management system 7 extracts the device information of the second heat pump device that satisfies the ninth condition. In step S136, the management system 7 determines whether there is device information of a second heat pump device that satisfies the fourth condition from the device information extracted in the processing prior to step S136. If there is no device information of a second heat pump device that satisfies the fourth condition (step S136: NO), the heat pump system 200 moves the processing to step S100.
  • step S137 the management system 7 determines whether there is device information of a second heat pump device that satisfies the fifth condition. If there is device information of a second heat pump device that satisfies the fourth condition in step S136, the management system 7 extracts the device information of the second heat pump device that satisfies the fourth condition. In step S137, the management system 7 determines whether there is device information of a second heat pump device that satisfies the fifth condition from the device information extracted in the processing prior to step S137. If there is no device information of a second heat pump device that satisfies the fifth condition (step S137: NO), the heat pump system 200 moves the processing to step S100.
  • step S138 the management system 7 determines whether there is device information of a second heat pump device that satisfies the sixth condition. If there is device information of a second heat pump device that satisfies the fifth condition in step S137, the management system 7 extracts the device information of the second heat pump device that satisfies the fifth condition. In step S138, the management system 7 determines whether there is device information of a second heat pump device that satisfies the sixth condition from the device information extracted in the processing before step S138. If there is no device information of a second heat pump device that satisfies the sixth condition (step S138: NO), the heat pump system 200 moves the processing to step S100.
  • step S138 If there is device information for a second heat pump device that satisfies the sixth condition (step S138: YES), the management system 7 determines that there is device information for a second heat pump device that satisfies the specific condition and proceeds to step S101.
  • step S138 in FIG. 19 If the specific conditions do not include the sixth condition, the process of step S138 in FIG. 19 is omitted. Then, if the management system 7 determines in step S137 that there is device information for a second heat pump device that satisfies the fifth condition, it moves the process to step S101.
  • step S131 is a process in which the management system 7 determines whether or not there is device information in the device database for a second heat pump device that satisfies the second condition instead of the eighth condition.
  • the management system 7 performs the processes from step S131 to step S138 in order, but the management system 7 may perform the processes from step S131 to step S138 in a different order.
  • the heat pump system 200 according to the fourth embodiment has a management system 7 and a plurality of heat pump devices 100.
  • the heat pump device 100 cools or heats a temperature adjustment target by using a refrigerant circulating through the refrigerant circuit 1.
  • the management system 7 is for managing the plurality of heat pump devices 100.
  • the heat pump device 100 includes a compressor 30, a heat source heat exchanger 32, a throttling device 42, a load heat exchanger 40, a sensor group, and a control device 6.
  • the compressor 30 compresses the refrigerant.
  • the heat source heat exchanger 32 exchanges heat between the refrigerant and the heat exchange target.
  • the throttling device 42 reduces the pressure of the refrigerant to expand it.
  • the load heat exchanger 40 exchanges heat between the refrigerant and the temperature adjustment target.
  • the sensor group measures the physical quantities of the refrigerant circulating through the refrigerant circuit 1.
  • the control device 6 controls the control target including the compressor 30 based on the measurement results by the sensor group.
  • the compressor 30, the heat source heat exchanger 32, the throttling device 42, and the load heat exchanger 40 are included in the refrigerant circuit 1.
  • the sensor group includes a heat source temperature sensor that measures the temperature of the refrigerant on the discharge side or the suction side of the compressor 30.
  • the management system 7 periodically acquires device information including information indicating the operating state of each of the heat pump devices 100 and the measurement results by the sensor group of each of the heat pump devices 100 from each of the heat pump devices 100.
  • the management system 7 then stores an device database that accumulates the acquired device information.
  • the management system 7 sets the measurement result by the heat source temperature sensor indicated in the device information from the second heat pump device, which is a heat pump device 100 among the multiple heat pump devices 100, that is a heat pump device 100 whose heat source temperature sensor is not broken and that satisfies a predetermined specific condition, as a provisional value that replaces the measurement result by the heat source temperature sensor of the first heat pump device.
  • the management system 7 instructs the control device 6 of the first heat pump device to control the control target in the first heat pump device based on a provisional value instead of the measurement result by the heat source temperature sensor in the first heat pump device.
  • the management system 7 sets the measurement result of the heat source temperature sensor indicated by the device information from the second heat pump device that satisfies specific conditions as a provisional value in place of the measurement result of the heat source temperature sensor of the first heat pump device. Then, the management system 7 instructs the control device 6 of the first heat pump device to control the first heat pump device based on the provisional value instead of the measurement result of the heat source temperature sensor of the first heat pump device. Therefore, each heat pump device 100 in the heat pump system 200 can operate even if the heat source temperature sensor fails.
  • the sensor group in the fourth embodiment includes a discharge pressure sensor 50 and a suction pressure sensor 51.
  • the discharge pressure sensor 50 measures the pressure of the refrigerant on the discharge side of the compressor 30.
  • the suction pressure sensor 51 measures the pressure of the refrigerant on the suction side of the compressor 30.
  • the specific conditions include a condition that the capacity of each of the first heat pump device and the second heat pump device is equal, a condition that the operating modes of each of the first heat pump device and the second heat pump device are equal, a condition that the operating frequencies of the compressors 30 of the first heat pump device and the second heat pump device are equal, a condition that the pressure of the refrigerant on the discharge side of each of the compressors 30 of the first heat pump device and the second heat pump device is equal, and a condition that the pressure of the refrigerant on the suction side of each of the compressors 30 of the first heat pump device and the second heat pump device is equal.
  • the state of the refrigerant of the first heat pump device can be close to the state of the refrigerant of the second heat pump device that satisfies the specific conditions. That is, the physical quantity of the refrigerant in the first heat pump device can be approximated to the physical quantity of the refrigerant in the second heat pump device that satisfies certain conditions. Therefore, the management system 7 can easily, quickly, and accurately obtain a provisional value of the temperature of the refrigerant on the discharge side or suction side of the compressor 30 of the first heat pump device from the measurement results of the heat source temperature sensor indicated by the device information from the second heat pump device that satisfies certain conditions. In addition, the management system 7 instructs the control device 6 of the first heat pump device to control based on the provisional value, so that the first heat pump device can operate.
  • the sensor group in the fourth embodiment includes a discharge pressure sensor 50 and a suction pressure sensor 51.
  • the discharge pressure sensor 50 measures the pressure of the refrigerant on the discharge side of the compressor 30.
  • the suction pressure sensor 51 measures the pressure of the refrigerant on the suction side of the compressor 30.
  • the device database includes the model names of the multiple heat pump devices 100.
  • the specific conditions include a condition that the model names of the first heat pump device and the second heat pump device are the same, a condition that the operating modes of the first heat pump device and the second heat pump device are the same, a condition that the operating frequencies of the compressors 30 of the first heat pump device and the second heat pump device are the same, a condition that the pressures of the refrigerant on the discharge side of the compressors 30 of the first heat pump device and the second heat pump device are the same, and a condition that the pressures of the refrigerant on the suction side of the compressors 30 of the first heat pump device and the second heat pump device are the same.
  • the state of the refrigerant of the first heat pump device can be close to the state of the refrigerant of the second heat pump device that satisfies the specific conditions. That is, the physical quantity of the refrigerant in the first heat pump device can be approximated to the physical quantity of the refrigerant in the second heat pump device that satisfies certain conditions. Therefore, the management system 7 can easily, quickly, and accurately obtain a provisional value of the temperature of the refrigerant on the discharge side or suction side of the compressor 30 of the first heat pump device from the measurement results of the heat source temperature sensor indicated by the device information from the second heat pump device that satisfies certain conditions. In addition, the management system 7 instructs the control device 6 of the first heat pump device to control based on the provisional value, so that the first heat pump device can operate.
  • the sensor group in the fourth embodiment includes a heat source object temperature sensor that measures the temperature of the heat exchange object flowing into the heat source heat exchanger 32.
  • the specific condition includes a condition that the temperature of the heat exchange object flowing into each of the heat source heat exchangers 32 of the first heat pump device and the second heat pump device is equal. This limits the device information from the second heat pump device that satisfies the specific condition, so that the management system 7 can reduce the amount of processing when searching for the device information in the device database.
  • the management system 7 can easily, quickly, and accurately obtain a provisional value of the temperature of the refrigerant on the discharge side or suction side of the compressor 30 of the first heat pump device from the measurement result of the heat source temperature sensor indicated by the device information from the second heat pump device that satisfies the specific condition.
  • the management system 7 instructs the control device 6 of the first heat pump device to perform control based on the provisional value, allowing the first heat pump device to operate.
  • the heat pump device 100 illustrated in the first to fourth embodiments adjusts the temperature of the temperature adjustment target by exchanging heat between the refrigerant and the temperature adjustment target.
  • the heat pump device 100 may adjust the temperature of the temperature adjustment target by exchanging heat between a heat medium such as water or brine and the temperature adjustment target.
  • the load heat exchanger 40 in Figs. 1, 10, and 14 is replaced with a heat medium heat exchanger such as a plate-type heat exchanger that exchanges heat between the heat medium and the refrigerant.
  • the heat medium heat exchanger is connected to a circulation device such as a pump and the load heat exchanger 40 by heat medium piping to form a heat medium circuit.
  • the throttling device 42 and the heat medium heat exchanger may be disposed in a housing that forms the outer shell of the heat source device 3.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Air Conditioning Control Device (AREA)

Abstract

ヒートポンプ装置は、温度調節対象の温度を調節するものであって、圧縮機と熱源熱交換器と負荷熱交換器と絞り装置とセンサ群と制御装置とを有する。センサ群は、吐出圧力センサと吸入圧力センサと吐出温度センサと吸入温度センサと負荷対象温度センサとを含む。吐出圧力センサは、圧縮機の吐出側の冷媒の圧力を計測する。吸入圧力センサは、圧縮機の吸入側の冷媒の圧力を計測する。吐出温度センサは、圧縮機の吐出側の冷媒の温度を計測する。吸入温度センサは、圧縮機の吸入側の冷媒の温度を計測する。負荷対象温度センサは、負荷熱交換器に流入する温度調節対象の温度を計測する。制御装置は、吐出温度センサと吸入温度センサのうちの一方が故障した場合には、吐出温度センサと吸入温度センサのうちの他方と、吐出圧力センサと、吸入圧力センサと、負荷対象温度センサのうちの少なくともいずれかによる計測結果に基づいて仮値を導出し、吐出温度センサと吸入温度センサのうちの一方による計測結果に代え、仮値に基づいて圧縮機を含む制御対象を制御する。

Description

ヒートポンプ装置およびヒートポンプシステム
 本開示は、圧縮機の吐出側と吸入側における冷媒の温度に基づいて温度調節対象の温度を調節するヒートポンプ装置およびヒートポンプシステムに関するものである。
 従来、例えば空気調和機などのヒートポンプ装置の冷媒回路には、冷媒の温度などを計測する複数のセンサが設けられている。ヒートポンプ装置の制御装置は、複数のセンサによる計測結果に基づいて圧縮機および送風機等の制御対象の動作を制御する(特許文献1参照)。すなわち、制御装置は、各センサによる計測結果に基づいて圧縮機および送風機等を制御するための制御パラメータの値を導出し、導出した制御パラメータの値に基づいて制御を行う。
特開2011-133136号公報
 ここで、複数のセンサのいずれかが故障した場合、制御装置は制御パラメータの値を導出することができなくなり、これにより、制御不能となる。その結果、ヒートポンプ装置は異常停止する。ヒートポンプ装置が異常停止してから復旧が完了するまでには時間がかかる場合が多く、その間、ユーザはヒートポンプ装置を使用することができず、利便性を欠いていた。
 本開示は、上記課題を解決するためになされたものであり、圧縮機の吐出側または吸入側の冷媒の温度を計測するセンサが故障した場合であっても、運転を行うことができるヒートポンプ装置と、当該ヒートポンプ装置を含むヒートポンプシステムとを提供することを目的とする。
 本開示に係るヒートポンプ装置は、冷媒回路を循環する冷媒によって温度調節対象を冷却または加熱するヒートポンプ装置であって、前記温度調節対象と前記冷媒とを熱交換させる負荷熱交換器を備える負荷装置と、前記負荷熱交換器に流通する前記冷媒の温度を調節する熱源装置と、前記冷媒を減圧して膨張させる絞り装置と、前記冷媒回路を流通する前記冷媒の物理量を計測するセンサ群と、を有し、前記熱源装置は、前記冷媒を圧縮する圧縮機と、前記冷媒を熱交換対象と熱交換させる熱源熱交換器と、を備え、前記圧縮機と前記熱源熱交換器と前記絞り装置と前記負荷熱交換器とは、前記冷媒回路に含まれ、前記センサ群は、前記圧縮機の吐出側の前記冷媒の圧力を計測する吐出圧力センサと、前記圧縮機の吸入側の前記冷媒の圧力を計測する吸入圧力センサと、前記圧縮機の吐出側の前記冷媒の温度を計測する吐出温度センサと、前記圧縮機の吸入側の前記冷媒の温度を計測する吸入温度センサと、前記負荷熱交換器に流入する前記温度調節対象の温度を計測する負荷対象温度センサと、を含み、前記吐出圧力センサと前記吸入圧力センサと前記吐出温度センサと前記吸入温度センサとは、前記熱源装置に設けられ、前記負荷対象温度センサは、前記負荷装置に設けられ、前記ヒートポンプ装置は、更に、前記センサ群による計測結果に基づいて、前記圧縮機を含む制御対象を制御する制御装置を有し、前記制御装置は、前記吐出温度センサと前記吸入温度センサのうちの一方が故障した場合には、前記吐出温度センサと前記吸入温度センサのうちの他方と、前記吐出圧力センサと、前記吸入圧力センサと、前記負荷対象温度センサのうちの少なくともいずれかによる計測結果に基づいて仮値を導出し、前記吐出温度センサと前記吸入温度センサのうちの一方による計測結果に代え、前記仮値に基づいて前記制御対象を制御するものである。
 本開示に係るヒートポンプシステムは、冷媒回路を循環する冷媒によって温度調節対象を冷却または加熱するヒートポンプ装置を複数有し、且つ、複数の前記ヒートポンプ装置を管理するための管理システムを有するヒートポンプシステムであって、前記ヒートポンプ装置は、前記冷媒を圧縮する圧縮機と、前記冷媒を熱交換対象と熱交換させる熱源熱交換器と、前記冷媒を減圧して膨張させる絞り装置と、前記冷媒を前記温度調節対象と熱交換させる負荷熱交換器と、前記冷媒回路を流通する前記冷媒の物理量を計測するセンサ群と、前記センサ群による計測結果に基づいて、前記圧縮機を含む制御対象を制御する制御装置と、を備え、前記圧縮機と前記熱源熱交換器と前記絞り装置と前記負荷熱交換器とは前記冷媒回路に含まれ、前記センサ群は、前記圧縮機の吐出側または吸入側の前記冷媒の温度を計測する熱源温度センサを含み、前記管理システムは、前記複数のヒートポンプ装置のうちのいずれかの前記ヒートポンプ装置である第1ヒートポンプ装置の前記熱源温度センサが故障した場合であって、前記複数のヒートポンプ装置のうち、前記熱源温度センサが故障していない前記ヒートポンプ装置である第2ヒートポンプ装置が、予め定められた特定の条件を満たす場合には、前記第2ヒートポンプ装置の前記熱源温度センサによる計測結果を、前記第1ヒートポンプ装置の前記熱源温度センサの計測結果に代わる仮値とし、前記第1ヒートポンプ装置における前記熱源温度センサによる計測結果に代え、前記仮値に基づいて、前記第1ヒートポンプ装置における前記制御対象を制御するよう、前記第1ヒートポンプ装置の前記制御装置に指示するものである。
 本開示に係るヒートポンプ装置によれば、吐出温度センサおよび吸入温度センサの両方または一方が故障した場合に、制御装置が、吐出温度センサと吸入温度センサのうちの他方と、吐出圧力センサと、吸入圧力センサと、負荷対象温度センサのうちの少なくともいずれかによる計測結果に基づいて仮値を導出する。そして、制御装置は、吐出温度センサと吸入温度センサのうちの一方による計測結果に代え、仮値に基づいて制御対象を制御するため、ヒートポンプ装置は、吐出温度センサおよび吸入温度センサの両方または一方が故障した場合でも運転を行うことができる。また、本開示に係るヒートポンプシステムによれば、管理システムは、第1ヒートポンプ装置の熱源温度センサが故障している場合であって、熱源温度センサが故障していない第2ヒートポンプ装置が特定の条件を満たす場合には、第2ヒートポンプ装置の熱源温度センサの計測結果を、第1ヒートポンプ装置の熱源温度センサの計測結果に代わる仮値とする。そして、管理システムは、第1ヒートポンプ装置の熱源温度センサの計測結果に代え、仮値に基づいて第1ヒートポンプ装置を制御するよう、第1ヒートポンプ装置の制御装置に指示する。従って、ヒートポンプシステムにおける各ヒートポンプ装置は、熱源温度センサが故障した場合でも運転を行うことができる。
実施の形態1に係るヒートポンプ装置の構成例を示す模式図である。 実施の形態1に係るヒートポンプ装置による応急運転の設定処理を例示するフローチャートである。 実施の形態1における制御装置による、仮値の導出処理と、仮値に基づく制御処理との流れを例示するフローチャートである。 実施の形態1における故障センサが吐出温度センサである場合の制御装置による仮値の導出処理の第1の例を示すフローチャートである。 実施の形態1における故障センサが吐出温度センサである場合の制御装置による仮値の導出処理の第2の例を示すフローチャートである。 実施の形態1における故障センサが吐出温度センサである場合の制御装置による仮値の導出処理の第3の例を示すフローチャートである。 実施の形態1における故障センサが吸入温度センサである場合の制御装置による仮値の導出処理の第1の例を示すフローチャートである。 実施の形態1における故障センサが吸入温度センサである場合の制御装置による仮値の導出処理の第2の例を示すフローチャートである。 実施の形態1における制御装置のハードウェア構成を例示するブロック図である。 実施の形態2に係るヒートポンプ装置の構成例を示す模式図である。 実施の形態2の第1制御装置による仮値の導出処理を例示するフローチャートである。 実施の形態2における第1制御装置による、特定の条件を満たす第2熱源装置の有無の判定処理を例示するフローチャートである。 実施の形態2における制御装置のハードウェア構成を例示するブロック図である。 実施の形態3に係るヒートポンプシステムの構成例を示す模式図である。 実施の形態3における仮値の導出処理と、仮値に基づく制御処理との流れを示すフローチャートである。 実施の形態3における管理システムによる、特定の条件を満たす第2ヒートポンプ装置の有無の判定処理を例示するフローチャートである。 実施の形態3に係る管理システムのハードウェア構成を例示するブロック図である。 実施の形態4における管理システムによる、特定の条件を満たす第2ヒートポンプ装置の装置情報の有無の判定処理の第1の例を示すフローチャートである。 実施の形態4における管理システムによる特定の条件を満たす第2ヒートポンプ装置の装置情報の有無の判定処理の第2の例を示すフローチャートである。
 以下、図面を参照し、実施の形態に係るヒートポンプ装置100およびヒートポンプシステム200について詳述する。なお、以下の図面では各構成部材の大きさの関係が実際のものとは異なる場合がある。
 実施の形態1.
 図1は、実施の形態1に係るヒートポンプ装置100の構成例を示す模式図である。ヒートポンプ装置100は、冷媒が循環する冷媒回路1を有し、室内の空気、または、ユーザに供給される水等の温度調節対象と、当該冷媒とを熱交換させることによって、温度調節対象の温度をユーザが所望する温度に調節するものである。ヒートポンプ装置100としては、空気調和機または給湯機等が挙げられる。図1では、ヒートポンプ装置100が空気調和機である場合を例に挙げる。なお、実施の形態1における冷媒は、非共沸混合冷媒である。ヒートポンプ装置100は、冷媒回路1上に、冷媒配管2によって接続された熱源装置3と負荷装置4とを備える。
 熱源装置3は、圧縮機30と流路切替装置31と熱源熱交換器32と熱源送風機33とアキュムレータ34とを含む。なお、圧縮機30と流路切替装置31と熱源熱交換器32と熱源送風機33とアキュムレータ34とは、熱源装置3の外郭を形成する筐体の内部に配置されている。当該熱源装置3の筐体は、図1において破線による四角によって模式的に示されている。
 負荷装置4は、負荷熱交換器40と負荷送風機41と絞り装置42とを含む。なお、負荷熱交換器40と負荷送風機41と絞り装置42とは、負荷装置4の外郭を形成する筐体の内部に配置されている。当該負荷装置4の筐体は、図1において一点鎖線による四角によって模式的に示されている。
 アキュムレータ34と圧縮機30と流路切替装置31と熱源熱交換器32と絞り装置42と負荷熱交換器40とは、冷媒配管2によって順次接続されている。また、負荷熱交換器40と流路切替装置31とは冷媒配管2によって接続されている。
 圧縮機30は、冷媒配管2から冷媒を吸入し、吸入した冷媒を圧縮する。そして、圧縮機30は、圧縮した冷媒を冷媒配管2に吐出する。圧縮機30は、スクロール型、ロータリ型、レシプロ型、またはスクリュー型等の圧縮機であって、インバータによって容量が制御可能なインバータ圧縮機である。
 流路切替装置31は、例えば四方弁であり、冷媒流路と、冷媒が流れる方向である流路方向と、を切り替える。ヒートポンプ装置100は、流路切替装置31による切り替え処理によって冷却運転と加熱運転とを切り替えることができる。なお、冷却運転とは、例えば冷房運転など、ヒートポンプ装置100が温度調節対象を冷却する運転を指す。また、加熱運転とは、例えば暖房運転など、ヒートポンプ装置100が温度調節対象を加熱する運転を指す。図1に示す流路切替装置31における実線部分は、冷却運転時における冷媒流路を示し、破線部分は加熱運転時における冷媒流路を示す。また、図1における実線の矢印は、冷却運転時において冷媒が流れる方向を示し、破線の矢印は、加熱運転時において冷媒が流れる方向を示す。
 ヒートポンプ装置100は、冷却運転と加熱運転のいずれか一方のみを行うものでもよい。ヒートポンプ装置100が、冷却運転と加熱運転のうち、冷却運転のみを行うものである場合には、ヒートポンプ装置100は、流路切替装置31に代え、図1の流路切替装置31内の実線によって示される冷媒流路であって、冷媒配管2で構成される冷媒流路を含む。ヒートポンプ装置100が、冷却運転と加熱運転のうち、加熱運転のみを行うものである場合には、ヒートポンプ装置100は、流路切替装置31に代え、図1の流路切替装置31内の破線によって示される冷媒流路であって、冷媒配管2によって構成される冷媒流路を含む。
 熱源熱交換器32は、冷媒と熱交換対象との間で熱交換を行わせる。ここで、熱交換対象とは、冷媒との熱交換によって、負荷熱交換器40に提供される冷媒の温度を調節するための空気または水等を指す。熱交換対象としては、室外、もしくは冷蔵庫の周囲などにおける空気、または、室外に排出される水などが挙げられる。熱源熱交換器32は、冷却運転時には、冷媒を冷却して凝縮させる凝縮器として機能し、加熱運転時には、冷媒を加熱して蒸発させる蒸発器として機能する。
 熱源送風機33は、熱源ファンモータ33Aと熱源ファン33Bとを含む。熱源ファン33Bは、例えば、プロペラファン、ターボファン、またはシロッコファンなどである。熱源送風機33は、熱交換対象を熱源熱交換器32に導き、冷媒との熱交換後の熱交換対象を熱源熱交換器32の外部に送り出す。なお、ヒートポンプ装置100は、熱交換対象が水などの液体である場合には、熱源送風機33を備えなくともよい。この場合においてヒートポンプ装置100は、送水ポンプなどのポンプを備えてもよい。
 アキュムレータ34は、圧縮機30の吸入側に設けられ、冷却運転と加熱運転の各運転状態の違いから生じる余剰冷媒、または、過渡的な運転の変化による余剰冷媒を貯留する。アキュムレータ34は、流入する冷媒のうち、液冷媒を内部に分離収容し、ガス冷媒のみを圧縮機30に流通させる。
 負荷熱交換器40は、冷媒と温度調節対象とを熱交換させ、温度調節対象の温度をユーザが所望する温度に調節する。負荷熱交換器40は、加熱運転時には、冷媒を凝縮させる凝縮器として機能し、冷却運転時には、冷媒を蒸発させる蒸発器として機能する。
 負荷送風機41は、負荷ファンモータ41Aと負荷ファン41Bとを含む。負荷ファン41Bは、例えば、クロスフローファン、ターボファン、またはシロッコファンなどである。負荷送風機41は、温度調節対象を負荷熱交換器40に導き、冷媒との熱交換後の温度調節対象を室内または冷蔵庫内等などに送り出す。ヒートポンプ装置100は、温度調節対象が水などの液体である場合には、負荷送風機41を備えなくともよい。この場合においてヒートポンプ装置100は、送水ポンプなどのポンプを備えてもよい。
 絞り装置42は、具体的には、冷媒を減圧して膨張させる膨張弁などである。当該膨張弁は、開度が可変制御可能な、例えば電動膨張弁などである。なお、図1には、絞り装置42が負荷装置4の筐体内に設けられた例が示されているが、絞り装置42は、負荷装置4の外部に設けられてもよい。
 以下、ヒートポンプ装置100による冷却運転時および加熱運転時での冷媒の状態とその流れについて説明する。まず、冷却運転の場合について説明する。圧縮機30に吸入された冷媒は圧縮され、高温高圧のガス冷媒になり、圧縮機30から吐出される。圧縮機30から吐出されたガス冷媒は、流路切替装置31を介して熱源熱交換器32に流入する。熱源熱交換器32に流入したガス冷媒は、熱交換対象に放熱して凝縮し、高圧の液冷媒になる。熱源熱交換器32から流出した液冷媒は、熱源装置3から流出し、負荷装置4に流入する。負荷装置4に流入した高圧の液冷媒は、絞り装置42によって減圧され、低温低圧の気液二相冷媒になり、蒸発器として機能する負荷熱交換器40に流入する。負荷熱交換器40に流入した気液二相冷媒は、温度調節対象から吸熱して気化し、温度調節対象を冷却し、低温低圧のガス冷媒になる。負荷熱交換器40から流出したガス冷媒は、負荷装置4から流出し、熱源装置3に流入する。熱源装置3に流入した低温低圧のガス冷媒は、流路切替装置31およびアキュムレータ34を通過し、圧縮機30へ吸入される。
 次に、加熱運転の場合について説明する。圧縮機30に吸入された冷媒は圧縮され、高温高圧のガス冷媒になり、圧縮機30から吐出される。圧縮機30から吐出されたガス冷媒は、流路切替装置31を介して負荷装置4に流入する。負荷装置4に流入した高温高圧のガス冷媒は、負荷熱交換器40に流入する。負荷熱交換器40に流入した気液二相冷媒は、温度調節対象に放熱して凝縮して温度調節対象を冷却し、高圧の液冷媒になる。負荷熱交換器40から流出した液冷媒は、絞り装置42によって減圧され、低温低圧の気液二相冷媒になる。絞り装置42から流出した気液二相冷媒は、負荷装置4を流出し、熱源装置3に流入する。熱源装置3に流入した気液二相冷媒は、熱源熱交換器32に流入し、熱交換対象から吸熱して蒸発し、低温低圧のガス冷媒になる。熱源熱交換器32から流出したガス冷媒は、流路切替装置31およびアキュムレータ34を通過し、圧縮機30へ吸入される。
 上述の冷却運転と加熱運転の各々において温度調節対象の温度をユーザが所望する温度にするため、ヒートポンプ装置100は、圧縮機30、熱源送風機33、負荷送風機41、および絞り装置42を制御する制御装置6を更に備える。また、ヒートポンプ装置100は、吐出圧力センサ50と吸入圧力センサ51と吐出温度センサ52と吸入温度センサ53と第1負荷温度センサ54と第2負荷温度センサ55と負荷対象温度センサ56とを備える。以下では、吐出圧力センサ50と吸入圧力センサ51と吐出温度センサ52と吸入温度センサ53と第1負荷温度センサ54と第2負荷温度センサ55と負荷対象温度センサ56との集合をセンサ群と記載する場合もある。また、吐出温度センサ52と吸入温度センサ53の各々を熱源温度センサと記載する場合もある。
 制御装置6は、例えばマイクロコントローラを含み、センサ群のうちの全部もしくは一部による計測結果と、不図示のリモートコントローラに入力された指示とのうちの両方または一方に基づいて、圧縮機30の運転周波数と、熱源送風機33の運転周波数と、負荷送風機41の運転周波数と、絞り装置42の開度のうちの全部または一部を制御する。また、制御装置6は、センサ群のうちの全部もしくは一部による計測結果と、不図示のリモートコントローラに入力された指示とのうちの両方または一方に基づいて、流路切替装置31を制御し、運転状態を切り替えさせる。以下では、制御装置6の制御の対象となる圧縮機30、熱源送風機33、負荷送風機41、および絞り装置42の各々を制御対象と記載する場合もある。なお、制御装置6は、吐出圧力センサ50、吸入圧力センサ51、吐出温度センサ52、吸入温度センサ53、第1負荷温度センサ54、第2負荷温度センサ55、および負荷対象温度センサ56の各々と有線通信または無線通信を行い、計測結果を取得する。また、制御装置6は、圧縮機30、流路切替装置31、熱源送風機33、負荷送風機41、および絞り装置42の各々と、有線通信または無線通信を行う。そして、制御装置6は、圧縮機30、流路切替装置31、熱源送風機33、負荷送風機41、および絞り装置42の各々に制御信号を出力して制御する。
 ここで、図1では、制御装置6が熱源装置3内に設けられた例が示されるが、制御装置6は熱源装置3の外部に設けられてもよい。例えば、制御装置6は、負荷装置4内に設けられてもよいし、熱源装置3および負荷装置4の各々の外部に設けられてもよい。制御装置6は、分割して設けられてもよい。例えば、制御装置6の一部分が熱源装置3に設けられ、他の部分が負荷装置4に設けられてもよい。
 吐出圧力センサ50と吸入圧力センサ51の各々は、圧電素子方式、抵抗膜方式、または静電容量方式等に基づいて冷媒の圧力を計測するものである。吐出温度センサ52と吸入温度センサ53と第1負荷温度センサ54と第2負荷温度センサ55の各々は、サーミスタ、熱電対、または測温抵抗体等によって構成され、冷媒の温度を計測するものである。負荷対象温度センサ56は、サーミスタ、熱電対、または測温抵抗体等によって構成され、空気または水等の温度を計測するものである。吐出圧力センサ50と吸入圧力センサ51と吐出温度センサ52と吸入温度センサ53は、熱源装置3に設けられる。第1負荷温度センサ54と第2負荷温度センサ55と負荷対象温度センサ56は、負荷装置4に設けられる。
 吐出圧力センサ50は、圧縮機30の吐出側の冷媒配管2に設けられ、圧縮機30から吐出された高温高圧の冷媒の圧力を計測する。吐出圧力センサ50は、ヒートポンプ装置100が流路切替装置31を備える場合には、例えば、圧縮機30と流路切替装置31との間の冷媒配管2に設けられる。吐出圧力センサ50は、ヒートポンプ装置100が、流路切替装置31を備えない場合であって、加熱運転と冷却運転のうち、冷却運転のみを行うものである場合には、圧縮機30と熱源熱交換器32との間の冷媒配管2に設けられる。吐出圧力センサ50は、ヒートポンプ装置100が流路切替装置31を備えない場合であって、加熱運転と冷却運転のうち、加熱運転のみを行うものである場合には、圧縮機30と負荷熱交換器40との間の冷媒配管2に設けられる。
 吸入圧力センサ51は、圧縮機30の吸入側の冷媒配管2に設けられ、圧縮機30に吸入される低温低圧の冷媒の圧力を計測する。吸入圧力センサ51は、例えば、圧縮機30とアキュムレータ34との間の冷媒配管2に設けられてもよい。ヒートポンプ装置100が流路切替装置31を備える場合には、吸入圧力センサ51は、流路切替装置31とアキュムレータ34との間の冷媒配管2に設けられてもよい。吸入圧力センサ51は、ヒートポンプ装置100が、流路切替装置31を備えない場合であって、加熱運転と冷却運転のうち、冷却運転のみを行うものである場合には、アキュムレータ34と負荷熱交換器40との間の冷媒配管2に設けられてもよい。吸入圧力センサ51は、ヒートポンプ装置100が、流路切替装置31を備えない場合であって、加熱運転と冷却運転のうち、加熱運転のみを行うものである場合には、アキュムレータ34と熱源熱交換器32との間の冷媒配管2に設けられてもよい。
 吐出温度センサ52は、圧縮機30の吐出側の冷媒配管2に設けられ、圧縮機30から吐出された高温高圧の冷媒の温度を計測する。吐出温度センサ52は、ヒートポンプ装置100が流路切替装置31を備える場合には、例えば、圧縮機30と流路切替装置31との間の冷媒配管2に設けられる。吐出温度センサ52は、ヒートポンプ装置100が、流路切替装置31を備えない場合であって、加熱運転と冷却運転のうち、冷却運転のみを行うものである場合には、圧縮機30と熱源熱交換器32との間の冷媒配管2に設けられる。吐出温度センサ52は、ヒートポンプ装置100が流路切替装置31を備えない場合であって、加熱運転と冷却運転のうち、加熱運転のみを行うものである場合には、圧縮機30と負荷熱交換器40との間の冷媒配管2に設けられる。
 吸入温度センサ53は、圧縮機30の吸入側の冷媒配管2に設けられ、圧縮機30に吸入される低温低圧の冷媒の温度を計測する。吸入温度センサ53は、例えば、圧縮機30とアキュムレータ34との間の冷媒配管2に設けられてもよい。ヒートポンプ装置100が流路切替装置31を備える場合には、吸入温度センサ53は、流路切替装置31とアキュムレータ34との間の冷媒配管2に設けられてもよい。吸入温度センサ53は、ヒートポンプ装置100が、流路切替装置31を備えない場合であって、加熱運転と冷却運転のうち、冷却運転のみを行うものである場合には、アキュムレータ34と負荷熱交換器40との間の冷媒配管2に設けられてもよい。吸入温度センサ53は、ヒートポンプ装置100が、流路切替装置31を備えない場合であって、加熱運転と冷却運転のうち、加熱運転のみを行うものである場合には、アキュムレータ34と熱源熱交換器32との間の冷媒配管2に設けられてもよい。
 第1負荷温度センサ54は、冷却運転時には、負荷熱交換器40に流入する冷媒の温度を計測し、加熱運転時には、負荷熱交換器40から流出する冷媒の温度を計測する。第1負荷温度センサ54は、負荷熱交換器40と絞り装置42との間の冷媒配管2に設けられてもよいし、冷却運転時での負荷熱交換器40における冷媒の入口に設けられてもよい。
 第2負荷温度センサ55は、冷却運転時には、負荷熱交換器40から流出する冷媒の温度を計測し、加熱運転時には、負荷熱交換器40に流入する冷媒の温度を計測する。第2負荷温度センサ55は、冷却運転時での負荷熱交換器40の下流側の冷媒配管2に設けられてもよいし、冷却運転時での負荷熱交換器40における冷媒の出口に設けられてもよい。
 負荷対象温度センサ56は、負荷熱交換器40に流入する温度調節対象の温度を計測するものであり、温度調節対象の流通経路における負荷熱交換器40の上流側、あるいは、負荷熱交換器40における温度調節対象の流入部分に設けられている。
 ここで、実施の形態1における制御装置6は、少なくとも吸入圧力センサ51と吸入温度センサ53との各計測結果に基づいて、アキュムレータ34内の余剰冷媒の有無を判定する。また、制御装置6は、組成が変動し得る非共沸混合冷媒である冷媒の組成を示す情報を、少なくとも吸入圧力センサ51と吸入温度センサ53との各計測結果に基づいて演算処理などによって導出する。以下では、冷媒の組成を示す情報を組成情報と記載する場合もある。実施の形態1における制御装置6は、組成情報と、吐出圧力センサ50および吸入圧力センサ51による各計測結果とに基づいて、圧縮機30の運転周波数、および、熱源送風機33の運転周波数の両方または一方を制御する。
 実施の形態1における制御装置6は、冷却運転時には、蒸発器として機能する負荷熱交換器40から流出する冷媒の過熱度が一定になるよう絞り装置42の開度を制御する。なお、制御装置6は、負荷熱交換器40における冷媒の飽和温度と、第2負荷温度センサ55による計測結果とに基づいて過熱度を導出する。制御装置6は、組成情報と、吸入圧力センサ51による計測結果とに基づいて、演算処理などにより、蒸発器から流出する冷媒の飽和温度を導出する。
 実施の形態1における制御装置6は、加熱運転時には、凝縮器として機能する負荷熱交換器40から流出する冷媒の過冷却度が一定になるよう絞り装置42の開度を制御する。なお、制御装置6は、負荷熱交換器40における冷媒の飽和温度と、第1負荷温度センサ54による計測結果とに基づいて、演算処理などにより、過冷却度を導出する。制御装置6は、組成情報と、吐出圧力センサ50による計測結果とに基づいて、演算処理などにより、凝縮器から流出する冷媒の飽和温度を導出する。
 上述のように、制御装置6がセンサ群による計測結果に基づいて制御を行う場合、センサ群のうちのいずれかが故障すると、制御装置6は制御不能となり得る。従来のヒートポンプ装置は、センサ群のうちのいずれかが故障し、制御装置が制御不能となった場合、異常停止していた。このような異常停止後には、復旧過程において代替部品の手配が必要になり、また、工事日程の調整などのため、工事完了までに時間がかかっていた。そして、その間、ユーザはヒートポンプ装置を使用できず、結果、ユーザの快適性が損われていた。実施の形態1に係るヒートポンプ装置100は、センサ群のうち、吐出温度センサ52と吸入温度センサ53のいずれかが故障した場合における停止期間の短縮を可能にするものであり、ユーザの不快感の低減を図るものである。以下、そのようなヒートポンプ装置100の構成および機能等について説明する。
 実施の形態1に係るヒートポンプ装置100は、熱源温度センサが故障した場合に、応急運転を行う。このとき、制御装置6は、故障した熱源温度センサによる計測結果に代え、仮値を設定し、当該仮値に基づいて制御対象を制御する。以下では、故障した熱源温度センサを故障センサと記載する場合もある。また、故障していない熱源温度センサを正常温度センサと記載する場合もある。更に、正常温度センサを含め、センサ群のうち、故障していないセンサを正常センサと記載する場合もある。
 以下、図2を参照して、実施の形態1に係るヒートポンプ装置100による応急運転開始までの処理について説明する。図2は、実施の形態1に係るヒートポンプ装置100による応急運転の設定処理を例示するフローチャートである。なお、ステップS1に先立ち、吐出温度センサ52と吸入温度センサ53のうちのいずれかの熱源温度センサが故障しているとする。制御装置6は、当該熱源温度センサによる計測値が上限値または下限値を超えているなどの事象から、当該熱源温度センサが異常であると判定する。そして、ヒートポンプ装置100は異常停止モードとなって停止する。
 ステップS1において制御装置6は、派遣されたサービスマンによる応急運転モードの設定を受け付ける。これにより、応急運転モードが起動する。なお、制御装置6には不図示の入力装置が設けられ、サービスマンは当該入力装置を介して制御装置6に設定を行ってもよい。あるいは、サービスマンは、不図示のリモートコントローラを介して制御装置6に設定を行ってもよい。
 ステップS2において制御装置6は、故障センサを示す故障情報の設定を受け付ける。これにより、制御装置6は、故障センサによる計測結果ではなく、導出した仮値に基づき制御対象を制御するよう設定される。以降、故障センサによる計測結果に代えて、仮値に基づく制御による応急運転が実行される。なお、仮値に基づく制御は、ヒートポンプ装置100の再起動後に実行されてもよい。
 図3は、実施の形態1における制御装置6による、仮値の導出処理と、仮値に基づく制御処理との流れを例示するフローチャートである。図3に示す処理は、上述のステップS2の処理後に実行される。
 ステップS11において制御装置6は、ヒートポンプ装置100が運転状態にあるか否かを判定する。具体的には、制御装置6は、不図示のリモートコントローラに運転開始の指示が入力されたか、または、センサ群による計測結果に基づいて例えば除霜運転などを制御対象に実行させているか等を判定することにより、ヒートポンプ装置100が運転状態にあるか否かを判定する。ヒートポンプ装置100が停止状態にある場合には(ステップS11:NO)、制御装置6は処理を終了する。
 ヒートポンプ装置100が運転状態にある場合には(ステップS11:YES)、ステップS12において制御装置6は、制御対象の制御パラメータの値に制限を設ける。なお、制御パラメータとは、制御対象が圧縮機30である場合には、圧縮機30の運転周波数を指し、制御対象が熱源送風機33である場合には、熱源送風機33の運転周波数を指し、制御対象が負荷送風機41である場合には、負荷送風機41の運転周波数を指す。また、制御パラメータは、制御対象が絞り装置42である場合には、絞り装置42の開度を指す。制御装置6は、制御パラメータに上限値および下限値の両方または一方を設けることによって、制御パラメータの値に制限を設ける。具体的には、制御装置6は、応急運転時、すなわち、故障情報等の設定受付後の運転時には、圧縮機30の最大運転周波数を、通常運転時の最大運転周波数の例えば70%に制限する。通常運転とは、センサ群のうちのいずれのセンサも故障していない状態での運転を指す。制御パラメータの値に制限を設けることによって、実際の値からの仮値のずれによって発生し得る、ヒートポンプ装置100の運転範囲を超える運転の抑制が可能になる。なお、ステップS12の処理は省かれてもよい。この場合には、制御装置6は、ステップS11においてヒートポンプ装置100が運転状態にあると判定した場合に、ステップS13に処理を移す。
 ステップS13において制御装置6は、故障センサの計測結果に代えて仮値に基づく制御が許可されているか否かを判定する。すなわち、制御装置6は、応急運転モードが設定され、且つ、故障センサを示す情報が設定されているかを判定する。仮値に基づく制御が許可されていない場合には(ステップS13:NO)、ステップS14において制御装置6はエラーを報知する。なお、制御装置6は、不図示のリモートコントローラに当該エラーを報知させてもよい。ステップS14の処理後、制御装置6は処理を終了する。
 仮値に基づく制御が許可されている場合には(ステップS13:YES)、ステップS15において制御装置6は、仮値が設定されているか否かを判定する。仮値の設定は、サービスマンによって、上記入力装置またはリモートコントローラを介して行われる。この場合には、制御装置6は、設定された仮値を記憶する。仮値が設定されている場合には(ステップS15:YES)、制御装置6は処理をステップS17に移す。仮値が設定されていない場合には(ステップS15:NO)、ステップS16において制御装置6は仮値を導出する。なお、制御装置6がサービスマンから仮値の設定を受け付けない場合には、ステップS15の処理は省略されてもよい。
 ステップS17において制御装置6は、仮値と、正常センサによる計測結果とに基づいて制御パラメータの値を導出する。ステップS18において制御装置6は、ステップS17で導出した制御パラメータの値に基づいて制御対象を制御する。すなわち、制御装置6は、制御対象が圧縮機30である場合には、ステップS17で導出した運転周波数で圧縮機30を動作させる。制御装置6は、制御対象が熱源送風機33である場合には、ステップS17で導出した運転周波数で熱源送風機33を動作させる。制御装置6は、制御対象が絞り装置42である場合には、絞り装置42の開度を、ステップS17で導出した開度にする。制御装置6は、制御対象が負荷送風機41である場合には、ステップS17で導出した運転周波数で負荷送風機41を動作させる。ステップS18の処理の後、予め定められた周期時間の経過後に制御装置6はステップS11に処理を戻す。
 以下、図4~図8を参照して、仮値の導出処理について説明する。なお、図4~図8の各々における処理は、上記ステップS16の処理に相当する。図4は、実施の形態1における故障センサが吐出温度センサ52である場合の制御装置6による仮値の導出処理の第1の例を示すフローチャートである。図4において制御装置6は、取得した最新の、吐出圧力センサ50と吸入圧力センサ51と吸入温度センサ53の各計測結果に基づいて、各種物理量を導出する。なお、制御装置6は、予めモリエール線図に対応する情報を予め記憶するものとする。以下では、モリエール線図に対応する情報をモリエール情報と記載する場合もある。制御装置6は、モリエール情報に基づき、吐出圧力センサ50と吸入圧力センサ51と吸入温度センサ53の各計測結果から各種物理量を導出する。なお、吐出圧力センサ50と吸入圧力センサ51と吸入温度センサ53は故障していないものとする。
 ステップS21において制御装置6は、吸入圧力センサ51と吸入温度センサ53の各計測結果に基づいて、圧縮機30に吸入される冷媒のエントロピーを導出する。ステップS22において制御装置6は、ステップS21で導出したエントロピーと、吐出圧力センサ50による計測結果とに基づいて、圧縮機30から吐出される冷媒の温度である吐出温度を導出する。なお、ステップS22において導出される吐出温度は理論値であって、現実の吐出温度は冷媒回路1の断熱効率によって変化する。実施の形態1の制御装置6は、冷媒回路1の断熱効率の値を予め取得しているものとする。以下では、演算などによって得られる、吐出温度の理論値を理論吐出温度と記載する場合もある。
 ステップS23において制御装置6は、ステップS22で導出した理論吐出温度と、吐出圧力センサ50による計測結果とに基づいて、圧縮機30から吐出される冷媒のエンタルピーである吐出エンタルピーを導出する。なお、ステップS23において導出される吐出エンタルピーは理論値であって、現実の吐出エンタルピーは冷媒回路1の断熱効率によって変化する。以下では、演算などによって得られる、吐出エンタルピーの理論値を理論吐出エンタルピーと記載する場合もある。
 ステップS24において制御装置6は、ステップS23で導出した理論吐出エンタルピーに、断熱効率を乗算するなど、理論吐出エンタルピーと断熱効率とに基づいて吐出エンタルピーを導出する。ステップS25において制御装置6は、ステップS24で導出した吐出エンタルピーと、吐出圧力センサ50による計測結果とに基づいて、上記仮値としての吐出温度を導出する。ステップS25の処理後、制御装置6は仮値の導出処理を終了し、処理を上述のステップS17に移す。
 図5は、実施の形態1における故障センサが吐出温度センサ52である場合の制御装置6による仮値の導出処理の第2の例を示すフローチャートである。図5において制御装置6は、取得した最新の、吐出圧力センサ50の計測結果に基づいて、各種物理量を導出する。なお、吐出圧力センサ50は故障していないものとする。
 ステップS31において制御装置6は、吐出圧力センサ50による計測結果に基づいて、凝縮器における冷媒の凝縮温度を導出する。ステップS32において制御装置6は、凝縮器における冷媒の放熱量に応じた温度である放熱温度を、ステップS31で得られた凝縮温度に加算するなどして、上記仮値としての吐出温度を導出する。なお、放熱温度は、例えば、圧縮機30の運転周波数に基づいて定められてもよいし、一定の値として制御装置6に予め設定されたものでもよい。ステップS32の処理後、制御装置6は仮値の導出処理を終了し、処理を上述のステップS17に移す。図5に示す仮値の導出処理では、図4に示す処理に比べ、演算量など、処理量の低減が図られる。
 図6は、実施の形態1における故障センサが吐出温度センサ52である場合の制御装置6による仮値の導出処理の第3の例を示すフローチャートである。図6において制御装置6は、取得した最新の負荷対象温度センサ56の計測結果に基づいて各種物理量を導出する。図6に示す処理は、圧縮機30から吐出された冷媒が熱源熱交換器32などを経由せずに、負荷熱交換器40に流入する運転で行われることが望ましい。すなわち、図6に示す処理は加熱運転時での冷媒の流路方向で実行されることが望ましい。なお、図6では負荷対象温度センサ56は故障していないものとする。
 ステップS41において制御装置6は、負荷対象温度センサ56によって計測された温度調節対象の温度と、上記放熱温度とに基づいて、仮値としての吐出温度を導出する。詳細には、制御装置6は、計測された温度調節対象の温度に放熱温度を加算することによって、仮値としての吐出温度を導出する。ステップS41の処理後、制御装置6は仮値の導出処理を終了し、処理を上述のステップS17に移す。図6に示す仮値の導出処理では、図4に示す処理に比べ、演算量など、処理量の低減が図られる。
 図7は、実施の形態1における故障センサが吸入温度センサ53である場合の制御装置6による仮値の導出処理の第1の例を示すフローチャートである。図7では、制御装置6は上記モリエール情報を記憶しているものとする。制御装置6は、取得した最新の、吐出圧力センサ50と吸入圧力センサ51と吐出温度センサ52の各計測結果から、モリエール情報に基づいて、各種物理量を導出する。なお、吐出圧力センサ50と吸入圧力センサ51と吐出温度センサ52は故障していないものとする。
 ステップS51において制御装置6は、吐出圧力センサ50と吐出温度センサ52の各計測結果に基づいて吐出エンタルピーを導出する。ステップS52において制御装置6は、ステップS51で導出した吐出エンタルピーから断熱効率を除算するなど、吐出エンタルピーと断熱効率とに基づいて理論吐出エンタルピーを導出する。ステップS53において制御装置6は、ステップS52で導出した理論吐出エンタルピーと、吐出圧力センサ50による計測結果とに基づいて、圧縮機30から吐出される冷媒のエントロピーである吐出エントロピーを導出する。なお、ステップS53において導出される吐出エントロピーは理論値であって、現実の吐出エントロピーは冷媒回路1の断熱効率などによって変化する。以下では、演算などによって得られる、吐出エントロピーの理論値を理論吐出エントロピーと記載する場合もある。
 ステップS54において制御装置6は、ステップS53で導出した理論吐出エントロピーと、吐出圧力センサ50による計測結果とに基づいて、上記仮値として、圧縮機30に吸入される冷媒の温度である吸入温度を導出する。ステップS54の処理後、制御装置6は仮値の導出処理を終了し、処理を上述のステップS17に移す。
 図8は、実施の形態1における故障センサが吸入温度センサ53である場合の制御装置6による仮値の導出処理の第2の例を示すフローチャートである。図8において制御装置6は、取得した最新の吸入圧力センサ51の計測結果に基づいて各種物理量を導出する。なお、吸入圧力センサ51は故障していないものとする。
 ステップS61において制御装置6は、吸入圧力センサ51による計測結果に基づいて、蒸発器における冷媒の蒸発温度を導出する。ステップS62において制御装置6は、ステップS61で得られた蒸発温度と、吸熱温度とに基づいて、仮値としての吸入温度を導出する。なお、吸熱温度とは、蒸発器における冷媒の吸熱量に応じた温度である。吸熱温度は、例えば、圧縮機30の運転周波数に基づいて定められてもよいし、一定の値として制御装置6に予め設定されたものでもよい。ステップS62において制御装置6は、ステップS61で得られた蒸発温度に吸熱温度を加算するなどして吸入温度を導出する。ステップS62の処理後、制御装置6は仮値の導出処理を終了し、処理を上述のステップS17に移す。図8に示す導出処理では、図7に示す処理に比べ、演算量など、処理量の低減が図られる。
 以下、実施の形態1における制御装置6のハードウェア構成について図9を参照して説明する。図9は、実施の形態1における制御装置6のハードウェア構成を例示するブロック図である。制御装置6は、第1プロセッサ60と第1メモリ61と入出力インターフェース回路62とによって構成可能である。第1プロセッサ60と第1メモリ61と入出力インターフェース回路62とは、互いに第1バス63によって接続されている。第1プロセッサ60としては、例えば、CPU(Central Processing Unit)またはMPU(Micro Processing Unit)等が挙げられる。第1メモリ61としては、例えば、ROM(Read Only Memory)またはRAM(Random Access Memory)等が挙げられる。制御装置6が仮値を導出する機能は、第1プロセッサ60が第1メモリ61に記憶されている応急運転プログラムなどの各種プログラムを読み出して実行することにより実現することができる。制御装置6がセンサ群から計測結果を取得する機能は、第1プロセッサ60が入出力インターフェース回路62を介してセンサ群と有線通信または無線通信を行うことによって実現することができる。制御装置6が制御対象を制御する機能は、第1プロセッサ60が入出力インターフェース回路62を介して制御対象に制御信号を送信することによって実現することができる。
 制御装置6による機能は、上述のように、ソフトウェアとハードウェアとの協働によって得られる以外に、専用のハードウェアによって得られてもよい。例えば、制御装置6の全部または一部は、CPLD(Complex Programmable Logic Device)またはFPGA(Field Programmable Gate Array)等のハードウェアによって構成されてもよい。
 以下、実施の形態1に係るヒートポンプ装置100による効果について述べる。実施の形態1に係るヒートポンプ装置100は、冷媒回路1を循環する冷媒によって温度調節対象を冷却または加熱する。ヒートポンプ装置100は、負荷装置4と熱源装置3と絞り装置42とセンサ群と制御装置6とを有する。負荷装置4は、温度調節対象と冷媒とを熱交換させる負荷熱交換器40を備える。熱源装置3は、負荷熱交換器40に流通する冷媒の温度を調節する。絞り装置42は、冷媒を減圧して膨張させる。センサ群は、冷媒回路1を流通する冷媒の物理量を計測する。物理量には、温度と圧力とが含まれる。熱源装置3は、圧縮機30と熱源熱交換器32とを備える。圧縮機30は冷媒を圧縮し、熱源熱交換器32は冷媒を熱交換対象と熱交換させる。圧縮機30と熱源熱交換器32と絞り装置42と負荷熱交換器40とは、冷媒回路1に含まれる。センサ群は、吐出圧力センサ50と吸入圧力センサ51と吐出温度センサ52と吸入温度センサ53と負荷対象温度センサ56とを含む。吐出圧力センサ50は、圧縮機30の吐出側の冷媒の圧力を計測する。吸入圧力センサ51は、圧縮機30の吸入側の冷媒の圧力を計測する。吐出温度センサ52は、圧縮機30の吐出側の冷媒の温度を計測する。吸入温度センサ53は、圧縮機30の吸入側の冷媒の温度を計測する。負荷対象温度センサ56は、負荷熱交換器40に流入する温度調節対象の温度を計測する。吐出圧力センサ50と吸入圧力センサ51と吐出温度センサ52と吸入温度センサ53とは、熱源装置3に設けられ、負荷対象温度センサ56は、負荷装置4に設けられる。制御装置6は、センサ群による計測結果に基づいて、圧縮機30を含む制御対象を制御するものである。制御装置6は、吐出温度センサ52と吸入温度センサ53のうちの一方が故障した場合には、吐出温度センサ52と吸入温度センサ53のうちの他方と、吐出圧力センサ50と、吸入圧力センサ51と、負荷対象温度センサ56のうちの少なくともいずれかによる計測結果に基づいて仮値を導出する。そして、制御装置6は、吐出温度センサ52と吸入温度センサ53のうちの一方による計測結果に代え、仮値に基づいて制御対象を制御する。
 上記構成によれば、制御装置6は、吐出温度センサ52と吸入温度センサ53のうちの一方の熱源温度センサが故障した場合には、当該熱源温度センサのよる計測結果に代えて仮値に基づいて制御対象を制御する。このため、ヒートポンプ装置100は、吐出温度センサ52と吸入温度センサ53のうちの一方の熱源温度センサが故障した場合でも、運転を行うことができ、ユーザの快適性の低減を抑制することができる。ここで、圧縮機30の吐出側と吸入側の一方における冷媒の温度と圧力とは相関し得る。また、圧縮機30の吐出側と吸入側の一方における冷媒の温度は、他方における冷媒の温度および圧力の両方または一方と相関し得る。更に、圧縮機30の吐出側と吸入側の一方における冷媒の温度は、温度調節対象の温度と相関し得る。制御装置6は、吐出温度センサ52と吸入温度センサ53のうちの正常温度センサと、吐出圧力センサ50と、吸入圧力センサ51と、負荷対象温度センサ56のうちの少なくともいずれかによる計測結果に基づいて仮値を導出するため、圧縮機30の吐出側と吸入側の一方における冷媒の温度の仮値を精度良く導出することができる。従って、制御装置6は、仮値に基づく制御によって、冷媒回路1における冷媒の状態に応じた応急運転をヒートポンプ装置100に実行させることが可能になる。
 実施の形態1における制御装置6は、冷媒回路1の各位置における冷媒の圧力とエンタルピーとの関係を示すモリエール情報を記憶する。制御装置6は、モリエール情報に基づいて仮値を導出する。これにより、制御装置6は、故障センサに代えて、圧縮機30の吐出側または吸入側における冷媒の温度の仮値を精度良く得ることができる。従って、制御装置6は、当該仮値に基づいて、冷媒の状態に応じた制御を行うことができる。
 実施の形態1における制御装置6は、吸入温度センサ53が故障した場合には、冷媒を蒸発させる蒸発器として機能する熱源熱交換器32または負荷熱交換器40における冷媒の蒸発温度を、吸入圧力センサ51による計測結果に基づいて導出する。そして、制御装置6は、蒸発器として機能する熱源熱交換器32または負荷熱交換器40における冷媒の吸熱量に対応する吸熱温度と、蒸発温度とに基づいて仮値を導出する。制御装置6は、吸入温度センサ53による計測結果に代え、当該仮値に基づいて制御対象を制御する。これにより、制御装置6は、故障センサに代えて、圧縮機30の吸入側における冷媒の温度の仮値を精度良く得ることができる。従って、制御装置6は、当該仮値に基づいて、冷媒の状態に応じた制御を行うことができる。
 実施の形態1における吸熱温度は、予め設定されたもの、または、制御装置6が圧縮機30の運転周波数に基づいて定めるものである。これにより、制御装置6は迅速且つ容易に仮値を得ることができる。
 実施の形態1における制御装置6は、吐出温度センサ52が故障した場合には、冷媒を凝縮させる凝縮器として機能する熱源熱交換器32または負荷熱交換器40における冷媒の凝縮温度を、吐出圧力センサ50による計測結果に基づいて導出する。制御装置6は、凝縮器として機能する熱源熱交換器32または負荷熱交換器40における冷媒の放熱量に対応する放熱温度と、凝縮温度とに基づいて仮値を導出する。制御装置6は、吐出温度センサ52による計測結果に代え、当該仮値に基づいて制御対象を制御する。これにより、制御装置6は、故障センサに代えて、圧縮機30の吐出側における冷媒の温度の仮値を精度良く得ることができる。従って、制御装置6は、当該仮値に基づいて、冷媒の状態に応じた制御を行うことができる。
 実施の形態1における制御装置6は、吐出温度センサ52が故障した場合には、負荷対象温度センサ56による計測結果と、負荷熱交換器40での冷媒の放熱量に対応する放熱温度とに基づいて仮値を導出する。制御装置6は、吐出温度センサ52による計測結果に代え、仮値に基づいて制御対象を制御する。これにより、制御装置6は、故障センサに代えて、圧縮機30の吐出側における冷媒の温度の仮値を精度良く得ることができる。従って、制御装置6は、当該仮値に基づいて、冷媒の状態に応じた制御を行うことができる。
 実施の形態1における放熱温度は、予め設定されたもの、または、制御装置6が圧縮機30の運転周波数に基づいて定めるものである。これにより、制御装置6は迅速且つ容易に仮値を得ることができる。
 実施の形態1における制御装置6は、吐出温度センサ52と吸入温度センサ53のうち、故障したいずれかを示す故障情報が設定された場合に、故障情報が示す吐出温度センサ52と吸入温度センサ53とのうちいずれかによる計測結果に代え、仮値に基づいて制御対象を制御する。これにより、制御装置6は、制御対象を制御可能になり、ヒートポンプ装置100は、運転を行うことが可能になる。
 実施の形態2.
 以下、実施の形態2に係るヒートポンプ装置100について説明する。なお、実施の形態2では、実施の形態1における構成要素と同様の構成要素に対し、同一の符号を付すものとする。また、実施の形態2において、実施の形態1における構成と同様の構成、および、実施の形態1における機能と同様の機能等については、特段の事情がない限り説明を省略する。
 図10は、実施の形態2に係るヒートポンプ装置100の構成例を示す模式図である。実施の形態2に係るヒートポンプ装置100は、複数の熱源装置3と、1以上の負荷装置4とを備える。当該複数の熱源装置3は、1以上の負荷装置4に対して並列接続される。ヒートポンプ装置100が複数の負荷装置4を備える場合には、当該複数の負荷装置4は並列接続される。なお、図10では、複数の負荷装置4が同様の運転を行うヒートポンプ装置100の構成例を示すが、実施の形態2に係るヒートポンプ装置100は、複数の負荷装置4の一部が冷却運転を行うと同時に、残りが加熱運転を行う構成でもよい。
 実施の形態2に係るヒートポンプ装置100は、複数の熱源装置3の各々に制御装置6を設ける。各熱源装置3における制御装置6は、互いに有線通信または無線通信を行う。以下では、吐出温度センサ52および吸入温度センサ53のうちのいずれかが故障している熱源装置3を第1熱源装置と記載し、第1熱源装置の制御装置6を第1制御装置と記載する場合もある。また、吐出温度センサ52および吸入温度センサ53のいずれもが故障していない熱源装置3を第2熱源装置と記載し、第2熱源装置の制御装置6を第2制御装置と記載する場合もある。
 第1制御装置は、第1熱源装置の吐出温度センサ52が故障している場合には、予め定められた特定の条件を満たす第2熱源装置の吐出温度センサ52の計測結果を、第1熱源装置の吐出温度センサ52の計測結果に代わる仮値とする。また、第1制御装置は、第1熱源装置の吸入温度センサ53が故障している場合には、特定の条件を満たす第2熱源装置の吸入温度センサ53の計測結果を、第1熱源装置の吸入温度センサ53の計測結果に代わる仮値とする。
 ここで、特定の条件は、第1条件と第2条件と第3条件と第4条件と第5条件とを含む。第1条件は、第2熱源装置が運転状態にあるという条件である。第2条件は、第1熱源装置の能力と第2熱源装置の能力とが等しいという条件である。なお、第1熱源装置の能力と第2熱源装置の能力とが等しいとは、第1熱源装置の能力と第2熱源装置の能力との間の差分が、予め定められた第1能力差以下であるという条件、または、第1熱源装置または第2熱源装置の能力に対する当該差分の割合が第1割合以下であるという条件である。第1割合は予め定められており、例えば0%~10%である。
 第3条件は、第1熱源装置と第2熱源装置の各々の圧縮機30の運転周波数が等しいという条件である。なお、第1熱源装置と第2熱源装置の各々の圧縮機30の運転周波数が等しいとは、第1熱源装置の圧縮機30の運転周波数と、第2熱源装置の圧縮機30の運転周波数との差分が、第1熱源装置または第2熱源装置の圧縮機30の運転周波数の第2割合以下であることを指す。第2割合は、予め定められており、例えば5%~10%である。
 第4条件は、第1熱源装置と第2熱源装置の各々の吐出圧力センサ50が計測した圧力が等しいという条件である。なお、第1熱源装置と第2熱源装置の各々の吐出圧力センサ50が計測した圧力が等しいとは、第1熱源装置の吐出圧力センサ50が計測した圧力と、第2熱源装置の吐出圧力センサ50が計測した圧力との差圧が、第1熱源装置または第2熱源装置の吐出圧力センサ50が計測した圧力の第3割合以下であることを指す。第3割合は、予め定められており、例えば5%~10%である。
 第5条件は、第1熱源装置と第2熱源装置の各々の吸入圧力センサ51が計測した圧力が等しいという条件である。なお、第1熱源装置と第2熱源装置の各々の吸入圧力センサ51が計測した圧力が等しいとは、第1熱源装置の吸入圧力センサ51が計測した圧力と、第2熱源装置の吸入圧力センサ51が計測した圧力との差圧が、第1熱源装置または第2熱源装置の吸入圧力センサ51が計測した圧力の第4割合以下であることを指す。第4割合は、予め定められており、例えば5%~10%である。ここで、第1割合と第2割合と第3割合と第4割合は、互いに等しくともよいし、異なってもよい。
 なお、圧縮機30の吸入側の冷媒の温度と、吐出側の冷媒の温度とは互いに影響し合うため、仮値を実値に近づけるには、特定の条件は、更に、以下の第6条件を含むことが望ましい。第6条件は、第1熱源装置における正常温度センサが計測した温度と、第2熱源装置の正常対応センサが計測した温度とが等しいという条件である。なお、正常温度センサが計測した温度と、正常対応センサが計測した温度とが等しいとは、正常温度センサが計測した温度と、正常対応センサが計測した温度との差分が、正常温度センサまたは正常対応センサが計測した温度の第5割合以下であるという条件である。第5割合は、予め定められており、例えば5%~10%である。第5割合は、第1割合と第2割合と第3割合と第4割合の少なくともいずれかと等しくともよいし、いずれとも異なってもよい。ここで、正常対応センサとは、第1熱源装置において故障していないセンサが吐出温度センサ52である場合には、第2熱源装置における吐出温度センサ52を指し、第1熱源装置において故障していないセンサが吸入温度センサ53である場合には、第2熱源装置における吸入温度センサ53を指す。
 実施の形態2における第1熱源装置による応急運転開始までの処理は、図2によって示され、図2に関する上記説明においてヒートポンプ装置100を第1熱源装置に読み替え、制御装置6を第1制御装置に読み替えたものに相当する。実施の形態2における第1制御装置による、仮値の導出処理と、仮値に基づく制御処理との流れは、図3によって示され、図3に関する上記説明においてヒートポンプ装置100を第1熱源装置に読み替え、制御装置6を第1制御装置に読み替えたものに相当する。
 図11は、実施の形態2の第1制御装置による仮値の導出処理を例示するフローチャートである。なお、図11の処理は、実施の形態2におけるステップS16の処理に相当する。ステップS71において第1制御装置は、特定の条件を満たす第2熱源装置があるか否かを判定する。特定の条件を満たす第2熱源装置がない場合には(ステップS71:NO)、ステップS72において第1制御装置は、個別導出処理を行う。個別導出処理とは、図4~図8に示す処理であって、制御装置6を第1制御装置に読み替えた処理に相当する。ステップS72の処理後、第1制御装置は、処理をステップS17に移す。
 特定の条件を満たす第2熱源装置がある場合には(ステップS71:YES)、ステップS73において第1制御装置は、特定の条件を満たす第2熱源装置の故障対応センサによる値を、故障センサの計測結果に代わる仮値とする。なお、故障対応センサとは、第1熱源装置における故障センサが吐出温度センサ52である場合には、第2熱源装置における吐出温度センサ52を指し、第1熱源装置における故障センサが吸入温度センサ53である場合には、第2熱源装置における吸入温度センサ53を指す。ステップS73の処理後、第1制御装置は、処理をステップS17に移す。
 図12は、実施の形態2における第1制御装置による、特定の条件を満たす第2熱源装置の有無の判定処理を例示するフローチャートである。図12の処理は、図11におけるステップS71の処理に相当する。ステップS81において第1制御装置は、第1条件を満たす第2熱源装置があるか否かを判定する。第1条件を満たす第2熱源装置がない場合には(ステップS81:NO)、第1制御装置はステップS72に処理を移す。第1条件を満たす第2熱源装置がある場合には(ステップS81:YES)、ステップS82において第1制御装置は、第2条件を満たす第2熱源装置があるか否かを判定する。なお、ステップS81において第1条件を満たす第2熱源装置がある場合には、第1制御装置は当該第1条件を満たす第2熱源装置を抽出する。ステップS82において第1制御装置は、ステップS82以前の処理で抽出された1以上の第2熱源装置の中から、第2条件を満たす第2熱源装置があるか否かを判定する。第2条件を満たす第2熱源装置がない場合には(ステップS82:NO)、第1制御装置はステップS72に処理を移す。
 第2条件を満たす第2熱源装置がある場合には(ステップS82:YES)、ステップS83において第1制御装置は、第3条件を満たす第2熱源装置があるか否かを判定する。なお、ステップS82において第2条件を満たす第2熱源装置がある場合には、第1制御装置は当該第2条件を満たす第2熱源装置を抽出する。ステップS83において第1制御装置は、ステップS83以前の処理で抽出された1以上の第2熱源装置の中から、第3条件を満たす第2熱源装置があるかを判定する。第3条件を満たす第2熱源装置がない場合には(ステップS83:NO)、第1制御装置はステップS72に処理を移す。
 第3条件を満たす第2熱源装置がある場合には(ステップS83:YES)、ステップS84において第1制御装置は、第4条件を満たす第2熱源装置があるか否かを判定する。なお、ステップS83において第3条件を満たす第2熱源装置がある場合には、第1制御装置は当該第3条件を満たす第2熱源装置を抽出する。ステップS84において第1制御装置は、ステップS84以前の処理で抽出された1以上の第2熱源装置の中から、第4条件を満たす第2熱源装置があるかを判定する。第4条件を満たす第2熱源装置がない場合には(ステップS84:NO)、第1制御装置はステップS72に処理を移す。
 第4条件を満たす第2熱源装置がある場合には(ステップS84:YES)、ステップS85において第1制御装置は、第5条件を満たす第2熱源装置があるか否かを判定する。なお、ステップS84において第4条件を満たす第2熱源装置がある場合には、第1制御装置は当該第4条件を満たす第2熱源装置を抽出する。ステップS85において第1制御装置は、ステップS85以前の処理で抽出された1以上の第2熱源装置の中から、第5条件を満たす第2熱源装置があるかを判定する。第5条件を満たす第2熱源装置がない場合には(ステップS85:NO)、第1制御装置はステップS72に処理を移す。
 第5条件を満たす第2熱源装置がある場合には(ステップS85:YES)、ステップS86において第1制御装置は、第6条件を満たす第2熱源装置があるか否かを判定する。なお、ステップS85において第5条件を満たす第2熱源装置がある場合には、第1制御装置は当該第5条件を満たす第2熱源装置を抽出する。ステップS86において第1制御装置は、ステップS86以前の処理で抽出された1以上の第2熱源装置の中から、第6条件を満たす第2熱源装置があるかを判定する。第6条件を満たす第2熱源装置がない場合には(ステップS86:NO)、第1制御装置はステップS72に処理を移す。第6条件を満たす第2熱源装置がある場合には(ステップS86:YES)、第1制御装置は、特定の条件を満たす第2熱源装置があると判定し、ステップS73に処理を移す。
 なお、特定の条件に第6条件が含まれない場合には、図12においてステップS86の処理は省かれる。そして、ステップS85において第5条件を満たす第2熱源装置がある場合に、第1制御装置はステップS73に処理を移す。
 ここで、図12に示す例では、第1制御装置はステップS81からステップS86までの処理を順番に行っているが、第1制御装置は、ステップS81~ステップS86の各処理を図12とは異なる順番で実行し、第1条件~第6条件を満たす第2熱源装置を特定してもよい。
 図13は、実施の形態2における制御装置6のハードウェア構成を例示するブロック図である。制御装置6は、図9に示す構成に加え、第1バス63に接続された第1通信インターフェース回路64を含む。複数の熱源装置3の各々の制御装置6が互いに通信する機能は、第1通信インターフェース回路64によって実現できる。
 実施の形態2では、各熱源装置3に制御装置6が含まれる場合を例に挙げて説明したが、ヒートポンプ装置100は、複数の熱源装置3における圧縮機30および熱源送風機33等を制御する1つの制御装置6を有してもよい。この場合には、上述の第1制御装置についての説明は制御装置6に読み替えられる。
 以下、実施の形態2に係るヒートポンプ装置100による効果について述べる。実施の形態2に係るヒートポンプ装置100は、負荷装置4に対して並列接続された複数の熱源装置3を有する。制御装置6は、複数の熱源装置3のうちのいずれかの熱源装置3である第1熱源装置の吐出温度センサ52が故障した場合であって、複数の熱源装置3のうち、吐出温度センサ52および吸入温度センサ53が故障していない熱源装置3である第2熱源装置が、予め定められた特定の条件を満たす場合には、第2熱源装置の吐出温度センサ52による計測結果を仮値とする。そして、制御装置6は、第1熱源装置の吐出温度センサ52による計測結果に代え、仮値に基づいて、第1熱源装置における圧縮機30を含む制御対象を制御する。これにより、第1熱源装置は運転を行うことができる。また、制御装置6は、第2熱源装置の吐出温度センサ52の計測結果を得ることによって、容易且つ迅速に、第1熱源装置の圧縮機30の吐出側の冷媒の温度としての仮値を得ることができる。従って、制御装置6の処理量の抑制が図られる。
 実施の形態2に係るヒートポンプ装置100は、負荷装置4に対して並列接続された複数の熱源装置3を備える。制御装置6は、複数の熱源装置3のうちのいずれかの熱源装置3である第1熱源装置の吸入温度センサ53が故障した場合であって、複数の熱源装置3のうち、吐出温度センサ52および吸入温度センサ53が故障していない熱源装置3である第2熱源装置が、予め定められた特定の条件を満たす場合には、第2熱源装置の吸入温度センサ53による計測結果を仮値とし、第1熱源装置の吸入温度センサ53による計測結果に代え、仮値に基づいて、第1熱源装置における圧縮機30を含む制御対象を制御する。これにより、第1熱源装置は運転を行うことができる。また、制御装置6は、第2熱源装置の吸入温度センサ53の計測結果を得ることによって、容易且つ迅速に、第1熱源装置の圧縮機30の吸入側の冷媒の温度としての仮値を得ることができる。従って、制御装置6の処理量の抑制が図られる。
 実施の形態2における特定の条件は、第2熱源装置が運転しているという条件と、第1熱源装置および第2熱源装置の各々の能力が等しいという条件と、第1熱源装置および第2熱源装置の各々の圧縮機30の運転周波数が等しいという条件と、第1熱源装置および第2熱源装置の各々における圧縮機30の吐出側の冷媒の圧力が等しいという条件と、第1熱源装置および第2熱源装置の各々における圧縮機30の吸入側の冷媒の圧力が等しいという条件と、を含む。このため、第1熱源装置における冷媒の物理量は、特定の条件を満たす第2熱源装置の冷媒の物理量と近似できる。従って、制御装置6は、容易且つ迅速に、第1熱源装置の故障センサの計測結果に代わる仮値を精度良く得ることができる。
 実施の形態2における特定の条件は、第1熱源装置の吐出温度センサ52が故障していない場合には、第1熱源装置および第2熱源装置の各々における圧縮機30の吐出側の冷媒の温度が等しいという条件を含む。特定の条件は、第1熱源装置の吸入温度センサ53が故障していない場合には、第1熱源装置および第2熱源装置の各々における圧縮機30の吸入側の冷媒の温度が等しいという条件を含む。圧縮機30の吐出側の冷媒の温度と、吸入側の冷媒の温度は相関する。そのため、第1熱源装置の吐出温度センサ52が故障していても、第1熱源装置の圧縮機30の吐出側の冷媒の温度は、特定の条件を満たす第2熱源装置の吐出温度センサ52の計測値によって近似できる。また、第1熱源装置の吸入温度センサ53が故障していても、第1熱源装置の圧縮機30の吸入側の冷媒の温度は、特定の条件を満たす第2熱源装置の吸入温度センサ53の計測値によって近似できる。従って、制御装置6は、第1熱源装置の圧縮機30の吐出側または吸入側の冷媒の温度の仮値を、特定の条件を満たす第2熱源装置の吐出温度センサ52または吸入温度センサ53の計測結果から、精度良く、迅速且つ容易に得ることができる。
 実施の形態2における熱交換対象は外気である。複数の熱源装置3の各々は、熱交換対象を熱源熱交換器32に流通させる熱源送風機33を更に備える。制御対象は、熱源送風機33を更に含む。特定の条件は、第1熱源装置および第2熱源装置の各々の熱源送風機33の運転周波数が等しいという条件を更に含む。これにより、第1熱源装置における冷媒の物理量は、特定の条件を満たす第2熱源装置における冷媒の物理量に更に近似可能になる。よって、制御装置6は、特定の条件を満たす第2熱源装置の故障対応センサの計測結果に基づいて、第1熱源装置の圧縮機30の吐出側または吸入側の冷媒の温度の仮値を精度良く、迅速且つ容易に得ることが可能になる。
 実施の形態3.
 以下、実施の形態3に係るヒートポンプシステム200について説明する。なお、実施の形態3では、実施の形態1~実施の形態2における構成要素と同様の構成要素に対し、同一の符号を付すものとする。また、実施の形態3において、実施の形態1~実施の形態2における構成と同様の構成、および、実施の形態1~実施の形態2における機能と同様の機能等については、特段の事情がない限り説明を省略する。
 図14は、実施の形態3に係るヒートポンプシステム200の構成例を示す模式図である。実施の形態3に係るヒートポンプシステム200は、複数のヒートポンプ装置100と、管理システム7とを有する。実施の形態3に係る各ヒートポンプ装置100は、実施の形態1と同様であり、1つの熱源装置3と、1つの負荷装置4とを備える。なお、実施の形態3においても、ヒートポンプ装置100が空気調和機である場合を例に挙げる。
 複数のヒートポンプ装置100の全部は同時に同様の運転を行うものでもよい。すなわち、複数のヒートポンプ装置100の各々は同時に冷却運転を行ってもよいし、加熱運転を行ってもよい。あるいは、複数のヒートポンプ装置100は、一部が冷却運転を行うと同時に、残りが加熱運転を行うものでもよい。
 管理システム7は、例えば、クラウドサーバであってもよいし、機能が分散された複数のコンピュータの集合であってもよい。実施の形態3では、管理システム7は、複数のヒートポンプ装置100における複数の制御装置6と有線通信を行うものとするが、管理システム7は複数の制御装置6の全部または一部と無線通信を行うものでもよい。管理システム7は、各ヒートポンプ装置100の運転状態を示す情報と、センサ群による計測結果とを含む装置情報を各制御装置6から定期的に取得する。なお、運転状態を示す情報には、圧縮機30の運転周波数と、熱源送風機33の運転周波数と、負荷送風機41の運転周波数と、絞り装置42の開度とが含まれる。装置情報には、ヒートポンプ装置100が運転しているか否かを示す情報が含まれてもよい。装置情報は、ヒートポンプ装置100が運転中である場合にのみ、制御装置6から管理システム7に定期的に送信されてもよい。あるいは、装置情報は、ヒートポンプ装置100が運転しているか否かに関わらず、制御装置6から管理システム7に定期的に送信されてもよい。なお、ヒートポンプ装置100が空気調和機でない場合など、温度調節対象が空気でない場合には、運転状態を示す情報には、負荷送風機41の運転周波数が含まれない。また、熱交換対象が空気でない場合には、運転状態を示す情報には、熱源送風機33の運転周波数が含まれない。
 管理システム7は、各ヒートポンプ装置100における熱源温度センサが故障した場合には、特定の条件を満たすヒートポンプ装置100であって、熱源温度センサが故障していないヒートポンプ装置100における熱源温度センサの計測結果を、故障した熱源温度センサの計測結果に代わる仮値とする。以下では、吐出温度センサ52と吸入温度センサ53の両方または一方が故障したヒートポンプ装置100を第1ヒートポンプ装置と記載する場合もある。そして、吐出温度センサ52と吸入温度センサ53のいずれもが故障していないヒートポンプ装置100を第2ヒートポンプ装置と記載する場合もある。
 すなわち、管理システム7は、第1ヒートポンプ装置において吐出温度センサ52が故障している場合には、第2ヒートポンプ装置の吐出温度センサ52の計測結果を、第1ヒートポンプ装置の吐出温度センサ52の計測結果に代わる仮値とする。そして、管理システム7は、第1ヒートポンプ装置の制御装置6に当該仮値に基づく制御を実行させる。管理システム7は、第1ヒートポンプ装置において吸入温度センサ53が故障している場合には、第2ヒートポンプ装置の吸入温度センサ53の計測結果を、第1ヒートポンプ装置の吸入温度センサ53の計測結果に代わる仮値とする。そして、管理システム7は、第1ヒートポンプ装置の制御装置6に当該仮値に基づく制御を実行させる。
 実施の形態3における第1制御装置は、第1ヒートポンプ装置に設けられた制御装置6であるとする。また、実施の形態3における第2制御装置は、第2ヒートポンプ装置に設けられた制御装置6であるとする。実施の形態3における故障対応センサは、第1ヒートポンプ装置における故障センサが吐出温度センサ52である場合には、第2ヒートポンプ装置の吐出温度センサ52であり、第1ヒートポンプ装置における故障センサが吸入温度センサ53である場合には、第2ヒートポンプ装置の吸入温度センサ53である。実施の形態3における正常対応センサは、第1ヒートポンプ装置における正常温度センサが吐出温度センサ52である場合には、第2ヒートポンプ装置の吐出温度センサ52であり、第1ヒートポンプ装置における正常温度センサが吸入温度センサ53である場合には、第2ヒートポンプ装置の吸入温度センサ53である。
 実施の形態3の特定の条件は、以下の第1条件と第2条件と第3条件と第4条件と第5条件とを含む。実施の形態3の第1条件は、第2ヒートポンプ装置が運転状態にあるという条件である。実施の形態3の第2条件は、第1ヒートポンプ装置の能力と第2ヒートポンプ装置の能力とが等しいという条件である。また、第1ヒートポンプ装置の能力と第2ヒートポンプ装置の能力とが等しいとは、第1ヒートポンプ装置の能力と第2ヒートポンプ装置の能力との間の差分が、上記第1能力差以下であるという条件、または、第1ヒートポンプ装置または第2ヒートポンプ装置の能力に対する当該差分の割合が上記第1割合以下であるという条件である。
 実施の形態3の第3条件は、第1ヒートポンプ装置と第2ヒートポンプ装置の各々の圧縮機30の運転周波数が等しいという条件である。また、第1ヒートポンプ装置と第2ヒートポンプ装置の各々の圧縮機30の運転周波数が等しいとは、第1ヒートポンプ装置の圧縮機30の運転周波数と、第2ヒートポンプ装置の圧縮機30の運転周波数との差分が、第1ヒートポンプ装置または第2ヒートポンプ装置の圧縮機30の運転周波数の上記第2割合以下であることを指す。
 実施の形態3の第4条件は、第1装ヒートポンプ置と第2ヒートポンプ装置の各々の吐出圧力センサ50が計測した圧力が等しいという条件である。なお、第1ヒートポンプ装置と第2ヒートポンプ装置の各々の吐出圧力センサ50が計測した圧力が等しいとは、第1ヒートポンプ装置の吐出圧力センサ50が計測した圧力と、第2ヒートポンプ装置の吐出圧力センサ50が計測した圧力との差圧が、第1ヒートポンプ装置または第2ヒートポンプ装置の吐出圧力センサ50が計測した圧力の上記第3割合以下であることを指す。
 実施の形態3の第5条件は、第1ヒートポンプ装置と第2ヒートポンプ装置の各々の吸入圧力センサ51が計測した圧力が等しいという条件である。また、第1ヒートポンプ装置と第2ヒートポンプ装置の各々の吸入圧力センサ51が計測した圧力が等しいとは、第1ヒートポンプ装置の吸入圧力センサ51が計測した圧力と、第2ヒートポンプ装置の吸入圧力センサ51が計測した圧力との差圧が、第1ヒートポンプ装置または第2ヒートポンプ装置の吸入圧力センサ51が計測した圧力の上記第4割合以下であることを指す。
 実施の形態3の特定の条件は、更に、以下の第6条件を含んでもよい。実施の形態3の第6条件は、第1ヒートポンプ装置における正常温度センサが計測した温度と、第2ヒートポンプ装置の正常対応センサが計測した温度とが等しいという条件である。正常温度センサが計測した温度と、正常対応センサが計測した温度とが等しいとは、正常温度センサが計測した温度と、正常対応センサが計測した温度との差分が、正常温度センサまたは正常対応センサが計測した温度の上記第5割合以下であるという条件である。
 実施の形態3の特定の条件は、更に以下の第7条件を含む。第7条件とは、第1ヒートポンプ装置の運転モードと、第2ヒートポンプ装置の運転モードとが同一であるという条件である。
 実施の形態3に係るヒートポンプ装置100は、第1条件に代え、以下の第8条件を含んでもよい。第8条件とは、第1ヒートポンプ装置の型名と、第2ヒートポンプ装置の型名とが等しいという条件である。
 実施の形態3の特定の条件は、以下の第9条件を含んでもよい。第9条件は、第1ヒートポンプ装置の熱源熱交換器32に流入する熱交換対象の温度と、第2ヒートポンプ装置の熱源熱交換器32に流入する熱交換対象の温度との差分が、予め定められた第1温度差以下であるという条件である。第1温度差は、例えば1℃~3℃である。なお、特定の条件が第9条件を含む場合には、各ヒートポンプ装置100は、熱源熱交換器32に流入する熱交換対象の温度を計測する不図示の熱源対象温度センサを備える。
 実施の形態3の特定の条件は、各ヒートポンプ装置100が熱源送風機33を含む場合には、以下の第10条件を含んでもよい。第10条件とは、第1ヒートポンプ装置の熱源送風機33の運転周波数と、第2ヒートポンプ装置の熱源送風機33の運転周波数とが等しいという条件である。第1ヒートポンプ装置の熱源送風機33の運転周波数と、第2ヒートポンプ装置の熱源送風機33の運転周波数とが等しいとは、第1ヒートポンプ装置の熱源送風機33の運転周波数と、第2ヒートポンプ装置の熱源送風機33の運転周波数との差分が、第1ヒートポンプ装置または第2ヒートポンプ装置の熱源送風機33の運転周波数の第6割合以下であるという条件である。第6割合は、予め定められており、例えば5%~10%である。
 実施の形態3における第1ヒートポンプ装置による応急運転開始までの処理は、図2によって示され、図2に関する上記説明において制御装置6を第1制御装置に読み替えたものに相当する。
 図15は、実施の形態3における仮値の導出処理と、仮値に基づく制御処理との流れを示すフローチャートである。ステップS91において管理システム7は、第1ヒートポンプ装置が運転状態にあるか否かを判定する。なお、管理システム7は、第1制御装置からの装置情報に基づいて、第1ヒートポンプ装置が運転状態か否かを判定する。第1ヒートポンプ装置が停止状態にある場合には(ステップS91:NO)、管理システム7は仮値の導出処理を終了する。
 第1ヒートポンプ装置が運転状態にある場合には(ステップS91:YES)、ステップS92において第1制御装置は、制御対象の制御パラメータの値に制限を設ける。なお、第1制御装置は、管理システム7からの指示に基づいて、制御パラメータの値に制限を設けてもよい。ここで、ステップS92の処理は省かれてもよい。この場合には、第1制御装置および管理システム7は、ステップS91においてヒートポンプ装置100が運転状態にあると判定された場合にステップS93に処理を移す。
 ステップS93において第1制御装置は、故障センサの計測結果に代えて仮値に基づく制御が許可されているか否かを判定する。すなわち、第1制御装置は、応急運転モードが設定され、且つ、故障センサを示す情報が設定されているかを判定する。ステップS93において仮値に基づく制御が許可されていない場合には(ステップS93:NO)、ステップS94において第1制御装置は、管理システム7にエラー情報を送信する。このとき、第1制御装置は、第1ヒートポンプ装置のリモートコントローラを介して、ユーザにエラーを報知してもよい。ステップS94の処理後、ヒートポンプシステム200は処理を終了する。
 仮値に基づく制御が許可されている場合には(ステップS93:YES)、ステップS95において第1制御装置は、仮値に基づく制御が許可されていることを示す許可情報を管理システム7に送信し、管理システム7は許可情報を受信する。
 なお、仮値に基づく制御の許可設定は、管理システム7によって行われてもよい。すなわち、管理システム7が、各ヒートポンプ装置100のセンサ群の状態を示す情報を各制御装置6から随時取得し、いずれかのヒートポンプ装置100の吐出温度センサ52と吸入温度センサ53の両方または一方が故障した場合に、第1制御装置に応急運転の実行を指示するものでもよい。この場合には、ステップS93~ステップS95の処理は省かれてもよい。
 ステップS96において第1制御装置は、サービスマンなどによって仮値が設定されているか否かを判定する。仮値が設定されている場合には(ステップS96:YES)、ステップS97において第1制御装置は、仮値が設定されていることを示す仮値設定済み情報を管理システム7に送信し、管理システム7は、仮値設定済み情報を受信する。ステップS97の処理後、第1制御装置は処理をステップS103に移す。仮値が設定されていない場合には(ステップS96:NO)、ステップS98において第1制御装置は、仮値が設定されていないことを示す仮値未設定情報を管理システム7に送信し、管理システム7は、仮値未設定情報を受信する。なお、制御装置6は、サービスマンから仮値の設定を受け付けないものでもよく、この場合には、ステップS96~ステップS98の処理は省略されてもよい。
 ステップS99において管理システム7は、特定の条件を満たす第2ヒートポンプ装置があるか否かを判定する。特定の条件を満たす第2ヒートポンプ装置がない場合には(ステップS99:NO)、ステップS100において管理システム7は、個別導出処理を行うよう第1制御装置に指示を送信する。そして、第1制御装置は、図3~図8のいずれかに示す処理を実行して仮値を導出する。ステップS100の処理後、ヒートポンプシステム200は、処理をステップS103に移す。
 特定の条件を満たす第2ヒートポンプ装置がある場合には(ステップS99:YES)、ステップS101において管理システム7は、特定の条件を満たす第2ヒートポンプ装置の対応故障センサによる計測結果を仮値とする。ステップS102において管理システム7は、得られた仮値を第1制御装置に送信し、第1制御装置は仮値を受信する。ステップS103において第1制御装置は、正常センサによる計測結果と、仮値とに基づいて制御パラメータの値を導出する。ステップS104において第1制御装置は、得られた制御パラメータの値に基づいて制御対象を制御する。ステップS104の処理後、予め定められた周期時間の経過後にヒートポンプシステム200はステップS91に処理を戻す。
 図16は、実施の形態3における管理システム7による、特定の条件を満たす第2ヒートポンプ装置の有無の判定処理を例示するフローチャートである。なお、図16に示す処理は、実施の形態3におけるステップS99の処理に相当する。ここで、図16では、特定の条件に、第1条件~第7条件が含まれる場合を例に挙げている。ステップS111において管理システム7は、第1条件を満たす第2ヒートポンプ装置があるか否かを判定する。第1条件を満たす第2ヒートポンプ装置がない場合には(ステップS111:NO)、管理システム7はステップS100に処理を移す。第1条件を満たす第2ヒートポンプ装置がある場合には(ステップS111:YES)、ステップS112において管理システム7は、第2条件を満たす第2ヒートポンプ装置があるか否かを判定する。なお、ステップS111において第1条件を満たす第2ヒートポンプ装置がある場合には、管理システム7は当該第1条件を満たす第2ヒートポンプ装置を抽出する。ステップS112において管理システム7は、ステップS112以前の処理で抽出された1以上の第2ヒートポンプ装置の中から、第2条件を満たす第2ヒートポンプ装置があるかを判定する。第2条件を満たす第2ヒートポンプ装置がない場合には(ステップS112:NO)、管理システム7はステップS100に処理を移す。
 第2条件を満たす第2ヒートポンプ装置がある場合には(ステップS112:YES)、ステップS113において管理システム7は、第7条件を満たす第2ヒートポンプ装置があるか否かを判定する。なお、ステップS112において第2条件を満たす第2ヒートポンプ装置がある場合には、管理システム7は当該第2条件を満たす第2ヒートポンプ装置を抽出する。ステップS113において管理システム7は、ステップS113以前の処理で抽出された1以上の第2ヒートポンプ装置の中から、第7条件を満たす第2ヒートポンプ装置があるかを判定する。第7条件を満たす第2ヒートポンプ装置がない場合には(ステップS113:NO)、管理システム7はステップS100に処理を移す。
 第7条件を満たす第2熱源装置がある場合には(ステップS113:YES)、ステップS114において管理システム7は、第3条件を満たす第2ヒートポンプ装置があるか否かを判定する。なお、ステップS113において第7条件を満たす第2ヒートポンプ装置がある場合には、管理システム7当該第7条件を満たす第2ヒートポンプ装置を抽出する。ステップS114において管理システム7は、ステップS114以前の処理で抽出された1以上の第2ヒートポンプ装置の中から、第3条件を満たす第2ヒートポンプ装置があるかを判定する。第3条件を満たす第2ヒートポンプ装置がない場合には(ステップS114:NO)、管理システム7はステップS100に処理を移す。
 第3条件を満たす第2ヒートポンプ装置がある場合には(ステップS114:YES)、ステップS115において管理システム7は、第4条件を満たす第2ヒートポンプ装置があるか否かを判定する。なお、ステップS114において第3条件を満たす第2ヒートポンプ装置がある場合には、管理システム7は当該第3条件を満たす第2ヒートポンプ装置を抽出する。ステップS115において管理システム7は、ステップS115以前の処理で抽出された1以上の第2ヒートポンプ装置の中から、第4条件を満たす第2ヒートポンプ装置があるかを判定する。第4条件を満たす第2ヒートポンプ装置がない場合には(ステップS115:NO)、管理システム7はステップS100に処理を移す。
 第4条件を満たす第2ヒートポンプ装置がある場合には(ステップS115:YES)、ステップS116において管理システム7は、第5条件を満たす第2ヒートポンプ装置があるか否かを判定する。なお、ステップS115において第4条件を満たす第2ヒートポンプ装置がある場合には、管理システム7は当該第4条件を満たす第2ヒートポンプ装置を抽出する。ステップS116において管理システム7は、ステップS116以前の処理で抽出された1以上の第2ヒートポンプ装置の中から、第5条件を満たす第2ヒートポンプ装置があるかを判定する。第5条件を満たす第2ヒートポンプ装置がない場合には(ステップS116:NO)、管理システム7はステップS100に処理を移す。
 第5条件を満たす第2ヒートポンプ装置がある場合には(ステップS116:YES)、ステップS117において管理システム7は、第6条件を満たす第2ヒートポンプ装置があるか否かを判定する。なお、ステップS116において第5条件を満たす第2ヒートポンプ装置がある場合には、管理システム7は当該第5条件を満たす第2ヒートポンプ装置を抽出する。ステップS117において管理システム7は、ステップS117以前の処理で抽出された1以上の第2ヒートポンプ装置の中から、第6条件を満たす第2ヒートポンプ装置があるかを判定する。第6条件を満たす第2ヒートポンプ装置がない場合には(ステップS117:NO)、管理システム7はステップS100に処理を移す。第6条件を満たす第2ヒートポンプ装置がある場合には(ステップS117:YES)、管理システム7は、特定の条件を満たす第2ヒートポンプ装置があると判定し、ステップS101に処理を移す。
 なお、特定の条件に第6条件が含まれない場合には、図16においてステップSS117の処理は省かれる。そして、ステップS116において第5条件を満たす第2ヒートポンプ装置がある場合に、管理システム7は、ステップS101に処理を移す。
 ここで、図16に示す例では、管理システム7はステップS111からステップS117までの処理を順番に行っているが、管理システム7は、ステップS111~ステップS117の各処理を図16とは異なる順番で実行し、第1条件~第7条件を満たす第2ヒートポンプ装置を特定してもよい。
 図17は、実施の形態3に係る管理システム7のハードウェア構成を例示するブロック図である。なお、実施の形態3に係る制御装置6のハードウェア構成は、実施の形態2と同様に図13によって示される。管理システム7は、第2プロセッサ70と第2メモリ71と第2通信インターフェース回路72とによって構成可能である。第2プロセッサ70と第2メモリ71と第2通信インターフェース回路72とは、互いに第2バス73によって接続されている。第2プロセッサ70としては、例えば、CPUまたはMPU等が挙げられる。第2メモリ71としては、例えば、ROMまたはRAM等が挙げられる。管理システム7が仮値を導出する機能は、第2プロセッサ70が第2メモリ71に記憶されている応急運転プログラムなどの各種プログラムを読み出して実行することにより実現することができる。管理システム7が各制御装置6と通信する機能は、第2通信インターフェース回路72によって実現することができる。
 管理システム7は、機能が分散して設けられる場合には、複数の第2プロセッサ70と、複数の第2メモリ71と、複数の第2通信インターフェース回路72と、複数の第2バス73とによって構成可能である。各第2プロセッサ70と各第2メモリ71と各第2通信インターフェース回路72とは、各第2バス73に接続される。
 管理システム7による機能は、上述のように、ソフトウェアとハードウェアとの協働によって得られる以外に、専用のハードウェアによって得られてもよい。例えば、管理システム7の全部または一部は、CPLDまたはFPGA等のハードウェアによって構成されてもよい。
 以下、実施の形態3に係るヒートポンプシステム200による効果について述べる。実施の形態3に係るヒートポンプシステム200は、管理システム7と複数のヒートポンプ装置100とを有する。ヒートポンプ装置100は、冷媒回路1を循環する冷媒によって温度調節対象を冷却または加熱する。管理システム7は、複数のヒートポンプ装置100を管理するためのものである。ヒートポンプ装置100は、圧縮機30と熱源熱交換器32と絞り装置42と負荷熱交換器40とセンサ群と制御装置6とを備える。圧縮機30は冷媒を圧縮する。熱源熱交換器32は、冷媒を熱交換対象と熱交換させる。絞り装置42は、冷媒を減圧して膨張させる。負荷熱交換器40は、冷媒を温度調節対象と熱交換させる。センサ群は、冷媒回路1を流通する冷媒の物理量を計測する。制御装置6は、センサ群による計測結果に基づいて、圧縮機30含む制御対象を制御する。圧縮機30と熱源熱交換器32と絞り装置42と負荷熱交換器40とは冷媒回路1に含まれる。センサ群は、圧縮機30の吐出側または吸入側の冷媒の温度を計測する熱源温度センサを含む。管理システム7は、複数のヒートポンプ装置100のうちのいずれかのヒートポンプ装置100である第1ヒートポンプ装置の熱源温度センサが故障した場合であって、複数のヒートポンプ装置100のうち、熱源温度センサが故障していないヒートポンプ装置100である第2ヒートポンプ装置が、予め定められた特定の条件を満たす場合には、第2ヒートポンプ装置の熱源温度センサによる計測結果を、第1ヒートポンプ装置の熱源温度センサの計測結果に代わる仮値とする。そして、管理システム7は、第1ヒートポンプ装置における熱源温度センサによる計測結果に代え、仮値に基づいて、第1ヒートポンプ装置における制御対象を制御するよう、第1ヒートポンプ装置の制御装置6に指示する。
 上記構成によれば、管理システム7は、特定の条件を満たす第2ヒートポンプ装置の熱源温度センサの計測結果を、第1ヒートポンプ装置の熱源温度センサの計測結果に代わる仮値とする。そして、管理システム7は、第1ヒートポンプ装置の熱源温度センサの計測結果に代え、仮値に基づいて第1ヒートポンプ装置を制御するよう、第1ヒートポンプ装置の制御装置6に指示する。従って、ヒートポンプシステム200における各ヒートポンプ装置100は、熱源温度センサが故障した場合でも運転を行うことができる。
 実施の形態3におけるセンサ群は、吐出圧力センサ50と吸入圧力センサ51とを含む。吐出圧力センサ50は、圧縮機30の吐出側の冷媒の圧力を計測する。吸入圧力センサ51は、圧縮機30の吸入側の冷媒の圧力を計測する。実施の形態3の特定の条件は、第2ヒートポンプ装置が運転しているという条件と、第1ヒートポンプ装置および第2ヒートポンプ装置の各々の能力が等しいという条件と、第1ヒートポンプ装置および第2ヒートポンプ装置の各々の運転モードが等しいという条件と、第1ヒートポンプ装置および第2ヒートポンプ装置の各々の圧縮機30の運転周波数が等しいという条件と、第1ヒートポンプ装置および第2ヒートポンプ装置の各々における圧縮機30の吐出側の冷媒の圧力が等しいという条件と、第1ヒートポンプ装置および第2ヒートポンプ装置の各々における圧縮機30の吸入側の冷媒の圧力が等しいという条件とを含む。このため、第1ヒートポンプ装置の冷媒の状態は、特定の条件を満たす第2ヒートポンプ装置の冷媒の状態と近しいものとなり得る。すなわち、第1ヒートポンプ装置の冷媒の物理量は、特定の条件を満たす第2ヒートポンプ装置の冷媒の物理量に近似可能になり得る。従って、管理システム7は、第1ヒートポンプ装置の圧縮機30の吐出側または吸入側の冷媒の温度の仮値を、第2ヒートポンプ装置の熱源温度センサの計測結果から、容易且つ迅速に、精度良く得ることができる。また、管理システム7は、仮値に基づく制御を第1ヒートポンプ装置の制御装置6に指示するため、第1ヒートポンプ装置は運転を行うことが可能になる。
 実施の形態3におけるセンサ群は、吐出温度センサ52と吸入温度センサ53とを含む。なお、熱源温度センサは、吐出温度センサ52または吸入温度センサ53である。吐出温度センサ52は、圧縮機30の吐出側の冷媒の温度を計測する。吸入温度センサ53は、圧縮機30の吸入側の冷媒の温度を計測する。特定の条件は、第1ヒートポンプ装置の吐出温度センサ52が故障していない場合には、第1ヒートポンプ装置および第2ヒートポンプ装置の各々における圧縮機30の吐出側の冷媒の温度が等しいという条件を含む。特定の条件は、第1ヒートポンプ装置の吸入温度センサ53が故障していない場合には、第1ヒートポンプ装置および第2ヒートポンプ装置の各々における圧縮機30の吸入側の冷媒の温度が等しいという条件を含む。圧縮機30の吐出側の冷媒の温度と、吸入側の冷媒の温度は相関する。そのため、第1ヒートポンプ装置の吐出温度センサ52が故障していても、第1ヒートポンプ装置の圧縮機30の吐出側の冷媒の温度は、特定の条件を満たす第2ヒートポンプ装置の吐出温度センサ52の計測値によって近似できる。また、第1ヒートポンプ装置の吸入温度センサ53が故障していても、第1ヒートポンプ装置の圧縮機30の吸入側の冷媒の温度は、特定の条件を満たす第2ヒートポンプ装置の吸入温度センサ53の計測値によって近似できる。従って、管理システム7は、第1ヒートポンプ装置の圧縮機30の吐出側または吸入側の冷媒の温度の仮値を、特定の条件を満たす第2ヒートポンプ装置の吐出温度センサ52または吸入温度センサ53の計測結果から、精度良く、迅速且つ容易に得ることができる。
 実施の形態3における熱交換対象は外気である。複数のヒートポンプ装置100の各々は、熱交換対象を熱源熱交換器32に流通させる熱源送風機33を更に備える。制御対象は、熱源送風機33を更に含む。特定の条件は、第1ヒートポンプ装置および第2ヒートポンプ装置の各々の熱源送風機33の運転周波数が等しいという条件を更に含む。これにより、特定の条件を満たす第2ヒートポンプ装置における冷媒の状態は、第1ヒートポンプ装置における冷媒の状態に近いものになり、第1ヒートポンプ装置における冷媒の物理量は、特定の条件を満たす第2ヒートポンプ装置における冷媒の物理量に近似可能になる。従って、管理システム7は、第1ヒートポンプ装置の圧縮機30の吐出側または吸入側における冷媒の温度の仮値を精度良く得ることが可能になる。
 実施の形態4.
 以下、実施の形態4に係るヒートポンプシステム200について説明する。なお、実施の形態4では、実施の形態1~実施の形態3における構成要素と同様の構成要素に対し、同一の符号を付すものとする。また、実施の形態4において、実施の形態1~実施の形態3における構成と同様の構成、および、実施の形態1~実施の形態3における機能と同様の機能等については、特段の事情がない限り説明を省略する。
 実施の形態4に係るヒートポンプシステム200は、実施の形態3と同様に図14によって例示される。実施の形態4の制御装置6のハードウェア構成は、実施の形態2~実施の形態3と同様に図13によって例示される。実施の形態4の管理システム7のハードウェア構成は、実施の形態3と同様に図17によって例示される。
 実施の形態4における特定の条件は、実施の形態3における特定の条件から第1条件を省いた条件となる。実施の形態4では、管理システム7が各ヒートポンプ装置100から取得した装置情報を累積して記憶するものとする。以下では、蓄積された装置情報の集合を装置データベースと記載する場合もある。実施の形態4では、現時点において故障していても、故障していなかった時点での第1ヒートポンプ装置は、第2ヒートポンプ装置に含まれるものとする。
 実施の形態4における第1ヒートポンプ装置による応急運転開始までの処理は、図2によって示され、図2に関する上記説明において制御装置6を第1制御装置に読み替えたものに相当する。
 実施の形態4におけるヒートポンプシステム200による仮値の導出処理と、仮値に基づく制御処理との流れは、実施の形態3と同様に図15によって示される。ただし、実施の形態4では、図15のステップS99における処理は、特定の条件を満たす第2ヒートポンプ装置の装置情報が装置データベースにあるか否かの判定処理となる。そして、特定の条件を満たす第2ヒートポンプ装置の装置情報がない場合に(ステップS99:NO)、ステップS100において管理システム7は、個別導出処理を行うよう第1制御装置に指示を送信する。一方、特定の条件を満たす第2ヒートポンプ装置の装置情報がある場合には(ステップS99:YES)、ステップS101において管理システム7は、特定の条件を満たす第2ヒートポンプ装置の装置情報が含む、対応故障センサによる計測結果を仮値とする。
 図18は、実施の形態4における管理システム7による、特定の条件を満たす第2ヒートポンプ装置の装置情報の有無の判定処理の第1の例を示すフローチャートである。図18の処理は、実施の形態4におけるステップS99の処理に相当する。図18に示す例では、特定の条件に、第3条件~第5条件と、第7条件と、第9条件~第10条件とが含まれる場合を例に挙げている。
 ステップS121において管理システム7は、装置データベースに、第7条件を満たす第2ヒートポンプ装置の装置情報があるか否かを判定する。第7条件を満たす第2ヒートポンプ装置の装置情報がない場合には(ステップS121:NO)、ヒートポンプシステム200は、処理をステップS100に移す。第7条件を満たす第2ヒートポンプ装置の装置情報がある場合には(ステップS121:YES)、ステップS122において管理システム7は、第3条件を満たす第2ヒートポンプ装置の装置情報があるか否かを判定する。なお、ステップS121において第7条件を満たす第2ヒートポンプ装置の装置情報がある場合には、管理システム7は当該第7条件を満たす第2ヒートポンプ装置の装置情報を抽出する。ステップS122において管理システム7は、ステップS122以前の処理で抽出された装置情報の中から、第3条件を満たす第2ヒートポンプ装置の装置情報があるかを判定する。第3条件を満たす第2ヒートポンプ装置の装置情報がない場合には(ステップS122:NO)、ヒートポンプシステム200は、処理をステップS100に移す。
 第3条件を満たす第2ヒートポンプ装置の装置情報がある場合には(ステップS122:YES)、ステップS123において管理システム7は、第10条件を満たす第2ヒートポンプ装置の装置情報があるか否かを判定する。なお、ステップS122において第3条件を満たす第2ヒートポンプ装置の装置情報がある場合には、管理システム7は当該第3条件を満たす第2ヒートポンプ装置の装置情報を抽出する。ステップS123において管理システム7は、ステップS123以前の処理で抽出された装置情報の中から、第10条件を満たす第2ヒートポンプ装置の装置情報があるかを判定する。第10条件を満たす第2ヒートポンプ装置の運転データがない場合には(ステップS123:NO)、ヒートポンプシステム200は、処理をステップS100に移す。
 第10条件を満たす第2ヒートポンプ装置の運転データがある場合には(ステップS123:YES)、ステップS124において管理システム7は、第9条件を満たす第2ヒートポンプ装置の装置情報があるか否かを判定する。なお、ステップS123において第10条件を満たす第2ヒートポンプ装置の装置情報がある場合には、管理システム7は当該第10条件を満たす第2ヒートポンプ装置の装置情報を抽出する。ステップS124において管理システム7は、ステップS124以前の処理で抽出された装置情報の中から、第9条件を満たす第2ヒートポンプ装置の装置情報があるかを判定する。第9条件を満たす第2ヒートポンプ装置の装置情報がない場合には(ステップS124:NO)、ヒートポンプシステム200は、処理をステップS100に移す。
 第9条件を満たす第2ヒートポンプ装置の装置情報がある場合には(ステップS124:YES)、ステップS125において管理システム7は、第4条件を満たす正常ヒートポンプ装置の運転データがあるか否かを判定する。なお、ステップS124において第9条件を満たす第2ヒートポンプ装置の装置情報がある場合には、管理システム7は当該第9条件を満たす第2ヒートポンプ装置の装置情報を抽出する。ステップS125において管理システム7は、ステップS125以前の処理で抽出された装置情報の中から、第4条件を満たす第2ヒートポンプ装置の装置情報があるかを判定する。第4条件を満たす正常ヒートポンプ装置の装置情報がない場合には(ステップS125:NO)、ヒートポンプシステム200は、処理をステップS100に移す。
 第4条件を満たす第2ヒートポンプ装置の装置情報がある場合には(ステップS125:YES)、ステップS126において管理システム7は、第5条件を満たす第2ヒートポンプ装置の装置情報があるか否かを判定する。なお、ステップS125において第4条件を満たす第2ヒートポンプ装置の装置情報がある場合には、管理システム7は当該第4条件を満たす第2ヒートポンプ装置の装置情報を抽出する。ステップS126において管理システム7は、ステップS126以前の処理で抽出された装置情報の中から、第5条件を満たす第2ヒートポンプ装置の装置情報があるかを判定する。第5条件を満たす第2ヒートポンプ装置の装置情報がない場合には(ステップS126:NO)、ヒートポンプシステム200は、処理をステップS100に移す。
 第5条件を満たす第2ヒートポンプ装置の装置情報がある場合には(ステップS126:YES)、管理システム7は、特定の条件を満たす第2ヒートポンプ装置があると判定してステップS101に処理を移す。
 図18に示す例では、管理システム7はステップS121からステップS126までの処理を順番に行っているが、管理システム7は、ステップS121~ステップS126の処理を異なる順番で実行し、特定の条件を満たす第2ヒートポンプ装置の装置情報の有無を判定してもよい。
 図18では、特定の条件から第2条件および第8条件を省いた例を示したが、特定の条件には第2条件と第8条件の一方が含まれてもよい。特定の条件が第2条件および第8条件の一方を含む場合には、図18に示す処理に、第2条件および第8条件の一方を満たす第2ヒートポンプ装置の装置情報の有無を判定する処理が含まれる。なお、第2条件および第8条件の一方を満たす第2ヒートポンプ装置の装置情報の有無の判定処理は、当該判定処理以前の処理において抽出された装置情報において行われる。
 図18では、特定の条件から第6条件を省いた例を示したが、特定の条件には第6条件が含まれてもよい。この場合には、図18に示す処理に、第6条件を満たす第2ヒートポンプ装置の装置情報の有無を判定する処理が含まれる。なお、第6条件を満たす第2ヒートポンプ装置の装置情報の有無の判定処理は、当該判定処理以前の処理において抽出された装置情報において行われる。
 図19は、実施の形態4における管理システム7による特定の条件を満たす第2ヒートポンプ装置の装置情報の有無の判定処理の第2の例を示すフローチャートである。図19の処理も、図16および図18に示す処理と同様に、実施の形態3におけるステップS99の処理に相当する。なお、図19では、特定の条件に、第3条件~第10条件が含まれる場合を例に挙げている。
 ステップS131において管理システム7は、装置データベースに、第8条件を満たす第2ヒートポンプ装置の装置情報があるか否かを判定する。第8条件を満たす第2ヒートポンプ装置の装置情報がない場合には(ステップS131:NO)、ヒートポンプシステム200は、処理をステップS100に移す。第8条件を満たす第2ヒートポンプ装置の装置情報がある場合には(ステップS131:YES)、ステップS132において管理システム7は、第7条件を満たす正常ヒートポンプ装置の運転データがあるか否かを判定する。なお、ステップS131において第8条件を満たす第2ヒートポンプ装置の装置情報がある場合には、管理システム7は当該第8条件を満たす第2ヒートポンプ装置の装置情報を抽出する。ステップS132において管理システム7は、ステップS132以前の処理で抽出された装置情報の中から、第7条件を満たす第2ヒートポンプ装置の装置情報があるかを判定する。第7条件を満たす第2ヒートポンプ装置の装置情報がない場合には(ステップS132:NO)、ヒートポンプシステム200は、処理をステップS100に移す。
 第7条件を満たす第2ヒートポンプ装置の運転データがある場合には(ステップS132:YES)、ステップS133において管理システム7は、第3条件を満たす正常ヒートポンプ装置の運転データがあるか否かを判定する。なお、ステップS132において第7条件を満たす第2ヒートポンプ装置の装置情報がある場合には、管理システム7は当該第7条件を満たす第2ヒートポンプ装置の装置情報を抽出する。ステップS133において管理システム7は、ステップS133以前の処理で抽出された装置情報の中から、第3条件を満たす第2ヒートポンプ装置の装置情報があるかを判定する。第3条件を満たす正常ヒートポンプ装置の装置情報がない場合には(ステップS133:NO)、ヒートポンプシステム200は、処理をステップS100に移す。
 第3条件を満たす第2ヒートポンプ装置の装置情報がある場合には(ステップS133:YES)、ステップS134において管理システム7は、第10条件を満たす第2ヒートポンプ装置の装置情報があるか否かを判定する。なお、ステップS133において第3条件を満たす第2ヒートポンプ装置の装置情報がある場合には、管理システム7は当該第3条件を満たす第2ヒートポンプ装置の装置情報を抽出する。ステップS134において管理システム7は、ステップS134以前の処理で抽出された装置情報の中から、第10条件を満たす第2ヒートポンプ装置の装置情報があるかを判定する。第10条件を満たす第2ヒートポンプ装置の装置情報がない場合には(ステップS134:NO)、ヒートポンプシステム200は、処理をステップS100に移す。
 第10条件を満たす第2ヒートポンプ装置の装置情報がある場合には(ステップS134:YES)、ステップS135において管理システム7は、第9条件を満たす第2ヒートポンプ装置の装置情報があるか否かを判定する。なお、ステップS134において第10条件を満たす第2ヒートポンプ装置の装置情報がある場合には、管理システム7は当該第10条件を満たす第2ヒートポンプ装置の装置情報を抽出する。ステップS135において管理システム7は、ステップS135以前の処理で抽出された装置情報の中から、第9条件を満たす第2ヒートポンプ装置の装置情報があるかを判定する。第9条件を満たす際2ヒートポンプ装置の装置情報がない場合には(ステップS135:NO)、ヒートポンプシステム200は、処理をステップS100に移す。
 第9条件を満たす第2ヒートポンプ装置の装置情報がある場合には(ステップS135:YES)、ステップS136において管理システム7は、第4条件を満たす第2ヒートポンプ装置の装置情報があるか否かを判定する。なお、ステップS135において第9条件を満たす第2ヒートポンプ装置の装置情報がある場合には、管理システム7は当該第9条件を満たす第2ヒートポンプ装置の装置情報を抽出する。ステップS136において管理システム7は、ステップS136以前の処理で抽出された装置情報の中から、第4条件を満たす第2ヒートポンプ装置の装置情報があるかを判定する。第4条件を満たす第2ヒートポンプ装置の装置情報がない場合には(ステップS136:NO)、ヒートポンプシステム200は、処理をステップS100に移す。
 第4条件を満たす第2ヒートポンプ装置の装置情報がある場合には(ステップS136:YES)、ステップS137において管理システム7は、第5条件を満たす第2ヒートポンプ装置の装置情報があるか否かを判定する。なお、ステップS136において第4条件を満たす第2ヒートポンプ装置の装置情報がある場合には、管理システム7は当該第4条件を満たす第2ヒートポンプ装置の装置情報を抽出する。ステップS137において管理システム7は、ステップS137以前の処理で抽出された装置情報の中から、第5条件を満たす第2ヒートポンプ装置の装置情報があるかを判定する。第5条件を満たす第2ヒートポンプ装置の装置情報がない場合には(ステップS137:NO)、ヒートポンプシステム200は、処理をステップS100に移す。
 第5条件を満たす第2ヒートポンプ装置の装置情報がある場合には(ステップS137:YES)、ステップS138において管理システム7は、第6条件を満たす第2ヒートポンプ装置の装置情報があるか否かを判定する。なお、ステップS137において第5条件を満たす第2ヒートポンプ装置の装置情報がある場合には、管理システム7は当該第5条件を満たす第2ヒートポンプ装置の装置情報を抽出する。ステップS138において管理システム7は、ステップS138以前の処理で抽出された装置情報の中から、第6条件を満たす第2ヒートポンプ装置の装置情報があるかを判定する。第6条件を満たす第2ヒートポンプ装置の装置情報がない場合には(ステップS138:NO)、ヒートポンプシステム200は、処理をステップS100に移す。
 第6条件を満たす第2ヒートポンプ装置の装置情報がある場合には(ステップS138:YES)、管理システム7は、特定の条件を満たす第2ヒートポンプ装置の装置情報があると判定してステップS101に処理を移す。
 なお、特定の条件に第6条件が含まれない場合には、図19においてステップS138の処理は省かれる。そして、管理システム7は、ステップS137において、第5条件を満たす第2ヒートポンプ装置の装置情報があると判定した場合に、処理をステップS101に移す。
 図19では、特定の条件に第8条件が含まれる例を示したが、特定の条件には、第8条件に代えて第2条件が含まれてもよい。この場合におけるステップS131の処理は、第8条件に代えて第2条件を満たす第2ヒートポンプ装置の装置情報が装置データベースにあるか否かを管理システム7が判定する処理となる。
 図19に示す例では、管理システム7はステップS131からステップS138までの処理を順番に行っているが、管理システム7は、ステップS131~ステップS138の処理を異なる順番で実行してもよい。
 以下、実施の形態4に係るヒートポンプシステム200による効果について述べる。実施の形態4に係るヒートポンプシステム200は、管理システム7と、複数のヒートポンプ装置100とを有する。ヒートポンプ装置100は、冷媒回路1を循環する冷媒によって温度調節対象を冷却または加熱する。管理システム7は、複数のヒートポンプ装置100を管理するためのものである。ヒートポンプ装置100は、圧縮機30と熱源熱交換器32と絞り装置42と負荷熱交換器40とセンサ群と制御装置6とを備える。圧縮機30は冷媒を圧縮する。熱源熱交換器32は、冷媒を熱交換対象と熱交換させる。絞り装置42は、冷媒を減圧して膨張させる。負荷熱交換器40は、冷媒を温度調節対象と熱交換させる。センサ群は、冷媒回路1を流通する冷媒の物理量を計測する。制御装置6は、センサ群による計測結果に基づいて、圧縮機30を含む制御対象を制御する。圧縮機30と熱源熱交換器32と絞り装置42と負荷熱交換器40とは冷媒回路1に含まれる。センサ群は、圧縮機30の吐出側または吸入側の冷媒の温度を計測する熱源温度センサを含む。管理システム7は、複数のヒートポンプ装置100の各々の運転状態を示す情報と、複数のヒートポンプ装置100の各々のセンサ群による計測結果とを含む装置情報を、複数のヒートポンプ装置100の各々から定期的に取得する。そして、管理システム7は、取得した装置情報を蓄積した装置データベースを記憶する。管理システム7は、複数のヒートポンプ装置100のうちのいずれかのヒートポンプ装置100である第1ヒートポンプ装置の熱源温度センサが故障した場合には、複数のヒートポンプ装置100のうち、熱源温度センサが故障していないヒートポンプ装置100である第2ヒートポンプ装置であって、予め定められた特定の条件を満たす第2ヒートポンプ装置からの装置情報に示される熱源温度センサによる計測結果を、第1ヒートポンプ装置の熱源温度センサによる計測結果に代わる仮値とする。管理システム7は、第1ヒートポンプ装置における熱源温度センサによる計測結果に代え、仮値に基づいて、第1ヒートポンプ装置における制御対象を制御するよう、第1ヒートポンプ装置の制御装置6に指示を行う。
 上記構成によれば、管理システム7は、特定の条件を満たす第2ヒートポンプ装置からの装置情報が示す熱源温度センサの計測結果を、第1ヒートポンプ装置の熱源温度センサの計測結果に代わる仮値とする。そして、管理システム7は、第1ヒートポンプ装置の熱源温度センサの計測結果に代え、仮値に基づいて第1ヒートポンプ装置を制御するよう、第1ヒートポンプ装置の制御装置6に指示する。従って、ヒートポンプシステム200における各ヒートポンプ装置100は、熱源温度センサが故障した場合でも運転を行うことができる。
 実施の形態4におけるセンサ群は、吐出圧力センサ50と吸入圧力センサ51とを含む。吐出圧力センサ50は、圧縮機30の吐出側の冷媒の圧力を計測する。吸入圧力センサ51は、圧縮機30の吸入側の冷媒の圧力を計測する。特定の条件は、第1ヒートポンプ装置および第2ヒートポンプ装置の各々の能力が等しいという条件と、第1ヒートポンプ装置および第2ヒートポンプ装置の各々の運転モードが等しいという条件と、第1ヒートポンプ装置および第2ヒートポンプ装置の各々の圧縮機30の運転周波数と等しいという条件と、第1ヒートポンプ装置および第2ヒートポンプ装置の各々の圧縮機30の吐出側の冷媒の圧力が等しいという条件と、第1ヒートポンプ装置および第2ヒートポンプ装置の各々の圧縮機30の吸入側の冷媒の圧力が等しいという条件とを含む。このため、第1ヒートポンプ装置の冷媒の状態は、特定の条件を満たす第2ヒートポンプ装置の冷媒の状態と近しいものとなり得る。すなわち、第1ヒートポンプ装置の冷媒の物理量は、特定の条件を満たす第2ヒートポンプ装置の冷媒の物理量に近似可能になり得る。従って、管理システム7は、第1ヒートポンプ装置の圧縮機30の吐出側または吸入側の冷媒の温度の仮値を、特定の条件を満たす第2ヒートポンプ装置からの装置情報が示す熱源温度センサの計測結果から、容易且つ迅速に、精度良く得ることができる。また、管理システム7は、仮値に基づく制御を第1ヒートポンプ装置の制御装置6に指示するため、第1ヒートポンプ装置は運転を行うことが可能になる。
 実施の形態4におけるセンサ群は、吐出圧力センサ50と吸入圧力センサ51とを含む。吐出圧力センサ50は、圧縮機30の吐出側の冷媒の圧力を計測する。吸入圧力センサ51は、圧縮機30の吸入側の冷媒の圧力を計測する。装置データベースは、複数のヒートポンプ装置100の各々の型名を含む。特定の条件は、第1ヒートポンプ装置と第2ヒートポンプ装置の各々の型名が等しいという条件と、第1ヒートポンプ装置および第2ヒートポンプ装置の各々の運転モードが等しいという条件と、第1ヒートポンプ装置および第2ヒートポンプ装置の各々の圧縮機30の運転周波数と等しいという条件と、第1ヒートポンプ装置および第2ヒートポンプ装置の各々の圧縮機30の吐出側の冷媒の圧力が等しいという条件と、第1ヒートポンプ装置および第2ヒートポンプ装置の各々の圧縮機30の吸入側の冷媒の圧力が等しいという条件とを含む。このため、第1ヒートポンプ装置の冷媒の状態は、特定の条件を満たす第2ヒートポンプ装置の冷媒の状態と近しいものとなり得る。すなわち、第1ヒートポンプ装置の冷媒の物理量は、特定の条件を満たす第2ヒートポンプ装置の冷媒の物理量に近似可能になり得る。従って、管理システム7は、第1ヒートポンプ装置の圧縮機30の吐出側または吸入側の冷媒の温度の仮値を、特定の条件を満たす第2ヒートポンプ装置からの装置情報が示す熱源温度センサの計測結果から、容易且つ迅速に、精度良く得ることができる。また、管理システム7は、仮値に基づく制御を第1ヒートポンプ装置の制御装置6に指示するため、第1ヒートポンプ装置は運転を行うことが可能になる。
 実施の形態4におけるセンサ群は、熱源熱交換器32に流入する熱交換対象の温度を計測する熱源対象温度センサを含む。特定の条件は、第1ヒートポンプ装置および第2ヒートポンプ装置の各々の熱源熱交換器32に流入する熱交換対象の温度が等しいという条件を含む。これにより、特定の条件を満たす第2ヒートポンプ装置からの装置情報が限定されるため、管理システム7は、当該装置情報を装置データベースにおいて探索する際の処理量を低減することができる。また、第1ヒートポンプ装置および第2ヒートポンプ装置の各々の熱源熱交換器32に流入する熱交換対象の温度が等しいことから、第1ヒートポンプ装置の冷媒の物理量は、特定の条件を満たす第2ヒートポンプ装置の冷媒の物理量に近似可能になり得る。従って、管理システム7は、第1ヒートポンプ装置の圧縮機30の吐出側または吸入側の冷媒の温度の仮値を、特定の条件を満たす第2ヒートポンプ装置からの装置情報が示す熱源温度センサの計測結果から、容易且つ迅速に、精度良く得ることができる。また、管理システム7は、仮値に基づく制御を第1ヒートポンプ装置の制御装置6に指示するため、第1ヒートポンプ装置は運転を行うことが可能になる。
 実施の形態1~実施の形態4に例示したヒートポンプ装置100は、冷媒と温度調節対象とを熱交換させることによって温度調節対象の温度を調節するものであったが、ヒートポンプ装置100は、水またはブライン等の熱媒体と温度調節対象とを熱交換させることによって、温度調節対象の温度を調節するものでもよい。この場合には、図1、図10、図14における負荷熱交換器40は、熱媒体と冷媒とを熱交換するプレート式熱交換器などの熱媒体熱交換器に置き換えられる。また、熱媒体熱交換器は、熱媒体配管によって、ポンプなどの循環装置と、負荷熱交換器40とに接続され、熱媒体回路が構成される。なお、この場合には、熱源装置3の外郭を形成する筐体内に絞り装置42と熱媒体熱交換器が配置されてもよい。
 以上、実施の形態について説明したが、本開示の内容は、実施の形態に限定されるものではなく、想定しうる均等の範囲を含む。また、実施の形態1~実施の形態4で説明した構成およびその変形例は、機能及び動作を阻害しない範囲で、互いに組み合わせることができる。
 1 冷媒回路、2 冷媒配管、3 熱源装置、4 負荷装置、6 制御装置、7 管理システム、30 圧縮機、31 流路切替装置、32 熱源熱交換器、33 熱源送風機、33A 熱源ファンモータ、33B 熱源ファン、34 アキュムレータ、40 負荷熱交換器、41 負荷送風機、41A 負荷ファンモータ、41B 負荷ファン、42  絞り装置、50 吐出圧力センサ、51 吸入圧力センサ、52 吐出温度センサ、53 吸入温度センサ、54 第1負荷温度センサ、55 第2負荷温度センサ、56 負荷対象温度センサ、60 第1プロセッサ、61 第1メモリ、62 入出力インターフェース回路、63 第1バス、64 第1通信インターフェース回路、70 第2プロセッサ、71 第2メモリ、72 第2通信インターフェース回路、73 第2バス、100 ヒートポンプ装置、200 ヒートポンプシステム。

Claims (20)

  1.  冷媒回路を循環する冷媒によって温度調節対象を冷却または加熱するヒートポンプ装置であって、
     前記温度調節対象と前記冷媒とを熱交換させる負荷熱交換器を備える負荷装置と、
     前記負荷熱交換器に流通する前記冷媒の温度を調節する熱源装置と、
     前記冷媒を減圧して膨張させる絞り装置と、
     前記冷媒回路を流通する前記冷媒の物理量を計測するセンサ群と、
     を有し、
     前記熱源装置は、
     前記冷媒を圧縮する圧縮機と、
     前記冷媒を熱交換対象と熱交換させる熱源熱交換器と、
     を備え、
     前記圧縮機と前記熱源熱交換器と前記絞り装置と前記負荷熱交換器とは、前記冷媒回路に含まれ、
     前記センサ群は、
     前記圧縮機の吐出側の前記冷媒の圧力を計測する吐出圧力センサと、
     前記圧縮機の吸入側の前記冷媒の圧力を計測する吸入圧力センサと、
     前記圧縮機の吐出側の前記冷媒の温度を計測する吐出温度センサと、
     前記圧縮機の吸入側の前記冷媒の温度を計測する吸入温度センサと、
     前記負荷熱交換器に流入する前記温度調節対象の温度を計測する負荷対象温度センサと、
     を含み、
     前記吐出圧力センサと前記吸入圧力センサと前記吐出温度センサと前記吸入温度センサとは、前記熱源装置に設けられ、
     前記負荷対象温度センサは、前記負荷装置に設けられ、
     前記ヒートポンプ装置は、更に、
     前記センサ群による計測結果に基づいて、前記圧縮機を含む制御対象を制御する制御装置を有し、
     前記制御装置は、
     前記吐出温度センサと前記吸入温度センサのうちの一方が故障した場合には、前記吐出温度センサと前記吸入温度センサのうちの他方と、前記吐出圧力センサと、前記吸入圧力センサと、前記負荷対象温度センサのうちの少なくともいずれかによる計測結果に基づいて仮値を導出し、前記吐出温度センサと前記吸入温度センサのうちの一方による計測結果に代え、前記仮値に基づいて前記制御対象を制御する、ヒートポンプ装置。
  2.  前記制御装置は、
     前記冷媒回路の各位置における前記冷媒の圧力とエンタルピーとの関係を示すモリエール情報を記憶し、
     前記モリエール情報に基づいて前記仮値を導出する、請求項1に記載のヒートポンプ装置。
  3.  前記制御装置は、
     前記吸入温度センサが故障した場合には、前記冷媒を蒸発させる蒸発器として機能する前記熱源熱交換器または前記負荷熱交換器における前記冷媒の蒸発温度を、前記吸入圧力センサによる計測結果に基づいて導出し、前記蒸発器として機能する前記熱源熱交換器または前記負荷熱交換器における前記冷媒の吸熱量に対応する吸熱温度と、前記蒸発温度とに基づいて前記仮値を導出し、前記吸入温度センサによる計測結果に代え、前記仮値に基づいて前記制御対象を制御する、請求項1に記載のヒートポンプ装置。
  4.  前記吸熱温度は、予め設定されたもの、または、前記制御装置が前記圧縮機の運転周波数に基づいて定めるものである、請求項3に記載のヒートポンプ装置。
  5.  前記制御装置は、
     前記吐出温度センサが故障した場合には、前記冷媒を凝縮させる凝縮器として機能する前記熱源熱交換器または前記負荷熱交換器における前記冷媒の凝縮温度を、前記吐出圧力センサによる計測結果に基づいて導出し、前記凝縮器として機能する前記熱源熱交換器または前記負荷熱交換器における前記冷媒の放熱量に対応する放熱温度と、前記凝縮温度とに基づいて前記仮値を導出し、前記吐出温度センサによる計測結果に代え、前記仮値に基づいて前記制御対象を制御する、請求項1、請求項3および請求項4のいずれか一項に記載のヒートポンプ装置。
  6.  前記制御装置は、
     前記吐出温度センサが故障した場合には、前記負荷対象温度センサによる計測結果と、前記負荷熱交換器での前記冷媒の放熱量に対応する放熱温度とに基づいて前記仮値を導出し、前記吐出温度センサによる計測結果に代え、前記仮値に基づいて前記制御対象を制御する、請求項1、請求項3および請求項4のいずれか一項に記載のヒートポンプ装置。
  7.  前記放熱温度は、予め設定されたもの、または、前記制御装置が前記圧縮機の運転周波数に基づいて定めるものである、請求項5または請求項6に記載のヒートポンプ装置。
  8.  前記ヒートポンプ装置は、
     前記負荷装置に対して並列接続された複数の前記熱源装置を有し、
     前記制御装置は、
     前記複数の熱源装置のうちのいずれかの前記熱源装置である第1熱源装置の前記吐出温度センサが故障した場合であって、前記複数の熱源装置のうち、前記吐出温度センサおよび前記吸入温度センサが故障していない前記熱源装置である第2熱源装置が、予め定められた特定の条件を満たす場合には、前記第2熱源装置の前記吐出温度センサによる計測結果を前記仮値とし、前記第1熱源装置の前記吐出温度センサによる計測結果に代え、前記仮値に基づいて、前記第1熱源装置における前記圧縮機を含む前記制御対象を制御する、請求項1~請求項7のいずれか一項に記載のヒートポンプ装置。
  9.  前記ヒートポンプ装置は、
     前記負荷装置に対して並列接続された複数の前記熱源装置を備え、
     前記制御装置は、
     前記複数の熱源装置のうちのいずれかの前記熱源装置である第1熱源装置の前記吸入温度センサが故障した場合であって、前記複数の熱源装置のうち、前記吐出温度センサおよび前記吸入温度センサが故障していない前記熱源装置である第2熱源装置が、予め定められた特定の条件を満たす場合には、前記第2熱源装置の前記吸入温度センサによる計測結果を前記仮値とし、前記第1熱源装置の前記吸入温度センサによる計測結果に代え、前記仮値に基づいて、前記第1熱源装置における前記圧縮機を含む前記制御対象を制御する、請求項1~請求項7のいずれか一項に記載のヒートポンプ装置。
  10.  前記特定の条件は、
     前記第2熱源装置が運転しているという条件と、
     前記第1熱源装置および前記第2熱源装置の各々の能力が等しいという条件と、
     前記第1熱源装置および前記第2熱源装置の各々の前記圧縮機の運転周波数が等しいという条件と、
     前記第1熱源装置および前記第2熱源装置の各々における前記圧縮機の吐出側の前記冷媒の圧力が等しいという条件と、
     前記第1熱源装置および前記第2熱源装置の各々における前記圧縮機の吸入側の前記冷媒の圧力が等しいという条件と、
     を含む請求項8または請求項9に記載のヒートポンプ装置。
  11.  前記特定の条件は、
     前記第1熱源装置の前記吐出温度センサが故障していない場合には、前記第1熱源装置および前記第2熱源装置の各々における前記圧縮機の吐出側の前記冷媒の温度が等しいという条件を含み、
     前記第1熱源装置の前記吸入温度センサが故障していない場合には、前記第1熱源装置および前記第2熱源装置の各々における前記圧縮機の吸入側の前記冷媒の温度が等しいという条件を含む、請求項10に記載のヒートポンプ装置。
  12.  前記制御装置は、
     前記吐出温度センサと前記吸入温度センサのうち、故障したいずれかを示す故障情報が設定された場合に、前記故障情報が示す前記吐出温度センサと前記吸入温度センサとのうちいずれかによる計測結果に代え、前記仮値に基づいて前記制御対象を制御する、請求項1~請求項11のいずれか一項に記載のヒートポンプ装置。
  13.  冷媒回路を循環する冷媒によって温度調節対象を冷却または加熱するヒートポンプ装置を複数有し、且つ、複数の前記ヒートポンプ装置を管理するための管理システムを有するヒートポンプシステムであって、
     前記ヒートポンプ装置は、
     前記冷媒を圧縮する圧縮機と、
     前記冷媒を熱交換対象と熱交換させる熱源熱交換器と、
     前記冷媒を減圧して膨張させる絞り装置と、
     前記冷媒を前記温度調節対象と熱交換させる負荷熱交換器と、
     前記冷媒回路を流通する前記冷媒の物理量を計測するセンサ群と、
     前記センサ群による計測結果に基づいて、前記圧縮機を含む制御対象を制御する制御装置と、
     を備え、
     前記圧縮機と前記熱源熱交換器と前記絞り装置と前記負荷熱交換器とは前記冷媒回路に含まれ、
     前記センサ群は、
     前記圧縮機の吐出側または吸入側の前記冷媒の温度を計測する熱源温度センサを含み、
     前記管理システムは、
     前記複数のヒートポンプ装置のうちのいずれかの前記ヒートポンプ装置である第1ヒートポンプ装置の前記熱源温度センサが故障した場合であって、前記複数のヒートポンプ装置のうち、前記熱源温度センサが故障していない前記ヒートポンプ装置である第2ヒートポンプ装置が、予め定められた特定の条件を満たす場合には、前記第2ヒートポンプ装置の前記熱源温度センサによる計測結果を、前記第1ヒートポンプ装置の前記熱源温度センサの計測結果に代わる仮値とし、前記第1ヒートポンプ装置における前記熱源温度センサによる計測結果に代え、前記仮値に基づいて、前記第1ヒートポンプ装置における前記制御対象を制御するよう、前記第1ヒートポンプ装置の前記制御装置に指示する、ヒートポンプシステム。
  14.  前記センサ群は、
     前記圧縮機の吐出側の前記冷媒の圧力を計測する吐出圧力センサと、
     前記圧縮機の吸入側の前記冷媒の圧力を計測する吸入圧力センサと、
     を含み、
     前記特定の条件は、
     前記第2ヒートポンプ装置が運転しているという条件と、
     前記第1ヒートポンプ装置および前記第2ヒートポンプ装置の各々の能力が等しいという条件と、
     前記第1ヒートポンプ装置および前記第2ヒートポンプ装置の各々の運転モードが等しいという条件と、
     前記第1ヒートポンプ装置および前記第2ヒートポンプ装置の各々の前記圧縮機の運転周波数が等しいという条件と、
     前記第1ヒートポンプ装置および前記第2ヒートポンプ装置の各々における前記圧縮機の吐出側の前記冷媒の圧力が等しいという条件と、
     前記第1ヒートポンプ装置および前記第2ヒートポンプ装置の各々における前記圧縮機の吸入側の前記冷媒の圧力が等しいという条件と、
     を含む請求項13に記載のヒートポンプシステム。
  15.  冷媒回路を循環する冷媒によって温度調節対象を冷却または加熱するヒートポンプ装置を複数有し、且つ、複数の前記ヒートポンプ装置を管理するための管理システムを有するヒートポンプシステムであって、
     前記ヒートポンプ装置は、
     前記冷媒を圧縮する圧縮機と、
     前記冷媒を熱交換対象と熱交換させる熱源熱交換器と、
     前記冷媒を減圧して膨張させる絞り装置と、
     前記冷媒を前記温度調節対象と熱交換させる負荷熱交換器と、
     前記冷媒回路を流通する前記冷媒の物理量を計測するセンサ群と、
     前記センサ群による計測結果に基づいて、前記圧縮機を含む制御対象を制御する制御装置と、
     を備え、
     前記圧縮機と前記熱源熱交換器と前記絞り装置と前記負荷熱交換器とは前記冷媒回路に含まれ、
     前記センサ群は、
     前記圧縮機の吐出側または吸入側の前記冷媒の温度を計測する熱源温度センサを含み、
     前記管理システムは、
     前記複数のヒートポンプ装置の各々の運転状態を示す情報と、前記複数のヒートポンプ装置の各々の前記センサ群による計測結果とを含む装置情報を、前記複数のヒートポンプ装置の各々から定期的に取得し、取得した前記装置情報を蓄積した装置データベースを記憶し、
     前記複数のヒートポンプ装置のうちのいずれかの前記ヒートポンプ装置である第1ヒートポンプ装置の前記熱源温度センサが故障した場合には、前記複数のヒートポンプ装置のうち、前記熱源温度センサが故障していない前記ヒートポンプ装置である第2ヒートポンプ装置であって、予め定められた特定の条件を満たす前記第2ヒートポンプ装置からの前記装置情報に示される前記熱源温度センサによる計測結果を、前記第1ヒートポンプ装置の前記熱源温度センサによる計測結果に代わる仮値とし、
     前記第1ヒートポンプ装置における前記熱源温度センサによる計測結果に代え、前記仮値に基づいて、前記第1ヒートポンプ装置における前記制御対象を制御するよう、前記第1ヒートポンプ装置の前記制御装置に指示を行う、ヒートポンプシステム。
  16.  前記センサ群は、
     前記圧縮機の吐出側の前記冷媒の圧力を計測する吐出圧力センサと、
     前記圧縮機の吸入側の前記冷媒の圧力を計測する吸入圧力センサと、
     を含み、
     前記特定の条件は、
     前記第1ヒートポンプ装置および前記第2ヒートポンプ装置の各々の能力が等しいという条件と、
     前記第1ヒートポンプ装置および前記第2ヒートポンプ装置の各々の運転モードが等しいという条件と、
     前記第1ヒートポンプ装置および前記第2ヒートポンプ装置の各々の前記圧縮機の運転周波数が等しいという条件と、
     前記第1ヒートポンプ装置および前記第2ヒートポンプ装置の各々の前記圧縮機の吐出側の前記冷媒の圧力が等しいという条件と、
     前記第1ヒートポンプ装置および前記第2ヒートポンプ装置の各々の前記圧縮機の吸入側の前記冷媒の圧力が等しいという条件と、
     を含む請求項15に記載のヒートポンプシステム。
  17.  前記センサ群は、
     前記圧縮機の吐出側の前記冷媒の圧力を計測する吐出圧力センサと、
     前記圧縮機の吸入側の前記冷媒の圧力を計測する吸入圧力センサと、
     を含み、
     前記装置データベースは、前記複数のヒートポンプ装置の各々の型名を含み、
     前記特定の条件は、
     前記第1ヒートポンプ装置と前記第2ヒートポンプ装置の各々の型名が等しいという条件と、
     前記第1ヒートポンプ装置および前記第2ヒートポンプ装置の各々の運転モードが等しいという条件と、
     前記第1ヒートポンプ装置および前記第2ヒートポンプ装置の各々の前記圧縮機の運転周波数が等しいという条件と、
     前記第1ヒートポンプ装置および前記第2ヒートポンプ装置の各々の前記圧縮機の吐出側の前記冷媒の圧力が等しいという条件と、
     前記第1ヒートポンプ装置および前記第2ヒートポンプ装置の各々の前記圧縮機の吸入側の前記冷媒の圧力が等しいという条件と、
     を含む請求項15に記載のヒートポンプシステム。
  18.  前記センサ群は、
     前記熱源熱交換器に流入する前記熱交換対象の温度を計測する熱源対象温度センサを含み、
     前記特定の条件は、
     前記第1ヒートポンプ装置および前記第2ヒートポンプ装置の各々の前記熱源熱交換器に流入する前記熱交換対象の温度が等しいという条件を含む、請求項15~請求項17のいずれか一項に記載のヒートポンプシステム。
  19.  前記センサ群は、
     前記圧縮機の吐出側の前記冷媒の温度を計測する吐出温度センサと、
     前記圧縮機の吸入側の前記冷媒の温度を計測する吸入温度センサと、
     を含み、
     前記熱源温度センサは、前記吐出温度センサまたは前記吸入温度センサであって、
     前記特定の条件は、
     前記第1ヒートポンプ装置の前記吐出温度センサが故障していない場合には、前記第1ヒートポンプ装置および前記第2ヒートポンプ装置の各々における前記圧縮機の吐出側の前記冷媒の温度が等しいという条件を含み、
     前記第1ヒートポンプ装置の前記吸入温度センサが故障していない場合には、前記第1ヒートポンプ装置および前記第2ヒートポンプ装置の各々における前記圧縮機の吸入側の前記冷媒の温度が等しいという条件を含む、請求項14、および請求項16~請求項18のいずれか一項に記載のヒートポンプシステム。
  20.  前記熱交換対象は外気であって、
     前記複数のヒートポンプ装置の各々は、
     前記熱交換対象を前記熱源熱交換器に流通させる熱源送風機を更に備え、
     前記制御対象は、
     前記熱源送風機を更に含み、
     前記特定の条件は、
     前記第1ヒートポンプ装置および前記第2ヒートポンプ装置の各々の前記熱源送風機の運転周波数が等しいという条件を更に含む、請求項14、および請求項16~請求項19のいずれか一項に記載のヒートポンプシステム。
PCT/JP2022/046381 2022-12-16 2022-12-16 ヒートポンプ装置およびヒートポンプシステム WO2024127635A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/046381 WO2024127635A1 (ja) 2022-12-16 2022-12-16 ヒートポンプ装置およびヒートポンプシステム

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/046381 WO2024127635A1 (ja) 2022-12-16 2022-12-16 ヒートポンプ装置およびヒートポンプシステム

Publications (1)

Publication Number Publication Date
WO2024127635A1 true WO2024127635A1 (ja) 2024-06-20

Family

ID=91484670

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/046381 WO2024127635A1 (ja) 2022-12-16 2022-12-16 ヒートポンプ装置およびヒートポンプシステム

Country Status (1)

Country Link
WO (1) WO2024127635A1 (ja)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07248167A (ja) * 1994-03-10 1995-09-26 Mitsubishi Electric Corp 空気調和機
JPH109641A (ja) * 1996-06-26 1998-01-16 Daikin Ind Ltd 空気調和機
JP2005337518A (ja) * 2004-05-24 2005-12-08 Saginomiya Seisakusho Inc 冷却装置用制御装置及び電子コントローラ
WO2022249502A1 (ja) * 2021-05-24 2022-12-01 三菱電機株式会社 冷凍空調装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07248167A (ja) * 1994-03-10 1995-09-26 Mitsubishi Electric Corp 空気調和機
JPH109641A (ja) * 1996-06-26 1998-01-16 Daikin Ind Ltd 空気調和機
JP2005337518A (ja) * 2004-05-24 2005-12-08 Saginomiya Seisakusho Inc 冷却装置用制御装置及び電子コントローラ
WO2022249502A1 (ja) * 2021-05-24 2022-12-01 三菱電機株式会社 冷凍空調装置

Similar Documents

Publication Publication Date Title
JP7257782B2 (ja) 空気調和システム
US9121631B2 (en) Air conditioner and method of operating an air conditioner
CN111780362B (zh) 一种空调器及其控制方法
KR20050037081A (ko) 히트펌프 시스템의 과열도 제어 방법
JP6716030B2 (ja) 冷凍サイクル装置
US20190353374A1 (en) Air conditioner system and control method thereof
JP6641376B2 (ja) 異常検知システム、冷凍サイクル装置、及び異常検知方法
US11874039B2 (en) Refrigeration cycle apparatus
JP2016003848A (ja) 空気調和システムおよびその制御方法
CN113531856A (zh) 多联空调系统及多联空调系统的冷媒流量控制方法
JP7118248B2 (ja) 冷凍装置
KR20180112550A (ko) 공조 장치 및 상기 공조 장치의 제어 방법
US20220082308A1 (en) Refrigeration apparatus
WO2022194218A1 (zh) 一拖多空调器的压缩机频率的控制方法及一拖多空调器
JP2019521276A (ja) スクリュー圧縮機を有するチラーの容量制御
CN113883579B (zh) 一种水系统空调
WO2024127635A1 (ja) ヒートポンプ装置およびヒートポンプシステム
GB2561096A (en) Air conditioner
KR20110105230A (ko) 공기조화기 및 그 운전방법
JP2011094915A (ja) 空気調和装置
JPWO2018037496A1 (ja) 空気調和装置
JP2003106615A (ja) 空気調和装置
WO2022249502A1 (ja) 冷凍空調装置
JP6636193B2 (ja) 異常検知システム、冷凍サイクル装置、及び異常検知方法
JP6678785B2 (ja) 異常検知システム、冷凍サイクル装置、及び異常検知方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22968545

Country of ref document: EP

Kind code of ref document: A1