WO2024127591A1 - カメラ校正装置及びカメラ校正方法 - Google Patents

カメラ校正装置及びカメラ校正方法 Download PDF

Info

Publication number
WO2024127591A1
WO2024127591A1 PCT/JP2022/046243 JP2022046243W WO2024127591A1 WO 2024127591 A1 WO2024127591 A1 WO 2024127591A1 JP 2022046243 W JP2022046243 W JP 2022046243W WO 2024127591 A1 WO2024127591 A1 WO 2024127591A1
Authority
WO
WIPO (PCT)
Prior art keywords
amount
camera
deviation
image
calibration
Prior art date
Application number
PCT/JP2022/046243
Other languages
English (en)
French (fr)
Inventor
篤史 渡邉
Original Assignee
日立Astemo株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立Astemo株式会社 filed Critical 日立Astemo株式会社
Priority to PCT/JP2022/046243 priority Critical patent/WO2024127591A1/ja
Publication of WO2024127591A1 publication Critical patent/WO2024127591A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/60Control of cameras or camera modules

Definitions

  • the present invention relates to a camera calibration device and a camera calibration method.
  • NCAP New Car Assessment Program
  • AEB Autonomous Emergency Braking
  • the camera recognizes the outside world through the windshield in front of the camera (hereafter referred to as the "refractive layer"). For this reason, the angle of incidence of light rays on the refractive layer becomes large in the wide-angle portion. If the effect of refraction becomes too great, the environmental recognition device, which recognizes the environment using images captured by the camera, will no longer be able to accurately detect objects.
  • Patent Document 1 discloses a technology that "measures the pixel shift amount in a first angle of view range by comparing a first image of the calibration chart captured without the windshield with a second image of the calibration chart captured through the windshield.”
  • Patent Document 1 uses a stereo camera to capture an image of a calibration chart, finds the parallax in the center, and uses the result to estimate the amount of deviation in the wide-angle area, correcting the effects of refraction in the wide-angle area.
  • the camera captures and outputs by capturing an image of the calibration chart through the windshield, with reference to Figure 1.
  • FIG. 1 is a diagram showing an example of an image of a calibration chart captured through a windshield.
  • a conventional camera can capture a calibration chart with a horizontal angle of view ranging from ⁇ 20 degrees to +20 degrees and a vertical angle of view ranging from ⁇ 20 degrees to +20 degrees.
  • the markers (one example of a feature point) of the calibration chart captured on a vehicle without a windshield are shown as a plurality of white dots 200 arranged at substantially equal intervals in the vertical and horizontal directions.
  • the markers of the calibration chart captured on a vehicle with a windshield are shown as a plurality of black dots 210 that are shifted from the white dots 200.
  • the black dots 210 are in substantially the same position relative to the white dots 200, and are hardly shifted.
  • the black dots 210 shift, and a difference d1 occurs in the vertical direction.
  • a difference between the black dots 210 and the white dots 200 also occurs in the vertical direction.
  • Patent Document 1 directly measures the vertical pixel shift amount at a specified angle of view, for example a horizontal angle of view of -20 degrees to +20 degrees, depending on the presence or absence of a refractive layer. For this measurement, it is necessary to image the calibration chart when the refractive layer is not mounted on the vehicle, and then image the calibration chart when the refractive layer is mounted on the vehicle, so just imaging the calibration chart was extremely time-consuming.
  • the present invention was made in consideration of these circumstances, and aims to make camera calibration easier.
  • the camera calibration device includes a deviation amount calculation unit that calculates the amount of deviation between the detected position of the object detected for each region of a predetermined size in an image of the calibration object captured by the camera through the refractive layer and the calculated position of the object calculated for each region of the image that the camera can capture without passing through the refractive layer, an evaluation unit that evaluates the amount of deviation for each region, and a correction amount calculation unit that calculates a correction amount for each region to correct the detected position of the object to the calculated position of the object according to the evaluation result of the amount of deviation, and calibrates the camera based on the correction amount of the amount of deviation calculated for each region.
  • the amount of correction is calculated according to the amount of deviation for each area, making it easier to calibrate the camera.
  • FIG. 13 is a diagram showing an example of an image of a calibration chart captured through a windshield.
  • 1 is a block diagram showing a schematic configuration example of a camera calibration device according to a first embodiment of the present invention.
  • 1 is a perspective view showing an example of a two-dimensional calibration chart on which circular markers are arranged according to a first embodiment of the present invention.
  • FIG. 1 is a perspective view showing an example of a two-dimensional calibration chart on which square markers are arranged according to a first embodiment of the present invention.
  • FIG. 1 is a perspective view showing an example of a three-dimensional calibration chart on which circular markers are arranged according to a first embodiment of the present invention.
  • FIG. 1 is a block diagram showing a schematic configuration example of a camera calibration device according to a first embodiment of the present invention.
  • 1 is a perspective view showing an example of a two-dimensional calibration chart on which circular markers are arranged according to a first embodiment of the present invention.
  • FIG. 1 is a perspective view showing an example of
  • FIG. 3 is a horizontal cross-sectional view of a refractive layer in a state in which a camera is mounted on an automobile according to the first embodiment of the present invention.
  • FIG. 3 is a vertical cross-sectional view of a refractive layer in a state where a camera is mounted on an automobile according to the first embodiment of the present invention.
  • FIG. 3A and 3B are diagrams illustrating an example of a sub-pixel according to the first embodiment of the present invention.
  • 5 is a diagram showing how a model generating unit according to the first embodiment of the present invention obtains a ray displacement from an approximate curved surface of a refraction layer modeled by the model generating unit;
  • FIG. 3 is a horizontal cross-sectional view of a refractive layer in a state in which a camera is mounted on an automobile according to the first embodiment of the present invention.
  • FIG. 3 is a vertical cross-sectional view of a refractive layer in a state where a camera is mounted on an automobile according to the
  • 3A and 3B are diagrams illustrating an example of a refractive layer having a curved surface approximated by a quadratic polynomial according to the first embodiment of the present invention.
  • 5A and 5B are diagrams showing examples of markers that appear in an image obtained by capturing a calibration chart on which black points are arranged in a grid pattern according to the first embodiment of the present invention;
  • 3 is a diagram showing a state in which a calibration chart according to the first embodiment of the present invention is imaged by a camera;
  • FIG. 5 is a diagram showing the relationship between the detected position and the calculated position of a marker on a calibration chart shown in an image according to the first embodiment of the present invention.
  • FIG. 4 is a diagram showing the amount of deviation for each divided area according to the first embodiment of the present invention.
  • 3 is a flowchart illustrating an example of a camera calibration method according to the first embodiment of the present invention.
  • 13A and 13B are diagrams illustrating a state in which the number of input images according to the amount of deviation is instructed according to the second embodiment of the present invention.
  • FIG. 10 is a diagram illustrating a position at which a calibration chart according to a second embodiment of the present invention is installed.
  • FIG. 11 is a diagram showing the position of a calibration chart that appears in the entire image according to the second embodiment of the present invention.
  • FIG. 11 is a diagram showing the position of a calibration chart appearing on the left side of an image according to a second embodiment of the present invention.
  • FIG. 11 is a diagram showing the position of a calibration chart that appears toward the upper side of an image according to a second embodiment of the present invention.
  • 10 is a flowchart illustrating an example of a camera calibration method according to a third embodiment of the present invention.
  • 13A and 13B are diagrams illustrating a state in which the number of input images according to the amount of deviation is instructed according to the third embodiment of the present invention.
  • 10 is a flowchart illustrating an example of a camera calibration method according to a fourth embodiment of the present invention.
  • the present invention is applicable, for example, to a computing device for vehicle control capable of communicating with an on-board ECU (Electronic Control Unit) for an Advanced Driver Assistance System (ADAS) or Autonomous Driving (AD).
  • ECU Electronic Control Unit
  • ADAS Advanced Driver Assistance System
  • AD Autonomous Driving
  • FIG. 1 ⁇ Example of schematic configuration of camera calibration device> 2 is a block diagram showing a schematic configuration example of the camera calibration device 100 according to the first embodiment of the present invention.
  • the camera calibration device 100 calibrates the camera 10 by executing the camera calibration method according to the first embodiment.
  • the camera calibration device 100 is configured, for example, with a marker position detection unit 101, a model generation unit 102, an image position calculation unit 103, a parameter estimation unit 104, a deviation amount calculation unit 105, a result evaluation unit 106, and a correction amount calculation unit 107.
  • the camera 10 includes a lens and an image sensor (not shown).
  • the camera 10 may be either a monocular camera or a stereo camera.
  • the camera 10 captures an image of an object through the lens with the image sensor to obtain an image P1.
  • the image P1 is input to the camera calibration device 100 and used as an input image.
  • FIG. 3A is a perspective view showing an example of a two-dimensional calibration chart 20 on which circular markers are arranged.
  • FIG. 3B is a perspective view showing an example of a two-dimensional calibration chart 21 on which square markers are arranged.
  • FIG. 3C is a perspective view showing an example of a three-dimensional calibration chart 22 on which circular markers are arranged.
  • the calibration chart is configured with equally spaced square or circle-like markers arranged in two or three dimensions.
  • calibration chart 20 is used as an example.
  • the markers placed on the calibration chart 20 are often placed at equal intervals on a flat, non-flexible surface to simplify the calculations used for calibration in the camera calibration device 100 and to facilitate the manufacture of the calibration chart 20.
  • the camera calibration device 100 can accurately determine the positional relationship of each marker in advance, there is no need to place any restrictions on the spacing or shape of the markers. The worker moves while holding the calibration chart 20. Then, an image of the calibration chart 20 is captured according to the position to which the calibration chart 20 has moved.
  • This calibration method includes a process in which the camera 10 captures an image of the calibration chart 20 through the refractive layer 1 to obtain an image P1.
  • the refractive layer 1 is assumed to be, for example, the windshield of an automobile, but it may also be the rear window of an automobile, a transparent resin part, etc.
  • FIG. 4A is a horizontal cross-sectional view of the refractive layer 1 when a camera 10 is mounted on an automobile.
  • Fig. 4B is a vertical cross-sectional view of the refractive layer 1 when a camera 10 is mounted on an automobile.
  • the influence of the refractive layer 1 is small for light ray R11 near the front.
  • the influence of the refractive layer 1 is large for light ray R12 that enters the camera 10 from the wide-angle portion in the horizontal direction.
  • the marker position detection unit 101 shown in FIG. 2 detects the markers of the calibration chart 20 appearing in the image P1.
  • the marker position detection unit 101 has the function of detecting markers on the calibration chart 20 that appear in the image P1 using methods such as the Hough transform, corner detection, and luminance centroid calculation, and detecting in sub-pixel units at which pixel on the image P1 the detected marker is located.
  • a sub-pixel is a pixel that is a unit smaller than one pixel, and the pixels of the image P1 have integer values.
  • sub-pixels will be described with reference to FIG. Fig. 5 is a diagram showing an example of a sub-pixel, in which a plurality of pixels are arranged.
  • the pixels shown in FIG. 5 are arranged in a line in the X-axis and Y-axis directions.
  • Each pixel is, for example, an arrangement of multiple pixels 31 with position coordinates (2, 1).
  • the length of this pixel 31 in the X-axis direction is px [mm], and the length in the Y-axis direction is py [mm].
  • the focus point 32 in the figure is expressed in pixel units and sub-pixel units.
  • the position coordinates of the focus point 32 are expressed as (4, 4).
  • the position coordinates of the focus point 32 are expressed as (3.2, 3.8). In this way, in sub-pixel units, the position coordinates of the focus point 32 can be specified in more detail than in pixel units.
  • the model generating unit (model generating unit 102) shown in FIG. 2 models the refraction layer (refraction layer 1) based on the weights set for each divided region of the image P1 and the multiple images captured by the camera (camera 10) of the calibration object and input to the deviation amount calculation unit (deviation amount calculation unit 105).
  • the model generating unit 102 has a function of modeling and generating the internal parameters of the camera 10, the lens distortion, the translation component and rotation component of the calibration chart 20, and the approximate curved surface, translation component and rotation component of the refraction layer 1.
  • the model generating unit 102 performs modeling, making it possible to calculate where a three-dimensional point is theoretically located on the image.
  • the result evaluation unit 106 described later evaluates the deviation amount between the calculated three-dimensional point and the point on the image P1 captured by the camera 10, thereby confirming the validity of the setting and estimation of the model and parameters.
  • the modeling of the refraction layer 1 performed by the model generating unit 102 will be described.
  • FIG. 6 is a diagram showing how the model generating unit 102 obtains the displacement of a light ray from the approximate curved surface of the refractive layer 1 modeled.
  • Figure 6 shows how camera 10 captures an image of an object including calibration chart 20 through refractive layer 1.
  • the curved surface on the front side of refractive layer 1 as viewed from camera 10 is called front-side approximated curved surface 41
  • the curved surface on the back side of refractive layer 1 is called back-side approximated curved surface 42.
  • Refractive layer 1 is configured to be sandwiched between front-side approximated curved surface 41 and back-side approximated curved surface 42 with respect to camera 10, and has a parameter of refractive index n.
  • Z in the height direction with respect to the xy plane is expressed as a function of x and y.
  • the model generation unit 102 approximates and models the curved surface of the refractive layer 1 using the quadratic polynomial shown in the following equation (1).
  • p00 , p10 , p01 , p20 , p11 , and p02 are coefficients of each term, and x2 and y2 are square terms.
  • the subscripts (e.g., 10, 20) of each P represent the degree of x in the front and y in the rear. Therefore, p20 represents the coefficient of the term where x is squared and y is zero.
  • the near-side approximated surface 41 and the far-side approximated surface 42 expressed by formula (1) have a translation component T and a rotation component R, and each surface is disposed with respect to the camera 10.
  • the method of selecting variables in modeling is not limited to that shown in formula (1), and may be a higher-order polynomial (e.g., a 5th-order polynomial shown in formula (6) described later).
  • the model generation unit 102 identifies the point where the light ray emitted toward the refraction layer 1 toward the camera 10 enters the near-side approximated surface 41 as the intersection point.
  • the model generation unit 102 determines the normal (near-front side) at this intersection point based on equation (1) of the modeled approximated surface, the translation component T, and the rotation component R. Because the model generation unit 102 is able to grasp the incident light ray, intersection point, normal, and refractive index with respect to the near-side approximated surface 41 through modeling, it is able to determine the exiting light ray by substituting this information into the equation for Snell's law.
  • the model generation unit 102 also regards the emergent ray of the front approximated curved surface 41 as an incident ray for the rear approximated curved surface 42.
  • the model generation unit 102 then performs processing to obtain the emergent ray from the rear approximated curved surface 42 using Snell's law, in the same way as in the calculation for the front approximated curved surface 41, to obtain the emergent ray from the rear approximated curved surface 42.
  • This emergent ray is the emergent ray of the refractive layer 1.
  • the model generation unit 102 then obtains the normal (rear surface) at the intersection point based on equation (1) of the modeled approximated curved surface, the translation component T, and the rotation component R.
  • the image position calculation unit 103 can calculate the position of the marker from the difference between the position of the marker in the image P1 captured without the refractive layer 1 (the exiting light ray shown by the dashed line in the figure) and the position of the marker in the image P1 captured through the refractive layer 1 (the exiting light ray shown by the solid line in the figure).
  • FIG. 7 is a diagram showing an example of the refractive layer 1 whose curved surface is approximated by a quadratic polynomial.
  • FIG. 8 is a diagram showing an example of markers that appear in an image P1 obtained by capturing an image of a calibration chart 20 on which black dots 51 are arranged in a grid pattern.
  • a black dot 51 at position coordinates (4, -2) is captured by the camera 10, it is represented at the position of a white dot 52 due to the distortion of the refractive layer 1.
  • the position coordinates of the white dot 52 are represented as (x distortion, y distortion). In this way, by representing the refractive layer 1 as a plane, the influence of the distortion of the refractive layer 1 becomes clear.
  • FIG. 2 converts the three-dimensional marker positions of the calibration chart 20 into positions on the image.
  • the process of converting the marker positions will now be described with reference to FIGS.
  • ⁇ Explanation of Zhang's method> 9 is a diagram showing the state when the calibration chart 20 is imaged by the camera 10.
  • the Zhang method is described in which the parameters of the camera 10 are modeled and the camera 10 is considered as a pinhole camera. With this method, an object in the world coordinate system is converted into an image in the camera coordinate system.
  • Figure 9 shows an example of a calibration chart 20 expressed in world coordinates.
  • World coordinates are a coordinate system used in three-dimensional space in the real world, and the positions of the markers are expressed in millimeters [mm].
  • a plurality of markers are arranged at equal intervals on the calibration chart 20.
  • the position coordinates of each marker represented by a black dot on the calibration chart 20 are expressed as row and column numbers attached to Mx and My, with the upper left corner of the calibration chart 20 as the origin.
  • marker 25 on the calibration chart 20 is located in the third row and sixth column of the world coordinates, and is therefore expressed as position coordinates (Mx 36 , My 36 ).
  • Figure 9 shows how the calibration chart 20 is imaged by the camera 10.
  • a method is shown for converting the marker positions of the calibration chart in three dimensions into image coordinate positions on the image.
  • Image coordinates are the coordinate system used in the image, and represent the image position in pixel units [px].
  • the calibration chart 20 is placed so as to rotate or translate with respect to the camera 10.
  • the rotation of the calibration chart 20 is represented as "R”
  • the translation of the calibration chart 20 is represented as "t”.
  • the position coordinates of the marker 25 on the calibration chart 20 are represented as P ij (X ij , Y ij , Z ij ).
  • the position of the camera 10 in the camera coordinates is represented as (X camera, Y camera, Z camera).
  • the unit of the camera coordinates is mm.
  • the position of any point in the image P1 captured by the camera 10 is specified by image coordinates.
  • the position of the origin (0,0) of the image coordinates is defined as the optical center through which the Z axis (Z camera) indicating the optical axis of the camera 10 passes, and is called the principal point (Cx, Cy).
  • the marker 25 of the calibration chart 20 captured by the camera 10 is on a straight line 26 passing through the marker 28 of the calibration chart 27 captured in the image P1.
  • the coordinate of any position on the image coordinates is expressed as (x ij , y ij ).
  • the coordinate of any position on the calibration chart 27 captured through the refractive layer 1 is expressed as (u ij , v ij ) in uv coordinates with u on the horizontal axis and v on the vertical axis.
  • the model generation unit 102 models the distortion of the lens of the camera 10, and sets parameters used in the following formulas (2) and (3).
  • Formula (2) represents the three-dimensional position at which the marker is placed by rotating (R) and translating (t) the coordinates P ij (X ij , Y ij , Z ij ), which indicate the positional relationship of the marker on the calibration chart 20.
  • the calibration chart parameters are as follows: Two-dimensional chart plane coordinates: Mxij , Myij Rotational component: R Translational component: T
  • equation (2) represents the effect of rotation (R) and translation (t) on the calibration chart 20.
  • equation (2) represents the position of the marker in the world coordinates shown in the upper part of FIG. 9.
  • Equation (3) is used to find the position in image P1 of the three-dimensional point (X ij , Y ij ) found by equation (2).
  • the coordinate system of image P1 is also called image coordinates.
  • the term labeled "image coordinates" on the left side of equation (3) represents the position in the image coordinates of the marker 28 of the calibration chart 27 shown in image P shown in Fig. 9.
  • the term labeled "internal parameters" on the right side of equation (3) represents camera parameters.
  • the camera parameters include the following: Focal length: f Focal length in the x direction: f x Focal length in the y direction: f y Coordinates of the optical center (principal point): c x , c y Pixel size: p x , p y Shear coefficient: s
  • the pixel sizes p x and p y represent the size of a pixel (picture element).
  • the shear coefficient s represents a value calculated from the inclination ⁇ of a pixel of the CMOS sensor, which is the image receiving unit of the camera, using a predetermined formula (f x tan ⁇ ).
  • the following formula (4) is an example of a camera lens distortion model generated by the model generation unit 102.
  • Equation (4) p1 and p2 represent coefficients in the lens distortion model. Additionally, x and y in equation (4) represent coordinates on the image when a distortion-free camera (pinhole camera) is used. In reality, a shift occurs between the x and y coordinates due to distortion of the lens of camera 10. The coordinates at this time are expressed as (x distortion present, y distortion present).
  • the image position calculation unit 103 converts the position of each marker on the calibration chart 20 into a position on the image by calculating the parameters for the refractive layer 1 and lens distortion model generated by the model generation unit 102.
  • ⁇ Relationship between detected and calculated marker positions> 10 is a diagram showing the relationship between the detected positions and the calculated positions of the markers on the calibration chart 20 shown in the image.
  • the positions of the markers on the calibration chart 20 are represented by "X".
  • the positions of the markers on the calibration chart 20 captured by the camera 10 are shown as detected positions Qij ( uij , vij ) in the image P1 shown in Fig. 10. Meanwhile, the image position calculation unit 103 shown in Fig. 2 calculates the positions of the markers based on equations (2) and (3) to obtain calculated positions P'ij ( xij , yij ). Then, the image position calculation unit 103 calculates the calculated positions P'ij ( xij , yij ) for all the markers on the calibration chart 20.
  • the parameter estimation unit 104 compares the detection result of the marker detected from the image P1 by the marker position detection unit 101 with the calculation result of the marker calculated by the image position calculation unit 103, and calculates the amount of deviation of the marker. Then, the parameter estimation unit 104 estimates parameters that minimize the amount of deviation. When the parameter estimation unit 104 estimates the parameters, the following formula (5) is used.
  • Q ij and P′ ij in equation (5) represent the following position coordinates.
  • Position coordinates of the marker calculated by the image position calculation unit 103: P′ ij (x ij , y ij ) S(Rt) in formula (5) is the sum of the distances between all detected points and calculated points.
  • the parameter estimation unit 104 estimates parameters that minimize the sum of the distances between each detected position and calculated position.
  • the correction amount calculation unit 107 shown in FIG. 2 has the function of creating a correction table (not shown) that indicates the position where a point on image P1 would appear if there was no influence from the refractive layer 1 or lens distortion, from each parameter value calculated by the model generation unit 102 and the parameter estimation unit 104.
  • This correction table is used to simultaneously perform geometric correction to correct the lens distortion and correction of the influence of the refractive layer 1 on the image, using only image P1 captured through the refractive layer 1.
  • the deviation amount calculation unit 105 has a function of dividing the image P1 into several regions and calculating the amount of deviation that occurs for each of the above regions depending on the presence or absence of distortion of the refractive layer 1 or the lens. It is desirable that all divided regions are the same size. For this reason, the deviation amount calculation unit (deviation amount calculation unit 105) calculates the amount of deviation between the detected position of the object detected for each region of a predetermined size in the image in which the camera (camera 10) captures the calibration object through the refractive layer (refractive layer 1), and the calculated position of the object calculated for each region of the image that the camera (camera 10) can capture without passing through the refractive layer (refractive layer 1).
  • FIG. 11 is a diagram showing the amount of deviation for each region obtained by dividing an image P1.
  • the image P1 is divided vertically and horizontally at equal intervals.
  • the deviation amount calculation unit calculates the calculated position of the object using a calculation formula for a modeled refraction layer (refraction layer 1).
  • the surface directly facing the lens surface of camera 10, located at an appropriate distance in front of camera 10, is defined as infinite plane 61. Rectangular areas are shown on infinite plane 61 according to the sizes of the areas into which image P1 is divided. As an example, white points 63 are set passing through the centers of each area.
  • the deviation amount calculation unit 105 finds black points 64 that are affected by the distortion of the refraction layer 1 and the lens and correspond to the white points 63 set in each area.
  • the deviation amount calculation unit 105 calculates where the white point 63 and the black point 64 on the infinite plane 61 are located on the image coordinates 62.
  • the image coordinates 62 show the white point 65 and the black point 66 that correspond to the white point 63 and the black point 64 on the infinite plane 61.
  • the deviation amount calculation unit 105 then calculates the distance "deviation amount 67" between the white point 65 and the black point 66 for each region.
  • the evaluation unit (result evaluation unit 106) evaluates the amount of deviation (deviation amount 67) for each area calculated by the deviation amount calculation unit 105.
  • the evaluation unit (result evaluation unit 106) sets a weight for each area, and evaluates whether or not the amount of deviation has been calculated according to the weight for each area. If the amount of deviation has not been calculated according to the weight, the evaluation unit (result evaluation unit 106) issues an instruction to calculate the amount of deviation according to the weight. On the other hand, if the amount of deviation has been calculated according to the weight, the evaluation unit (result evaluation unit 106) outputs the amount of deviation to the correction amount calculation unit. For example, if the evaluation result of the amount of deviation is poor, the result evaluation unit 106 instructs the camera 10 to re-photograph the calibration chart 20, or outputs a message encouraging the calibration chart 20 to be moved.
  • the forward refractive layer 1 e.g., the windshield
  • the camera 10 is installed in the center.
  • the amount of deviation for each region calculated by the deviation amount calculation unit 105 differs depending on the position of the region in the image P1.
  • the result evaluation unit 106 can instruct the camera 10 to re-photograph the calibration chart 20 or display a message encouraging the proofreader to move the calibration chart 20.
  • the result evaluation unit 106 can weight the areas where the amount of deviation is greater. Then, for the weighted areas, as shown in the embodiment described below, the camera 10 can be instructed to increase the number of images P1 of the area to be input to the deviation calculation unit 105 or to change the calculation formula.
  • the amount of correction for correcting the detected position of the object to the calculated position of the object is calculated for each region according to the evaluation result of the amount of deviation, and the camera (camera 10) is calibrated based on the amount of correction of the amount of deviation calculated for each region.
  • the correction amount calculation unit 107 calculates the amount of correction for moving the displaced black dot 66 in the image coordinates 62 to the position of the white dot 65 in the center of each region according to the amount of deviation 67 calculated by the deviation amount calculation unit 105.
  • the image captured by the camera 10 is processed to correct the position for each region using the calculated amount of correction, thereby calibrating the camera 10. Therefore, the image output from the camera calibration device 100 is input to a downstream environment recognition device (not shown) or the like with the influence of the refraction layer 1 removed, and is used for environmental recognition around the car.
  • FIG. 12 is a flowchart illustrating an example of a camera calibration method according to the first embodiment.
  • the camera calibration device 100 captures an image of the calibration chart 20 through the refractive layer 1 (S1).
  • the marker position detection unit 101 detects the position of the marker from the image P1 output from the camera 10 (S2).
  • the model generation unit 102 generates the above-mentioned model (S3).
  • the image position calculation unit 103 calculates the image position from the position of each marker on the calibration chart (S4).
  • the parameter estimation unit 104 estimates parameters that minimize the sum of the distances between the detected and calculated positions of the markers (S5).
  • the deviation amount calculation unit 105 calculates the deviation amount for each divided area of the image P1 (S6).
  • the result evaluation unit 106 evaluates the deviation amount for each divided area (S7).
  • the result evaluation unit 106 judges whether the evaluation result is good or not (S8). If the evaluation result is not good (NO in S8), the result evaluation unit 106 instructs the camera 10 to re-image the calibration chart 20, and returns to step S1. If the evaluation result is good (YES in S8), the correction amount calculation unit 107 calculates the correction amount for each divided area (S9), and this process ends.
  • Fig. 13 is a block diagram showing an example of the hardware configuration of the calculator 70.
  • the calculator 70 is an example of hardware used as a computer capable of operating as the camera calibration device 100 according to this embodiment.
  • the camera calibration device 100 according to this embodiment realizes a camera calibration method in which the functional blocks of the camera calibration device 100 shown in Fig. 2 cooperate with each other by causing the calculator 70 (computer) to execute a program.
  • Computer 70 includes a CPU (Central Processing Unit) 71, a ROM (Read Only Memory) 72, and a RAM (Random Access Memory) 73, each of which is connected to a bus 74. Furthermore, computer 70 includes non-volatile storage 75 and a network interface 76.
  • CPU Central Processing Unit
  • ROM Read Only Memory
  • RAM Random Access Memory
  • the CPU 71 reads out the program code of the software that realizes each function of this embodiment from the ROM 72, loads it into the RAM 73, and executes it. Variables, parameters, etc. that arise during the calculation processing of the CPU 71 are temporarily written to the RAM 73, and these variables, parameters, etc. are read out by the CPU 71 as appropriate.
  • an MPU Micro Processing Unit
  • the CPU 71 may be used in combination with a GPU (Graphics Processing Unit).
  • the functions of each part of the camera calibration device 100 shown in Figure 2 are realized by the CPU 71.
  • the non-volatile storage 75 may be, for example, a hard disk drive (HDD), a solid state drive (SSD), a flexible disk, an optical disk, a magneto-optical disk, a CD-ROM, a CD-R, a magnetic tape, or a non-volatile memory.
  • HDD hard disk drive
  • SSD solid state drive
  • a program for making the computer 70 function is recorded in this non-volatile storage 75.
  • the ROM 72 and the non-volatile storage 75 record programs and data necessary for the CPU 71 to operate, and are used as an example of a computer-readable non-transient storage medium that stores a program executed by the computer 70.
  • the image P1 is stored in the non-volatile storage 75.
  • the non-volatile storage 75 also stores the model generated by the model generation unit 102, the parameters estimated by the parameter estimation unit 104, the deviation amount calculated by the deviation amount calculation unit 105, the evaluation result of the deviation amount evaluated by the result evaluation unit 106, and the correction amount calculated by the correction amount calculation unit 107.
  • the network interface 76 may be, for example, a NIC (Network Interface Card), and various data can be sent and received between devices via an in-vehicle LAN (Local Area Network) or dedicated lines connected to the NIC terminal.
  • NIC Network Interface Card
  • a model is generated by detecting marker positions from an image captured by the camera 10 of the calibration chart 20 through the refractive layer 1.
  • the camera calibration device 100 calculates the position of the marker on the image and estimates parameters that minimize the deviation between the detected and calculated positions of the marker, thereby creating a correction table that can correct the position of a point on the image P1 when there is no influence from the refractive layer 1 or lens distortion.
  • the position of an object captured in the image P1 captured by the camera 10 is converted to a position that is not influenced by the refractive layer 1 or lens distortion by using the correction table, allowing an environmental recognition device or the like to accurately grasp the position of the object.
  • the image P1 input to the camera calibration device 100 from a camera capable of capturing images at a wider angle than conventional cameras is used, for example, to detect pedestrians when a car turns right or left at an intersection. Even in this case, by using the camera calibration method according to the first embodiment, the effect of image shifts due to the refractive layer in the wide-angle area can be suppressed, making it possible to reliably detect pedestrians.
  • the configuration of the camera calibration device 100 according to the second embodiment may be the same as that of the camera calibration device 100 according to the first embodiment.
  • the camera calibration device 100 according to the second embodiment calibrates the camera 10 by changing the number of images P1 input from the camera 10 according to the amount of deviation for each region calculated by the deviation amount calculation unit 105. For example, when configuring the camera 10 using a calibration chart 20 with a wide range, it is necessary to input multiple images P1 captured at different positions, since the entire range cannot be covered by capturing the image once.
  • Fig. 14 is a flowchart showing an example of a camera calibration method according to the second embodiment.
  • S2 marker position detection
  • S3 model generation
  • S4 image position calculation
  • S5 parameter estimation
  • the camera 10 captures the calibration chart 20 (S11).
  • the misalignment calculation unit 105 calculates the misalignment amount for each divided area (S12).
  • the result evaluation unit 106 evaluates whether or not the number of images P1 corresponding to the misalignment amount have been input (S13). If the calculation of the misalignment amount according to the weight has not been performed, the evaluation unit (result evaluation unit 106) issues an instruction to change the number of images input to the misalignment amount calculation unit (misalignment amount calculation unit 105) for each area according to the weight set for the area. This instruction is input to the camera 10, which causes the camera 10 to re-capture the calibration chart 20. The re-captured images P1 are then input to the misalignment calculation unit 105, and the calculation of the misalignment amount is performed for the number of images P1 set for the area.
  • the result evaluation unit 106 sets a weight for the area around the image P1 (bottom left and right) and issues an instruction to increase the number of images P1.
  • the refractive layer 1 is positioned at an angle to the light beam from the camera 10
  • a weight is set for the area at the bottom of the image P1 and an instruction is issued to increase the number of images P1.
  • the result evaluation unit 106 sets a weight for the area of the image P1 opposite the position where the camera 10 is positioned and an instruction is issued to increase the number of images P1.
  • the process returns to S11 and repeats the process until the number of images P1 corresponding to the amount of misalignment has been input.
  • the correction amount calculation unit 107 calculates the amount of correction for each divided area (S14) and ends this process.
  • FIG. 15 is a diagram showing how the number of input images according to the amount of shift is indicated.
  • the upper part of FIG. 15 shows the amount of shift [px] for each divided area, and the upper part of FIG. 15 shows the number of input images (images P1) required for each divided area.
  • the result evaluation unit 106 determines the number of input images required relatively depending on the amount of misalignment in each region.
  • the minimum number of input images is one. For example, if the amount of misalignment is less than 1.0, the number of input images is one. On the other hand, if the amount of misalignment is 1.0 or more and less than 3.0, the number of input images is two, if the amount of misalignment is 3.0 or more and less than 4.0, the number of input images is three, and if the amount of misalignment is 4.0 or more, the number of input images is four.
  • the necessary condition here is that the image contains a set number of markers of the calibration chart 20 in each region.
  • an operator may change the inclination of the calibration chart 20 and the camera 10 may photograph the calibration chart 20 multiple times, inputting a large number of input images, thereby improving the accuracy of the amount of correction for each region into which the image P1 is divided.
  • the camera calibration device 100 can also improve the accuracy of the calibration of the camera 10.
  • FIG. 16 is a diagram showing the position where the calibration chart 20 is placed.
  • the calibration chart 20 is placed so that it falls within the range of the angle of view of the camera 10.
  • the calibration chart 20(1) is placed at a position closest to the camera 10 at a distance L1
  • the calibration chart 20(2) is placed at a position next closest to the camera 10 at a distance L2
  • the calibration chart 20(3) is placed at a position farthest from the camera 10 at a distance L3.
  • the image P1 captured by the camera 10 is divided into nine equal regions.
  • FIG. 17A is a diagram showing the position of the calibration chart 20(1) that appears in the entire image P1.
  • 17A is an image of the calibration chart 20(1) captured across all nine divided regions of image P1.
  • the range of the calibration chart 20(1) captured on the left and upper sides of image P1 is small, there are not enough markers on the calibration chart 20(1). Therefore, the position of the calibration chart 20 is instructed to the camera 10 by the result evaluation unit 106.
  • FIG. 17B is a diagram showing the position of the calibration chart 20(2) which appears to be shifted to the left side of the image P1.
  • the calibration chart 20(2) shown in Fig. 17B was captured off to the left of the image P1, so that a sufficient amount of the markers of the calibration chart 20(1) that were missing on the left side of the image P1 shown in Fig. 17A are captured.
  • FIG. 17C is a diagram showing the position of the calibration chart 20(3) which appears toward the upper side of the image P1.
  • the calibration chart 20(3) shown in Fig. 17C was captured near the upper side of the image P1, so that a sufficient number of markers of the calibration chart 20(1) that were lacking at the upper side of the image P1 shown in Fig. 17A are captured in the image.
  • the markers of the calibration chart 20 are captured evenly in the image P1. This also enables the correction amount calculation unit 107 to calculate the amount of correction for area misalignment more accurately than in the camera calibration method according to the first embodiment, using the positions of the markers detected from each image P1 by the marker position detection unit 101.
  • the camera calibration device 100 according to the third embodiment may have the same configuration as the camera calibration device 100 according to the first embodiment.
  • the camera calibration device 100 according to the third embodiment calibrates the camera 10 by changing the calculation formula according to the amount of deviation for each area calculated by the deviation amount calculation unit 105.
  • the calculation formula before the change may be the above formula (1), the above formula (4), or both.
  • the calculation formula representing at least one of the near-side approximated curved surface 41 and the far-side approximated curved surface 42 shown in FIG. 6 is changed to the following formula (6).
  • the deviation amount calculation unit 105 can change the approximated curved surface of the model shown in formula (4) to the following formula (6).
  • the deviation amount calculation unit 105 may change the order of the lens distortion model, or may change it to a model that combines it with another approximated surface.
  • the following formula (7) is an example of another model that the deviation amount calculation unit 105 can change.
  • Fig. 18 is a flowchart showing an example of a camera calibration method according to the third embodiment.
  • S2 marker position detection
  • S4 image position calculation
  • S5 parameter estimation
  • the camera 10 captures an image of the calibration chart 20 (S21).
  • the model generation unit 102 generates a model, i.e., generates a calculation formula (S22).
  • the deviation amount calculation unit 105 calculates the deviation amount for each divided area (S23).
  • the result evaluation unit 106 evaluates whether the calculation formula corresponds to the deviation amount (S24). If the calculation of the deviation amount according to the weight has not been performed, the evaluation unit (result evaluation unit 106) issues an instruction to the deviation amount calculation unit (deviation amount calculation unit 105) to change the calculation formula for calculating the deviation amount for each area according to the weight set for the area. This instruction is input to the camera 10, and is input to the deviation amount calculation unit 105 through the camera 10. Then, the deviation amount calculation unit 105 uses the calculation formula changed according to the instruction to recalculate the deviation amount in the area for which the calculation formula was instructed to be changed.
  • the result evaluation unit 106 sets a weight for the peripheral area (bottom left and right) of the image P1, and issues an instruction to generate a calculation formula that matches this weight.
  • the refractive layer 1 is positioned tilted relative to the light beam from the camera 10, a weight is set for the lower area of the image P1, and an instruction to generate a calculation formula that matches this weight is issued.
  • the result evaluation unit 106 sets a weight for the area of the image P1 opposite the position where the camera 10 is positioned, and an instruction to generate a calculation formula that matches this weight is issued.
  • the process returns to S22 and the model generation is repeated until a formula appropriate for the deviation amount is generated.
  • the deviation amount calculation unit 105 then calculates the deviation amount using the formula appropriate for the deviation amount.
  • the correction amount calculation unit 107 calculates the amount of correction for each divided area (S25) and ends this process.
  • FIG. 19 shows how the number of input images according to the amount of deviation is specified.
  • the upper part of FIG. 19 shows the amount of deviation [px] for each divided area, and the upper part of FIG. 19 shows the appropriate calculation formula for each divided area.
  • the result evaluation unit 106 determines a calculation formula according to the amount of deviation in each region. For example, if the amount of deviation is less than 1.0, calculation formula a is used. On the other hand, if the amount of deviation is 1.0 or more and less than 2.5, calculation formula b is used, if the amount of deviation is 2.5 or more and less than 3.5, calculation formula c is used, and if the amount of deviation is 3.5 or more, calculation formula d is used. For calculation formulas a to d shown here, the above-mentioned formulas (1), (4), etc., or formulas not shown in the figure are used.
  • the calculation formula can be changed as desired. Therefore, by using an appropriate calculation formula selected according to the environment in which the calibration chart 20 is actually imaged, the calculation accuracy of the correction amount can be improved.
  • the configuration of the camera calibration device 100 according to the fourth embodiment may be the same as that of the camera calibration device 100 according to the first embodiment.
  • the camera calibration device 100 according to the fourth embodiment simultaneously performs the camera calibration method according to the second embodiment and the camera calibration method according to the third embodiment. Therefore, the number of input images is changed according to the amount of deviation calculated by the deviation amount calculation unit 105, and the calculation formula is changed to perform calibration.
  • Fig. 20 is a flowchart showing an example of a camera calibration method according to the fourth embodiment.
  • S2 marker position detection
  • S4 image position calculation
  • S5 parameter estimation
  • the camera calibration method according to the fourth embodiment is a combination of the camera calibration method according to the second embodiment and the camera calibration method according to the third embodiment. If the calculation of the amount of deviation according to the weight has not been performed, the evaluation unit (result evaluation unit 106) issues an instruction to change the number of images input to the deviation amount calculation unit (deviation amount calculation unit 105) for each region according to the weight set for the region, and issues an instruction to change the calculation formula for the deviation amount calculation unit (deviation amount calculation unit 105) to calculate the amount of deviation for each region.
  • the instruction to change the number of images for each region is input to the camera 10, which causes the camera 10 to capture the calibration chart 20 again.
  • the re-captured image P1 is input to the deviation amount calculation unit 105, and the amount of deviation is calculated for the number of images P1 set for the region.
  • the instruction to change the calculation formula is input to the camera 10, which inputs it to the deviation amount calculation unit 105 through the camera 10. Then, the deviation amount calculation unit 105 uses the calculation formula changed according to the instruction to calculate the amount of deviation again in the region for which the calculation formula change is instructed.
  • steps S31, S33, and S34 shown in FIG. 20 are the same as the processes in steps S11 to S13 shown in FIG. 14. Also, the processes in steps S31 to S33 and S35 shown in FIG. 20 are the same as the processes in steps S21 to S24 shown in FIG. 14.
  • step S35 If it is evaluated in step S35 that the formula corresponds to the amount of deviation (YES in S35), the correction amount calculation unit 107 calculates the amount of correction for each divided area (S36) and ends this process.
  • the number of input images can be changed according to the amount of misalignment, and the calculation formula can be changed, allowing for even more accurate correction of the amount of misalignment.
  • each of the above-mentioned embodiments describes the configuration of the device in detail and specifically in order to explain the present invention in an easily understandable manner, and is not necessarily limited to having all of the configurations described.
  • the control lines and information lines shown are those that are considered necessary for the explanation, and not all control lines and information lines in the product are necessarily shown. In reality, it can be considered that almost all components are connected to each other.
  • 1...refractive layer 10...camera, 20...calibration chart, 100...camera calibration device, 101...marker position detection unit, 102...model generation unit, 103...image position calculation unit, 104...parameter estimation unit, 105...deviation amount calculation unit, 106...result evaluation unit, 107...correction amount calculation unit

Landscapes

  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Studio Devices (AREA)

Abstract

カメラ校正装置は、屈折層を介してカメラが校正用の対象物を撮像した画像の所定の大きさの領域ごとに検出される対象物の検出位置と、屈折層を通さずにカメラが撮像できる画像の領域ごとに計算される対象物の計算位置とのずれ量を計算するずれ量計算部と、領域ごとにずれ量を評価する評価部と、ずれ量の評価結果に応じて、対象物の検出位置を対象物の計算位置へと補正するための補正量を領域ごとに計算し、領域ごとに計算したずれ量の補正量に基づいて、カメラを校正する補正量計算部と、を備える。

Description

カメラ校正装置及びカメラ校正方法
 本発明は、カメラ校正装置及びカメラ校正方法に関する。
 代表的な自動車アセスメントであるNCAP(New Car Assessment Program)において、2020年より交差点におけるAEB(Autonomous Emergency Braking)が導入されるなど、交差点での安全走行を強化するニーズが高まっている。このため、自動車が交差点で右左折する時には、交差点の周辺にいる歩行者等を把握するため、広い水平画角で物体を検出することが必要となる。
 一般的にカメラは車室内に左右の中心位置に取り付けられことが多い。この場合、カメラは、カメラ前方のフロントガラス(以下、「屈折層」と呼ぶ)越しに外界を認識することになる。このため、広角部では光線の屈折層への入射角が大きくなる。屈折の影響が大きくなると、カメラが撮像した画像を用いて環境を認識する環境認識装置が正確に対象を検出することができなくなる。
 この対策として、特許文献1には、「フロントガラスを介さずに校正チャートを撮像した第1の画像と、フロントガラスを介して校正チャートを撮像した第2の画像とを比較することにより、第1の画角範囲における画素シフト量を測定する」と記載された技術が開示されている。
特開2022-109555号公報
 特許文献1に開示された技術は、ステレオカメラで校正用チャートを撮像することにより、中央部の視差を求め、その結果から広角部におけるずれ量を推定し、広角部の屈折の影響を補正するものである。ここで、カメラがフロントガラス越しに校正用チャートを撮像して出力する画像について、図1を参照して説明する。
 図1は、フロントガラス越しに撮像された校正用チャートの画像の例を示す図である。
 従来のカメラでは、水平画角が-20度~+20度の範囲、及び垂直画角が-20度~+20度の範囲で校正用チャートを撮像できる。ここで、フロントガラスがない状態の車両で撮像された校正用チャートのマーカ(特徴点の一例)は、垂直方向及び水平方向にほぼ等間隔に配置された複数の白点200で示される。一方、フロントガラスが搭載された状態の車両で撮像された校正用チャートのマーカは、白点200に対してずれた複数の黒点210で示される。水平画角が0度、垂直画角が0度の付近(図1の真ん中)では、白点200に対する黒点210はほぼ同じ位置であり、殆どずれていない。一方、図1の右下に示すように、水平画角、垂直画角が大きくなると、黒点210がシフトし、垂直方向に差分d1が生じる。なお、図示しないが垂直方向にも白点200に対する黒点210の差分が生じている。
 特許文献1に開示された技術は、屈折層の有無により、所定画角、例えば水平画角-20度~+20度での垂直方向の画素シフト量を直接測定するものである。この測定に際して、屈折層が車両に未搭載の状態で校正用チャートを撮像し、その後、屈折層を車両に搭載した状態で校正用チャートを撮像する必要があるので、校正用チャートを撮像するだけでも非常に手間がかかっていた。
 また、屈折層を車両に搭載したり、屈折層を車両から取り外したりする際には、専用の設備や器具が必要となる。また、視差計算のため、屈折層がない状態でのアフィン変換処理情報が必要であり、その情報を得るためにも専用の設備が必要であった。このため、カメラを校正する作業は容易ではなかった。
 本発明はこのような状況に鑑みて成されたものであり、カメラの校正を容易化することを目的とする。
 本発明に係るカメラ校正装置は、屈折層を介してカメラが校正用の対象物を撮像した画像の所定の大きさの領域ごとに検出される対象物の検出位置と、屈折層を通さずにカメラが撮像できる画像の領域ごとに計算される対象物の計算位置とのずれ量を計算するずれ量計算部と、領域ごとにずれ量を評価する評価部と、ずれ量の評価結果に応じて、対象物の検出位置を対象物の計算位置へと補正するための補正量を領域ごとに計算し、領域ごとに計算したずれ量の補正量に基づいて、カメラを校正する補正量計算部と、を備える。
 本発明によれば、領域ごとのずれ量に応じた補正量が計算されるので、カメラの校正を容易化することができる。
フロントガラス越しに撮像された校正用チャートの画像の例を示す図である。 本発明の第1の実施形態に係るカメラ校正装置の概略構成例を示すブロック図である。 本発明の第1の実施形態に係る円形のマーカが配置された2次元の校正用チャートの一例を示す斜視図である。 本発明の第1の実施形態に係る四角形のマーカが配置された2次元の校正用チャートの一例を示す斜視図である。 本発明の第1の実施形態に係る円形のマーカが配置された3次元の校正用チャートの一例を示す斜視図である。 本発明の第1の実施形態に係る自動車にカメラが搭載された状態での屈折層の水平断面図である。 本発明の第1の実施形態に係る自動車にカメラが搭載された状態での屈折層の垂直断面図である。 本発明の第1の実施形態に係るサブ画素の例を示す図である。 本発明の第1の実施形態に係るモデル生成部がモデル化した屈折層の近似曲面から光線変位を求める様子を示す図である。 本発明の第1の実施形態に係る2次多項式で曲面が近似された屈折層の例を示す図である。 本発明の第1の実施形態に係る格子状に黒点が配置された校正用チャートを撮像した画像に写るマーカの例を示す図である。 本発明の第1の実施形態に係る校正用チャートがカメラで撮像される時の様子を示す図である。 本発明の第1の実施形態に係るイメージ画像に写る校正用チャートのマーカの検出位置と計算位置の関係を示す図である。 本発明の第1の実施形態に係る分割した領域ごとのずれ量を示す図である。 本発明の第1の実施形態に係るカメラ校正方法の例を示すフローチャートである。 本発明の第1の実施形態に係る計算機のハードウェア構成例を示すブロック図である。 本発明の第2の実施形態に係るカメラ校正方法の例を示すフローチャートである。 本発明の第2の実施形態に係るずれ量に応じた入力画像の枚数が指示される様子を示す図である。 本発明の第2の実施形態に係る校正用チャートが設置される位置を表す図である。 本発明の第2の実施形態に係る画像の全体に写る校正用チャートの位置を示す図である。 本発明の第2の実施形態に係る画像の左側に寄って写る校正用チャートの位置を示す図である。 本発明の第2の実施形態に係る画像の上側に寄って写る校正用チャートの位置を示す図である。 本発明の第3の実施形態に係るカメラ校正方法の例を示すフローチャートである。 本発明の第3の実施形態に係るずれ量に応じた入力画像の枚数が指示される様子を示す図である。 本発明の第4の実施形態に係るカメラ校正方法の例を示すフローチャートである。
 以下、本発明を実施するための形態について、添付図面を参照して説明する。本明細書及び図面において、実質的に同一の機能又は構成を有する構成要素については、同一の符号を付することにより重複する説明を省略する。本発明は、例えば、先進運転支援システム(ADAS:Advanced Driver Assistance System)、又は自動運転(AD:Autonomous Driving)向けの車載ECU(Electronic Control Unit)が通信可能な車両制御用の演算装置に適用可能である。
[第1の実施形態]
<カメラ校正装置の概略構成例>
 図2は、本発明の第1の実施形態に係るカメラ校正装置100の概略構成例を示すブロック図である。カメラ校正装置100は、第1の実施形態に係るカメラ校正方法を実行することにより、カメラ10を校正するものである。
 カメラ校正装置100は、例として、マーカ位置検出部101、モデル生成部102、画像位置計算部103、パラメータ推定部104、ずれ量計算部105、結果評価部106、及び補正量計算部107とを備えて構成される。
 カメラ10は、不図示のレンズと、画像センサとを備える。カメラ10は、単眼カメラ又はステレオカメラのいずれであってもよい。そして、カメラ10は、対象物を、レンズを介して画像センサで撮像し、画像P1を取得する。画像P1は、カメラ校正装置100に入力され、入力画像として用いられる。
<校正用チャートの一例>
 ここで、カメラ10が撮像する対象物の一例である校正用チャートについて、図3Aと図3Bを参照して説明する。校正用の対象物は、2次元の校正用チャート、及び3次元の校正用チャートのうち、少なくとも一つである。
 図3Aは、円形のマーカが配置された2次元の校正用チャート20の一例を示す斜視図である。
 図3Bは、四角形のマーカが配置された2次元の校正用チャート21の一例を示す斜視図である。
 図3Cは、円形のマーカが配置された3次元の校正用チャート22の一例を示す斜視図である。
 校正用チャートは、等間隔に並んだ四角形や、円のようなマーカが2次元、または、3次元上に配置された構成となっている。以下の説明では、校正用チャート20を例に挙げる。
 校正用チャート20に配置されるマーカは、カメラ校正装置100における校正に用いる計算を簡単にしたり、校正用チャート20の製造を簡易にしたりするため、たわみのない平面に、等間隔で配置されることが多い。ただし、カメラ校正装置100が各マーカの位置関係を予め正確に把握できていれば、マーカの間隔や形状に制限は設けなくてもよい。作業者は、校正用チャート20を持って移動する。そして、校正用チャート20が移動した位置に応じて、校正用チャート20が撮像される。
 次に、屈折層1とカメラ10との配置関係について、図4Aと図4Bを参照して説明する。本校正方法では、カメラ10が屈折層1越しに校正用チャート20を撮像し、画像P1を得る処理が含まれる。屈折層1として、例えば、自動車のフロントガラスが想定されるが、自動車のリアガラス、透明な樹脂部品等であってもよい。
<屈折層と光線の関係>
 図4Aと図4Bは、屈折層1と光線の関係を示した模式図である。図4Aは、自動車にカメラ10が搭載された状態での屈折層1の水平断面図である。図4Bは、自動車にカメラ10が搭載された状態での屈折層1の垂直断面図である。
 図4Aのように屈折層1がカメラ10の前方にあり、かつ、屈折層1の前方が凸形状である場合、正面付近の光線R11では、屈折層1の影響は小さい。一方で、水平方向の広角部からカメラ10に入射する光線R12は屈折層1の影響が大きくなる。
 また、同様に、図4Bにおいても、前方が凸形状の屈折層1がカメラ10の前方にあり、かつ、屈折層1の手前側がカメラ10の方向に傾いている場合、正面付近の光線R21では、屈折層1の影響は小さい。一方で垂直方向の下部からカメラ10に入射する光線R22は屈折層1の影響が大きくなる。
 図2の説明に戻る。
 図2に示したマーカ位置検出部101は、画像P1に写る校正用チャート20のマーカを検出する。
 本発明の本質ではないので、詳細な説明は割愛するが、マーカ位置検出部101は、ハフ変換やコーナー検出、輝度重心計算などの方法を用いて、画像P1に写る校正用チャート20のマーカを検出し、検出したマーカが画像P1上のどの画素に位置するかをサブ画素単位で検出する機能を有する。
<画素とサブ画素の例>
 サブ画素は1画素以下の単位の画素であり、画像P1の画素は整数の値となる。ここで、サブ画素について、図5を参照して説明する。
 図5は、サブ画素の例を示す図である。図5は、複数の画素が配置される様子が示される。
 図5に示す各画素はX軸方向及びY軸方向に並べて配置されている。各画素は、例えば、位置座標が(2,1)に示す画素31が複数の配置されたものである。この画素31のX軸方向の長さはpx[mm]であり、Y軸方向の長さはpy[mm]である。
 ここで、図中の注目点32を画素単位、サブ画素単位で表す例を説明する。画素単位では、注目点32の位置座標が(4,4)で表される。一方、サブ画素単位では、注目点32の位置座標が(3.2,3.8)で表される。このように、サブ画素単位であれば、注目点32の位置座標が画素単位よりも詳細に特定される。
 図2の説明に戻る。
 図2に示したモデル生成部(モデル生成部102)は、画像P1の分割された各領域に設定される重みと、カメラ(カメラ10)が校正用の対象物を撮像してずれ量計算部(ずれ量計算部105)に入力された複数枚の画像とに基づいて、屈折層(屈折層1)を含めてモデル化する。具体的には、モデル生成部102は、カメラ10における内部パラメータや、レンズの歪み、校正用チャート20の並進成分、及び回転成分、並びに屈折層1の近似曲面や並進成分、及び、回転成分をモデル化して生成する機能を有する。モデル生成部102がモデル化を行うことで、3次元上の点が、理論的に画像上のどの位置に配置されるかを計算で求めることが可能となる。その後、後述する結果評価部106は、計算された3次元上の点と、カメラ10で撮像された画像P1上の点とのずれ量を評価することで、モデルとパラメータの設定および推定の妥当性を確認する。ここでは、モデル生成部102によって行われる屈折層1に関するモデル化について説明する。
<屈折層の近似曲面と光線変位の例>
 図6は、モデル生成部102がモデル化した屈折層1の近似曲面から光線変位を求める様子を示す図である。
 図6では、カメラ10が屈折層1を介して校正用チャート20を含む対象物を撮像する様子が示される。ここで、カメラ10から見て屈折層1の手前側の曲面を手前側近似曲面41と呼び、屈折層1の奥側の曲面を奥側近似曲面42と呼ぶ。そして、屈折層1は、カメラ10に対し、手前側近似曲面41と奥側近似曲面42とで挟まれるように構成されており、屈折率nのパラメータを持つ。そして、xy平面に対する高さ方向のZをxとyの関数で表している。
 モデル生成部102は、近似曲面のモデル化の一例として、以下の式(1)に示す2次多項式で屈折層1の曲面を近似してモデル化する。
Figure JPOXMLDOC01-appb-M000001
 式(1)のp00,p10,p01,p20,p11,p02は、各項の係数であり、x,yは二乗項である。式(1)の各Pの下付き数字(例えば、10,20)のうち、前方がx、後方がyの次数を表す。このため、p20は、xが2乗、yが0乗の項の係数を表している。式(1)で表される手前側近似曲面41と奥側近似曲面42は、並進成分T、回転成分Rを持ち、カメラ10に対して各曲面が配置される。ただし、モデル化における変数の選び方は式(1)に示す限りではなく、より高次の多項式(例えば、後述する式(6)に示す5次多項式)としてもよい。
 モデル生成部102は、カメラ10に対し、屈折層1方向に射出された光線が、手前側近似曲面41に入射する点を交点として特定する。そして、モデル生成部102は、この交点に対し、モデル化された近似曲面の式(1)と、並進成分T、回転成分Rとに基づいて、その交点における法線(手前面)を求める。モデル生成部102は、手前側近似曲面41に対する入射光線と、交点、法線、及び、屈折率をモデル化により把握できているので、これらの情報をスネルの法則の式に代入することにより、射出光線が求めることができる。
 また、手前側近似曲面41の射出光線を、奥側近似曲面42に対する入射光線とみなす。そして、モデル生成部102は、手前側近似曲面41での計算と同様に、スネルの法則により奥側近似曲面42からの射出光線を求める処理を行うことで、奥側近似曲面42からの射出光線が求める。この射出光線は、屈折層1の射出光線である。そして、モデル生成部102は、モデル化された近似曲面の式(1)と、並進成分T、回転成分Rとに基づいて、その交点における法線(奥面)を求める。
 この結果、画像位置計算部103は、屈折層1が介さないで撮像された画像P1に写るマーカの位置(図中に一点鎖線で示す射出光線)と、屈折層1を介して撮像された画像P1に写るマーカの位置(図中に実線で示す射出光線)との違いからマーカの位置を計算することができる。
<屈折層の近似曲面の例>
 曲面が近似された屈折層1は、式(1)により以下に示す図7で表される。
 図7は、2次多項式で曲面が近似された屈折層1の例を示す図である。
 図7に示すように屈折層1が複雑な曲面を有していても、式(1)により屈折層1の曲面を近似することが可能である。また、式(1)における係数pに具体的な数値を入れることで、屈折層1を平面で表すことも可能である。式(1)’は、式(1)の係数pに数値を入れて表したものである。
Figure JPOXMLDOC01-appb-M000002
<屈折層の近似平面の例>
 図8は、格子状に黒点51が配置された校正用チャート20を撮像した画像P1に写るマーカの例を示す図である。
 図8の中心をx=0、y=0の位置座標とする。そして、位置座標が(4,-2)の位置の黒点51は、カメラ10で撮像されると、屈折層1の歪みによって、白点52の位置に表される。ここで、白点52の位置座標を(x歪有り,y歪有り)とする。このように、屈折層1が平面で表されることで、屈折層1の歪みの影響が明確となる。
 図2の説明に戻る。
 図2に示した画像位置計算部103は、3次元上の校正用チャート20のマーカ位置を画像上の位置へと変換する。ここで、図9~図11を参照して、マーカ位置を変換する処理について説明する。
<Zhangの手法の説明>
 図9は、校正用チャート20がカメラ10で撮像される時の様子を示す図である。ここでは、カメラ10のパラメータをモデル化し、カメラ10をピンホールカメラとして考えるZhangの手法について説明する。この手法により、ワールド座標系の対象物がカメラ座標系の画像に変換される。
 図9の上側には、ワールド座標で表される校正用チャート20の例が示される。ワールド座標は、実世界の3次元空間で用いられる座標系であり、ミリメートル単位[mm]でマーカの位置が表される。
 校正用チャート20には、等間隔に複数のマーカが配置されている。ワールド座標では、校正用チャート20に黒点で表される各マーカの位置座標が、校正用チャート20の左上を原点としてMx、Myに付した行番号と列番号で表される。例えば、校正用チャート20のマーカ25は、ワールド座標の3行目かつ6列目の位置にあるので、位置座標(Mx36,My36)と表される。
 図9の下側には、カメラ10で校正用チャート20が撮像される様子が示される。ここでは、3次元上の校正用チャートのマーカ位置を、画像上のイメージ座標の位置に変換する方法が示される。イメージ座標は、画像で用いられる座標系であり、ピクセル単位[px]で画像の位置を表す。
 校正用チャート20は、カメラ10に対して、回転又は並進して設置される。ここで、校正用チャート20が回転することを「R」と表し、校正用チャート20が並進することを「t」と表す。そして、校正用チャート20のマーカ25の位置座標は、Pij(Xij,Yij,Zij)と表される。カメラ座標におけるカメラ10の位置は、(Xcamera、Ycamera、Zcamera)で表される。カメラ座標の単位はmmである。
 カメラ10が撮像した画像P1の任意の点の位置はイメージ座標で特定される。ここで、イメージ座標の原点(0,0)の位置を、カメラ10の光軸を示すZ軸(Zcamera)が通過する光学的中心とし、主点(Cx,Cy)と呼ぶ。そして、カメラ10が撮像した校正用チャート20のマーカ25は、画像P1に写る校正用チャート27のマーカ28を通過する直線26上にある。また、イメージ座標上の任意の位置座標は、(xij,yij)で表される。一方、屈折層1を介して撮像される校正用チャート27の任意の位置座標は、横軸をu、縦軸をvとするuv座標の(uij,vij)で表される。
 そこで、モデル生成部102は、カメラ10のレンズの歪みをモデル化し、以下の式(2)、式(3)に用いられるパラメータを設定する。式(2)は、校正用チャート20のマーカの位置関係を示す座標Pij(Xij,Yij,Zij)を、回転(R)及び並進(t)させることにより、3次元上のどの位置にマーカが配置されるかを表す。
 校正用チャートのパラメータとして、以下のものがある。
・2次元チャート平面座標:Mxij,Myij
・回転成分:R
・並進成分:T
Figure JPOXMLDOC01-appb-M000003
 例えば、式(2)に外部パラメータと付された項は、校正用チャート20に対する回転(R)及び並進(t)の影響を表す。また、式(2)に2次元チャート平面座標と付された項は、図9の上側に示したワールド座標でのマーカの位置を表す。
 次式(3)は、式(2)で求めた3次元上の点(Xij,Yij)が、画像P1のどの位置に写るかを求めるために用いられる。ここで、画像P1の座標系をイメージ座標とも呼ぶ。
Figure JPOXMLDOC01-appb-M000004
 例えば、式(3)の左辺にイメージ座標と付された項は、図9に示した画像Pに写る校正用チャート27のマーカ28のイメージ座標における位置を表す。式(3)の右辺に内部パラメータと付された項は、カメラパラメータを表す。カメラのパラメータとして、以下のものがある。
・焦点距離:f
・x方向の焦点距離:f
・y方向の焦点距離:f
・光学的中心(主点)の座標:c、c
・ピクセルサイズ:p、p
・せん断係数:s
 ここで、f=f/pであり、f=f/pである。
 ピクセルサイズp、pは、ピクセル(画素)の大きさを表す。
 また、せん断係数sは、カメラの受像部であるCMOSセンサの画素の傾きαから所定の式(ftanα)で求められる値を表す。
 このような式により、屈折層1を介してカメラ10が撮影した画像から、屈折層1を通さないでカメラ10が撮像可能なマーカの位置を求めることができる。モデル生成部102が生成するカメラのレンズ歪みモデルの一例として、次式(4)が示される。
Figure JPOXMLDOC01-appb-M000005
 式(4)のp1,p2は、レンズ歪モデルにおける係数を表す。また、式(4)のx、yは、歪みの無いカメラ(ピンホールカメラ)が用いられた場合における画像上の座標を表す。実際はカメラ10のレンズの歪みにより、x座標とy座標にずれが生じる。この時の座標を(x歪有,y歪有)と表す。
 画像位置計算部103は、モデル生成部102により生成された屈折層1とレンズ歪のモデルに対し、各パラメータを設定することにより、校正用チャート20上の各マーカ位置を計算により画像上の位置へと変換する。
<マーカの検出位置と計算位置の関係>
 図10は、イメージ画像に写る校正用チャート20のマーカの検出位置と計算位置の関係を示す図である。図10では、校正用チャート20のマーカの位置を「X」で表す。
 カメラ10が撮像した校正用チャート20のマーカの位置は、図10に示す画像P1に検出位置Qij(uij,vij)として示される。一方、図2に示した画像位置計算部103は、式(2)、式(3)に基づいて、マーカの位置を計算することで計算位置P’ij(xij,yij)を求める。そして、画像位置計算部103は、校正用チャート20の全てのマーカについて、計算位置P’ij(xij,yij)を計算する。
 パラメータ推定部104は、マーカ位置検出部101が画像P1から検出したマーカの検出結果と、画像位置計算部103が計算したマーカの計算結果とを比較し、マーカのずれ量を計算する。そして、パラメータ推定部104は、ずれ量が最小となるようなパラメータを推定する。パラメータ推定部104がパラメータを推定する際には、以下の式(5)が用いられる。
Figure JPOXMLDOC01-appb-M000006
 式(5)のQijとP’ijは、以下の位置座標を表す。
・マーカ位置検出部101が検出したマーカの位置座標:Qij(uij、vij
・画像位置計算部103が計算したマーカの位置座標:P’ij(xij、yij
 式(5)のS(Rt)は、全ての検出した点と計算した点の距離の和となる。そして、パラメータ推定部104は、それぞれの検出位置と計算位置の距離の和が最小になるようなパラメータを推定する。
 図2に示した補正量計算部107は、モデル生成部102、及び、パラメータ推定部104によって求められた各パラメータ値から、画像P1上の点が、屈折層1やレンズの歪みによる影響がない場合、どの位置に写るかを示す補正テーブル(不図示)を作成する機能を有する。この補正テーブルは、屈折層1を介して撮像された画像P1だけを用いて、レンズの歪を補正する幾何補正と、屈折層1による画像への影響の補正とを同時に行うために用いられる。
 ずれ量計算部105は、画像P1をいくつかの領域に分割し、屈折層1やレンズの歪みの有無で上記領域ごとにどれだけずれ量が発生するかを計算する機能を有する。分割される領域は、いずれも同じ大きさとすることが望ましい。このため、ずれ量計算部(ずれ量計算部105)は、屈折層(屈折層1)を介してカメラ(カメラ10)が校正用の対象物を撮像した画像の所定の大きさの領域ごとに検出される対象物の検出位置と、屈折層(屈折層1)を通さずにカメラ(カメラ10)が撮像できる画像の領域ごとに計算される対象物の計算位置とのずれ量を計算する。
<ずれ量を計算する例>
 ここで、画像P1を分割してずれ量を計算する様子について、図11を参照して説明する。
 図11は、画像P1を分割した領域ごとのずれ量を示す図である。画像P1は、縦に等間隔、横に等間隔で分割される。ずれ量計算部(ずれ量計算部105)は、モデル化された屈折層(屈折層1)の計算式を用いて対象物の計算位置を計算する。
 カメラ10の正面の適当な距離にある、カメラ10のレンズ面と正対する面を無限平面61とする。無限平面61には、画像P1を分割した領域の大きさに合わせて矩形の領域が示されている。一例として各領域の中心を通る白点63をそれぞれ設定する。ずれ量計算部105は、各領域に設定された白点63に対応する、屈折層1やレンズの歪みの影響を受けた黒点64を求める。
 次に、ずれ量計算部105は、無限平面61上の白点63と黒点64が、それぞれイメージ座標62上のどこに位置するかを計算で求める。イメージ座標62には、無限平面61上の白点63と黒点64に対応する白点65、黒点66が示される。そして、ずれ量計算部105は、領域ごとにそれぞれ、白点65、黒点66の距離「ずれ量67」を求める。
 評価部(結果評価部106)は、ずれ量計算部105が計算した領域ごとにずれ量(ずれ量67)を評価する。ここで、評価部(結果評価部106)は、領域ごとに重みを設定し、領域ごとに重みに応じたずれ量の計算が行われたか否かを評価する。そして、評価部(結果評価部106)は、重みに応じたずれ量の計算が行われていなければ、重みに応じたずれ量の計算をさせるための指示を行う。一方、評価部(結果評価部106)は、重みに応じたずれ量の計算が行われていれば、補正量計算部にずれ量を出力する。例えば、ずれ量の評価結果が不良であれば、結果評価部106は、カメラ10に対して校正用チャート20の再撮影を指示したり、校正用チャート20の移動を促すメッセージを出力したりする。
 図4Aと図4Bに示したように、一般的な乗用車の車内にカメラ10が車載されることを前提とすると、カメラ10に対して前方の屈折層1(例えば、フロントガラス)が30度程度傾き、さらにカメラ10は中央に設置されることが想定される。ずれ量計算部105が計算する領域ごとのずれ量は、画像P1内における領域の位置によって異なる。
 例えば、マーカに対するフォーカスが合っていなくてマーカがぼやけていたり、校正用チャート20の位置が悪くて校正用チャート20の反射光が写り込んだりする場合に、ずれ量計算部105がずれ量を正確に求められず、結果評価部106は、ずれ量の評価結果を不良と評価する。このため、結果評価部106は、カメラ10に対して校正用チャート20の再撮影を指示したり、校正作業者に校正用チャート20の移動を促すメッセージの表示指示を行ったりすることができる。
 また、カメラ10が撮像する画像P1の四隅、広角部、左右下部における領域のずれ量は、画像P1の中央部、上部における領域のずれ量よりも大きくなることが想定される。そこで、結果評価部106は、ずれ量が大きくなる領域に対して、重みを付けることができる。そして、重みを付けた領域には、後述する実施形態に示すように、ずれ量計算部105に入力する領域の画像P1の枚数を増やしたり、計算式を変更したりする指示をカメラ10に行うことができる。
 結果評価部106によるずれ量の評価結果が良ければ、ずれ量の評価結果に応じて、対象物の検出位置を対象物の計算位置へと補正するための補正量を領域ごとに計算し、領域ごとに計算したずれ量の補正量に基づいて、カメラ(カメラ10)を校正する。例えば、補正量計算部107は、ずれ量計算部105により計算されたずれ量67に応じて、イメージ座標62のずれた黒点66を、各領域の真ん中の白点65の位置に移動させる補正量を計算する。補正量を計算した後は、カメラ10が撮影する画像が、計算された補正量で領域ごとに位置を補正する処理が行われることにより、カメラ10が校正される。このため、カメラ校正装置100から出力される画像は、屈折層1の影響が除かれた状態で、後段の環境認識装置(不図示)等に入力され、自動車の周囲の環境認識に用いられる。
<第1の実施形態に係るカメラ校正方法の例>
 次に、カメラ校正装置100で行われる第1の実施形態に係るカメラ校正方法について、図12を参照して説明する。
 図12は、第1の実施形態に係るカメラ校正方法の例を示すフローチャートである。
 始めに、カメラ校正装置100は、屈折層1を介して校正用チャート20を撮像する(S1)。次に、マーカ位置検出部101は、カメラ10から出力された画像P1からマーカの位置を検出する(S2)。次に、モデル生成部102は、上述したモデルを生成する(S3)。
 次に、画像位置計算部103は、校正用チャート上の各マーカの位置から画像位置を計算する(S4)。パラメータ推定部104は、マーカの検出位置と計算位置の距離の和が最小になるようなパラメータを推定する(S5)。
 次に、ずれ量計算部105は、画像P1を分割した領域ごとにずれ量を計算する(S6)。結果評価部106は、分割された領域ごとにずれ量を評価する(S7)。そして、結果評価部106は、評価結果が良いか否かを判断する(S8)。評価結果が良くなければ(S8のNO)、結果評価部106は、校正用チャート20の再撮像をカメラ10に指示し、ステップS1に戻る。評価結果が良ければ(S8のYES)、補正量計算部107は、分割された領域ごとに補正量を計算し(S9)、本処理を終了する。
<計算機のハードウェア構成例>
 次に、カメラ校正装置100を構成する計算機70のハードウェア構成を説明する。
 図13は、計算機70のハードウェア構成例を示すブロック図である。計算機70は、本実施形態に係るカメラ校正装置100として動作可能なコンピューターとして用いられるハードウェアの一例である。本実施形態に係るカメラ校正装置100は、計算機70(コンピューター)がプログラムを実行することにより、図2に示したカメラ校正装置100の各機能ブロックが連携して行うカメラ校正方法を実現する。
 計算機70は、バス74にそれぞれ接続されたCPU(Central Processing Unit)71、ROM(Read Only Memory)72、及びRAM(Random Access Memory)73を備える。さらに、計算機70は、不揮発性ストレージ75及びネットワークインターフェイス76を備える。
 CPU71は、本実施形態に係る各機能を実現するソフトウェアのプログラムコードをROM72から読み出してRAM73にロードし、実行する。RAM73には、CPU71の演算処理の途中で発生した変数やパラメータ等が一時的に書き込まれ、これらの変数やパラメータ等がCPU71によって適宜読み出される。ただし、CPU71に代えてMPU(Micro Processing Unit)を用いてもよく、CPU71とGPU(Graphics Processing Unit)を併用してもよい。図2に示したカメラ校正装置100の各部の機能は、CPU71により実現される。
 不揮発性ストレージ75としては、例えば、HDD(Hard Disk Drive)、SSD(Solid State Drive)、フレキシブルディスク、光ディスク、光磁気ディスク、CD-ROM、CD-R、磁気テープ又は不揮発性のメモリ等が用いられる。この不揮発性ストレージ75には、OS(Operating System)、各種のパラメータの他に、計算機70を機能させるためのプログラムが記録されている。ROM72及び不揮発性ストレージ75は、CPU71が動作するために必要なプログラムやデータ等を記録しており、計算機70によって実行されるプログラムを格納したコンピューター読取可能な非一過性の記憶媒体の一例として用いられる。不揮発性ストレージ75には、例えば、画像P1が保存される。また、不揮発性ストレージ75には、モデル生成部102により生成されたモデル、パラメータ推定部104が推定したパラメータ、ずれ量計算部105が計算したずれ量、結果評価部106が評価したずれ量の評価結果、補正量計算部107が計算した補正量が保存される。
 ネットワークインターフェイス76には、例えば、NIC(Network Interface Card)等が用いられ、NICの端子に接続された車内LAN(Local Area Network)、専用線等を介して各種のデータを装置間で送受信することが可能である。
 以上説明した第1の実施形態に係るカメラ校正装置100では、カメラ10が屈折層1を介して校正用チャート20を撮像した画像から、マーカ位置を検出してモデルを生成する。そして、カメラ校正装置100は、画像上のマーカの位置を計算して、マーカの検出位置と計算位置のずれ量が最小となるようなパラメータを推定することで、屈折層1やレンズの歪みによる影響がない場合に画像P1上の点が写る位置を補正可能な補正テーブルを作成する。この結果、カメラ10で撮影した画像P1に写る対象物の位置が、補正テーブルを用いることで屈折層1やレンズの歪みによる影響がない位置に変換されるので、環境認識装置等が対象物の位置を正確に把握することができる。
 また、従来のカメラより広角で撮像可能なカメラからカメラ校正装置100に入力される画像P1は、例えば、交差点で自動車が右左折する時の歩行者を検出するために用いられる。この場合であっても、第1の実施形態に係るカメラ校正方法を用いることで、広角部での屈折層の画像のずれの影響を抑えることで、確実に歩行者を検出できるようになる。
 このため、単眼カメラ、あるいは、ステレオカメラにおいて、少なくとも一つの校正用チャート20を用いるだけで、専用の設備や場所に依存することなく、幾何的な画像の補正ができる。また、画像P1の補正量が算出されるため、屈折層1を介して撮像された画像P1から、屈折層1のない状況を模擬することが可能な撮像装置及び画像補正装置を提供することも可能となる。
[第2の実施形態]
 次に、カメラ校正装置100で行われる本発明の第2の実施形態に係るカメラ校正方法について、図14と図15を参照して説明する。
 第2の実施形態に係るカメラ校正装置100の構成は、第1の実施形態に係るカメラ校正装置100と同様の構成としてよい。第2の実施形態に係るカメラ校正装置100は、ずれ量計算部105が計算した領域ごとのずれ量に応じて、カメラ10から入力する画像P1の枚数を変更することでカメラ10の校正を実施する。例えば、広い範囲の校正用チャート20を用いてカメラ10の構成を行う場合、一度の撮影だけでは全範囲をカバーしきれないので、異なる位置で撮像された複数枚の画像P1を入力することが必要となる。
<第2の実施形態に係るカメラ校正方法の例>
 図14は、第2の実施形態に係るカメラ校正方法の例を示すフローチャートである。なお、図14に示すフローチャートでは、図12に示した第1の実施形態に係るカメラ校正方法のフローチャートの各ステップのうち、マーカ位置検出(S2)、モデル生成(S3)、画像位置計算(S4)、パラメータ推定(S5)の処理は既に行われたものとして、詳細な説明を省略する。
 始めに、カメラ10が校正用チャート20を撮像する(S11)。次に、ずれ量計算部105は、分割された領域ごとにずれ量を計算する(S12)。次に、結果評価部106は、ずれ量に応じた枚数の画像P1が入力されたか否かを評価する(S13)。評価部(結果評価部106)は、重みに応じたずれ量の計算が行われていなければ、領域に設定した重みに応じて、ずれ量計算部(ずれ量計算部105)に入力される画像の枚数を領域ごとに変更する指示を行う。この指示は、カメラ10に入力されることで、カメラ10が校正用チャート20を再び撮像する。その後、再撮像された画像P1がずれ量計算部105に入力されて、領域に設定された枚数の画像P1でずれ量の計算が行われる。
 例えば、カメラ10の光線に対して、屈折層1がほぼ垂直に配置されていれば、結果評価部106は、画像P1の周辺(左右下部)の領域に対して重みを設定し、画像P1の枚数を多くする指示を行う。同様に、カメラ10の光線に対して、屈折層1が傾けて配置されていれば、画像P1の下部の領域に対して重みを設定し、画像P1の枚数を多くする指示が行われる。また、カメラ10が左側又は右側に片寄って配置されていれば、結果評価部106は、画像P1のカメラ10が配置された位置とは逆側の領域に対して重みを設定し、画像P1の枚数を多くする指示が行われる。
 結果評価部106がずれ量に応じた枚数の画像P1が入力されていないと評価すると(S13のNO)、再びS11に戻って、ずれ量枚数の画像P1が入力されるまで、処理を繰り返す。
 一方、結果評価部106がずれ量に応じた枚数の画像P1が入力されたと評価すると(S13のYES)、補正量計算部107は、分割された領域ごとに補正量を計算し(S14)、本処理を終了する。
 図15は、ずれ量に応じた入力画像の枚数が指示される様子を示す図である。図15の上側には、分割された領域ごとのずれ量[px]が示され、図15の上側には、分割された領域ごとに必要な入力画像(画像P1)の枚数が示される。
 結果評価部106は、各領域でのずれ量に応じて相対的に必要な入力画像枚数を求める。最小の入力画像枚数は1枚である。例えば、ずれ量が1.0未満であれば、入力画像枚数が1枚である。一方、ずれ量が1.0以上、3.0未満であれば、入力画像枚数が2枚であり、ずれ量が3.0以上、4.0未満であれば、入力画像枚数が3枚であり、ずれ量が4.0以上であれば、入力画像枚数が4枚である。
 ここで必要な条件としては、各領域に校正用チャート20のマーカが定められた数を含む画像のことである。例えば、作業者が校正用チャート20の傾きを変えて、カメラ10が何度も校正用チャート20を撮影して多くの入力画像の枚数が入力されることで、画像P1が分割された領域ごとの補正量の精度が高まる。この結果、カメラ校正装置100は、カメラ10の校正の精度を高めることもできる。
 ここで、校正用チャート20の位置を変えて撮像する様子について、図16と図17A~図17Cを参照して説明する。
 図16は、校正用チャート20が設置される位置を表す図である。
 カメラ10の画角の範囲内に収まるように、校正用チャート20が設置される。ここで、カメラ10に最も近い距離L1の位置に校正用チャート20(1)が配置され、次にカメラ10に近い距離L2の位置に校正用チャート20(2)が配置され、最もカメラ10から遠い距離L3の位置に校正用チャート20(3)が配置されたとする。また、カメラ10が撮像する画像P1は、9つの領域に等分割されているものとする。
 図17Aは、画像P1の全体に写る校正用チャート20(1)の位置を示す図である。
 図17Aに示す校正用チャート20(1)は、画像P1の分割された9つの領域の全体にわたって撮像されたものである。ただし、画像P1の左側、上側には校正用チャート20(1)が写る範囲が少ないため、校正用チャート20(1)のマーカが不足している。そこで、校正用チャート20の位置は、結果評価部106がカメラ10に指示する。
 図17Bは、画像P1の左側に寄って写る校正用チャート20(2)の位置を示す図である。
 図17Bに示す校正用チャート20(2)は、画像P1の左側に寄って撮像されたものである。このため、図17Aに示した画像P1の左側で不足していた校正用チャート20(1)のマーカが十分な量で写る。
 図17Cは、画像P1の上側に寄って写る校正用チャート20(3)の位置を示す図である。
 図17Cに示す校正用チャート20(3)は、画像P1の上側に寄って撮像されたものである。このため、図17Aに示した画像P1の上側で不足していた校正用チャート20(1)のマーカが十分な数で写る。
 このように一つの校正用チャート20の位置や傾きを様々に変えることで、校正用チャート20のマーカが画像P1に万遍なく写るようになる。このため、マーカ位置検出部101が各画像P1から検出したマーカの位置を用いて、補正量計算部107が領域ずれの補正量を第1の実施形態に係るカメラ校正方法よりも正確に計算することも可能となる。
[第3の実施形態]
 次に、カメラ校正装置100で行われる本発明の第3の実施形態に係るカメラ校正方法について、図18と図19を参照して説明する。
 第3の実施形態に係るカメラ校正装置100の構成は、第1の実施形態に係るカメラ校正装置100と同様の構成としてよい。第3の実施形態に係るカメラ校正装置100は、ずれ量計算部105が求めた領域ごとのずれ量に応じて計算式を変更することで、カメラ10の校正を実施する。変更前の計算式は、上式(1)であったり、上式(4)であったり、あるいは両方の場合もある。
 具体的な例として、図6に示した手前側近似曲面41、及び奥側近似曲面42のうち、少なくとも一つの曲面を表す計算式を次式(6)に変更するなどが想定される。例えば、ずれ量計算部105は、式(4)に示すモデルの近似曲面を次式(6)に変更することができる。
Figure JPOXMLDOC01-appb-M000007
 同様に、ずれ量計算部105は、レンズの歪みモデルに関しても次数を変えてもよいし、他の近似曲面と組み合わせたモデルに変更してもよい。次式(7)は、ずれ量計算部105が変更可能な他のモデルの一例である。
Figure JPOXMLDOC01-appb-M000008
<第3の実施形態に係るカメラ校正方法の例>
 図18は、第3の実施形態に係るカメラ校正方法の例を示すフローチャートである。なお、図18に示すフローチャートでは、図12に示した第1の実施形態に係るカメラ校正方法のフローチャートの各ステップのうち、マーカ位置検出(S2)、画像位置計算(S4)、パラメータ推定(S5)の処理は既に行われたものとして、詳細な説明を省略する。
 始めに、カメラ10が校正用チャート20を撮像する(S21)。次に、モデル生成部102は、モデルを生成、すなわち計算式を生成する(S22)。
 次に、ずれ量計算部105は、分割された領域ごとにずれ量を計算する(S23)。次に、結果評価部106は、ずれ量に応じた計算式であるか否かを評価する(S24)。評価部(結果評価部106)は、重みに応じたずれ量の計算が行われていなければ、領域に設定した重みに応じて、ずれ量計算部(ずれ量計算部105)が領域ごとにずれ量を計算する計算式を変更する指示を行う。この指示は、カメラ10に入力されることで、カメラ10を通じてずれ量計算部105に入力される。そして、ずれ量計算部105は、指示にしたがって変更した計算式を用いて、計算式の変更が指示された領域におけるずれ量の計算を再び行う。
 例えば、カメラ10の光線に対して、屈折層1がほぼ垂直に配置されていれば、結果評価部106は、画像P1の周辺(左右下部)の領域に対して重みを設定し、この重みに合わせた計算式を生成する指示を行う。同様に、カメラ10の光線に対して、屈折層1が倒れて配置されていれば、画像P1の下部の領域に対して重みを設定し、この重みに合わせた計算式を生成する指示が行われる。また、カメラ10が左側又は右側に片寄って配置されていれば、結果評価部106は、画像P1のカメラ10が配置された位置とは逆側の領域に対して重みを設定し、この重みに合わせた計算式を生成する指示が行われる。
 結果評価部106がずれ量に応じた計算式でないと評価すると(S24のNO)、再びS22に戻って、ずれ量に応じた計算式が生成されるまで、モデル生成を繰り返す。そして、ずれ量計算部105は、ずれ量に応じた計算式を用いてずれ量を計算する。
 一方、結果評価部106は、ずれ量に応じた計算式であると評価すると(S24のYES)、補正量計算部107は、分割された領域ごとに補正量を計算し(S25)、本処理を終了する。
 図19は、ずれ量に応じた入力画像の枚数が指示される様子を示す図である。図19の上側には、分割された領域ごとのずれ量[px]が示され、図19の上側には、分割された領域ごとに適切な計算式が示される。
 結果評価部106は、各領域でのずれ量に応じた計算式を求める。例えば、例えば、ずれ量が1.0未満であれば、計算式aを用いる。一方、ずれ量が1.0以上、2.5未満であれば、計算式bを用い、ずれ量が2.5以上、3.5未満であれば、計算式cを用い、ずれ量が3.5以上であれば、計算式dを用いる。ここに示した計算式a~dは、上述した式(1)、式(4)等や不図示の式が用いられる。
 以上説明した第3の実施形態に係るカメラ校正装置100では、計算式を任意に変更することができる。このため、実際に校正用チャート20が撮像される環境に合わせて選択された適切な計算式を用いることで、補正量の計算精度を高めることができる。
[第4の実施形態]
 次に、カメラ校正装置100で行われる本発明の第4の実施形態に係るカメラ校正方法について、図20を参照して説明する。
 第4の実施形態に係るカメラ校正装置100の構成は、第1の実施形態に係るカメラ校正装置100と同様の構成としてよい。第4の実施形態に係るカメラ校正装置100では、第2の実施形態に係るカメラ校正方法と、第3の実施形態に係るカメラ校正方法とを同時に行うものである。そこで、ずれ量計算部105によって求められたずれ量に応じて入力画像の枚数を変更し、かつ、計算式を変更して校正を実施する。
<第4の実施形態に係るカメラ校正方法の例>
 図20は、第4の実施形態に係るカメラ校正方法の例を示すフローチャートである。なお、図20に示すフローチャートでは、図12に示した第1の実施形態に係るカメラ校正方法のフローチャートの各ステップのうち、マーカ位置検出(S2)、画像位置計算(S4)、パラメータ推定(S5)の処理は既に行われたものとして、詳細な説明を省略する。
 上述したように第4の実施形態に係るカメラ校正方法は、第2の実施形態に係るカメラ校正方法と、第3の実施形態に係るカメラ校正方法とを組み合わせたものである。評価部(結果評価部106)は、重みに応じたずれ量の計算が行われていなければ、領域に設定した重みに応じて、ずれ量計算部(ずれ量計算部105)に入力される画像の枚数を領域ごとに変更する指示を行い、かつ、ずれ量計算部(ずれ量計算部105)が領域ごとにずれ量を計算する計算式を変更する指示を行う。画像の枚数を領域ごとに変更する指示は、カメラ10に入力されることで、カメラ10が校正用チャート20を再び撮像する。その後、再撮像された画像P1がずれ量計算部105に入力されて、領域に設定された枚数の画像P1でずれ量の計算が行われる。併せて、計算式を変更する指示は、カメラ10に入力されることで、カメラ10を通じてずれ量計算部105に入力される。そして、ずれ量計算部105は、指示にしたがって変更した計算式を用いて、計算式の変更が指示された領域におけるずれ量の計算を再び行う。
 図20に示すステップS31,S33,S34の処理は、図14に示したステップS11~S13の処理と同じである。また、図20に示すステップS31~S33,S35の処理は、図14に示したステップS21~S24の処理と同じである。
 そして、ステップS35にて、ずれ量に応じた計算式であると評価された場合に(S35のYES)、補正量計算部107は、分割された領域ごとに補正量を計算し(S36)、本処理を終了する。
 以上説明した第4の実施形態に係るカメラ校正装置100では、ずれ量に応じて入力画像の枚数を変更し、かつ、計算式を変更することによって、一層、ずれ量の補正を正確に行うことができる。
 なお、本発明は上述した各実施形態に限られるものではなく、請求の範囲に記載した本発明の要旨を逸脱しない限りその他種々の応用例、変形例を取り得ることは勿論である。
 例えば、上述した各実施形態は本発明を分かりやすく説明するために装置の構成を詳細かつ具体的に説明したものであり、必ずしも説明した全ての構成を備えるものに限定されない。また、ここで説明した実施形態の構成の一部を他の実施形態の構成に置き換えることは可能であり、さらにはある実施形態の構成に他の実施形態の構成を加えることも可能である。また、各実施形態の構成の一部について、他の構成の追加、削除、置換をすることも可能である。
 また、制御線や情報線は説明上必要と考えられるものを示しており、製品上必ずしも全ての制御線や情報線を示しているとは限らない。実際には殆ど全ての構成が相互に接続されていると考えてもよい。
 1…屈折層、10…カメラ、20…校正用チャート、100…カメラ校正装置、101…マーカ位置検出部、102…モデル生成部、103…画像位置計算部、104…パラメータ推定部、105…ずれ量計算部、106…結果評価部、107…補正量計算部

Claims (8)

  1.  屈折層を介してカメラが校正用の対象物を撮像した画像の所定の大きさの領域ごとに検出される前記対象物の検出位置と、前記屈折層を通さずに前記カメラが撮像できる画像の前記領域ごとに計算される前記対象物の計算位置とのずれ量を計算するずれ量計算部と、
     前記領域ごとに前記ずれ量を評価する評価部と、
     前記ずれ量の評価結果に応じて、前記対象物の検出位置を前記対象物の計算位置へと補正するための補正量を前記領域ごとに計算し、前記領域ごとに計算した前記ずれ量の補正量に基づいて、前記カメラを校正する補正量計算部と、を備える
     カメラ校正装置。
  2.  前記評価部は、前記領域ごとに重みを設定し、前記領域ごとに前記重みに応じた前記ずれ量の計算が行われたか否かを評価し、前記重みに応じた前記ずれ量の計算が行われていなければ、前記重みに応じた前記ずれ量の計算をさせるための指示を行い、前記重みに応じた前記ずれ量の計算が行われていれば、前記補正量計算部に前記ずれ量を出力する
     請求項1に記載のカメラ校正装置。
  3.  前記評価部は、前記重みに応じた前記ずれ量の計算が行われていなければ、前記領域に設定した前記重みに応じて、前記ずれ量計算部に入力される前記画像の枚数を前記領域ごとに変更する指示を行う
     請求項2に記載のカメラ校正装置。
  4.  前記評価部は、前記重みに応じた前記ずれ量の計算が行われていなければ、前記領域に設定した前記重みに応じて、前記ずれ量計算部が前記領域ごとにずれ量を計算する計算式を変更する指示を行う
     請求項2に記載のカメラ校正装置。
  5.  前記評価部は、前記重みに応じた前記ずれ量の計算が行われていなければ、前記領域に設定した前記重みに応じて、前記ずれ量計算部に入力される前記画像の枚数を前記領域ごとに変更する指示を行い、かつ、前記ずれ量計算部が前記領域ごとにずれ量を計算する計算式を変更する指示を行う
     請求項2に記載のカメラ校正装置。
  6.  校正用の前記対象物は、2次元の校正用チャート、及び3次元の校正用チャートのうち、少なくとも一つである
     請求項4に記載のカメラ校正装置。
  7.  前記重みと、前記カメラが校正用の前記対象物を撮像して前記ずれ量計算部に入力された複数枚の前記画像とに基づいて、前記屈折層を含めてモデル化するモデル生成部を備え、
     前記ずれ量計算部は、前記モデル化された前記屈折層の計算式を用いて前記対象物の計算位置を計算する
     請求項2に記載のカメラ校正装置。
  8.  屈折層を介してカメラが校正用の対象物を撮像した画像の所定の大きさの領域ごとに検出される前記対象物の検出位置と、前記屈折層を通さずに前記カメラが撮像できる画像の前記領域ごとに計算される前記対象物の計算位置とのずれ量を計算するステップと、
     前記領域ごとに前記ずれ量を評価するステップと、
     前記ずれ量の評価結果に応じて、前記対象物の検出位置を前記対象物の計算位置へと補正するための補正量を前記領域ごとに計算するステップと、
     前記領域ごとに計算した前記ずれ量の補正量に基づいて、前記カメラを校正するステップと、を含む
     カメラ校正方法。
PCT/JP2022/046243 2022-12-15 2022-12-15 カメラ校正装置及びカメラ校正方法 WO2024127591A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/046243 WO2024127591A1 (ja) 2022-12-15 2022-12-15 カメラ校正装置及びカメラ校正方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/046243 WO2024127591A1 (ja) 2022-12-15 2022-12-15 カメラ校正装置及びカメラ校正方法

Publications (1)

Publication Number Publication Date
WO2024127591A1 true WO2024127591A1 (ja) 2024-06-20

Family

ID=91484632

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/046243 WO2024127591A1 (ja) 2022-12-15 2022-12-15 カメラ校正装置及びカメラ校正方法

Country Status (1)

Country Link
WO (1) WO2024127591A1 (ja)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015163866A (ja) * 2014-01-31 2015-09-10 株式会社リコー ステレオカメラ校正方法、視差算出装置及びステレオカメラ
JP2019068272A (ja) * 2017-09-29 2019-04-25 株式会社デンソー 周辺監視装置およびその校正方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015163866A (ja) * 2014-01-31 2015-09-10 株式会社リコー ステレオカメラ校正方法、視差算出装置及びステレオカメラ
JP2019068272A (ja) * 2017-09-29 2019-04-25 株式会社デンソー 周辺監視装置およびその校正方法

Similar Documents

Publication Publication Date Title
JP6967715B2 (ja) カメラ校正方法、カメラ校正プログラム及びカメラ校正装置
JP6975929B2 (ja) カメラ校正方法、カメラ校正プログラム及びカメラ校正装置
WO2021098608A1 (zh) 传感器的标定方法、装置、系统、车辆、设备及存储介质
JP7054803B2 (ja) カメラパラメタセット算出装置、カメラパラメタセット算出方法及びプログラム
US10127687B2 (en) Calibration device, calibration method, optical device, image-capturing device, projection device, measuring system, and measuring method
JP5713159B2 (ja) ステレオ画像による3次元位置姿勢計測装置、方法およびプログラム
US10867407B2 (en) System and methods for extrinsic calibration of cameras and diffractive optical elements
JP7038345B2 (ja) カメラパラメタセット算出方法、カメラパラメタセット算出プログラム及びカメラパラメタセット算出装置
JP7002007B2 (ja) カメラパラメタセット算出装置、カメラパラメタセット算出方法及びプログラム
JP6079333B2 (ja) 校正装置、方法及びプログラム
JPWO2018235163A1 (ja) キャリブレーション装置、キャリブレーション用チャート、チャートパターン生成装置、およびキャリブレーション方法
US20140085409A1 (en) Wide fov camera image calibration and de-warping
JP2006252473A (ja) 障害物検出装置、キャリブレーション装置、キャリブレーション方法およびキャリブレーションプログラム
US11233983B2 (en) Camera-parameter-set calculation apparatus, camera-parameter-set calculation method, and recording medium
JP6602982B2 (ja) 車載カメラ、車載カメラの調整方法、車載カメラシステム
JP2022515225A (ja) センサキャリブレーション方法及び装置、記憶媒体、キャリブレーションシステム並びにプログラム製品
JP6515650B2 (ja) 校正装置、距離計測装置及び校正方法
JP5228614B2 (ja) パラメータ計算装置、パラメータ計算システムおよびプログラム
WO2019058729A1 (ja) ステレオカメラ
JP2011155412A (ja) 投影システムおよび投影システムにおける歪み修正方法
JP6854472B2 (ja) 撮像装置、及び撮像方法
Rosebrock et al. Generic camera calibration and modeling using spline surfaces
WO2024127591A1 (ja) カメラ校正装置及びカメラ校正方法
TWI424259B (zh) 相機擺置角度校正法
EP4016444A1 (en) Method for rectification of images and/or image points, camera-based system and vehicle

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22968502

Country of ref document: EP

Kind code of ref document: A1