WO2024125139A1 - 选频移相装置及多频天线 - Google Patents

选频移相装置及多频天线 Download PDF

Info

Publication number
WO2024125139A1
WO2024125139A1 PCT/CN2023/128803 CN2023128803W WO2024125139A1 WO 2024125139 A1 WO2024125139 A1 WO 2024125139A1 CN 2023128803 W CN2023128803 W CN 2023128803W WO 2024125139 A1 WO2024125139 A1 WO 2024125139A1
Authority
WO
WIPO (PCT)
Prior art keywords
phase
phase shifting
shifting
gear
frequency
Prior art date
Application number
PCT/CN2023/128803
Other languages
English (en)
French (fr)
Inventor
黄潮生
刘培涛
段红彬
肖飞
潘培锋
Original Assignee
京信通信技术(广州)有限公司
京信射频技术(广州)有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京信通信技术(广州)有限公司, 京信射频技术(广州)有限公司 filed Critical 京信通信技术(广州)有限公司
Publication of WO2024125139A1 publication Critical patent/WO2024125139A1/zh

Links

Definitions

  • the present disclosure relates to the technical field of mobile communications, and in particular to a frequency-selective phase-shifting device and a multi-frequency antenna equipped with the frequency-selective phase-shifting device.
  • the demand for network capacity of sites in mobile cellular networks is increasing.
  • it is required to minimize the interference between different sites or even between different sectors of the same site, that is, to maximize network capacity and minimize interference.
  • the downtilt angle of the antenna beam on the site is usually adjusted to achieve it.
  • the antenna When the antenna is a multi-frequency antenna, the beam downtilt angle is mainly adjusted by mechanical downtilt.
  • the antenna is generally built with a transmission device, which is connected to the phase shift components corresponding to each frequency band in the multi-frequency antenna through multiple phase shifters.
  • the transmission device selects one of the phase shifters through a frequency selection mechanism, and drives the phase shifter through the phase shift mechanism to implement the phase shift operation.
  • the traditional transmission device has a complex structure, and the transmission requires multiple switching channels.
  • the frequency selection and phase shifting output efficiency is low and the reliability is poor.
  • the frequency selection mechanism adopts an upper and lower layout, and the phase shifting structure and the frequency selection structure are designed separately, which further leads to the large size of the transmission device and insufficient flatness. It is not suitable for installation in the antenna, and the production cost of the transmission device is high, which is not conducive to the large-scale application of the transmission device.
  • the present invention aims to solve at least one of the above problems and provide a frequency selective phase shifting device. and multi-band antennas.
  • a frequency-selective phase-shifting device is provided to meet one of the purposes of the present invention, comprising phase-shifting components corresponding to a plurality of frequency bands, a frequency-selecting mechanism for selecting a phase-shifting component of one frequency band under the control of an external torque, and a phase-shifting mechanism for performing phase-shifting control on the selected phase-shifting component under the control of an external torque.
  • the frequency selection mechanism includes a linkage member, a transmission screw fixed on the linkage member, and a screw sleeve threadedly mounted on the transmission screw;
  • the phase shifting mechanism comprises a transmission shaft and a phase shifting gear, wherein the phase shifting gear is slidably sleeved on the transmission shaft, the transmission shaft is arranged parallel to the transmission screw, and the phase shifting gear is pivotally arranged in the accommodation space provided by the linkage member;
  • the screw sleeve is used to transmit external torque to the transmission screw, and the transmission screw drives the phase-shifting gear to move linearly along the transmission shaft to selectively mesh with any phase-shifting component; the transmission shaft is driven by the external torque to drive the phase-shifting gear to rotate synchronously, driving the meshing phase-shifting components to implement phase shifting.
  • the frequency selection mechanism and the phase shift mechanism operate independently of each other, and the external torque selectively drives the frequency selection mechanism and the phase shift mechanism.
  • a first transmission gear is provided on the outer periphery of the screw sleeve, and the first transmission gear is used to transmit external torque.
  • the linkage member is provided with a pair of fixing members, and the two ends of the transmission screw are respectively connected to the pair of fixing members.
  • the accommodating space is arranged in the fixing member.
  • the frequency selection mechanism also includes a composite gear and a first driving gear
  • the composite gear includes a first gear portion and a second gear portion fixed to each other, the first gear portion is meshed with the first transmission gear, the second gear portion is meshed with the first driving gear, and the first driving gear is used to receive external torque.
  • the phase shifting mechanism further includes a second transmission gear and a second driving gear, the second transmission gear is slidably disposed on the transmission shaft, the second driving gear is meshed with the second transmission gear, and the second driving gear is used to receive external torque.
  • the frequency selection mechanism further includes a guide rod arranged parallel to the transmission shaft.
  • the guide rod and the transmission shaft are respectively slidably sleeved on both sides of the linkage member.
  • the phase shifting assembly includes a first phase shifting unit, the first phase shifting unit is a phase shifting rack, and the phase shifting rack is meshed with the phase shifting gear.
  • the phase shifting assembly includes a second phase shifting unit, the second phase shifting unit includes a phase shifting screw and a phase shifting screw sleeve threadedly arranged with the phase shifting screw, and the phase shifting gear is used to drive the phase shifting screw sleeve to rotate.
  • a multi-frequency antenna is provided to meet one of the purposes of the present invention, including multiple phase shifting components corresponding to multiple frequency bands, which includes the above-mentioned frequency selection phase shifting device, and each of the phase shifting components has a phase shifting component corresponding to the frequency selection phase shifting device and is arranged in linkage with it.
  • the present invention has many advantages, including but not limited to:
  • the frequency-selective phase shifting device of the present invention drives the phase-shifting gear to mesh with the phase-shifting component of any frequency band through the frequency-selective mechanism, and then drives the transmission shaft through the phase-shifting mechanism to drive the phase-shifting gear to rotate, and the phase-shifting gear drives the phase-shifting component to move, thereby implementing phase shifting.
  • the frequency-selective phase shifting device has a simple frequency selection and phase shifting method and is easy to operate.
  • the frequency selection mechanism and the phase shifting mechanism of the frequency selection and phase shifting device of the present invention operate independently of each other and do not interfere with each other, which is convenient for precise control and thus precise phase shifting; and the frequency selection mechanism and the phase shifting mechanism operate independently of each other, so that both the frequency selection mechanism and the phase shifting mechanism have higher transmission efficiency, thereby improving the operating efficiency of the frequency selection and phase shifting device.
  • FIG1 is a schematic structural diagram of a frequency-selective phase-shifting device according to a typical embodiment of the present invention
  • FIG2 is a schematic structural diagram of a linkage member of a frequency-selective phase-shifting device according to a typical embodiment of the present invention
  • FIG3 is a schematic diagram of the structure of two rows of phase-shifting racks, a transmission shaft and a phase-shifting gear according to an embodiment of the present invention
  • FIG. 4 is a schematic structural diagram of a frequency-selective phase-shifting device according to another embodiment of the present invention.
  • the present invention provides a frequency-selective phase-shifting device, which comprises a frequency-selective mechanism and a phase-shifting mechanism.
  • the frequency-selective mechanism is used to select a phase-shifting component of a frequency band, and the phase-shifting mechanism is used to move the selected phase-shifting component to implement phase shifting.
  • the frequency-selective mechanism and the phase-shifting mechanism operate independently of each other and do not interfere with each other, so as to improve the operating efficiency of the frequency-selective phase-shifting device.
  • the frequency-selective phase-shifting device 100 includes phase-shifting components 130 corresponding to multiple frequency bands, a frequency-selective mechanism, and a phase-shifting mechanism.
  • the frequency-selective mechanism is used to select the phase-shifting component 130 of one of the frequency bands, and the phase-shifting mechanism is used to drive the phase-shifting component 130 selected by the frequency-selective mechanism to implement phase shifting.
  • the phase-shifting mechanism includes a transmission shaft 111, a phase-shifting gear 112, and a first transmission assembly.
  • the phase-shifting gear 112 is used to mesh with the phase-shifting assembly 130, and the phase-shifting gear 112 is slidably mounted on the transmission shaft 111.
  • the first transmission assembly is used to transmit an external torque to the transmission shaft 111 to drive the transmission shaft 111 to rotate, so that the transmission shaft 111 drives the phase-shifting gear 112 to rotate.
  • the cross-section of the transmission shaft 111 is hexagonal, and the cross-section of the inner hole of the phase-shifting gear 112 is also hexagonal corresponding to the cross-section of the transmission shaft 111, so that the transmission shaft 111 can pass through the inner hole of the phase-shifting gear 112, so that the phase-shifting gear 112 is slidably mounted on the transmission shaft 111.
  • the first transmission assembly includes a first transmission gear 113, a first driving gear 114 and a first driving shaft 115.
  • the first transmission gear 113 is sleeved on the transmission shaft 111.
  • the first transmission gear 113 is meshed with the first driving gear 114.
  • the first driving shaft 115 is inserted into the first driving gear 114.
  • the first driving shaft 115 is used to receive external torque, so that the first driving gear 114, the first transmission gear 113, the transmission shaft 111 and the phase shifting gear 112 are driven to rotate in sequence through the first driving shaft 115, so that the phase shifting gear 112 drives the phase shifting assembly 130 meshing therewith to move, thereby implementing phase shifting.
  • the first drive shaft 115 is connected to an output shaft of a first motor (not shown) so that the first motor outputs a driving torque to the first drive shaft 115.
  • the first drive shaft 115 and the first drive gear 114 are integrally formed.
  • the first transmission gear 113 is a bevel gear
  • the first driving gear 114 is also a bevel gear, so that the first driving gear 114 is meshed with the first transmission gear 113 .
  • the cross-section of the transmission shaft 111 is hexagonal, and the cross-section of the inner hole of the first transmission gear 113 corresponding to the cross-section of the transmission shaft 111 is also hexagonal.
  • the transmission shaft 111 passes through the inner hole of the first transmission gear 113 so that the first transmission gear 113 can drive the transmission shaft 111 to rotate.
  • the frequency selection mechanism includes a linkage member 121, a transmission screw 122, a screw sleeve 123 and a second transmission assembly, wherein the transmission screw 122 is arranged parallel to the transmission shaft 111, the transmission screw 122 is fixed on the linkage member 121, and the screw sleeve 123 is screwed on the transmission screw 122.
  • the second transmission assembly is used to transmit an external torque to the screw sleeve 123 to drive the screw sleeve 123 to rotate, so that the screw sleeve 123 drives the transmission screw 122 to move along the extension direction of the screw sleeve 123, so that the transmission screw 122 drives the linkage member 121 fixed thereto. move.
  • the linkage member 121 includes a pair of fixing members 1211 and a crossbeam 1212 for connecting the pair of fixing members 1211.
  • the fixing member 1211 is provided with an installation space 1213 and an accommodation space 1214, wherein the installation space 1213 is used for fixing one end of the transmission screw 122, and the accommodation space 1214 is used for pivotally installing the phase-shifting gear 112.
  • both ends of the transmission screw 122 are respectively fixedly installed in the installation space 1213 of the pair of fixing members 1211, so that the transmission screw 122 is fixedly arranged on the linkage member 121.
  • the installation space 1213 is a mounting groove, and the end of the transmission screw 122 extends into the mounting groove, and the end of the transmission screw 122 is fixed in the mounting groove by a screw.
  • the fixing member 1211 is provided with a pair of opposite mounting plates 1215, and the pair of mounting plates 1215 define the accommodation space 1214, and the phase-shifting gear 112 is pivotally arranged in the accommodation space 1214, that is, the phase-shifting gear 112 is arranged between the pair of mounting plates 1215.
  • the mounting plates 1215 are provided with mounting holes 1216, and the transmission shaft 111 slides through the respective mounting holes 1216 of the pair of mounting plates 1215, and the phase-shifting gear 112 arranged in the accommodation space 1214 is slidably sleeved on the transmission shaft 111.
  • the phase-shifting gear 112 arranged in the accommodation space 1214 of the fixing member 1211 also moves linearly along the extension direction of the transmission shaft 111 under the drive of the linkage member 121.
  • the accommodation space 1214 is in a groove shape.
  • a second transmission gear 124 is fixedly disposed on the outer periphery of the screw sleeve 123.
  • the second transmission gear 124 is used to receive the driving torque transmitted by the second transmission assembly.
  • the second transmission gear 124 rotates under the action of the driving torque, driving the screw sleeve 123 to rotate.
  • the transmission screw 122 fixedly disposed on the linkage member 121 drives the linkage member 121 to move linearly along the extension direction of the screw sleeve 123.
  • the screw sleeve 123 and the second transmission gear 124 are integrally formed.
  • the second transmission assembly includes a first composite gear 125, a second drive gear 126 and a second drive shaft 127.
  • the first composite gear 125 includes a first tooth portion 1251 and a second tooth portion 1252.
  • the first tooth portion 1251 and the second tooth portion 1252 are fixed to each other.
  • the first tooth portion 1251 meshes with the second transmission gear 124 disposed on the screw sleeve 123, and the second tooth portion 1252 meshes with the second drive gear 126.
  • the second drive shaft 127 is inserted into the inner hole of the second drive gear 126.
  • the second driving shaft 127 is used to receive an external torque, so that the second driving shaft 127 rotates, and the second driving shaft 127 sequentially drives the second driving gear 126, the second tooth portion 1252 of the first composite gear 125, the first tooth portion 1251, the screw sleeve 123, the transmission screw 122 and the linkage 121 to move, so that the phase shifting gear 112 pivotally arranged in the accommodating space 1214 of the linkage 121 can move linearly along the extension direction of the transmission shaft 111, and mesh with any phase shifting assembly 130 to complete the frequency selection.
  • the second drive shaft 127 is connected to an output shaft of a second motor (not shown) so that the second motor outputs a driving torque to the second drive shaft 127.
  • the second drive shaft 127 and the second drive gear 126 are integrally formed.
  • the second driving gear 126 is a bevel gear
  • the second tooth portion 1252 of the first composite gear 125 is also a bevel gear, so that the second driving gear 126 is meshed with the second gear of the first composite gear 125 .
  • the transmission shaft 111, the phase-shifting gear 112, the first transmission gear 113 and the first composite gear 125 are arranged along the same axis (the axis is called the first axis), and the transmission screw 122, the screw sleeve 123 and the second transmission gear 124 are also arranged along the same axis (the axis is called the second axis), and the first axis is arranged in parallel with the second axis, so that the frequency-selective phase-shifting device 100 is convenient for flattening and reducing the volume of the frequency-selective phase-shifting device 100.
  • the linkage 121 is also flattened, so that the frequency-selective phase-shifting device 100 can be further reduced in size, which is convenient for installation in the antenna and reducing the volume of the antenna.
  • the center of each of the transmission shaft 111, the phase-shifting gear 112, the first transmission gear 113 and the first composite gear 125 is arranged on the first axis
  • the center of each of the transmission screw 122, the screw sleeve 123 and the second transmission gear 124 is arranged on the second axis, so as to further flatten the frequency-selective phase-shifting device 100.
  • the phase shifting assembly 130 includes a first phase shifting unit, which is a phase shifting rack 131.
  • One end of the phase shifting rack 131 is connected to the phase shifting component of the antenna, and the phase shifting gear 112 is meshed with the phase shifting rack 131.
  • the transmission shaft 111 drives the phase shifting gear 112 to rotate, it drives the phase shifting rack 131 to move linearly, so that the phase shifting rack 131 drives the phase shifting component to move linearly, so that the phase shifting component drives the phase shifting component of the antenna to implement phase shifting and change the corresponding phase of the antenna.
  • the phase shifting components 130 correspond to the phase shifting racks 131.
  • the phase shifting racks 131 are arranged along the extension direction of the transmission shaft 111 so that the phase shifting gear 112 sleeved on the transmission shaft 111 can mesh with any phase shifting rack 131 and drive the meshing phase shifting rack 131 to move linearly to implement phase shifting.
  • the multiple phase-shifting racks 131 are respectively arranged in two rows, and the two rows of phase-shifting racks are respectively arranged on both sides of the transmission shaft 111, so as to facilitate the arrangement of more phase-shifting racks 131 in the limited space of the frequency selection and phase shifting device 100, so as to adjust the phase of signals in more frequency bands.
  • the two rows of phase-shift racks are parallel to each other, and the two rows of phase-shift racks are arranged in an interlaced manner and facing each other, and the two rows of phase-shift racks are respectively called the first row of phase-shift racks and the second row of phase-shift racks.
  • the spacing between two adjacent phase-shift racks 131 in the same row of phase-shift racks 131 is equal, and the projections of the two rows of phase-shift racks on the plane where the first row of phase-shift racks are located are arranged alternately in sequence, so that the two rows of phase-shift racks are arranged alternately and staggered in sequence in space.
  • the projection of one phase-shift rack 131 in the second row of phase-shift racks on the plane where the first row of phase-shift racks are located is arranged adjacent to the projection of one or two adjacent phase-shift racks 131 in the first row of phase-shift racks on the plane where the first row of phase-shift racks are located, so as to achieve the staggered and opposite arrangement of the two rows of phase-shift racks.
  • the phase shift assembly 130 further includes a second phase shift unit, the second phase shift unit includes a phase shift screw 132, a phase shift screw sleeve 133 and a second composite gear 135, one end of the phase shift screw 132 is connected to the phase shift component of the antenna.
  • the phase shift screw sleeve 133 is screwed on the phase shift screw 132
  • a third transmission gear 134 is fixed on the outer periphery of the phase shift screw sleeve 133
  • the second composite gear 135 includes a first tooth portion 1351 and a second tooth portion 1352, the first tooth portion 1351 is meshed with the third transmission gear 134, and the second tooth portion 1352 is meshed with the phase shift gear 112.
  • the phase shift screw 132 is provided with a section along its extension direction, so that the cross section of the phase shift screw 132 is not circular, thereby preventing the phase shift screw 132 from rotating when driven by the phase shift screw sleeve 133.
  • phase-shifting gear 112 When the phase-shifting gear 112 is meshed with the second tooth portion 1352 of the second composite gear 135, the phase-shifting gear 112 is driven to rotate through the transmission shaft 111, and the phase-shifting gear 112 sequentially drives the second tooth portion 1352 of the second composite gear 135, the first tooth portion 1351 of the second composite gear 135, the third transmission gear 134, the phase-shifting screw sleeve 133 and the phase-shifting screw 132, so that the phase-shifting screw 132 moves linearly, driving the phase-shifting component connected to the phase-shifting screw 132 to implement phase shifting.
  • the plurality of phase shifting components 130 correspond to a plurality of second phase shifting units.
  • the arrangement of the plurality of second phase shifting units is the same as that of the plurality of phase shifting racks 131 , and will not be described in detail to save space.
  • the phase shift screw 132 is further provided with a scale, through which the retraction amount of the phase shift screw 132 during the phase shift process can be understood, so as to control the phase shift amount of the phase shift component and perform phase shift accurately.
  • the phase shifting assembly 130 is provided with a first phase shifting unit and a second phase shifting unit, which are arranged in two rows, respectively arranged on both sides of the transmission shaft 111, wherein the first phase shifting unit is arranged in the same row, and the second phase shifting unit is arranged in another row.
  • phase shifting component 130 corresponding to a frequency band is selected.
  • a driving torque is applied to the second transmission component to drive the second transmission gear 124 on the screw sleeve 123 to rotate, thereby driving the screw sleeve 123 to rotate, so that the transmission screw 122 drives the linkage member 121 to move linearly along the extension direction of the screw sleeve 123, thereby driving the phase-shifting gear 112 arranged in the accommodating space 1214 of the linkage member 121 to move linearly along the extension direction of the transmission shaft 111, and then the phase-shifting gear 112 is meshed with the selected phase-shifting component 130, completing the frequency selection, and stopping applying the driving torque to the second transmission component.
  • phase shifting component 130 is moved.
  • a driving torque is applied to the first transmission component to drive the transmission shaft 111 to rotate, and the transmission shaft 111 drives the phase shifting gear 112 sleeved thereon to rotate, and the phase shifting gear 112 drives the phase shifting component 130 to move, so that the phase shifting component 130 drives the phase shifting component of the antenna to move, thereby implementing phase shifting and changing the phase of the signal of the corresponding frequency band of the antenna.
  • the frequency selection phase shifting device 100 selects a phase shifting component 130 from multiple phase shifting components 130 through the frequency selection mechanism, and makes the phase shifting gear 112 mesh with the phase shifting component 130, and then drives the phase shifting gear 112 of the phase shifting mechanism to rotate, thereby driving the phase shifting component 130 to move and implement phase shifting.
  • the pair of fixing members 1211 includes a first fixing member 128 and a second fixing member 129 , wherein the first fixing member 128 and the second fixing member 129 A phase-shifting gear 112 is provided on each of the first and second fixing members 128, wherein the phase-shifting gear 112 provided on the first fixing member 128 is the first phase-shifting gear 1121, and the phase-shifting gear 112 provided on the second fixing member 129 is the second phase-shifting gear 1122. Both the first phase-shifting gear 1121 and the second phase-shifting gear 1122 can mesh with the phase-shifting assembly 130, move the phase-shifting assembly 130, and implement phase shifting.
  • the distance between the phase-shifting gear 112 and the predetermined phase-shifting assembly 130 can be shortened, thereby avoiding the need for the phase-shifting gear 112 to move a long distance before meshing with the predetermined phase-shifting assembly 130.
  • first phase-shift gear 1121 and the second phase-shift gear 1122 work alternately, that is, when the first phase-shift gear 1121 engages with the phase-shift component 130, the second phase-shift gear 1122 does not engage with the phase-shift component 130; when the second phase-shift gear 1122 engages with the phase-shift component 130, the first phase-shift gear 1121 does not engage with the phase-shift component 130, so as to reduce the load of the transmission shaft 111 and prevent the transmission shaft 111 from being unable to drive the two phase-shift gears 112 at the same time.
  • the frequency-selective phase shifting device 100 further includes a guide rod 150, and the guide rod 150 is used to guide the linkage member 121 to move linearly along the extension direction of the screw sleeve 123.
  • the guide rod 150 is arranged in parallel with the transmission shaft 111, and the guide rod 150 and the transmission shaft 111 are respectively arranged on both sides of the linkage member 121, so as to support the linkage member 121 on both sides of the linkage member 121.
  • a guide block 1217 is provided on the side of the fixing member 1211 of the linkage member 121 facing the guide rod 150, and a guide hole 1218 is provided in the guide block 1217.
  • the guide rod 150 slides through the guide holes 1218 of the two fixing members 1211, so that the guide rod 150 is arranged on the linkage member 121, and guides the linkage member 121 to move linearly along the extension direction of the transmission shaft 111.
  • the frequency-selective phase shifting device 100 also includes a bracket, which includes a pair of support plates 141, and the support plates 141 are provided with a first connecting hole (not shown) and a second connecting hole (not shown), wherein the two ends of the transmission shaft 111 are respectively inserted into the first connecting holes of the two support plates 141, and the two ends of the guide rod 150 are respectively inserted into the second connecting holes of the two supports, so as to fix the transmission shaft 111 and the guide rod 150 on the bracket.
  • a bracket which includes a pair of support plates 141, and the support plates 141 are provided with a first connecting hole (not shown) and a second connecting hole (not shown), wherein the two ends of the transmission shaft 111 are respectively inserted into the first connecting holes of the two support plates 141, and the two ends of the guide rod 150 are respectively inserted into the second connecting holes of the two supports, so as to fix the transmission shaft 111 and the guide rod 150 on the bracket.
  • the frequency-selective phase shifting device 100 is arranged in a first manner. Specifically, the extending axis of the phase-shifting rack 131 is arranged parallel to the extending axis of the support plate 141, so that the frequency-selective phase shifting device 100 can be arranged flat, and the volume of the frequency-selective phase shifting device 100 can be reduced, so that the frequency-selective phase shifting device 100 can be easily installed in the antenna, and the size can be reduced. The size of the antenna.
  • the frequency selective phase shifting device 100 is arranged in a second manner. Specifically, the extension axis of the phase shifting rack 131 is arranged perpendicular to the extension axis of the support plate 141, so that the portion of the frequency selective phase shifting device 100 other than the phase shifting rack 131 can be further flattened, and the frequency selective phase shifting device 100 can be adaptively installed in the antenna, further reducing the volume of the antenna.
  • the present invention also provides a multi-frequency antenna, comprising a plurality of phase shifting components corresponding to a plurality of frequency bands, which includes the frequency selective phase shifting device described above, and each phase shifting component is linked to a phase shifting component of the corresponding frequency selective phase shifting device.
  • the frequency-selective phase-shifting device of the present invention drives the phase-shifting gear to engage with any phase-shifting component through the frequency-selective mechanism, and drives the phase-shifting gear to rotate through the phase-shifting mechanism, so that the phase-shifting gear drives the phase-shifting component to move, thereby implementing phase shifting;
  • the frequency-selective mechanism and the phase-shifting mechanism operate independently of each other and do not interfere with each other, thereby improving the operating efficiency of the frequency-selective phase-shifting device.
  • the frequency-selective phase-shifting device of the present invention drives the phase-shifting gear to mesh with the phase-shifting component of any frequency band through the frequency-selective mechanism, and then drives the transmission shaft through the phase-shifting mechanism to drive the phase-shifting gear to rotate, and the phase-shifting gear drives the phase-shifting component to move, thereby implementing phase shifting.
  • the frequency-selective and phase-shifting methods of the frequency-selective phase-shifting device are simple and easy to operate; on the other hand, the frequency-selective mechanism and the phase-shifting mechanism of the frequency-selective phase-shifting device of the present invention operate independently of each other and do not interfere with each other, which is convenient for precise control and thus precise phase shifting; and the frequency-selective mechanism and the phase-shifting mechanism operate independently of each other, so that the frequency-selective mechanism and the phase-shifting mechanism can be controlled accurately.
  • Both the frequency mechanism and the phase shift mechanism have high transmission efficiency, which improves the operating efficiency of the frequency selection and phase shift device and has strong industrial practicability.

Landscapes

  • Transmission Devices (AREA)

Abstract

本发明提供了一种选频移相装置及多频天线,所述装置包括选频机构和移相机构;所述选频机构包括联动件、固设于联动件上的传动螺杆以及与传动螺杆相螺设的螺杆套;所述移相机构包括传动轴和移相齿轮,所述移相齿轮滑动套设于传动轴上,传动轴与传动螺杆平行设置,移相齿轮枢设于联动件提供的容置空间内;所述螺杆套用于向传动螺杆传导外部力矩而由传动螺杆带动所述移相齿轮沿传动轴直线运动以选择与任意一个移相组件相啮合;所述传动轴受外部力矩驱动而带动移相齿轮同步转动,带动相啮合的移相组件实施移相。通过选频机构带动移相齿轮与任意一个移相组件相啮合,并通过移相机构驱动移相齿轮转动,带动移相组件移动,以实施移相。

Description

选频移相装置及多频天线
本公开要求于2022年12月14日提交中国专利局、申请号为202211608920.2、发明名称为“选频移相装置及多频天线”的中国专利申请的优先权,其全部内容通过引用结合在本公开中。
技术领域
本公开涉及移动通信技术领域,具体涉及一种选频移相装置与配置了所述选频移相装置的多频天线。
背景技术
随着移动通信终端用户数量的不断增加以及5G的普及,对移动蜂窝网络中的站点的网络容量需求越来越大,同时要求不同站点之间甚至相同站点的不同扇区之间的干扰做到最小,即实现网络容量的最大化和干扰的最小化。为实现这一目的,通常采用调整站点上天线波束下倾角的方式来实现。
当天线为多频天线时,主要采用机器下倾的方式调整波束下倾角。具体言之,一般为天线内置传动装置,该传动装置通过多个移相件分别连接多频天线中各个频段相对应的移相部件,传动装置通过器选频机构选择其中一个移相件,通过移相机构带动移相件,以实施移相操作。
但是,传统的传动装置结构复杂,传动需要多道转接,选频、移相输出效率低,可靠性差,选频机构采用上下布局,移相结构与选频结构采用分离设计,进一步导致传动装置体积大,扁平化程度不足,不利用安装于天线中,且传动装置生产成本高,不利于传动装置的大规模应用。
发明内容
本发明的目的在于解决上述问题至少之一而提供一种选频移相装 置及多频天线。
适应本发明的各个目的,本发明采用如下技术方案:
适应本发明的目的之一而提供一种选频移相装置,包括多个频段对应的移相组件,受外部力矩控制而选定其中一个频段的移相组件的选频机构,以及受外部力矩控制而对已选定的移相组件实施移相控制的移相机构,
所述选频机构包括联动件、固设于联动件上的传动螺杆以及与传动螺杆相螺设的螺杆套;
所述移相机构包括传动轴和移相齿轮,所述移相齿轮滑动套设于传动轴上,传动轴与传动螺杆平行设置,移相齿轮枢设于联动件提供的容置空间内;
所述螺杆套用于向传动螺杆传导外部力矩而由传动螺杆带动所述移相齿轮沿传动轴直线运动以选择与任意一个移相组件相啮合;所述传动轴受外部力矩驱动而带动移相齿轮同步转动,带动相啮合的移相组件实施移相。
进一步的,所述选频机构与所述移相机构相互独立运行,所述外部力矩择一驱动选频机构与移相机构。
进一步的,所述螺杆套的外周上设有第一传动齿轮,所述第一传动齿轮用于传导外部力矩。
具体的,所述联动件设有一对固定件,所述传动螺杆的两端分别连接所述一对固定件。
进一步的,所述容置空间设置于所述固定件中。
具体的,所述选频机构还包括复合齿轮与第一驱动齿轮,所述复合齿轮包括相固设的第一齿轮部与第二齿轮部,所述第一齿轮部与所述第一传动齿轮相啮合,第二齿轮部与所述第一驱动齿轮相啮合,所述第一驱动齿轮用于接收外部力矩。
具体的,所述移相机构还包括第二传动齿轮与第二驱动齿轮,所述第二传动齿轮滑动设置于所述传动轴上,所述第二驱动齿轮与所述第二传动齿轮相啮合,所述第二驱动齿轮用于接收外部力矩。
具体的,所述选频机构还包括与所述传动轴相平行设置的导向杆, 所述导向杆与所述传动轴分别滑动套设于联动件的两侧。
进一步的,所述移相组件包括第一移相单元,所述第一移相单元为移相齿条,所述移相齿条与所述移相齿轮相啮合。
进一步的,所述移相组件包括第二移相单元,所述第二移相单元包括移相螺杆和与移相螺杆相螺设的移相螺套,所述移相齿轮用于驱动移相螺套转动。
适应本发明的目的之一而提供一种多频天线,包括多个频段对应的多个移相部件,其包括上述所述的选频移相装置,每个所述的移相部件均有对应所述选频移相装置中的一个移相组件与其相联动设置。
相对于现有技术,本发明具有多方面的优势,包括但不限于:
一方面,本发明的选频移相装置通过选频机构驱动移相齿轮与任意一个频段的移相组件相啮合,之后通过移相机构驱动传动轴带动移相齿轮转动,由移相齿轮带动移相组件移动,从而实施移相。选频移相装置的选频与移相的方式简单,便于操作。
另一方面,本发明的选频移相装置的选频机构与移相机构相互独立运行,互不干扰,便于精准控制,进而精准移相;且选频机构与移相机构相互独立运行使得选频机构和移相机构均具有较高的传动效率,提高选频移相装置的运行效率。
本发明附加的方面和优点将在下面的描述中部分给出,这些将从下面的描述中变得明显,或通过本发明的实践了解到。
附图说明
本发明上述的和/或附加的方面和优点从下面结合附图对实施例的描述中将变得明显和容易理解,其中:
图1为本发明典型实施例的选频移相装置的结构示意图;
图2为本发明典型实施例的选频移相装置的联动件的结构示意图;
图3为本发明一个实施的两排移相齿条、传动轴及移相齿轮之间结构示意图;
图4为本发明另一实施例的选频移相装置的结构示意图。
具体实施方式
下面详细描述本发明的实施例,所述实施例的实例在附图中示出,其中自始至终相同或类似的标号表示相同或类似的元件或具有相同或类似功能的元件。下面通过参考附图描述的实施例是实例性的,仅用于解释本发明而不能解释为对本发明的限制。
本技术领域技术人员可以理解,除非特意声明,这里使用的单数形式“一”、“一个”、“所述”和“该”也可包括复数形式。应该进一步理解的是,本发明的说明书中使用的措辞“包括”是指存在所述特征、整数、步骤、操作、元件和/或组件,但是并不排除存在或添加一个或多个其他特征、整数、步骤、操作、元件和/或组件,但是并不排除存在或添加一个或多个其他特征、整数、步骤、操作、元件、组件和/或它们的组。应该理解,当我们称元件被“连接”或“耦接”到另一元件时,它可以直接连接或耦接到其他元件,或者也可以存在中间元件。此外,这里使用的“连接”或“耦接”可以包括无线连接或无线耦接。这里使用的措辞“和/或”包括一个或更多个相关联的列出项的全部或任一单元和全部组合。
本技术领域技术人员可以理解,除非另外定义,这里使用的所有术语(包括技术术语和科学术语),具有与本发明所属领域中的普通技术人员的一般理解相同的意义。还应该理解的是,诸如通用字典中定义的那些术语,应该被理解为具有与现有技术的上下文中的意义一致的意义,并且除非像这里一样被特定定义,否则不会用理想化或过于正式的含义来解释。
本发明提供了一种选频移相装置,该选频移相装置包括选频机构与移相机构,选频机构用于选择一个频段的移相组件,移相机构用于移动所选定的移相组件,以实施移相,选频机构与移相机构相互独立运行,互不干扰,以提高选频移相装置的运行效率。
在本发明的典型实施例中,结合图1,所述选频移相装置100包括多个频段对应的移相组件130、选频机构以及移相机构,所述选频机构用于选择其中一个频段的移相组件130,所述移相机构用于带动选频机构所选定移相组件130,以实施移相。
结合图1,所述移相机构包括传动轴111、移相齿轮112及第一传动组件。所述移相齿轮112用于啮合移相组件130,移相齿轮112滑动套设于传动轴111上,所述第一传动组件用于向传动轴111传递外部力矩,以驱动传动轴111转动,使得传动轴111带动移相齿轮112转动。在一个实施例中,所述传动轴111的截面呈六边形状,所述移相齿轮112的内孔的截面对应传动轴111的截面也呈六边形状,以便于传动轴111穿越移相齿轮112的内孔,使得移相齿轮112滑动套设于传动轴111上。
所述第一传动组件包括第一传动齿轮113、第一驱动齿轮114以及第一驱动轴115,所述第一传动齿轮113套设于传动轴111上,第一传动齿轮113与第一驱动齿轮114相啮合,第一驱动轴115插接于第一驱动齿轮114上,第一驱动轴115用于接收外部力矩,从而通过第一驱动轴115依次带动第一驱动齿轮114、第一传动齿轮113、传动轴111及移相齿轮112转动,进而使得移相齿轮112带动与之相啮合的移相组件130移动,实施移相。
在一个实施例中,所述第一驱动轴115与第一电机(未示出)的输出轴相连接,以便于第一电机向第一驱动轴115输出驱动力矩。所述第一驱动轴115与所述第一驱动齿轮114一体成型设置。
在一个实施例中,第一传动齿轮113为伞齿轮,第一驱动齿轮114也为伞齿轮,以便于第一驱动齿轮114与第一传动齿轮113相啮合。
在一个实施例中,传动轴111的截面呈六边形状,所述第一传动齿轮113的内孔的截面对应传动轴111的截面也呈六边形状,传动轴111穿设第一传动齿轮113的内孔,以便于第一传动齿轮113带动传动轴111转动。
结合图1,所述选频机构包括联动件121、传动螺杆122、螺杆套123以及第二传动组件,所述传动螺杆122与所述传动轴111相平行设置,传动螺杆122固设于联动件121上,螺杆套123螺设于传动螺杆122上,所述第二传动组件用于向螺杆套123传递外部力矩,以驱动螺杆套123转动,使得螺杆套123驱动传动螺杆122沿所述螺杆套123的延伸方向移动,从而使得传动螺杆122带动与之相固设的联动件121 移动。
结合图1与图2,所述联动件121包括一对固定件1211与用于连接该一对固定件1211的横梁1212。所述固定件1211上设有安装空间1213与容置空间1214,所述安装空间1213用于固定安装传动螺杆122的其中一个端部,所述容置空间1214用于枢转安装所述移相齿轮112。
具体言之,所述传动螺杆122的两端分别固定安装于所述一对固定件1211的安装空间1213中,使得传动螺杆122固设于联动件121上。在一个实施例中,所述安装空间1213为安装槽,传动螺杆122的端部伸入所述安装槽中,通过螺钉将传动螺杆122的端部固定于安装槽中。
所述固定件1211上设有一对相对的安装板1215,该一对安装板1215定义出所述容置空间1214,所述移相齿轮112枢设于所述容置空间1214中,也即是说,移相齿轮112设置于所述一对安装板1215之间。所述安装板1215上设有安装孔1216,传动轴111滑动穿设所述一对安装板1215的各自安装孔1216,且设置于容置空间1214中的移相齿轮112滑动套设于所述传动轴111上。当联动件121在传动螺杆122的带动下直线运动时,设置于固定件1211的容置空间1214中的移相齿轮112也在联动件121的带动下沿传动轴111的延伸方向直线运动。优选的,所述容置空间1214呈槽状。
结合图1,所述螺杆套123的外周上还固设有第二传动齿轮124,所述第二传动齿轮124用于接收所述第二传动组件传导的驱动力矩,第二传动齿轮124在驱动力矩的作用下转动,带动螺杆套123转动,螺杆套123转动后,使得固设于联动件121上的传动螺杆122带动联动件121沿所述螺杆套123的延伸方向直线运动。优选的,所述螺杆套123与所述第二传动齿轮124一体成型。
所述第二传动组件包括第一复合齿轮125、第二驱动齿轮126及第二驱动轴127。所述第一复合齿轮125包括第一齿部1251与第二齿部1252,第一齿部1251与第二齿部1252相固设,第一齿部1251与设置于螺杆套123上的第二传动齿轮124相啮合,第二齿部1252与第二驱动齿轮126相啮合。第二驱动轴127插接于第二驱动齿轮126的内孔 中。第二驱动轴127用于接收外部力矩,使得第二驱动轴127转动,第二驱动轴127依次带动第二驱动齿轮126、第一复合齿轮125的第二齿部1252、第一齿部1251、螺杆套123、传动螺杆122及联动件121运动,使得枢设于联动件121的容置空间1214中的移相齿轮112可沿传动轴111的延伸方向直线运动,而与任意一个移相组件130相啮合,完成选频。
在一个实施例中,所述第二驱动轴127与第二电机(未示出)的输出轴相连接,以便于第二电机向第二驱动轴127输出驱动力矩。所述第二驱动轴127与所述第二驱动齿轮126一体成型。
在一个实施例中,所述第二驱动齿轮126为伞齿轮,第一复合齿轮125的第二齿部1252也为伞齿轮,以便于第二驱动齿轮126与第一复合齿轮125的第二齿轮相啮合。
在本发明的典型实施例中,传动轴111、移相齿轮112、第一传动齿轮113及第一复合齿轮125沿同一轴线(称该轴线为第一轴线)设置,且传动螺杆122、螺杆套123及第二传动齿轮124也沿同一轴线(称该轴线为第二轴线)设置,第一轴线与第二轴线相平行设置,使得选频移相装置100便于扁平化设置,缩小选频移相装置100的体积。进一步的,所述联动件121也扁平化设置,使得选频移相装置100可进一步的缩小体积,便于安装于天线中,缩小天线的体积。优选的,传动轴111、移相齿轮112、第一传动齿轮113及第一复合齿轮125各自的圆心设置于所述第一轴线上,传动螺杆122、螺杆套123及第二传动齿轮124各自的圆心设置于所述第二轴线上,以进一步使得选频移相装置100扁平化。
在本发明的典型实施例中,结合图1,所述移相组件130包括第一移相单元,所述第一移相单元为移相齿条131,所述移相齿条131的其中一端与天线的移相部件相连接,移相齿轮112与移相齿条131啮合,当传动轴111带动移相齿轮112转动时,带动移相齿条131直线运动,使得移相齿条131带动移相部件直线运动,从而使得移相部件带动天线的移相部件,实施移相,改变天线的相应相位。
所述多个移相组件130对应多个移相齿条131,所述多个移相齿条 131沿所述传动轴111的延伸方向排列设置,以便于套设于传动轴111上的移相齿轮112与任意一个移相齿条131啮合,并带动相啮合的移相齿条131直线运动,实施移相。
在一个实施例中,结合图3,所述多个移相齿条131分别两排,两排移相齿条分别设置于传动轴111的两侧,便于在选频移相装置100的有限空间内布置较多的移相齿条131,以便于调节较多频段的信号的相位。
所述两排移相齿条之间相互平行,且两排移相齿条彼此之间交错相向设置,分别称该两排移相齿条为第一排移相齿条与第二排移相齿条。居于同一排的移相齿条131的相邻两个移相齿条131之间的间距相等,该两排移相齿条于第一排移相齿条所在平面上的投影依次交替设置,以使得所述两排移相齿条彼此在空间上依次交替错位相向布置。也即是说,第二排移相齿条中的一个移相齿条131于第一排移相齿条所在平面上的投影与第一排移相齿条的一个或两个相邻的移相齿条131于第一排移相齿条所在平面的投影相邻设置,以实现两排移相齿条彼此相交错相向设置。
在一个实施例中,所述移相组件130还包括第二移相单元,所述第二移相单元包括移相螺杆132、移相螺套133及第二复合齿轮135,所述移相螺杆132的一端连接天线的移相部件。所述移相螺套133螺设于移相螺杆132上,移相螺套133的外周上固设有第三传动齿轮134,所述第二复合齿轮135包括第一齿部1351与第二齿部1352,所述第一齿部1351与第三传动齿轮134相啮合,所述第二齿部1352与所述移相齿轮112相啮合。优选的,所述移相螺杆132设有沿其延伸方向的剖面,使得有移相螺杆132的横截面不为圆形,从而避免移相螺杆132在被移相螺套133驱动时转动。
当移相齿轮112与第二复合齿轮135的第二齿部1352相啮合时,通过传动轴111带动移相齿轮112转动,移相齿轮112依次带动、第二复合齿轮135的第二齿部1352、第二复合齿轮135的第一齿部1351、第三传动齿轮134、移相螺套133及移相螺杆132,使得移相螺杆132直线运动,带动与移相螺杆132相连接的移相部件,实施移相。
所述多个移相组件130对应多个第二移相单元,该多个第二移相单元的排列方式与所述多个移相齿条131的排列方式相同,在此为节省篇幅,不在赘述。
在一个实施例中,所述移相螺杆132上还设有刻度,通过所述刻度可了解所述移相螺杆132在移相过程中的缩进量,以便于控制移相部件的移相量,精确进行移相。
在一个实施例中,移相组件130同时设有第一移相单元与第二移相单元,第一移相单元与第二移相单元分两排设置,分别设置于传动轴111的两侧,其中第一移相单元设置于同一排,第二移相单元设置于另一排。
在本发明的典型实施例中,基于所述选频移相装置100简述选频移相的实施过程:
首先,选择对应频段的移相组件130。
对第二传动组件施加驱动力矩,驱动螺杆套123上的第二传动齿轮124转动,带动螺杆套123转动,使得传动螺杆122带动联动件121沿所述螺杆套123的延伸方向直线运动,从而带动设置于联动件121的容置空间1214中的移相齿轮112沿所述传动轴111的延伸方向直线运动,进而使得移相齿轮112与选定的移相组件130相正对啮合,完成选频,停止对第二传动组件施加驱动力矩。
其次,移动所选择的移相组件130。对第一传动组件施加驱动力矩,驱动传动轴111转动,传动轴111带动套接于其上的移相齿轮112转动,移相齿轮112带动移相组件130移动,使得移相组件130带动天线的移相部件移动,从而实施移相,改变天线的对应频段的信号的相位。
由此,通过选频移相装置100通过选频机构实现从多个移相组件130中选择了一个移相组件130,并使得移相齿轮112与移相组件130相啮合,之后通过驱动移相机构的移相齿轮112转动,带动移相组件130移动,实施移相。
在一个实施例中,结合图1与图2,所述一对固定件1211包括第一固定件128与第二固定件129,第一固定件128与第二固定件129 上均设有一个移相齿轮112,其中,设置于第一固定件128上的移相齿轮112为第一移相齿轮1121,设置于第二固定件129上的移相齿轮112为第二移相齿轮1122。第一移相齿轮1121与第二移相齿轮1122均可与移相组件130相啮合,移动移相组件130,实施移相。且,设置两个移相齿轮112,可缩短与移相齿轮112与预定移相组件130之间距离,避免移相齿轮112需要移动较远的距离方能与预定移相组件130相啮合。
在另一实施例中,所述第一移相齿轮1121与所述第二移相齿轮1122交替工作,也即是说,当第一移相齿轮1121啮合移相组件130时,第二移相齿轮1122不啮合移相组件130;当第二移相齿轮1122啮合移相组件130时,第一移相齿轮1121不啮合移相组件130,以减低传动轴111的负载,避免传动轴111不能同时驱动两个移相齿轮112。
在一个实施例中,所述选频移相装置100还包括导向杆150,所述导向杆150用于引导联动件121沿所述螺杆套123的延伸方向直线运动。导向杆150与传动轴111平行设置,导向杆150与传动轴111的分别设置于联动件121的两侧,从而在联动件121的两侧支撑所述联动件121。具体言之,所述联动件121的固定件1211朝向导向杆150的一侧设有导向块1217,所述导向块1217中设有导向孔1218。导向杆150滑动穿设两个固定件1211各自的导向孔1218,使得导向杆150设置于联动件121上,引导联动件121沿传动轴111的延伸方向直线运动。
所述选频移相装置100还包括支架,所述支架包括一对支撑板141,所述支撑板141上设有第一连接孔(未示出)与第二连接孔(未示出),其中,传动轴111的两端分别插接于两块支撑板141各自的第一连接孔上,导向杆150的两端分别插接于两块支撑各自的第二连接孔上,以将传动轴111与导向杆150固定于支架上。
在一个实施例中,结合图1,所述选频移相装置100以第一方式设置,具体言之,所述移相齿条131延伸轴线与所述支撑板141的延伸轴线相平行设置,便于选频移相装置100可扁平化设置,缩小选频移相装置100的体积,使得选频移相装置100便于安装于天线中,缩小 天线的体积。
结合图4,所述选频移相装置100以第二方式设置,具体言之,所述移相齿条131的延伸轴线与所述支撑板141的延伸轴线相垂直设置,使得选频移相装置100的移相齿条131之外的部分可进一步的扁平化,选频移相装置100适应的安装于天线中,进一步缩小天线的体积。
本发明还提供了一种多频天线,包括多个频段对应的多个移相部件,其包括上文所述的选频移相装置,每个移相部件均由对应的选频移相装置的一个移相组件与其相联动设置。
综上所述,本发明的选频移相装置通过选频机构带动移相齿轮与任意一个移相组件相啮合,并通过移相机构驱动移相齿轮转动,使得移相齿轮带动移相组件移动,从而实施移相;选频机构与移相机构相互独立运行,互不干扰,提高了选频移相装置的运行效率。
以上描述仅为本发明的较佳实施例以及对所运用技术原理的说明。本领域技术人员应当理解,本发明中所涉及的发明范围,并不限于上述技术特征的特定组合而成的技术方案,同时也应涵盖在不脱离上述发明构思的情况下,由上述技术特征或其等同特征进行任意组合而形成的其它技术方案。例如上述特征与本发明中发明的(但不限于)具有类似功能的技术特征进行互相替换而形成的技术方案。
尽管已经采用特定于结构特征和/或方法逻辑动作的语言描述了本主题,但是应当理解所附权利要求书中所限定的主题未必局限于上面描述的特定特征或动作。相反,上面所描述的特定特征和动作仅仅是实现权利要求书的示例形式。
工业实用性
一方面,本发明的选频移相装置通过选频机构驱动移相齿轮与任意一个频段的移相组件相啮合,之后通过移相机构驱动传动轴带动移相齿轮转动,由移相齿轮带动移相组件移动,从而实施移相。选频移相装置的选频与移相的方式简单,便于操作;另一方面,本发明的选频移相装置的选频机构与移相机构相互独立运行,互不干扰,便于精准控制,进而精准移相;且选频机构与移相机构相互独立运行使得选 频机构和移相机构均具有较高的传动效率,提高选频移相装置的运行效率,具有很强的工业实用性。

Claims (11)

  1. 一种选频移相装置,包括多个频段对应的移相组件,受外部力矩控制而选定其中一个频段的移相组件的选频机构,以及受外部力矩控制而对已选定的移相组件实施移相控制的移相机构,其特征在于:
    所述选频机构包括联动件、固设于联动件上的传动螺杆以及与传动螺杆相螺设的螺杆套;
    所述移相机构包括传动轴和移相齿轮,所述移相齿轮滑动套设于传动轴上,传动轴与传动螺杆平行设置,移相齿轮枢设于联动件提供的容置空间内;
    所述螺杆套用于向传动螺杆传导外部力矩而由传动螺杆带动所述移相齿轮沿传动轴直线运动以选择与任意一个移相组件相啮合;所述传动轴受外部力矩驱动而带动移相齿轮同步转动,带动相啮合的移相组件实施移相。
  2. 如权利要求1所述的选频移相装置,其特征在于,所述选频机构与所述移相机构相互独立运行,所述外部力矩择一驱动选频机构与移相机构。
  3. 如权利要求1所述的选频移相装置,其特征在于,所述螺杆套的外周上设有第一传动齿轮,所述第一传动齿轮用于传导外部力矩。
  4. 如权利要求1所述的选频移相装置,其特征在于,所述联动件设有一对固定件,所述传动螺杆的两端分别连接所述一对固定件。
  5. 如权利要求4所述的选频移相装置,其特征在于,所述容置空间设置于所述固定件中。
  6. 如权利要求3所述的选频移相装置,其特征在于,所述选频机构还包括复合齿轮与第一驱动齿轮,所述复合齿轮包括相固设的第一齿轮部与第二齿轮部,所述第一齿轮部与所述第一传动齿轮相啮合,第二齿轮部与所述第一驱动齿轮相啮合,所述第一驱动齿轮用于接收外部力矩。
  7. 如权利要求1所述的选频移相装置,其特征在于,所述移相机构还包括第二传动齿轮与第二驱动齿轮,所述第二传动齿轮滑动设置 于所述传动轴上,所述第二驱动齿轮与所述第二传动齿轮相啮合,所述第二驱动齿轮用于接收外部力矩。
  8. 如权利要求1所述选频移相装置,其特征在于,所述选频机构还包括与所述传动轴相平行设置的导向杆,所述导向杆与所述传动轴分别滑动套设于联动件的两侧。
  9. 如权利要求1所述的选频移相装置,其特征在于,所述移相组件包括第一移相单元,所述第一移相单元为移相齿条,所述移相齿条与所述移相齿轮相啮合。
  10. 如权利要求1或9所述的选频移相装置,其特征在于,所述移相组件包括第二移相单元,所述第二移相单元包括移相螺杆和与移相螺杆相螺设的移相螺套,所述移相齿轮用于驱动移相螺套转动。
  11. 一种多频天线,包括多个频段对应的多个移相部件,其特征在于,其包括如权利要求1至10任意一项所述的选频移相装置,每个所述的移相部件均有对应所述选频移相装置中的一个移相组件与其相联动设置。
PCT/CN2023/128803 2022-12-14 2023-10-31 选频移相装置及多频天线 WO2024125139A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202211608920.2 2022-12-14
CN202211608920.2A CN115986410A (zh) 2022-12-14 2022-12-14 选频移相装置及多频天线

Publications (1)

Publication Number Publication Date
WO2024125139A1 true WO2024125139A1 (zh) 2024-06-20

Family

ID=85971531

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/128803 WO2024125139A1 (zh) 2022-12-14 2023-10-31 选频移相装置及多频天线

Country Status (2)

Country Link
CN (1) CN115986410A (zh)
WO (1) WO2024125139A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115986410A (zh) * 2022-12-14 2023-04-18 京信通信技术(广州)有限公司 选频移相装置及多频天线

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20200212565A1 (en) * 2017-11-07 2020-07-02 Rosenberger Technologies Co., Ltd Transmission device for antenna phase shifter
WO2021052117A1 (zh) * 2019-09-17 2021-03-25 武汉虹信科技发展有限责任公司 一种移相器驱动装置及电调天线
CN112582766A (zh) * 2021-02-20 2021-03-30 京信通信技术(广州)有限公司 多频天线及其移相用切换控制机构
CN112821075A (zh) * 2020-12-31 2021-05-18 京信通信技术(广州)有限公司 多频天线及其调相用切换控制机构
CN113540795A (zh) * 2021-07-14 2021-10-22 京信通信技术(广州)有限公司 多频天线及其移相控制机构
CN113904074A (zh) * 2021-09-30 2022-01-07 京信通信技术(广州)有限公司 选频移相模块、电调控制装置及多频天线
CN115986410A (zh) * 2022-12-14 2023-04-18 京信通信技术(广州)有限公司 选频移相装置及多频天线

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20200212565A1 (en) * 2017-11-07 2020-07-02 Rosenberger Technologies Co., Ltd Transmission device for antenna phase shifter
WO2021052117A1 (zh) * 2019-09-17 2021-03-25 武汉虹信科技发展有限责任公司 一种移相器驱动装置及电调天线
CN112821075A (zh) * 2020-12-31 2021-05-18 京信通信技术(广州)有限公司 多频天线及其调相用切换控制机构
CN112582766A (zh) * 2021-02-20 2021-03-30 京信通信技术(广州)有限公司 多频天线及其移相用切换控制机构
CN113540795A (zh) * 2021-07-14 2021-10-22 京信通信技术(广州)有限公司 多频天线及其移相控制机构
CN113904074A (zh) * 2021-09-30 2022-01-07 京信通信技术(广州)有限公司 选频移相模块、电调控制装置及多频天线
CN115986410A (zh) * 2022-12-14 2023-04-18 京信通信技术(广州)有限公司 选频移相装置及多频天线

Also Published As

Publication number Publication date
CN115986410A (zh) 2023-04-18

Similar Documents

Publication Publication Date Title
WO2024125139A1 (zh) 选频移相装置及多频天线
CN112864623B (zh) 多频天线及其选频调相装置
CN110911841B (zh) 天线、传动装置及切换机构
CN112821075B (zh) 多频天线及其调相用切换控制机构
CN110931979B (zh) 天线、传动装置及切换机构
WO2021135403A1 (zh) 天线、传动装置及切换机构
CN110165412A (zh) 电调天线传动切换装置及基站天线
CN111064005A (zh) 天线、传动装置及切换机构
CN113994541B (zh) 一种调节装置、多频天线及基站
CN113540796A (zh) 多频天线、选频调相机构及装置
CN114221130A (zh) 多频天线及其选频移相装置
CN109347247B (zh) 电调天线传动装置
WO2022141325A1 (zh) 一种天线齿轮箱传动机构以及天线
CN211605413U (zh) 天线、传动装置及切换机构
CN110459874B (zh) 一种大规模阵列电调天线移相器传动机构
CN211404742U (zh) 天线、传动装置及输出机构
CN210957020U (zh) 天线、传动装置及切换机构
CN114361795A (zh) 多频天线及其选频移相装置
CN112563691B (zh) 多频天线及其选频移相装置
CN113540795A (zh) 多频天线及其移相控制机构
CN210350104U (zh) 一种Massive MIMO电调天线
CN111710975A (zh) 电调天线换挡机构
CN221041545U (zh) 用于移相器的传动装置、移相装置及基站天线
CN213184597U (zh) 天线的下倾角调节装置及天线
CN113540797B (zh) 可选调相控制机构、选频调相装置及多频天线