WO2024124569A1 - 一种无人飞行器 - Google Patents

一种无人飞行器 Download PDF

Info

Publication number
WO2024124569A1
WO2024124569A1 PCT/CN2022/139744 CN2022139744W WO2024124569A1 WO 2024124569 A1 WO2024124569 A1 WO 2024124569A1 CN 2022139744 W CN2022139744 W CN 2022139744W WO 2024124569 A1 WO2024124569 A1 WO 2024124569A1
Authority
WO
WIPO (PCT)
Prior art keywords
unmanned aerial
aerial vehicle
vehicle according
propeller
guide
Prior art date
Application number
PCT/CN2022/139744
Other languages
English (en)
French (fr)
Inventor
张松
宋健宇
李浩荣
Original Assignee
深圳市闪至科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市闪至科技有限公司 filed Critical 深圳市闪至科技有限公司
Priority to PCT/CN2022/139744 priority Critical patent/WO2024124569A1/zh
Publication of WO2024124569A1 publication Critical patent/WO2024124569A1/zh

Links

Images

Definitions

  • the present application relates to the field of unmanned aerial vehicle technology, and in particular to an unmanned aerial vehicle.
  • an embodiment of the present application provides an unmanned aerial vehicle.
  • an embodiment of the present application provides an unmanned aerial vehicle, the unmanned aerial vehicle comprising:
  • a central body wherein a first mating portion is disposed on the top of the central body, and a second mating portion is disposed on the bottom of the central body, wherein the first mating portion of the unmanned aerial vehicle can be mated with the second mating portion of another unmanned aerial vehicle to achieve vertical stacking of a plurality of the unmanned aerial vehicles;
  • a guiding structure wherein the guiding structure is connected to the top of the central body, and a guiding portion is provided on the guiding structure.
  • the guiding portion of the unmanned aerial vehicle located below can limit the deviation of the unmanned aerial vehicle located above in the heading direction, so as to guide the unmanned aerial vehicle located above to the position where the first matching portion and the second matching portion match each other.
  • the guiding structure is connected to the first matching portion.
  • the central body also includes a positioning portion arranged adjacent to the second mating portion, and during the landing of the unmanned aerial vehicle, the guide portion of the unmanned aerial vehicle located below and the positioning portion of the unmanned aerial vehicle located above cooperate with each other to limit the deviation of the unmanned aerial vehicle located above in the heading direction.
  • the guiding structure includes a plurality of machine arms and a plurality of propeller protection covers; wherein,
  • One end of each of the plurality of arms is connected to the first matching portion
  • the other end of the machine arm is connected to the propeller protection cover.
  • the machine arm includes a guide rib, and the guide portion includes two guide ribs and a groove formed by the two guide ribs;
  • the positioning portion includes a protrusion matched with the groove.
  • the guide rib of the unmanned aerial vehicle located below can guide the protrusion of the unmanned aerial vehicle located above into the groove.
  • one end of the guide rib is connected to the first matching portion, and the other end of the guide rib at least partially extends in a direction away from the central body.
  • the guide rib is a flexible member.
  • the material of the flexible member includes at least one of rubber, silicone and foam.
  • the first matching portion includes a recessed structure that is recessed into the central body
  • the second matching portion includes a convex structure that is convex outward away from the central body.
  • the groove is arranged close to the edge of the recessed structure.
  • the width of the groove decreases gradually along the direction from the center body to the propeller protection cover.
  • the raised portion includes: a camera assembly and a enclosure arranged around the camera assembly, and the camera assembly is at least partially embedded in the enclosure.
  • a gap can be formed between the camera assembly and the guide rib.
  • the unmanned aerial vehicle further includes: a propeller, wherein the propeller is connected to the guide structure, and the propeller is used to provide flight power.
  • the propeller is located below the guide structure.
  • the propeller is located below the machine arm.
  • the guiding structure further includes a plurality of propeller protection covers, wherein the propeller protection covers are connected to an end of the machine arm away from the first matching portion.
  • the unmanned aerial vehicle further includes an antenna assembly, and the antenna assembly is disposed on the propeller protective cover.
  • the antenna assembly is arranged on the outer edge of the propeller protection cover.
  • the propeller protection cover includes a top frame and a side frame, and the side frame is connected to the outer edge of the top frame; wherein,
  • the top frame is used to cover the top of the propeller, and the side frame is used to cover the side of the propeller;
  • the antenna assembly is arranged on the side frame.
  • the antenna assembly includes: a circuit board, an antenna and an antenna cover; wherein,
  • the circuit board is connected to the side frame
  • the antenna is connected to the circuit board
  • the antenna cover plate covers the outside of the circuit board and is used to protect the antenna on the circuit board.
  • the circuit board is arranged vertically.
  • the circuit board is tilted, and the tilt angle is less than or equal to 15 degrees.
  • the antenna assembly is an arc-shaped structure that bends toward the central body.
  • the guide structure forms at least one opening, and the opening is used to avoid the guide rail of the charging base.
  • the multiple machine arms and the multiple propeller protection covers are an integrally formed structure.
  • the machine arm and the propeller protection cover are separate structures, and the machine arm is connected to the propeller protection cover.
  • connection method between the machine arm and the propeller protection cover includes at least one of clamping, welding and fastener connection.
  • the number of the guide portions is four, and the four guide portions are arranged at intervals on the edge of the first matching portion.
  • the first matching portion includes a first plane portion and a first guide arc portion disposed around the first plane portion, and the first guide arc portion is used to guide the second matching portion of the UAV located above into the first plane portion.
  • the second matching portion includes a second planar portion and a second guide arc portion disposed around the second planar portion, and the second guide arc portion is used to guide the second planar portion into the first matching portion.
  • light emitting devices are also provided on the bottom and sides of the central body.
  • the first matching portion of the unmanned aerial vehicle can cooperate with the second matching portion of another unmanned aerial vehicle to achieve vertical stacking of multiple unmanned aerial vehicles. In this way, it is convenient to stack more unmanned aerial vehicles in a smaller space and reduce the stacking space of the unmanned aerial vehicles.
  • the guide structure is connected to the top of the center body and a guide portion is provided on the guide structure, during the landing of the unmanned aerial vehicle, the guide portion of the unmanned aerial vehicle located below can limit the deviation of the unmanned aerial vehicle located above in the heading direction, so as to guide the unmanned aerial vehicle located above to the position where the first matching portion and the second matching portion cooperate with each other, so as to achieve accurate landing of the unmanned aerial vehicle.
  • the guide portion of the unmanned aerial vehicle located below can limit the deviation of the unmanned aerial vehicle located above in the heading direction, so as to guide the unmanned aerial vehicle located above to the position where the first matching portion and the second matching portion cooperate with each other, so as to achieve accurate landing of the unmanned aerial vehicle. In this way, not only the cost of collaborative operation of multiple unmanned aerial vehicles will be reduced, but also the efficiency of collaborative operation of multiple unmanned aerial vehicles will be improved.
  • an embodiment of the present application provides an unmanned aerial vehicle, the unmanned aerial vehicle comprising:
  • the central body The central body;
  • a plurality of propellers wherein the propellers are connected to the machine arm;
  • propeller protection cover being directly or indirectly connected to the center body and at least partially shielding the propeller in a direction in which the propeller protection cover is away from the center body;
  • An antenna assembly is provided on the propeller protection cover.
  • the antenna assembly is arranged on the outer edge of the propeller protection cover.
  • the propeller protection cover includes a top frame and a side frame, and the side frame is connected to the outer edge of the top frame; wherein,
  • the top frame is used to cover the top of the propeller, and the side frame is used to cover the side of the propeller;
  • the antenna assembly is arranged on the side frame.
  • the antenna assembly includes: a circuit board, an antenna and an antenna cover; wherein,
  • the circuit board is connected to the side frame
  • the antenna is connected to the circuit board
  • the antenna cover plate covers the outside of the circuit board and is used to protect the antenna on the circuit board.
  • the circuit board is a printed circuit board.
  • the circuit board is a flexible circuit board.
  • the circuit board is arranged vertically.
  • the circuit board is tilted, and the tilt angle is less than or equal to 15 degrees.
  • the antenna assembly is an arc-shaped structure that bends toward the central body.
  • the antenna includes at least one of a satellite positioning antenna and a wireless network enhancement antenna.
  • the propeller guard is directly connected to the center body.
  • the propeller guard is connected to the machine arm so as to be connected to the center body through the machine arm.
  • the propeller protection cover and the machine arm are an integrated structure.
  • the propeller protection cover and the machine arm are separate structures.
  • the propeller protection cover is arranged far from the center body and the blocked area is small, when the antenna assembly is arranged on the propeller protection cover, the interference of other electronic devices on the center body to the antenna assembly can be reduced, and the blocked area of the antenna assembly can be reduced, which is beneficial to the radiation of the antenna assembly. In this way, the performance of the antenna assembly can be improved.
  • FIG1 schematically shows a schematic structural diagram of an unmanned aerial vehicle according to an embodiment of the present application
  • FIG2 schematically shows a top view of the structure of the unmanned aerial vehicle shown in FIG1 ;
  • FIG3 schematically shows one of the side structural diagrams of the unmanned aerial vehicle shown in FIG1 ;
  • FIG4 schematically shows a second lateral structural diagram of the unmanned aerial vehicle shown in FIG1 ;
  • FIG5 schematically shows a third lateral structural diagram of the unmanned aerial vehicle shown in FIG1 ;
  • FIG6 schematically shows a bottom-up structural diagram of the unmanned aerial vehicle shown in FIG1 ;
  • FIG7 schematically shows a schematic diagram of the structure of the UAVs after vertical stacking according to an embodiment of the present application
  • FIG8 schematically shows a schematic structural diagram of a guiding structure described in an embodiment of the present application.
  • first or “second” in the specification and claims of this application may include one or more of the features explicitly or implicitly.
  • plural means two or more.
  • and/or in the specification and claims means at least one of the connected objects, and the character “/” generally means that the objects connected before and after are in an “or” relationship.
  • the terms “installed”, “connected”, and “connected” should be understood in a broad sense, for example, it can be a fixed connection, a detachable connection, or an integral connection; it can be a mechanical connection or an electrical connection; it can be a direct connection, or it can be indirectly connected through an intermediate medium, or it can be the internal communication of two components.
  • installed should be understood in a broad sense, for example, it can be a fixed connection, a detachable connection, or an integral connection; it can be a mechanical connection or an electrical connection; it can be a direct connection, or it can be indirectly connected through an intermediate medium, or it can be the internal communication of two components.
  • An embodiment of the present application provides an unmanned aerial vehicle, which may include but is not limited to any one of a manned drone, a logistics drone, an aerial photography drone, a performance drone, a combat drone, and an agricultural plant protection drone.
  • the embodiment of the present application does not specifically limit the type of the unmanned aerial vehicle.
  • FIG. 1 a structural schematic diagram of an unmanned aerial vehicle described in an embodiment of the present application is shown, referring to Figure 2, a top structural schematic diagram of the unmanned aerial vehicle shown in Figure 1 is shown, referring to Figure 3, one of the side structural schematic diagrams of the unmanned aerial vehicle shown in Figure 1 is shown, referring to Figure 4, a second side structural schematic diagram of the unmanned aerial vehicle shown in Figure 1 is shown, referring to Figure 5, a third side structural schematic diagram of the unmanned aerial vehicle shown in Figure 1 is shown, and referring to Figure 6, an upward structural schematic diagram of the unmanned aerial vehicle shown in Figure 1 is shown.
  • the unmanned aerial vehicle may include: a central body 10, a first matching portion 101 is provided on the top of the central body 10, and a second matching portion 102 is provided on the bottom of the central body 10, the first matching portion 101 of the unmanned aerial vehicle can cooperate with the second matching portion 102 of another unmanned aerial vehicle to achieve vertical stacking of multiple unmanned aerial vehicles; a guide structure 11, the guide structure 11 is connected to the top of the central body 10, and a guide portion 111 is provided on the guide structure 11.
  • the guide portion 111 of the unmanned aerial vehicle located below can limit the deviation of the unmanned aerial vehicle located above in the heading direction, so as to guide the unmanned aerial vehicle located above to the position where the first matching portion 101 of the unmanned aerial vehicle below and the second matching portion 102 of the unmanned aerial vehicle above cooperate with each other when the two unmanned aerial vehicles are stacked up and down.
  • the first matching portion 101 of the unmanned aerial vehicle can cooperate with the second matching portion 102 of another unmanned aerial vehicle to achieve vertical stacking of multiple unmanned aerial vehicles. In this way, it is convenient to stack more unmanned aerial vehicles in a smaller space, reducing the stacking space of the unmanned aerial vehicles.
  • the guide structure 11 is connected to the top of the central body 10, the guide structure 11 is provided with a guide portion 111.
  • the guide portion 111 of the unmanned aerial vehicle located below can limit the deviation of the unmanned aerial vehicle located above in the heading direction, so as to guide the unmanned aerial vehicle located above to the position where the first matching portion 101 and the second matching portion 102 of the unmanned aerial vehicle located below cooperate with each other, so as to achieve accurate landing of the unmanned aerial vehicle.
  • the guide portion 111 of the unmanned aerial vehicle located below can limit the deviation of the unmanned aerial vehicle located above in the heading direction, so as to guide the unmanned aerial vehicle located above to the position where the first matching portion 101 and the second matching portion 102 of the unmanned aerial vehicle located below cooperate with each other, so as to achieve accurate landing of the unmanned aerial vehicle.
  • FIG. 7 a schematic diagram of the structure of the UAVs after vertical stacking according to the embodiment of the present application is shown.
  • the second matching portion 102 at the bottom of the central body 10 of the upper UAV can cooperate with the first matching portion 101 at the top of the central body 10 of the lower UAV to reduce the stacking space after the multiple UAVs are stacked.
  • the guide portion 111 of the UAV at the lower position can limit the deviation of the UAV at the upper position in the heading direction, so as to guide the UAV at the upper position to the position where the first matching portion 101 and the second matching portion 102 cooperate with each other, so as to achieve accurate landing of the UAV.
  • the guide structure 11 is connected to the first matching portion 101, so that the guide portion 111 on the guide structure 11 can be arranged close to the first matching portion 101.
  • the guide portion 111 on the lower unmanned aerial vehicle can guide the second matching portion 102 of the upper unmanned aerial vehicle into the first matching portion 101 of the lower unmanned aerial vehicle, thereby achieving accurate landing of the unmanned aerial vehicle.
  • the guide structure 11 may be connected to the first matching portion 101 by welding, clamping, or other connection methods.
  • the embodiment of the present application may not limit the specific connection method between the guide structure 11 and the first matching portion 101.
  • the central body 10 may also include a positioning portion 112 arranged adjacent to the second mating portion 102.
  • the guide portion 111 of the unmanned aerial vehicle located below can cooperate with the positioning portion 112 of the unmanned aerial vehicle located above to limit the deviation of the unmanned aerial vehicle located above in the heading direction.
  • the structure of the positioning part 112 can be adapted to the structure of the guiding part 111, and the number of the positioning parts 112 can also be adapted to the number of the guiding parts 111.
  • the guiding part 111 of the unmanned aerial vehicle located below can correspond to and cooperate with the positioning part 112 of the unmanned aerial vehicle located above, so as to limit the deviation of the unmanned aerial vehicle located above in the heading direction, and realize the precise landing of the unmanned aerial vehicle located above.
  • the structure of the positioning portion 112 and the structure of the guiding portion 111 may be adapted to each other in such a way that: the positioning portion 112 has a shape substantially identical to that of the guiding portion 111, has a size substantially identical to that of the guiding portion 111, and can be fitted with each other.
  • the positioning portion 112 may be a protrusion protruding from the central body 10
  • the guiding portion 111 may be a recessed portion having a shape substantially identical to that of the protrusion and can be fitted with the protrusion.
  • the number of the positioning portions 112 and the number of the guiding portions 111 may be adapted to be the same as that of the guiding portions 111.
  • the number of the positioning portions 112 may also be 4, and during the landing of the unmanned aerial vehicle, the positioning portion 112 of the unmanned aerial vehicle located above may correspond one-to-one with the guiding portion 111 of the unmanned aerial vehicle located below and cooperate with each other.
  • the guide structure 11 includes a plurality of arms 113 and a plurality of propeller protection covers 114; wherein one end of the plurality of arms 113 is connected to the first mating portion 101; and the other end of the arms 113 is connected to the propeller protection cover 114.
  • the arms 113 can be used to connect and support the propeller 12, and the propeller 12 can be used to provide flight power.
  • the propeller protection cover 114 can be used to protect the propeller 12 to prevent the propeller 12 from being hit by external objects, and to prevent the rotating propeller 12 from injuring people.
  • the arm 113 may specifically include a guide rib 1111, and the guide portion 111 may include two guide ribs 1111 and a groove 1112 formed by the two guide ribs 1111; the positioning portion 112 may include a protrusion adapted to the groove 1112.
  • the guide rib 1111 of the unmanned aerial vehicle located below can guide the protrusion of the unmanned aerial vehicle located above into the groove 1112, so as to limit the deviation of the unmanned aerial vehicle located above in the heading direction, thereby achieving precise landing of the unmanned aerial vehicle located above.
  • the UAV located above can move along the guide rib 1111 of the UAV located below until the protrusion of the UAV located above is guided into the groove 1112. Due to the limiting effect of the groove 1112 on the protrusion, the UAV cannot deviate in the heading direction, so that the UAV can achieve precise landing.
  • one end of the guide rib 1111 is connected to the first matching portion 101, and the other end of the guide rib 1111 at least partially extends in a direction away from the center body 10. In this way, during the landing of the unmanned aerial vehicle, even if the unmanned aerial vehicle located above initially lands at a position far away from the center body 10 of the unmanned aerial vehicle below.
  • the unmanned aerial vehicle located above can move along the guide rib 1111 until the unmanned aerial vehicle located above is guided to the position where the first matching portion 101 and the second matching portion 102 cooperate with each other, and the protrusion of the unmanned aerial vehicle located above is guided into the groove 1112, so as to achieve precise landing of the unmanned aerial vehicle.
  • the guide rib 1111 is a flexible member, that is, the guide rib 1111 can be flexibly deformed. In this way, during the landing process of the unmanned aerial vehicle, when the unmanned aerial vehicle located above contacts the guide rib 1111 of the unmanned aerial vehicle located below, the guide rib 1111 can provide a buffer for the unmanned aerial vehicle above through flexible deformation, so as to avoid damage caused by rigid contact between the two, thereby improving the landing safety of the unmanned aerial vehicle.
  • the material of the flexible member may include at least one of rubber, silicone and foam.
  • the embodiment of the present application does not specifically limit the specific material of the flexible member.
  • the first matching portion 101 may include a concave structure concave toward the central body 10
  • the second matching portion 102 may include a convex structure convex away from the central body 10.
  • the convex structure at the bottom of the upper unmanned aerial vehicle may be at least partially embedded in the concave structure at the top of the lower unmanned aerial vehicle, so that the auxiliary positioning and high-density storage of multiple unmanned aerial vehicles can be achieved, so as to facilitate the coordinated operation of multiple unmanned aerial vehicles.
  • the groove 1112 is arranged close to the edge of the concave structure, and the groove 1112 can be used as a part of the edge of the concave structure to increase the area of the concave structure. In this way, during the landing process of the unmanned aerial vehicle, it is more conducive to guiding the convex structure at the bottom of the upper unmanned aerial vehicle to the concave structure at the top of the lower unmanned aerial vehicle, further improving the landing accuracy and landing efficiency of the unmanned aerial vehicle.
  • the width of the groove 1112 decreases in sequence along the direction from the central body 10 to the propeller protection cover 114. That is, the width of the groove 1112 close to the side of the recessed structure is wider, and the width of the connection between the groove 1112 and the recessed structure is larger, and the effect of the groove 1112 on increasing the area of the recessed structure is more obvious. In this way, during the landing process of the unmanned aerial vehicle, the efficiency of the convex structure at the bottom of the unmanned aerial vehicle located above being embedded in the recessed structure of the unmanned aerial vehicle located below can be further improved, and the landing accuracy and landing efficiency of the unmanned aerial vehicle can be further improved.
  • the protrusion may specifically include: a camera assembly 1121 and a fence 1122 disposed around the camera assembly 1121, wherein the camera assembly 1121 is at least partially embedded in the fence 1122.
  • the fence 1122 may be used to protect the camera assembly 1121 to prevent the camera assembly 1121 from being hit, thereby improving the safety of the camera assembly 1121.
  • the protrusion is composed of the camera assembly 1121 and the enclosure 1122 surrounding the camera assembly 1121, it is possible to avoid setting an additional protrusion structure on the central body 10 to form the protrusion, thereby simplifying the structure of the central body 10.
  • the camera assembly 1121 of the UAV located above can be embedded in the groove 1112 of the UAV located below, it is possible to avoid setting an additional structure on the central body 10 to avoid the camera assembly 1121, thereby further simplifying the structure of the central body 10.
  • a gap can be formed between the camera assembly 1121 and the guide rib 1111 to avoid interference between the camera assembly 1121 and the guide rib 1111 and damage to the camera assembly 1121, thereby improving the safety of the camera assembly 1121.
  • the unmanned aerial vehicle may further include: a propeller 12, the propeller 12 is connected to the guide structure 11, and the propeller 12 can be used to provide flight power.
  • the propeller 12 can be located below the guide structure 11.
  • the top of the arm 113 and the propeller protection cover 114 to form a concave structure, so as to further enhance the guiding effect on the unmanned aerial vehicle above, thereby further improving the landing accuracy of the unmanned aerial vehicle.
  • the unmanned aerial vehicle above can be prevented from colliding with the propeller 12 of the unmanned aerial vehicle below, thereby improving the landing safety of the unmanned aerial vehicle.
  • the propeller 12 can be located below the arm 113.
  • the top of the arm 113 and the propeller protection cover 114 it is beneficial for the top of the arm 113 and the propeller protection cover 114 to form a concave structure, so as to further enhance the guiding effect on the unmanned aerial vehicle above, thereby further improving the landing accuracy of the unmanned aerial vehicle.
  • the propeller 12 since the propeller 12 is located below the arm 113, the unmanned aerial vehicle above can be prevented from colliding with the propeller 12 of the unmanned aerial vehicle below, thereby improving the landing safety of the unmanned aerial vehicle.
  • the guide structure 11 may further include a plurality of propeller protection covers 114, and the propeller protection covers 114 are connected to one end of the machine arm 113 away from the first matching portion 101.
  • the propeller protection covers 114 as a part of the guide structure 11, the overall area of the guide structure 11 can be increased, and the guide range of the guide structure 11 can be improved, thereby further improving the landing accuracy of the unmanned aerial vehicle.
  • the unmanned aerial vehicle may further include an antenna assembly 13, and the antenna assembly 13 is disposed on the propeller protection cover 114. Since the propeller protection cover 114 is disposed away from the central body 10 and the blocked area is small, when the antenna assembly 13 is disposed on the propeller protection cover 114, the interference of other electronic devices on the central body 10 on the antenna assembly 13 can be reduced, and the blocked area of the antenna assembly 13 can be reduced, which is beneficial to the radiation of the antenna assembly 13. In this way, the performance of the antenna assembly 13 can be improved.
  • the antenna assembly 13 is arranged on the outer edge of the propeller protection cover 114 so that the antenna assembly 13 can be as far away from the center body 10 as possible and the blocked area is as small as possible, thereby further improving the performance of the antenna assembly 13.
  • the propeller protection cover 114 may specifically include: a top frame 1141 and a side frame 1142, wherein the side frame 1142 is connected to the outer edge of the top frame 1141; wherein the top frame 1141 can be used to cover the top of the propeller 12 to protect the propeller 12 from the top of the propeller 12, and the side frame 1142 can be used to cover the side of the propeller 12 to protect the propeller 12 from the side of the propeller 12; the antenna assembly 13 is arranged on the side frame 1142, so that the antenna assembly 13 can be connected to the edge of the propeller protection cover 114, so as to achieve the purpose of being as far away from the center body 10 as possible and the blocked area is as small as possible, so as to further improve the performance of the antenna assembly 13.
  • the antenna assembly 13 may specifically include: a circuit board 131, an antenna 132 and an antenna cover 133; wherein the circuit board 131 is connected to the side frame 1142; the antenna 132 is connected to the circuit board 131; the antenna cover 133 covers the outside of the circuit board 131 and is used to protect the antenna 132 on the circuit board 131.
  • the antenna assembly 13 may further include an antenna bracket 134 , and the antenna bracket 134 may be used to support the circuit board 131 .
  • the circuit board 131 can be arranged vertically to make the signal of the antenna 132 better, realize the omnidirectional radiation of the antenna 132, and further improve the performance of the antenna assembly 13.
  • the circuit board 131 can be tilted, and the tilt angle is less than or equal to 15 degrees, so that the antenna 132 can achieve omnidirectional radiation and obtain better performance.
  • the antenna assembly 13 can be an arc-shaped structure bent toward the central body 10. In this way, the omnidirectional radiation of the antenna 132 can be achieved, and at the same time, the shape of the antenna 132 can be adapted to the overall shape of the propeller protection cover 114, and the structure of the antenna assembly 13 can be adapted to the requirements of aerodynamics.
  • the resistance encountered during the flight of the unmanned aerial vehicle is relatively small, which is beneficial to improving the connection reliability of the antenna assembly 13 on the propeller protection cover 114.
  • the circuit board 131 may also be a flexible circuit board, and the shape and position of the flexible circuit board may be set according to actual needs.
  • the specific type and structure of the circuit board 131 may not be limited in the embodiment of the present application.
  • the unmanned aerial vehicle may further include a charging module 14, which may be connected to a charging interface on a charging base to charge a battery on the unmanned aerial vehicle.
  • the guide structure 11 forms at least one opening 115, which may be used to avoid the guide rail of the charging base, so that the unmanned aerial vehicle may move up and down so that the charging module 14 may dock with the charging interface on the charging base.
  • the multiple arms 113 and the multiple propeller protection covers 114 may be an integrally formed structure, so that the guide structure 11 has good overall strength.
  • the multiple arms 113 and the multiple propeller protection covers 114 may be processed into an integrally formed structure by stamping or other processing methods.
  • the machine arm 113 and the propeller protection cover 114 may be separate structures, and the machine arm 113 and the propeller protection cover 114 are connected, so that the structure of a single machine arm 113 or a propeller protection cover 114 is relatively simple, and the processing technology is correspondingly relatively simple.
  • one end of the machine arm 113 may be connected to the first matching portion 101 by fastener connection, welding, clamping, etc.
  • the propeller protection cover 114 and the machine arm 113 are separate structures, the propeller protection cover 114 may also be connected to the other end of the machine arm 113 by fastener connection, welding, clamping, etc.
  • the number of the guide portions 111 may be four, and the four guide portions 111 are arranged at intervals on the edge of the first matching portion 101, and the four guide portions 111 and the first matching portion 101 may be enclosed to form an overall concave structure. In this way, during the landing process of the unmanned aerial vehicle, the guiding effect of the unmanned aerial vehicle located below on the unmanned aerial vehicle located above can be improved, and the landing efficiency and landing accuracy of the unmanned aerial vehicle can be further improved.
  • the drawings of the embodiments of the present application only show the case where the number of propellers 12 is 4 and the number of guide portions 111 is correspondingly 4.
  • the number of propellers 12 and guide portions 111 can be set according to actual conditions.
  • the number of propellers 12 and guide portions 111 can be 5, 6, or 8, etc.
  • the embodiments of the present application do not specifically limit the number of propellers 12 and guide portions 111.
  • the first matching portion 101 may specifically include a first planar portion 1011 and a first guide arc portion 1012 arranged around the first planar portion 1011.
  • the first guide arc portion 1012 can be used to guide the second matching portion 102 of the unmanned aerial vehicle located above into the first planar portion 1011.
  • the first plane portion 1011 can be used to fully contact the bottom of the central body 10 of the UAV located above, thereby improving the support reliability of the UAV located below for the UAV located above.
  • the first guide arc portion 1012 can guide the UAV located above into the first plane portion 1011 during the landing process of the UAV, thereby achieving accurate alignment of the upper and lower UAVs.
  • the second matching portion 102 may specifically include a second planar portion 1021 and a second guiding arc portion 1022 disposed around the second planar portion 1021 .
  • the second guiding arc portion 1022 may be used to guide the second planar portion 1021 into the first matching portion 101 .
  • the second plane portion 1021 can be used to fully contact the top of the central body 10 of the UAV located below, thereby improving the connection reliability of the UAV located above to the UAV located below.
  • the second guide arc portion 1022 can guide the second plane portion 1021 of the UAV located above into the first matching portion 101 of the UAV located below during the landing of the UAV, thereby achieving accurate alignment of the upper and lower UAVs.
  • the central body 10 further includes a light emitting device 15 , which can be used to emit light of a specified color to enhance the performance effect of the UAV, or to warn of the position or flight status of the UAV.
  • a light emitting device 15 can be used to emit light of a specified color to enhance the performance effect of the UAV, or to warn of the position or flight status of the UAV.
  • the light emitting device 15 can be used to emit a single color or various colors of light during the performance of the UAV.
  • the enclosure 1122 is at least partially located between the light emitting device 15 and the camera assembly 1121 to prevent the light emitted by the light emitting device 15 from directly entering the camera assembly 1121. In this way, possible interference of the light emitted by the light emitting device 15 on the camera assembly 1121 can be avoided.
  • the light emitting device 15 may be disposed on the side and/or bottom of the central body 10 as required, and the embodiment of the present application may not limit the specific position of the light emitting device 15 on the central body 10 .
  • the unmanned aerial vehicle described in the embodiments of the present application may at least include the following advantages:
  • the first matching part of the unmanned aerial vehicle can cooperate with the second matching part of another unmanned aerial vehicle to achieve vertical stacking of multiple unmanned aerial vehicles. In this way, it is convenient to stack more unmanned aerial vehicles in a smaller space, reducing the stacking space of the unmanned aerial vehicles.
  • the guide structure is connected to the top of the center body, the guide structure is provided with a guide part.
  • the guide part of the unmanned aerial vehicle located below can limit the deviation of the unmanned aerial vehicle located above in the heading direction, so as to guide the unmanned aerial vehicle located above to the position where the first matching part and the second matching part cooperate with each other, so as to achieve accurate landing of the unmanned aerial vehicle. In this way, not only the cost of the collaborative operation of multiple unmanned aerial vehicles will be reduced, but also the efficiency of the collaborative operation of multiple unmanned aerial vehicles will be improved.
  • An embodiment of the present application also provides an unmanned aerial vehicle, which may specifically include: a central body 10; a plurality of arms 113, the arms 113 being connected to the central body 10; a plurality of propellers 12, the propellers 12 being connected to the arms 113; a propeller protection cover 114, the propeller protection cover 114 being directly or indirectly connected to the central body 10, and at least partially shielding the propellers 12 in a direction in which the propeller protection cover 114 is away from the central body 10; and an antenna assembly 13, the antenna assembly 13 being arranged on the propeller protection cover 114.
  • the propeller protection cover 114 is arranged far away from the central body 10 and the blocked area is small, when the antenna assembly 13 is arranged on the propeller protection cover 114, the interference of other electronic devices on the central body 10 on the antenna assembly 13 can be reduced, and the blocked area of the antenna assembly 13 can be reduced, which is beneficial to the radiation of the antenna assembly 13. In this way, the performance of the antenna assembly 13 can be improved.
  • the antenna assembly 13 is disposed at the outer edge of the propeller protection cover 114 so that the antenna assembly 13 can be as far away from the center body 10 as possible and the blocked area is as small as possible, thereby further improving the performance of the antenna assembly 13.
  • the propeller protection cover 114 may specifically include: a top frame 1141 and a side frame 1142, wherein the side frame 1142 is connected to the outer edge of the top frame 1141; wherein the top frame 1141 can be used to cover the top of the propeller 12 to protect the propeller 12 from the top of the propeller 12, and the side frame 1142 can be used to cover the side of the propeller 12 to protect the propeller 12 from the side of the propeller 12; the antenna assembly 13 is arranged on the side frame 1142, so that the antenna assembly 13 can be connected to the edge of the propeller protection cover 114, so as to achieve the purpose of being as far away from the center body 10 as possible and the blocked area is as small as possible, so as to further improve the performance of the antenna assembly 13.
  • the antenna assembly 13 may specifically include: a circuit board 131, an antenna 132 and an antenna cover 133; wherein the circuit board 131 is connected to the side frame 1142; the antenna 132 is connected to the circuit board 131; the antenna cover 133 covers the outside of the circuit board 131 and is used to protect the antenna 132 on the circuit board 131.
  • the antenna assembly 13 may further include an antenna bracket 134 , and the antenna bracket 134 may be used to support the circuit board 131 .
  • the circuit board 131 may be arranged vertically to achieve omnidirectional radiation of the antenna 132 , thereby further improving the performance of the antenna assembly 13 .
  • the circuit board 131 can be tilted, and the tilt angle is less than or equal to 15 degrees, so that the antenna 132 can achieve omnidirectional radiation and obtain better performance.
  • the antenna assembly 13 may be an arc-shaped structure bent toward the central body 10. In this way, the omnidirectional radiation of the antenna 132 can be achieved, and at the same time, the structure of the antenna assembly 13 can adapt to the requirements of aerodynamics.
  • the resistance encountered during the flight of the unmanned aerial vehicle is relatively small, which is beneficial to improving the connection reliability of the antenna assembly 13 on the propeller protective cover 114.
  • the circuit board 131 may also be a flexible circuit board, and the shape and position of the flexible circuit board may be set according to actual needs.
  • the specific type and structure of the circuit board 131 may not be limited in the embodiment of the present application.
  • the antenna 132 may include at least one of a satellite positioning antenna and a wireless network enhancement antenna.
  • the embodiment of the present application may not limit the specific type of the antenna 132.
  • the propeller protection cover 114 can be directly connected to the central body 10, or the propeller protection cover 114 is connected to the machine arm 113, and is connected to the central body 10 through the machine arm 113.
  • the embodiment of the present application does not specifically limit the connection method between the propeller protection cover 114 and the central body 10.
  • the multiple arms 113 and the multiple propeller protection covers 114 may be an integrally formed structure, so that the guide structure 11 has good overall strength.
  • the multiple arms 113 and the multiple propeller protection covers 114 may be processed into an integrally formed structure by stamping or other processing methods.
  • the machine arm 113 and the propeller protection cover 114 may be separate structures, and the machine arm 113 and the propeller protection cover 114 are connected, so that the structure of a single machine arm 113 or a propeller protection cover 114 is relatively simple, and the processing technology is correspondingly relatively simple.
  • one end of the machine arm 113 may be connected to the first matching portion 101 by fastener connection, welding, clamping, etc.
  • the propeller protection cover 114 and the machine arm 113 are separate structures, the propeller protection cover 114 may also be connected to the other end of the machine arm 113 by fastener connection, welding, clamping, etc.
  • the connection between the machine arm 113 and the first matching portion 101, and between the propeller protection cover 114 and the machine arm 113 is not specifically limited.
  • the unmanned aerial vehicle described in the embodiments of the present application may at least include the following advantages:
  • the propeller protection cover is arranged far from the center body and the blocked area is small, when the antenna assembly is arranged on the propeller protection cover, the interference of other electronic devices on the center body to the antenna assembly can be reduced, and the blocked area of the antenna assembly can be reduced, which is beneficial to the radiation of the antenna assembly. In this way, the performance of the antenna assembly can be improved.
  • the device embodiments described above are merely illustrative, wherein the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, they may be located in one place, or they may be distributed on multiple network units. Some or all of the modules may be selected according to actual needs to achieve the purpose of the scheme of this embodiment. Those of ordinary skill in the art may understand and implement it without creative work.
  • references herein to "one embodiment,” “embodiment,” or “one or more embodiments” mean that a particular feature, structure, or characteristic described in conjunction with the embodiment is included in at least one embodiment of the present application.
  • the examples of the term “in one embodiment” herein do not necessarily all refer to the same embodiment.
  • any reference signs placed between brackets shall not be construed as limiting the claims.
  • the word “comprising” does not exclude the presence of elements or steps not listed in the claims.
  • the word “a” or “an” preceding an element does not exclude the presence of a plurality of such elements.
  • the present application may be implemented by means of hardware comprising several different elements and by means of a suitably programmed computer. In a unit claim enumerating several means, several of these means may be embodied by the same item of hardware.
  • the use of the words first, second, and third etc. does not indicate any order. These words may be interpreted as names.

Landscapes

  • Forklifts And Lifting Vehicles (AREA)

Abstract

本申请提供了一种无人飞行器,所述无人飞行器包括:中心体,所述中心体的顶部设置有第一配合部,所述中心体的底部设置有第二配合部,所述第一配合部能够与所述第二配合部相互配合,以实现多个所述无人飞行器的垂直堆叠;引导结构,所述引导结构连接在所述中心体的顶部,所述引导结构上设置有引导部,在所述无人飞行器降落的过程中,位于下方的所述无人飞行器的所述引导部,能够限制位于上方的所述无人飞行器在航向方向上的偏移,以将位于上方的所述无人飞行器引导至所述第一配合部与所述第二配合部相互配合的位置。本申请实施例不仅可以降低多个无人飞行器协同作业的成本,而且,还会提升多个无人飞行器协同作业的效率。

Description

一种无人飞行器 技术领域
本申请设计无人飞行器技领域,特别涉及一种无人飞行器。
背景技术
随着无人飞行器技术的高速发展,无人飞行器的功能也越来越丰富,无人飞行器的应用场景也越来越广泛。相应地,需要多个无人飞行器进行协同作业的场景也越来越多。例如,在无人飞行器表演或者无人飞行器运输应急物资等场景下,往往需要多个无人飞行器进行协同作业。
现有的技术中,在需要使用多个无人飞行器协同作业时,在无人飞行器起飞场地布置、无人飞行器准备和电池更换、以及无人飞行器降落回收等阶段,皆需要较大的人力投入和较大的场地进行操作。这样,不仅会提高多个无人飞行器协同作业的成本,而且,还会降低协同作业的效率。
申请内容
为了解决现有的技术中现有的无人飞行器协同作业的成本加高且效率较低的问题,本申请实施例提供了一种无人飞行器。
第一方面,本申请实施例提供了一种无人飞行器,所述无人飞行器包括:
中心体,所述中心体的顶部设置有第一配合部,所述中心体的底部设置有第二配合部,所述无人飞行器的第一配合部能够与另一所述无人飞行器的所述第二配合部相互配合,以实现多个所述无人飞行器的垂直堆叠;
引导结构,所述引导结构连接在所述中心体的顶部,所述引导结构上设置有引导部,在所述无人飞行器降落的过程中,位于下方的所 述无人飞行器的所述引导部,能够限制位于上方的所述无人飞行器在航向方向上的偏移,以将位于上方的所述无人飞行器引导至所述第一配合部与所述第二配合部相互配合的位置。
可选地,所述引导结构连接所述第一配合部。
可选地,所述中心体还包括临近所述第二配合部设置的定位部,在所述无人飞行器降落的过程中,位于下方的所述无人飞行器的所述引导部与位于上方的所述无人飞行器的所述定位部相互配合,以限制位于上方的所述无人飞行器在航向方向上的偏移。
可选地,所述引导结构包括多个机臂以及多个桨保护罩;其中,
多个所述机臂的一端连接所述第一配合部;
所述机臂的另一端连接所述桨保护罩。
可选地,所述机臂包括导向筋,所述引导部包括两个所述导向筋和由所述两个导向筋围合形成的凹槽;
所述定位部包括与所述凹槽适配的凸起部,在所述无人飞行器降落的过程中,位于下方的所述无人飞行器的导向筋能够将位于上方的所述无人飞行器的所述凸起部引导至所述凹槽内。
可选地,所述导向筋的一端连接所述第一配合部,所述导向筋的另一端至少部分向远离所述中心体的方向延伸。
可选地,所述导向筋为柔性件。
可选地,所述柔性件的材料包括橡胶、硅胶以及泡棉中的至少一种。
可选地,所述第一配合部包括向所述中心体内凹的凹陷结构,所述第二配合部包括向远离所述中心体外凸的外凸结构。
可选地,所述凹槽靠近所述凹陷结构的边缘设置。
可选地,所述凹槽的宽度沿所述中心体到所述桨保护罩的方向依次递减。
可选地,所述凸起部包括:摄像组件和环绕所述摄像组件设置的 围挡,所述摄像组件至少部分嵌设于所述围挡内。
可选地,在所述凸起部引导至所述凹槽内的情况下,所述摄像组件与所述导向筋之间能够形成间隙。
可选地,所述无人飞行器还包括:螺旋桨,所述螺旋桨连接于所述引导结构,所述螺旋桨用于提供飞行动力。
可选地,所述螺旋桨位于所述引导结构的下方。
可选地,所述螺旋桨位于所述机臂下方。
可选地,引导结构还包括多个桨保护罩,所述桨保护罩连接于所述机臂远离所述第一配合部的一端。
可选地,所述无人飞行器还包括天线组件,所述天线组件设于所述桨保护罩。
可选地,所述天线组件设于所述桨保护罩的外侧边缘。
可选地,所述桨保护罩包括顶部框架以及侧框,所述侧框连接在所述顶部框架的外侧边缘;其中,
所述顶部框架用于遮盖在所述螺旋桨的顶部,所述侧框用于遮盖所述螺旋桨的侧部;
所述天线组件设于所述侧框。
可选地,所述天线组件包括:电路板、天线以及天线盖板;其中,
所述电路板连接于所述侧框;
所述天线连接于所述电路板;
所述天线盖板覆盖在所述电路板外,用于保护所述电路板上的所述天线。
可选地,所述电路板竖直设置。
可选地,所述电路板倾斜设置,且倾斜角度小于或者等于15度。
可选地,所述天线组件为向所述中心体弯曲的弧形结构。
可选地,所述引导结构至少形成一个开口,所述开口用于避让充电基座的导轨。
可选地,所述多个机臂以及所述多个桨保护罩为一体成型结构。
可选地,所述机臂与所述桨保护罩为分体结构,所述机臂与所述桨保护罩连接。
可选地,所述机臂与所述桨保护罩之间的连接方式包括卡接、焊接以及紧固件连接中的至少一种。
可选地,所述引导部的数量为四个,所述四个引导部间隔设置于所述第一配合部的边缘。
可选地,所述第一配合部包括第一平面部以及环绕所述第一平面部设置的第一导向弧面部,所述第一导向弧面部用于将位于上方的所述无人飞行器的第二配合部导入所述第一平面部。
可选地,所述第二配合部包括第二平面部以及环绕所述第二平面部设置的第二导向弧面部,所述第二导向弧面部用于将所述第二平面部导入所述第一配合部内。
可选地,所述中心体的底部和侧面还设置有发光装置。
本申请实施例中,由于所述无人飞行器的中心体的顶部设置有第一配合部,所述中心体的底部设置有第二配合部,所述无人飞行器的第一配合部能够与另一所述无人飞行器的第二配合部相互配合,以实现多个所述无人飞行器的垂直堆叠。这样,就可以便于在较小的空间内堆叠较多的无人飞行器,减少所述无人飞行器的堆叠空间。而且,由于所述引导结构连接在所述中心体的顶部,所述引导结构上设置有引导部,在所述无人飞行器降落的过程中,位于下方的所述无人飞行器的所述引导部,能够限制位于上方的所述无人飞行器在航向方向上的偏移,以将位于上方的所述无人飞行器引导至所述第一配合部与所述第二配合部相互配合的位置,实现无人飞行器的精准降落。这样,不仅会降低多个无人飞行器协同作业的成本,而且,还会提升多个无人飞行器协同作业的效率。
第二方面,本申请实施例提供了一种无人飞行器,所述无人飞行 器包括:
中心体;
多个机臂,所述机臂连接于所述中心体;
多个螺旋桨,所述螺旋桨连接于所述机臂;
桨保护罩,所述桨保护罩直接或间接连接所述中心体,在所述桨保护罩远离中心体的方向至少部分遮挡所述螺旋桨;以及
天线组件,所述天线组件设于所述桨保护罩。
可选地,所述天线组件设置在所述桨保护罩的外侧边缘。
可选地,所述桨保护罩包括顶部框架以及侧框,所述侧框连接在所述顶部框架的外侧边缘;其中,
所述顶部框架用于遮盖在所述螺旋桨的顶部,所述侧框用于遮盖所述螺旋桨的侧部;
所述天线组件设于所述侧框。
可选地,所述天线组件包括:电路板、天线以及天线盖板;其中,
所述电路板连接于所述侧框;
所述天线连接于所述电路板;
所述天线盖板覆盖在所述电路板外,用于保护所述电路板上的所述天线。
可选地,所述电路板为印制电路板。
可选地,所述电路板为柔性电路板。
可选地,所述电路板竖直设置。
可选地,所述电路板倾斜设置,且倾斜角度小于或者等于15度。
可选地,所述天线组件为向所述中心体弯曲的弧形结构。
可选地,所述天线包括卫星定位天线和无线网路增强天线中的至少一种。
可选地,所述桨保护罩直接连接于所述中心体。
可选地,所述桨保护罩连接于所述机臂,以通过所述机臂连接于 所述中心体。
可选地,所述桨保护罩和所述机臂为一体结构。
可选地,所述桨保护罩和所述机臂为分体结构。
本申请实施例中,由于所述桨保护罩远离所述中心体设置,且被遮挡的区域较小,在所述天线组件设置于所述桨保护罩的情况下,既可以使得所述天线组件受所述心体上的其他电子器件的干涉较小,又可以使得所述天线组件被遮挡的区域较小,有利于所述天线组件的辐射。这样,就可以提升所述天线组件的性能。
上述说明仅是本申请技术方案的概述,为了能够更清楚了解本申请的技术手段,而可依照说明书的内容予以实施,并且为了让本申请的上述和其它目的、特征和优点能够更明显易懂,以下特举本申请的具体实施方式。
附图说明
为了更清楚地说明本申请实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作一简单地介绍,显而易见地,下面描述中的附图是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1示意性地示出了本申请实施例所述的一种无人飞行器的结构示意图;
图2示意性地示出了图1所示的无人飞行器的俯视结构示意图;
图3示意性地示出了图1所示的无人飞行器的侧向结构示意图之一;
图4示意性地示出了图1所示的无人飞行器的侧向结构示意图之二;
图5示意性地示出了图1所示的无人飞行器的侧向结构示意图之三;
图6示意性地示出了图1所示的无人飞行器的仰视结构示意图;
图7示意性地示出了本申请实施例所述的无人飞行器垂直堆叠后的结构示意图;
图8示意性地示出了本申请实施例所述的一种引导结构的结构示意图。
附图标记说明:10-中心体,101-第一配合部,1011-第一平面部, 1012-第一导向弧面部,102-第二配合部,1021-第二平面部,1022-第二导向弧面部,11-引导结构,111-引导部,1111-导向筋,1112-凹槽,112-定位部,1121-摄像组件,1122-围挡,113-机臂,114-桨保护罩,1141-顶部框架,1142-侧框,115-开口,12-螺旋桨,13-天线组件,131-电路板,132-天线,133-天线盖板,134-天线支架,14-充电模块,15-发光装置。
具体实施例
为使本申请实施例的目的、技术方案和优点更加清楚,下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
本申请的说明书和权利要求书中的术语“第一”、“第二”的特征可以明示或者隐含地包括一个或者更多个该特征。在本申请的描述中,除非另有说明,“多个”的含义是两个或两个以上。此外,说明书以及权利要求中“和/或”表示所连接对象的至少其中之一,字符“/”,一般表示前后关联对象是一种“或”的关系。
在本申请的描述中,需要理解的是,术语“中心”、“纵向”、“横向”、“长度”、“宽度”、“厚度”、“上”、“下”、“前”、“后”、“左”、“右”、“竖直”、“水平”、“顶”、“底”“内”、“外”、“顺时针”、“逆时针”、“轴向”、“径向”、“周向”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本申请和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本申请的限制。
在本申请的描述中,需要说明的是,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或一体地连接;可以是机械连接,也可以是电连接;可以是 直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通。对于本领域的普通技术人员而言,可以具体情况理解上述术语在本申请中的具体含义。
本申请实施例提供了一种无人飞行器,所述述无人飞行器可以包括但不局限于载人无人机、物流无人机、航拍无人机、表演无人机、对战无人机以及农业植保无人机中的任意一种,本申请实施例对所述无人飞行器的类型不做具体限定。
参照图1,示出了本申请实施例所述的一种无人飞行器的结构示意图,参照图2,示出了图1所示的无人飞行器的俯视结构示意图,参照图3,示出了图1所示的无人飞行器的侧向结构示意图之一,参照图4,示出了图1所示的无人飞行器的侧向结构示意图之二,参照图5,示出了图1所示的无人飞行器的侧向结构示意图之三,参照图6,示出了图1所示的无人飞行器的仰视结构示意图。
具体的,所述无人飞行器具体可以包括:中心体10,中心体10的顶部设置有第一配合部101,中心体10的底部设置有第二配合部102,所述无人飞行器的第一配合部101能够与另一所述无人飞行器的第二配合部102相互配合,以实现多个所述无人飞行器的垂直堆叠;引导结构11,引导结构11连接在中心体10的顶部,引导结构11上设置有引导部111,在所述无人飞行器降落的过程中,位于下方的所述无人飞行器的引导部111,能够限制位于上方的所述无人飞行器在航向方向上的偏移,以在两台无人飞行器上下堆叠时,将位于上方的所述无人飞行器引导至下方无人飞行器的第一配合部101与上方无人飞行器的第二配合部102相互配合的位置。
本申请实施例中,由于无人飞行器的中心体10的顶部设置有第一配合部101,中心体10的底部设置有第二配合部102,所述无人飞行器的第一配合部101能够与另一所述无人飞行器的第二配合部102相互配合,以实现多个所述无人飞行器的垂直堆叠。这样,就可以便于在较小的空间内堆叠较多 的无人飞行器,减少所述无人飞行器的堆叠空间。而且,由于引导结构11连接在中心体10的顶部,引导结构11上设置有引导部111,在所述无人飞行器降落的过程中,位于下方的所述无人飞行器的引导部111,能够限制位于上方的所述无人飞行器在航向方向上的偏移,以将位于上方的所述无人飞行器引导至第一配合部101与位于下方的所述无人飞行器的第二配合部102相互配合的位置,实现无人飞行器的精准降落。这样,不仅会降低多个无人飞行器协同作业的成本,而且,还会提升多个无人飞行器协同作业的效率。
参照图7,示出了本申请实施例所述的无人飞行器垂直堆叠后的结构示意图,如图7所示,在多个无人飞行器在降落的过程中,上方的无人飞行器的中心体10底部的第二配合部102能够与下方的无人飞行器的中心体10顶部的第一配合部101相互配合,以减小多个无人飞行器堆叠后的堆叠空间。而且,位于下方的所述无人飞行器的引导部111,能够限制位于上方的所述无人飞行器在航向方向上的偏移,以将位于上方的所述无人飞行器引导至所述第一配合部101与所述第二配合部102相互配合的位置,实现无人飞行器的精准降落。
本申请实施例中,引导结构11连接第一配合部101,以使得引导结构11上的引导部111可以靠近第一配合部101设置。这样,在所述无人飞行器降落的过程中,下方的无人飞行器上的引导部111可以将上方的无人飞行器的第二配合部102引导至下方的无人飞行器的第一配合部101内,实现所述无人飞行器的精准降落。
示例的,引导结构11可以通过焊接、卡接等连接方式连接于第一配合部101,本申请实施例对于引导结构11与第一配合部101之间的具体连接方式可以不做限定。
在本申请的一些可选实施例中,如图3所示,中心体10还可以包括临近第二配合部102设置的定位部112,在所述无人飞行器降落的过程中,位于下方的所述无人飞行器的引导部111能够与位于上方的所述无人飞行器的定位部112相互配合,以限制位于上方的所述无人飞行器在航向方向上的偏 移。
在具体的应用中,定位部112的结构可以与引导部111的结构适配,定位部112的数量与引导部111的数量也可以适配。这样,在所述无人飞行器降落的过程中,位于下方的所述无人飞行器的引导部111能够与位于上方的所述无人飞行器的定位部112一一对应且相互配合,以限制位于上方的所述无人飞行器在航向方向上的偏移,实现位于上方的所述无人飞行器的精准降落。
具体的,定位部112的结构和引导部111的结构适配具体可以包括:定位部112形状与引导部111的形状基本相同、尺寸基本相同且能够相互嵌合。例如,定位部112可以为凸出于中心体10的凸起部,引导部111则可以为形状与所述凸起部基本相同,且能够与所述凸起部相互嵌合的凹陷部。定位部112的数量与引导部111的数量适配可以为定位部112的数量与引导部111的数量相同。例如,在引导部111的数量为4个的情况下,定位部112的数量也可以为4个,在所述无人飞行器降落的过程中,位于上方的所述无人飞行器的定位部112可以与位于下方的所述无人飞行器的引导部111一一对应且相互配合。
本申请实施中,引导结构11包括多个机臂113以及多个桨保护罩114;其中,多个机臂113的一端连接第一配合部101;机臂113的另一端连接桨保护罩114。在具体的应用中,机臂113可以用于连接和支撑螺旋桨12,螺旋桨12可以用于提供飞行动力。桨保护罩114则可以用于保护螺旋桨12,以避免螺旋桨12受到外界物体的撞击,以及,避免旋转的螺旋桨12伤害人员。
本申请实施例中,如图2所示,机臂113具体可以包括导向筋1111,引导部111可以包括两个导向筋1111和由两个导向筋1111围合形成的凹槽1112;定位部112可以包括与凹槽1112适配的凸起部,在所述无人飞行器降落的过程中,位于下方的所述无人飞行器的导向筋1111能够将位于上方的所述无人飞行器的所述凸起部引导至凹槽1112内,以限制位于上方的所 述无人飞行器在航向方向上的偏移,实现位于上方的所述无人飞行器的精准降落。
在具体的应用中,在所述无人飞行器降落的过程中,位于上方的所述无人飞行器可以沿着位于下方的所述无人飞行器的导向筋1111移动,直至将位于上方的所述无人飞行器的所述凸起部引导至凹槽1112内。由于凹槽1112对所述凸起部的限位作用,所述无人飞行器将无法在航向方向上偏移,这样,就可以实现所述无人飞行器的精准降落。
可选地,导向筋1111的一端连接第一配合部101,导向筋1111的另一端至少部分向远离中心体10的方向延伸。这样,在所述无人飞行器降落的过程中,即使位于上方的所述无人飞行器一开始降落在离下方的所述无人飞行器的中心体10较远的位置。由于导向筋1111的一端连接第一配合部101,另一端朝向远离中心体10的方向延伸,在导向筋1111的引导作用下,位于上方的所述无人飞行器能够沿着所述导向筋1111移动,直至将位于上方的所述无人飞行器的引导至第一配合部101与第二配合部102相互配合的位置,将位于上方的所述无人飞行器的所述凸起部引导至凹槽1112内,实现所述无人飞行器的精准降落。
可选地,导向筋1111为柔性件,即,导向筋1111可以发生柔性变形。这样,在所述无人飞行器的降落过程中,在位于上方的所述无人飞行器与位于下方的所述无人飞行器的导向筋1111接触的情况下,导向筋1111可以通过柔性变形给上方的所述无人飞行器提供缓冲,以避免二者之间由于刚性接触造成的损坏,提高所述无人飞行器的降落安全。
可选地,所述柔性件的材料可以包括橡胶、硅胶以及泡棉中的至少一种,本申请实施例对于所述柔性件的具体材质不做具体限定。
在本申请的一些可选实施例中,第一配合部101可以包括向中心体10内凹的凹陷结构,第二配合部102可以包括向远离中心体10外凸的外凸结构。在所述无人飞行器降落的过程中,上下相邻的两个所述无人飞行器中,位于上方的所述无人飞行器底部的凸起结构可以至少部分嵌设于位于下方 的所述无人飞行器顶部的凹陷结构内,这样,就可以实现多个所述无人飞行器的辅助定位与高密度存储,以便于实现多个所述无人飞行器的协同作业。
可选地,凹槽1112靠近所述凹陷结构的边缘设置,凹槽1112可以作为所述凹陷结构的部分边缘,以增大所述凹陷结构的面积。这样,在所述无人飞行器的降落过程中,更利于将位于上方的无人飞行器底部的凸起结构引导至位于下方的所述无人飞行器的顶部的凹陷结构内,进一步提升所述无人飞行器的降落精准性和降落效率。
在本申请的一些可选实施例中,凹槽1112的宽度沿中心体10到桨保护罩114的方向依次递减。也即,凹槽1112靠近所述凹陷结构的一侧的宽度较宽,凹槽1112与所述凹陷结构的连接处的宽度较大,凹槽1112对于所述凹陷结构的面积增大的效果更加明显。这样,在所述无人飞行器的降落过程中,可以进一步提升位于上方的无人飞行器底部的凸起结构嵌设至位于下方的所述无人飞行器的凹陷结构内的效率,进一步提升所述无人飞行器的降落精准性和降落效率。
本申请实施例中,如图4所示,所述凸起部具体可以包括:摄像组件1121和环绕摄像组件1121设置的围挡1122,摄像组件1121至少部分嵌设于围挡1122内。在具体的应用中,围挡1122可以用于保护摄像组件1121,以避免摄像组件1121受到撞击,提高摄像组件1121的使用安全。
在实际应用中,在所述凸起部由摄像组件1121和环绕摄像组件1121的围挡1122构成的情况下,可以避免在中心体10上额外设置凸起的结构来形成所述凸起部,简化了中心体10的结构。而且,由于位于上方的所述无人飞行器的摄像组件1121恰好可以嵌设于位于下方的所述无人飞行器的凹槽1112内,这样,就可以避免在中心体10上额外设置避让摄像组件1121的结构,进一步简化了中心体10的结构。
在本申请的一些可选实施例中,在所述凸起部引导至凹槽1112内的情况下,摄像组件1121与导向筋1111之间能够形成间隙,以避免摄像组件1121与导向筋1111干涉损坏摄像组件1121,以提高摄像组件1121的使用安全。
本申请实施例中,所述无人飞行器还可以包括:螺旋桨12,螺旋桨12连接于引导结构11,螺旋桨12可以用于提供飞行动力。
具体的,螺旋桨12可以位于引导结构11的下方,通过将螺旋桨12倒置在引导结构11的下方,有利于机臂113的顶部和桨保护罩114形成凹陷的结构,以进一步增强对于上方的所述无人飞行器的引导作用,从而,进一步提升所述无人飞行器的降落精准度。而且,在所述无人飞行器降落的过程中,由于螺旋桨12位于引导结构11的下方,可以避免位于上方的所述无人飞行器撞击到下方的所述无人飞行器的螺旋桨12上,提高所述无人飞行器的降落安全。
可选地,螺旋桨12可以位于机臂113下方。通过将螺旋桨12倒置在机臂11的下方,有利于机臂113的顶部和桨保护罩114形成凹陷的结构,以进一步增强对于上方的所述无人飞行器的引导作用,从而,进一步提升所述无人飞行器的降落精准度。而且,在所述无人飞行器降落的过程中,由于螺旋桨12位于机臂113的下方,可以避免位于上方的所述无人飞行器撞击到下方的所述无人飞行器的螺旋桨12上,提高所述无人飞行器的降落安全。
可选地,引导结构11还可以包括多个桨保护罩114,桨保护罩114连接于机臂113远离第一配合部101的一端。在具体的应用中,通过将桨保护罩114作为引导结构11的一部分,可以增大引导结构11的整体面积,提高引导结构11的引导范围,从而,进一步提升所述无人飞行器的降落精准度。
本申请实施例中,所述无人飞行器还可以包括天线组件13,天线组件13设于桨保护罩114。由于桨保护罩114远离中心体10设置,且被遮挡的区域较小,在天线组件13设置于桨保护罩114的情况下,既可以使得天线组件13受中心体10上的其他电子器件的干涉较小,又可以使得天线组件13被遮挡的区域较小,有利于天线组件13的辐射。这样,就可以提升天线组件13的性能。
可选地,天线组件13设于桨保护罩114的外侧边缘,以使得天线组件13可以离中心体10的距离尽可能远,且被遮挡的区域尽可能小,进一步提 升天线组件13的性能。
参照图8,示出了本申请实施例所述的一种引导结构的结构示意图,如图8所示,桨保护罩114具体可以包括:顶部框架1141以及侧框1142,所述侧框1142连接在顶部框架1141的外侧边缘;其中,顶部框架1141可以用于遮盖在螺旋桨12的顶部,以从螺旋桨12的顶部保护螺旋桨12,侧框1142可以用于遮盖螺旋桨12的侧部,以从螺旋桨12的侧部保护螺旋桨12;天线组件13设于侧框1142,以使得天线组件13可以连接在桨保护罩114的边缘,达到离中心体10的距离尽可能远,且被遮挡的区域尽可能小的目的,以进一步提升天线组件13的性能。
如图8所示,天线组件13具体可以包括:电路板131、天线132以及天线盖板133;其中,电路板131连接于侧框1142;天线132连接于电路板131;天线盖板133覆盖在电路板131外,用于保护电路板131上的天线132。
在实际应用中,天线组件13还可以包括天线支架134,天线支架134可以用于支撑电路板131。
在本申请的一些可选实施例中,电路板131可以竖直设置,以使得天线132的信号更好,实现天线132的全向辐射,进一步提升天线组件13的性能。
在本申请的另一些可选实施例中,电路板131可以倾斜设置,且倾斜角度小于或者等于15度,以使得天线132可以实现全向辐射,获得较好的性能。
在本申请的再一些可选实施例中,天线组件13可以为向中心体10弯曲的弧形结构,这样,既可以实现天线132的全向辐射,同时,又可以使得天线132的外形能够适应桨保护罩114的整体外形,并使得天线组件13的结构能够适应空气动力学的要求,在所述无人飞行器的飞行过程中受到的阻力较小,有利于提高天线组件13在桨保护罩114上的连接可靠性。
需要说明的是,在实际应用中,电路板131还可以为柔性电路板,所述柔性电路板的形状的位置可以根据实际需要设置。本申请实施例对于电路板131的具体类型和结构可以不做限定。
在具体的应用中,所述无人飞行器还可以包括充电模块14,充电模块14可以与充电基座上充电接口连接,以给所述无人飞行器上的电池充电。本申请实施例中,引导结构11至少形成一个开口115,开口115可以用于避让充电基座的导轨,以便于所述无人飞行器可以上下移动使得充电模块14与充电基座上的充电接口对接。
可选地,多个机臂113以及多个桨保护罩114可以为一体成型结构,以使得引导结构11具备较好的整体强度。具体的,多个机臂113和多个桨保护罩114可以通过冲压等加工方式加工成一体成型结构。
可选地,机臂113与桨保护罩114可以为分体结构,机臂113与桨保护罩114连接,以使得单个的机臂113或者桨保护罩114的结构都较为简单,加工工艺相应也较为简单。
可选地,机臂113的一端可以通过紧固件连接、焊接、卡接等连接方式连接于第一配合部101。在桨保护罩114和机臂113为分体结构的情况下,桨保护罩114也可以通过紧固件连接、焊接、卡接等连接方式连接在机臂113的另一端。本申请实施例里对于机臂113与第一配合部101之间、以及桨保护罩114和机臂113之间的连接方式不做具体限定。
在本申请的一些可选实施例中,引导部111的数量可以为四个,四个引导部111间隔设置于第一配合部101的边缘,四个引导部111和第一配合部101可以围合形成整体的凹陷结构。这样,在所述无人飞行器的降落过程中,可以提升位于下方的无人飞行器对于位于上方的无人飞行器的引导作用,进一步提升所述无人飞行器的降落效率和降落精准性。
需要说明的是,本申请实施例的附图中,仅示出了螺旋桨12的数量为4个,且引导部111的数量相应为4个的情况。而在实际应用中,螺旋桨12和引导部111的数量可以根据实际情况进行设定。例如,螺旋桨12和引导部111的数量可以为5个、6个或者8个等,本申请实施例对于螺旋桨12和引导部111的数量不做具体限定。
如图1所示,第一配合部101具体可以包括第一平面部1011以及环绕 第一平面部1011设置的第一导向弧面部1012,第一导向弧面部1012可以用于将位于上方的所述无人飞行器的第二配合部102导入第一平面部1011。
在具体的应用中,第一平面部1011可以用于与位于上方的所述无人飞行器的中心体10底部充分接触,提高所述位于下方的所述无人飞行器对于位于上方的所述无人飞行器的支撑可靠性。第一导向弧面部1012则可以在所述无人飞行器的降落过程中,将位于上方的所述无人飞行器导入第一平面部1011内,实现上下无人飞行器的精准对位。
如图4所示,第二配合部102具体可以包括第二平面部1021以及环绕所述第二平面部1021设置的第二导向弧面部1022,第二导向弧面部1022可以用于将第二平面部1021导入第一配合部101内。
在具体的应用中,第二平面部1021可以用于与位于下方的所述无人飞行器的中心体10的顶部充分接触,提高位于上方的所述无人飞行器在位于下方的所述无人飞行器的连接可靠性。第二导向弧面部1022则可以在无人飞行器的降落过程中,将位于上方的所述无人飞行器的第二平面部1021导入位于下方的无人飞行器的第一配合部101内,实现上下无人飞行器的精准对位。
如图3所示,所述中心体10还包括发光装置15,发光装置15可以用于发出指定颜色的光,以增强所述无人飞行器的表演效果,或者,对所述无人飞行器的位置或者飞行状态进行示警。
在实际应用中,发光装置15可以用于在无人飞行器表演时发出单一颜色或各种颜色的光线。围挡1122至少部分位于发光装置15与摄像组件1121之间,以防止发光装置15发出的光线直射入摄像组件1121。这样,可以避免发光装置15发出的光线对摄像组件1121可能产生的干扰。
示例的,发光装置15可以根据需要设置在中心体10的侧面和/或底部,本申请实施例对于发光装置15在中心体10上的具体位置可以不做限定。
综上,本申请实施例所述的无人飞行器至少可以包括以下优点:
本申请实施例中,由于所述无人飞行器的中心体的顶部设置有第一配合 部,所述中心体的底部设置有第二配合部,所述无人飞行器的第一配合部能够与另一所述无人飞行器的第二配合部相互配合,以实现多个所述无人飞行器的垂直堆叠。这样,就可以便于在较小的空间内堆叠较多的无人飞行器,减少所述无人飞行器的堆叠空间。而且,由于所述引导结构连接在所述中心体的顶部,所述引导结构上设置有引导部,在所述无人飞行器降落的过程中,位于下方的所述无人飞行器的所述引导部,能够限制位于上方的所述无人飞行器在航向方向上的偏移,以将位于上方的所述无人飞行器引导至所述第一配合部与所述第二配合部相互配合的位置,实现无人飞行器的精准降落。这样,不仅会降低多个无人飞行器协同作业的成本,而且,还会提升多个无人飞行器协同作业的效率。
本申请实施例还提供了一种无人飞行器,所述无人飞行器具体可以包括:中心体10;多个机臂113,机臂113连接于中心体10;多个螺旋桨12,螺旋桨12连接于机臂113;桨保护罩114,桨保护罩114直接或间接连接中心体10,在桨保护罩114远离中心体10的方向至少部分遮挡螺旋桨12;以及天线组件13,天线组件13设于桨保护罩114。
本申请实施例中,由于桨保护罩114远离中心体10设置,且被遮挡的区域较小,在天线组件13设置于桨保护罩114的情况下,既可以使得天线组件13受中心体10上的其他电子器件的干涉较小,又可以使得天线组件13被遮挡的区域较小,有利于天线组件13的辐射。这样,就可以提升天线组件13的性能。
可选地,天线组件13设于桨保护罩114的外侧边缘,以使得天线组件13可以离中心体10的距离尽可能远,且被遮挡的区域尽可能小,进一步提升天线组件13的性能。
如图8所示,桨保护罩114具体可以包括:顶部框架1141以及侧框1142,所述侧框1142连接在顶部框架1141的外侧边缘;其中,顶部框架1141可以用于遮盖在螺旋桨12的顶部,以从螺旋桨12的顶部保护螺旋桨12,侧框 1142可以用于遮盖螺旋桨12的侧部,以从螺旋桨12的侧部保护螺旋桨12;天线组件13设于侧框1142,以使得天线组件13可以连接在桨保护罩114的边缘,达到离中心体10的距离尽可能远,且被遮挡的区域尽可能小的目的,以进一步提升天线组件13的性能。
如图8所示,天线组件13具体可以包括:电路板131、天线132以及天线盖板133;其中,电路板131连接于侧框1142;天线132连接于电路板131;天线盖板133覆盖在电路板131外,用于保护电路板131上的天线132。
在实际应用中,天线组件13还可以包括天线支架134,天线支架134可以用于支撑电路板131。
在本申请的一些可选实施例中,电路板131可以竖直设置,以实现天线132的全向辐射,进一步提升天线组件13的性能。
在本申请的另一些可选实施例中,电路板131可以倾斜设置,且倾斜角度小于或者等于15度,以使得天线132可以实现全向辐射,获得较好的性能。
在本申请的再一些可选实施例中,天线组件13可以为向中心体10弯曲的弧形结构,这样,既可以实现天线132的全向辐射,同时,又可以使得天线组件13的结构能够适应空气动力学的要求,在所述无人飞行器的飞行过程中受到的阻力较小,有利于提高天线组件13在桨保护罩114上的连接可靠性。
需要说明的是,在实际应用中,电路板131还可以为柔性电路板,所述柔性电路板的形状的位置可以根据实际需要设置。本申请实施例对于电路板131的具体类型和结构可以不做限定。
可选地,天线132可以包括卫星定位天线和无线网路增强天线中的至少一种,本申请实施例对于天线132的具体类型可以不做限定。
本申请实施例中,桨保护罩114可以直接连接于中心体10,或者,桨保护罩114连接于机臂113,以通过机臂113连接于中心体10。本申请实施例对于桨保护罩114与中心体10之间的连接方式不做具体限定。
可选地,多个机臂113以及多个桨保护罩114可以为一体成型结构,以使得引导结构11具备较好的整体强度。具体的,多个机臂113和多个桨保护罩114可以通过冲压等加工方式加工成一体成型结构。
可选地,机臂113与桨保护罩114可以为分体结构,机臂113与桨保护罩114连接,以使得单个的机臂113或者桨保护罩114的结构都较为简单,加工工艺相应也较为简单。
可选地,机臂113的一端可以通过紧固件连接、焊接、卡接等连接方式连接于第一配合部101。在桨保护罩114和机臂113为分体结构的情况下,桨保护罩114也可以通过紧固件连接、焊接、卡接等连接方式连接在机臂113的另一端。本申请实施例里对于机臂113与第一配合部101之间、以及桨保护罩114和机臂113之间的连接方式不做具体限定。
综上,本申请实施例所述的无人飞行器至少可以包括以下优点:
本申请实施例中,由于所述桨保护罩远离所述中心体设置,且被遮挡的区域较小,在所述天线组件设置于所述桨保护罩的情况下,既可以使得所述天线组件受所述心体上的其他电子器件的干涉较小,又可以使得所述天线组件被遮挡的区域较小,有利于所述天线组件的辐射。这样,就可以提升所述天线组件的性能。
以上所描述的装置实施例仅仅是示意性的,其中所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部模块来实现本实施例方案的目的。本领域普通技术人员在不付出创造性的劳动的情况下,即可以理解并实施。
本文中所称的“一个实施例”、“实施例”或者“一个或者多个实施例”意味着,结合实施例描述的特定特征、结构或者特性包括在本申请的至少一个实施例中。此外,请注意,这里“在一个实施例中”的词语例子不一 定全指同一个实施例。
在此处所提供的说明书中,说明了大量具体细节。然而,能够理解,本申请的实施例可以在没有这些具体细节的情况下被实践。在一些实例中,并未详细示出公知的方法、结构和技术,以便不模糊对本说明书的理解。
在权利要求中,不应将位于括号之间的任何参考符号构造成对权利要求的限制。单词“包含”不排除存在未列在权利要求中的元件或步骤。位于元件之前的单词“一”或“一个”不排除存在多个这样的元件。本申请可以借助于包括有若干不同元件的硬件以及借助于适当编程的计算机来实现。在列举了若干装置的单元权利要求中,这些装置中的若干个可以是通过同一个硬件项来具体体现。单词第一、第二、以及第三等的使用不表示任何顺序。可将这些单词解释为名称。
最后应说明的是:以上实施例仅用以说明本申请的技术方案,而非对其限制;尽管参照前述实施例对本申请进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本申请各实施例技术方案的精神和范围。

Claims (46)

  1. 一种无人飞行器,其特征在于,所述无人飞行器包括:
    中心体,所述中心体的顶部设置有第一配合部,所述中心体的底部设置有第二配合部,所述无人飞行器的第一配合部能够与另一所述无人飞行器的所述第二配合部相互配合,以实现多个所述无人飞行器的垂直堆叠;
    引导结构,所述引导结构连接在所述中心体的顶部,所述引导结构上设置有引导部,在所述无人飞行器降落的过程中,位于下方的所述无人飞行器的所述引导部,能够限制位于上方的所述无人飞行器在航向方向上的偏移,以将位于上方的所述无人飞行器引导至所述第一配合部与所述第二配合部相互配合的位置。
  2. 根据权利要求1所述的无人飞行器,其特征在于,所述引导结构连接所述第一配合部。
  3. 根据权利要求2所述的无人飞行器,其特征在于,所述中心体还包括临近所述第二配合部设置的定位部,在所述无人飞行器降落的过程中,位于下方的所述无人飞行器的所述引导部与位于上方的所述无人飞行器的所述定位部相互配合,以限制位于上方的所述无人飞行器在航向方向上的偏移。
  4. 根据权利要求3所述的无人飞行器,其特征在于,所述引导结构包括多个机臂以及多个桨保护罩;其中,
    多个所述机臂的一端连接所述第一配合部;
    所述机臂的另一端连接所述桨保护罩。
  5. 根据权利要求4所述的无人飞行器,其特征在于,所述机臂包括导向筋,所述引导部包括两个所述导向筋和由所述两个导向筋围合形成的凹槽;
    所述定位部包括与所述凹槽适配的凸起部,在所述无人飞行器降落的过程中,位于下方的所述无人飞行器的导向筋能够将位于上方的所述无人飞行器的所述凸起部引导至所述凹槽内。
  6. 根据权利要求5所述的无人飞行器,其特征在于,所述导向筋的一端连接所述第一配合部,所述导向筋的另一端至少部分向远离所 述中心体的方向延伸。
  7. 根据权利要求6所述的无人飞行器,其特征在于,所述导向筋为柔性件。
  8. 根据权利要求7所述的无人飞行器,其特征在于,所述柔性件的材料包括橡胶、硅胶以及泡棉中的至少一种。
  9. 根据权利要求5所述的无人飞行器,其特征在于,所述第一配合部包括向所述中心体内凹的凹陷结构,所述第二配合部包括向远离所述中心体外凸的外凸结构。
  10. 根据权利要求9所述的无人飞行器,其特征在于,所述凹槽靠近所述凹陷结构的边缘设置。
  11. 根据权利要求10所述的无人飞行器,其特征在于,所述凹槽的宽度沿所述中心体到所述桨保护罩的方向依次递减。
  12. 根据权利要求5所述的无人飞行器,其特征在于,所述凸起部包括:摄像组件和环绕所述摄像组件设置的围挡,所述摄像组件至少部分嵌设于所述围挡内。
  13. 根据权利要求12所述的无人飞行器,其特征在于,在所述凸起部引导至所述凹槽内的情况下,所述摄像组件与所述导向筋之间能够形成间隙。
  14. 根据权利要求4所述的无人飞行器,其特征在于,所述无人飞行器还包括:螺旋桨,所述螺旋桨连接于所述引导结构,所述螺旋桨用于提供飞行动力。
  15. 根据权利要求14所述的无人飞行器,其特征在于,所述螺旋桨位于所述引导结构的下方。
  16. 根据权利要求15所述的无人飞行器,其特征在于,所述螺旋桨位于所述机臂下方。
  17. 根据权利要求4所述的无人飞行器,其特征在于,所述引导结构还包括多个桨保护罩,所述桨保护罩连接于所述机臂远离所述第一配合部的一端。
  18. 根据权利要求17所述的无人飞行器,其特征在于,所述无人飞行器还包括天线组件,所述天线组件设于所述桨保护罩。
  19. 根据权利要求18所述的无人飞行器,其特征在于,所述天线组件设于所述桨保护罩的外侧边缘。
  20. 根据权利要求19所述的无人飞行器,其特征在于,所述桨保护罩包括顶部框架以及侧框,所述侧框连接在所述顶部框架的外侧边缘;其中,
    所述顶部框架用于遮盖在所述螺旋桨的顶部,所述侧框用于遮盖所述螺旋桨的侧部;
    所述天线组件设于所述侧框。
  21. 根据权利要求20所述的无人飞行器,其特征在于,所述天线组件包括:电路板、天线以及天线盖板;其中,
    所述电路板连接于所述侧框;
    所述天线连接于所述电路板;
    所述天线盖板覆盖在所述电路板外,用于保护所述电路板上的所述天线。
  22. 根据权利要求21所述的无人飞行器,其特征在于,所述电路板竖直设置。
  23. 根据权利要求21所述的无人飞行器,其特征在于,所述电路板倾斜设置,且倾斜角度小于或者等于15度。
  24. 根据权利要求21所述的无人飞行器,其特征在于,所述天线组件为向所述中心体弯曲的弧形结构。
  25. 根据权利要求4所述的无人飞行器,其特征在于,所述引导结构至少形成一个开口,所述开口用于避让充电基座的导轨。
  26. 根据权利要求17所述的无人飞行器,其特征在于,所述多个机臂以及所述多个桨保护罩为一体成型结构。
  27. 根据权利要求17所述的无人飞行器,其特征在于,所述机臂与所述桨保护罩为分体结构,所述机臂与所述桨保护罩连接。
  28. 根据权利要求27所述的无人飞行器,其特征在于,所述机臂与所述桨保护罩之间的连接方式包括卡接、焊接以及紧固件连接中的至少一种。
  29. 根据权利要求1所述的无人飞行器,其特征在于,所述引导部的数量为四个,所述四个引导部间隔设置于所述第一配合部的边缘。
  30. 根据权利要求1所述的无人飞行器,其特征在于,所述第一配合部包括第一平面部以及环绕所述第一平面部设置的第一导向弧面部,所述第一导向弧面部用于将位于上方的所述无人飞行器的第二配 合部导入所述第一平面部。
  31. 根据权利要求1所述的无人飞行器,其特征在于,所述第二配合部包括第二平面部以及环绕所述第二平面部设置的第二导向弧面部,所述第二导向弧面部用于将所述第二平面部导入所述第一配合部内。
  32. 根据权利要求1至31任一项所述的无人飞行器,其特征在于,所述中心体的底部和侧面还设置有发光装置。
  33. 一种无人飞行器,其特征在于,所述无人飞行器包括:
    中心体;
    多个机臂,所述机臂连接于所述中心体;
    多个螺旋桨,所述螺旋桨连接于所述机臂;
    桨保护罩,所述桨保护罩直接或间接连接所述中心体,在所述桨保护罩远离中心体的方向至少部分遮挡所述螺旋桨;以及
    天线组件,所述天线组件设于所述桨保护罩。
  34. 根据权利要求33所述的无人飞行器,其特征在于,所述天线组件设置在所述桨保护罩的外侧边缘。
  35. 根据权利要求34所述的无人飞行器,其特征在于,所述桨保护罩包括顶部框架以及侧框,所述侧框连接在所述顶部框架的外侧边缘;其中,
    所述顶部框架用于遮盖在所述螺旋桨的顶部,所述侧框用于遮盖所述螺旋桨的侧部;
    所述天线组件设于所述侧框。
  36. 根据权利要求35所述的无人飞行器,其特征在于,所述天线组件包括:电路板、天线以及天线盖板;其中,
    所述电路板连接于所述侧框;
    所述天线连接于所述电路板;
    所述天线盖板覆盖在所述电路板外,用于保护所述电路板上的所述天线。
  37. 根据权利要求36所述的无人飞行器,其特征在于,所述电路板为印制电路板。
  38. 根据权利要求36所述的无人飞行器,其特征在于,所述电路 板为柔性电路板。
  39. 根据权利要求36所述的无人飞行器,其特征在于,所述电路板竖直设置。
  40. 根据权利要求36所述的无人飞行器,其特征在于,所述电路板倾斜设置,且倾斜角度小于或者等于15度。
  41. 根据权利要求36所述的无人飞行器,其特征在于,所述天线组件为向所述中心体弯曲的弧形结构。
  42. 根据权利要求39所述的无人飞行器,其特征在于,所述天线包括卫星定位天线和无线网路增强天线中的至少一种。
  43. 根据权利要求33所述的无人飞行器,其特征在于,所述桨保护罩直接连接于所述中心体。
  44. 根据权利要求33所述的无人飞行器,其特征在于,所述所述桨保护罩连接于所述机臂,以通过所述机臂连接于所述中心体。
  45. 根据权利要求31所述的无人飞行器,其特征在于,所述桨保护罩和所述机臂为一体结构。
  46. 根据权利要求31所述的无人飞行器,其特征在于,所述桨保护罩和所述机臂为分体结构。
PCT/CN2022/139744 2022-12-16 2022-12-16 一种无人飞行器 WO2024124569A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/139744 WO2024124569A1 (zh) 2022-12-16 2022-12-16 一种无人飞行器

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/139744 WO2024124569A1 (zh) 2022-12-16 2022-12-16 一种无人飞行器

Publications (1)

Publication Number Publication Date
WO2024124569A1 true WO2024124569A1 (zh) 2024-06-20

Family

ID=91484199

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/139744 WO2024124569A1 (zh) 2022-12-16 2022-12-16 一种无人飞行器

Country Status (1)

Country Link
WO (1) WO2024124569A1 (zh)

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103419942A (zh) * 2013-09-10 2013-12-04 北京臻迪科技有限公司 一种无人飞行器
CN105235898A (zh) * 2015-11-13 2016-01-13 中航鹰航空技术(北京)有限公司 隔爆型多旋翼无人飞行器
CN206218204U (zh) * 2016-11-18 2017-06-06 深圳市大疆创新科技有限公司 飞行器
CN207250697U (zh) * 2017-10-18 2018-04-17 成都天麒科技有限公司 一种天线保护结构
US9957045B1 (en) * 2017-09-03 2018-05-01 Brehnden Daly Stackable drones
CN108137153A (zh) * 2015-01-18 2018-06-08 基础制造有限公司 用于无人机的装置、系统和方法
CN109789927A (zh) * 2016-09-19 2019-05-21 空中机器人有限及两合公司 用于空运物品的装置
US20190245365A1 (en) * 2016-10-28 2019-08-08 Telefonaktiebolaget Lm Ericsson (Publ) Stackable automated drone charging station
US20200003529A1 (en) * 2017-12-23 2020-01-02 Moshe Benezra Scalable drone launcher
CN112173096A (zh) * 2016-09-21 2021-01-05 深圳市大疆创新科技有限公司 无人机
CN213473497U (zh) * 2020-08-04 2021-06-18 赫星科技有限公司 一种可堆叠式无人机及无人机集群编组

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103419942A (zh) * 2013-09-10 2013-12-04 北京臻迪科技有限公司 一种无人飞行器
CN108137153A (zh) * 2015-01-18 2018-06-08 基础制造有限公司 用于无人机的装置、系统和方法
CN105235898A (zh) * 2015-11-13 2016-01-13 中航鹰航空技术(北京)有限公司 隔爆型多旋翼无人飞行器
CN109789927A (zh) * 2016-09-19 2019-05-21 空中机器人有限及两合公司 用于空运物品的装置
CN112173096A (zh) * 2016-09-21 2021-01-05 深圳市大疆创新科技有限公司 无人机
US20190245365A1 (en) * 2016-10-28 2019-08-08 Telefonaktiebolaget Lm Ericsson (Publ) Stackable automated drone charging station
CN206218204U (zh) * 2016-11-18 2017-06-06 深圳市大疆创新科技有限公司 飞行器
US9957045B1 (en) * 2017-09-03 2018-05-01 Brehnden Daly Stackable drones
CN207250697U (zh) * 2017-10-18 2018-04-17 成都天麒科技有限公司 一种天线保护结构
US20200003529A1 (en) * 2017-12-23 2020-01-02 Moshe Benezra Scalable drone launcher
CN213473497U (zh) * 2020-08-04 2021-06-18 赫星科技有限公司 一种可堆叠式无人机及无人机集群编组
US20220041279A1 (en) * 2020-08-04 2022-02-10 Hex Technology Limited Method and system for arranging swarming drones

Similar Documents

Publication Publication Date Title
US12021209B2 (en) Secondary battery module
US11929521B2 (en) Rechargeable battery
US20200235368A1 (en) Electrode member, electrode assembly and secondary battery
US20200148350A1 (en) Unmanned aircraft
EP3629395B1 (en) Terminal protection cover and battery module
US20190248502A1 (en) Battery compartment
US11343924B2 (en) Unmanned aerial vehicle and avionics system thereof
US20210072494A1 (en) Lens module and electronic apparatus
US9705185B2 (en) Integrated antenna and antenna component
WO2024124569A1 (zh) 一种无人飞行器
WO2018036093A1 (zh) 智能电力巡检无人机
EP4395023A1 (en) Polished aluminum sheet for lithium battery, top cover, and lithium battery
CN106486624A (zh) 可再充电电池组
CN217706281U (zh) 一种无人机
CN216720098U (zh) 电池盖板、电池单体、电池及用电设备
US20240145826A1 (en) Energy storage device and electrical equipment
US11784372B2 (en) End plate for battery module, and battery module
WO2020134029A1 (zh) 一种天线及无人飞行器
CN218498167U (zh) 一种电池
US20220115745A1 (en) Electrical connecting plate, battery module, battery pack, and device
EP4354614A1 (en) Battery cell, battery, electric device, and manufacturing method for battery cell
EP4145607A1 (en) Vehicle and battery pack thereof
CN205564848U (zh) 电池、无人机以及电子装置
WO2023082254A1 (zh) 无人机
CN211107980U (zh) 四旋翼无人机飞行器