WO2018036093A1 - 智能电力巡检无人机 - Google Patents

智能电力巡检无人机 Download PDF

Info

Publication number
WO2018036093A1
WO2018036093A1 PCT/CN2017/071224 CN2017071224W WO2018036093A1 WO 2018036093 A1 WO2018036093 A1 WO 2018036093A1 CN 2017071224 W CN2017071224 W CN 2017071224W WO 2018036093 A1 WO2018036093 A1 WO 2018036093A1
Authority
WO
WIPO (PCT)
Prior art keywords
arm
detection circuit
magnetic field
radiating
vehicle body
Prior art date
Application number
PCT/CN2017/071224
Other languages
English (en)
French (fr)
Inventor
凌企芳
Original Assignee
凌企芳
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 凌企芳 filed Critical 凌企芳
Publication of WO2018036093A1 publication Critical patent/WO2018036093A1/zh

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C27/00Rotorcraft; Rotors peculiar thereto
    • B64C27/04Helicopters
    • B64C27/06Helicopters with single rotor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64FGROUND OR AIRCRAFT-CARRIER-DECK INSTALLATIONS SPECIALLY ADAPTED FOR USE IN CONNECTION WITH AIRCRAFT; DESIGNING, MANUFACTURING, ASSEMBLING, CLEANING, MAINTAINING OR REPAIRING AIRCRAFT, NOT OTHERWISE PROVIDED FOR; HANDLING, TRANSPORTING, TESTING OR INSPECTING AIRCRAFT COMPONENTS, NOT OTHERWISE PROVIDED FOR
    • B64F1/00Ground or aircraft-carrier-deck installations
    • B64F1/02Ground or aircraft-carrier-deck installations for arresting aircraft, e.g. nets or cables
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U10/00Type of UAV
    • B64U10/10Rotorcrafts
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02GINSTALLATION OF ELECTRIC CABLES OR LINES, OR OF COMBINED OPTICAL AND ELECTRIC CABLES OR LINES
    • H02G1/00Methods or apparatus specially adapted for installing, maintaining, repairing or dismantling electric cables or lines
    • H02G1/02Methods or apparatus specially adapted for installing, maintaining, repairing or dismantling electric cables or lines for overhead lines or cables
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U2101/00UAVs specially adapted for particular uses or applications

Definitions

  • the present invention relates to an intelligent power inspection drone.
  • UAV UAV
  • UAV a non-manned aircraft operated by radio remote control equipment and self-provided program control device.
  • a drone is actually a general term for an unmanned aerial vehicle.
  • Various power equipment inspections using drones for power transmission so that the power regulatory authorities can identify problems and maintain them to ensure the normal operation of the transmission network.
  • the UAV inspection method has the advantages of high efficiency, fastness, reliability, low cost, and no geographical influence.
  • many of the UAVs in the prior art are built in the antenna, so that when the UAV moves in the air, Communication quality will have a serious impact.
  • the antenna needs to be improved to make the antenna have better electrical performance, such as return loss, gain, frequency range, etc. Obtain high-quality communication signals to achieve the accuracy and accuracy of the UAV's line detection;
  • a smart power inspection drone including a body, a propeller for raising and lowering a body at the top of the body, and a propeller for driving the propeller a rotating motor; a battery chamber and an electronic device cavity are arranged in the body; a magnetic field generator is fixed on one side of the body, and a detecting fixed station is fixed on the other side of the body; a detecting circuit is disposed in the electronic device cavity; the detecting circuit includes The CPU and the camera and the electric field strength detector connected to the CPU signal, the detecting circuit further comprises a communication module and a solenoid valve connected with the CPU signal; the electromagnetic valve is used for controlling the communication of the magnetic field generator; Below the stage, the electric field strength detector is disposed on the detection fixed station a charging battery is disposed in the battery cavity, the rechargeable battery is used to supply power to the detecting circuit, the magnetic field generator and the motor; the communication module includes a communication antenna, and the communication antenna
  • the communication antenna includes a PCB board
  • the PCB board is provided with a microstrip antenna
  • the microstrip antenna includes two vibrator units symmetrically disposed above and below, and two microphones disposed between the two vibrator units.
  • Each of the vibrating elements comprises a trapezoidal trapezoidal main radiating element and a rectangular main radiating element connected to the bottom edge of the trapezoidal main radiating element; and two oblique sides extending upward from the two oblique sides of the trapezoidal main radiating element a connecting arm, one end of each of the first connecting arms away from the trapezoidal main radiating unit is provided with a parallelogram first radiating arm, and a side of the first radiating arm to which the first connecting arm is connected further extends downward to have a second connection An arm, a second connecting arm extending away from the first radiating arm and extending a parallelogram of the second radiating arm;
  • a first radiation gap of a parallelogram is disposed in the first radiation arm; a plurality of second radiation gaps disposed in parallel and parallel to the quadrilateral are disposed in the second radiation arm; A plurality of sets of spoiler units arranged in a row, each spoiler unit including a ⁇ -shaped gap having two directions reversely arranged.
  • each of the second radiating arms and the adjacent one of the second radiating arms are provided with a zigzag structure.
  • each of the vibrator units is coupled to a corresponding feed piece.
  • a periphery of the PCB board is provided with a circle of microstrip isolation arms.
  • the detection circuit further includes a storage recording device, and the storage recording device is configured to record the monitoring data.
  • the storage recording device is connected to the CPU signal
  • the detecting circuit further includes a heat source detector, wherein the heat source detector is configured to monitor a flammable point, the heat source detector is connected to a CPU signal, and the heat source detector is disposed at a side of the detecting fixed station;
  • the detecting circuit further includes a positioning module, the positioning module is configured to locate a position of the drone, and the positioning module is connected to the CPU signal;
  • the detection circuit further includes a magnetic field strength detector for monitoring the magnetic field strength, the magnetic field strength detector is connected to the CPU signal, and the magnetic field strength detector is disposed on the side of the detection fixed station.
  • a magnet is arranged on the electric pole on the power line, and when the drone needs to land, the magnetic field generator sends out The magnetic field is used to attach the drone to the pole, which solves the problem of drone parking.
  • FIG. 2 is a schematic block diagram of a detection circuit of the present invention
  • FIG. 3 is a schematic structural view of a communication antenna of the present invention.
  • FIG. 4 is a partial enlarged view of FIG. 3;
  • FIG. 5 is a graph of a reflection loss (RetumLoss) of a communication antenna in a frequency band
  • FIG. 6 is a graph of radiation efficiency of a communication antenna in a frequency band
  • FIG. 7 is a graph of the resulting antenna gain in the frequency band of the communication antenna.
  • FIGS. 1 to 7 illustrate:
  • 31-heat source detector 32-magnetic field strength detector; 33- electric field strength detector; 34-camera;
  • P1-PCB board P2-microstrip isolation arm; P3-feeder; P41-trapezoidal main radiating element; P42-rectangular main radiating element; P51-first connecting arm; P52-second connecting arm; P61 - first radiating arm; P62 - second radiating arm; P71 - first radiating notch; P72 - second radiating notch; P8 - rectangular parasitic vibrator arm; P9-T-shaped notch.
  • an intelligent power inspection drone includes a body 2, and a propeller 22 for raising and lowering the body 2 is disposed at the top of the body 2.
  • a motor 23 for driving the rotation of the propeller 22 is disposed in the body 2;
  • a battery chamber 24 and an electronic device chamber 25 are disposed in the body 2;
  • a magnetic field generator 21 is fixed on the side of the body 2, and
  • a detection fixing station 26 is fixed on the other side of the body 2.
  • a detection circuit is disposed in the electronic device cavity 25; the detection circuit includes a CPU, and a camera 34 and an electric field strength detector 33 connected to the CPU signal.
  • the detection circuit further includes a communication module connected to the CPU signal, and the electromagnetic Valve; solenoid valve
  • the battery head 24 is provided with a charging battery, and the electric field intensity detector 33 is disposed at a side of the detecting fixing base 26;
  • the rechargeable battery is used to supply power to the detection circuit, the magnetic field generator 21 and the motor 23;
  • the communication module includes a communication antenna, and the communication antenna is disposed in the electronic device cavity 25.
  • a magnet 11 is arranged on the utility pole 1 on the power line. When the drone needs to land, the magnetic field generator generates a magnetic field, and the drone is attached to the utility pole 1 to solve the problem of the drone being parked. .
  • the communication antenna includes a PCB board P1, the PCB board P1 is provided with a microstrip antenna, and the microstrip antenna includes two upper and lower symmetrical settings.
  • a vibrator unit and two feed pieces P3 disposed in the middle of the two vibrator units; each vibrator unit includes a trapezoidal trapezoidal main radiating element P41 and a rectangular main radiating element P42 connected to the bottom edge of the trapezoidal main radiating element P41;
  • the two oblique sides of the trapezoidal main radiating element P41 extend upwardly with two first connecting arms P51, and each of the first connecting arms P51 is provided with a parallelogram first radiating arm P61 at one end of the trapezoidal main radiating element P41.
  • a side of the radiating arm P61 to which the first connecting arm P51 is connected further extends downwardly with a second connecting arm P52, and the second connecting arm P52 extends away from the end of the first radiating arm P61 to extend a parallelogram of the second radiating arm a first radiation notch P71 having a parallelogram shape is disposed in the first radiating arm P61; and a plurality of second radiating notches P72 disposed in parallel and parallel to each other are disposed in the second radiating arm P62; the rectangular main radiating element P There are a plurality of sets of spoiler units arranged in series, each of which includes a T-shaped notch P9 having two opposite directions.
  • the T-shaped notch P9 effectively increases the current length, so that the gain also increases, and does not excessively destroy the standing wave ratio. Designing an excellent antenna to improve communication performance will have a better effect on the intelligent experience.
  • Figure 5 there is a frequency band of about 910MHz for the communication band of the main intelligent device;
  • Figure 5 is the communication antenna of the present invention.
  • the communication antenna of the present embodiment was tested, and the results showed the reflection loss obtained by the antenna structure of the present embodiment at different frequencies. As shown in FIG.
  • the antenna structure of the present embodiment exhibits a reflection loss in a very high frequency band, for example, a frequency band of 902 MHz to 928 MHz suitable for a radio frequency identification tag, and the antenna structure of the embodiment can be displayed.
  • High frequency band Ultrar a-HighFrequency, UHF operation in the frequency band including 902 MHz to 928 MHz, the reflection loss of the antenna structure of this embodiment is less than -10 dB.
  • the reflection loss values obtained by the communication antenna of this embodiment at two specific frequencies of 902 MHz and 928 MHz are about -10.386 dB and -12.488 dB, respectively. Please refer to FIG.
  • FIG. 6 is a graph of radiation efficiency obtained by the communication antenna of the present invention at different frequencies.
  • the antenna structure of this embodiment was tested, and the results showed the radiation efficiency obtained by the antenna structure of the present embodiment at different frequencies.
  • the radiation efficiency of the antenna structure of this embodiment is about 60 % on average in a frequency band including 902 MHz to 928 MHz.
  • FIG. 7 is a graph of antenna gain antenna gain obtained by the communication antenna of the present invention at different frequencies.
  • the antenna structure of this embodiment was tested, and the results showed the antenna gain obtained by the antenna structure of the present embodiment at different frequencies.
  • the maximum gain obtained by the antenna structure of this embodiment can reach 4.4 dBi.
  • the communication antenna is a non-size required antenna, as long as the above requirements are met in the manner of the holes and holes provided in the bending direction; but if better stable performance is required, the antenna
  • the specific dimensions can be optimized as follows: PCB board size is not limited, the width and vertical height of each feeder sheet are: 12mm and 3.5mm respectively; the long base of the trapezoidal main radiating element is 28mm, and the short top side is: 9.5mm , height: 3.6mm; the horizontal length of the rectangular main radiating element is 28mm, the height is: 5mm; the vertical length of the first connecting arm is: 10mm, the line width is: 1.8mm; the short side of the first radiating arm is long It is 5.8mm, the length of the long side is: 15m m, the angle between the acute angle of the short side and the long side is: 70 degrees; the length of the short side of the second radiating arm is 5.8mm, and the length of the long side is: 9.5mm,
  • the acute angle between the short side and the long side is: 70 degrees; the line width of the second connecting arm is not more than 1 mm, and the side length is not more than 2 mm; the short side of the first radiation gap is 3.0 mm, and the length of the long side is: 9.5mm, the acute angle between the short side and the long side is: 70 degrees, the short side of the second radiating notch is 0.6mm, the length of the long side is 3.5mm, and the angle between the short side and the long side is: 70 degree.
  • the horizontal distance between two adjacent second radiation notches is: 0.5 mm; the line width of the T-shaped notch is: 0.3 mm, the length of the cross bar is 1.7 mm, and the height of the longitudinal bar is: 1.8 mm; two adjacent The distance between the longitudinal bars of the T-notch is: 0.9 mm.
  • An intelligent power inspection drone further includes a rectangular parasitic oscillator arm P8 near the top edge of the trapezoidal main radiating element P41. Can effectively increase the gain and enhance stability.
  • the number of the second radiation notches P72 on each of the second radiation arms P62 is four.
  • the number of second radiation gaps P72 can effectively increase the current length, so that The gain is also increased, and the standing wave ratio is not excessively destroyed.
  • each of the second radiating arm P62 and the adjacent one of the second radiating arms P62 are provided with a zigzag structure.
  • a ring of microstrip isolation arms P2 is provided on the periphery of the PCB P1 to increase the isolation.
  • the detecting circuit further includes a storage recording device, wherein the storage recording device is configured to record monitoring data, and the storage recording device is connected to the CPU signal;
  • An intelligent power inspection drone according to the embodiment, the detection circuit further includes a heat source detector 31, wherein the heat source detector 31 is configured to monitor a flammable point, and the heat source detector 31 is connected to a CPU signal.
  • the heat source detector 31 is disposed on the side of the detecting fixed table 26.
  • the detection circuit further includes a positioning module, the positioning module is configured to locate the position of the drone, and the positioning module is connected to the CPU signal.
  • the detection circuit further includes a magnetic field strength detector
  • the magnetic field strength detector 32 is configured to monitor the magnetic field strength.
  • the magnetic field strength detector 32 is connected to the CPU signal, and the magnetic field strength detector 32 is disposed on the side of the detecting fixed station 26.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Remote Sensing (AREA)
  • Arrangements For Transmission Of Measured Signals (AREA)

Abstract

一种智能电力巡检无人机,包括机体(2),所述机体(2)顶部设有用于使机体(2)上升和下降的螺旋桨(22),机体(2)内设有用于驱动螺旋桨(22)旋转的电机(23);机体(2)内设有电池腔(24)和电子设备腔(25);机体(2)一侧固定有磁场产生器(21),机体(2)另一侧固定有检测固定台(26);所述电子设备腔(25)内设有检测电路;所述检测电路包括有CPU、以及与CPU信号连接的摄像头(34)和电场强度探测器(33),所述电池腔(24)内设有充电电池,所述充电电池用于给检测电路、磁场产生器(21)及电机(23)供电;通信模块包括有通信天线,所述通信天线设于电子设备腔(25)内;在电力线路上的电线杆(1)上设有磁铁(11),当无人机需要降落的时候,磁场产生器(21)发生磁场,将无人机粘附在电线杆(1)上,解决了无人机停放的问题。

Description

发明名称:智能电力巡检无人机
技术领域
[0001] 本发明涉及一种智能电力巡检无人机。
背景技术
[0002] 目前, 无人驾驶飞机简称"无人机", 英文缩写为 "UAV", 是利用无线电遥控设 备和自备的程序控制装置操纵的不载人飞机。 无人机实际上是无人驾驶飞行器 的统称。 利用无人机进行输电的各种电力设备检査, 以便于电力监管部门发现 问题并及吋维护, 保证输电网络的正常运行。 无人机检査方式具有高效、 快捷 、 可靠、 成本低、 不受地域影响的优点, 但现有技术中的无人机很多是天线内 置的, 这样无人机在空中移动的吋候, 其通信质量会有严重的影响, 另外如果 需要无人机的通信质量具有较好的性能, 就需要对天线进行改进, 使得天线的 电气性能较优, 例如回波损耗、 增益、 频率范围等, 从而获得高质量的通信信 号, 从而达到无人机对线路检测的精度和准确度;
[0003] 但是无人机的降落和放置是另外一个大问题, 怎么解决其放置方式是新的技术 问题。
技术问题
问题的解决方案
技术解决方案
[0004] 本发明的目的在于克服以上所述的缺点, 提供一种智能电力巡检无人机。
[0005] 为实现上述目的, 本发明的具体方案如下: 一种智能电力巡检无人机, 包括机 体, 所述机体顶部设有用于使机体上升和下降的螺旋桨, 机体内设有用于驱动 螺旋桨旋转的电机; 机体内设有电池腔和电子设备腔; 机体一侧固定有磁场产 生器, 机体另一侧固定有检测固定台; 所述电子设备腔内设有检测电路; 所述 检测电路包括有 CPU、 以及与 CPU信号连接的摄像头和电场强度探测器, 检测电 路还包括有与 CPU信号连接的通信模块、 电磁阀; 电磁阀用于控制磁场产生器的 幵通; 所述摄像头设检测固定台下方, 所述电场强度探测器设于检测固定台一 侧; 所述电池腔内设有充电电池, 所述充电电池用于给检测电路、 磁场产生器 及电机供电; 通信模块包括有通信天线, 所述通信天线设于电子设备腔内。
[0006] 其中, 所述通信天线包括有 PCB板, 所述 PCB板上设有微带天线, 所述微带天 线包括有两个上下对称设置的振子单元以及设于两个振子单元中间的两个馈电 片; 每个振子单元包括有梯形的梯形主辐射单元以及与梯形主辐射单元底边相 连的矩形主辐射单元; 从梯形主辐射单元的两个斜边分别向上延伸出有两个第 一连接臂, 每个第一连接臂远离梯形主辐射单元的一端设有平行四边形的第一 辐射臂, 第一辐射臂的中连接有第一连接臂的一边还向下延伸出有第二连接臂 , 第二连接臂远离第一辐射臂的一端延伸出有平行四边形的第二辐射臂;
[0007] 第一辐射臂内设有平行四边形的第一辐射缺口; 第二辐射臂内设有多个平行设 置的、 且为平行四边形的第二辐射缺口; 所述矩形主辐射单元上设有多组排列 设置的扰流单元, 每个扰流单元包括有两个方向反向设置的 τ形缺口。
[0008] 其中, 还包括有靠近梯形主辐射单元顶边的矩形寄生振子臂。
[0009] 其中, 每个第二辐射臂上的第二辐射缺口的数量为四个。
[0010] 其中, 每个第二辐射臂与相邻另外一个第二辐射臂的边上均设有锯齿状结构。
[0011] 其中, 其中, 每个振子单元与相应馈电片馈电耦合连接。
[0012] 其中, PCB板的外围上设有一圈微带隔离臂。
[0013] 其中, 检测电路还包括有存储记录装置, 所述存储记录装置用于记录监测数据
, 所述存储记录装置与 CPU信号连接;
[0014] 检测电路还包括有热源探测器, 所述热源探测器用于监测易燃点, 所述热源探 测器与 CPU信号连接, 热源探测器设于检测固定台一侧;
[0015] 检测电路还包括有定位模块, 所述定位模块用于定位无人机的位置, 所述定位 模块与 CPU信号连接;
[0016] 检测电路还包括有磁场强度探测器, 所述磁场强度探测器用于监测磁场强度, 所述磁场强度探测器与 CPU信号连接, 磁场强度探测器设于检测固定台一侧。 发明的有益效果
有益效果
[0017] 在电力线路上的电线杆上设有磁铁, 当无人机需要降落的吋候, 磁场发生器发 生磁场, 便将无人机粘附在电线杆上, 解决了无人机停放的问题。
对附图的简要说明
附图说明
[0018] 图 1是本发明的结构示意图;
[0019] 图 2是本发明的检测电路的原理框图;
[0020] 图 3是本发明的通信天线的结构示意图;
[0021] 图 4是图 3的的局部放大图;
[0022] 图 5是通信天线在频段内反射损耗 (RetumLoss)的曲线图;
[0023] 图 6是通信天线在频段内的辐射效率 (radiationefficiency)的曲线图;
[0024] 图 7是通信天线在频段内的所得到的天线增益 (antennagain)的曲线图;
[0025] 图 1至图 7中的附图标记说明:
[0026] 1-电线杆; 11-磁铁;
[0027] 2-机体; 21-磁场产生器; 22-螺旋桨; 23-电机; 24-电池腔; 25-电子设备腔; 2 6-检测固定台;
[0028] 31-热源探测器; 32-磁场强度探测器; 33-电场强度探测器; 34-摄像头;
[0029] P1-PCB板; P2-微带隔离臂; P3-馈电片; P41-梯形主辐射单元; P42-矩形主辐 射单元; P51-第一连接臂; P52-第二连接臂; P61-第一辐射臂; P62-第二辐射臂 ; P71-第一辐射缺口; P72-第二辐射缺口; P8-矩形寄生振子臂; P9-T形缺口。
本发明的实施方式
[0030] 下面结合附图和具体实施例对本发明作进一步详细的说明, 并不是把本发明的 实施范围局限于此。
[0031] 如图 1至图 7所示, 本实施例所述的一种智能电力巡检无人机, 包括机体 2, 所 述机体 2顶部设有用于使机体 2上升和下降的螺旋桨 22, 机体 2内设有用于驱动螺 旋桨 22旋转的电机 23; 机体 2内设有电池腔 24和电子设备腔 25; 机体 2—侧固定 有磁场产生器 21, 机体 2另一侧固定有检测固定台 26; 所述电子设备腔 25内设有 检测电路; 所述检测电路包括有 CPU、 以及与 CPU信号连接的摄像头 34和电场强 度探测器 33, 检测电路还包括有与 CPU信号连接的通信模块、 电磁阀; 电磁阀用 于控制磁场产生器 21的幵通; 所述摄像头 34设检测固定台 26下方, 所述电场强 度探测器 33设于检测固定台 26—侧; 所述电池腔 24内设有充电电池, 所述充电 电池用于给检测电路、 磁场产生器 21及电机 23供电; 通信模块包括有通信天线 , 所述通信天线设于电子设备腔 25内。 在电力线路上的电线杆 1上设有磁铁 11, 当无人机需要降落的吋候, 磁场发生器发生磁场, 便将无人机粘附在电线杆 1上 , 解决了无人机停放的问题。
本实施例所述的一种智能电力巡检无人机, 所述通信天线包括有 PCB板 Pl, 所 述 PCB板 P1上设有微带天线, 所述微带天线包括有两个上下对称设置的振子单元 以及设于两个振子单元中间的两个馈电片 P3; 每个振子单元包括有梯形的梯形 主辐射单元 P41以及与梯形主辐射单元 P41底边相连的矩形主辐射单元 P42; 从梯 形主辐射单元 P41的两个斜边分别向上延伸出有两个第一连接臂 P51, 每个第一 连接臂 P51远离梯形主辐射单元 P41的一端设有平行四边形的第一辐射臂 P61, 第 一辐射臂 P61的中连接有第一连接臂 P51的一边还向下延伸出有第二连接臂 P52, 第二连接臂 P52远离第一辐射臂 P61的一端延伸出有平行四边形的第二辐射臂 P62 ; 第一辐射臂 P61内设有平行四边形的第一辐射缺口 P71 ; 第二辐射臂 P62内设有 多个平行设置的、 且为平行四边形的第二辐射缺口 P72; 所述矩形主辐射单元 P4 2上设有多组排列设置的扰流单元, 每个扰流单元包括有两个方向反向设置的 T 形缺口 P9。 T形缺口 P9有效增加电流长度, 使得增益也随之升高, 且不会过多的 破坏驻波比。 设计优异的天线, 提高通信性能, 对智能化的体验会有更好的效 果, 请参阅图 5所示, 有其在 910MHz左右的频段为主要智能设备的通信频段; 图 5为本发明通信天线在不同频率下所得到的反射损耗 Return Loss的曲线图。 反 射损耗显示前进波功率与反射波功率的比值, 反射损耗愈低表示天线反射愈小 , 天线辐射功率愈大。 对于本实施例的通信天线来进行测试, 而结果显示出本 实施例的天线结构在不同频率下所得到的反射损耗。 如图 5所示, 本实施例的天 线结构在特高频段, 例如适用于无线射频辨识标签的 902MHz至 928MHz的频带 所表现的反射损耗符合一定的需求, 显示本实施例的天线结构可在特高频段 Ultr a-HighFrequency, UHF操作。 详细而言, 在包含 902MHz至 928MHz的频段内, 本实施例的天线结构的反射损耗皆小于 -10dB。 如图 5中的标记点 Pl、 P2所示, 本实施例的通信天线在 902MHz及 928MHz两个特定频率下所得到的反射损耗值 , 分别约是 -10.386dB及 -12.488dB。 请参阅图 6所示, 为本发明通信天线在不同 频率下所得到的辐射效率 radiation efficiency的曲线图。 对于本实施例的天线结 构来进行测试, 而结果显示出本实施例的天线结构在不同频率下所得到的辐射 效率。 如图 6所示, 在包含 902MHz至 928MHz的频段内, 本实施例的天线结构 的辐射效率平均约为 60%。 请参阅图 7所示, 图 7为本发明通信天线在不同频率 下所得到的天线增益 antenna gain的曲线图。 对于本实施例的天线结构来进行测 试, 而结果显示出本实施例的天线结构在不同频率下所得到的天线增益。 如图 7 所示, 在包含 902MHz至 928MHz的频段内, 本实施例的天线结构所得到的最大 增益可达 4.4dBi。
[0033] 以图 4为参考方向, 本通信天线为非尺寸要求天线, 只要在弯折方向上、 设置 的孔、 洞的方式上达到上述要求; 但如果需要更佳稳定的性能吋, 本天线的具 体尺寸可以优化为: PCB板尺寸不限, 每个馈电片的横宽和竖高分别为: 12mm 和 3.5mm; 梯形主辐射单元的长底边为 28mm, 短顶边为: 9.5mm, 高为: 3.6m m; 矩形主辐射单元的横向长度为 28mm, 高为: 5mm; 第一连接臂的竖边长为 : 10mm, 线宽为: 1.8mm; 第一辐射臂的短边边长为 5.8mm, 长边边长为: 15m m, 短边与长边的锐角夹角为: 70度; 第二辐射臂的短边边长为 5.8mm, 长边边 长为: 9.5mm,
短边与长边的锐角夹角为: 70度; 第二连接臂的线宽不超过 lmm, 边长不超过 2 mm; 第一辐射缺口短边边长为 3.0mm, 长边边长为: 9.5mm, 短边与长边的锐 角夹角为: 70度, 第二辐射缺口短边边长为 0.6mm, 长边边长为: 3.5mm, 短边 与长边的锐角夹角为: 70度。 两个相邻第二辐射缺口之间的水平距离为: 0.5mm ; T形缺口的线宽为: 0.3mm, 横杆的长度 1.7mm, 和纵杆的高度为: 1.8mm ; 两个相邻的 T形缺口的纵杆之间距离为: 0.9mm。
[0034] 本实施例所述的一种智能电力巡检无人机, 还包括有靠近梯形主辐射单元 P41 顶边的矩形寄生振子臂 P8。 可以有效提高增益, 增强稳定性。
[0035] 本实施例所述的一种智能电力巡检无人机, 每个第二辐射臂 P62上的第二辐射 缺口 P72的数量为四个。 该数量的第二辐射缺口 P72可以有效增加电流长度, 使 得增益也随之升高, 且不会过多的破坏驻波比。
[0036] 本实施例所述的一种智能电力巡检无人机, 每个第二辐射臂 P62与相邻另外一 个第二辐射臂 P62的边上均设有锯齿状结构。
[0037] 本实施例所述的一种智能电力巡检无人机, 其中, 每个振子单元与相应馈电片
P3馈电耦合连接。 降低互耦。
[0038] 本实施例所述的一种智能电力巡检无人机, PCB板 P1的外围上设有一圈微带隔 离臂 P2增加隔离度。
[0039] 本实施例所述的一种智能电力巡检无人机, 检测电路还包括有存储记录装置, 所述存储记录装置用于记录监测数据, 所述存储记录装置与 CPU信号连接; [0040] 本实施例所述的一种智能电力巡检无人机, 检测电路还包括有热源探测器 31, 所述热源探测器 31用于监测易燃点, 所述热源探测器 31与 CPU信号连接, 热源探 测器 31设于检测固定台 26—侧。
[0041] 本实施例所述的一种智能电力巡检无人机, 检测电路还包括有定位模块, 所述 定位模块用于定位无人机的位置, 所述定位模块与 CPU信号连接。
[0042] 本实施例所述的一种智能电力巡检无人机, 检测电路还包括有磁场强度探测器
32, 所述磁场强度探测器 32用于监测磁场强度, 所述磁场强度探测器 32与 CPU信 号连接, 磁场强度探测器 32设于检测固定台 26—侧。
[0043] 以上所述仅是本发明的一个较佳实施例, 故凡依本发明专利申请范围所述的构 造、 特征及原理所做的等效变化或修饰, 包含在本发明专利申请的保护范围内

Claims

权利要求书
[权利要求 1] 一种智能电力巡检无人机, 其特征在于: 包括机体 (2) , 所述机体
(2) 顶部设有用于使机体 (2) 上升和下降的螺旋桨 (22) , 机体 ( 2) 内设有用于驱动螺旋桨 (22) 旋转的电机 (23) ; 机体 (2) 内设 有电池腔 (24) 和电子设备腔 (25) ; 机体 (2) —侧固定有磁场产 生器 (21 ) , 机体 (2) 另一侧固定有检测固定台 (26) ; 所述电子 设备腔 (25) 内设有检测电路; 所述检测电路包括有 CPU、 以及与 C PU信号连接的摄像头 (34) 和电场强度探测器 (33) , 检测电路还 包括有与 CPU信号连接的通信模块、 电磁阀; 电磁阀用于控制磁场产 生器 (21 ) 的幵通; 所述摄像头 (34) 设检测固定台 (26) 下方, 所 述电场强度探测器 (33) 设于检测固定台 (26) —侧; 所述电池腔 ( 24) 内设有充电电池, 所述充电电池用于给检测电路、 磁场产生器 ( 21 ) 及电机 (23) 供电; 通信模块包括有通信天线, 所述通信天线设 于电子设备腔 (25) 内; 检测电路还包括有存储记录装置, 所述存储 记录装置用于记录监测数据, 所述存储记录装置与 CPU信号连接; 检 测电路还包括有热源探测器 (31 ) , 所述热源探测器 (31 ) 用于监测 易燃点, 所述热源探测器 (31 ) 与 CPU信号连接, 热源探测器 (31 ) 设于检测固定台 (26) —侧; 检测电路还包括有定位模块, 所述定位 模块用于定位无人机的位置, 所述定位模块与 CPU信号连接; 所述通 信天线包括有 PCB板 (P1 ) , 所述 PCB板 (P1 ) 上设有微带天线, 所 述微带天线包括有两个上下对称设置的振子单元以及设于两个振子单 元中间的两个馈电片 (P3) ; 每个振子单元包括有梯形的梯形主辐射 单元 (P41 ) 以及与梯形主辐射单元 (P41 ) 底边相连的矩形主辐射 单元 (P42) ; 从梯形主辐射单元 (P41 ) 的两个斜边分别向上延伸 出有两个第一连接臂 (P51 ) , 每个第一连接臂 (P51 ) 远离梯形主 辐射单元 (P41 ) 的一端设有平行四边形的第一辐射臂 (P61 ) , 第 一辐射臂 (P61 ) 的中连接有第一连接臂 (P51 ) 的一边还向下延伸 出有第二连接臂 (P52) , 第二连接臂 (P52) 远离第一辐射臂 (P61 ) 的一端延伸出有平行四边形的第二辐射臂 (P62) ; 第一辐射臂 ( P61) 内设有平行四边形的第一辐射缺口 (P71) ; 第二辐射臂 (P62 ) 内设有多个平行设置的、 且为平行四边形的第二辐射缺口 (P72) ; 所述矩形主辐射单元 (P42) 上设有多组排列设置的扰流单元, 每 个扰流单元包括有两个方向反向设置的 T形缺口 (P9) 。
根据权利要求 1所述的一种智能电力巡检无人机, 其特征在于: 还包 括有靠近梯形主辐射单元 (P41) 顶边的矩形寄生振子臂 (P8) 。 根据权利要求 1所述的一种智能电力巡检无人机, 其特征在于: 每个 第二辐射臂 (P62) 上的第二辐射缺口 (P72) 的数量为四个。
根据权利要求 1所述的一种智能电力巡检无人机, 其特征在于: 每个 第二辐射臂 (P62) 与相邻另外一个第二辐射臂 (P62) 的边上均设 有锯齿状结构。
根据权利要求 1所述的一种智能电力巡检无人机, 其特征在于: 每个 振子单元与相应馈电片 (P3) 馈电耦合连接。
根据权利要求 1所述的一种智能电力巡检无人机, 其特征在于: PCB 板 (P1) 的外围上设有一圈微带隔离臂 (P2) 。
PCT/CN2017/071224 2016-08-25 2017-01-16 智能电力巡检无人机 WO2018036093A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610722688.3A CN106081080A (zh) 2016-08-25 2016-08-25 智能电力巡检无人机
CN2016107226883 2016-08-25

Publications (1)

Publication Number Publication Date
WO2018036093A1 true WO2018036093A1 (zh) 2018-03-01

Family

ID=57225201

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/071224 WO2018036093A1 (zh) 2016-08-25 2017-01-16 智能电力巡检无人机

Country Status (2)

Country Link
CN (1) CN106081080A (zh)
WO (1) WO2018036093A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109319107A (zh) * 2018-12-05 2019-02-12 江苏齐天铁塔制造有限公司 超高压输电线路用铁塔智能巡检装置
CN115765897A (zh) * 2022-11-14 2023-03-07 广西电网有限责任公司电力科学研究院 一种电力巡检机器人通信模块的检测方法

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106143915A (zh) * 2016-08-25 2016-11-23 欧志洪 设有磁场强度探测器的智能电力巡检无人机
CN106081080A (zh) * 2016-08-25 2016-11-09 凌企芳 智能电力巡检无人机
CN107813935A (zh) * 2017-10-21 2018-03-20 宋云飞 一种无人机式的路灯太阳能板清洗装置
CN110428022A (zh) * 2018-04-28 2019-11-08 上海三思电子工程有限公司 智慧路灯调试方法及所应用的设备、系统和存储介质

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004113163A2 (en) * 2003-06-21 2004-12-29 Chang Yeal Lee Micro aerial vehicle
CN105329440A (zh) * 2015-11-26 2016-02-17 李万 太阳能电力线路检测无人机
CN105736898A (zh) * 2016-03-02 2016-07-06 胡洁维 可探测热源温度的高压电缆检测机器人
CN105882950A (zh) * 2016-04-15 2016-08-24 彭曙光 电磁强度探测电力电网巡检无人机
CN106081080A (zh) * 2016-08-25 2016-11-09 凌企芳 智能电力巡检无人机
CN106143915A (zh) * 2016-08-25 2016-11-23 欧志洪 设有磁场强度探测器的智能电力巡检无人机
CN106218889A (zh) * 2016-08-25 2016-12-14 欧志洪 可定位智能电力巡检无人机
CN106275399A (zh) * 2016-08-25 2017-01-04 欧志洪 一种设有存储装置的智能电力巡检无人机

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004113163A2 (en) * 2003-06-21 2004-12-29 Chang Yeal Lee Micro aerial vehicle
CN105329440A (zh) * 2015-11-26 2016-02-17 李万 太阳能电力线路检测无人机
CN105736898A (zh) * 2016-03-02 2016-07-06 胡洁维 可探测热源温度的高压电缆检测机器人
CN105882950A (zh) * 2016-04-15 2016-08-24 彭曙光 电磁强度探测电力电网巡检无人机
CN106081080A (zh) * 2016-08-25 2016-11-09 凌企芳 智能电力巡检无人机
CN106143915A (zh) * 2016-08-25 2016-11-23 欧志洪 设有磁场强度探测器的智能电力巡检无人机
CN106218889A (zh) * 2016-08-25 2016-12-14 欧志洪 可定位智能电力巡检无人机
CN106275399A (zh) * 2016-08-25 2017-01-04 欧志洪 一种设有存储装置的智能电力巡检无人机

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109319107A (zh) * 2018-12-05 2019-02-12 江苏齐天铁塔制造有限公司 超高压输电线路用铁塔智能巡检装置
CN115765897A (zh) * 2022-11-14 2023-03-07 广西电网有限责任公司电力科学研究院 一种电力巡检机器人通信模块的检测方法
CN115765897B (zh) * 2022-11-14 2024-06-04 广西电网有限责任公司电力科学研究院 一种电力巡检机器人通信模块的检测方法

Also Published As

Publication number Publication date
CN106081080A (zh) 2016-11-09

Similar Documents

Publication Publication Date Title
WO2018036093A1 (zh) 智能电力巡检无人机
US10673134B2 (en) Mechanically steered and horizontally polarized antenna for aerial vehicles, and associated systems and methods
EP3248244B1 (en) Dielectric resonator antenna arrays
CN101183744B (zh) 一种带有不完整带隙结构的贴片天线
CN203850423U (zh) 一种宽频双极化振子
CN110622356B (zh) 一种天线
AU2019201433B2 (en) Electromagnetic reception using metamaterial
CN105292470A (zh) 一种电力线路检测无人机
WO2018036095A1 (zh) 设有磁场强度探测器的智能电力巡检无人机
EP3432417B1 (en) Crossed dipole with enhanced gain at low elevation
CN106218889A (zh) 可定位智能电力巡检无人机
CN105329440A (zh) 太阳能电力线路检测无人机
CN107567667A (zh) 具有用于辐射图案改进的寄生元件的天线系统和天线模块
CN106275399A (zh) 一种设有存储装置的智能电力巡检无人机
JP2000134022A (ja) 航空機用アンテナ・システム及びその使用方法
CN105882950A (zh) 电磁强度探测电力电网巡检无人机
CN106680896A (zh) 一种无人机高空气象探测系统
CN204103048U (zh) 双频带双极性天线
CN105790439A (zh) 实时记录电力电网巡检无人机
CN202405420U (zh) 小型化圆极化天线
WO2020134029A1 (zh) 一种天线及无人飞行器
CN105253302A (zh) 一种设有存储装置的电力线路检测无人机
US7148856B2 (en) Electronic device including tetrahedral antenna and associated methods
CN115220463A (zh) 一种编队无人机受定位干扰的处理方法及系统
CN210526829U (zh) 一种无人机

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17842519

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17842519

Country of ref document: EP

Kind code of ref document: A1