WO2024120453A1 - 线控转向系统、扭矩输出方法、车辆及存储介质 - Google Patents

线控转向系统、扭矩输出方法、车辆及存储介质 Download PDF

Info

Publication number
WO2024120453A1
WO2024120453A1 PCT/CN2023/136892 CN2023136892W WO2024120453A1 WO 2024120453 A1 WO2024120453 A1 WO 2024120453A1 CN 2023136892 W CN2023136892 W CN 2023136892W WO 2024120453 A1 WO2024120453 A1 WO 2024120453A1
Authority
WO
WIPO (PCT)
Prior art keywords
steering
torque
component
information
wire
Prior art date
Application number
PCT/CN2023/136892
Other languages
English (en)
French (fr)
Inventor
周大伟
费宇枫
李�杰
朱庆帅
李文进
刘杰
汪洋
姜智宇
黄刚
Original Assignee
上海集度汽车有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN202211567214.8A external-priority patent/CN118144862A/zh
Priority claimed from CN202211566924.9A external-priority patent/CN118144871A/zh
Priority claimed from CN202310604770.6A external-priority patent/CN116409375B/zh
Application filed by 上海集度汽车有限公司 filed Critical 上海集度汽车有限公司
Publication of WO2024120453A1 publication Critical patent/WO2024120453A1/zh

Links

Definitions

  • the present application relates to the technical field of wire-controlled steering, and in particular to a wire-controlled steering system, a torque output method, a vehicle and a storage medium.
  • the advanced nature of the steer-by-wire system cannot fully guarantee the stability and safety of the steering system.
  • the steer-by-wire system fails, it may cause very serious driving accidents, such as the driver being completely unable to control the steering of the vehicle.
  • the present application proposes a steer-by-wire system, a torque output method, a vehicle and a storage medium, which can improve the stability and safety of the steer-by-wire system.
  • the present application proposes a wire-controlled steering system, which includes N first steering components for outputting a first torque, and at least one second steering component for outputting a second torque, where N is an integer greater than 1; the first steering component is used to receive first information sent by other first steering components, and receive second information sent by a target second steering component; determine the status of other first steering components based on the first information and the second information; determine a first torque distribution method based on the status of other first steering components and its own status; output the first torque based on the first torque distribution method and the total first torque required by the system; the target second steering component is a second steering component that works in cooperation with the other first steering components; the target second steering component is used to generate second information containing the status of other first steering components by detecting the status of other first steering components, and send the generated second information to the first steering component.
  • a second aspect of the present application proposes a torque output method, which is applied to a wire-controlled steering system.
  • the wire-controlled steering system includes N first steering components for outputting a first torque, and at least one second steering component for outputting a second torque, where N is an integer greater than 1, and the method includes: a first steering component receives first information sent by other first steering components; a second steering component cooperating with other first steering components generates second information including the status of other first steering components by detecting the status of other first steering components, and sends the generated second information to the first steering component; the first steering component determines the status of other first steering components based on the first information and the second information; determines a first torque distribution method based on the status of other first steering components and its own status; and outputs a first torque based on the first torque distribution method and the total first torque required by the system.
  • a third aspect of the present application proposes another torque output method, which is applied to any first steering component of a wire-controlled steering system.
  • the wire-controlled steering system includes N first steering components for outputting a first torque, and at least one second steering component for outputting a second torque, where N is an integer greater than 1.
  • the method includes: receiving first information sent by other first steering components, and receiving second information sent by a second steering component that cooperates with the first steering component; the second information is generated by the second steering component that cooperates with the first steering component by detecting the status of the other first steering components, and the second information includes the status of the other first steering components; determining the status of the other first steering components based on the first information and the second information; determining a first torque distribution method based on the status of the other first steering components and their own status; and outputting the first torque based on the first torque distribution method and the total first torque required by the system.
  • a fourth aspect of the present application proposes a vehicle, which includes the above-mentioned steer-by-wire system; or, the vehicle is configured to implement the above-mentioned torque output method.
  • the present application proposes a road feel feedback torque control system, which includes a sensing unit for obtaining a torque signal when the steering rack moves and causes the torsion bar to twist; a feedback torque calculation module for obtaining a basic torque, for obtaining a compensation torque based on the torque signal, and for obtaining a target feedback torque based on the basic torque and the compensation torque.
  • a road feel feedback torque control method which includes determining a compensation torque according to the torsion angle of the torsion bar driven to twist during the movement of the steering rack when a steering wheel connected to the steering rack in the vehicle moves; determining a basic torque; and determining a target feedback torque based on the compensation torque and the basic torque.
  • a road feel feedback torque control device which includes a first determination module, which is used to determine the compensation torque according to the torsion angle of the torsion bar driven to twist during the movement of the steering rack when the steering wheel connected to the steering rack in the vehicle moves; a second determination module, which is used to determine the basic torque; and a correction module, which is used to determine the target feedback torque based on the compensation torque and the basic torque.
  • a sensing unit which includes an input shaft meshing with a rack; the input shaft is connected to an output shaft through a torsion bar; wherein the output shaft is an inertial slider connected to the housing, and the input shaft is connected to a bearing; the torsion bar is connected to a torsion bar angle sensor, which is used to collect a torsion signal of the torsion bar when the rack moves, so as to determine a target feedback torque based on the torsion signal.
  • a ninth aspect of the present application proposes a vehicle, comprising: a sensor unit as described in the ninth aspect above.
  • a wire-controlled steering device including a steering column; an upper steering control module, which is connected to the steering column and is enabled in a first working state to transmit a tactile feedback torque to the steering column; and a mechanical damping component, at least a portion of which is connected to the steering column, the mechanical damping component is disabled in the first working state, and is enabled in a second working state in which at least a portion of the upper steering control module is disabled, so as to transmit friction resistance to the steering column instead of the tactile feedback torque.
  • a method for tactile feedback of a wire-controlled steering device including, in a first working state, enabling an upper steering control module, disabling a mechanical damping component, and transmitting a tactile feedback torque to a steering column through the upper steering control module; and when at least a portion of the upper steering control module is disabled, enabling the mechanical damping component to enter a second working state, and transmitting frictional resistance to the steering column through the mechanical damping component instead of the tactile feedback torque.
  • the twelfth aspect of the present application proposes a vehicle, comprising: a body and a power supply; a memory and a processor are installed on the body; the memory is used to store one or more computer instructions; the processor is used to execute one or more computer instructions to execute the steps of the methods described in the sixth and eleventh aspects above.
  • a thirteenth aspect of the present application proposes a storage medium on which a computer program is stored.
  • the computer program When the computer program is executed by a processor, it at least assists in implementing the methods described in the second, third, sixth and eleventh aspects above.
  • the present application proposes a computer program product which, when executed, can implement the steps of the methods described in the second, third, sixth and eleventh aspects above.
  • the wire-controlled steering system proposed in the embodiment of the present application not only realizes the redundant backup of the steering components, but also the steering components in the system interactively detect component failures and health status, and each component independently decides to adjust the output torque, which simplifies the system structure to the greatest extent.
  • each component in the wire-controlled steering system adopts a cross-diagnosis mechanism to detect component failures and health status, which can ensure the accuracy of the decentralized multi-component system in detecting the failure and health status of a single component.
  • FIG1 is a schematic structural diagram of a steer-by-wire system provided in an embodiment of the present application.
  • FIG. 2 is a schematic structural diagram of another steer-by-wire system provided in an embodiment of the present application.
  • FIG3 is a schematic structural diagram of another steer-by-wire system provided in an embodiment of the present application.
  • FIG. 4 is a schematic diagram of the structure of another steer-by-wire system provided in an embodiment of the present application.
  • FIG5 is a schematic diagram of the specific internal structure of the steer-by-wire system provided in an embodiment of the present application.
  • FIG6 is a schematic diagram of a processing process in which a first component and a second component interact to determine an output torque distribution ratio between the two components according to an embodiment of the present application.
  • FIG. 7 is a flow chart of a torque output method provided in an embodiment of the present application.
  • FIG8 is a flow chart of another torque output method provided in an embodiment of the present application.
  • FIG. 9 is a schematic structural diagram of a vehicle steer-by-wire system provided in an embodiment of the present application.
  • FIG. 10 a is a schematic diagram of the structure of a road feel feedback torque control system provided in an embodiment of the present application.
  • FIG10 b is a schematic diagram of the mechanical structure of a road feel feedback torque control system provided in an embodiment of the present application.
  • FIG. 11 is a flow chart of a braking control method provided in an embodiment of the present application.
  • FIG. 12 is a schematic diagram of the structure of the sensor unit provided in an embodiment of the present application.
  • FIG. 13 is a schematic diagram of the structure of a vehicle provided in an embodiment of the present application.
  • FIG. 14 is a side view of the steer-by-wire device according to an embodiment of the present application.
  • FIG. 15 is a schematic diagram of the use status of the wire-controlled steering device according to an embodiment of the present application.
  • FIG. 16 is a side view of a steer-by-wire device according to another embodiment of the present application.
  • FIG. 17 is a schematic diagram of a steer-by-wire device in use according to another embodiment of the present application.
  • FIG. 18 is a schematic diagram of the structure of a steer-by-wire system according to an embodiment of the present application.
  • FIG. 19 is a block diagram of a steer-by-wire system according to an embodiment of the present application.
  • FIG. 20 is a flow chart of a tactile feedback method according to an embodiment of the present application.
  • FIG. 21 is a flow chart of a tactile feedback method according to another embodiment of the present application.
  • the embodiments of the present application are applicable to the application scenarios of the steer-by-wire technology, and can be specifically applied to any device equipped with the steer-by-wire technology, such as any type of mobile carrier that adopts the steer-by-wire technology.
  • the mobile carrier includes but is not limited to motor vehicles, aircraft, ships, submersibles, etc.
  • the steer-by-wire system is not restricted by mechanical structure and can realize any steering intention in theory, it is called the most advanced steering system at present and is applied to the driving systems of mobile carriers such as automobiles, airplanes, ships, and submarines.
  • the advancement of the steer-by-wire system does not necessarily guarantee the stability and safety of the system.
  • the electronic components, signal links and computing modules of the steer-by-wire system are more fragile than those of the mechanical steering system, and the probability of failure is higher.
  • the embodiment of the present application proposes a new wire-controlled steering system, and proposes a redundant switching control scheme suitable for the wire-controlled steering system.
  • the wire-controlled steering system and the corresponding redundant switching control scheme proposed in the embodiment of the present application can further improve the stability and safety of the wire-controlled steering system.
  • FIG1 shows a general structural diagram of a wire-controlled steering system.
  • the wire-controlled steering system is generally composed of an upper steering assembly 001 and a lower steering assembly 002, wherein the upper steering assembly 001 is connected or integrated with a steering wheel column 105, and is used to sense the rotation of the steering wheel 101, and to generate a steering signal based on the sensed rotation of the steering wheel 101, and to send the steering signal to the lower steering assembly 002.
  • a hand-feel feedback motor is also provided in the upper steering assembly 001, and the motor is connected to the steering wheel column in a transmission manner, and can output a steering feedback torque to the steering wheel column 105 when the user turns the steering wheel 101, thereby enhancing the user's steering feel.
  • the lower steering assembly 002 includes a steering motor, which is connected to the steering rack 104 of the steering mechanism.
  • the steering motor is driven according to the steering signal to output a steering torque.
  • the steering motor can drive the steering rack 104, and the steering rack 104 can drive the steering mechanism to steer.
  • a steering angle sensor is also provided in the lower steering assembly 002 to sense the steering angle.
  • the steering angle information is also fed back to the upper steering assembly 001.
  • the upper steering assembly 001 combines the steering angle and the steering wheel angle to determine the magnitude of the output steering feedback torque, thereby providing the user with a more realistic steering feel.
  • Fig. 2 is a schematic diagram of the structure of a wire-controlled steering system proposed in an embodiment of the present application.
  • the wire-controlled steering system can be applied to mobile carriers with driving and steering requirements, such as motor vehicles, aircraft, ships, and submersibles, and the specific structure of the wire-controlled steering system, as well as the shape, position, connection relationship and connection method of each part of the structure, can be flexibly adjusted to adapt to the specific structure and spatial arrangement of the mobile carrier.
  • driving and steering requirements such as motor vehicles, aircraft, ships, and submersibles
  • the specific structure of the wire-controlled steering system, as well as the shape, position, connection relationship and connection method of each part of the structure can be flexibly adjusted to adapt to the specific structure and spatial arrangement of the mobile carrier.
  • the steer-by-wire system proposed in the embodiment of the present application includes N first steering components 201 for outputting a first torque, and at least one second steering component 202 for outputting a second torque, where N is an integer greater than 1.
  • the above-mentioned first torque and second torque refer to two different torques output in the wire-controlled steering system, for example, the first torque is the steering feedback torque and the second torque is the steering torque, or the first torque is the steering torque and the second torque is the steering feedback torque.
  • the main function of the wire-controlled steering system is to achieve steering and steering feel feedback functions by outputting the above-mentioned first torque and second torque.
  • the purpose of setting a redundant backup for the wire-controlled steering system is also to enable the wire-controlled steering system to output the above-mentioned first torque and second torque more stably.
  • the embodiment of the present application sets N first steering components for outputting the first torque and at least one second steering component for outputting the second torque in the wire-controlled steering system.
  • the wire-controlled steering system has multiple groups of first steering components to output the first torque, thereby realizing redundant backup output of the first torque.
  • redundant backup output of the second torque can also be realized. That is, the wire-controlled steering system can realize redundant backup output of the first torque, and can realize redundant backup output of the second torque, thereby improving system stability and safety.
  • each first steering component is directly or indirectly communicated with each other
  • each second steering component is directly or indirectly communicated with each other
  • the first steering component and the second steering component are directly or indirectly communicated with each other, so that each first steering component and each second steering component can realize data exchange through direct transmission or transparent transmission.
  • first steering assembly is combined with a second steering assembly to achieve the output of the first torque and the second torque.
  • first steering assembly outputs the first torque according to the action of the second steering assembly matched therewith
  • second steering assembly outputs the second torque according to the action of the first steering assembly matched therewith.
  • the number of the first steering components and the second steering components is the same, and there is a one-to-one correspondence between the first steering components and the second steering components, forming a one-to-one matching relationship.
  • the wire-controlled steering system proposed in the embodiment of the present application includes a first steering component 100 and a first steering component 110 that are electrically connected, and a second steering component 200 and a second steering component 210 that are electrically connected.
  • the first steering component 100 is electrically connected to the second steering component 200, and the first steering component 110 and the second steering component 210 are electrically connected.
  • the first steering assembly 100 and the first steering assembly 110 are respectively used to output a first torque.
  • the first steering assembly 100 and the first steering assembly 110 are upper steering assemblies for outputting a steering feedback torque.
  • the second steering assembly 200 and the second steering assembly 210 are respectively used to output a second torque.
  • the second steering assembly 200 and the second steering assembly 210 are lower steering assemblies for outputting steering torque.
  • the above-mentioned electrical connection is for the purpose of realizing electrical signal transmission between both parties, and can be a physical connection through any type of signal line, or a wireless signal link connection based on any wireless communication method.
  • the first steering assembly 100, the first steering assembly 110, the second steering assembly 200 and the second steering assembly 210 are respectively provided with a sensing device, a control device and a rotating motor, so as to realize motion sensing, control decision and torque output.
  • the first steering assembly 100 and the first steering assembly 110 are mutually redundant backups, and both can sense the angle of the steering column and output steering feedback torque to the steering column. Moreover, the two can realize data exchange through the signal link between them, such as realizing the exchange of sensor signals and control signals.
  • the second steering assembly 200 and the second steering assembly 210 are mutually redundant backups, and both can output steering torque to the steering rack of the steering mechanism and can sense the displacement of the steering rack.
  • the two can realize data exchange through a signal link between the two, such as realizing the exchange of sensor signals and control signals.
  • the first steering component 100 is electrically connected to the second steering component 200 so that the two can exchange data. Specifically, the first steering component 100 can send a steering signal generated based on the sensed steering wheel angle information to the second steering component 200, so that the second steering component 200 can perform a steering action based on the steering signal; the second steering component 200 can send a steering angle information determined based on the sensed displacement of the steering rack to the first steering component 100, so that the first steering component 100 can output a suitable steering feedback torque based on the steering angle information.
  • the first steering component 110 is electrically connected to the second steering component 210 so that the two can exchange data.
  • the first steering component 110 can send a steering signal generated based on the sensed steering wheel angle information to the second steering component 210, so that the second steering component 210 can perform a steering action based on the steering signal;
  • the second steering component 210 can send a steering angle information determined based on the sensed displacement of the steering rack to the first steering component 110, so that the first steering component 110 can output a suitable steering feedback torque based on the steering angle information.
  • the wire-controlled steering system proposed in the embodiment of the present application realizes redundant backup of the steering components, thereby improving system stability and safety.
  • the above-mentioned wire control steering system proposed in the embodiment of the present application adopts a coordinated working mode. That is, under normal circumstances, the first steering assembly 100 and the first steering assembly 110 work synchronously, and the two cooperate to output the first torque required by the system. For example, assume that the first steering assembly 100 and the first steering assembly 110 are used to output steering feedback torque. At a certain moment, the steering feedback torque required by the system is K, then the first steering assembly 100 outputs a steering feedback torque of K/2, and at the same time, the second steering assembly 110 outputs a steering feedback torque of K/2, and the two cooperate to achieve the output of the steering feedback torque K.
  • the second steering assembly 200 and the second steering assembly 210 work synchronously, and the two cooperate to output the second torque required by the system.
  • the second steering assembly 200 and the second steering assembly 210 are used to output steering torque.
  • the steering torque required by the system is N
  • the second steering assembly 200 outputs a steering torque of N/2
  • the second steering assembly 210 outputs a steering torque of N/2, and the two cooperate to achieve the output of the steering torque N.
  • components that cooperate with each other to output torque have a cooperation relationship. Under the above cooperation relationship, when any one of the components that cooperate to output the same torque fails, the other components that cooperate with it shall bear the torque output that the failed component fails to achieve.
  • the first steering assembly 100 when the first steering assembly 100 outputs a steering feedback torque of K/2 and the first steering assembly 110 outputs a steering feedback torque of K/2, if the first steering assembly 100 can only output a steering feedback torque of K/4 due to a fault, the first steering assembly 110 increases the steering feedback torque output to 3K/4, so that the steering feedback torque output by the first steering assembly 100 and the first steering assembly 110 remains K; if the first steering assembly 100 completely fails and cannot output the steering feedback torque, the first steering assembly 110 increases the steering feedback torque output to K, so that the steering feedback torque output by the first steering assembly 100 and the first steering assembly 110 remains K.
  • the embodiment of the present application enables the above-mentioned wire-controlled steering system to operate in a coordinated mode, which can distribute the torque output task to multiple components, thereby reducing the working pressure of a single component.
  • the adjustment is more timely and the torque output changes are smoother, which can significantly reduce the sense of frustration.
  • the embodiment of the present application uses mutually backed-up components to cross-detect component failures and autonomously adjust torque output.
  • the embodiment of the present application sets up a cross-detection mechanism between the various components of the above-mentioned wire-controlled steering system, that is, the components detect each other's health status, so as to determine whether the torque output ratio between the components that cooperate with each other to output torque needs to be adjusted.
  • directly connected components perform mutual health status checks, and each component interacts with the obtained detection results, that is, for any component in the system, it detects the health status of the component directly connected to it, and sends the obtained detection results to other components directly connected to it, and the component forwards the detection results received from other components.
  • any component in the system can obtain the health status detection results of each component in the system, as well as the health status detection results of different components on the same component.
  • any first steering component in the wire control steering system shown in FIG2 it sends a third message to the other first steering components, and the third message is used to trigger the other first steering components to feedback the first message to the first steering component that sent the third message.
  • the first steering component determines the state of the other first steering component based on whether the other first steering component returns the first message. For example, if the other first steering component returns the first message, it is determined that the other first steering component is normal; if the other first steering component does not return the first message, it is determined that the other first steering component is faulty.
  • the second steering assembly that cooperates with the other first steering assembly mentioned above is referred to as the target second steering assembly.
  • the target second steering component also sends the third information to the other first steering component, and the third information user triggers the other first steering component to send the first information to the target second steering component.
  • the target second steering component also determines the state of the other first steering component based on whether the other first steering component returns the first information.
  • the target second steering component When the target second steering component detects and determines the state of the other first steering components in the above manner, it generates second information including the state of the other first steering components, and sends the generated second information to the first steering component.
  • the target second steering component sends the second information to the first steering component, which can be sent directly to the first steering component or forwarded to the first steering component through other steering components (other first steering components or other second steering components).
  • the first information and the third information mentioned above may be arbitrarily set information, for example, they may be pre-set verification codes having a corresponding relationship.
  • each component in the above-mentioned wire control steering system can be configured to send first information to other components according to a specific cycle.
  • the status of the other components can be determined by judging whether the first information sent by the other components is received within the above-mentioned specific cycle. For example, if the first information sent by the other components is received within the specific cycle, it can be determined that the other components are normal; if the first information sent by the other components is not received within the specific cycle, it can be determined that the other components are faulty.
  • first steering component it can receive the first information sent by other first steering components, and receive the second information sent by the target second steering component.
  • the first steering component determines the status of other first steering components according to the received first information and second information.
  • the first steering component determines the state of the other first steering component according to the first information and takes it as the first state. Also, the first steering component determines the state of the other first steering component included in the second information.
  • the first steering component may determine that the state of the other first steering component is the first state.
  • the first steering component cannot determine whether the state of the other first steering component is the first state, that is, the state of the other first steering component is uncertain.
  • the first steering component determines the status of other first steering components, it determines the first torque distribution method according to the status of other first steering components and its own status, and outputs the first torque according to the first torque distribution method and the total first torque required by the system.
  • the first steering assembly determines the first torque distribution mode according to the states of the first steering assemblies that cooperate to output the first torque.
  • the first torque distribution mode indicates the ratio of the first torque output by the first steering assemblies, which is the ratio of the total first torque required by the system.
  • the principle is that the better the component state, the higher the corresponding ratio of the output first torque, and the worse the component state, the lower the corresponding ratio of the output first torque.
  • the amount of the first torque that the first steering assembly needs to output is determined based on the first torque distribution method and the total amount of the first torque required by the system. For example, the proportion of the first torque that the first steering assembly needs to output is determined from the first torque distribution method, and then the proportion is multiplied by the total amount of the first torque required by the system to obtain the amount of the first torque that the first steering assembly needs to output.
  • the first steering assembly then outputs the first torque according to the amount of the first torque that is required to be output.
  • the wire control steering system proposed in the embodiment of the present application not only realizes the redundant backup of the steering component, but also each component cross-judges the status of other components, and then determines the torque distribution method according to the status of each component, and then can output torque according to the torque distribution method.
  • This torque output adjustment method more accurately identifies the health status of the component, can effectively avoid unreasonable torque output adjustment due to misjudgment of the health status of the component, and ensures the stability of the system torque output.
  • first steering component 100 for any one of the above-mentioned first steering component 100, first steering component 110, second steering component 200 and second steering component 210, it can be called the first component (for example, the first steering component 100), the component that cooperates with it to output torque can be called the second component (for example, the first steering component 110), the component directly connected to it can be called the third component (for example, the second steering component 200), and the other component directly connected to the third component can be called the fourth component (for example, the second steering component 210).
  • first component for example, the first steering component 100
  • the component that cooperates with it to output torque can be called the second component (for example, the first steering component 110)
  • the component directly connected to it for example, the third component (for example, the second steering component 200)
  • the other component directly connected to the third component can be called the fourth component (for example, the second steering component 210).
  • the first component can detect the health status of the second component.
  • the third component can also detect the health status of the second component. After the detection result interaction process, the first component can obtain the health status detection result of the third component on the second component. Similarly, the third component can obtain the health status detection result of the first component on the second component.
  • the first component sends third information to the second component
  • the third component sends third information to the second component
  • the third information is used to trigger the second component to feedback the first information to the component that sends the third information.
  • the first component and the third component determine the health status of the second component according to whether the second component returns the first information. At the same time, after determining the health status of the second component, the third component generates the second information containing the health status of the second component and sends it to the first component. Similarly, the first component also generates the information containing the health status of the second component and sends it to the third component.
  • the first component may determine the health status of the second component based on the first information received from the second component and the second information received from the third component.
  • the first component determines that the second component is in the first state based on the received first information, and at the same time, based on the received second information, also determines that the second component is in the first state, then it can be determined that the health state of the second component is indeed the first state.
  • the first component communicates and interacts with the second component to determine a first detection result of the second component.
  • the third component also communicates and interacts with the second component to determine a second detection result of the second component.
  • the transfer component can be a component directly connected to the first component and/or the third component, for example, it can be the third component or the second component.
  • the first component After the first component determines the above-mentioned first detection result and receives the second detection result from the third component, the first component compares the first detection result and the second detection result. If the first detection result and the second detection result both indicate that the second component is in the first state, the first component determines that the second component is in the first state.
  • the first component adjusts its output torque according to the second component being in the first state. Specifically, the first component determines the first torque distribution method, that is, the steering feedback torque distribution method, according to the state of the second component and its own state.
  • the first component outputs the steering feedback torque according to the steering feedback torque distribution mode and the total amount of steering feedback torque required by the system.
  • the feedback torque distribution method is that the first component outputs 100% of the steering feedback torque. At this time, the first component fully outputs all the steering feedback torque required by the system.
  • the feedback torque distribution method is that the first component outputs 3/4 of the steering feedback torque, and the second component outputs 1/4 of the steering feedback torque. At this time, the first component outputs 3/4 of the total steering feedback torque required by the system, and the second component outputs 1/4 of the total steering feedback torque required by the system.
  • the first component can determine the working capacity of the second component according to the health status of the second component, and then adjust its own torque output based on this, thereby ensuring that when the health status of the second component changes, the total torque output by the first component and the second component meets the total torque required by the steering system.
  • the first component determines the health status of the second component based on its own health detection results of the second component and the health detection results of other components on the second component. This ensures the accuracy of identifying the health status of the second component and avoids affecting the stability of the system torque output due to errors in detecting the health status of the second component.
  • the first component and the third component communicate and interact with the second component respectively through an agreed verification code to detect whether the second component is invalid. If the second component cannot feedback the correct verification code, it can be determined that the second component is invalid.
  • the first component can determine the first detection result of the second component.
  • the third component can determine the second detection result of the second component.
  • the first component cooperating with the second component and the third component directly connected with the second component both confirm that the second component has failed, the first component outputs a target torque, which is the total torque output when the first component and the second component cooperate to output torque.
  • the failure of the second component refers to that the second component is completely unable to work, which may specifically be a failure of the controller of the second component, or a disconnection of the communication link between the controller of the second component and the outside world.
  • the first component when it confirms that the second component cooperating with it has failed, it does not directly take over all the work of the second component, but further verifies whether the third component also confirms the failure of the second component, for example, verifies whether the health status detection result of the third component on the second component also indicates that the second component has failed. If the third component also confirms that the second component has failed, the first component confirms that the second component has truly failed. At this time, the first component adjusts the output torque to the total torque output by the first and second components, that is, the first component completely takes over the work of the second component.
  • the wire-controlled steering system proposed in the embodiment of the present application is composed of each component interactively detecting component failure and health status, and each component independently decides to adjust the output torque, which simplifies the system structure to the greatest extent.
  • each component in the wire-controlled steering system adopts a cross-diagnosis mechanism to detect component failure and health status, which can ensure the accuracy of the decentralized multi-component system in detecting the failure and health status of a single component.
  • any first steering assembly of the steer-by-wire system such as first steering assembly 100 and first steering assembly 110 , includes a first controller 1101 , and a first sensor 1102 and a first motor 1103 connected to the first controller 1101 .
  • the first sensor 1102 is used to sense the rotor position of the first motor 1103 and the steering wheel angle. It can specifically adopt any sensor that can be used to sense the motor rotor position and the steering wheel angle. It can be implemented by one sensor or multiple sensors combined.
  • the first motor 1103 is used to output steering feedback torque and can be implemented by any motor.
  • the first controller 1101 may be any type of control device with data processing and computing functions, which can calculate the steering feedback torque that the first motor 1103 should output based on the received sensor signal, and control the first motor 1103 to output torque according to the steering feedback torque.
  • any two first steering assemblies such as the first controller 1101, the first sensor 1102 and the first motor 1103 in the first steering assembly 100 and the first steering assembly 110 are completely consistent, so the two can form a mutual redundant backup.
  • Any second steering assembly of the steer-by-wire system such as the second steering assembly 200 and the second steering assembly 210 , includes a second controller 2001 , and a second sensor 2002 and a second motor 2003 connected to the second controller 2001 .
  • the second sensor 2002 is used to sense the displacement of the steering rack and the rotor position of the second motor 2003. It can specifically adopt any sensor that can be used to sense the motor rotor position and the displacement of the steering rack. It can be implemented by one sensor or multiple sensors combined.
  • the second motor 2003 is used to output steering torque and can be implemented by any motor.
  • the second controller 2001 can be any type of control device with data processing and computing functions, which can calculate the steering torque that the second motor 2003 should output based on the received sensor signal, and control the second motor 2003 to output torque according to the steering torque.
  • any two second steering assemblies such as the second controller 2001, the second sensor 2002 and the second motor 2003 in the second steering assembly 200 and the second steering assembly 210 are completely consistent, so the two can form a mutual redundant backup.
  • the controllers in the first steering assembly and the second steering assembly that cooperate with each other are connected through a separate vehicle network.
  • the first controller 1101 in the first steering assembly 100 and the second controller 2001 in the second steering assembly 200 are connected through the vehicle CAN1 network
  • the first controller 1101 in the first steering assembly 110 and the second controller 2001 in the second steering assembly 210 are connected through the vehicle CAN2 network, thereby achieving vehicle communication redundancy.
  • the vehicle CAN1 network is connected to the vehicle power supply 401, and the vehicle CAN2 network is connected to the vehicle power supply 402, thereby achieving power supply redundancy.
  • the controllers in the steering components that output the same torque are connected through the serial port.
  • the first controller 1101 in the first steering component 100 and the first controller 1101 in the first steering component 110 are connected through the serial port
  • the second controller 2001 in the second steering component 200 and the second controller 2001 in the second steering component 210 are connected through the serial port, thereby realizing redundant backup of the steering components respectively.
  • the sensor signals received by the above first controller 1101 and the second controller 2001 are not limited to the sensor signals of the components where they are located, but can obtain sensor signals collected by any sensor on the link through the system signal link.
  • the cross-diagnosis of the health status between the above-mentioned components and the decision to adjust the output torque are all executed by the controller in each component.
  • the components can transparently or directly transmit sensor signals to each other. For example, when the first component and the third component directly connected to the second component both confirm that the second component has failed, the third component obtains the sensor signal collected by the first component and outputs torque based on the sensor signal collected by the first component.
  • the second component may be any one of the first steering component 100 , the first steering component 110 , the second steering component 200 and the second steering component 210 .
  • the second steering component 200 cannot obtain the steering signal output by the first steering component 100.
  • the second steering component 200 obtains the steering signal output by the first steering component 110 through the second steering component 210, and determines the torque that the second steering component 200 should output based on the steering signal, and then outputs the torque according to the torque.
  • the first component when a sensor in a first component fails, the first component can obtain a sensor signal from a second component that cooperates with the first component.
  • the first controller 1101 in the first steering component 100 communicates with the first controller 1101 in the first steering component 110 to obtain the sensor signal collected by the sensor in the first steering component 110.
  • Another CAN bus signal can be transparently transmitted through the serial port between the first steering component 100 and the first steering component 110, or through the serial port between the second steering component 200 and the second steering component 210.
  • the wire-controlled steering system proposed in the embodiment of the present application realizes comprehensive redundant backup of the power supply, vehicle communication, and wire-controlled steering components, and has stronger fault tolerance and robustness.
  • any two first steering components in the steering system share the same six-phase motor, and/or, when the number of second steering components is greater than one, any two second steering components share the same six-phase motor, thereby achieving motor reuse.
  • the first steering assembly 100 and the first steering assembly 110 share the same six-phase motor M1, wherein three-phase windings of the six-phase motor M1, namely the first three-phase winding, serve as the first motor 1103 of the first steering assembly 100, and the other three-phase windings of the six-phase motor M1, namely the second three-phase winding, serve as the first motor 1103 of the first steering assembly 110.
  • the second steering assembly 200 and the second steering assembly 210 share the same six-phase motor M2, and three of the windings of the six-phase motor M2, namely the first three-phase winding, serve as the second motor 2003 of the second steering assembly 200, and the other three-phase windings of the six-phase motor M2, namely the second three-phase winding, serve as the second motor 2003 of the second steering assembly 210.
  • the embodiment of the present application subdivides the above-mentioned first sensor 1102 into a first rotor position sensor 1102A and a torque angle sensor 1102B, wherein the torque angle sensor 1102B is arranged in the steering wheel column for sensing the steering wheel angle; the first rotor position sensor 1102A is arranged in the first motor 1103 for sensing the rotor position of the first motor 1103.
  • the above-mentioned second sensor 2002 is subdivided into a second rotor position sensor 2002A and a rack position sensor 2002B, wherein the rack position sensor 2002B is arranged on the steering rack to sense the displacement of the steering rack; the second rotor position sensor 2002A is arranged in the second motor 2003 to sense the rotor position of the second motor 2003.
  • two first rotor position sensors 1102A are set inside the six-phase motor M1 to realize the redundant backup of the first rotor position sensor 1102A.
  • two second rotor position sensors 2002A are set inside the six-phase motor M2 to realize the redundant backup of the second rotor position sensor 2002A.
  • the torque angle sensor 1102B in the first steering assembly 100 and the first steering assembly 110 is disposed in the steering wheel column to sense the steering wheel angle.
  • the rack position sensor 2002B is disposed on the steering rack to sense the displacement of the steering rack, specifically, the rotation displacement of the steering rack caused by the steering gear driving the steering rack.
  • the first rotor position sensor 1102A also serves as a redundant backup for the torque angle sensor 1102B.
  • the first controller 1101 calculates and determines the steering wheel angle based on the rotor position information collected by the first rotor position sensor 1102A.
  • the second rotor position sensor 2002A also serves as a redundant backup for the rack position sensor 2002B.
  • the second controller 2001 calculates and determines the steering rack displacement based on the rotor position information collected by the second rotor position sensor 2002A.
  • each component also performs self-inspection, and the components that back up each other interact to determine the output torque distribution ratio so that the components that back up each other coordinate the output torque.
  • the first steering component also sends fourth information to other first steering components, and the fourth information includes status information of the first steering components.
  • the controller in the first steering component implements health status detection of the first steering component, and sends status information of the first steering component determined by the detection to other first steering components.
  • controllers in other first steering components also detect the health status of their own components, add the detection results to the first information, and then send the first information to the first steering component.
  • the process specifically includes the following:
  • the first steering component determines an output distribution ratio of the first torque of each first steering component according to the states of other first steering components and its own state as the first torque distribution ratio.
  • other first steering components also determine the output distribution ratio of the first torque of each first steering component according to the state of the first steering component and their own state as the second torque distribution ratio.
  • the other first steering components send the determined second torque distribution ratio to the first steering components.
  • the first steering component determines whether the second torque distribution ratio sent by other first steering components is the same as the first torque distribution ratio determined by itself. If they are the same, the first torque distribution method is determined according to the first torque distribution ratio; if they are different, the existing torque distribution method is maintained unchanged.
  • the first steering assembly 100 shown in FIG3 Take the first steering assembly 100 shown in FIG3 as the first assembly and the first steering assembly 110 as the second assembly as an example.
  • the steering feedback torque required by the system is output by the first assembly and the second assembly in coordination.
  • the first assembly and the second assembly determine the output torque distribution ratio of both parties through interaction, and then both parties coordinate to output the steering feedback torque according to the determined output torque distribution ratio, thereby satisfying the steering feedback torque requirement of the system.
  • the second steering assembly 210 is used as the first assembly and the second steering assembly 200 is used as the second assembly.
  • the first assembly and the second assembly determine the output torque distribution ratio of both parties through interaction, and then both parties coordinate the output steering torque according to the determined output torque distribution ratio, thereby meeting the steering torque requirement of the system.
  • the output torque distribution ratio between the first component and the second component refers to the ratio of the torque output by the first component and the second component to the total torque required by the system to be output by the first component and the second component.
  • the first component and the second component obtain their own and each other's self-test results respectively, and then negotiate and determine the output torque distribution ratio between the two based on their own and each other's self-test results.
  • FIG6 shows a specific processing process of the first component and the second component interactively determining the output torque distribution ratio of the two components.
  • the process of the first component and the second component interactively determining the output torque distribution ratio of the two components mainly includes the following processing stages A1 to A6:
  • the first component and the second component perform health status self-inspection respectively to obtain self-inspection results.
  • the controllers in the first component and the second component respectively detect the health status of components such as sensors, circuits, and motors in the components to obtain self-test results.
  • the above self-test results include the working status and performance parameters of each component in the assembly.
  • the first component and the second component exchange self-test results, and each obtains the self-test result of the other party.
  • the controller of the first component after obtaining the self-test result of the first component, the controller of the first component sends the self-test result of the first component to the second component; similarly, after obtaining the self-test result of the second component, the controller of the second component sends the self-test result of the second component to the first component.
  • the first component and the second component respectively determine the output torque distribution ratio according to their own self-test results and the other party's self-test results.
  • the controller of the first component calculates the output torque distribution ratio of the first component and the second component according to the self-test result of the first component and the self-test result of the second component as the first torque distribution ratio.
  • the controller of the second component also calculates the output torque distribution ratio of the first component and the second component according to the self-test result of the first component and the self-test result of the second component as the second torque distribution ratio.
  • a fault arbitration module is provided inside the first component and the second component, respectively.
  • the fault arbitration module may be a functional module in the controllers of the first component and the second component for determining the fault type and fault level, or may be a functional module independent of the controller.
  • the functional module may be a software functional module or a hardware functional module. When the fault arbitration module is provided outside the controller, the fault arbitration module is controlled and scheduled by the controller.
  • the controllers of the first component and the second component obtain the self-test result of the first component and the self-test result of the second component respectively
  • the controllers of the first component and the second component parse the self-test result of the first component through the local fault arbitration module to determine the fault type and fault level of the first component, and parse the self-test result of the second component to determine the fault type and fault level of the second component. That is, the first component and the second component determine their own fault type and fault level according to their own self-test results respectively, and determine the fault type and fault level of the other party according to the self-test result of the other party.
  • the first component and the second component use the same classification standard for classification of fault types and fault levels.
  • the fault type and fault level determined according to the above solution can be set to null.
  • the first component and the second component can respectively determine the fault type and fault level that occurred on both sides.
  • controller of the first component and the controller of the second component may also issue a fault warning signal matching the fault type and fault level according to the fault type and fault level of the respective components.
  • the first component and the second component after the first component and the second component respectively determine the fault type and fault level of the first component, and determine the fault type and fault level of the second component, the first component and the second component interact with each other on the fault type and fault level information they have determined, and verify whether the fault type and fault level information determined by both parties are consistent. If they are consistent, continue with subsequent processing; if they are inconsistent, end the process of determining the output torque distribution ratio of the two and continue to maintain the original output torque distribution ratio.
  • the controller of the first component determines the fault type and fault level of the first component, and determines the fault type and fault level of the second component, it sends all the determined fault type and fault level information to the controller of the second component; at the same time, the second component also sends the determined fault type and fault level information of the first component, and the fault type and fault level information of the second component to the controller of the first component.
  • the controller of the first component and the controller of the second component respectively call the fault arbitration module to verify the fault type and fault level information determined by the first component and the second component to determine whether they are consistent. If they are consistent, the subsequent processing will continue, and if they are inconsistent, the subsequent processing will not be executed.
  • the first component and the second component respectively determine their own and each other's fault types and fault levels
  • the first component and the second component respectively calculate and determine the output torque distribution ratio of the first component and the second component according to their own fault types and fault levels, and the fault type and fault level of the other party.
  • the controller of the first component and the controller of the second component respectively compare and analyze the fault type and fault level of the first component and the fault type and fault level of the second component to determine the output torque distribution ratio between the first component and the second component.
  • the output torque distribution ratios corresponding to various fault types and fault levels can be predetermined and stored in the controller of the first component and the controller of the second component.
  • the output torque distribution ratio of the first component and the second component can be determined by querying the correspondence relationship between the output torque distribution ratios corresponding to various fault types and fault levels stored in advance.
  • the first component and the second component interact with each other to determine the output torque distribution ratio.
  • the controller of the first component sends the first torque distribution ratio determined by it to the controller of the second component, and at the same time, the controller of the second component sends the second torque distribution ratio determined by it to the controller of the first component.
  • the first component and the second component respectively verify whether the output torque distribution ratio determined by themselves is the same as the output torque distribution ratio determined by the other party.
  • the controller of the first component compares the second torque distribution ratio sent by the second component with the first torque distribution ratio determined by the controller of the first component to determine whether the two are the same.
  • the controller of the second component compares the first torque distribution ratio sent by the first component with the second torque distribution ratio determined by the controller of the second component to determine whether the two are the same.
  • the first component and the second component respectively execute step A6: determine the output torque distribution method for the first component and the second component according to the first torque distribution ratio.
  • the controller of the first component uses the first torque distribution ratio as the final output torque distribution method between the first component and the second component.
  • the controller of the second component determines that the first torque distribution ratio sent by the first component is the same as the second torque distribution ratio determined by itself, the controller of the second component uses the second torque distribution ratio as the final output torque distribution method of the first component and the second component.
  • the controller of the first component controls the motor of the first component to output torque according to the output torque distribution method of the first component and the second component finally determined above.
  • the controller of the second component controls the motor of the second component to output torque according to the output torque distribution method of the first component and the second component finally determined above.
  • the original output torque distribution ratio may be a preset output torque distribution ratio, or may be the output torque distribution ratio maintained by the first component and the second component before the first component and the second component interactively determine the output torque distribution ratio of the two components.
  • the wire-controlled steering system proposed in the embodiment of the present application can enable the mutually backed-up components to negotiate the torque output distribution ratio independently, thereby realizing the redundant backup of the torque output of the wire-controlled steering system automatically, intelligently and in real time, thereby improving the stability and safety of the system.
  • the wire-controlled steering system introduced in the above-mentioned embodiments of the present application realizes the interconnection and intercommunication between the component controllers, and the component controllers realize mutual inspection of the component health status and cross-fault diagnosis through communication interaction, so as to timely and accurately identify component controller failures or controller communication failures.
  • the above-mentioned wire-controlled steering system can also realize self-inspection of each component, and the mutually redundant backup components can negotiate the torque output distribution ratio by themselves through the interactive self-inspection results, so that the wire-controlled steering system with redundant backup can automatically, intelligently and in real time perform torque output redundant backup, further improving the stability and safety of the system.
  • the self-checking process of each component of the above-mentioned wire-controlled steering system and the mutual-checking process of adjacent components are two independent processing processes, which do not interfere with each other and can be executed in parallel.
  • the self-checking, mutual-checking, cross-diagnosis and other processing processes recorded in the above-mentioned embodiments are executed periodically during the working process of the wire-controlled steering system, and the execution cycle can be flexibly set, so that the wire-controlled steering system can detect faults in real time and adjust the torque output.
  • the embodiment of the present application further proposes a torque output method, which is applied to the wire-controlled steering system in any of the above-mentioned embodiments, as shown in FIG. 7 , and includes:
  • the first steering component 701 receives the first information sent by the other first steering components.
  • the second steering component 703 cooperating with the other first steering components 702 generates the second information including the status of the other first steering components by detecting the status of the other first steering components, and sends the generated second information to the first steering component;
  • the first steering component 701 determines the other first steering components according to the first information and the second information. the state of the first steering component; determining the first torque distribution method according to the state of other first steering components and its own state; outputting the first torque according to the first torque distribution method and the total amount of the first torque required by the system.
  • another torque output method is also proposed.
  • the method is applied to any first steering assembly in the steer-by-wire system in any of the above embodiments. Referring to FIG. 8 , the method includes:
  • S810 receiving first information sent by other first steering components, and receiving second information sent by second steering components cooperating with the first steering components; the second information is generated by the second steering components cooperating with the first steering components by detecting the status of other first steering components, and the second information includes the status of other first steering components.
  • S820 determining the status of other first steering components based on the first information and the second information.
  • S830 determining the first torque distribution method based on the status of other first steering components and the first torque distribution method itself.
  • S840 outputting the first torque based on the first torque distribution method and the total first torque required by the system.
  • the specific processing procedures of the above-mentioned torque output method such as the specific processing procedures of the first steering component and the specific processing procedures of the second steering component, etc., can all be referred to the description of the working procedures of each component in the above-mentioned embodiment of the wire-controlled steering system.
  • the torque output method proposed in the embodiment of the present application can enable any component in the system to independently judge the health status of the component cooperating with it, and can adjust the output torque in time according to the health status of the component cooperating with it, thereby improving the stability and safety of the system.
  • the system component when judging the health status of the target component that cooperates with it, not only bases its judgment on its own, but also makes a comprehensive judgment based on the detection results of the health status of the target component by other components.
  • This scheme improves the accuracy of the detection of the health status of the component and can effectively avoid unreasonable torque output due to misjudgment, thereby further ensuring the stability and reliability of the wire-controlled steering system.
  • the states of other first steering components are determined according to the first information and the second information, including: the first steering component determines the states of other first steering components according to the first information as the first state, and determines the states of other first steering components contained in the second information; when the states of other first steering components contained in the second information are the first state, the first steering component determines the states of other first steering components as the first state.
  • the first steering component is further used to: send third information to other first steering components, and the third information is used to trigger other first steering components to feedback the first information.
  • the first steering component is further used to: send fourth information to other first steering components, and the fourth information includes status information of the first steering component.
  • the first information includes status information of other first steering components; the first steering component determines the first torque distribution method according to the status of other first steering components and its own status, including: the first steering component determines the first torque distribution ratio according to the status of other first steering components and its own status; obtains the second torque distribution ratio sent by other first steering components, the second torque distribution ratio is determined by other first steering components according to the status of the first steering components and its own status; when the first torque distribution ratio is the same as the second torque distribution ratio, the first steering component determines the first torque distribution method according to the first torque distribution ratio.
  • the first steering assembly is transmission-connected to the steering wheel
  • the second steering assembly is transmission-connected to the steering rack
  • the first steering assembly includes a first controller, and a first sensor and a first motor connected to the first controller; the first sensor is used to sense the rotor position of the first motor and to sense the steering wheel angle; the first motor is used to output a first torque; the first controller controls the operation of the first motor based on the received sensor signal; the second steering assembly includes a second controller, and a second sensor and a second motor connected to the second controller; the second sensor is used to sense the steering rack displacement and the rotor position of the second motor; the second motor is used to output a second torque; the second controller controls the operation of the second motor based on the received sensor signal.
  • the first sensor includes a torque angle sensor and a first rotor position sensor; the torque angle sensor is arranged in the steering wheel column to sense the steering wheel angle; the first rotor position sensor is arranged in the first motor to sense the rotor position of the first motor; the second sensor includes a rack position sensor and a second rotor position sensor; the rack position sensor is arranged on the steering rack to sense the displacement of the steering rack; the second rotor position sensor is arranged in the second motor to sense the rotor position of the second motor.
  • the first controller determines the steering wheel angle based on the rotor position information collected by the first rotor position sensor; and/or, in the event of a rack position sensor failure, the second controller determines the steering rack displacement based on the rotor position information collected by the second rotor position sensor.
  • any two first steering assemblies share the same six-phase motor; and/or, when the number of second steering assemblies is greater than one, any two second steering assemblies share the same six-phase motor.
  • the first steering assembly when a sensor of a first steering assembly fails, the first steering assembly obtains a sensor signal from another first steering assembly.
  • the torque output method provided in this embodiment belongs to the same application concept as the wire-controlled steering system provided in the above embodiment of this application.
  • the processing process of this method corresponds to the functions of the various parts of the structure of the above-mentioned wire-controlled steering system.
  • For technical details not fully described in this embodiment please refer to the specific introduction of the wire-controlled steering system provided in the above embodiment of this application, and will not be repeated here.
  • Another embodiment of the present application further proposes a vehicle, which includes the wire-controlled steering system introduced in the above embodiment, or the vehicle is configured to implement the torque output method introduced in any of the above embodiments.
  • the above embodiments of the present application propose a redundant switching control scheme when the wire-controlled steering system includes N first steering components 201 for outputting a first torque, and at least one second steering component 202 for outputting a second torque.
  • the present application also proposes another embodiment for introducing the specific structure of the wire-controlled steering system.
  • Another embodiment of the present application further provides a road feel feedback torque control system.
  • the road feel feedback torque control system provided in the embodiment of the present application is used to realize a solution for timely and accurate conversion of road condition information into hand feel feedback torque.
  • FIG. 9 is a schematic diagram of the structure of a vehicle wire-controlled steering system provided in an embodiment of the present application. From Figure 9, it can be seen that the vehicle wire-controlled steering system includes three main parts: a steering wheel assembly 1, a steering execution assembly 2, and a controller 3 (Electronic Control Unit, ECU, electronic control unit), and when necessary, also includes auxiliary systems such as power supply.
  • ECU Electronic Control Unit
  • the steering wheel assembly 1 includes a steering wheel 11, a sensor 12 (including, for example, a steering angle sensor, a torque sensor, an angular velocity sensor, etc.), and a first driving motor 13 of the steering wheel.
  • the steering wheel, the sensor, and the first driving motor are connected through a pipe column.
  • the main function of the steering wheel assembly is to transmit the driver's steering intention (for example, by measuring the steering wheel angle) to the controller; at the same time, it receives the torque control signal sent by the controller to generate a steering wheel return torque to provide the driver with corresponding hand feel and/or road feel information.
  • the steering execution assembly includes a front wheel angle sensor, a steering wheel drive motor, a steering wheel drive motor controller, and a front wheel steering component (for example, a rack, a pull rod mechanical assembly).
  • the function of the steering execution assembly 2 is to receive the command of the controller, control the rotation of the steering wheel through the steering wheel drive motor controller, and realize the driver's steering intention.
  • a feedback torque estimation module can be used to evaluate the basic torque, which is used as the basic torque in the target feedback torque.
  • the basic torque is estimated based on comprehensive information (such as motor current, heading angle, vehicle speed, etc.).
  • comprehensive information such as motor current, heading angle, vehicle speed, etc.
  • the embodiment of the present application also provides a road feel feedback torque control system.
  • FIG10a a schematic diagram of the structure of a road feel feedback torque control system provided by the embodiment of the present application is shown. As can be seen from FIG10a, the system includes:
  • the sensor unit 22 is used to obtain a torque signal when the steering rack moves and causes the torsion bar to twist.
  • the feedback torque calculation module 23 is used to obtain the basic torque, to obtain the compensation torque according to the torque signal, and to obtain the target feedback torque 24 based on the basic torque and the compensation torque.
  • the basic torque is determined by the feedback torque estimation module 21 according to a preset algorithm and the vehicle state.
  • the sensing unit 22 mentioned here is a state where the gear directly meshes with the rack. Any movement of the rack can be sensed by the sensing unit 22, including high-frequency violent movement, high-frequency slight movement, sudden rapid movement, etc.
  • the sensing unit 22 can collect the dynamic changes of the road surface more carefully. These sudden changes in the rack are difficult to be sensed and estimated by the feedback torque estimation module 21, or even if they can be sensed, there is an obvious lag. Therefore, the sensing unit 22 can be used to compensate and correct the conventional basic torque.
  • the compensation torque collected by the sensor unit 22 can reflect more detailed information. Therefore, the basic torque is corrected by the compensation torque to obtain a more accurate target feedback torque.
  • the correction unit mentioned here is used to correct different types of compensation torques, which will be specifically described in the following embodiments.
  • FIG10b is a schematic diagram of the mechanical structure of a road sense feedback torque control system provided by an embodiment of the present application.
  • the input shaft 221 is connected to the output shaft 222 through the torsion bar 223.
  • the output shaft 222 is connected to the housing 220 through the bearing 225, and the input shaft 221 is connected to the bearing 226.
  • a torsion bar angle sensor 224 can be installed at the position of the output shaft 222.
  • the basic torque can be preliminarily obtained by using the feedback torque estimation module.
  • the basic torque cannot accurately and truly feedback the torque that needs to be transmitted to the driver through the steering wheel according to the current road conditions. Therefore, in the present application, the sensing unit is further used to more accurately collect information related to road conditions, so as to obtain the compensation torque under certain road conditions or vehicle driving conditions.
  • compensation torque is that the information that can be collected by the sensing unit is the result presented based on the movement state of the rack, and it is impossible to obtain more other information. It is also impossible to use the compensation torque provided by the sensing unit as the final hand-feel feedback torque or road-feel feedback torque.
  • the basic torque can be corrected based on the compensation torque, and then the correction process
  • the target feedback torque is then returned to the driver, and the target feedback torque is reflected through the steering wheel.
  • the input shaft 221 of the sensing unit is meshed with the rack; when the rack moves, the input shaft 221 is driven to move; the input shaft 221 in the sensing unit is connected to the output shaft 222 through the torsion bar 223; when the input shaft 221 moves, the torsion bar 223 is driven to twist at an angle, so as to determine the compensation torque according to the twisting angle; the output shaft 222 is an inertial slider, and when the torsion bar 223 is twisted, the inertial slider rotates following the twisting direction of the torsion bar 223.
  • the output shaft 222 is not connected to the vehicle body, but only connected to the torsion bar 223.
  • the inertial slider remains stationary when no external force is applied.
  • the input shaft 221 is meshed with the rack through the gear.
  • the rack moves (generally, the steering wheel or the steering wheel rotates to drive the rack to move), the input shaft 221 will also move.
  • the input shaft 221 and the output shaft 222 are connected by the torsion bar 223. When the input shaft 221 moves, it will drive the torsion bar 223 directly connected thereto to undergo torsional deformation.
  • the output shaft 222 Since the torsion bar 223 is gradually deformed, when the force is not transmitted to the output shaft 222, the output shaft 222 is in a stationary state relative to the torsion bar 223. When the torsion bar 223 is deformed to a certain extent, under the traction of the torsion bar 223, the output shaft 222 will be driven to move. The movement of the output shaft 222 is not synchronized with the movement of the input shaft 221, and the movement of the output shaft 222 lags behind the input shaft 221. At the critical moment before the output shaft 222 moves, the deformation of the torsion bar 223 reaches the maximum state. Since the sensing unit is directly meshed with the rack through the gear, any movement of the rack can be accurately and timely captured by the sensing unit.
  • the sensing unit also includes: a torsion bar angle sensor 224; the torsion bar angle sensor 224 and the torsion bar 223 are combined and arranged between the input shaft 221 and the output shaft 222, and are used to collect the torsion angle of the torsion bar 223 to determine the compensation torque according to the torsion angle.
  • the torsion condition of the torsion bar 223 can directly reflect the current steering condition, including the magnitude of the steering angle of the steering wheel or steering wheel, the magnitude of the steering speed of the steering wheel or steering wheel, and the rotation (or shaking) frequency of the steering wheel or steering wheel. Therefore, the torsion angle of the torsion bar 223 can be measured to quantify the torsion angle of the torsion bar 223, and the compensation torque corresponding to different torsion angles can be determined according to the relationship between the torsion angle and the torque. Thus, a more accurate compensation torque can be obtained according to the quantified torsion angle. As an optional solution, the corresponding relationship between different torsion angles and compensation torques can be pre-calibrated to generate a data table.
  • the compensation torque corresponding to different torsion angles can be determined by table lookup.
  • the compensation torque mentioned here is used to compensate for the basic torque, and is used to generate the steering wheel feel feedback torque.
  • the compensation torque obtained based on the above method is more detailed (for example, frequent shaking, severe shaking, etc.), more sensitive, and can collect torque information that cannot be perceived and realized by estimation.
  • the basic torque is corrected so that the target feedback torque obtained is more sensitive, detailed, and more real-time.
  • the output shaft 222 is embedded in the bearing 225, and the bearing 225 is connected to the housing of the sensor unit.
  • the inertial slider rotates following the twisting direction of the torsion bar 223; or, the output shaft 222 is fixedly connected to the housing of the sensor unit, and when the torsion bar 223 is twisted, the inertial slider remains relatively still.
  • the output shaft 222 does not need to establish any mechanical connection with the steering wheel or steering wheel.
  • the output shaft 222 can be movably connected or fixedly connected. When movably connected, the dynamic change frequency and speed of the rack movement can be accurately reflected. When fixedly connected, the degree and speed of the rack movement can be accurately reflected.
  • the specific implementation scheme is shown in Figure 10b, where the output shaft 222 is embedded in the bearing 225, so that the output shaft 222 can rotate freely and will not be hindered or interfered by other external forces. It should be noted that the weight and size of the inertial slider need to be selected according to actual needs.
  • a high-frequency correction unit which is used to match the estimated change state of the basic torque with the torque change state of the compensation torque; if the matching result is inconsistent, the compensation torque is subjected to high-frequency filtering.
  • the sensing unit Since the sensing unit is directly meshed with the rack, it can directly reflect the state of the steering wheel driving the rack to move, rather than the rotation state of the steering wheel.
  • the steering wheel can be rotated or shaken by the force of the road surface and road objects, or it can be controlled to rotate by the steering wheel.
  • the hand-feel feedback torque is fed back to the user through the algorithm, it is necessary to collect information, process (such as filtering, etc.), and calculate and then feed back to the steering wheel.
  • the feedback cycle is long, the response is not timely, and it is impossible to reflect the complex and changeable road information in detail.
  • the steering wheel rotation information can be timely and keenly perceived by the sensing unit.
  • a gradient correction unit which is used to perform gradient processing on the compensation torque according to a preset gradient coefficient when the torque change of the compensation torque is greater than the gradient threshold.
  • the compensation torque collected is sometimes large. For example, when the steering wheel suddenly rotates rapidly and at a large angle, the compensation torque obtained by the sensor unit is a sudden increase. If this torque is compensated to the basic torque, the target feedback torque will change suddenly. Therefore, in this case, the compensation torque needs to be de-gradiented to obtain a more stable compensation torque to compensate the basic torque.
  • a motor current estimation module used to collect the motor current of the driving motor meshing with the rack, so as to determine the basic torque based on the motor current and the corresponding preset algorithm
  • a vehicle model estimation module used to estimate the basic torque based on the collected vehicle state and the corresponding preset algorithm.
  • the feedback torque of the vehicle can be evaluated in various ways (for example, using a motor current estimation module, using a vehicle mode estimation module), and the obtained basic torque is used as the basic torque, because the basic torque obtained by the above method can more comprehensively reflect the overall status of the current feedback torque.
  • FIG11 is a flow chart of a braking control method provided by an embodiment of the present application.
  • the method can be applied to a vehicle controller.
  • the method specifically comprises the following steps:
  • Step 301 When a steering wheel connected to a steering rack in a vehicle moves, a compensation torque is determined according to the torsion angle of the torsion bar driven to torsion during the movement of the steering rack.
  • Step 302 Determine a basic torque.
  • Step 303 Determine a target feedback torque based on the compensation torque and the basic torque.
  • the input shaft of the sensing unit is meshed with the rack; when the rack moves, the input shaft is driven to move; the input shaft in the sensing unit is connected to the output shaft through a torsion bar; when the input shaft moves, the torsion bar is driven to twist at an angle, so as to determine the compensation torque according to the twisting angle; wherein the output shaft is an inertial slider.
  • the sensing unit further includes: a torsion bar angle sensor; the torsion bar angle sensor and the torsion bar combination are arranged between the input shaft and the output shaft, and are used to collect the torsion angle of the torsion bar to determine the compensation torque according to the torsion angle.
  • the output shaft is embedded in a bearing, and the bearing is connected to the housing of the sensor unit.
  • the inertial slider rotates in the twisting direction of the torsion bar; or, the output shaft is fixedly connected to the housing of the sensor unit, and when the torsion bar is twisted, the inertial slider remains relatively still.
  • step 303 it also includes: a high-frequency correction unit, which is used to match the estimated change state of the basic torque with the torque change state of the compensation torque; if the matching result is inconsistent, high-frequency filtering is performed on the compensation torque.
  • a high-frequency correction unit which is used to match the estimated change state of the basic torque with the torque change state of the compensation torque; if the matching result is inconsistent, high-frequency filtering is performed on the compensation torque.
  • step 303 it also includes: a gradient correction unit, which is used to perform a gradient increase or decrease processing on the compensation torque according to a preset gradient coefficient when the torque change of the compensation torque is greater than the gradient threshold.
  • a gradient correction unit which is used to perform a gradient increase or decrease processing on the compensation torque according to a preset gradient coefficient when the torque change of the compensation torque is greater than the gradient threshold.
  • the feedback torque estimation module includes: a motor current estimation module, used to collect the motor current of the drive motor meshing with the rack, so as to determine the basic torque based on the motor current and a corresponding preset algorithm; and/or, a vehicle model estimation module, used to estimate the basic torque based on the collected vehicle state and a corresponding preset algorithm.
  • FIG12 is a schematic diagram of the structure of the sensor unit provided in the embodiment of the present application.
  • the sensor unit includes: an input shaft 221 meshing with the rack; the input shaft 221 is connected to the output shaft 222 through a torsion bar 223; wherein the output shaft 222 is an inertial slider connected to the housing, and the input shaft 221 is connected to the bearing; the torsion bar 223 is connected to the torsion bar angle sensor 224, which is used to collect the torsion signal of the torsion bar 223 when the rack moves, so as to determine the target feedback torque based on the torsion signal.
  • the input shaft 221 is meshed with the rack, while the output shaft 222 is an inertial slider that can rotate freely.
  • the rack moves, it will carry the input shaft 221 to rotate, and the torsion bar 223 connected to the input shaft 221 will also be twisted and deformed.
  • the output shaft is an inertial slider, and the output shaft 222 is not connected to the body parts, but only connected to the torsion bar 223.
  • the inertial slider remains stationary when not subjected to external force.
  • the torsion bar 223 is deformed to a certain extent, under the traction of the torsion bar 223, the output shaft 222 will be driven to move.
  • the movement of the output shaft 222 is not synchronized with the movement of the input shaft 221, and the movement of the output shaft 222 lags behind the input shaft 221.
  • the deformation of the torsion bar 223 reaches the maximum state. Since the sensing unit is directly meshed with the rack through the gear, any movement of the rack can be accurately and timely captured by the sensing unit.
  • the sensing unit is used to convert the rack vibration, movement frequency, amplitude and other information into a torsion signal. Then, the target feedback torque can be calculated based on the compensation torque and basic torque corresponding to the torsion signal.
  • an embodiment of the present application also provides a vehicle, including a sensor unit as shown in FIG. 12 .
  • FIG13 is a schematic diagram of the structure of a vehicle provided in an embodiment of the present application. As shown in FIG13 , the vehicle is equipped with vehicle equipment, and the vehicle equipment includes: a memory 501 and a controller 502 .
  • the memory 501 is used to store computer programs and can be configured to store various other data to support operations on the vehicle device. Examples of such data include instructions for any application or method operating on the vehicle device, contact data, phone book data, messages, pictures, videos, etc.
  • the memory 501 can be implemented by any type of volatile or non-volatile storage device or a combination of them, such as static random-access memory (SRAM), electrically erasable programmable read-only memory (EEPROM), erasable programmable read-only memory (EPROM), programmable read-only memory (PROM), read-only memory (ROM), magnetic storage, flash memory, disk or optical disk.
  • SRAM static random-access memory
  • EEPROM electrically erasable programmable read-only memory
  • EPROM erasable programmable read-only memory
  • PROM programmable read-only memory
  • ROM read-only memory
  • magnetic storage flash memory
  • flash memory disk or optical disk.
  • the vehicle device further includes: a display device 504.
  • a controller 502 is coupled to the memory 501 and is used to execute a computer program in the memory 501, so as to: determine a compensation torque according to a torsion angle of a torsion bar driven to torsion by a movement of the steering rack when a steering wheel connected to the steering rack in the vehicle moves; determine a basic torque; and determine a target feedback torque based on the compensation torque and the basic torque.
  • the input shaft of the sensing unit meshes with the rack; when the rack moves, it drives the input shaft to move; the input shaft in the sensing unit is connected to the output shaft through a torsion bar; when the input shaft moves, it drives the torsion bar to twist, and the controller 502 is used to determine the compensation torque according to the twisting angle; wherein the output shaft is an inertial slider.
  • the sensing unit also includes: a torsion bar angle sensor; the torsion bar angle sensor and the torsion bar are arranged in combination between the input shaft and the output shaft to collect the torsion angle of the torsion bar, and the controller 502 is used to determine the compensation torque according to the torsion angle.
  • the output shaft is embedded in the bearing, and the bearing is connected to the housing of the sensor unit.
  • the inertia slider rotates following the twisting direction of the torsion bar; or, the output shaft is fixedly connected to the housing of the sensor unit, and when the torsion bar is twisted, the inertia slider remains relatively still.
  • the preset correction unit includes: a high-frequency correction unit, and the controller 502 is used to match the estimated change state of the basic torque with the torque change state of the compensation torque; if the matching result is inconsistent, the compensation torque is subjected to high-frequency filtering processing.
  • the preset correction unit includes: a gradient correction unit, and the controller 502 is used to, when the torque change of the compensation torque is greater than the gradient threshold, perform a gradient increase and decrease process on the compensation torque according to a preset gradient coefficient.
  • the controller 502 includes a feedback torque estimation module, which includes: a motor current estimation module, which is used to collect the motor current of the drive motor meshing with the rack, so as to determine the basic torque based on the motor current and the corresponding preset algorithm; and/or, a vehicle model estimation module, which is used to estimate the basic torque based on the collected vehicle state and the corresponding preset algorithm.
  • a feedback torque estimation module which includes: a motor current estimation module, which is used to collect the motor current of the drive motor meshing with the rack, so as to determine the basic torque based on the motor current and the corresponding preset algorithm; and/or, a vehicle model estimation module, which is used to estimate the basic torque based on the collected vehicle state and the corresponding preset algorithm.
  • the display device 504 in FIG. 13 includes a screen, which may include a liquid crystal display (LCD) and a touch panel (TP). If the screen includes a touch panel, the screen may be implemented as a touch screen to receive input signals from a user.
  • the touch panel includes one or more touch sensors to sense touch, slide, and gestures on the touch panel. The touch sensor may not only sense the boundaries of a touch or slide action, but also detect the duration and pressure associated with the touch or slide operation.
  • the audio component 504 in Figure 13 above can be configured to output and/or input audio signals.
  • the audio component includes a microphone (MIC), and when the device where the audio component is located is in an operating mode, such as a call mode, a recording mode, and a speech recognition mode, the microphone is configured to receive an external audio signal.
  • the received audio signal can be further stored in a memory or sent via a communication component.
  • the audio component also includes a speaker for outputting an audio signal.
  • the vehicle device also includes other components such as a communication component 505 and a power supply component 504.
  • Fig. 13 only schematically shows some components, which does not mean that the vehicle device only includes the components shown in Fig. 13.
  • the communication component 505 in FIG. 13 above is configured to facilitate wired or wireless communication between the device where the communication component is located and other devices.
  • the device where the communication component is located can access a wireless network based on a communication standard, such as WiFi, 2G, 3G, 4G or 5G, or a combination thereof.
  • the communication component can be implemented based on near field communication (NFC) technology, radio frequency identification (RFID) technology, infrared data association (IrDA) technology, ultra wide band (UWB) technology, Bluetooth technology and other technologies.
  • NFC near field communication
  • RFID radio frequency identification
  • IrDA infrared data association
  • UWB ultra wide band
  • Bluetooth Bluetooth
  • the power supply component 506 provides power to various components of the device where the power supply component is located.
  • the power supply component may include a power management system, one or more power supplies, and other components associated with generating, managing, and distributing power to the device where the power supply component is located.
  • the sensing unit is used to obtain the torque signal when the steering rack moves and drives the torsion bar to twist; the feedback torque calculation module is used to obtain the basic torque, to obtain the compensation torque according to the torque signal, and to obtain the target feedback torque based on the basic torque and the compensation torque.
  • the sensing unit is connected to the steering rack, which can more sensitively perceive various road condition information, including high-frequency vibration of the road surface, sudden steering of the steering wheel, etc., and can timely and accurately convert various road condition information into hand-feel feedback torque to feedback to the driver.
  • Another embodiment of the present application further provides a steer-by-wire device and a tactile feedback method thereof.
  • an embodiment of the present application provides a wire-controlled steering device, which is suitable for use in a wire-controlled steering system, and provides a redundant configuration method for a main feel feedback control system and a backup feel feedback control system, so that when the main feel feedback control system fails, it can switch to the backup feel feedback control system, allowing the driver to maintain the operating feel, enhance the driver's operating confidence, and avoid accidents.
  • the wire-controlled steering device 10 provided in the embodiment of the present application includes a steering column 1410, an upper steering control module 120 and a mechanical damping assembly 130.
  • the steering column 1410 includes a pipe column 111 and a housing 112 sleeved on the pipe column 111, wherein one end of the pipe column 111 is connected to the wire-controlled steering wheel 20, and the other end is connected to the upper steering control module 120 and the mechanical damping assembly 130.
  • one or more sensors are also provided on the pipe column 111, such as a torque and angle sensor (Torque Angle Sensor, TAS).
  • a first sensor 113 and a second sensor 114 are provided on the pipe column 111, which are respectively used to detect the rotation angle of the steering column 1410 to obtain steering angle information.
  • the upper steering control module 120 includes an upper turn controller 121 and a tactile feedback motor 122.
  • the upper turn controller 121 is electrically connected to the tactile feedback motor 122, the mechanical damping component 130 and the first sensor 113, respectively, to receive steering information, and to control the tactile feedback motor 122 to output a tactile feedback torque to the steering column 1410 in a first working state, or to control the mechanical damping component 130 to output a friction resistance to the steering column 1410 in a second working state.
  • the first working state is a working state in which the tactile feedback motor 122 functions normally and can be enabled by the upper turn controller 121 to transmit the tactile feedback torque.
  • the mechanical damping component 130 is disabled, or it keeps the tactile feedback torque synchronized with the tactile feedback motor 122 through a physical connection, so that when switching to the second working state, the friction simulating the tactile feedback torque can be transmitted. Therefore, the second working state is the working state in which the hand-feel feedback motor 122 is disabled or failed, and the mechanical damping component 130 is activated to replace the hand-feel feedback motor 122 to feedback the force to the steering column 1410.
  • the mechanical damping component package 130 includes a brake disc 131 and a telescopic unit 132, and a friction member 133 is arranged on the telescopic unit 132.
  • the brake disc 131 and the telescopic unit 132 maintain a certain predetermined distance, so that the brake disc 131 and the friction member 133 are separated from each other, and in the second working state, the telescopic unit 132 can drive the friction member 133 to move closer to the brake disc 131 under the drive of the upward controller 121, and generate friction resistance after contacting the brake disc 131.
  • the upward controller 121 can also drive the telescopic unit 132 to dynamically adjust the size of the predetermined distance according to the hand-feel feedback torque transmitted by the original hand-feel feedback motor 122, so that a friction resistance simulating the hand-feel feedback torque can be generated between the friction member 133 and the brake disc 131, so as to avoid idling or setbacks when the main road hand-feel feedback control system switches to the backup hand-feel feedback control system, which may scare or make the driver at a loss.
  • the setting positions of the brake disc 131 and the telescopic unit 132 of the mechanical damping component package 130 can be interchanged while maintaining a predetermined distance without being affected by the friction resistance generated therebetween.
  • the telescopic unit 132 when the brake disc 131 is disposed on the column 111 of the steering column 1410, the telescopic unit 132 is disposed on the housing 112 of the steering column 1410. Alternatively, the brake disc 131 is disposed on the column 111, and the brake disc 131 is disposed on the housing 112.
  • the telescopic unit 132 may be configured to adjust the predetermined distance by the piston movement of the piston 1321 and the piston cylinder 1322, or the friction member 133 may be disposed on the rod body, and the predetermined distance may be adjusted by the rotation motor driving the rod body to perform linear movement.
  • the telescopic unit 132 includes the piston 1321 and the piston cylinder 1322 as an example, but is not limited thereto.
  • the telescopic unit 132 is disposed on the column 111 of the steering column 1410 and is electrically connected to the upward turning controller 121.
  • the brake disc 131 of the mechanical damping assembly 130 is sleeved on the column 111 of the steering column 1410, and the telescopic unit 132 is disposed outside the steering column 1410 near the brake disc 131.
  • the telescopic unit 132 includes a piston 1321, a piston cylinder 1322, and a bracket 1323, wherein the piston cylinder 1322 is disposed on the bracket 1323, and is disposed at an appropriate position in the vehicle body through the bracket 1323.
  • the upward controller 121 drives the piston 1321 to drive the friction member 133 toward the brake disc 131, and controls the predetermined distance to adjust the force of the friction member 133 acting on the brake disc 131, thereby generating different friction resistances between the two and simulating a feedback force similar to the hand-feel feedback torque.
  • the wire-controlled steering device 10 provided in the embodiment of the present application can be configured in the wire-controlled steering system 190 of the vehicle as a part of the main road feel feedback control system MS and a part of the backup feel feedback control system BS.
  • the wire-controlled steering device 10 also includes a first lower steering control module 140, which is electrically connected to the upper steering control module 120, and is used together with the upper steering control module 120 as a component of the main road feel feedback control system MS.
  • the wire-controlled steering device 10 also includes a second lower steering control module 150, which is electrically connected to the upper steering control module 120, the first lower steering control module 140 and the mechanical damping component 130, and is used together with the mechanical damping component 130 as a component of the backup feel feedback control system BS.
  • the main tactile feedback control system MS and the backup tactile feedback control system BS can respectively use their own corresponding power supplies, namely the first power supply 30 and the second power supply 40, so that when a power supply failure occurs in one of the power supplies, switching can be performed between the main tactile feedback control system MS and the backup tactile feedback control system BS, thereby ensuring stable and reliable operation of the wire-controlled steering system 190.
  • the steer-by-wire system 190 is also provided with a controller 50, which is electrically connected to the upper steering control module 120 via a first controller area network (CAN) bus (hereinafter referred to as the first bus CAN1), and is electrically connected to the second lower steering control module 150 via a second controller area network bus (hereinafter referred to as the second bus CAN2).
  • CAN controller area network
  • the first sensor 113 provided on the steering column 1410 of the steer-by-wire device 10 is electrically connected to the upper steering control module 120
  • the second sensor 114 is electrically connected to the second lower steering control module 150, which are used to send the detected steering angle information to the upper steering control module 120 and the second lower steering control module 150, respectively.
  • the lower steering control module is provided with a steering execution motor and a lower steering controller, wherein the steering execution motor drives the steering wheel through the meshing of the rack 60, and a motor rotor position sensor is provided in the steering execution motor to cooperate with or replace the third sensor 115 to perform the work of detecting the steering angle to obtain the steering angle information.
  • the construction cost of the wire control steering system can also be further reduced.
  • the first lower steering control module 140 includes a first lower turn controller 141 and a first steering execution motor 142.
  • the first lower turn controller 141 is electrically connected to the first power supply 30, and communicates with the upper turn controller 121 of the upper steering control module 120 through the first private bus CAN3 (or optical coupler, serial port).
  • the first steering execution motor 142 is electrically connected to the first lower turn controller 141, and is provided with a first motor rotor position sensor 143.
  • the second lower steering control module 150 includes a second lower turn controller 151 and a second steering execution motor 152.
  • the second lower turn controller 151 is electrically connected to the second power supply 40, and communicates with the first lower turn controller 141 of the first lower steering control module 140 through the second private bus CAN4 (or optical coupler, serial port), and communicates with the controller 50 through the second bus CAN2.
  • the second steering execution motor 152 is electrically connected to the second lower turn controller 151, and is provided with a second motor rotor position sensor 153.
  • the steering column 1410 of the steer-by-wire device 10 is connected between the steer-by-wire steering wheel 20 and the rack 60 for driving the driving wheel, and obtains the working state of the column 111 through the first motor rotor position sensor 143 and the second motor rotor position sensor 153. In the above manner, the configuration of the general pinAngle sensor is replaced, and the cost can be reduced at the same time.
  • the wire-controlled steering device 10 has two or more working states.
  • the functions of the components of the main road feel feedback control system MS and the backup feel feedback control system BS are all normal, that is, the operating mode of the wire-controlled steering device under normal conditions.
  • the feel feedback work is performed through the main road feel feedback control system MS, wherein the upper steering control module 120 can receive the data information transmitted by the first bus CAN1 and the information fed back by various sensors from the controller 50, such as the steering angle information fed back by the first sensor 113. Then, the upper steering control module 120 sends the data information and various feedback information to the first lower steering control module 140 through the first private bus CAN3.
  • the first downward controller 141 drives the first steering execution motor 142 to execute the steering action, and feeds back the hand-feel feedback torque to the upper steering control module 120 through the first private bus CAN3, and the upward controller 121 drives the hand-feel feedback motor 122 to output the hand-feel feedback torque to the steering column 1410, so as to transmit it to the wire-controlled steering wheel 20 through the steering column 1410, so that the user can feel the feedback force of the wire-controlled steering wheel 20.
  • the mechanical damping component 130 Since no component failure or malfunction occurs in this normal working state, the mechanical damping component 130 is in a backup state, and its telescopic unit 132 is controlled by the upward controller 121 to maintain the piston 1321 in the initial state in the piston cylinder 1322, so that the friction member 133 and the brake disc 131 are separated. At this time, the mechanical damping component 130 and the column 111 of the steering column 1410 are in a clutch state, so the driver's hand-feel feedback force is completely provided by the hand-feel feedback motor 122.
  • the wire-controlled steering device of the embodiment of the present application can have the following several tactile feedback methods to provide real or simulated tactile feedback force to the steering column. These methods include: in a first working state, enabling the upper steering control module, disabling the mechanical damping component, and transmitting the tactile feedback torque to the steering column through the upper steering control module (S101); and when at least a part of the upper steering control module is disabled (that is, it loses its function and cannot work normally), enabling the mechanical damping component to enter the second working state, and transmitting friction resistance to the steering column through the mechanical damping component instead of the tactile feedback torque (S102).
  • these methods include: in a first working state, enabling the upper steering control module, disabling the mechanical damping component, and transmitting the tactile feedback torque to the steering column through the upper steering control module (S101); and when at least a part of the upper steering control module is disabled (that is, it loses its function and cannot work normally), enabling the mechanical damping component to enter the second working state, and transmitting friction resistance to the steering
  • the method further comprises: in a first working state, transmitting a hand-feel feedback torque to a steering column through a hand-feel feedback motor of an upper steering control module (S201); in a second working state, disabling the hand-feel feedback motor.
  • the telescopic unit of the mechanical damping assembly extends toward the brake disc by a predetermined distance, driving the friction member to contact the brake disc to generate friction resistance (S202); and controlling the telescopic unit to dynamically adjust the predetermined distance through a controller of the upper steering control module (S203).
  • the telescopic unit when the controller is disabled, can be controlled to extend to a predetermined distance through the first lower steering control module, and the predetermined distance is a constant; and when the first lower steering control module is disabled, the telescopic unit can be controlled to extend to a predetermined distance through the second lower steering control module.
  • the upper steering control module 120 can perform self-detection in real time to confirm whether the components related to the hand-feel feedback are failed. If not, it maintains operation in the first working state of the normal hand-feel feedback mode. If so, it switches to the second working state of the abnormal hand-feel feedback mode, and can be adjusted to the third working state or the fourth working state according to the current operation result.
  • the upper steering control module 120 fails, causing the hand-feel feedback motor 122 to fail.
  • the upper turn controller 121 can maintain normal operation.
  • the piston 1321 of the telescopic unit 132 of the mechanical damping component 120 is pushed out from the piston cylinder 1322 by a certain predetermined distance under the action of hydraulic pressure, so that the friction member 133 contacts the brake disc 131 (as shown in Figure 17), thereby generating friction resistance between the two.
  • the magnitude of the hydraulic pressure is controlled by the upper turn controller 121 to dynamically adjust the magnitude of the predetermined distance, thereby controlling the pressure between the friction member 133 and the brake disc 131, so that the friction resistance between the friction member 133 and the brake disc 131 can be dynamically adjusted, so as to achieve the torque that prevents the steering wheel 20 from rotating by wire, and achieve the control feel of simulating the hand-feel feedback motor 122 outputting the hand-feel feedback torque.
  • the upper steering control module 120 fails, causing the hand-feel feedback motor 122 and the upper steering controller 121 to fail.
  • the first lower steering control module 140 obtains fault information through the first private bus CAN3, and sends a switch command to control the piston 1321 of the telescopic unit 132 to be pushed out of the piston cylinder 1322 to a predetermined distance through the relay, so that the friction member 133 contacts the brake disc 131.
  • the hydraulic pressure of the piston cylinder is not adjustable, so that the pressure between the friction member 133 and the brake disc 131 is constant, that is, the hand-feel force is also constant.
  • the controller 50 switches to the backup hand feeling feedback control system BS to replace the main road hand feeling feedback control system MS.
  • the second lower steering control module 150 obtains fault information through the second private bus CAN4, and sends a switch command to control the piston 1321 of the telescopic unit 132 to be pushed out of the piston cylinder 1322 to a predetermined distance through the relay, so that the friction member 133 contacts the brake disc 131.
  • the hydraulic pressure of the piston cylinder is also non-adjustable, so that the pressure between the friction member 133 and the brake disc 131 is constant, thereby transmitting a constant friction resistance to the steering column, so that the driver can maintain the control feel and increase the control confidence and safety.
  • the mechanical damping component is not easily disturbed by the electrical signal and the power supply status.
  • the telescopic unit can be configured to control the maximum value of the hydraulic pressure within the torque limit at which the driver can turn the wire-controlled steering wheel, thereby meeting the hand-feel redundancy while ensuring the reliability of the system itself.
  • the embodiments of the present application further provide a computer-readable storage medium storing a computer program, which can implement the steps in any of the above embodiments when executed.
  • the vehicle includes a processor, which can be configured to execute the method of any of the above embodiments.
  • the processor is configured to control the vehicle's steer-by-wire system to execute the torque output method described in any of the above embodiments.
  • the method in the present application can be implemented in whole or in part by software, hardware, firmware or any combination thereof.
  • software When implemented by software, it can be implemented in whole or in part in the form of a computer program product.
  • the computer program product includes one or more computer programs or instructions, and when the computer program or instruction is loaded and executed on a computer, the process or function described in the present application is executed in whole or in part.
  • the computer can be a general-purpose computer, a special-purpose computer, a computer network, a network device, a user device, a core network device, an OAM or other programmable device.
  • the computer program product may be written in any combination of one or more programming languages to write program codes for performing the operations of the embodiments of the present application, including object-oriented programming languages, such as Java, C++, etc., and conventional procedural programming languages, such as "C" language or similar programming languages.
  • the program code may be executed entirely on the user computing device, partially on the user device, as a separate software package, partially on the user computing device and partially on a remote computing device, or entirely on a remote computing device or server.
  • a computer program or instruction may be stored in a computer-readable storage medium or transmitted from one computer-readable storage medium to another computer-readable storage medium, for example, the computer program or instruction may be transmitted from one website, computer, server or data center to another website, computer, server or data center by wired or wireless means.
  • a computer-readable storage medium may be any available medium that can be accessed by a computer or a data storage device such as a server or data center that integrates one or more available media. Available media may be magnetic media, such as a floppy disk, hard disk, or magnetic tape; may also be optical media, such as a digital video disk; or may be semiconductor media, such as a solid-state drive.
  • the computer-readable storage medium may be a volatile or non-volatile storage medium, or may include both volatile and non-volatile types of storage media.
  • the steps in the methods of the embodiments of the present application can be adjusted in order, combined and deleted according to actual needs, and the technical features recorded in the embodiments can be replaced or combined.
  • the modules and submodules in the devices and terminals of the embodiments of the present application can be combined, divided and deleted according to actual needs.
  • the disclosed terminals, devices and methods can be implemented in other ways.
  • the terminal embodiments described above are only schematic, for example, the division of modules or submodules is only a logical function division, and there may be other division methods in actual implementation, for example, multiple submodules or modules can be combined or integrated into another module, or some features can be ignored or not executed.
  • Another point is that the mutual coupling or direct coupling or communication connection shown or discussed can be an indirect coupling or communication connection through some interfaces, devices or modules, which can be electrical, mechanical or other forms.
  • modules or submodules described as separate components may or may not be physically separated, and the components of the modules or submodules may or may not be physical modules or submodules, that is, they may be located in one place, or they may be distributed on multiple network modules or submodules. Some or all of the modules or submodules may be selected according to actual needs to achieve the purpose of the solution of this embodiment.
  • each functional module or submodule in each embodiment of the present application may be integrated into one processing module, or each module or submodule may exist physically separately, or two or more modules or submodules may be integrated into one module.
  • the above-mentioned integrated modules or submodules may be implemented in the form of hardware or in the form of software functional modules or submodules.
  • the steps of the method or algorithm described in conjunction with the embodiments disclosed herein may be implemented directly by hardware, software units executed by a processor, or a combination of the two.
  • the software units may be placed in a random access memory (RAM), a memory, a read-only memory (ROM), an electrically programmable ROM, an electrically erasable programmable ROM, a register, a hard disk, a removable disk, a CD-ROM, or any other form of storage medium known in the art.

Landscapes

  • Steering Control In Accordance With Driving Conditions (AREA)

Abstract

一种线控转向系统,包括N个用于输出第一扭矩的第一转向组件(201),以及至少一个用于输出第二扭矩的第二转向组件(202),N为大于1的整数;第一转向组件(201),用于接收其他第一转向组件(201)发送的第一信息,以及接收目标第二转向组件(202)发送的第二信息;根据第一信息和第二信息,确定其他第一转向组件(201)的状态;根据其他第一转向组件(201)的状态以及自身状态,确定第一扭矩分配方式,并按照第一扭矩分配方式,输出第一扭矩;目标第二转向组件,用于通过检测其他第一转向组件的状态,生成包含其他第一转向组件状态的第二信息并发送给所述第一转向组件。该线控转向系统具有更高的稳定性和安全性。还包括一种扭矩输出方法、车辆及存储介质。

Description

线控转向系统、扭矩输出方法、车辆及存储介质 技术领域
本申请涉及线控转向技术领域,尤其涉及一种线控转向系统、扭矩输出方法、车辆及存储介质。
发明背景
由于线控转向系统可以不受机械结构的限制,能够实现理论上的任意转向意图,因此线控转向系统被称为目前最先进的转向系统。
但是,线控转向系统的先进性,并不能完全保障转向系统的稳定性和安全性,当线控转向系统故障时,可能引发非常严重的驾驶事故,比如驾驶员完全无法控制车辆转向等。
为了提高线控转向系统的稳定性和安全性,业内提出线控转向系统的冗余备份方案,但是在这些方案中,通常需要由控制器来对相互冗余备份的线控转向系统进行统一的调度和切换控制,这一方面增加了系统复杂度,另一方面,控制器本身也存在发生故障的可能性以及存在决策失误的可能性,因此,现有的线控转向系统的稳定性和安全性依然有待提高。
发明内容
基于上述技术现状,本申请提出一种线控转向系统、扭矩输出方法、车辆及存储介质,能够提高线控转向系统的稳定性和安全性。
本申请第一方面提出一种线控转向系统,该线控转向系统包括N个用于输出第一扭矩的第一转向组件,以及至少一个用于输出第二扭矩的第二转向组件,N为大于1的整数;第一转向组件,用于接收其他第一转向组件发送的第一信息,以及接收目标第二转向组件发送的第二信息;根据第一信息和第二信息,确定其他第一转向组件的状态;根据其他第一转向组件的状态以及自身状态,确定第一扭矩分配方式;根据第一扭矩分配方式以及系统所需的第一扭矩总量,输出第一扭矩;目标第二转向组件是与其他第一转向组件配合工作的第二转向组件;目标第二转向组件,用于通过检测其他第一转向组件的状态,生成包含其他第一转向组件状态的第二信息,并向第一转向组件发送生成的第二信息。
本申请第二方面提出一种扭矩输出方法,该方法应用于线控转向系统,线控转向系统包括N个用于输出第一扭矩的第一转向组件,以及至少一个用于输出第二扭矩的第二转向组件,N为大于1的整数,方法包括:第一转向组件接收其他第一转向组件发送的第一信息;与其他第一转向组件配合的第二转向组件通过检测其他第一转向组件的状态,生成包含其他第一转向组件状态的第二信息,并向第一转向组件发送生成的第二信息;第一转向组件根据第一信息以及第二信息,确定其他第一转向组件的状态;根据其他第一转向组件的状态以及自身状态,确定第一扭矩分配方式;根据第一扭矩分配方式以及系统所需的第一扭矩总量,输出第一扭矩。
本申请第三方面提出另一种扭矩输出方法,该方法应用于线控转向系统的任意一个第一转向组件,线控转向系统包括N个用于输出第一扭矩的第一转向组件,以及至少一个用于输出第二扭矩的第二转向组件,N为大于1的整数,方法包括:接收其他第一转向组件发送的第一信息,以及接收与第一转向组件配合的第二转向组件发送的第二信息;第二信息是与第一转向组件配合的第二转向组件通过检测其他第一转向组件的状态而生成的,第二信息中包含其他第一转向组件的状态;根据第一信息和第二信息,确定其他第一转向组件的状态;根据其他第一转向组件的状态以及自身状态,确定第一扭矩分配方式;根据第一扭矩分配方式以及系统所需的第一扭矩总量,输出第一扭矩。
本申请第四方面提出一种车辆,该车辆包括上述的线控转向系统;或者,该车辆被配置为实现上述的扭矩输出方法。
本申请第五方面提出一种路感反馈力矩控制系统,该系统包括传感单元,用于获取转向齿条移动时带动扭杆发生扭转时的扭矩信号;反馈力矩计算模块,用于获取基础力矩,用于根据扭矩信号获取补偿力矩,还用于基于基础力矩和补偿力矩,获取目标反馈力矩。
本申请第六方面提出一种路感反馈力矩控制方法,该方法包括当车辆中与转向齿条连接的转向轮产生动作时,根据转向齿条移动过程而驱动扭杆发生扭转的扭转角度,确定补偿力矩;确定基础力矩;基于补偿力矩和基础力矩,确定目标反馈力矩。
本申请第七方面提出一种路感反馈力矩控制装置,该装置包括第一确定模块,用于当车辆中与转向齿条连接的转向轮产生动作时,根据转向齿条移动过程而驱动扭杆发生扭转的扭转角度,确定补偿力矩;第二确定模块,用于确定基础力矩;校正模块,用于基于补偿力矩和基础力矩,确定目标反馈力矩。
本申请第八方面提出一种传感单元,该传感单元包括与齿条啮合的输入轴;输入轴通过扭杆与输出轴连接;其中,输出轴为与外壳连接的惯性滑块,输入轴与轴承连接;扭杆与扭杆角度传感器连接,当齿条移动时用于采集扭杆的扭转信号,以便基于扭转信号确定目标反馈力矩。
本申请第九方面提出一种车辆,包括:如上述第九方面所述的传感单元。
本申请第十方面提出一种线控转向装置,包括转向柱;上转向控制模块,连接于转向柱,并在第一工作状态下被致能,以对转向柱传递手感反馈力矩;以及机械阻尼组件,至少一部分连接于转向柱,机械阻尼组件在第一工作状态下被禁能,以及在上转向控制模块的至少一部分失能的第二工作状态下被致能,以对转向柱传递摩擦阻力代替手感反馈力矩。
本申请第十一方面提出一种线控转向装置的手感反馈方法,包括在第一工作状态下,致能上转向控制模块,禁能机械阻尼组件,通过上转向控制模块对转向柱传递手感反馈力矩;以及当上转向控制模块的至少一部分失能,致能机械阻尼组件以进入第二工作状态,通过机械阻尼组件对转向柱传递摩擦阻力代替手感反馈力矩。
本申请第十二方面提出一种车辆,包括:车身和电源;车身上安装有存储器、处理器;存储器,用于存储一条或多条计算机指令;处理器用于执行一条或多条计算机指令以用于执行上述第六方面以及第十一方面所述的方法中的步骤。
本申请第十三方面提出一种存储介质,该存储介质上存储有计算机程序,计算机程序被处理器运行时,至少辅助实施上述的第二方面、第三方面、第六方面以及第十一方面所述的方法。
本申请第十四方面提出一种存储有计算机程序产品,计算机程序产品被执行时能够实现如上述第二方面、第三方面、第六方面以及第十一方面所述的方法中的步骤。
本申请实施例提出的线控转向系统不仅实现了转向组件的冗余备份,而且,系统中的转向组件交互检测组件故障和健康状态,并且各组件自主决策调整输出扭矩,最大程度上精简了系统结构。同时,该线控转向系统中的各组件采用交叉诊断机制进行组件故障和健康状态检测,能够保证该去中心化的多组件系统对单一组件的故障和健康状态检测准确性。
附图简要说明
为了更清楚地说明本申请实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据提供的附图获得其他的附图。
图1为本申请实施例提供的一种线控转向系统的结构示意图。
图2为本申请实施例提供的另一种线控转向系统的结构示意图。
图3为本申请实施例提供的又一种线控转向系统的结构示意图。
图4为本申请实施例提供的再一种线控转向系统的结构示意图。
图5为本申请实施例提供的线控转向系统的内部具体结构示意图。
图6为本申请实施例提供的第一组件和第二组件交互确定两者的输出扭矩分配比例的处理过程示意图。
图7为本申请实施例提供的一种扭矩输出方法的流程示意图。
图8为本申请实施例提供的另一种扭矩输出方法的流程示意图。
图9为本申请实施例提供的一种车辆线控转向系统的结构示意图。
图10a为本申请实施例提供的一种路感反馈力矩控制系统的结构示意图。
图10b为本申请实施例提供的一种路感反馈力矩控制系统的机械结构示意图。
图11为本申请实施例提供的一种制动控制方法的流程示意图。
图12为本申请实施例提供的传感单元的结构示意图。
图13为本申请实施例提供的车辆的结构示意图。
图14为本申请实施例的线控转向装置的侧视图。
图15为本申请实施例的线控转向装置的使用状态示意图。
图16为本申请另一实施例的线控转向装置的侧视图。
图17为本申请另一实施例的线控转向装置的使用状态示意图。
图18为本申请实施例的线控转向系统的结构示意图。
图19为本申请实施例的线控转向系统的方块示意图。
图20为本申请实施例的手感反馈方法的流程图。
图21为本申请另一实施例的手感反馈方法的流程图。
实施本发明的方式
本申请实施例适用于线控转向技术的应用场景中,具体可以应用于搭载线控转向技术的任意装置,比如可应用于采用线控转向技术的任意类型的移动载体中。该移动载体,包括但不限于机动车、飞行器、船舶、潜水器等。
由于线控转向系统不受机械结构的限制,可以实现理论上的任意转向意图,因此线控转向系统被称为目前最先进的转向系统,并且被应用到汽车、飞机、船舶、潜艇等移动载体的驾驶系统中。
但是,线控转向系统的先进性并不必然能够保证系统的稳定性和安全性。相反,线控转向系统的电子元件、信号链路和运算模块,相比于机械转向系统更加脆弱,发生故障的概率更高。
为了提高线控转向系统的稳定性和安全性,业内提出线控转向系统的冗余备份方案,但是在这些方案中,通常需要由控制器来对相互冗余备份的线控转向系统进行集中调度和切换控制,这一方面增加了系统复杂度,另一方面,控制器本身也存在发生故障的可能性以及存在决策失误的可能性,因此,现有的线控转向系统的稳定性和安全性依然有待提高。
基于上述技术现状,本申请实施例提出一种新的线控转向系统,并且提出了适用于该线控转向系统的冗余切换控制方案,采用本申请实施例提出的线控转向系统以及相应的冗余切换控制方案,能够进一步提高线控转向系统的稳定性和安全性。
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
图1示出了线控转向系统的一般性结构示意图。参见图1所示,线控转向系统通常由上转向组件001和下转向组件002构成,其中,上转向组件001与方向盘管柱105连接或集成,用于感应方向盘101的转动,以及基于感应到的方向盘101转动动作生成转向信号,并将该转向信号发送给下转向组件002。同时,在上转向组件001中还设置有手感反馈电机,该电机与方向盘管柱传动连接,能够在用户转动方向盘101的同时,向方向盘管柱105输出转向反馈扭矩,增强用户的转向手感。
下转向组件002中包括转向电机,该转向电机与转向机构的转向齿条104传动连接,当下转向组件002接收到上转向组件001发来的转向信号时,按照该转向信号驱动转向电机,输出转向扭矩。相应的,该转向电机可驱动转向齿条104,该转向齿条104即可带动转向机构进行转向。同时,在下转向组件002中也设置有转向角度传感器,用于感应转向角度,该转向角度信息同样会反馈至上转向组件001,上转向组件001综合该转向角度以及方向盘转角,来确定输出的转向反馈扭矩的大小,从而为用户提供更加真实的转向手感。
图2为本申请实施例提出的一种线控转向系统的结构示意图。该线控转向系统可应用于机动车、飞行器、船舶、潜水器等具有驾驶转向需求的移动载体中,并且,该线控转向系统的具体结构,以及各部分结构的形状、位置、各部分结构之间的连接关系、连接方式,均可以适配移动载体的具体结构和空间布置而灵活调整,这些灵活调整的方案,均不脱离本申请实施例所介绍的线控转向系统的本质,均在本申请实施例保护范围之内。
参见图2所示,本申请实施例提出的线控转向系统包括N个用于输出第一扭矩的第一转向组件201,以及至少一个用于输出第二扭矩的第二转向组件202,N为大于1的整数。
其中,上述的第一扭矩和第二扭矩,是指线控转向系统中所输出的两种不同的扭矩,比如第一扭矩为转向反馈扭矩、第二扭矩为转向扭矩,或者,第一扭矩为转向扭矩、第二扭矩为转向反馈扭矩。
线控转向系统的主要功能,就是通过输出上述的第一扭矩和第二扭矩,实现转向和转向手感反馈功能。对线控转向系统设置冗余备份的目的,也是为了使线控转向系统更加稳定地输出上述的第一扭矩和第二扭矩。为了实现上述的冗余备份目的,本申请实施例在线控转向系统中设置N个用于输出第一扭矩的第一转向组件,以及至少一个用于输出第二扭矩的第二转向组件。
基于上述的系统结构设置,该线控转向系统有多组第一转向组件输出第一扭矩,从而实现了第一扭矩的冗余备份输出,同时,当第二转向组件有多组时,还能够实现第二扭矩的冗余备份输出,即,该线控转向系统能够实现第一扭矩的冗余备份输出,以及能够实现第二扭矩的冗余备份输出,提高了系统稳定性和安全性。
进一步的,在上述的线控转向系统中,各个第一转向组件之间直接或间接通信连接,各个第二转向组件之间直接或间接通信连接,以及,第一转向组件和第二转向组件之间,直接或间接通信连接,从而使得各个第一转向组件和各个第二转向组件能够通过直传或透传的方式实现数据交互。
通常情况下,第一转向组件和第二转向组件之间具有对应关系,即,一个第一转向组件与一个第二转向组件组合,实现第一扭矩和第二扭矩的输出。也就是说,对于具有组合关系的一个第一转向组件和一个第二转向组件来说,第一转向组件根据与之配合的第二转向组件的动作,输出第一扭矩,以及,第二转向组件根据与之配合的第一转向组件的动作,输出第二扭矩。
因此,作为一种可选的系统结构,上述的第一转向组件与第二转向组件的数量相同,并且第一转向组件与第二转向组件之间一一对应,形成一对一的配合关系。
示例性的,参见图3所示,本申请实施例提出的线控转向系统包括电性连接的第一转向组件100和第一转向组件110,以及,电性连接的第二转向组件200和第二转向组件210,同时,第一转向组件100与第二转向组件200电性连接,第一转向组件110和第二转向组件210电性连接。
上述的第一转向组件100和第一转向组件110分别用于输出第一扭矩,在图3所示的实施例中,第一转向组件100和第一转向组件110为用于输出转向反馈扭矩的上转向组件。
上述的第二转向组件200和第二转向组件210分别用于输出第二扭矩,在图3所示的实施例中,第二转向组件200和第二转向组件210为用于输出转向扭矩的下转向组件。
上述的电性连接,以实现双方的电信号传输为目的,可以是通过任意类型的信号线物理连接,也可以是通过基于任意无线通讯方式的无线信号链路连接。
在上述的第一转向组件100、第一转向组件110、第二转向组件200和第二转向组件210中,分别具有感应装置、控制装置和旋转电机,从而能够实现动作感应、控制决策以及扭矩输出。
在本申请实施例中,上述的第一转向组件100和第一转向组件110互为冗余备份,两者均能够感应方向盘管柱的转角,以及能够向方向盘管柱输出转向反馈扭矩。并且,两者能够通过两者之间的信号链路实现数据交互,例如实现传感器信号的交互、控制信号的交互等。
上述的第二转向组件200和第二转向组件210互为冗余备份,两者均能够向转向机构的转向齿条输出转向扭矩,并且能够感应转向齿条的位移。以及,两者能够通过两者之间的信号链路实现数据交互,例如实现传感器信号的交互、控制信号的交互等。
第一转向组件100与第二转向组件200电信号连接,使得两者能够进行数据交互,具体是,第一转向组件100能够将基于感应到的方向盘转角信息而生成的转向信号,发送给第二转向组件200,从而使第二转向组件200能够基于该转向信号执行转向动作;第二转向组件200能够将基于感应到的转向齿条的位移而确定的转向角度信息,发送给第一转向组件100,从而使第一转向组件100能够基于该转向角度信息输出合适的转向反馈扭矩。
同理,第一转向组件110与第二转向组件210电信号连接,使得两者能够进行数据交互,具体是,第一转向组件110能够将基于感应到的方向盘转角信息而生成的转向信号,发送给第二转向组件210,从而使第二转向组件210能够基于该转向信号执行转向动作;第二转向组件210能够将基于感应到的转向齿条的位移而确定的转向角度信息,发送给第一转向组件110,从而使第一转向组件110能够基于该转向角度信息输出合适的转向反馈扭矩。
可以理解,本申请实施例提出的线控转向系统,实现了转向组件的冗余备份,从而提高了系统稳定性和安全性。
常规的冗余线控转向系统通常是采用主备工作模式,即,在正常情况下,一套线控转向系统作为主系统工作,而另一套冗余的线控转向系统则作为备用系统处于待机状态,当主系统发生故障时,将备用系统切换为主系统进行工作,而原来的主系统则切换为备用系统。这种工作模式对单系统的损耗较大,并且在主备切换时会有延时,并且会让用户感受到强烈的顿挫感。
本申请实施例提出的上述线控转向系统,则采用配合工作模式。即,在正常情况下,第一转向组件100和第一转向组件110同步工作,两者配合输出系统所需的第一扭矩。例如,假设第一转向组件100和第一转向组件110用于输出转向反馈扭矩。在某一时刻下,系统所需的转向反馈扭矩为K,则第一转向组件100输出K/2的转向反馈扭矩,同时,第二转向组件110输出K/2的转向反馈扭矩,两者配合实现转向反馈扭矩K的输出。
同理,正常情况下,第二转向组件200和第二转向组件210同步工作,两者配合输出系统所需的第二扭矩。例如,假设第二转向组件200和第二转向组件210用于输出转向扭矩。在某一时刻下,系统所需的转向扭矩为N,则第二转向组件200输出N/2的转向扭矩,同时,第二转向组件210输出N/2的转向扭矩,两者配合实现转向扭矩N的输出。
本申请实施例设定,相互配合输出扭矩的组件之间,具备配合关系。在上述的配合关系下,当配合输出同种扭矩的组件中的任意一个出现故障时,由与其配合的其他组件承担故障组件未能实现的扭矩输出。
比如,在第一转向组件100输出K/2的转向反馈扭矩,同时,第一转向组件110输出K/2的转向反馈扭矩的工作状态下,如果第一转向组件100由于故障只能输出K/4的转向反馈扭矩,则第一转向组件110提升转向反馈扭矩输出至3K/4,从而使第一转向组件100和第一转向组件110配合输出的转向反馈扭矩依然为K;如果第一转向组件100彻底失效无法输出转向反馈扭矩,则第一转向组件110提升转向反馈扭矩输出至K,从而使第一转向组件100和第一转向组件110配合输出的转向反馈扭矩保持为K。
本申请实施例使上述的线控转向系统工作于配合模式,能够将扭矩输出任务分摊到多个组件中,从而能够减轻单一组件的工作压力,同时,基于这种配合工作模式,当其中一方发生故障进行扭矩输出调整时,调整更加及时、扭矩输出变化更加平缓,能够显著降低顿挫感。
与常规的通过单独的控制器控制冗余的线控转向系统的主备切换方式不同,本申请实施例由相互备份的组件交叉检测组件故障,以及自主进行扭矩输出调整。
具体而言,本申请实施例为上述的线控转向系统的各个组件之间设置了交叉检测机制,即各组件之间相互检测健康状态,从而确定相互配合输出扭矩的组件之间是否需要调整扭矩输出比例。
基于图2所示的系统架构,直接相连的组件之间进行健康状态互检,并且,各个组件将获得的检测结果进行交互,即,对于系统中的任一组件来说,其对与其直接相连的组件的健康状态进行检测,并将获得的检测结果发送给与其直接相连的其他组件,以及,该组件对接收的来自其他组件的检测结果进行转发。经过上述的健康状态互检以及检测结果交互过程,系统中的任一组件均可以获取到系统中的每一个组件的健康状态检测结果,以及获取到不同组件对同一组件的健康状态检测结果。
对于图2所示的线控转向系统中的任意一个第一转向组件,其向其他的第一转向组件发送第三信息,该第三信息用于触发其他第一转向组件向发出该第三信息的第一转向组件反馈第一信息。第一转向组件根据该其他第一转向组件是否返回第一信息,来确定该其他第一转向组件的状态。比如,若该其他第一转向组件返回第一信息,则确定该其他第一转向组件正常;若该其他第一转向组件未返回第一信息,则确定该其他第一转向组件故障。
将与上述的其他的第一转向组件配合工作的第二转向组件,作为目标第二转向组件。
与上述的信息交互过程相同的,目标第二转向组件也向该其他的第一转向组件发送第三信息,该第三信息用户触发该其他第一转向组件向该目标第二转向组件发送第一信息。目标第二转向组件同样根据该其他的第一转向组件是否返回第一信息,来确定该其他第一转向组件的状态。
当目标第二转向组件通过上述方式检测确定其他第一转向组件的状态时,生成包含该其他第一转向组件的状态的第二信息,并向第一转向组件发送生成的第二信息。其中,目标第二转向组件向第一转向组件发送第二信息,可以是直接发送给第一转向组件,也可以是通过其他转向组件(其他第一转向组件或其他第二转向组件)转发至第一转向组件。
上述的第一信息和第三信息,可以任意设定的信息,比如可以是预先设定的具有对应关系的校验码。
在一些实施方式中,上述的线控转向系统中的各个组件可以被设置为按照特定周期向其他组件发送第一信息。此时,对于上述的第一转向组件和上述的目标第二转向组件而言,可以通过判断在上述特定周期内是否接收到其他组件发送的第一信息,来确定其他组件的状态。比如,若在特定周期内接收到其他组件发送的第一信息,则可以确定其他组件正常;若在特定周期内未接收到其他组件发送的第一信息,则可以确定其他组件故障。
对于上述的第一转向组件来说,其可以接收其他第一转向组件发送的第一信息,以及接收目标第二转向组件发送的第二信息。
然后,该第一转向组件根据接收的第一信息和第二信息,确定其他第一转向组件的状态。
示例性的,第一转向组件根据第一信息确定其他第一转向组件的状态,并作为第一状态。以及,第一转向组件确定第二信息中包含的该其他第一转向组件的状态。
若第二信息中包含的该其他第一转向组件的状态与上述的第一状态相同,则第一转向组件可以确定该其他第一转向组件的状态为第一状态。
若第二信息中包含的该其他第一转向组件的状态与上述的第一状态不同,则第一转向组件不能确定其他第一转向组件的状态是否为第一状态,即,该其他第一转向组件的状态不确定。
按照上述方式,当第一转向组件确定其他第一转向组件的状态时,根据其他第一转向组件的状态以及自身状态,确定第一扭矩分配方式,并根据第一扭矩分配方式以及系统所需的第一扭矩总量,输出第一扭矩。
具体而言,第一转向组件在确定第一扭矩分配方式时,根据配合输出第一扭矩的各个第一转向组件的状态,来确定第一扭矩分配方式。该第一扭矩分配方式,表示各个第一转向组件输出第一扭矩的比例,该比例为系统所需的第一扭矩总量的比例。
其中,在确定各个第一转向组件输出第一扭矩的比例时,采用组件状态越好,则对应的输出第一扭矩的比例越高,组件状态越差,则对应的输出第一扭矩的比例越低的原则。
当确定第一扭矩分配方式后,根据第一扭矩分配方式以及系统所需的第一扭矩总量,确定该第一转向组件需要输出的第一扭矩的量,比如,从第一扭矩分配方式中确定出第一转向组件需要输出的第一扭矩的比例,然后用该比例乘以系统所需的第一扭矩的总量,得到该第一转向组件需要输出的第一扭矩的量。
然后第一转向组件按照需要输出的第一扭矩的量输出第一扭矩。
基于上述处理,本申请实施例提出的线控转向系统不仅实现了转向组件的冗余备份,而且,各组件之间交叉判断其他组件的状态,然后根据各组件的状态来确定扭矩分配方式,进而可以按照扭矩分配方式进行扭矩输出。该扭矩输出调整方式更加准确地识别了组件健康状态,可以有效避免由于对组件健康状态的误判导致不合理的扭矩输出调整,保证了系统扭矩输出的稳定性。
作为更具体的示例,以图3所示的线控转向系统结构为例,对于上述的第一转向组件100、第一转向组件110、第二转向组件200和第二转向组件210中的任意一个,可以将其称为第一组件(例如第一转向组件100),将与其配合输出扭矩的组件称为第二组件(例如第一转向组件110),将与其直连的组件称为第三组件(例如第二转向组件200),将与第三组件直连的另一个组件称为第四组件(例如第二转向组件210)。
第一组件可以对第二组件的健康状态进行检测,同时,第三组件也可以对第二组件的健康状态进行检测,并且,经过检测结果交互过程,第一组件能够获取到第三组件对第二组件的健康状态检测结果,同理,第三组件能够获取到第一组件对第二组件的健康状态检测结果。
比如,第一组件向第二组件发送第三信息,以及,第三组件向第二组件发送第三信息,该第三信息用于触发第二组件向发送第三信息的组件反馈第一信息。
第一组件和第三组件分别根据第二组件是否返回第一信息,确定第二组件的健康状态。同时,第三组件在确定第二组件的健康状态后,生成包含第二组件的健康状态的第二信息并发送给第一组件,同理,第一组件也生成包含第二组件的健康状态的信息并发送给第三组件。
对于第一组件而言,其可以根据接收的来自第二组件的第一信息以及来自第三组件的第二信息,确定第二组件的健康状态。
若第一组件根据接收的第一信息确定第二组件处于第一状态,同时,基于接收的第二信息,也确定第二组件处于第一状态,则此时可以确定第二组件所处的健康状态确实为第一状态。
例如,第一组件通过与第二组件进行通信交互,确定对第二组件的第一检测结果。同时,第三组件也与第二组件进行通信交互,确定对第二组件的第二检测结果。
然后,第一组件和第三组件通过中转组件实现第一检测结果和第二检测结果的交互,即,该第一检测结果通过中转组件发送至第三组件,该第二检测结果通过中转组件发送至第一组件。该中转组件,可以是与第一组件和/或第三组件直接相连的组件,例如可以是第三组件或第二组件。
第一组件确定上述第一检测结果以及接收到来自第三组件的第二检测结果后,对第一检测结果和第二检测结果进行对比,若第一检测结果和第二检测结果均表示第二组件处于第一状态,则第一组件确定第二组件处于第一状态。
在这种情况下,第一组件按照第二组件处于第一状态来调整其输出扭矩,具体是,第一组件根据第二组件的状态以及自身状态,确定第一扭矩分配方式,也就是确定转向反馈扭矩分配方式。
然后,第一组件按照该转向反馈扭矩分配方式,以及系统所需的转向反馈扭矩总量,输出转向反馈扭矩。
例如,假设第一组件确定第二组件完全失效,即无法输出转向反馈扭矩,则反馈扭矩分配方式为第一组件输出100%的转向反馈扭矩,此时,第一组件全量输出系统所需的全部转向反馈扭矩。
假设第二组件的转向反馈扭矩输出能力减半,则反馈扭矩分配方式为第一组件输出3/4的转向反馈扭矩,而第二组件输出1/4的转向反馈扭矩,此时,第一组件输出系统所需的全部转向反馈扭矩的3/4,而第二组件输出系统所需的全部转向反馈扭矩的1/4。
基于上述处理,第一组件能够根据第二组件的健康状态,确定第二组件的工作能力,进而以此为依据调整自身的扭矩输出,从而保证在第二组件的健康状态发生变化的情况下,第一组件和第二组件输出的总扭矩满足转向系统所需扭矩总量。
另外,第一组件以自身对第二组件的健康检测结果,以及其他组件对第二组件的健康检测结果为依据,判断第二组件的健康状态,这样能够保证对第二组件的健康状态的识别准确度,避免由于对第二组件的健康状态检测失误影响系统扭矩输出的稳定性。
作为一种特别的示例,第一组件和第三组件分别通过约定的校验码与第二组件进行通信交互,检测第二组件是否失效,若第二组件无法反馈正确的校验码,则可以确定第二组件失效。
经过上述的通信交互过程,第一组件能够确定对第二组件的第一检测结果。同时,第三组件能够确定对第二组件的第二检测结果。
在与第二组件配合的第一组件,以及与第二组件直连的第三组件均确认第二组件失效的情况下,第一组件输出目标扭矩,该目标扭矩为第一组件和第二组件配合输出扭矩时所输出的总扭矩。
其中,第二组件失效,是指第二组件彻底无法工作,具体可以是第二组件的控制器故障,或者第二组件的控制器与外界的通讯链路中断等。
对于第一组件而言,当其确认与其配合的第二组件失效时,并不是直接接替第二组件的全部工作,而是进一步验证第三组件是否也确认第二组件失效,例如验证第三组件对第二组件的健康状态检测结果是否也表示第二组件失效,若第三组件也确认第二组件失效,第一组件才确认第二组件真正失效,此时第一组件将输出扭矩调整为第一组件和第二组件配合输出的总扭矩,即第一组件完全接替第二组件的工作。
可见,本申请实施例提出的线控转向系统由各组件交互检测组件故障和健康状态,并且各组件自主决策调整输出扭矩,最大程度上精简了系统结构。同时,该线控转向系统中的各组件采用交叉诊断机制进行组件故障和健康状态检测,能够保证该去中心化的多组件系统对单一组件的故障和健康状态检测准确性。
下面,对本申请实施例提出的线控转向系统的具体结构,以及应用于该线控转向系统的线控转向控制方法进行具体介绍。
参见图4所示,该线控转向系统的任意第一转向组件,比如第一转向组件100和第一转向组件110,均包括第一控制器1101,以及与第一控制器1101连接的第一传感器1102和第一电机1103。
其中,第一传感器1102用于感应第一电机1103的转子位置,以及感应方向盘转角,其具体可以采用任意的可用于感应电机转子位置和方向盘转角的传感器,可以是一个传感器实现,也可以是多个传感器联合实现。
第一电机1103用于输出转向反馈扭矩,可以采用任意的电机实现。
第一控制器1101可以是任意类型的具有数据处理和运算功能的控制装置,其能够基于接收的传感器信号,计算第一电机1103应当输出的转向反馈扭矩大小,并根据该转向反馈扭矩大小控制第一电机1103进行扭矩输出。
可以理解,任意两个第一转向组件,比如第一转向组件100和第一转向组件110中的第一控制器1101、第一传感器1102和第一电机1103的功能是完全一致的,因此两者能够形成相互冗余备份。
该线控转向系统的任意第二转向组件,比如第二转向组件200和第二转向组件210,均包括第二控制器2001,以及与第二控制器2001连接的第二传感器2002和第二电机2003。
其中,第二传感器2002用于感应转向齿条位移,和第二电机2003的转子位置,其具体可以采用任意的可用于感应电机转子位置和转向齿条位移的传感器,可以是一个传感器实现,也可以是多个传感器联合实现。
第二电机2003用于输出转向扭矩,可以采用任意的电机实现。
第二控制器2001可以是任意类型的具有数据处理和运算功能的控制装置,其能够基于接收的传感器信号,计算第二电机2003应当输出的转向扭矩大小,并根据该转向扭矩大小控制第二电机2003进行扭矩输出。
可以理解,任意两个第二转向组件,比如第二转向组件200和第二转向组件210中的第二控制器2001、第二传感器2002和第二电机2003的功能是完全一致的,因此两者能够形成相互冗余备份。
当上述线控转向系统应用于车辆时,相互配合的第一转向组件和第二转向组件中的控制器,通过单独的整车网络连接。比如第一转向组件100中的第一控制器1101与第二转向组件200中的第二控制器2001,通过整车CAN1网络连接,第一转向组件110中的第一控制器1101与第二转向组件210中的第二控制器2001,通过整车CAN2网络连接,从而实现整车通讯冗余。
整车CAN1网络接整车电源401,整车CAN2网络接整车电源402,从而实现供电冗余。
同时,配合输出同种扭矩的转向组件中的控制器通过串口连接,比如,第一转向组件100中的第一控制器1101和第一转向组件110中的第一控制器1101通过串口连接,第二转向组件200中的第二控制器2001和第二转向组件210中的第二控制器2001通过串口连接,从而分别实现转向组件的冗余备份。
基于上述的信号链路连接方式,上述的第一控制器1101和第二控制器2001接收的传感器信号,并不仅限于自身所在组件的传感器信号,而是可以通过系统信号链路获取链路上任意传感器采集的传感器信号。
同时,基于上述的信号链路连接方式,上述的各组件之间交叉诊断健康状态以及调整输出扭矩的决策,均由各组件中的控制器执行。
基于上述的线控转向系统结构,各组件之间可以相互透传或直传传感器信号。比如,在与第二组件直连的第一组件和第三组件均确认第二组件失效的情况下,第三组件获取第一组件采集的传感器信号,并基于该第一组件采集的传感器信号输出扭矩。
该第二组件,可以是第一转向组件100、第一转向组件110、第二转向组件200和第二转向组件210中的任意一个。
以第一转向组件100作为第二组件为例,当第一转向组件110(第一组件)和第二转向组件200(第三组件)均确认第一转向组件100失效时,第二转向组件200无法获取第一转向组件100输出的转向信号,此时,第二转向组件200通过第二转向组件210获取由第一转向组件110输出的转向信号,并基于该转向信号确定第二转向组件200应当输出的扭矩大小,进而按照该扭矩大小输出扭矩。
同理,基于上述的线控转向系统结构,当第一组件中的传感器故障的情况下,第一组件可以从与第一组件配合的第二组件中获取传感器信号。
以第一转向组件100作为第一组件为例,若第一转向组件100中的传感器发生故障,则第一转向组件100中的第一控制器1101与第一转向组件110中的第一控制器1101进行通信,获取由第一转向组件110中的传感器采集的传感器信号。
同理,若整车CAN总线的信号丢失一路,则可以通过第一转向组件100与第一转向组件110之间的串口,或者通过第二转向组件200与第二转向组件210之间的串口,透传获取另一路CAN总线信号。
由此可见,本申请实施例提出的线控转向系统实现了电源、整车通讯、线控转向各组件的全面冗余备份,具有更强的容错性能和鲁棒性。
作为一种更加优选的实施方式,转向系统中的任意两个第一转向组件共用同一个六相电机,和/或,当第二转向组件的数量大于1个时,任意两个第二转向组件共用同一个六相电机,从而实现电机复用。
参见图5所示,第一转向组件100和第一转向组件110共用同一个六相电机M1,其中,该六相电机M1的其中三相绕组,即第一三相绕组,作为第一转向组件100的第一电机1103,该六相电机M1的另外三相绕组,即第二三相绕组,作为第一转向组件110的第一电机1103。
同理,第二转向组件200和第二转向组件210共用同一个六相电机M2,该六相电机M2的其中三相绕组,即第一三相绕组,作为第二转向组件200的第二电机2003,该六相电机M2的另外三相绕组,即第二三相绕组,作为第二转向组件210的第二电机2003。
本申请实施例将上述的第一传感器1102细分为第一转子位置传感器1102A和扭矩转角传感器1102B,其中,扭矩转角传感器1102B设置于方向盘管柱内,用于感应方向盘转角;第一转子位置传感器1102A设置于第一电机1103内,用于感应第一电机1103的转子位置。
上述的第二传感器2002细分为第二转子位置传感器2002A和齿条位置传感器2002B,其中,齿条位置传感器2002B设置于转向齿条上,用于感应转向齿条位移;第二转子位置传感器2002A设置于第二电机2003内,用于感应第二电机2003的转子位置。
基于上述的六相电机M1和六相电机M2的应用,在六相电机M1内部设置两个第一转子位置传感器1102A,实现第一转子位置传感器1102A的冗余备份。同理,在六相电机M2内部设置两个第二转子位置传感器2002A,实现第二转子位置传感器2002A的冗余备份。
第一转向组件100和第一转向组件110中的扭矩转角传感器1102B均设置于方向盘管柱内,用于感应方向盘转角。齿条位置传感器2002B设置于转向齿条上,用于感应转向齿条的位移,具体是感应由于转向齿轮带动转向齿条而使转向齿条发生的转动位移。
进一步的,在本申请实施例提出的线控转向系统中,第一转子位置传感器1102A还对扭矩转角传感器1102B有冗余备份作用,当扭矩转角传感器1102B故障时,第一控制器1101基于第一转子位置传感器1102A采集的转子位置信息计算确定方向盘转角。
同理,第二转子位置传感器2002A还对齿条位置传感器2002B有冗余备份作用,当齿条位置传感器2002B故障时,第二控制器2001基于第二转子位置传感器2002A采集的转子位置信息计算确定转向齿条位移。
基于上述的线控转向系统结构,各组件还各自进行自检,以及相互备份的组件之间交互确定输出扭矩分配比例,以便相互备份的组件配合输出扭矩。
即,参见图2所示的线控转向系统,第一转向组件还向其他第一转向组件发送第四信息,该第四信息包括第一转向组件的状态信息。
具体而言,第一转向组件中的控制器实现对第一转向组件的健康状态检测,并将检测确定的第一转向组件的状态信息,发送给其他第一转向组件。
同理,其他第一转向组件中的控制器也实现对自身组件的健康状态检测,并将检测结果添加至第一信息中,然后将第一信息发送给第一转向组件。
对于第一转向组件而言,其根据其他第一转向组件的状态以及自身状态,确定第一扭矩分配方式时,具体包括如下过程:
第一转向组件根据其他第一转向组件的状态以及自身状态,确定各个第一转向组件的第一扭矩的输出分配比例,作为第一扭矩分配比例。
同时,其他第一转向组件也根据第一转向组件的状态以及自身状态,确定各个第一转向组件的第一扭矩的输出分配比例,作为第二扭矩分配比例。
然后,其他第一转向组件将确定的第二扭矩分配比例发送给第一转向组件。
第一转向组件判断其他第一转向组件发送的第二扭矩分配比例与自身确定的第一扭矩分配比例是否相同,若相同,则按照第一扭矩分配比例确定第一扭矩分配方式;若不同,则维持现有的扭矩分配方式不变。
以图3中所示的第一转向组件100作为第一组件,第一转向组件110作为第二组件为例。基于本申请实施例提出的线控转向系统设计,该系统所需的转向反馈扭矩由第一组件和第二组件配合输出,则,按照本申请实施例方案,第一组件和第二组件双方通过交互确定双方的输出扭矩分配比例,然后,双方按照所确定的输出扭矩分配比例配合输出转向反馈扭矩,从而满足系统的转向反馈扭矩需求。
又比如,以第二转向组件210作为第一组件,第二转向组件200作为第二组件。按照本申请实施例方案,第一组件和第二组件双方通过交互确定双方的输出扭矩分配比例,然后,双方按照所确定的输出扭矩分配比例配合输出转向扭矩,从而满足系统的转向扭矩需求。
其中,第一组件和第二组件的输出扭矩分配比例,是指第一组件和第二组件输出的扭矩,占系统需要第一组件和第二组件输出的总扭矩的比例。
在本申请实施例中,第一组件和第二组件分别获取自身以及对方的自检结果,然后基于自身以及对方的自检结果协商确定两者的输出扭矩分配比例。
图6示出了第一组件和第二组件交互确定两者的输出扭矩分配比例的具体处理过程,参见图6所示,第一组件和第二组件交互确定两者的输出扭矩分配比例的过程主要包括如下A1~A6的处理阶段:
A1、第一组件和第二组件分别进行健康状态自检,得到自检结果。
具体的,第一组件和第二组件中的控制器分别对组件内的传感器、电路、电机等部件进行健康状态检测,得到自检结果。
在上述的自检结果中,包括可以组件内各部件的工作状态、性能参数等。
A2、第一组件和第二组件进行自检结果交互,各自获取对方的自检结果。
具体的,第一组件的控制器在得到对第一组件的自检结果后,将第一组件自检结果发送给第二组件;同理,第二组件的控制器在得到对第二组件的自检结果后,将第二组件自检结果发送给第一组件。
A3、第一组件和第二组件根据自身的自检结果以及对方的自检结果,分别确定输出扭矩分配比例。
具体的,第一组件的控制器根据第一组件自检结果和第二组件自检结果,计算第一组件和第二组件的输出扭矩分配比例,作为第一扭矩分配比例。同时,第二组件的控制器也根据第一组件自检结果和第二组件自检结果,计算第一组件和第二组件的输出扭矩分配比例,作为第二扭矩分配比例。
示例性的,第一组件和第二组件内部,分别设置故障仲裁模块,该故障仲裁模块可以是第一组件和第二组件的控制器中的用于确定故障类型和故障等级的功能模块,也可以是独立于控制器之外的功能模块,该功能模块可以是软件功能模块也可以是硬件功能模块。当该故障仲裁模块设置于控制器之外时,该故障仲裁模块由控制器所控制和调度。
基于上述的故障仲裁模块的设置,第一组件和第二组件的控制器分别得到第一组件自检结果和第二组件自检结果后,通过本地的故障仲裁模块对第一组件自检结果进行解析,确定第一组件的故障类型和故障等级,以及,对第二组件自检结果进行解析,确定第二组件的故障类型和故障等级。即,第一组件和第二组件分别根据自身自检结果确定自身的故障类型和故障等级,以及根据对方的自检结果,确定对方的故障类型和故障等级。
其中,第一组件和第二组件对于故障类型和故障等级的划分,采用同一的划分标准。当组件未发生故障时,按照上述方案所确定的故障类型和故障等级可以均设置为空。
通过上述处理,第一组件和第二组件能够分别确定双方所发生的故障类型和故障等级。
进一步的,第一组件的控制器以及第二组件的控制器还可以根据各自所在组件的故障类型和故障等级,发出与故障类型和故障等级相匹配的故障预警信号。
作为可选的处理方式,当第一组件和第二组件分别确定第一组件的故障类型和故障等级,以及确定第二组件的故障类型和故障等级后,第一组件和第二组件对各自确定的故障类型和故障等级信息进行交互,验证双方所确定的故障类型和故障等级信息是否一致,若一致则继续后续处理,若不一致则结束确定两者的输出扭矩分配比例的处理过程,继续保持原有的输出扭矩分配比例。
具体而言,当第一组件的控制器确定第一组件的故障类型和故障等级,以及确定第二组件的故障类型和故障等级后,将所确定的全部的故障类型和故障等级信息,发送给第二组件的控制器;同时,第二组件也将其所确定的第一组件的故障类型和故障等级信息,以及第二组件的故障类型和故障等级信息,发送给第一组件的控制器。
然后,第一组件的控制器,以及第二组件的控制器,分别通过调用故障仲裁模块,对第一组件和第二组件所确定的故障类型和故障等级信息进行校验,判断是否一致。若一致,则继续执行后续处理,若不一致,则不再执行后续处理。
当第一组件和第二组件分别确定自身以及对方的故障类型和故障等级后,第一组件和第二组件分别根据自身的故障类型和故障等级,以及对方的故障类型和故障等级,计算确定第一组件和第二组件的输出扭矩分配比例。
具体的,第一组件的控制器以及第二组件的控制器分别对第一组件的故障类型和故障等级,以及第二组件的故障类型和故障等级进行对比分析,确定第一组件和第二组件的输出扭矩分配比例。
示例性的,可以预先确定各种故障类型以及故障等级所对应的输出扭矩分配比例,并存储至第一组件的控制器以及第二组件的控制器。在实际工作场景中,当第一组件的控制器和第二组件的控制器分别获取第一组件的故障类型和故障等级,以及第二组件的故障类型和故障等级后,通过查询预先存储的各种故障类型以及故障等级所对应的输出扭矩分配比例的对应关系,可以确定第一组件和第二组件的输出扭矩分配比例。
A4、第一组件和第二组件对各自确定的输出扭矩分配比例进行交互。
具体的,第一组件的控制器将其所确定的第一扭矩分配比例发送给第二组件的控制器,同时,第二组件的控制器将其所确定的第二扭矩分配比例发送给第一组件的控制器。
A5、第一组件和第二组件分别验证自身确定的输出扭矩分配比例与对方确定的输出扭矩分配比例是否相同。
具体的,第一组件的控制器在接收到第二组件发送的第二扭矩分配比例后,将第二组件发送的第二扭矩分配比例与第一组件的控制器所确定的第一扭矩分配比例进行对比,判断两者是否相同。
同时,第二组件的控制器在接收到第一组件发送的第一扭矩分配比例后,将第一组件发送的第一扭矩分配比例与第二组件的控制器所确定的第二扭矩分配比例进行对比,判断两者是否相同。
在第一组件和第二组件各自确定的输出扭矩分配比例相同的情况下,也就是上述第一扭矩分配比例与上述的第二扭矩分配比例相同的情况下,第一组件和第二组件分别执行步骤A6:按照第一扭矩分配比例确定为第一组件和第二组件的输出扭矩分配方式。
具体的,第一组件的控制器在确定第二组件发送的第二扭矩分配比例与自身确定的第一扭矩分配比例相同的情况下,第一组件的控制器将该第一扭矩分配比例作为最终确定的第一组件和第二组件的输出扭矩分配方式。
同理,第二组件的控制器在确定第一组件发送的第一扭矩分配比例与自身确定的第二扭矩分配比例相同的情况下,第二组件的控制器将该第二扭矩分配比例作为最终确定的第一组件和第二组件的输出扭矩分配方式。
在此基础上,第一组件的控制器控制第一组件的电机按照上述最终确定的第一组件和第二组件的输出扭矩分配方式,输出扭矩。以及,第二组件的控制器控制第二组件的电机照上述最终确定的第一组件和第二组件的输出扭矩分配方式,输出扭矩。
若第一组件和第二组件各自确定的输出扭矩分配比例不同,则第一组件和第二组件按照原有的输出扭矩分配比例输出扭矩。该原有的输出扭矩分配比例,可以是预先设定的输出扭矩分配比例,也可以是在本次第一组件和第二组件交互确定两者的输出扭矩分配比例之前,第一组件和第二组件所保持的输出扭矩分配比例。
通过上述介绍可见,本申请实施例所提出的线控转向系统,能够使得相互备份的组件之间自行协商扭矩输出分配比例,从而实现了具有冗余备份的线控转向系统自动、智能、实时地进行扭矩输出的冗余备份,提高了系统稳定性和安全性。
可以理解的是,本申请上述各实施例所介绍的线控转向系统,实现了各组件控制器之间的互连互通,各组件控制器通过通信交互实现组件健康状态互检和交叉故障诊断,从而能够及时、准确地识别组件控制器故障或控制器通讯故障。同时,上述线控转向系统还能够实现各组件自检,并且相互冗余备份的组件之间能够通过交互自检结果自行协商扭矩输出分配比例,使得该具有冗余备份的线控转向系统能够自动、智能、实时地进行扭矩输出冗余备份,进一步提高了系统稳定性和安全性。
需要说明的是,上述的线控转向系统的各组件的自检过程,以及相邻组件的互检过程,是两个独立的处理过程,两者互不干扰,可以并行执行。并且,上述各实施例所记载的自检、互检、交叉诊断等处理过程,在线控转向系统的工作过程中是周期执行的,该执行周期可以灵活设置,从而使得线控转向系统能够实时地发现故障以及进行扭矩输出调整。
基于同一设计构思,与上述的线控转向系统相对应的,本申请实施例还提出一种扭矩输出方法,该方法应用于上述任意实施例中的线控转向系统,参见图7所示,该方法包括:
S710、第一转向组件701接收其他第一转向组件发送的第一信息。S720、与其他第一转向组件702配合的第二转向组件703通过检测其他第一转向组件的状态,生成包含其他第一转向组件状态的第二信息,并向第一转向组件发送生成的第二信息;S730、第一转向组件701根据第一信息以及第二信息,确定其他 第一转向组件的状态;根据其他第一转向组件的状态以及自身状态,确定第一扭矩分配方式;根据第一扭矩分配方式以及系统所需的第一扭矩总量,输出第一扭矩。
在本申请另一些实施例中,还提出另一种扭矩输出方法,该方法应用于上述任意实施例中的线控转向系统中的任意一个第一转向组件,参见图8所示,该方法包括:
S810、接收其他第一转向组件发送的第一信息,以及接收与第一转向组件配合的第二转向组件发送的第二信息;第二信息是与第一转向组件配合的第二转向组件通过检测其他第一转向组件的状态而生成的,第二信息中包含其他第一转向组件的状态。S820、根据第一信息和第二信息,确定其他第一转向组件的状态。S830、根据其他第一转向组件的状态以及自身状态,确定第一扭矩分配方式。S840、根据第一扭矩分配方式以及系统所需的第一扭矩总量,输出第一扭矩。
上述的扭矩输出方法的具体处理过程,比如第一转向组件的具体处理过程、第二转向组件的具体处理过程等,均可参见上述的线控转向系统的实施例中关于各个组件的工作过程介绍。
基于上述的线控转向系统,本申请实施例提出的扭矩输出方法,能够使得系统中的任意组件均自主判断与其配合的组件的健康状态,而且能够根据与其配合的组件的健康状态及时调整输出扭矩,提高了系统的稳定性和安全性。
另外,系统组件在判断与其配合的目标组件的健康状态时,不仅以自身判断为依据,还结合其他组件对该目标组件的健康状态的检测结果综合进行判断,该方案提高了对该组件健康状态检测的准确度,能够有效避免由于误判导致不合理的扭矩输出,从而进一步保证了线控转向系统的稳定性和可靠性。
作为可选的实施方式,在上述任意的扭矩输出方法中,根据第一信息和第二信息,确定其他第一转向组件的状态,包括:第一转向组件根据第一信息确定其他第一转向组件的状态,作为第一状态,以及,确定第二信息中包含的其他第一转向组件的状态;在第二信息中包含的其他第一转向组件的状态为第一状态的情况下,第一转向组件确定其他第一转向组件的状态为第一状态。
作为可选的实施方式,在上述的任意的扭矩输出方法中,第一转向组件还用于:向其他第一转向组件发送第三信息,第三信息用于触发其他第一转向组件反馈第一信息。
作为可选的实施方式,在上述的任意的扭矩输出方法中,第一转向组件还用于:向其他第一转向组件发送第四信息,第四信息包括第一转向组件的状态信息。
作为可选的实施方式,在上述的任意的扭矩输出方法中,第一信息包括其他第一转向组件的状态信息;第一转向组件根据其他第一转向组件的状态以及自身状态,确定第一扭矩分配方式,包括:第一转向组件根据其他第一转向组件的状态以及自身状态,确定第一扭矩分配比例;获取其他第一转向组件发送的第二扭矩分配比例,第二扭矩分配比例由其他第一转向组件根据第一转向组件的状态以及自身状态而确定;在第一扭矩分配比例与第二扭矩分配比例相同的情况下,第一转向组件按照第一扭矩分配比例确定第一扭矩分配方式。
作为可选的实施方式,在上述的任意的扭矩输出方法中,第一转向组件与方向盘传动连接,第二转向组件与转向齿条传动连接。
作为可选的实施方式,在上述的任意的扭矩输出方法中,第一转向组件包括第一控制器,以及与第一控制器连接的第一传感器和第一电机;第一传感器用于感应第一电机的转子位置,以及感应方向盘转角;第一电机用于输出第一扭矩;第一控制器基于接收的传感器信号控制第一电机的运行;第二转向组件包括第二控制器,以及与第二控制器连接的第二传感器和第二电机;第二传感器用于感应转向齿条位移和第二电机的转子位置;第二电机用于输出第二扭矩;第二控制器基于接收的传感器信号控制第二电机的运行。
作为可选的实施方式,在上述的任意的扭矩输出方法中,第一传感器包括扭矩转角传感器和第一转子位置传感器;扭矩转角传感器设置于方向盘管柱内,用于感应方向盘转角;第一转子位置传感器设置于第一电机内,用于感应第一电机的转子位置;第二传感器包括齿条位置传感器和第二转子位置传感器;齿条位置传感器设置于转向齿条上,用于感应转向齿条位移;第二转子位置传感器设置于第二电机内,用于感应第二电机的转子位置。
作为可选的实施方式,在上述的任意的扭矩输出方法中,在扭矩转角传感器故障的情况下,第一控制器基于第一转子位置传感器采集的转子位置信息确定方向盘转角;和/或,在齿条位置传感器故障的情况下,第二控制器基于第二转子位置传感器采集的转子位置信息确定转向齿条位移。
作为可选的实施方式,在上述的任意的扭矩输出方法中,任意两个第一转向组件共用同一个六相电机;和/或,当第二转向组件的数量大于1个时,任意两个第二转向组件共用同一个六相电机。
作为可选的实施方式,在上述的任意的扭矩输出方法中,在第一转向组件的传感器故障的情况下,第一转向组件从其他第一转向组件中获取传感器信号。
本实施例提供的扭矩输出方法,与本申请上述实施例所提供的线控转向系统属于同一申请构思,该方法的处理过程,与上述的线控转向系统的各部分结构的功能相对应。未在本实施例中详尽描述的技术细节,可参见本申请上述实施例提供的线控转向系统的具体介绍,此处不再加以赘述。
本申请另一实施例还提出一种车辆,该车辆包括上述实施例介绍的线控转向系统,或者,该车辆被配置为实现上述任意实施例介绍的扭矩输出方法。
本申请以上实施例提出了,在线控转向系统中包括N个用于输出第一扭矩的第一转向组件201,以及至少一个用于输出第二扭矩的第二转向组件202时的冗余切换控制方案,以下,本申请还提出了另一实施例,用于介绍线控转向系统的具体结构。
本申请另一实施例还提出一种路感反馈力矩控制系统。
随着车辆技术的发展,车辆不仅能够满足用户出行需求,还可以为用户安全可靠的实用功能。车辆线控转向系统中,为了使得驾驶员能够获得更加真实的驾驶手感,现有技术中可以有多种实现方式。一种方式是通过助力电机的电机电流和扭矩系数来计算手感反馈力矩。另一种方式是通过车辆动力学模型(比如,利用魔术公式)计算回正力矩。再一种方式通过经验参数(正常状态参数)标定得到手感反馈力矩的表或者函数关系式,进而根据实时得到的参数确定手感反馈力矩。然而,仅仅通过上述方法所计算得到的手感反馈力矩与实际情况存在不一致问题,导致所得到的手感反馈力矩无法准确、实时反映出车辆在路面动态路感。
因此,本申请实施例提供的路感反馈力矩控制系统,用以实现路况信息及时准确的转换为手感反馈力矩的方案。
首先需要说明的是,本申请技术方案是基于车辆线控转向系统实现的。如图9为本申请实施例提供的一种车辆线控转向系统的结构示意图。从图9中可以看到车辆线控转向系统包括方向盘总成1、转向执行总成2和控制器3(Electronic Control Unit,ECU,电子控制单元)三个主要部分,以及必要时还包括电源等辅助系统等。
方向盘总成1包括方向盘11、传感器12(包括比如,转角传感器、力矩传感器、角速度传感器等)、方向盘的第一驱动电机13。方向盘、传感器、第一驱动电机通过管柱连接。方向盘总成的主要功能是将驾驶员的转向意图(例如通过测量方向盘转角)传递给控制器;同时接受控制器送来的力矩控制信号,产生方向盘回正力矩,以提供给驾驶员相应的手感和/或路感信息。转向执行总成包括前轮转角传感器、转向轮驱动电机、转向轮驱动电机控制器和前轮转向组件(比如,齿条、拉杆机械总成)等组成。转向执行总成2的功能是接受控制器的命令,通过转向轮驱动电机控制器控制转向车轮转动,实现驾驶员的转向意图。
在现有技术中可以利用反馈力矩估算模块评估出基础力矩,该基础力矩作为目标反馈力矩中的基础力矩,该基础力矩根据综合全面的信息(比如,电机电流、航向角、车速等)估算得到的。然而,仅仅利用算法所得到的估算反馈力矩难以细致、及时的呈现出当前时间路面动态路感。
为了便于理解,下面将结合具体实施例对本申请技术方案进行说明。
基于同样的思路,本申请实施例还提供一种路感反馈力矩控制系统。如图10a为本申请实施例提供的一种路感反馈力矩控制系统的结构示意图。从图10a中可以看到,该系统包括:
传感单元22,用于获取转向齿条移动时带动扭杆发生扭转时的扭矩信号。
反馈力矩计算模块23,用于获取基础力矩,用于根据扭矩信号获取补偿力矩,还用于基于基础力矩和补偿力矩,获取目标反馈力矩24。
其中,基础力矩是由反馈力矩估算模块21根据预设算法和车辆状态确定的。
这里所说的传感单元22是通过齿轮直接与齿条进行啮合的状态,齿条的任何移动,都能够被传感单元22感知到,包括高频剧烈移动、高频轻微移动、突然快速移动等等,传感单元22能够更加细致的采集到路面动态变化。这些突发的齿条变化是难以被反馈力矩估算模块21感知并估算出的,或者即便能够感知也是具有明显滞后的。因此,可以利用传感单元22对常规得到的基础力矩进行补偿、修正。
由于基础力矩能够较为全面的表示当前反馈力矩的整体力矩状态,而细节内容则无法体现。通过传感单元22所采集到的补偿力矩则能够体现出更为细节的信息。因此,利用补偿力矩对基础力矩进行校正,进而得到更为准确的目标反馈力矩。
这里所说的校正单元是针对不同类型的补偿力矩进行校正的,将在下述实施例中具体举例说明。
图10b为本申请实施例提供的一种路感反馈力矩控制系统的机械结构示意图。从图10b中可以看到,传感单元的外壳220中,输入轴221通过扭杆223与输出轴222连接。其中,输出轴222通过轴承225与外壳220连接,输入轴221与轴承226连接。为了获得扭杆的扭转角度,可以在输出轴222的位置安装扭杆角度传感器224。
在实际应用中,利用反馈力矩估算模块能够初步得到基础力矩,然而,该基础力矩不能够准确、真实的反馈当前路况需要通过方向盘传递给驾驶员的力矩。因此,本申请方案中,进一步利用传感单元对路况相关信息进行更加准确的采集,从而能够得到某种路况情况或者车辆行驶状态下的补偿力矩。这里之所以说是补偿力矩,是因为该传感单元所能够采集到的信息是依据齿条移动状态所呈现的结果,无法获取更多的其他信息,也就不能仅将传感单元提供的补偿力矩作为最终手感反馈力矩或路感反馈力矩。为了使得反馈到驾驶员的反馈力矩更加真实、准确,可以基于补偿力矩对基础力矩进行校正处理,进而,将校正处理 后得到目标反馈力矩返回给驾驶员,并通过方向盘体现该目标反馈力矩。通过上述方案,使得驾驶员能够在线控转向系统中获得更加真实的驾驶感受。
在本申请的一个或者多个实施例中,传感单元的输入轴221与齿条啮合;当齿条移动时,带动输入轴221移动;传感单元中输入轴221通过扭杆223与输出轴222连接;当输入轴221移动时,带动扭杆223发生扭转角度,以根据扭转角度确定补偿力矩;输出轴222为惯性滑块,当扭杆223发生扭转后,惯性滑块跟随扭杆223的扭动方向发生转动。
从图10b中可以看到,在传感单元中,是一个惯性滑块,输出轴222不与车体部件连接,仅与扭杆223连接,在未受到外力作用下该惯性滑块是保持静止状态的。输入轴221则通过齿轮与齿条建立啮合关系。当齿条发生移动(一般是方向盘转动或者转向轮转动带动齿条移动)时,输入轴221也会发生移动。在输入轴221与输出轴222之间,通过扭杆223连接。当输入轴221发生移动的时候,会带动与其具有直接连接关系的扭杆223发生扭转形变,由于扭杆223是逐渐发生形变的,当力未传播到输出轴222的时候,输出轴222是相对扭杆223静止状态,当扭杆223形变到一定程度的时候,在扭杆223牵引力作用下,会带动输出轴222移动,输出轴222的移动与输入轴221移动不同步,输出轴222移动滞后于输入轴221。在输出轴222移动前的临界时刻,扭杆223形变达到最大状态。由于传感单元通过齿轮与齿条直接进行啮合连接,齿条所产生的任何移动都会可以被传感单元准确、及时的捕捉到。
在本申请的一个或者多个实施例中,传感单元中还包括:扭杆角度传感器224;扭杆角度传感器224与扭杆223组合设置在输入轴221和输出轴222之间,用于采集扭杆223的扭转角度,以根据扭转角度确定补偿力矩。
扭杆223的扭转状况能够直接反应出当前转向状况,包括转向轮或方向盘的转向角度的大小,转向轮或方向盘的转向速度的大小,以及转向轮或方向盘的转动(或抖动)频率。因此,可以通过对扭杆223进行扭转角度的测量,量化扭杆223的扭转角度,并根据扭转角度与力矩的关系,确定出不同扭转角度对应的补偿力矩。从而可以根据被量化的扭转角度,得到更准确的补偿力矩。作为一种可以选方案,可以预先标定不同扭转角度与补偿力矩的对应关系,生成数据表。在实际应用中,可以采用查表的方式确定不同扭转角度所对应的补偿力矩。这里所说的补偿力矩是用于对基础力矩进行补偿的理解,是为了生成方向盘手感反馈力矩用的。基于上述方式所获得的补偿力矩更加细致(比如,频繁抖动、剧烈抖动等)、更加灵敏,能够采集到估算理解无法感知和实现的力矩信息。从而对基础力矩进行修正,以便得到的目标反馈力矩更加灵敏、细致、实时性更高。
在本申请的一个或者多个实施例中,输出轴222嵌入轴承225,轴承225与传感单元的外壳连接,当扭杆223发生扭转后,惯性滑块跟随扭杆223的扭动方向发生转动;或者,输出轴222与传感单元的外壳固定连接,当扭杆223发生扭转后,惯性滑块保持相对静止。
在实际应用中,输出轴222不需要与转向轮或者方向盘之间建立任何机械连接关系。输出轴222可以采用活动连接,也可以采用固定连接。其中,活动连接时,能够准确反映齿条移动的动态变化频率高低与速度快慢。固定连接时,能够准确反映齿条移动的程度大小和速度快慢。具体实现方案如图10b所示,将输出轴222嵌入轴承225当中,从而输出轴222可以自由转动,而且不会受到其他外力阻碍、干扰。需要说明的是,惯性滑块的重量和尺寸,需要根据实际需求进行选择。
在本申请的一个或者多个实施例中,还包括:高频校正单元,用于将基础力矩的估算变化状态与补偿力矩的扭矩变化状态进行匹配;若匹配结果为不一致,则对补偿力矩进行高频滤波处理。
由于传感单元是直接与齿条建立啮合关系的,能够直接体现转向轮带动齿条移动状态,而不是方向盘的转动状态。转向轮可以是受到路面及路面物体作用力而发生转动或抖动,也可以因为方向盘转动而控制转向轮发生转动。尤其是当转向轮受到路面或路面物体作用力而发生转动的情况下,若通过算法向用户反馈手感反馈力矩,则需要经过信息采集、处理(比如滤波等)、计算后反馈到方向盘,反馈周期较长,响应不及时,而且无法细致的反应出复杂多变的路面信息。本申请方案中,通过传感单元可以及时敏锐的感知到转向轮的转动信息。然而有时由于路面状态不佳而导致转向轮频繁来回转动或抖动,进而采集到的扭转角度是高频调整的状态。在实际应用中,不需要将频繁抖动手感反馈给驾驶员,因此,需要利用高频校正单元对补偿力矩进行高频滤波处理。从而可以得到更加稳定、细致、灵敏的补偿力矩对基础力矩进行补偿。
在本申请的一个或者多个实施例中,还包括:梯度校正单元,用于当补偿力矩的扭矩变化量大于梯度阈值时,根据预设梯度系数对补偿力矩进行升降梯度处理。
在实际应用中,由于有时所采集到的补偿力矩比较大,比如,转向轮发生突然快速大角度旋转时,通过传感单元所得到的补偿力矩是突然增大的力矩,若将该力矩如实补偿到基础力矩,则会导致目标反馈力矩发生突变。因此,这种情况下需要对补偿力矩进行降梯度处理,从而获得更加平稳的补偿力矩对基础力矩进行补偿处理。
可选地,还包括:电机电流估算模块,用于采集与齿条啮合的驱动电机的电机电流,以根据电机电流及对应的预设算法确定基础力矩;和/或,车辆模型估算模块,用于根据采集到的车辆状态及对应的预设算法估算出基础力矩。
在实际应用中,可以利用各种方式(比如,利用电机电流估算模块、利用车辆模式估算模块)对车辆的反馈力矩进行评估,将得到的基础力矩作为基础力矩。因为利用上述方式得到的基础力矩能够较为全面的反应当前反馈力矩的整体状况。
如图11为本申请实施例提供的一种制动控制方法的流程示意图。该方法可以应用于车辆控制器。该方法具体包括如下步骤:
步骤301:当车辆中与转向齿条连接的转向轮产生动作时,根据转向齿条移动过程而驱动扭杆发生扭转的扭转角度,确定补偿力矩。步骤302:确定基础力矩。步骤303:基于补偿力矩和基础力矩,确定目标反馈力矩。
可选地,如步骤301,传感单元的输入轴与齿条啮合;当齿条移动时,带动输入轴移动;传感单元中输入轴通过扭杆与输出轴连接;当输入轴移动时,带动扭杆发生扭转角度,以根据扭转角度确定补偿力矩;其中,输出轴为惯性滑块。
可选地,如步骤301,传感单元中还包括:扭杆角度传感器;扭杆角度传感器与扭杆组合设置在输入轴和输出轴之间,用于采集扭杆的扭转角度,以根据扭转角度确定补偿力矩。
可选地,如步骤301,输出轴嵌入轴承,轴承与传感单元的外壳连接,当扭杆发生扭转后,惯性滑块跟随扭杆的扭动方向发生转动;或者,输出轴与传感单元的外壳固定连接,当扭杆发生扭转后,惯性滑块保持相对静止。
可选地,如步骤303,还包括:高频校正单元,用于将基础力矩的估算变化状态与补偿力矩的扭矩变化状态进行匹配;若匹配结果为不一致,则对补偿力矩进行高频滤波处理。
可选地,如步骤303,还包括:梯度校正单元,用于当补偿力矩的扭矩变化量大于梯度阈值时,根据预设梯度系数对补偿力矩进行升降梯度处理。
可选地,如步骤303,反馈力矩估算模块包括:电机电流估算模块,用于采集与齿条啮合的驱动电机的电机电流,以根据电机电流及对应的预设算法确定基础力矩;和/或,车辆模型估算模块,用于根据采集到的车辆状态及对应的预设算法估算出基础力矩。
如图12为本申请实施例提供的传感单元的结构示意图。从图12中可以看到,传感单元包括:与齿条啮合的输入轴221;输入轴221通过扭杆223与输出轴222连接;其中,输出轴222为与外壳连接的惯性滑块,所述输入轴221与轴承连接;扭杆223与扭杆角度传感器224连接,当齿条移动时用于采集扭杆223的扭转信号,以便基于扭转信号确定目标反馈力矩。
该传感单元中输入轴221齿条啮合,而输出轴222则是惯性滑块可以自由转动。当齿条发生移动的时候,会携带输入轴221转动,并且与输入轴221连接的扭杆223也会随着发生扭转形变。在本方案中的输出轴为惯性滑块,输出轴222不与车体部件连接,仅与扭杆223连接,在未受到外力作用下该惯性滑块是保持静止状态的。当扭杆223形变到一定程度的时候,在扭杆223牵引力作用下,会带动输出轴222移动,输出轴222的移动与输入轴221移动不同步,输出轴222移动滞后于输入轴221。在输出轴222移动前的临界时刻,扭杆223形变达到最大状态。由于传感单元通过齿轮与齿条直接进行啮合连接,齿条所产生的任何移动都会可以被传感单元准确、及时的捕捉到。该传感单元用于将齿条抖动、移动的频率、幅度等信息转换为扭转信号。进而可以基于扭转信号对应的补偿力矩和基础力矩计算得到目标反馈力矩。
相应地,本申请实施例还提供一种车辆,包括如图12所示的传感单元。
图13为本申请实施例提供的车辆的结构示意图,如图13所示,该车辆上配置有车辆设备,车辆设备包括:存储器501以及控制器502。
存储器501,用于存储计算机程序,并可被配置为存储其它各种数据以支持在车辆设备上的操作。这些数据的示例包括用于在车辆设备上操作的任何应用程序或方法的指令,联系人数据,电话簿数据,消息,图片,视频等。
其中,存储器501可以由任何类型的易失性或非易失性存储设备或者它们的组合实现,如静态随机存取存储器(Static Random-Access Memory,SRAM),电可擦除可编程只读存储器(Electrically Erasable Programmable read only memory,EEPROM),可擦除可编程只读存储器(Electrical Programmable Read Only Memory,EPROM),可编程只读存储器(Programmable read-only memory,PROM),只读存储器(Read-Only Memory,ROM),磁存储器,快闪存储器,磁盘或光盘。
该车辆设备还包括:显示设备504。控制器502,与存储器501耦合,用于执行存储器501中的计算机程序,以用于:当车辆中与转向齿条连接的转向轮产生动作时,根据转向齿条移动过程而驱动扭杆发生扭转的扭转角度,确定补偿力矩;确定基础力矩;基于补偿力矩和基础力矩,确定目标反馈力矩。
传感单元的输入轴与齿条啮合;当齿条移动时,带动输入轴移动;传感单元中输入轴通过扭杆与输出轴连接;当输入轴移动时,带动扭杆发生扭转角度,控制器502用于,根据扭转角度确定补偿力矩;其中,输出轴为惯性滑块。
传感单元中还包括:扭杆角度传感器;扭杆角度传感器与扭杆组合设置在输入轴和输出轴之间,采集扭杆的扭转角度,控制器502用于根据扭转角度确定补偿力矩。
输出轴嵌入轴承,轴承与传感单元的外壳连接,当扭杆发生扭转后,惯性滑块跟随扭杆的扭动方向发生转动;或者,输出轴与传感单元的外壳固定连接,当扭杆发生扭转后,惯性滑块保持相对静止。
预设校正单元包括:高频校正单元,控制器502用于,将基础力矩的估算变化状态与补偿力矩的扭矩变化状态进行匹配;若匹配结果为不一致,则对补偿力矩进行高频滤波处理。
预设校正单元包括:梯度校正单元,控制器502用于,当补偿力矩的扭矩变化量大于梯度阈值时,根据预设梯度系数对补偿力矩进行升降梯度处理。
控制器502包括反馈力矩估算模块,反馈力矩估算模块包括:电机电流估算模块,用于采集与齿条啮合的驱动电机的电机电流,以根据电机电流及对应的预设算法确定基础力矩;和/或,车辆模型估算模块,用于根据采集到的车辆状态及对应的预设算法估算出基础力矩。
上述图13中的显示设备504包括屏幕,其屏幕可以包括液晶显示器(LCD)和触摸面板(TP)。如果屏幕包括触摸面板,屏幕可以被实现为触摸屏,以接收来自用户的输入信号。触摸面板包括一个或多个触摸传感器以感测触摸、滑动和触摸面板上的手势。触摸传感器可以不仅感测触摸或滑动动作的边界,而且还检测与触摸或滑动操作相关的持续时间和压力。
上图13中的音频组件504,可被配置为输出和/或输入音频信号。例如,音频组件包括一个麦克风(MIC),当音频组件所在设备处于操作模式,如呼叫模式、记录模式和语音识别模式时,麦克风被配置为接收外部音频信号。所接收的音频信号可以被进一步存储在存储器或经由通信组件发送。在一些实施例中,音频组件还包括一个扬声器,用于输出音频信号。
进一步,如图13所示,该车辆设备还包括:通信组件505、电源组件504等其它组件。图13中仅示意性给出部分组件,并不意味着车辆设备只包括图13所示组件。
上述图13中的通信组件505被配置为便于通信组件所在设备和其他设备之间有线或无线方式的通信。通信组件所在设备可以接入基于通信标准的无线网络,如WiFi,2G、3G、4G或5G,或它们的组合。在一个示例性实施例中,通信组件可基于近场通信(Near Field Communication,NFC)技术、射频识别(Radio Frequency Identification,RFID)技术、红外数据协会(Infrared Data Association,IrDA)技术、超宽带(Ultra Wide Band,UWB)技术、蓝牙技术和其他技术来实现。
其中,电源组件506,为电源组件所在设备的各种组件提供电力。电源组件可以包括电源管理系统,一个或多个电源,及其他与为电源组件所在设备生成、管理和分配电力相关联的组件。
本申请实施例中,传感单元,用于获取转向齿条移动时带动扭杆发生扭转时的扭矩信号;反馈力矩计算模块,用于获取基础力矩,用于根据扭矩信号获取补偿力矩,还用于基于基础力矩和补偿力矩,获取目标反馈力矩。通过上述方案,传感单元与转向齿条连接,能够更加灵敏的感知各种路况信息,包括路面高频率振动、转向轮突然转向等,能够将各种路况信息及时准确的转换为手感反馈力矩反馈给驾驶员。
本申请另一实施例还提出一种线控转向装置及其手感反馈方法。
随着自动驾驶技术日益成熟,对转向系统的功能需求也越来越丰富,线控转向技术已成为焦点之一。然而,由于线控转向系统没有中间轴,当控制系统发生故障时,驾驶员没有办法像传统转向那样通过机械传动方式操纵车辆,所以线控转向的功能安全要求更高。
因此,本申请实施例提供一种线控转向装置,适用于线控转向系统中,提供主路手感反馈控制系统和备用手感反馈控制系统的冗余配置方式,以便于在主路手感反馈控制系统失效时,可切换至备用手感反馈控制系统,让驾驶员能维持操作手感,提升驾驶员操作信心,避免意外发生。
请参照图14和图15。本申请实施例提供的线控转向装置10包括转向柱1410、上转向控制模块120以及机械阻尼组件130。转向柱1410包括管柱111和套接于管柱111上的壳体112,其中管柱111的一端连接线控方向盘20,另一端连接上转向控制模块120和机械阻尼组件130。此外,在管柱111上还设置有一个或多个传感器,例如扭矩与角度传感器(Torque Angle Sensor,TAS)。在本实施例中,管柱111上设置有第一传感器113和第二传感器114,分别用以检测转向柱1410的转动角度,以获取转向角度信息。
上转向控制模块120包括上转控制器121和手感反馈电机122。上转控制器121分别电性连接于手感反馈电机122、机械阻尼组件130和第一传感器113,用以接收转向信息,并且在第一工作状态下控制手感反馈电机122输出手感反馈力矩至转向柱1410,或者是在第二工作状态下控制机械阻尼组件130输出摩擦阻力至转向柱1410。其中,第一工作状态为手感反馈电机122的功能正常,可以被上转控制器121致能(enable)而传递手感反馈力矩的工作状态。此时机械阻尼组件130失能,或者是与手感反馈电机122通过物理连接方式保持手感反馈力矩同步,以便于在切换至第二工作状态时,可以传递模拟手感反馈力矩的摩擦 阻力至转向柱1410,让驾驶员可以感受到相同或相类似的操控手感。因此,第二工作状态为手感反馈电机122失能或是失效的工作状态,此时启用机械阻尼组件130替代手感反馈电机122反馈作用力至转向柱1410。
机械阻尼组件包130包括制动盘131和伸缩单元132,并且在伸缩单元132上设置有摩擦件133。其中,在第一工作状态下制动盘131和伸缩单元132保持一定的预定距离,使制动盘131和摩擦件133相互分离,以及在第二工作状态下,伸缩单元132可以在上转控制器121的驱动下带动摩擦件133朝向制动盘131的方向靠拢,并接触于制动盘131后产生摩擦阻力。同时,上转控制器121还可以根据原先手感反馈电机122所传递的手感反馈力矩,驱动伸缩单元132控动态调整预定距离的大小,使摩擦件133和制动盘131之间可以产生模拟手感反馈力矩的摩擦阻力,以避免在主路手感反馈控制系统切换至备用手感反馈控制系统时产生空转或顿挫而使驾驶员受到惊吓或无所适从。
因此,在本申请实施例中,机械阻尼组件包130的制动盘131和伸缩单元132的设置位置可以在保持预定距离的条件下进行互换,而不会两者间所产生的摩擦阻力造成影响。
如图14和图15所示,在本申请的一实施例中,当制动盘131设置在转向柱1410的管柱111时,伸缩单元132设置在转向柱1410的壳体112上。或者是将制动盘131设置在管柱111上,以及将制动盘131设置在壳体112上。此外,伸缩单元132可以是以活塞1321和活塞缸1322的活塞运动方式对预定距离进行调整,或者是将摩擦件133设置在杆体上,并且以转动电机带动杆体做线性运动的方式对预定距离进行调整。在本实施例中,是以伸缩单元132包括活塞1321和活塞缸1322作为举例说明,但并不以此为限。
其中,伸缩单元132设置在转向柱1410的管柱111上,并且电性连接于上转控制器121。或是如图16和图17所示,在本申请的另一实施例中,机械阻尼组件130的制动盘131套接在转向柱1410的管柱111上,伸缩单元132设置在转向柱1410外靠近制动盘131的位置。在这种实施例中,伸缩单元132包括活塞1321、活塞缸1322以及支架1323,其中活塞缸1322设置在支架1323上,并通过支架1323设置在车体内的适当位置处。
在工作时,上转控制器121驱动活塞1321带动摩擦件133朝向制动盘131靠拢,并对预定距离进行控制,以调整摩擦件133作用于制动盘131的力道,从而在两者间产生不同的摩擦阻力,而模拟出与手感反馈力矩相似的反馈力道。
如图16至图19所示。在应用上,本申请实施例所提供的线控转向装置10可配置于车辆的线控转向系统190中,作为主路手感反馈控制系统MS的一部分以及备用手感反馈控制系统BS的一部分。在本申请的某些实施例中,线控转向装置10还包括第一下转向控制模块140,其电性连接于上转向控制模块120,并且与上转向控制模块120作为主路手感反馈控制系统MS的组成元件。在本申请的其他实施例中,线控转向装置10还包括第二下转向控制模块150,其电性连接于上转向控制模块120、第一下转向控制模块140以及机械阻尼组件130,并且与机械阻尼组件130作为备用手感反馈控制系统BS的组成元件。
其中,主路手感反馈控制系统MS和备用手感反馈控制系统BS之间可以分别采用各自对应的供电电源,分别为第一电源30和第二电源40,以便于在其中一个电源出现供电故障的时候,可以在主路手感反馈控制系统MS和备用手感反馈控制系统BS之间进行切换,从而确保线控转向系统190稳定且可靠的工作。
此外,线控转向系统190中还设置有控制器50,其通过第一控制器局域网络(Controller Area Network,CAN)总线(以下简称第一总线CAN1)与上转向控制模块120电性连接,以及通过第二控制器局域网络总线(以下简称第二总线CAN2)与第二下转向控制模块150电性连接。并且,线控转向装置10的转向柱1410上所设置的第一传感器113电性连接于上转向控制模块120,第二传感器114电性连接于第二下转向控制模块150,分别用以将检测到的转向角度信息发送给上转向控制模块120和第二下转向控制模块150。
在本申请的实施例中,下转向控制模块皆设置有转向执行电机和下转控制器,其中转向执行电机通过齿条60啮合实现对转向轮的驱动,并且在转向执行电机内设置有电机转子位置传感器,用以协同或替代第三传感器115执行检测转向角度,以获取转向角度信息的工作。除了能够确保检测精度外,还可以进一步降低线控转向系统的建置成本。
具体来说,第一下转向控制模块140包括第一下转控制器141和第一转向执行电机142。第一下转控制器141电性连接于第一电源30,并通过第一私用总线CAN3(或者光耦、串口)与上转向控制模块120的上转控制器121进行通讯。第一转向执行电机142电性连接于第一下转控制器141,并且设置有第一电机转子位置传感器143。第二下转向控制模块150包括第二下转控制器151和第二转向执行电机152。第二下转控制器151电性连接于第二电源40,并通过第二私用总线CAN4(或者光耦、串口)与第一下转向控制模块140的第一下转控制器141进行通讯,以及通过第二总线CAN2与控制器50进行通讯。第二转向执行电机152电性连接于第二下转控制器151,并且设置有第二电机转子位置传感器153。
其中,线控转向装置10的转向柱1410连接于线控方向盘20和用以带动驱动轮的齿条60之间,并通过第一电机转子位置传感器143和第二电机转子位置传感器153获取到管柱111的工作状态。通过上述方式,替换一般pinAngle传感器的配置,可以同时达到降低成本的作用。
请参阅图16至图19。在本申请实施例的应用场景中,线控转向装置10具有两种或两种以上的工作状态。在第一工作状态中,主路手感反馈控制系统MS和备用手感反馈控制系统BS的各组成组件的功能皆正常,即线控转向装置在正常状态下的运作模式。在此模式下,通过主路手感反馈控制系统MS执行手感反馈工作,其中上转向控制模块120可以从控制器50接收第一总线CAN1传输的数据信息以及各种传感器反馈的信息,例如第一传感器113反馈的转向角度信息。接着,上转向控制模块120通过第一私用总线CAN3将数据信息以及各种反馈信息发送给第一下转向控制模块140。此时,第一下转控制器141驱动第一转向执行电机142执行转向动作,并通过第一私用总线CAN3反馈手感反馈力矩给上转向控制模块120,并由上转控制器121驱动手感反馈电机122将手感反馈力矩输出至转向柱1410,以通过转向柱1410传递至线控方向盘20,让用户能够感知线控方向盘20的反馈力道。由于在此正常工作状态下无组件的失效或故障等情形发生,机械阻尼组件130处于备援状态,其伸缩单元132受到上转控制器121的控制而维持活塞1321处于活塞缸1322内的初始状态,使摩擦件133和制动盘131相分离。此时机械阻尼组件130和转向柱1410的管柱111之间处于离合状态,因此驾驶员的手感反馈力完全由手感反馈电机122提供。
请参阅图20和图21。因此,本申请实施例的线控转向装置可以具有以下几种手感反馈方法,提供真实或仿真手感反馈力至转向柱。这些方法包括:在第一工作状态下,致能(enable)上转向控制模块,禁能(disable)机械阻尼组件,通过上转向控制模块对转向柱传递手感反馈力矩(S101);以及当上转向控制模块的至少一部分失能(也就是失去功用,无法正常工作)时,致能机械阻尼组件以进入第二工作状态,通过机械阻尼组件对转向柱传递摩擦阻力代替手感反馈力矩(S102)。
在本申请的某些实施例中,上述方法还包括:在第一工作状态下,通过上转向控制模块的手感反馈电机传递手感反馈力矩至转向柱(S201);在第二工作状态下,手感反馈电机失能。机械阻尼组件的伸缩单元朝制动盘伸出一定的预定距离,带动摩擦件接触制动盘以产生摩擦阻力(S202);以及通过上转向控制模块的控制器控制伸缩单元动态调整预定距离(S203)。
此外,在本申请的另一些实施例中,当控制器失能时,可以通过第一下转向控制模块控制伸缩单元伸出至预定距离,此时预定距离为定值;以及当第一下转向控制模块失能时,可以通过第二下转向控制模块控制伸缩单元伸出至预定距离。
以下对本申请实施例的线控转向装置及其手感反馈方法作进一步说明。
在本申请的一些实施例中,上转向控制模块120可以实时的进行自我检测,以确认与手感反馈相关的组成组件是否存在失效,若否,维持在正常手感反馈模式的第一工作状态下运作。若是,则切换至手感反馈模式异常的第二工作状态下运作,并且可根据当下的运行结果对应的调整至第三工作状态或第四工作状态下运作。
在第二工作状态中,上转向控制模块120发生故障,导致手感反馈电机122失效。此时,上转控制器121可维持正常运作。此时,机械阻尼组件120在上转控制器121的驱动下,其伸缩单元132的活塞1321在液压的作用下从活塞缸1322顶出一定的预定距离,使摩擦件133与制动盘131接触(如图17所示),从而在两者间产生摩擦阻力。同时,通过上转控制器121控制液压力的大小,以动态调整预定距离的大小,从而控制摩擦件133与制动盘131之间的压力,因此可动态调节摩擦件133与制动盘131之间的摩擦阻力,实现了产生阻止线控方向盘20转动的力矩,达到模拟手感反馈电机122输出手感反馈力矩的操控手感。
在第三工作状态中,上转向控制模块120发生故障,导致手感反馈电机122与上转控制器121均失效。此时,第一下转向控制模块140通过第一私用总线CAN3获得故障信息,并发送开关指令,通过继电器控制伸缩单元132的活塞1321从活塞缸1322顶出至预定距离,使摩擦件133与制动盘131接触。在此工作状态下,活塞缸的液压力不可调,使摩擦件133与制动盘131之间的压力恒定,即手感力也是恒定的。其虽然无法提供像第一工作状态或第二工作状态中精准的手感反馈力矩,但是在上转向控制模块120突然失效时,不会让驾驶员瞬间丢失操控手感,增加驾驶员的操控信心与安全性。
在第四工作状态中,当主路手感反馈控制系统MS的上转向控制模块120和第一下转向控制模块140均出现故障导致无法正常工作的时候,控制器50即切换至备用手感反馈控制系统BS,替换主路手感反馈控制系统MS运作。在此状态下,第二下转向控制模块150通过第二私用总线CAN4获得故障信息,并发送开关指令,通过继电器控制伸缩单元132的活塞1321从活塞缸1322顶出至预定距离,使摩擦件133与制动盘131接触。在此工作状态下,活塞缸的液压力同样为不可调,使摩擦件133与制动盘131之间的压力恒定,从而传递恒定的摩擦阻力至转向柱,让驾驶员可以维持操控手感,增加操控信心与安全性。
以上,在本申请实施例中机械阻尼组件不易受到电信号、电源供电状态干扰,除了能够满足在紧急情况下提供模拟手感反馈力矩的需求外,还能有效降低备用转向控制系统的建置成本。此外,为了防止机械阻尼组件的失效造成线控方向盘卡死(液压施加过大),在本申请的一些实施例中,伸缩单元可以配置为将液压力的最大值控制在驾驶员能转动线控方向盘的力矩极值内,在满足手感冗余的同时又能保证系统自身的可靠性。
在另一些实施方式中,本申请实施例还提供一种存储有计算机程序的计算机可读存储介质,计算机程序被执行时能够实现上述任一实施例中的各步骤。
在另一些实施方式中,车辆包括处理器,该处理器可以被配置为执行上述任一实施例所处的方法。例如,该处理器被配置为控制车辆线控转向系统执行上述任一实施例中介绍的扭矩输出方法。
本申请中的方法可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。该计算机程序产品包括一个或多个计算机程序或指令,在计算机上加载和执行该计算机程序或指令时,全部或部分地执行本申请所述的流程或功能。计算机可以是通用计算机、专用计算机、计算机网络、网络设备、用户设备、核心网设备、OAM或者其它可编程装置。
计算机程序产品可以以一种或多种程序设计语言的任意组合来编写用于执行本申请实施例操作的程序代码,该程序设计语言包括面向对象的程序设计语言,诸如Java、C++等,还包括常规的过程式程序设计语言,诸如“C”语言或类似的程序设计语言。程序代码可以完全地在用户计算设备上执行、部分地在用户设备上执行、作为一个独立的软件包执行、部分在用户计算设备上部分在远程计算设备上执行、或者完全在远程计算设备或服务器上执行。
计算机程序或指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,该计算机程序或指令可以从一个网站站点、计算机、服务器或数据中心通过有线或无线方式向另一个网站站点、计算机、服务器或数据中心进行传输。计算机可读存储介质可以是计算机能够存取的任何可用介质或者是集成一个或多个可用介质的服务器、数据中心等数据存储设备。可用介质可以是磁性介质,例如,软盘、硬盘、磁带;也可以是光介质,例如,数字视频光盘;还可以是半导体介质,例如,固态硬盘。该计算机可读存储介质可以是易失性或非易失性存储介质,或可包括易失性和非易失性两种类型的存储介质。
本说明书中的各个实施例均采用递进的方式描述,每个实施例重点说明的都是与其他实施例的不同之处,各个实施例之间相同相似的部分互相参见即可。对于装置类实施例而言,由于其与方法实施例基本相似,所以描述的比较简单,相关之处参见方法实施例的部分说明即可。
本申请各实施例方法中的步骤可以根据实际需要进行顺序调整、合并和删减,各实施例中记载的技术特征可以进行替换或者组合。本申请各实施例种装置及终端中的模块和子模块可以根据实际需要进行合并、划分和删减。
本申请所提供的几个实施例中,应该理解到,所揭露的终端,装置和方法,可以通过其它的方式实现。例如,以上所描述的终端实施例仅仅是示意性的,例如,模块或子模块的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个子模块或模块可以结合或者可以集成到另一个模块,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或模块的间接耦合或通信连接,可以是电性,机械或其它的形式。
作为分离部件说明的模块或子模块可以是或者也可以不是物理上分开的,作为模块或子模块的部件可以是或者也可以不是物理模块或子模块,即可以位于一个地方,或者也可以分布到多个网络模块或子模块上。可以根据实际的需要选择其中的部分或者全部模块或子模块来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能模块或子模块可以集成在一个处理模块中,也可以是各个模块或子模块单独物理存在,也可以两个或两个以上模块或子模块集成在一个模块中。上述集成的模块或子模块既可以采用硬件的形式实现,也可以采用软件功能模块或子模块的形式实现。
结合本文中所公开的实施例描述的方法或算法的步骤可以直接用硬件、处理器执行的软件单元,或者二者的结合来实施。软件单元可以置于随机存储器(RAM)、内存、只读存储器(ROM)、电可编程ROM、电可擦除可编程ROM、寄存器、硬盘、可移动磁盘、CD-ROM、或技术领域内所公知的任意其它形式的存储介质中。
最后,还需要说明的是,在本文中,诸如第一和第二等之类的关系术语仅仅用来将一个实体或者操作与另一个实体或操作区分开来,而不一定要求或者暗示这些实体或操作之间存在任何这种实际的关系或者顺序。而且,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者设备不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者设备所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括所述要素的过程、方法、物品或者设备中还存在另外的相同要素。
对所公开的实施例的上述说明,使本领域技术人员能够实现或使用本申请。对这些实施例的多种修改对本领域的技术人员来说将是显而易见的,本文中所定义的一般原理可以在不脱离本申请的精神或范围的情况下,在其它实施例中实现。因此,本申请将不会被限制于本文所示的这些实施例,而是要符合与本文所公开的原理和新颖特点相一致的最宽的范围。

Claims (41)

  1. 一种线控转向系统,其特征在于,所述线控转向系统包括N个用于输出第一扭矩的第一转向组件,以及至少一个用于输出第二扭矩的第二转向组件,所述N为大于1的整数;
    所述第一转向组件,用于接收其他第一转向组件发送的第一信息,以及接收目标第二转向组件发送的第二信息;根据所述第一信息和所述第二信息,确定其他第一转向组件的状态;根据其他第一转向组件的状态以及自身状态,确定第一扭矩分配方式;根据所述第一扭矩分配方式以及系统所需的第一扭矩总量,输出第一扭矩;所述目标第二转向组件是与所述其他第一转向组件配合工作的第二转向组件;
    所述目标第二转向组件,用于通过检测所述其他第一转向组件的状态,生成包含所述其他第一转向组件状态的第二信息,并向所述第一转向组件发送生成的第二信息。
  2. 根据权利要求1所述的线控转向系统,其特征在于,所述第一转向组件根据所述第一信息和所述第二信息,确定其他第一转向组件的状态,包括:
    所述第一转向组件根据所述第一信息确定其他第一转向组件的状态,作为第一状态,以及,确定所述第二信息中包含的所述其他第一转向组件的状态;
    在所述第二信息中包含的所述其他第一转向组件的状态为所述第一状态的情况下,所述第一转向组件确定所述其他第一转向组件的状态为第一状态。
  3. 根据权利要求1所述的线控转向系统,其特征在于,所述第一转向组件还用于:
    向所述其他第一转向组件发送第三信息,所述第三信息用于触发所述其他第一转向组件反馈所述第一信息。
  4. 根据权利要求1所述的线控转向系统,其特征在于,所述第一转向组件还用于:
    向所述其他第一转向组件发送第四信息,所述第四信息包括所述第一转向组件的状态信息。
  5. 根据权利要求4所述的线控转向系统,其特征在于,所述第一信息包括所述其他第一转向组件的状态信息;
    所述第一转向组件根据其他第一转向组件的状态以及自身状态,确定第一扭矩分配方式,包括:
    所述第一转向组件根据其他第一转向组件的状态以及自身状态,确定第一扭矩分配比例;
    获取所述其他第一转向组件发送的第二扭矩分配比例,所述第二扭矩分配比例由所述其他第一转向组件根据所述第一转向组件的状态以及自身状态而确定;
    在所述第一扭矩分配比例与所述第二扭矩分配比例相同的情况下,所述第一转向组件按照所述第一扭矩分配比例确定第一扭矩分配方式。
  6. 根据权利要求1所述的线控转向系统,其特征在于,所述第一转向组件与方向盘传动连接,所述第二转向组件与转向齿条传动连接。
  7. 根据权利要求6所述的线控转向系统,其特征在于,所述第一转向组件包括第一控制器,以及与所述第一控制器连接的第一传感器和第一电机;
    所述第一传感器用于感应所述第一电机的转子位置,以及感应方向盘转角;所述第一电机用于输出第一扭矩;所述第一控制器基于接收的传感器信号控制所述第一电机的运行;
    所述第二转向组件包括第二控制器,以及与所述第二控制器连接的第二传感器和第二电机;
    所述第二传感器用于感应转向齿条位移和所述第二电机的转子位置;所述第二电机用于输出第二扭矩;所述第二控制器基于接收的传感器信号控制所述第二电机的运行。
  8. 根据权利要求7所述的线控转向系统,其特征在于,所述第一传感器包括扭矩转角传感器和第一转子位置传感器;所述扭矩转角传感器设置于方向盘管柱内,用于感应方向盘转角;所述第一转子位置传感器设置于所述第一电机内,用于感应所述第一电机的转子位置;
    所述第二传感器包括齿条位置传感器和第二转子位置传感器;所述齿条位置传感器设置于转向齿条上,用于感应转向齿条位移;所述第二转子位置传感器设置于所述第二电机内,用于感应所述第二电机的转子位置。
  9. 根据权利要求8所述的线控转向系统,其特征在于,在所述扭矩转角传感器故障的情况下,所述第一控制器基于所述第一转子位置传感器采集的转子位置信息确定方向盘转角;和/或,在所述齿条位置传感器故障的情况下,所述第二控制器基于所述第二转子位置传感器采集的转子位置信息确定转向齿条位移。
  10. 根据权利要求7所述的线控转向系统,其特征在于,任意两个第一转向组件共用同一个六相电机;和/或,当所述第二转向组件的数量大于1个时,任意两个第二转向组件共用同一个六相电机。
  11. 根据权利要求1所述的线控转向系统,其特征在于,在所述第一转向组件的传感器故障的情况下,所述第一转向组件从所述其他第一转向组件中获取传感器信号。
  12. 一种扭矩输出方法,其特征在于,所述方法应用于线控转向系统,所述线控转向系统包括N个用于输出第一扭矩的第一转向组件,以及至少一个用于输出第二扭矩的第二转向组件,所述N为大于1的整数,所述方法包括:
    所述第一转向组件接收其他第一转向组件发送的第一信息;
    与所述其他第一转向组件配合的第二转向组件通过检测所述其他第一转向组件的状态,生成包含所述其他第一转向组件状态的第二信息,并向所述第一转向组件发送生成的第二信息;
    所述第一转向组件根据所述第一信息以及所述第二信息,确定其他第一转向组件的状态;根据其他第一转向组件的状态以及自身状态,确定第一扭矩分配方式;根据所述第一扭矩分配方式以及系统所需的第一扭矩总量,输出第一扭矩。
  13. 一种扭矩输出方法,其特征在于,应用于线控转向系统的任意一个第一转向组件,所述线控转向系统包括N个用于输出第一扭矩的第一转向组件,以及至少一个用于输出第二扭矩的第二转向组件,所述N为大于1的整数,所述方法包括:
    接收其他第一转向组件发送的第一信息,以及接收与所述第一转向组件配合的第二转向组件发送的第二信息;所述第二信息是与所述第一转向组件配合的第二转向组件通过检测所述其他第一转向组件的状态而生成的,所述第二信息中包含所述其他第一转向组件的状态;
    根据所述第一信息和所述第二信息,确定其他第一转向组件的状态;
    根据其他第一转向组件的状态以及自身状态,确定第一扭矩分配方式;
    根据所述第一扭矩分配方式以及系统所需的第一扭矩总量,输出第一扭矩。
  14. 一种车辆,其特征在于,包括如权利要求1至11中任意一项所述的线控转向系统;或者,所述车辆被配置为实现如权利要求12或13所述的扭矩输出方法。
  15. 一种存储介质,其特征在于,所述存储介质上存储有计算机程序,所述计算机程序被处理器运行时,至少辅助实施如权利要求12或13所述的扭矩输出方法。
  16. 一种路感反馈力矩控制系统,其特征在于,所述系统包括:
    传感单元,用于获取转向齿条移动时带动扭杆发生扭转时的扭矩信号;
    反馈力矩计算模块,用于获取基础力矩,用于根据所述扭矩信号获取补偿力矩,还用于基于所述基础力矩和所述补偿力矩,获取目标反馈力矩。
  17. 根据权利要求16所述的系统,其特征在于,所述传感单元的输入轴与齿条啮合;当所述齿条移动时,带动所述输入轴移动;
    所述传感单元中所述输入轴通过扭杆与输出轴连接;当所述输入轴移动时,带动所述扭杆发生扭转角度,以根据所述扭转角度确定补偿力矩;其中,所述输出轴为惯性滑块。
  18. 根据权利要求17所述的系统,其特征在于,所述传感单元中还包括:扭杆角度传感器;
    所述扭杆角度传感器与所述扭杆组合设置在所述输入轴和所述输出轴之间,用于采集所述扭杆的扭转角度,以根据所述扭转角度确定补偿力矩。
  19. 根据权利要求17所述的系统,其特征在于,所述输出轴嵌入轴承,所述轴承与所述传感单元的外壳连接,当所述扭杆发生扭转后,所述惯性滑块跟随所述扭杆的扭动方向发生转动;或者,
    所述输出轴与所述传感单元的外壳固定连接,当所述扭杆发生扭转后,所述惯性滑块保持相对静止。
  20. 根据权利要求16所述的系统,其特征在于,还包括:高频校正单元,用于将所述基础力矩的估算变化状态与所述补偿力矩的扭矩变化状态进行匹配;
    若匹配结果为不一致,则对所述补偿力矩进行高频滤波处理。
  21. 根据权利要求16所述的系统,其特征在于,还包括:梯度校正单元,用于当所述补偿力矩的扭矩变化量大于梯度阈值时,根据预设梯度系数对所述补偿力矩进行升降梯度处理。
  22. 根据权利要求16所述的系统,其特征在于,还包括:电机电流估算模块,用于采集与齿条啮合的驱动电机的电机电流,以根据所述电机电流及对应的预设算法确定基础力矩;和/或,
    车辆模型估算模块,用于根据采集到的所述车辆状态及对应的预设算法估算出所述基础力矩。
  23. 一种路感反馈力矩控制方法,其特征在于,所述方法包括:
    当车辆中与转向齿条连接的转向轮产生动作时,根据所述转向齿条移动过程而驱动扭杆发生扭转的扭转角度,确定补偿力矩;
    确定基础力矩;
    基于所述补偿力矩和所述基础力矩,确定目标反馈力矩。
  24. 一种路感反馈力矩控制装置,其特征在于,所述装置包括:
    第一确定模块,用于当车辆中与转向齿条连接的转向轮产生动作时,根据所述转向齿条移动过程而驱动扭杆发生扭转的扭转角度,确定补偿力矩;
    第二确定模块,用于确定基础力矩;
    校正模块,用于基于所述补偿力矩和所述基础力矩,确定目标反馈力矩。
  25. 一种传感单元,其特征在于,所述传感单元包括:
    与齿条啮合的输入轴;
    所述输入轴通过扭杆与输出轴连接;其中,所述输出轴为与外壳连接的惯性滑块,所述输入轴与轴承连接;
    所述扭杆与扭杆角度传感器连接,当所述齿条移动时用于采集所述扭杆的扭转信号,以便基于所述扭转信号确定目标反馈力矩。
  26. 一种车辆,其特征在于,包括:车身和电源;
    所述车身上安装有存储器、处理器;
    所述存储器,用于存储一条或多条计算机指令;
    所述处理器用于执行所述一条或多条计算机指令以用于执行权利要求23所述的方法中的步骤。
  27. 一种存储有计算机程序产品,其特征在于,计算机程序产品被执行时能够实现如权利要求23所述的方法中的步骤。
  28. 一种车辆,其特征在于,包括:如权利要求25所述的传感单元。
  29. 一种线控转向装置,其特征在于,包括:
    转向柱;
    上转向控制模块,连接于所述转向柱,并在第一工作状态下被致能,以对所述转向柱传递手感反馈力矩;以及
    机械阻尼组件,至少一部分连接于所述转向柱,所述机械阻尼组件在所述第一工作状态下被禁能,以及在所述上转向控制模块的至少一部分失能的第二工作状态下被致能,以对所述转向柱传递摩擦阻力代替所述手感反馈力矩。
  30. 根据权利要求29所述的线控转向装置,其特征在于,所述机械阻尼组件包括:制动盘和伸缩单元,所述伸缩单元设置有摩擦件,其中在所述第一工作状态下所述摩擦件和所述制动盘相分离,以及在所述第二工作状态下所述伸缩单元朝所述制动盘伸出一预定距离,带动所述摩擦件接触于所述制动盘以产生所述摩擦阻力。
  31. 根据权利要求30所述的线控转向装置,其特征在于,所述伸缩单元包括活塞和活塞缸,所述摩擦件设置于所述活塞上,并且可随所述活塞相对所述活塞缸位移而接触于所述制动盘或与所述制动盘分离。
  32. 根据权利要求30所述的线控转向装置,其特征在于,所述伸缩单元包括转动电机和杆体,所述杆体的一端设置有所述摩擦件,另一端连接于所述转动电机。
  33. 根据权利要求30所述的线控转向装置,其特征在于,所述上转向控制模块包括上转控制器和手感反馈电机,所述手感反馈电机用以在所述第一工作状态下传递所述手感反馈力矩至所述转向柱,所述控制器电性连接于所述机机械阻尼组件,用以在所述第二工作状态下动态调整所述预定距离。
  34. 根据权利要求33所述的线控转向装置,其特征在于,所述机械阻尼组件和所述手感反馈电机通过物理连接保持所述手感反馈力矩同步。
  35. 根据权利要求33所述的线控转向装置,其特征在于,还包括第一下转向控制模块,分别电性连接于所述上转向控制模块和所述机械阻尼组件,用以在第三工作状态下控制所述预定距离为定值,其中所述上转向控制模块在所述第三工作状态下失能。
  36. 根据权利要求35所述的线控转向装置,其特征在于,还包括第二下转向控制模块,分别电性连接于所述上转向控制模块、所述第一下转向控制模块和所述机械阻尼组件,用以在第四工作状态下控制所述预定距离为定值,其中所述上转向控制模块和所述第一下转向控制模块在所述第四工作状态下失能。
  37. 根据权利要求30所述的线控转向装置,其特征在于,所述制动盘设置在所述转向柱的管柱上,且所述机械阻尼组件还包括支架,所述伸缩单元设置于所述支架上,并且和所述制动盘相隔所述预定距离。
  38. 根据权利要求30所述的线控转向装置,其特征在于,所述转向柱包括管柱以及套接于所述管柱上的壳体,所述制动盘套接于所述管柱上,所述伸缩单元设置在所述壳体上,并且和所述制动盘相隔所述预定距离。
  39. 一种线控转向装置的手感反馈方法,其特征在于,包括:
    在第一工作状态下,致能上转向控制模块,禁能机械阻尼组件,通过所述上转向控制模块对转向柱传递手感反馈力矩;以及
    当所述上转向控制模块的至少一部分失能,致能所述机械阻尼组件以进入第二工作状态,通过所述机械阻尼组件对所述转向柱传递摩擦阻力代替所述手感反馈力矩。
  40. 根据权利要求39所述的手感反馈方法,其特征在于,
    在所述第一工作状态下,通过所述上转向控制模块的手感反馈电机传递所述手感反馈力矩至所述转向柱;
    在所述第二工作状态下,所述手感反馈电机失能,所述机械阻尼组件的伸缩单元朝制动盘伸出一预定距离,带动摩擦件接触所述制动盘以产生所述摩擦阻力;以及
    通过所述上转向控制模块的控制器控制所述伸缩单元动态调整所述预定距离。
  41. 根据权利要求40所述的手感反馈方法,其特征在于,
    当所述控制器失能,通过第一下转向控制模块控制所述伸缩单元伸出至所述预定距离,此时所述预定距离为定值;以及
    当所述第一下转向控制模块失能,通过第二下转向控制模块控制所述伸缩单元伸出至所述预定距离。
PCT/CN2023/136892 2022-12-07 2023-12-06 线控转向系统、扭矩输出方法、车辆及存储介质 WO2024120453A1 (zh)

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
CN202211566924.9 2022-12-07
CN202211567214.8A CN118144862A (zh) 2022-12-07 2022-12-07 线控转向装置及其手感反馈方法
CN202211566924.9A CN118144871A (zh) 2022-12-07 2022-12-07 路感反馈力矩控制系统、方法、车辆、介质及传感单元
CN202211567214.8 2022-12-07
CN202310604770.6 2023-05-26
CN202310604770.6A CN116409375B (zh) 2023-05-26 2023-05-26 线控转向系统、扭矩输出方法、车辆及存储介质

Publications (1)

Publication Number Publication Date
WO2024120453A1 true WO2024120453A1 (zh) 2024-06-13

Family

ID=91378593

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/136892 WO2024120453A1 (zh) 2022-12-07 2023-12-06 线控转向系统、扭矩输出方法、车辆及存储介质

Country Status (1)

Country Link
WO (1) WO2024120453A1 (zh)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006151360A (ja) * 2004-10-27 2006-06-15 Nissan Motor Co Ltd 車両用操舵装置
US20120006612A1 (en) * 2010-04-15 2012-01-12 Trw Limited Electric power steering system
CN108602529A (zh) * 2016-02-05 2018-09-28 感知公司 用于控制车辆转向和车辆行为的方法
CN111634330A (zh) * 2020-05-07 2020-09-08 中国第一汽车股份有限公司 一种线控转向系统、控制方法和存储介质
US20220063716A1 (en) * 2020-08-25 2022-03-03 Hyundai Mobis Co., Ltd Apparatus and method for controlling steering of autonomous vehicle
CN114954640A (zh) * 2022-07-04 2022-08-30 苏州衡鲁汽车部件有限公司 一种用于线控转向系统的路感模拟装置及其控制方法
CN115257911A (zh) * 2022-08-26 2022-11-01 上海集度汽车有限公司 线控转向控制系统、方法、车辆及存储介质
CN116409375A (zh) * 2023-05-26 2023-07-11 上海集度汽车有限公司 线控转向系统、扭矩输出方法、车辆及存储介质

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006151360A (ja) * 2004-10-27 2006-06-15 Nissan Motor Co Ltd 車両用操舵装置
US20120006612A1 (en) * 2010-04-15 2012-01-12 Trw Limited Electric power steering system
CN108602529A (zh) * 2016-02-05 2018-09-28 感知公司 用于控制车辆转向和车辆行为的方法
CN111634330A (zh) * 2020-05-07 2020-09-08 中国第一汽车股份有限公司 一种线控转向系统、控制方法和存储介质
US20220063716A1 (en) * 2020-08-25 2022-03-03 Hyundai Mobis Co., Ltd Apparatus and method for controlling steering of autonomous vehicle
CN114954640A (zh) * 2022-07-04 2022-08-30 苏州衡鲁汽车部件有限公司 一种用于线控转向系统的路感模拟装置及其控制方法
CN115257911A (zh) * 2022-08-26 2022-11-01 上海集度汽车有限公司 线控转向控制系统、方法、车辆及存储介质
CN116409375A (zh) * 2023-05-26 2023-07-11 上海集度汽车有限公司 线控转向系统、扭矩输出方法、车辆及存储介质

Similar Documents

Publication Publication Date Title
CN109733461B (zh) 自动驾驶车辆的冗余电子转向系统及控制方法
WO2020001590A1 (zh) 车辆以及车辆的转向控制系统和方法
CN116409375B (zh) 线控转向系统、扭矩输出方法、车辆及存储介质
CN111634330A (zh) 一种线控转向系统、控制方法和存储介质
US10177966B2 (en) Vehicle control system, motor drive controller, and management controller
CN107745743A (zh) 一种基于功能安全的电动助力转向控制系统
CN103955188A (zh) 支持冗余切换功能的控制系统及方法
US20150303729A1 (en) Energy Storage System Controller
CN100388140C (zh) 列车驾驶信息显示装置及其方法
US20120297135A1 (en) Redundant array of independent disks system with inter-controller communication and method of operation thereof
CN211417389U (zh) 一种电动助力转向控制系统
CN111619667B (zh) 一种车辆控制方法、装置和车辆
JP4966888B2 (ja) 二重系列車制御装置
WO2024120453A1 (zh) 线控转向系统、扭矩输出方法、车辆及存储介质
CN201863985U (zh) 一种双电机备份驱动重心控制车辆
JP7346608B2 (ja) 車両アーキテクチャ内に冗長通信を提供するための装置および方法ならびに対応する制御アーキテクチャ
JP2024505097A (ja) 車両コーナーモジュール用の制御システム及び操作方法
CN209813737U (zh) 一种磁浮列车及其悬浮控制系统、控制器
CN114326371A (zh) 一种eps系统mcu片间冗余通信的方法
CN115257911B (zh) 线控转向控制系统、方法、车辆及存储介质
JP2014106874A (ja) 同軸二輪移動体及びその制御方法
CN114104097B (zh) 转向控制方法、装置、系统及可读存储介质
CN101520742B (zh) 固态硬盘数据备份方法、系统和相应的固态硬盘
CN112051826B (zh) 汽车故障检测方法及系统
JP3184345U (ja) 伝送エラー検出方式に使用する子局ターミナル