WO2024120131A1 - 一种形貌更优的单晶硅片制绒添加剂及单晶硅片制绒方法 - Google Patents

一种形貌更优的单晶硅片制绒添加剂及单晶硅片制绒方法 Download PDF

Info

Publication number
WO2024120131A1
WO2024120131A1 PCT/CN2023/131477 CN2023131477W WO2024120131A1 WO 2024120131 A1 WO2024120131 A1 WO 2024120131A1 CN 2023131477 W CN2023131477 W CN 2023131477W WO 2024120131 A1 WO2024120131 A1 WO 2024120131A1
Authority
WO
WIPO (PCT)
Prior art keywords
texturing
solution
silicon wafer
single crystal
additive
Prior art date
Application number
PCT/CN2023/131477
Other languages
English (en)
French (fr)
Inventor
丁俊勇
张丽娟
周树伟
徐溪
陈培良
Original Assignee
常州时创能源股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 常州时创能源股份有限公司 filed Critical 常州时创能源股份有限公司
Publication of WO2024120131A1 publication Critical patent/WO2024120131A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/02Elements
    • C30B29/06Silicon
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B33/00After-treatment of single crystals or homogeneous polycrystalline material with defined structure
    • C30B33/08Etching
    • C30B33/10Etching in solutions or melts
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0236Special surface textures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the invention relates to the photovoltaic field, in particular to a single crystal silicon slice texturing additive with better morphology and a single crystal silicon slice texturing method.
  • the texturing process is an indispensable link, and the pyramid morphology after texturing is directly related to the efficiency of various photovoltaic cells.
  • the in-depth development of battery technology will inevitably have higher requirements for the pyramid morphology.
  • the morphological features of the pyramid mainly include: size, uniformity, aspect ratio, specific surface area, and microstructure.
  • the role of the microstructure is to further reduce the reflectivity of the silicon wafer surface after texturing, but too much microstructure will become a recombination center, resulting in reduced efficiency. Therefore, the microstructure must be present, but it must be moderate; the size of the pyramid needs to match the battery structure; after the size is determined, when the size is similar, better uniformity, larger aspect ratio, and larger specific surface area can improve the light trapping ability, increase the current, and thus improve efficiency.
  • the aspect ratio and specific surface area of the pyramid need to be compared at similar sizes. It is meaningless to compare the aspect ratio and specific surface area outside the size range of the pyramid.
  • the purpose of the present invention is to meet the photovoltaic industry's higher-level requirements for the pyramid morphology after texturing, and to propose a single-crystal silicon wafer texturing additive with better morphology and a single-crystal silicon wafer texturing method.
  • the additive can take the lead in proposing better morphology requirements and directions for the morphological characteristics of the pyramids under the premise of ensuring alcohol-free, environmentally friendly and rapid texturing, and at the same time obtain this type of morphology, which includes: the pyramid size is adjustable, the size is similar and uniform, the aspect ratio is larger, and the specific surface area is larger; so as to solve the problem that the solution to obtain better morphology in the prior art is high in cost, only a group of larger-sized pyramids can be obtained, and the uniformity when preparing small pyramids is not mentioned, and the uniformity is poor.
  • the present invention provides the following technical solutions:
  • a texturing additive for single crystal silicon wafers with better morphology the additive ingredients and their weight percentage contents are as follows: 0.001-0.1wt% nucleating agent, 0.01-1wt% main dispersant, 0.01-2wt% auxiliary dispersant, 5-50wt% deaerator, and the balance is deionized water.
  • the nucleating agent is a linear phenolic resin.
  • the linear phenolic resin is selected from one or more of methyl phenolic resin, tert-butyl phenolic resin, and octyl phenolic resin; the molecular weight Mw of the linear phenolic resin is 2000-5000;
  • the linear phenolic resin needs to be prepared into a 0.1%wt aqueous solution, and 1-3wt% of sodium hydroxide is added to enhance dissolution.
  • the main dispersant is selected from one or more of polystyrene sulfonate sodium salt, poly(4-styrene sulfonate-co-acrylic acid) sodium salt, and poly(4-styrene sulfonate-co-maleic acid) sodium salt; and the molecular weight Mw of the polymer is 2000-8000.
  • the auxiliary dispersant is a carbon chain surfactant selected from one or more of secondary alkyl sodium sulfonate, C8 ⁇ 12 alkyl glucoside, and C6 ⁇ 8 fluorocarbon surfactant.
  • the degassing agent is a microcrystalline cellulose whisker solution.
  • the processing process of the microcrystalline cellulose whisker solution is as follows:
  • solution 1 (1) Prepare the following solution according to mass fractions: 5 wt % microcrystalline cellulose, 2 wt % sodium hydroxide, and 93 wt % water to obtain solution 1;
  • the microcrystalline cellulose whisker solution can be well dissolved in water and has a length of 100-800nm.
  • the present invention also provides a texturing liquid for single crystal texturing, comprising the above-mentioned texturing additive and an alkaline solution, wherein the mass ratio of the texturing additive to the alkaline solution is 0.2 to 2:100.
  • the alkaline solution is a 0.4-1.2 wt % sodium hydroxide or potassium hydroxide aqueous solution.
  • the present invention also provides a method for texturing a single crystal silicon wafer with a better morphology, which specifically comprises the following steps:
  • nucleating agent 0.001-0.1wt%, main dispersant 0.01-1wt%, auxiliary dispersant 0.01-2wt%, defoaming agent 5-50wt%, and the balance is deionized water, mix well to prepare a texturing additive;
  • step S2 adding the texturing additive prepared in step S1 to the alkaline solution in proportion, and mixing them evenly to form a texturing solution; wherein the mass ratio of the texturing additive to the alkaline solution is 0.2-2:100;
  • step S3 Immerse the cleaned single crystal silicon wafer in the texturing solution obtained in step S2 to perform surface texturing at a texturing temperature of 80-85° C. for 7-9 minutes.
  • the present invention has the following beneficial effects:
  • the nucleating agent is a linear phenolic resin, which needs to be prepared into a 0.1%wt aqueous solution, and 1-3wt% of sodium hydroxide is added to enhance dissolution. After adding sodium hydroxide, the phenolic hydroxyl group will react with the alkali to form a sodium phenol salt, which is dissolved in water.
  • the water-soluble phenolic resin contacts the surface of the silicon wafer, it can form an aromatic hydrogen bond with the Si-H bond on the benzene ring and the surface of the silicon wafer, and adsorb on the surface of the silicon wafer as a nucleation point;
  • the hydrophobic short carbon chain on the benzene ring such as methyl, tert-butyl or octyl, can further enhance the hydrophobicity of the benzene ring and enhance the nucleation ability; at the same time, the corrosion inhibition of the hydrophobic short carbon chain can also obtain a certain microstructure when the pyramid is formed, reducing the reflectivity.
  • the amount of the nucleating agent can control the size of the pyramid. Since the nucleating agent is a segment with a relatively close molecular weight, as long as it can be evenly dispersed in the texturing liquid, a uniform velvet surface can be obtained.
  • the main dispersant is one or more of polystyrene sulfonate sodium salt, poly(4-styrene sulfonate-co-acrylic acid) sodium salt, and poly(4-styrene sulfonate-co-maleic acid) sodium salt.
  • Its structure is similar to that of the nucleating agent, both of which are block copolymers of benzene rings and benzene rings/carbon chains.
  • the sulfonation of the benzene rings in the dispersant and the carboxyl structure on the carbon chain enhance the water solubility of the dispersant, allowing it to dissolve more evenly in water.
  • the block structure and chain length similar to those of the nucleating agent are easier to combine with the nucleating agent, helping the nucleating agent to be evenly dispersed in the aqueous solution.
  • the auxiliary dispersant is a carbon chain surfactant. It is selected from: sodium secondary alkyl sulfonate, C8 ⁇ 12 alkyl glycoside, C6 ⁇ 8 fluorocarbon surfactant. Carbon chain surfactant has a short carbon chain and can only rely on van der Waals force to adsorb on the surface of the silicon wafer. The adsorption force is weak and it is not easy to adsorb. It has little effect on the texturing reaction and can be used in large quantities. A large amount of surfactant can significantly reduce the surface tension of water and make the nucleating agent dispersed evenly.
  • the degassing agent is a solution of microcrystalline cellulose whiskers.
  • microcrystalline cellulose In an alkaline environment, microcrystalline cellulose is mechanically ground and its water solubility is further enhanced; it can be dissolved in an aqueous solution and adsorbed on the surface of the silicon wafer as a degassing agent.
  • the solution of microcrystalline cellulose whiskers has longer chain segments, and the chain segments are easier to combine with each other, forming a surface from a line. After being entangled with the nucleating agent, it forms a "surface” adsorption on the surface of the silicon wafer; at the same time, the nucleating agent also has a certain chain length, which enhances the toughness of the "surface".
  • This whole-surface advancement corrosion method can quickly form a relatively complete crystal surface. After continuous corrosion, the base of the pyramid decreases and the height increases; the whole-surface advancement corrosion can also reduce the tower velvet formed by dislocations, making the velvet surface more uniform and increasing the specific surface area.
  • FIG1 is a suede morphology of a silicon wafer obtained in Example 1 of the present invention.
  • FIG2 is a suede morphology of a silicon wafer obtained in Example 2 of the present invention.
  • FIG. 3 is a suede morphology of a silicon wafer obtained in a comparative example of the present invention.
  • a single crystal silicon wafer texturing additive with better morphology in the present invention is used for texturing, and the specific steps include:
  • Texturing liquid preparation prepare a 1 wt% NaOH solution in a texturing tank, add the texturing additive prepared in step (1) into the alkaline solution at a mass ratio of 0.5:100, and mix well to obtain a texturing liquid;
  • step (3) Texturing Place the cleaned single crystal silicon wafer into the texturing solution of step (2) for surface texturing. After texturing at 83°C for 7 minutes, take out the silicon wafer, dry it, and then perform reflectivity and ZETA tests. The average reflectivity is 9.8%.
  • the suede morphology of the silicon wafer was observed.
  • the result is shown in Figure 1.
  • the surface of the silicon wafer is evenly covered with larger pyramids.
  • the size of the pyramid base is between 1.7-1.8 ⁇ m.
  • the sizes of these pyramids are basically the same and they are arranged neatly and evenly.
  • a single crystal silicon wafer texturing additive with better morphology in the present invention is used for texturing, and the specific steps include:
  • Texturing liquid preparation prepare a 0.7 wt% NaOH solution in a texturing tank, add the texturing additive prepared in step (1) into the alkaline solution at a mass ratio of 0.8:100, and mix well to obtain a texturing liquid;
  • step (3) Texturing Place the cleaned single crystal silicon wafer into the texturing solution of step (2) for surface texturing. After texturing at 83°C for 7 minutes, take out the silicon wafer, dry it, and then perform reflectivity and ZETA tests. The average reflectivity is 10.0%.
  • the suede morphology of the silicon wafer was observed. The result is shown in FIG2 .
  • the surface of the silicon wafer is evenly covered with small-sized pyramids.
  • the size of the pyramid base is between 1.55 and 1.7 ⁇ m.
  • the sizes of these pyramids are basically the same and they are arranged neatly and evenly.
  • Texturing prepare a 1wt% sodium hydroxide alkaline solution, add a texturing additive (produced by Changzhou Shichuang Energy Co., Ltd., product model: TS55) into the alkaline solution at a mass ratio of 0.7:100, and stir evenly to prepare a texturing solution; put the single crystal silicon wafer into the texturing solution for surface texturing. After texturing at 83°C for 7 minutes, take out the silicon wafer, dry it, and then perform reflectivity and ZETA tests. The average reflectivity is 9.6%.
  • a texturing additive produced by Changzhou Shichuang Energy Co., Ltd., product model: TS55
  • the morphology of the silicon wafer's velvet surface was observed, and the result is shown in Figure 3.
  • the pyramids on the silicon wafer surface are not very uniform, with large size differences, some large and some small, and uneven distribution.
  • the velvet sheets obtained in the above embodiments and comparative examples were tested using the NXT Helios-rc reflectivity tester.
  • the front and back sides of the silicon wafer were tested separately, and then the average reflectivity of the front and back sides was calculated.
  • the surface of the silicon wafer was scanned using the KLA Tencor ZETA INSTRUMENTS instrument, Pyramid-100X mode, to obtain the data of the base, height, number, and specific surface area of the pyramid morphology in the scanning area; the reflectivity of the specific embodiments and comparative examples, and the velvet ZETA data are as follows:
  • Example 1 9.8% 1.740 1.381 20.09 1.404 1.7 ⁇ 1.8
  • Example 2 10.0% 1.601 1.071 22.96 1.273 1.55 ⁇ 1.7 Comparative Example 9.6% 1.745 1.206 18.59 1.334 1.7 ⁇ 1.8
  • Example 1 The suede surface of Example 1 is larger, while the suede surface of Example 2 is smaller, indicating that the patent can obtain uniform suede surfaces of different sizes;
  • Example 1 The reflectivity of Example 1 is close to that of the comparative example, and the velvet surface is obviously more uniform than that of the comparative example, with fewer small towers and broken velvet.
  • Example 1 has a higher tower height (1.3-1.4 ⁇ m), a larger number (200,000-210,000), and a larger specific surface area (1.35-1.45), indicating that the invention can obtain a more optimal pyramid velvet surface.
  • the highlight of the present invention is: preparing a pyramid velvet surface with better morphology, comprising:
  • the pyramid size can be adjusted by adjusting the concentration, ratio, reaction time and other process parameters
  • the morphology is better: the pyramids are similar in size, more uniform, with a larger aspect ratio and a larger specific surface area, thereby increasing the short-circuit current and improving battery efficiency.
  • the uniformity, aspect ratio and specific surface area of the pyramids are positively correlated with the short-circuit current of the battery.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

一种形貌更优的单晶硅片制绒添加剂及单晶硅片制绒方法,其特征在于,包括所述的单晶硅片制绒添加剂成分作用及含量如下:成核剂0.001~0.1wt%、主分散剂0.01~1wt%、辅助分散剂0.01~2wt%、脱泡剂5~50wt%、余量为去离子水,可获得金字塔尺寸可调,大小相近且均匀的形貌。

Description

一种形貌更优的单晶硅片制绒添加剂及单晶硅片制绒方法 技术领域
本发明涉及光伏领域,具体地说是一种形貌更优的单晶硅片制绒添加剂及单晶硅片制绒方法。
背景技术
随着能源更替的迫切需要,刺激了新能源行业高速发展,光伏也迎来了更大的风口。往往机遇与挑战并存,更高的光电转换效率成为该行业焦点中的焦点。电池效率的再次提升,需要更加先进的技术做背书;这些技术体现在光伏电池制造的各个环节,要求每个技术点都做到优中更优。
无论是PERC电池,还是TOPcon、HJT、IBC电池,制绒工序都是其不可或缺的环节,而制绒后的金字塔形貌,更是与各类光伏电池的效率直接相关。电池技术的深入发展,对金字塔形貌必然会有更高层次的要求。
金字塔的形貌特征主要包括:尺寸、均匀性、高宽比、比表面积、微结构。其中微结构的作用是进一步降低制绒后,硅片表面反射率,但过多的微结构反而会成为复合中心,导致效率降低,因此微结构要有,但要适度;金字塔的尺寸则需与电池结构做匹配;在尺寸确定后,做到大小相近时,更优的均匀性,更大的高宽比,更大的比表面积,则可以提高陷光能力,提升电流,从而提高效率。金字塔的高宽比、比表面积需在相近尺寸下做对比。离开金字塔的尺寸范围,对比高宽比、比表面积是没有意义的。
目前现有技术中获得更优形貌的方案主要通过两种途径分别为:
(1)优化工艺:在中国专利申请号202210291697.7中记载:在制绒前,加入抛光工序,能够提高制绒后形貌的均匀性,但目前为了节省成本,硅片行业已经向薄片化方向发展,该方法后续更难适用。
(2)优化制绒添加剂:在中国专利申请号201910819928.5中记载:该方法能够获得更均匀的金字塔形貌,但该专利中只是获得了一组较大尺寸的金字塔,没有提及制备小金字塔时的均匀性;而且在该申请的说明书附图中展示的均匀性也并未太好,存在进一步优化的空间。
上述现有技术中的获得更优形貌的方案依旧存在着成本高,只能获得一组较大尺寸的金字塔,没有提及制备小金字塔时的均匀性,且在该申请的说明书附图中展示的均匀性较差的问题需要解决。
发明内容 技术问题 问题的解决方案 技术解决方案
本发明的目的是为了满足光伏行业对制绒后金字塔形貌更高层次要求,提出一种形貌更优的单晶硅片制绒添加剂及单晶硅片制绒方法,该添加剂能够在保证无醇、环保、快速制绒的前提下,率先对金字塔的形貌特征提出更优形貌的要求与方向,同时获得该类形貌,形貌包括:金字塔尺寸可调,大小相近且均匀,更大的高宽比,更大的比表面积;以解决现有技术中获得更优形貌的方案成本高,只能获得一组较大尺寸的金字塔,没有提及制备小金字塔时的均匀性,且均匀性较差的问题。
为实现上述目的,本发明提供以下技术方案:
一种形貌更优的单晶硅片制绒添加剂,添加剂成分作用及质量百分比含量如下:成核剂0.001~0.1wt%、主分散剂0.01~1wt%、辅助分散剂0.01~2wt%、脱泡剂5~50wt%、余量为去离子水。
作为优选,所述成核剂为线型的酚醛树脂。
进一步优选的,所述线型的酚醛树脂选自,甲基酚醛树脂、叔丁基酚醛树脂、辛基酚醛树脂中的一种或多种;所述线型的酚醛树脂的分子量Mw2000~5000;
进一步优选的,所述线型的酚醛树脂,需配制成0.1%wt的水溶液,同时加入1~3wt%的氢氧化钠增强溶解。
作为优选,所述主分散剂选自,聚苯乙烯磺酸钠盐、聚(4-苯乙烯磺酸-共聚-丙烯酸)钠盐、聚(4-苯乙烯磺酸-共聚-马来酸)钠盐中的一种或多种;所述聚合物分子量Mw 2000~8000。
作为优选,所述辅助分散剂为碳链型表面活性剂选自,仲烷基磺酸钠、C8~12烷基糖苷、C6~8氟碳表面活性剂中的一种或多种。
作为优选,所述脱泡剂为微晶纤维素晶须溶液。
进一步优选的,所述微晶纤维素晶须溶液的处理工艺如下:
(1)按照质量分数配置如下溶液:微晶纤维素5wt%、氢氧化钠2wt%、水93wt%,得溶液1;
(2)采用高速分散乳化机对溶液1进行乳化分散30min,得到溶液2;
(3)采用卧室砂磨机对溶液2进行循环研磨,先用1.2-1.4mm锆珠进行粗磨1h;再用0.6-0.8mm锆珠进行细磨2h;得到微晶纤维素晶须溶液;
经处理后,该微晶纤维素晶须溶液能很好的溶解在水中,长度为100-800nm。
本发明还提供了一种单晶制绒用制绒液,包括上述的制绒添加剂和碱溶液,所述制绒添加剂和碱溶液的质量比为0.2~2:100。
作为优选,所述碱溶液为0.4~1.2wt%的氢氧化钠或氢氧化钾水溶液。
本发明还提供了一种形貌更优的单晶硅片制绒方法,具体包括以下步骤:
S1、按照配比:成核剂0.001~0.1wt%、主分散剂0.01~1wt%、辅助分散剂0.01~2wt%、脱泡剂5~50wt%、余量为去离子水,混合均匀后,配成制绒添加剂;
S2、将步骤S1制成的制绒添加剂按比例加入到碱溶液中,混合均匀配成制绒液;其中制绒添加剂与碱溶液的质量比为0.2~2:100;
S3、将洁净单晶硅片浸入步骤S2制得的制绒液中进行表面制绒,制绒温度为80~85℃,时间为7~9min。
有益效果
与现有技术相比,本发明有益效果如下:
本发明的制绒添加剂中,成核剂为线型的酚醛树脂,其需被配制成0.1%wt的水溶液,并加入1~3wt%的氢氧化钠增强溶解。加入氢氧化钠后,酚羟基会与碱反应生成酚钠盐,溶解在水中。水溶后酚醛树脂,在与硅片表面接触后,能凭借苯环与硅片表面的Si-H键形成芳香氢键作用,吸附在硅片表面,作为成核点;苯环上的疏水短碳链,如:甲基、叔丁基或辛基,能再次提升苯环的疏水性,增强成核能力;同时疏水短碳链的抑制腐蚀性,也能在金字塔形成时,获得一定的微结构,降低反射率。成核剂的用量,能控制金字塔的尺寸。由于成核剂是分子量相对接近的链段,只要能均匀的分散在制绒液中,就能获得均匀的绒面。
主分散剂是聚苯乙烯磺酸钠盐、聚(4-苯乙烯磺酸-共聚-丙烯酸)钠盐、聚(4-苯乙烯磺酸-共聚-马来酸)钠盐中的一种或多种。其结构与成核剂有相似之处,均为苯环与苯环/碳链的嵌段共聚物。分散剂中苯环磺化及碳链上的羧基结构增强了分散剂的水溶性,使其能更均匀的溶解在水中。与成核剂相似的嵌段结构及链长,更易与成核剂结合,帮助成核剂在水溶液中分散均匀。
辅助分散剂为碳链型表面活性剂。选自:仲烷基磺酸钠、C8~12烷基糖苷、C6~8氟碳表面活性剂。碳链型表面活性剂,碳链较短,且只能依靠范德华力吸附在硅片表面,吸附力较弱,不易吸附,对制绒反应影响较小,能大量使用。大量的表面活性剂能够显著降低水的表面张力,使成核剂分散均匀。
脱泡剂为微晶纤维素晶须溶液。碱性环境下,微晶纤维素经机械研磨,水溶性再次增强;使其能溶解在水溶液中,吸附在硅片表面,作为脱泡剂。微晶纤维素晶须溶液与常见的化学改性纤维素相比,拥有更长的链段,链段之间也更易互相结合,由线成面。在与成核剂缠绕后,在硅片表面形成“面”吸附;同时成核剂也有一定的链段长度,增强了“面”的韧性。随着腐蚀的进行,保持整面推进,保护晶面,形成金字塔。这种整面推进的腐蚀方式,能快速形成较完整的晶面,持续腐蚀后,金字塔塔基减小,高度增加;整面推进腐蚀还能减少由于位错形成的并塔碎绒,使绒面更加均匀,增大比表面积。
附图说明
图1为本发明实施例1所得硅片的绒面形貌;
图2为本发明实施例2所得硅片的绒面形貌;
图3为本发明对比例所得硅片的绒面形貌。
本发明的最佳实施方式 本发明的实施方式 具体实施方式
为阐明技术问题、技术方案、实施过程及性能展示,以下结合实施例,对本发明进行进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释。本发明,并不用于限定本发明。以下将参考附图详细说明本公开的各种示例性实施例、特征和方面。附图中相同的附图标记表示功能相同或相似的元件。尽管在附图中示出了实施例的各种方面,但是除非特别指出,不必按比例绘制附图。
在这里专用的词“示例性”意为“用作例子、实施例或说明性”。这里作为“示例性”所说明的任何实施例不必解释为优于或好于其它实施例。
另外,为了更好的说明本公开,在下文的具体实施方式中给出了众多的具体细节。本领域技术人员应当理解,没有某些具体细节,本公开同样可以实施。在一些实例中,对于本领域技术人员熟知的方法、手段、元件和电路未作详细描述,以便于凸显本公开的主旨。
实施例1
如图1,采用本发明中的一种形貌更优的单晶硅片制绒添加剂进行制绒,具体步骤包括:
(1)制绒添加剂配置:以质量百分比进行配置,将叔丁基酚醛树脂0.005%、聚苯乙烯磺酸钠盐0.025%、C8~12烷基糖苷0.04%、微晶纤维素晶须溶液12%加入到87.93%的去离子水中,混合均匀得到制绒添加剂;
(2)制绒液配置:在制绒槽中配制1wt%的NaOH溶液,将步骤(1)的制绒添加剂按质量比为0.5:100的比例加入到碱溶液中混合均匀,得制绒液;
(3)制绒:将洁净的单晶硅片投入步骤(2)的制绒液中进行表面制绒,温度83℃制绒7min后,取出硅片,烘干后进行反射率、ZETA测试,平均反射率为9.8%。
观察硅片绒面形貌,结果如图1所示,硅片表面均匀铺满较大尺寸的金字塔,例如塔基尺寸在1.7-1.8μm之间,这些金字塔的尺寸基本相同,排列整齐均匀。
实施例2
如图2,采用本发明中的一种形貌更优的单晶硅片制绒添加剂进行制绒,具体步骤包括:
(1)制绒添加剂配置:以质量百分比进行配置,将辛基酚醛树脂0.01%、聚(4-苯乙烯磺酸-共聚-丙烯酸)钠盐0.05%、仲烷基磺酸钠0.07%、微晶纤维素晶须溶液20%加入到79.87%的去离子水中,混合均匀得到制绒添加剂;
(2)制绒液配置:在制绒槽中配制0.7wt%的NaOH溶液,将步骤(1)的制绒添加剂按质量比为0.8:100的比例加入到碱溶液中混合均匀,得制绒液;
(3)制绒:将洁净的单晶硅片投入步骤(2)的制绒液中进行表面制绒,温度83℃制绒7min后,取出硅片,烘干后进行反射率、ZETA测试,平均反射率为10.0%。
观察硅片绒面形貌,结果如图2所示,硅片表面均匀铺满小尺寸的金字塔,例如塔基尺寸在1.55-1.7μm之间,这些金字塔的尺寸基本相同,排列整齐均匀。
对比例
制绒:配制1wt%浓度的氢氧化钠碱溶液,在该碱溶液中,按照质量比为0.7:100加入制绒添加剂(常州时创能源股份有限公司生产,产品型号:TS55),搅拌均匀配成制绒液;将单晶硅片投入制绒液中进行表面制绒,温度83℃制绒7min后,取出硅片,烘干后进行反射率、ZETA测试,平均反射率为9.6%。
观察硅片绒面形貌,结果如图3所示,硅片表面金字塔不是太均匀,尺寸差异较大,大的大,小的小,分布不均匀,并且因为不同大小金字塔的错位而形成的并塔碎绒很多。
上述实施例和对比例所得制绒片,采用NXT Helios-rc反射率测试仪进行测试,硅片的正反面分别测试,再计算正反面平均反射率。采用 KLA Tencor ZETA INSTRUMENTS仪器,Pyramid-100X模式,对硅片表面进行扫描,获得扫描区域内,金字塔形貌的塔基、塔高、个数、比表面积数据;具体实施例、对比例的反射率,绒面ZETA数据,如下表:
表1 实施例与对比例绒面数据
反射率 塔基/μm 塔高/μm 个数/万 比表面积 金字塔尺寸范围/μm
实施例1 9.8% 1.740 1.381 20.09 1.404 1.7~1.8
实施例2 10.0% 1.601 1.071 22.96 1.273 1.55~1.7
对比例 9.6% 1.745 1.206 18.59 1.334 1.7~1.8
通过表1对比实施例和对比例,能得到:
(1)实施例1绒面较大,实施例2绒面较小,表明该专利能够获得不同大小的均匀绒面;
(2)实施例1与对比例反射率接近,绒面明显比对比例更均匀,小塔、碎绒较少;在相近塔基时,实施例1拥有更高的塔高(1.3-1.4μm),更多的个数(20-21万),更大的比表面积(1.35-1.45),表明该发明能够获得更优形的金字塔绒面。
综上,本发明的亮点是:制备形貌更优的金字塔绒面,包括:
1)通过浓度、配比、反应时间等工艺参数的调整实现金字塔尺寸可调;
2)在一定范围的金字塔尺寸下,做到形貌更优:金字塔大小相近,更均匀,更大的高宽比,更大的比表面积,从而提升短路电流,提高电池效率,金字塔的均匀度、高宽比、比表面积与电池的短路电流呈正相关关系。
以上显示和描述了本发明的基本原理、主要特征和本发明的优点。本行业的技术人员应该了解,本发明不受上述实施例的限制,上述实施例和说明书中描述的仅为本发明的优选例,并不用来限制本发明,在不脱离本发明精神和范围的前提下,本发明还会有各种变化和改进,这些变化和改进都落入要求保护的本发明范围内。本发明要求保护范围由所附的权利要求书及其等效物界定。

Claims (11)

  1. 一种形貌更优的单晶硅片制绒添加剂,其特征在于,添加剂成分作用及质量百分比含量如下:成核剂0.001~0.1wt%、主分散剂0.01~1wt%、辅助分散剂0.01~2wt%、脱泡剂5~50wt%、余量为去离子水。
  2. 根据权利要求1所述的一种形貌更优的单晶硅片制绒添加剂,其特征在于,所述成核剂为线型的酚醛树脂。
  3. 根据权利要求2所述的一种形貌更优的单晶硅片制绒添加剂,其特征在于,所述线型的酚醛树脂选自,甲基酚醛树脂、叔丁基酚醛树脂、辛基酚醛树脂中的一种或多种;所述线型的酚醛树脂的分子量Mw2000~5000。
  4. 根据权利要求2所述的一种形貌更优的单晶硅片制绒添加剂,其特征在于,所述线型的酚醛树脂,需配制成0.1%wt的水溶液,同时加入1~3wt%的氢氧化钠增强溶解。
  5. 根据权利要求1所述的一种形貌更优的单晶硅片制绒添加剂,其特征在于,所述主分散剂选自,聚苯乙烯磺酸钠盐、聚(4-苯乙烯磺酸-共聚-丙烯酸)钠盐、聚(4-苯乙烯磺酸-共聚-马来酸)钠盐中的一种或多种;所述聚合物分子量Mw 2000~8000。
  6. 根据权利要求1所述的一种形貌更优的单晶硅片制绒添加剂,其特征在于,所述辅助分散剂为碳链型表面活性剂选自,仲烷基磺酸钠、C8~12烷基糖苷、C6~8氟碳表面活性剂中的一种或多种。
  7. 根据权利要求1所述的一种形貌更优的单晶硅片制绒添加剂,其特征在于,所述脱泡剂为微晶纤维素晶须溶液。
  8. 根据权利要求7所述的一种形貌更优的单晶硅片制绒添加剂,其特征在于,所述微晶纤维素晶须溶液的处理工艺如下:
    (1)按照质量分数配置如下溶液:微晶纤维素5wt%、氢氧化钠2wt%、水93wt%,得溶液1;
    (2)采用高速分散乳化机对溶液1进行乳化分散30min,得到溶液2;
    (3)采用卧室砂磨机对溶液2进行循环研磨,先用1.2-1.4mm锆珠进行粗磨0.5-1.5h;再用0.6-0.8mm锆珠进行细磨1-3h;得到微晶纤维素晶须溶液;
    经处理后,该微晶纤维素晶须溶液能很好的溶解在水中,长度为100-800nm。
  9. 一种单晶制绒用制绒液,其特征在于,包括权利要求1-8中任一项所述制绒添加剂和碱溶液,所述制绒添加剂和碱溶液的质量比为0.2~2:100。
  10. 根据权利要求9所述的一种单晶制绒用制绒液,其特征在于,所述碱溶液为0.4~1.2wt%的氢氧化钠或氢氧化钾水溶液。
  11. 一种形貌更优的单晶硅片制绒方法,其特征在于,具体包括以下步骤:
    S1、按照配比:成核剂0.001~0.1wt%、主分散剂0.01~1wt%、辅助分散剂0.01~2wt%、脱泡剂5~50wt%、余量为去离子水,混合均匀后,配成制绒添加剂;
    S2、将步骤S1制成的制绒添加剂按比例加入到碱溶液中,混合均匀配成制绒液;其中制绒添加剂与碱溶液的质量比为0.2~2:100;
    S3、将洁净单晶硅片浸入步骤S2制得的制绒液中进行表面制绒,制绒温度为80~85℃,时间为7~9min。
PCT/CN2023/131477 2022-12-05 2023-11-14 一种形貌更优的单晶硅片制绒添加剂及单晶硅片制绒方法 WO2024120131A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202211577568.0 2022-12-05
CN202211577568.0A CN116005270A (zh) 2022-12-05 2022-12-05 一种形貌更优的单晶硅片制绒添加剂及单晶硅片制绒方法

Publications (1)

Publication Number Publication Date
WO2024120131A1 true WO2024120131A1 (zh) 2024-06-13

Family

ID=86034507

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/131477 WO2024120131A1 (zh) 2022-12-05 2023-11-14 一种形貌更优的单晶硅片制绒添加剂及单晶硅片制绒方法

Country Status (2)

Country Link
CN (1) CN116005270A (zh)
WO (1) WO2024120131A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116005270A (zh) * 2022-12-05 2023-04-25 常州时创能源股份有限公司 一种形貌更优的单晶硅片制绒添加剂及单晶硅片制绒方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013100318A1 (ko) * 2011-12-26 2013-07-04 동우화인켐 주식회사 결정성 실리콘 웨이퍼의 텍스쳐 에칭액 조성물 및 텍스쳐 에칭방법
CN115261995A (zh) * 2022-08-11 2022-11-01 陕西科技大学 一种晶面微构化助剂及其制备方法与应用
CN116005270A (zh) * 2022-12-05 2023-04-25 常州时创能源股份有限公司 一种形貌更优的单晶硅片制绒添加剂及单晶硅片制绒方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013100318A1 (ko) * 2011-12-26 2013-07-04 동우화인켐 주식회사 결정성 실리콘 웨이퍼의 텍스쳐 에칭액 조성물 및 텍스쳐 에칭방법
CN115261995A (zh) * 2022-08-11 2022-11-01 陕西科技大学 一种晶面微构化助剂及其制备方法与应用
CN116005270A (zh) * 2022-12-05 2023-04-25 常州时创能源股份有限公司 一种形貌更优的单晶硅片制绒添加剂及单晶硅片制绒方法

Also Published As

Publication number Publication date
CN116005270A (zh) 2023-04-25

Similar Documents

Publication Publication Date Title
WO2024120131A1 (zh) 一种形貌更优的单晶硅片制绒添加剂及单晶硅片制绒方法
WO2022083362A1 (zh) 适用于大尺寸单晶硅片的制绒添加剂、制绒液及应用
WO2023019934A1 (zh) 一种用于快速制绒的制绒添加剂及应用
WO2023097973A1 (zh) 硅片及其制备方法和太阳能电池
CN110453289B (zh) 一种用于磷化铟表面孪晶识别的腐蚀液及腐蚀方法
CN114921251B (zh) 晶体硅制绒添加剂、晶体硅制绒剂以及晶体硅倒金字塔绒面结构的制备方法
WO2021238496A1 (zh) 一种单晶硅片制绒添加剂及其应用
CN110524398A (zh) 一种用于晶体硅酸性抛光的添加剂及酸性抛光方法
CN112813501A (zh) 一种单晶硅片制绒添加剂及其应用
CN108660510A (zh) 一种新型单晶硅片制绒添加剂的制造及简单制绒方法
CN115939420A (zh) 一种高稳定的质子交换膜燃料电池催化剂浆料的制备方法
CN114959910A (zh) 一种高效单晶硅太阳能电池制绒添加剂溶液及应用
CN114335204A (zh) 硅片的制绒方法、硅片和太阳能电池
CN115216301B (zh) 一种用于单晶硅的制绒液及制绒方法
CN114823943B (zh) 绒面结构、包含其的单晶硅片、制绒方法及应用
CN113502163B (zh) 用于形成太阳电池背结构的化学助剂、其制备方法及应用
CN115261995B (zh) 一种晶面微构化助剂及其制备方法
CN116004233A (zh) 一种提升硅片绒面均整度的刻蚀添加剂及使用方法
CN115418169A (zh) 一种sic晶圆cmp抛光用二氧化硅抛光液及其制备方法
TWI589655B (zh) 結晶矽鹼性拋光液的添加劑及其應用
CN111485290B (zh) 单晶硅表面处理用的制绒添加剂、制绒剂以及单晶硅表面制绒的方法
CN114318550A (zh) 一种单晶硅二次制绒的添加剂及其制绒工艺
CN118087049A (zh) 一种用于制备低反太阳能电池片的制绒添加剂及其应用
CN114775064B (zh) 制绒添加剂、制绒液及其制备方法和应用
CN114990700B (zh) 制备梯田金字塔微结构硅片的添加剂和工艺及所得硅片