WO2024119689A1 - 一种剪切分散装置及连续制浆设备 - Google Patents

一种剪切分散装置及连续制浆设备 Download PDF

Info

Publication number
WO2024119689A1
WO2024119689A1 PCT/CN2023/088740 CN2023088740W WO2024119689A1 WO 2024119689 A1 WO2024119689 A1 WO 2024119689A1 CN 2023088740 W CN2023088740 W CN 2023088740W WO 2024119689 A1 WO2024119689 A1 WO 2024119689A1
Authority
WO
WIPO (PCT)
Prior art keywords
rotor
stator
inner ring
channel
shaft core
Prior art date
Application number
PCT/CN2023/088740
Other languages
English (en)
French (fr)
Inventor
杜保东
可建
金旭东
石桥
Original Assignee
深圳市尚水智能股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市尚水智能股份有限公司 filed Critical 深圳市尚水智能股份有限公司
Publication of WO2024119689A1 publication Critical patent/WO2024119689A1/zh

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F27/00Mixers with rotary stirring devices in fixed receptacles; Kneaders
    • B01F27/27Mixers with stator-rotor systems, e.g. with intermeshing teeth or cylinders or having orifices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F27/00Mixers with rotary stirring devices in fixed receptacles; Kneaders
    • B01F27/60Mixers with rotary stirring devices in fixed receptacles; Kneaders with stirrers rotating about a horizontal or inclined axis

Definitions

  • the present application relates to the technical field of slurry dispersion equipment, and in particular to a shearing dispersion device and a continuous pulping equipment.
  • the existing twin-screw extruder has all the functional components strung together on two parallel screws, including all functions of powder conveying, powder mixing, kneading, dilution and dispersion.
  • the speed requirement of the dispersion function is inconsistent with the speed requirement of the previous other functions and the difference is extremely large, the dispersion effect cannot meet the use requirements.
  • twin-screw extruders The current solution to the insufficient dispersion capacity of twin-screw extruders on the market is to add a buffer tank at the rear end of the twin-screw and use the high and low speed stirring shafts of the buffer tank to disperse the slurry.
  • this solution sacrifices the natural advantage of continuous production of the twin-screw extruder.
  • the twin-screw itself is a continuous production, which liberates production capacity, but the buffer tank at the back can only mix batches before outputting to the back-end process, which cannot achieve continuous pulping operations and reduces production capacity.
  • the technical problem to be solved by the present application is to overcome the defects of the prior art that continuous pulping operation cannot be achieved, the pulping capacity is small, and the efficiency is low, thereby providing a shearing and dispersing device and a continuous pulping equipment.
  • a shearing and dispersing device comprises: a cylinder, a stator unit and a rotor unit; the cylinder is connected to a screw At the discharge end of the rod extrusion device, an axis core driven to rotate by a driving member is provided in the cylinder; there are multiple stator units, which are sleeved on the axis core, fixedly connected to the cylinder, and provided with a first through hole penetrating the stator unit along its own axial direction; there are multiple rotor units, which are fixedly sleeved on the axis core, multiple stator units and multiple stator units are alternately arranged along the axial direction of the axis core, and the rotor unit is provided with a second through hole penetrating the rotor unit along its own axial direction; the rotor unit rotates with the axis core so that multiple first through holes and multiple second through holes are staggered and interconnected to form a first channel for shearing and dispersing the slurry.
  • the stator unit includes a stator outer ring, a stator inner ring, and a plurality of stator ribs extending from the stator outer ring along its radial direction to the stator inner ring; the stator outer ring is fixedly connected to the inner wall of the cylinder, the plurality of stator ribs are evenly arranged along the circumference of the stator outer ring, and the first through hole is enclosed by at least two adjacent stator ribs, the stator outer ring and the stator inner ring;
  • the rotor unit includes a rotor inner ring, a rotor outer ring, and a plurality of rotor ribs extending from the rotor inner ring along its radial direction to the rotor outer ring.
  • the rotor inner ring is fixedly sleeved on the shaft core.
  • the plurality of rotor ribs are evenly arranged along the circumference of the rotor inner ring.
  • the second through hole is enclosed by at least two adjacent rotor ribs, the rotor inner ring and the rotor outer ring.
  • the stator unit and the rotor unit are arranged opposite to each other, and in the axial direction of the core shaft, the thickness of the stator outer ring is greater than the thickness of the stator inner ring and the stator ribs, and the thickness of the rotor inner ring is greater than the thickness of the rotor outer ring and the rotor ribs;
  • a first axial channel is formed between the inner wall of the stator outer ring and the outer wall of the rotor outer ring, and a second axial channel is formed between the outer wall of the rotor inner ring and the inner wall of the stator inner ring, and the flow directions of the first axial channel and the second axial channel are consistent with the axial direction of the shaft core;
  • a radial channel is formed between the side wall of the rotor rib and the side wall of the adjacent stator rib, and the flow direction of the radial channel is perpendicular to the axial direction of the shaft core;
  • the first axial channel, the radial channel and the second axial channel are connected in sequence to form a second channel for shearing and dispersing the material; the second axial channel is connected to the two radial channels on both sides of the corresponding stator ribs so that multiple second channels are connected in sequence.
  • the width of the radial channel is adjustable, and the width adjustment range is 1-4 mm.
  • the invention further includes an adjusting washer, at least one side of the rotor inner ring A receiving groove is arranged on the surface, the adjusting washer is sleeved on the shaft core and located in the receiving groove, and the adjusting washer is suitable for adjusting the width of the radial channel.
  • a fixing member which includes a gasket that is sleeved on the shaft core and abuts against the rotor inner ring located at the front port of the cylinder, and a fastener connected to the shaft core to fix the gasket on the rotor inner ring.
  • a limiting groove is provided on the side of the rotor inner ring facing the front end of the cylinder, and the gasket abuts against the bottom of the limiting groove.
  • a first positioning key is provided on the cylinder body, and an outer wall of the stator outer ring is provided with a first positioning groove that can cooperate with the positioning key; at least one second positioning key is provided on the shaft core, and an inner wall of the rotor inner ring is provided with a second positioning groove that cooperates with the second positioning key.
  • a medium heat exchange channel is provided on the cylinder wall of the cylinder, and the medium heat exchange channel has a medium inlet and a medium outlet.
  • a continuous pulping equipment proposed in the present application is characterized in that it includes a screw extrusion device and the above-mentioned shearing and dispersion device, the screw extrusion device includes an extrusion barrel and a screw extrusion element arranged in the extrusion barrel, and the barrel is connected to the discharge end of the extrusion barrel.
  • the shearing and dispersing device comprises a stator unit and a rotor unit which are alternately installed in a cylinder, a rotor unit which is fixedly sleeved on an axis core, a plurality of first through holes are opened in the stator unit along its own axial direction, and a plurality of second through holes are opened in the rotor unit along its own axial direction.
  • the rotor unit When the driving member drives the axis core to rotate, the rotor unit is driven to rotate as well, so that the plurality of first through holes and the plurality of second through holes are staggered and interconnected, and the rotor unit rotates relative to the stator unit, and a large shearing force is formed at the connection point between the first through hole and the second through hole.
  • the plurality of stator units and the plurality of rotor units are alternately arranged, and the axis core drives the rotor unit to rotate, so that the first channel formed by the first through hole and the second through hole is always kept in a connected state, and the slurry is sheared while the flow of the slurry is promoted, so as to achieve the purpose of rapid and continuous slurrying and improve the slurrying efficiency.
  • the shear dispersion device provided in the present application adjusts the radial channel between the rotor unit and the stator unit by adjusting the gasket according to the characteristics of the slurry introduced, thereby improving the versatility of the shear dispersion device.
  • the continuous pulping equipment proposed in this application is connected with the shearing and dispersing device to achieve the purpose of continuous pulping, improve the pulping efficiency and increase the pulping output.
  • FIG1 is an exploded view of a shear dispersion device provided in some embodiments of the present application.
  • FIG2 is a half-sectional view of a shear dispersion device provided in some embodiments of the present application.
  • FIG3 is a partial view of point A in FIG2;
  • FIG4 is a half-sectional view of a shear dispersion device provided in some embodiments of the present application at another angle;
  • FIG5 is a partial view of point B in FIG4;
  • FIG6 is a structural view of a stator unit of a shear dispersion device provided in some embodiments of the present application.
  • FIG. 7 is an assembly view of a rotor unit and a shaft core of a shear dispersion device provided in some embodiments of the present application.
  • the term "installed”, “connected” and “connected” should be understood in a broad sense. For example, it can be a fixed connection, a detachable connection, or an integral connection; it can be a mechanical connection or an electrical connection; it can be a direct connection or an indirect connection through an intermediate medium, or it can be the internal communication of two components.
  • installed can be a fixed connection, a detachable connection, or an integral connection; it can be a mechanical connection or an electrical connection; it can be a direct connection or an indirect connection through an intermediate medium, or it can be the internal communication of two components.
  • a shearing and dispersing device proposed in the present application includes: a barrel 1, a stator unit 2 and a rotor unit 3; the barrel 1 is connected to the discharge end of the screw extruder, and a shaft core 4 driven to rotate by a driving member is provided in the barrel 1; there are multiple stator units 2, the stator units 2 are sleeved on the shaft core 4, the stator unit 2 is fixedly connected to the barrel 1, and the stator unit 2 is provided with a first through hole 221 that penetrates the stator unit 2 along its own axial direction; there are multiple rotor units 3, the rotor unit 3 is fixedly sleeved on the shaft core 4, multiple stator units 2 and multiple stator units 2 are alternately arranged along the axial direction of the shaft core 4, and the rotor unit 3 is provided with a second through hole 321 that penetrates the rotor unit 3 along its own axial direction; the rotor unit 3 rotates with the shaft core 4, so that the multiple first through holes 221 and the stator
  • stator unit 2 and the rotor unit 3 are alternately installed in the cylinder 1, the rotor unit 3 is fixedly sleeved on the shaft core 4, the stator unit 2 is provided with a plurality of first through holes 221 along its own axial direction, and the rotor unit 3 is provided with a plurality of second through holes 321 along its own axial direction.
  • the driving member drives the shaft core 4 to rotate
  • the rotor unit 3 is driven to rotate, so that the plurality of first through holes 221 and the plurality of second through holes 321 are staggered and interconnected, and the rotor unit 3 rotates relative to the stator unit 2, and a large shear force is formed at the connection point between the first through hole 221 and the second through hole 321.
  • the shaft core 4 drives the rotor unit 3 to rotate, so that the first channel formed by the first through hole 221 and the second through hole 321 is always kept in a connected state, and the slurry is sheared while the flow of the slurry is promoted, so as to achieve the purpose of rapid and continuous slurrying and improve the slurrying efficiency.
  • the first through hole 221 and the second through hole 321 are set to be fan-shaped.
  • the radius of the first through hole 221 or the second through hole 321 with a fan-shaped cross section shears the slurry, which is conducive to improving the shearing efficiency of the slurry.
  • the cross-sectional shape of the first through hole 221 and the second through hole 321 is not limited to the present application, and can also be set to a square or a triangle.
  • the stator unit 2 includes a stator outer ring 21, a stator inner ring 23, and a plurality of stator ribs 22 extending from the stator outer ring 21 to the stator inner ring 23 along its radial direction, the stator outer ring 21 is fixedly connected to the inner wall of the cylinder 1, and the plurality of stator ribs 22 are evenly arranged along the circumference of the stator outer ring 21, and the first through hole 221 is enclosed by at least two adjacent stator ribs 22, the stator outer ring 21, and the stator inner ring 23.
  • the thickness of the stator inner ring 23 and the stator ribs 22 are the same and are both smaller than the thickness of the stator outer ring 21.
  • At least one first positioning key 11 is provided on the cylinder body 1, and a first positioning groove 211 matching with the first positioning key 11 is provided on the outer peripheral wall of the stator outer ring 21; the number of the first positioning groove 211 and the second positioning groove 311 can be multiple, and the specific number of the first positioning groove 211 and the second positioning groove 311 is not limited to the present application.
  • the stator unit 2 is fixed on the cylinder 1 by means of keyway matching. Specifically, at least one first positioning key 11 is provided on the cylinder 1, and at least two first positioning grooves 211 that can match with the first positioning key 11 are provided on the rotor outer ring 33; the first positioning key 11 can match with any first positioning groove 211, which can improve the adaptability of the installation of the stator unit 2 and reduce the difficulty of installation.
  • the first through holes 221 on each stator unit 2 can be located on the same axis or the first through holes 221 on each stator unit 2 can be staggered by adjusting the installation position between the first positioning key 11 and the two first positioning grooves 211, so as to change the dispersion performance of the shear dispersion device.
  • the rotor unit 3 includes a rotor inner ring 31, a rotor outer ring 33, and a plurality of rotor ribs 32 extending from the rotor inner ring 31 to the rotor outer ring 33 along its radial direction.
  • the rotor inner ring 31 is fixedly sleeved on the shaft core 4.
  • the plurality of rotor ribs 32 are evenly arranged along the circumference of the rotor inner ring 31.
  • the second through hole 321 is formed by at least two adjacent rotor ribs 32, the rotor inner ring 31, and the rotor outer ring 33.
  • the thickness of the rotor outer ring 33 and the rotor ribs 32 are the same and are both smaller than the thickness of the rotor inner ring 31.
  • the rotor unit 3 is also fixed to the shaft core 4 by means of keyway matching. Specifically, at least one second positioning key 41 is provided on the shaft core 4, and a second positioning groove 311 matching with the second positioning key 41 is provided on the inner wall of the rotor inner ring 31.
  • the stator unit 2 is fixed by means of keyway matching.
  • the rotor unit 3 is fixed on the cylinder 1 and on the shaft core 4, which facilitates the disassembly of the stator unit 2 and the rotor unit 3, shortens the assembly time, and improves the assembly efficiency.
  • a plurality of rotor units 3 are sequentially sleeved on the shaft core 4 in the same direction, and the rotor ribs 32 and the stator ribs 22 are sequentially interlaced with each other, that is, the stator ribs 22 extend between two adjacent rotor ribs 32, and the rotor ribs 32 extend between two adjacent stator ribs 22.
  • the rotor unit 3 rotates, the rotor ribs 32 rotate relative to the stator ribs 22, so that a large shear force is formed between the rotor ribs 32 and the stator ribs 22.
  • the stator ribs 22 and the rotor ribs 32 will shear and break up the slurry when the slurry flows through the first through hole 221 and the second through hole 321 at a high flow rate to reduce the viscosity of the slurry.
  • the setting of the first through hole 221, the second through hole 321, the stator ribs 22 and the rotor ribs 32 is conducive to improving the dispersion of the slurry with a high solid content and reducing the viscosity of the slurry.
  • the stator unit 2 and the rotor unit 3 are arranged opposite to each other, the rotor ribs 32 and the stator ribs 22 are arranged in sequence along the axial direction of the core shaft 4, the thickened portion of the rotor inner ring 31 is arranged corresponding to the stator inner ring 23, and the thickened portion of the stator outer ring 21 is arranged corresponding to the rotor outer ring 33.
  • a first axial channel 6 is formed between the inner wall of the stator outer ring 21 and the outer wall of the rotor outer ring 33, and a second axial channel 8 is formed between the outer wall of the rotor inner ring 31 and the inner wall of the stator inner ring 23.
  • the flow directions of the first axial channel 6 and the second axial channel 8 are consistent with the axial direction of the shaft core 4; radial channels 7 are formed between the opposite side walls of the rotor ribs 32 and the side walls of the stator ribs 22, and the flow directions of the radial channels 7 are perpendicular to the axial direction of the shaft core 4; the first axial channel 6, the radial channel 7 and the second axial channel 8 are connected in sequence to form a second channel for shearing and dispersing the material.
  • the second axial channel 8 connects the two radial channels 7 on the opposite sides of the stator ribs 22.
  • part of the slurry enters the first axial channel 6 between the outer peripheral wall of the rotor outer ring 33 and the inner wall of the stator outer ring 21 from the front port of the barrel 1, the shaft core 4 drives the rotor unit 3 to rotate, the slurry is sheared and dispersed in the first axial channel 6, and flows backward along the axis direction of the shaft core 4.
  • the rotor ribs 32 block the slurry so that the slurry flows radially. After entering the radial channel 7, part of the slurry flows into the first channel, and part flows radially.
  • the second channel formed by the first axial channel 6, the radial channel 7 and the second axial channel 8 is in a broken line shape, which extends the flow distance of the slurry and increases the dispersion area, thereby achieving the purpose of improving the dispersion degree of the slurry and improving the dispersion efficiency.
  • stator ribs 22 and the rotor ribs 32 have the same extension length.
  • the shear force in the radial channel 7 between the rotor ribs 32 and the stator ribs 22 is stronger during the rotation of the rotor unit 3 with the shaft core 4, and the resistance encountered by the rotor unit 3 is greater.
  • the linear speed of the rotor unit 3 is controlled to be above 20m/s to ensure that a large shear force can be generated so that the slurry can be fully dispersed.
  • the linear speed of the rotor unit 3 is adjustable. In practical applications, the rotation speed of the rotor unit 3 can be adjusted according to the components, viscosity and other characteristics of the slurry to match the requirements of different slurries for shear dispersion efficiency.
  • the rotation speed adjustment method of the rotor unit 3 can be adjusted by changing the rotation speed of the driving member through a PLC controller.
  • the rotation speed adjustment method of the rotor unit 3 is not a limitation of the present application.
  • the width of the radial channel 7 is adjustable, and the width adjustment range is 1-4 mm.
  • an adjusting washer is further included.
  • a receiving groove is provided on at least one side surface of the rotor inner ring 31 .
  • the adjusting washer is sleeved on the shaft core 4 and located in the receiving groove.
  • the adjusting washer is suitable for adjusting the width of the radial channel 7 .
  • a receiving groove is provided on at least one side of the rotor, an adjusting washer is installed in the receiving groove, and the width of the radial channel 7 is adjusted by changing the thickness of the adjusting washer; in some embodiments of the present application, multiple adjusting washers can be placed for adjustment, and the total thickness of the multiple adjusting washers is 1.2mm-4.2mm.
  • the width adjustment range of the radial channel 7 is 1mm-4mm.
  • the groove depth of the receiving groove and the thickness of the adjusting washer are not limitations of the present application, and therefore the width adjustment range of the radial channel 7 is not a limitation of the present application.
  • the accommodating groove may be provided on one side of the rotor inner ring 31 , or may be provided on both side surfaces of the rotor inner ring 31 , and the number of the accommodating grooves is not a limitation of the present application.
  • a fixing member 5 which includes a gasket 51 that is sleeved on the shaft core 4 and abuts against the rotor inner ring 31 located at the front end of the cylinder 1, and a fastener 52 that is connected to the shaft core 4 and is suitable for fixing the gasket 51 on the rotor inner ring 31.
  • a limiting groove is provided on the side of the rotor inner ring 31 facing the front end of the cylinder 1, and the gasket 51 abuts against the bottom of the limiting groove.
  • the rotor unit 3 near the front end of the cylinder 1 is fixedly connected to the shaft core 4 through the fixing member 5, and the rotor inner rings 31 of the multiple rotor units 3 distributed axially are pressed against each other to ensure that the rotor unit 3 does not shake when rotating.
  • the washer 51 abuts against the rotor unit 3 at the end, and the washer 51 is placed in the limit groove of the rotor unit 3, and is connected to the shaft core 4 by a fastener 52 to fix the washer 51 on the rotor unit 3.
  • the fastener 52 is specifically a bolt.
  • the washer 51 is provided to avoid wear between the fastener 52 and the rotor unit 3 during the rotation of the shaft core 4, and the washer 51 is used as a buffer to avoid the loss of the rotor unit 3 and reduce the maintenance cost.
  • stator units 2 and rotor units 3 can be selected for assembly. Specifically, when the number of stator units 2 is n, the number of rotor units 3 is n+2, so as to ensure that the rotor units 3 are located at both ends of the shaft core 4, which is convenient for fixing the rotor units 3. In some embodiments of the present application, the number of stator units 2 is 9 and the number of rotor units 3 is 11. The specific number of stator units 2 and rotor units 3 is not a limitation of the present application.
  • the limiting groove is arranged on the side of the rotor inner ring 31 facing the front end of the cylinder 1, the bottom of the limiting groove abuts against the gasket 51, and the groove depth of the limiting groove is consistent with the thickness of the gasket 51.
  • the gasket 51 can be made of metal or other materials, and the specific material of the gasket 51 is not limited to the present application.
  • a limiting groove is provided on the side of the rotor inner ring 31 of the rotor unit 3 located at the front end of the cylinder 1 close to the front port, and an accommodating groove is provided on the other side away from the front port; when the accommodating grooves are provided on both sides of the rotor inner ring 31, the limiting groove of the rotor inner ring 31 of the rotor unit 3 located at the front end of the cylinder 1 coincides with the accommodating groove.
  • a medium heat exchange channel is provided on the cylinder wall of the cylinder 1, and the medium heat exchange channel has a medium inlet and a medium outlet.
  • the medium heat exchange channel is spirally arranged around the peripheral wall of the cylinder 1.
  • the medium heat exchange channel is a refrigerant channel, and the refrigerant medium enters from the medium inlet and flows out from the medium outlet after passing through the refrigerant channel.
  • the refrigerant medium can take away part of the heat of the cylinder 1 to cool the slurry in the cylinder 1.
  • the medium heat exchange channel is a heat medium channel, and the heat medium enters from the medium inlet and flows out from the medium outlet after passing through the heat medium channel.
  • the heat medium can heat the slurry in the cylinder 1.
  • This shearing and dispersing device has a plurality of first through holes 221 on the stator unit 2, and a plurality of second through holes 321 on the rotor unit 3, the first through holes 221 and the second through holes 321 forming a first channel; on the other hand, a second channel formed by connecting a first axial channel 6, a radial channel 7 and a second axial channel 8 is formed between the stator unit 2 and the rotor unit 3; when shearing a slurry with a high solid content, the core shaft 4 drives the rotor unit 3 to rotate, and after the rotor ribs 32 on the rotor unit 3 shear the slurry, the dispersed slurry passes through the rotor unit 3 from different second through holes 321 of the rotor unit 3, and the passed slurry contacts the next stator unit 2, and after the high-speed rotating slurry collides with the stationary stator unit 2, the stator ribs 22 shear and disperse the slurry again, and
  • the channels of the slurry will be disconnected and connected back and forth, and because of the high speed of the motor and the fast frequency of channel conversion, the slurry will be dispersed at a high speed, so that the viscosity of the slurry with a high solid content decreases after shear dispersion. After the viscosity decreases, the slurry will flow to the narrow second channel in a zigzag shape under the action of centrifugal force for further shear dispersion, and finally the finished slurry is obtained. This can greatly improve the shear dispersion rate of the slurry in the device and realize the continuous production of the slurry.
  • a continuous pulping equipment proposed in the present application is characterized in that it includes a screw extrusion device and the above-mentioned shearing and dispersion device, the screw extrusion device includes an extrusion barrel 1 and a screw extrusion element arranged in the extrusion barrel 1, and the barrel 1 is connected to the discharge end of the extrusion barrel 1.
  • the continuous pulping equipment proposed in the present application is connected with the shearing and dispersing device to achieve the purpose of continuous pulping, improve the pulping efficiency, and increase the pulping output.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Mixers Of The Rotary Stirring Type (AREA)

Abstract

一种剪切分散装置及连续制浆设备,剪切分散装置包括:筒体(1)、定子单元(2)和转子单元(3);定子单元(2)和转子单元(3)交替安装在筒体(1)内,转子单元(3)固定套设于轴芯(4)上,定子单元(2)沿其自身轴向开设有多个第一通孔(221),转子单元(3)沿其自身轴向开设有多个第二通孔(321),驱动件驱动轴芯(4)转动时带动转子单元(3)转动,使得多个第一通孔(221)和多个第二通孔(321)交错互通,转子单元(3)相对于定子单元(2)转动,第一通孔(221)和第二通孔(321)连通处形成较大的剪切力,浆料从第一通孔(221)流向第二通孔(321)的过程中,被剪切分散,以提高浆料的分散度;多个定子单元(2)和多个转子单元(3)交替设置,轴芯(4)带动转子单元(3)转动,对浆料进行剪切的同时推进浆料的流动。

Description

一种剪切分散装置及连续制浆设备
相关申请的交叉引用
本申请要求在2022年12月7日提交中国专利局、申请号为202211576263.8、发明名称为“一种剪切分散装置及连续制浆设备”的中国专利申请的优先权,其全部内容通过引用的方式并入本文中。
技术领域
本申请涉及浆料分散设备技术领域,具体涉及一种剪切分散装置及连续制浆设备。
背景技术
现有的双螺杆挤出机是将所有的功能元件全部串在两根平行螺杆上,包含粉体输送、粉体混合、捏合、稀释、分散所有功能,但是由于分散功能对转速的需求与前面其它功能对转速的需求并不一致,并且相差极大,所以分散效果不能满足使用需求。
市面上目前解决双螺杆分散能力不足的方式是在双螺杆后端加缓存罐,利用缓存罐的高、低速搅拌轴去分散浆料,但是这种解决问题的方法牺牲了双螺杆挤出机连续生产的天然优势,本身双螺杆是连续式生产,解放了产能,但是后面的缓存罐却只能一批批搅拌好才能输出到后端工艺,无法实现连续性制浆作业,降低产能。
发明内容
因此,本申请要解决的技术问题在于克服现有技术中的无法实现连续性制浆作业,制浆产能小,效率低的缺陷,从而提供一种剪切分散装置及连续制浆设备。
为解决上述技术问题,本申请的技术方案如下:
一种剪切分散装置,包括:筒体、定子单元和转子单元;筒体,连接在螺 杆挤出装置的出料端上,所述筒体内设有受驱动件驱动转动的轴芯;定子单元,数量为多个,所述定子单元套设于所述轴芯上,所述定子单元与所述筒体固定连接,所述定子单元设有沿自身轴向方向贯通所述定子单元的第一通孔;转子单元,数量为多个,所述转子单元固定套设于所述轴芯上,多个所述定子单元和多个所述定子单元沿所述轴芯的轴向方向上交替设置,所述转子单元设有沿自身轴向方向贯通所述转子单元的第二通孔;所述转子单元随所述轴芯转动,以使得多个所述第一通孔和多个所述第二通孔交错互通以形成对浆料进行剪切分散的第一通道。
根据本申请的一些实施例,所述定子单元包括定子外环、定子内环,以及多条由所述定子外环沿其径向延伸至所述定子内环的定子筋条;所述定子外环与所述筒体内壁固定连接,多条所述定子筋条沿所述定子外环的周向均匀布设,所述第一通孔至少由两条相邻所述定子筋条、所述定子外环和所述定子内环围合而成;
所述转子单元包括转子内环、转子外环,以及多条由所述转子内环沿其径向延伸至所述转子外环的转子筋条,转子内环固定套设于所述轴芯上,多条所述转子筋条沿所述转子内环的周向均匀布设,所述第二通孔至少由两条相邻所述转子筋条、所述转子内环和所述转子外环围合而成。
根据本申请的一些实施例,所述定子单元和所述转子单元相对设置,在所述芯轴的轴向方向上,所述定子外环的厚度大于所述定子内环和所述定子筋条的厚度、且所述转子内环的厚度大于所述转子外环和所述转子筋条的厚度;
所述定子外环的内壁和所述转子外环的外壁之间形成有第一轴向通道,所述转子内环的外壁和所述定子内环的内壁之间形成有第二轴向通道,所述第一轴向通道和所述第二轴向通道的流向与所述轴芯的轴线方向一致;
所述转子筋条的侧壁和相邻的所述定子筋条的侧壁之间形成有径向通道,所述径向通道的流向与所述轴芯的轴线方向相互垂直;
所述第一轴向通道、所述径向通道和所述第二轴向通道依次连通以形成对物料进行剪切分散的第二通道;所述第二轴向通道连通对应的所述定子筋条两侧的两条所述径向通道以使多条所述第二通道依次连通。
根据本申请的一些实施例,所述径向通道的宽度可调,且其宽度调节范围为1-4mm。
根据本申请的一些实施例,还包括调节垫圈,所述转子内环的至少一个侧 面上设有容置槽,所述调节垫圈套设于所述轴芯上且位于所述容置槽内,所述调节垫圈适于调节所述径向通道的宽度。
根据本申请的一些实施例,还包括固定件,所述固定件包括套设于所述轴芯上且与位于所述筒体前端口的所述转子内环抵接的垫片,以及与所述轴芯连接以适于将所述垫片固定在所述转子内环上的紧固件。
根据本申请的一些实施例,所述转子内环朝向所述筒体前端的侧面设有限位槽,所述垫片与所述限位槽的槽底抵接。
根据本申请的一些实施例,所述筒体上设有第一定位键,所述定子外环的外壁设有可与所述定位键相配合的第一定位槽;所述轴芯上设有至少一个第二定位键,所述转子内环的内壁设有与所述第二定位键相配合的第二定位槽。
根据本申请的一些实施例,所述筒体的筒壁上设有介质换热通道,所述介质换热通道具有介质入口和介质出口。
本申请提出的一种连续制浆设备,其特征在于,包括螺杆挤出装置和上述剪切分散装置,所述螺杆挤出装置包括挤出筒体和设于所述挤出筒体内的螺杆挤出元件,所述筒体与所述挤出筒体的出料端对接。
本申请技术方案,具有如下优点:
1.本申请提供的剪切分散装置,定子单元和转子单元交替安装在筒体内,转子单元固定套设于轴芯上,定子单元沿其自身轴向开设有多个第一通孔,转子单元沿其自身轴向开设有多个第二通孔,驱动件驱动轴芯转动时带动转子单元转动,使得多个第一通孔和多个第二通孔交错互通,转子单元相对于定子单元转动,第一通孔和第二通孔连通处形成较大的剪切力,浆料从第一通孔流向第二通孔的过程中,被剪切分散,以提高浆料的分散度;多个定子单元和多个转子单元交替设置,轴芯带动转子单元转动,从而使得第一通孔和第二通孔形成的第一通道始终保持连通状态,对浆料进行剪切的同时推进浆料的流动,实现快速且持续制浆的目的,提高制浆效率。
2.本申请提供的剪切分散装置,根据通入的浆料特性,通过调节垫圈对转子单元和定子单元之间的径向通道进行调节,提高剪切分散装置的通用性。
3.本申请提出的连续制浆设备,通过与剪切分散装置连通,实现持续制浆的目的,提高制浆效率,增大制浆产量。
附图说明
为了更清楚地说明本申请具体实施方式或现有技术中的技术方案,下面将对具体实施方式或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图是本申请的一些实施方式,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为本申请的一些实施例中提供的剪切分散装置的爆炸视图;
图2为本申请的一些实施例中提供的剪切分散装置的半剖视图;
图3为图2中A处的局部视图;
图4为本申请的一些实施例中提供的剪切分散装置的另一角度下的半剖视图;
图5为图4中B处的局部视图;
图6为本申请的一些实施例中提供的剪切分散装置的定子单元结构视图;
图7为本申请的一些实施例中提供的剪切分散装置的转子单元与轴芯的装配视图。
附图标记说明:1、筒体;2、定子单元;3、转子单元;4、轴芯;5、固定件;6、第一轴向通道;7、径向通道;8、第二轴向通道;11、第一定位键;21、定子外环;211、第一定位槽;22、定子筋条;221、第一通孔;23、定子内环;31、转子内环;311、第二定位槽;32、转子筋条;321、第二通孔;33、转子外环;41、第二定位键;51、垫片;52、紧固件。
具体实施方式
下面将结合附图对本申请的技术方案进行清楚、完整地描述,显然,所描述的实施例是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
在本申请的描述中,需要说明的是,术语“中心”、“上”、“下”、“左”、“右”、“竖直”、“水平”、“内”、“外”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本申请和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本申请的限制。此外,术语“第一”、“第二”、“第三”仅用于描述目的,而不能理解为指示或暗示相对重要性。
在本申请的描述中,需要说明的是,除非另有明确的规定和限定,术语“安 装”、“相连”、“连接”应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或一体地连接;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通。对于本领域的普通技术人员而言,可以具体情况理解上述术语在本申请中的具体含义。
此外,下面所描述的本申请不同实施方式中所涉及的技术特征只要彼此之间未构成冲突就可以相互结合。
参照图1至图7所示,本申请提出的一种剪切分散装置,包括:筒体1、定子单元2和转子单元3;筒体1,连接在螺杆挤出装置的出料端上,所述筒体1内设有受驱动件驱动转动的轴芯4;定子单元2,数量为多个,所述定子单元2套设于所述轴芯4上,所述定子单元2与所述筒体1固定连接,所述定子单元2设有沿自身轴向方向贯通所述定子单元2的第一通孔221;转子单元3,数量为多个,所述转子单元3固定套设于所述轴芯4上,多个所述定子单元2和多个所述定子单元2沿所述轴芯4的轴向方向上交替设置,所述转子单元3设有沿自身轴向方向贯通所述转子单元3的第二通孔321;所述转子单元3随所述轴芯4转动,以使得多个所述第一通孔221和多个所述第二通孔321交错互通以形成对浆料进行剪切分散的第一通道。
具体说明,定子单元2和转子单元3交替安装在筒体1内,转子单元3固定套设于轴芯4上,定子单元2沿其自身轴向开设有多个第一通孔221,转子单元3沿其自身轴向开设有多个第二通孔321,驱动件驱动轴芯4转动时带动转子单元3转动,使得多个第一通孔221和多个第二通孔321交错互通,转子单元3相对于定子单元2转动,第一通孔221和第二通孔321连通处形成较大的剪切力,浆料从第一通孔221流向第二通孔321的过程中,被剪切分散,以提高浆料的分散度;多个定子单元2和多个转子单元3交替设置,轴芯4带动转子单元3转动,从而使得第一通孔221和第二通孔321形成的第一通道始终保持连通状态,对浆料进行剪切的同时推进浆料的流动,实现快速且持续制浆的目的,提高制浆效率。
参照图4和图5所示,可以理解的是,第一通孔221的数量与第二通孔321的数量一致时,转子单元3转动过程中,第一通孔221的投影和第二通孔321的投影具有相互重合的状态,以便于浆料的流动,当第一通孔221的数量与第二通孔321的数量不等时,转子单元3转动过程中,至少有一个第一通孔221与一个第二通孔321的投影相互重合。第一通孔221和第二通孔321的具体数 量不作为本申请的限制。
具体说明,为使得固体含量高的浆料可以被充分剪切分散,将第一通孔221和第二通孔321设置为扇形,转子单元3转动过程中,横截面为扇形的第一通孔221或第二通孔321的半径对浆料进行剪切,有利于提高浆料的剪切效率。第一通孔221和第二通孔321的横截面形状不作为本申请的限制,还可设置为方形或三角形。
参照图3和图5所示,在本申请的一些实施例中,定子单元2包括定子外环21、定子内环23,以及多条由定子外环21沿其径向延伸至定子内环23的定子筋条22,定子外环21与所述筒体1内壁固定连接,多条定子筋条22沿定子外环21的周向均匀布设,所述第一通孔221至少由两条相邻所述定子筋条22、定子外环21和定子内环23围合而成。在芯轴4的轴向方向上,定子内环23和定子筋条22的厚度相同且均小于定子外环21的厚度。
参照图6所示,具体说明,筒体1上设有至少一个第一定位键11,定子外环21的外周壁上设有与第一定位键11相配合的第一定位槽211;第一定位槽211和第二定位槽311的数量均可为多个,第一定位槽211和第二定位槽311的具体数量不作为本申请的限制。
定子单元2通过键槽配合的方式固定在筒体1上,具体的,筒体1上设置至少一个第一定位键11,转子外环33上设置至少两个可与第一定位键11相配合的第一定位槽211;第一定位键11可与任一个第一定位槽211相互配合,可提高定子单元2安装的适配度,降低安装难度。可与通过调节第一定位键11和两个第一定位槽211之间的安装位置,使得各个定子单元2上的第一通孔221位于同一轴线上,或使得各个定子单元2上的第一通孔221错位分布,以改变剪切分散装置的分散性能。
转子单元3包括转子内环31、转子外环33,以及多条由转子内环31沿其径向延伸至转子外环33的转子筋条32,转子内环31固定套设于轴芯4上,多条转子筋条32沿转子内环31的周向均匀布设,第二通孔321至少由两条相邻所述转子筋条32、转子内环31和转子外环33围合而成。在芯轴4的轴向方向上,转子外环33和转子筋条32的厚度相同且均小于转子内环31的厚度。
参照图7所示,转子单元3同样通过键槽配合的方式固定在轴芯4上,具体地,轴芯4上设置至少一个第二定位键41,转子内环31的内壁上设有与第二定位键41相配合的第二定位槽311。通过键槽配合的方式将定子单元2固定 在筒体1上,以及将转子单元3固定在轴芯4上,便于定子单元2和转子单元3的拆卸,缩短装配时间,提高装配效率。
具体说明,多个转子单元3同向依次套设于轴芯4上,转子筋条32和定子筋条22依次相互穿插,即定子筋条22延伸至两个相邻转子筋条32之间,转子筋条32延伸至两个相邻的定子筋条22之间,当转子单元3转动过程中,转子筋条32相对于定子筋条22转动,以使得转子筋条32和定子筋条22之间形成较大的剪切力。当浆料的固体含量较高时,浆料以高流速流经第一通孔221和第二通孔321的过程中,定子筋条22和转子筋条32会对浆料进行剪切打散,以降低浆料的粘稠度。在本申请中,第一通孔221、第二通孔321、定子筋条22和转子筋条32的设置有利于提高固体含量较高的浆料的分散度,降低浆料的粘稠度。
参照图2至图5所示,在本申请的一些实施例中,定子单元2和转子单元3相对设置,转子筋条32和定子筋条22沿芯轴4的轴向方向依次间隔布置,转子内环31加厚的部分与定子内环23对应设置,定子外环21加厚的部分与转子外环33对应布置。定子外环21的内壁和转子外环33的外壁之间形成有第一轴向通道6,转子内环31的外壁和定子内环23的内壁形成有第二轴向通道8,第一轴向通道6和第二轴向通道8的流向与轴芯4的轴线方向一致;转子筋条32的相对两侧壁和定子筋条22的侧壁之间形成有径向通道7,径向通道7的流向与轴芯4的轴线方向相互垂直;第一轴向通道6、径向通道7和第二轴向通道8依次连通以形成对物料进行剪切分散的第二通道。第二轴向通道8连通定子筋条22相对两侧的两个径向通道7。
具体说明,具体说明,浆料被螺杆挤出装置挤出后,部分浆料从筒体1的前端口进入转子外环33的外周壁与定子外环21的内壁之间的第一轴向通道6,轴芯4带动转子单元3转动,浆料在第一轴向通道6内被剪切分散,沿轴芯4轴线方向向后流动,转子筋条32对浆料进行隔挡,使得浆料沿径向流动,进入径向通道7后,部分浆料通道流入第一通道内,部分沿着径向流动,在径向通道7内被剪切分散后,沿着轴芯4轴线方形向后流动,进入转子内环31的外壁与定子外环21的外壁之间的第二轴向通道8内。由第一轴向通道6、径向通道7和第二轴向通道8连通组成的第二通道呈折线形,延长了浆料的流动距离,增加分散面积,从而达到提升浆料分散度的目的,提高分散效率。
可以理解的是,定子筋条22和转子筋条32的延伸长度一致,当定子筋条 22和转子筋条32的延伸长度越长时,转子单元3随轴芯4转动过程中,转子筋条32与定子筋条22之间的径向通道7内的剪切力就越强,转子单元3所受到的阻力就越大。剪切力越强,浆料的分散度就越高;阻力越大,转子单元3的转动速度就越小,浆料的分散度就越低。在本申请的一些实施例中,将转子单元3的线速度控制在20m/s以上,以保证能够产生较大的剪切力,使浆料得以充分分散。
转子单元3的线速度可调,在实际应用中,可以根据浆料的组分、黏度等特性,调节转子单元3的转速,以匹配不同浆料对剪切分散效率的要求,转子单元3的转速调节方式可以通过PLC控制器改变驱动件的转速的方式进行调节,转子单元3的转速调节方式不作为本申请的限制。
在本申请的一些实施例中,径向通道7的宽度可调,且其宽度调节范围为1-4mm。
在本申请的一些实施例中,还包括调节垫圈,转子内环31的至少一个侧面上设有容置槽,调节垫圈套设于轴芯4上且位于容置槽内,调节垫圈适于调节径向通道7的宽度。
具体说明,通过在转子的至少一个侧面上设有容置槽,在容置槽内安装调节垫圈,通过更换调节垫圈的厚度对径向通道7进行宽度调整;在本申请的一些实施例中,还可以可选择放置多个调节垫圈进行调节,多个调节垫圈的总厚度为1.2mm-4.2mm,当容置槽的槽深等于0.2mm时,即径向通道7在宽度调节范围为1mm-4mm。容置槽的槽深和调节垫圈的厚度不作为本申请的限制,因此径向通道7的宽度调节范围也不作为本申请的限制。
可以理解的是,可在转子内环31的一侧设置容置槽,或转子内环31的两侧面均可设置容置槽,容置槽的数量不作为本申请的限制。
在本申请的一些实施例中,还包括固定件5,固定件5包括套设于轴芯4上且与位于筒体1前端口的转子内环31抵接的垫片51,以及与轴芯4连接以适于将垫片51固定在转子内环31上的紧固件52。
在本申请的一些实施例中,转子内环31朝向筒体1前端的侧面设有限位槽,垫片51与限位槽的槽底抵接。
具体说明,靠近筒体1前端的转子单元3通过固定件5与轴芯4固定连接,轴向分布的多个转子单元3的转子内环31相互抵接挤压固定,以保证转子单元3转动时不会发生晃动。固定件5具体为套设于轴芯4上,且与位于筒体1前 端的转子单元3抵接的垫片51,该垫片51置于转子单元3的限位槽内,通过紧固件52与轴芯4连接将垫片51固定在转子单元3上。紧固件52具体为螺栓。垫片51的设置在于避免轴芯4转动过程中,紧固件52与转子单元3之间发生磨损,通过垫片51作为缓冲件,避免转子单元3的损耗,降低维护成本。
可以理解的是,根据通入浆料的特性,可以选择不同的定子单元2和转子单元3数量进行装配,具体的,定子单元2数量为n个时,转子单元3数量为n+2个,以保证转子单元3位于轴芯4的两端,便于对转子单元3的固定,在本申请的一些实施例中,定子单元2为9个,转子单元3为11个。定子单元2和转子单元3的具体数量不作为本申请的限制。
可以理解的是,限位槽设置在转子内环31朝向筒体1前端的侧面上,限位槽的槽底与垫片51抵接,限位槽的槽深与垫片51的厚度一致。垫片51可选用金属等材质制成,垫片51的具体材质不作为本申请的限制。
当只在转子内环31的一侧设置容置槽,位于筒体1前端的转子单元3的转子内环31靠近前端口的侧面设置限位槽,背离前端口的另一侧面设置容置槽;当转子内环31的两侧面均设置容置槽时,位于筒体1前端的转子单元3的转子内环31的限位槽与容置槽重合。
在本申请的一些实施例中,筒体1的筒壁上设有介质换热通道,介质换热通道具有介质入口和介质出口。
具体说明,介质换热通道环绕筒体1的周壁螺旋设置。具体地,介质换热通道为冷媒通道,冷媒介质从介质入口进入经过冷媒通道后从介质出口流出,冷媒介质可以带走筒体1的一部分热量,以对筒体1内浆料进行降温。或者,介质换热通道为热媒通道,热媒介质从介质入口进入经过热媒通道后从介质出口流出,热媒介质可以对筒体1内浆料进行加热。
这种剪切分散装置,一方面在定子单元2上开设多个第一通孔221,在转子单元3开设多个第二通孔321,第一通孔221和第二通孔321构成第一通道;另一方面在定子单元2和转子单元3之间形成由第一轴向通道6、径向通道7和第二轴向通道8连通组成的第二通道;在剪切高固含量的浆料时,芯轴4带动转子单元3转动,转子单元3上的转子筋条32对浆料进行剪切后,被打散的浆料从转子单元3的不同第二通孔321穿过转子单元3,穿过的浆料接触下一片定子单元2,高速旋转的浆料碰撞到静止不动的定子单元2后,定子筋条22再次对浆料形成剪切分散,之后浆料再通过定子单元2的第一通孔221穿过定 子单元2,穿过的浆料接触接触到第二片转子单元3,后续的分散过程与前面的相同,即浆料从装置入口进入,从装置出口流出的过程里,会被打散到不同的通道里,而这些通道本身又是高速转动的,转动过程中,浆料的通道会有断开、连通来回转变的过程,并且由于电机转速高,通道转换频率快,会对浆料形成高速分散作用,这样高固含量的浆料被剪切分散后黏度下降,黏度下降后的浆料受到离心力的作用会流向狭窄的呈折线形的第二通道进一步进行剪切分散,最终得到成品浆料,如此可以大大提高装置剪切分散浆料的速率,实现浆料的连续化生产。
本申请提出的一种连续制浆设备,其特征在于,包括螺杆挤出装置和上述剪切分散装置,螺杆挤出装置包括挤出筒体1和设于挤出筒体1内的螺杆挤出元件,筒体1与挤出筒体1的出料端对接。
具体说明,本申请提出的连续制浆设备,通过与剪切分散装置连通,实现持续制浆的目的,提高制浆效率,增大制浆产量。
显然,上述实施例仅仅是为清楚地说明所作的举例,而并非对实施方式的限定。对于所属领域的普通技术人员来说,在上述说明的基础上还可以做出其它不同形式的变化或变动。这里无需也无法对所有的实施方式予以穷举。而由此所引伸出的显而易见的变化或变动仍处于本发明创造的保护范围之中。

Claims (10)

  1. 一种剪切分散装置,其特征在于,包括:
    筒体(1),连接在螺杆挤出装置的出料端上,所述筒体(1)内设有受驱动件驱动转动的轴芯(4);
    定子单元(2),数量为多个,所述定子单元(2)套设于所述轴芯(4)上,所述定子单元(2)与所述筒体(1)固定连接,所述定子单元(2)设有沿自身轴向方向贯通所述定子单元(2)的第一通孔(221);
    转子单元(3),数量为多个,所述转子单元(3)固定套设于所述轴芯(4)上,多个所述定子单元(2)和多个所述定子单元(2)沿所述轴芯(4)的轴向方向上交替设置,所述转子单元(3)设有沿自身轴向方向贯通所述转子单元(3)的第二通孔(321);
    所述转子单元(3)随所述轴芯(4)转动,以使得多个所述第一通孔(221)和多个所述第二通孔(321)交错互通以形成对浆料进行剪切分散的第一通道。
  2. 根据权利要求1所述的剪切分散装置,其特征在于,所述定子单元(2)包括定子外环(21)、定子内环(23),以及多条由所述定子外环(21)沿其径向延伸至所述定子内环(23)的定子筋条(22);所述定子外环(21)与所述筒体(1)内壁固定连接,多条所述定子筋条(22)沿所述定子外环(21)的周向均匀布设,所述第一通孔(221)至少由两条相邻所述定子筋条(22)、所述定子外环(21)和所述定子内环(23)围合而成;
    所述转子单元(3)包括转子内环(31)、转子外环(33),以及多条由所述转子内环(31)沿其径向延伸至所述转子外环(33)的转子筋条(32);所述转子内环(31)固定套设于所述轴芯(4)上,多条所述转子筋条(32)沿所述转子内环(31)的周向均匀布设,所述第二通孔(321)至少由两条相邻所述转子筋条(32)、转子内环(31)和转子外环(33)围合而成。
  3. 根据权利要求2所述的剪切分散装置,其特征在于,所述定子单元(2)和所述转子单元(3)相对设置,在所述芯轴(4)的轴向方向上,所述定子外环(21)的厚度大于所述定子内环(23)和所述定子筋条(22)的厚度、且所述转子内环(31)的厚度大于所述转子外环(33)和所述转子筋条(32)的厚度;
    所述定子外环(21)的内壁和所述转子外环(33)的外壁之间形成有第一轴向通道(6),所述转子内环(31)的外壁和所述定子内环(23)的内壁之间形成有第二轴向通道(8),所述第一轴向通道(6)和所述第二轴向通道(8)的流向与所述轴芯(4)的轴线方向一致;
    所述转子筋条(32)的侧壁和相邻的所述定子筋条(22)的侧壁之间形成有径向通道(7),所述径向通道(7)的流向与所述轴芯(4)的轴线方向相互垂直;
    所述第一轴向通道(6)、所述径向通道(7)和所述第二轴向通道(8)依次连通以形成对物料进行剪切分散的第二通道;所述第二轴向通道(8)连通对应的所述定子筋条(22)两侧的两条所述径向通道(7)以使多条所述第二通道依次连通。
  4. 根据权利要求3所述的剪切分散装置,其特征在于,所述径向通道(7)的宽度可调,且其宽度调节范围为1-4mm。
  5. 根据权利要求4所述的剪切分散装置,其特征在于,还包括调节垫圈,所述转子内环(31)的至少一个侧面上设有容置槽,所述调节垫圈套设于所述轴芯(4)上且位于所述容置槽内,所述调节垫圈适于调节所述径向通道(7)的宽度。
  6. 根据权利要求2所述的剪切分散装置,其特征在于,还包括固定件(5),所述固定件(5)包括套设于所述轴芯(4)上且与位于所述筒体(1)前端口的所述转子内环(31)抵接的垫片(51),以及与所述轴芯(4)连接以适于将所述垫片(51)固定在所述转子内环(31)上的紧固件(52)。
  7. 根据权利要求6所述的剪切分散装置,其特征在于,所述转子内环(31)朝向所述筒体(1)前端的侧面设有限位槽,所述垫片(51)与所述限位槽的槽底抵接。
  8. 根据权利要求2所述的剪切分散装置,其特征在于,所述筒体(1)上设有第一定位键(11),所述定子外环(21)的外壁设有可与所述定位键相配合的第一定位槽(211);所述轴芯(4)上设有至少一个第二定位键(41),所述转子内环(31)的内壁设有与所述第二定位键(41)相配合的第二定位槽(311)。
  9. 根据权利要求1所述的剪切分散装置,其特征在于,所述筒体(1)的筒壁上设有介质换热通道,所述介质换热通道具有介质入口和介质出口。
  10. 一种连续制浆设备,其特征在于,包括螺杆挤出装置和如上权利要求1-9中任意一项所述的剪切分散装置,所述螺杆挤出装置包括挤出筒体(1)和设于所述挤出筒体(1)内的螺杆挤出元件,所述筒体(1)与所述挤出筒体(1)的出料端对接。
PCT/CN2023/088740 2022-12-07 2023-04-17 一种剪切分散装置及连续制浆设备 WO2024119689A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202211576263.8 2022-12-07
CN202211576263.8A CN116020302A (zh) 2022-12-07 2022-12-07 一种剪切分散装置及连续制浆设备

Publications (1)

Publication Number Publication Date
WO2024119689A1 true WO2024119689A1 (zh) 2024-06-13

Family

ID=86090290

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/088740 WO2024119689A1 (zh) 2022-12-07 2023-04-17 一种剪切分散装置及连续制浆设备

Country Status (2)

Country Link
CN (1) CN116020302A (zh)
WO (1) WO2024119689A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116870775B (zh) * 2023-08-22 2024-04-26 深圳市尚水智能股份有限公司 制浆机
CN116943474B (zh) * 2023-08-22 2024-03-19 深圳市尚水智能股份有限公司 分散机构及制浆设备

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6502980B1 (en) * 2001-04-13 2003-01-07 Bematek Systems Inc In-line homogenizer using rotors and stators in a housing for creating emulsions, suspensions and blends
CN112118903A (zh) * 2018-05-18 2020-12-22 维美德公司 包括转子和定子的混合设备
CN216987148U (zh) * 2022-03-18 2022-07-19 肇庆力合技术发展有限公司 一种管线式高剪切分散乳化机及多级分散系统
CN217042141U (zh) * 2022-03-01 2022-07-26 宏工科技股份有限公司 一种筒式分散装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6502980B1 (en) * 2001-04-13 2003-01-07 Bematek Systems Inc In-line homogenizer using rotors and stators in a housing for creating emulsions, suspensions and blends
CN112118903A (zh) * 2018-05-18 2020-12-22 维美德公司 包括转子和定子的混合设备
CN217042141U (zh) * 2022-03-01 2022-07-26 宏工科技股份有限公司 一种筒式分散装置
CN216987148U (zh) * 2022-03-18 2022-07-19 肇庆力合技术发展有限公司 一种管线式高剪切分散乳化机及多级分散系统

Also Published As

Publication number Publication date
CN116020302A (zh) 2023-04-28

Similar Documents

Publication Publication Date Title
WO2024119689A1 (zh) 一种剪切分散装置及连续制浆设备
EP0144932B1 (en) Method for extruding thermoplastic material
RU2145281C1 (ru) Многошнековые экструдеры-смесители с модульными смесительными элементами
KR960010200B1 (ko) 내부 배치 혼합기
CN113499698A (zh) 一种粉液混合机
KR101205562B1 (ko) 혼련도 조정 장치, 압출기 및 연속 혼련기
JP5363577B2 (ja) 押出機および押出機の動作方法
CN115445516A (zh) 一种连续制浆设备
CN104960178A (zh) 一种行星式多螺杆挤出机
JPS63278537A (ja) 混合機及び押出し機
WO2024051094A1 (zh) 多功能捏合式制浆机
CN217042142U (zh) 一种爪式分散装置
CN213556612U (zh) 用于锶铁氧体预烧料生产的混料搅拌装置
CN215876933U (zh) 一种粉液混合机
CN219054910U (zh) 一种窄缝式高速分散装置
CN110466133B (zh) 一种非对称同向多螺杆挤出装置、挤出机及其加工方法
CN1190303C (zh) 一种双转子连续混炼机的转子
CN220633820U (zh) 分散机构及制浆设备
WO2024119684A1 (zh) 一种离心式分散装置
CN116966774B (zh) 分散机构及制浆设备
CN219168171U (zh) 一种连续制浆设备
CN202088433U (zh) 螺杆三角形排列的差速三螺杆挤出机
CN212795829U (zh) 一种单螺杆分散挤出机
CN216704194U (zh) 一种多段式均浆装置
CN116870775B (zh) 制浆机

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23899283

Country of ref document: EP

Kind code of ref document: A1