WO2024119680A1 - 一种位移测量装置及其制造方法 - Google Patents

一种位移测量装置及其制造方法 Download PDF

Info

Publication number
WO2024119680A1
WO2024119680A1 PCT/CN2023/086034 CN2023086034W WO2024119680A1 WO 2024119680 A1 WO2024119680 A1 WO 2024119680A1 CN 2023086034 W CN2023086034 W CN 2023086034W WO 2024119680 A1 WO2024119680 A1 WO 2024119680A1
Authority
WO
WIPO (PCT)
Prior art keywords
support beam
measuring device
unit
support
displacement measuring
Prior art date
Application number
PCT/CN2023/086034
Other languages
English (en)
French (fr)
Inventor
钟少龙
刘昌霞
龙亮
凌晶芳
郭智慧
周作兴
Original Assignee
上海拜安传感技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 上海拜安传感技术有限公司 filed Critical 上海拜安传感技术有限公司
Publication of WO2024119680A1 publication Critical patent/WO2024119680A1/zh

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/02Measuring arrangements characterised by the use of optical techniques for measuring length, width or thickness

Definitions

  • the present invention relates to the technical field of displacement measurement, and in particular to a displacement measurement device and a manufacturing method thereof.
  • Displacement measurement technology is widely used in various fields such as industry, military, aviation, navigation and communication.
  • the optical detection devices in the prior art such as laser interferometers, photoelectric autocollimators, etc.
  • the optical detection devices in the prior art have complex system structures, large volumes, and are difficult to measure small displacements, or are insensitive to small displacement changes.
  • the above instruments have high requirements for the measurement environment and are difficult to be applied to the field of industrial high-precision online measurement, especially in the fields of wind turbine blade load monitoring, small displacement monitoring of wind turbine blade flange loosening, and bolt loosening monitoring. For this reason, it is necessary to design a displacement measurement device that can measure small displacements, has high sensitivity, and can be applied to a variety of complex environments.
  • the present invention provides a displacement measuring device and a manufacturing method thereof.
  • a displacement measuring device comprising: a left fixed support and a right fixed support, wherein the left fixed support and the right fixed support are mounted on a surface of a target object to be measured; and a support beam disposed between the left fixed support and the right fixed support;
  • the support beams include a left support beam, a right support beam, and a top support beam disposed between the left support beam and the right support beam;
  • a cantilever beam is arranged on the left support beam, and a blazed grating chip is arranged at the end of the cantilever beam away from the left support beam;
  • a collimating unit is arranged below the top support beam, the light incident side of the collimating unit receives the light source signal, and the light output side of the collimating unit is used to output the collimated light source signal to the blazed grating chip.
  • the light incident side of the collimating unit is connected to an optical fiber, and the light source signal is input into the light incident side of the collimating unit through the optical fiber.
  • the optical fiber is a gold-plated or polyimide-coated optical fiber, one end of the optical fiber away from the collimation unit passes through the right support beam, and the gap between the optical fiber and the right support beam is sealed by welding.
  • the left fixed support and the right fixed support are mounted on the surface of the target object to be measured by bonding or welding.
  • the blazed grating chip is a chip manufactured by MEMS process, on which a plurality of micro-lenses are arranged, and the light source signal of the collimating unit is irradiated to the micro-lenses, and the micro-lenses select the wavelength of the incident light. After the sexual reflection, it enters the collimation unit and is collected by the signal receiving module.
  • the left support beam is arranged on the left fixed support
  • the right support beam is arranged on the right fixed support
  • a sensitivity enhancement structure is arranged at the connection between the left support beam and the left fixed support
  • a sensitivity enhancement structure is arranged at the connection between the right support beam and the right fixed support.
  • a sensitivity enhancement structure is provided at the connection between the top support beam and the left support beam, and/or a sensitivity enhancement structure is provided at the connection between the top support beam and the right support beam.
  • a detachable protection beam is further provided between the left fixed support and the right fixed support, and the protection beam is used to prevent the displacement measuring device from deforming in the assembled state.
  • the collimating unit is disposed on the top support beam via a fixing unit, and the fixing unit is used to adjust the posture and/or position of the collimating unit.
  • the collimating unit and the fixing unit are gold-plated, and the collimating unit and the fixing unit are connected by welding.
  • a limiting portion is provided on one side of the end of the cantilever beam, and the limiting portion is used to locate the installation position of the blazed grating chip.
  • the displacement measuring device further comprises a sealing unit, one end of the sealing unit is connected to the cantilever beam, and the other end of the sealing unit is connected to the collimating element to form a sealed channel between the cantilever beam and the collimating element.
  • a shell is disposed outside the displacement measuring device, and the shell seals the components inside the displacement measuring device.
  • a method for manufacturing the displacement measuring device according to the first aspect comprising:
  • the two ends of the protection beam are detachably connected to the left fixed support and the right fixed support respectively through the fixing elements.
  • a sensitivity enhancement structure is processed at the connection between the left support beam and the left fixed support, and/or, a sensitivity enhancement structure is processed at the connection between the right support beam and the right fixed support, and/or, a sensitivity enhancement structure is processed at the connection between the top support beam and the left support beam, and/or, a sensitivity enhancement structure is processed at the connection between the top support beam and the right support beam.
  • a cantilever beam is installed on the left support beam, a limiting portion is provided on one side of the end of the cantilever beam, and the blazed grating chip is installed according to the position of the limiting portion.
  • the collimating unit is installed on the fixing unit, and the fixing unit is adjusted to obtain the collimating unit posture and/or position required by the design;
  • the collimating unit is welded to the fixing unit, wherein the collimating unit and the fixing unit are gold-plated.
  • one end of the sealing unit is connected to the cantilever beam and the other end is connected to the collimating element to form a sealed channel between the cantilever beam and the collimating element; and a shell is provided on the outside of the displacement measuring device to seal the elements inside the displacement measuring device.
  • the displacement measuring device is provided with a support beam, and the support beam is integrated with a cantilever beam, a blazed grating chip, a collimation unit and other devices, and adopts an optical measurement principle to capture the tiny displacement of the measured object.
  • the measuring device can measure the displacement change at the nanometer level.
  • the installation method of the cantilever beam increases the measurement scale of the displacement sensor, thereby increasing the measurement sensitivity of the displacement measuring device.
  • the use of a passive optical fiber displacement measuring unit makes the device of the present invention suitable for various strong magnetic field environments, as well as special environments such as harsh outdoor environments, and suitable for long-term work.
  • the left fixed support and the right fixed support are mounted on the surface of the target object to be measured by bonding or welding, thereby improving the installation stability of the displacement measuring device.
  • the blazed grating chip is a chip manufactured by MEMS process, on which a plurality of micro-mirrors are arranged, and the light source signal of the collimating unit irradiates the micro-mirrors. Due to the use of MEMS micro-nano manufacturing technology, tiny reflective mirrors are formed on the blazed grating chip, which further enables the present invention to measure tiny angles, and to measure tiny displacements by calibrating the angle and displacement.
  • a sensitivity enhancement structure is provided at the connection between the left support beam and the left fixed support, and/or a sensitivity enhancement structure is provided at the connection between the right support beam and the right fixed support; and a sensitivity enhancement structure is provided at the connection between the top support beam and the left support beam, and/or a sensitivity enhancement structure is provided at the connection between the top support beam and the right support beam; the setting of the above-mentioned sensitivity enhancement structure effectively ensures the high sensitivity and high precision performance of the displacement measuring device of the present invention.
  • FIG1 is a schematic diagram of the assembly of core components of a displacement measuring device according to an embodiment of the present invention.
  • FIG2 is an isometric schematic diagram of a core component of a displacement measuring device according to an embodiment of the present invention.
  • FIG. 3 is a schematic cross-sectional view of a displacement measuring device according to an embodiment of the present invention.
  • FIG4 is an isometric schematic diagram of a displacement measuring device according to an embodiment of the present invention.
  • FIG. 5 is a schematic diagram of the working principle of a blazed grating chip according to an embodiment of the present invention.
  • first, second, third, etc. may be used in the present application to describe various information, these information should not be limited to these terms. These terms are only used to distinguish the same type of information from each other.
  • first information may also be referred to as the second information, and similarly, the second information may also be referred to as the first information.
  • word "if” as used herein may be interpreted as "at the time of” or "when” or "in response to determining”.
  • a displacement measuring device which includes: a left fixed support and a right fixed support, wherein the left fixed support and the right fixed support are installed on the surface of a target object to be measured; and a support beam arranged between the left fixed support and the right fixed support; the support beam includes a left support beam, a right support beam and a top support beam arranged between the left support beam and the right support beam; a cantilever beam is arranged on the left support beam, and a blazed grating chip is arranged at the end of the cantilever beam away from the left support beam; a collimation unit is arranged below the top support beam, the light incident side of the collimation unit receives a light source signal, and the light output side of the collimation unit is used to output the collimated light source signal to the blazed grating chip.
  • the present disclosure provides a displacement measurement device that adopts the optical measurement principle.
  • the displacement measurement device includes a left fixed support 14 and a right fixed support 2, and the left fixed support and the right fixed support are installed on the surface of the target object to be measured.
  • the two fixed supports are not only used to support the displacement measurement device, but also serve as a fixing mechanism for the displacement measurement device, which effectively reduces the structural complexity and manufacturing cost of the measurement device through the reuse structure.
  • the support beam also includes a support beam arranged between the left fixed support and the right fixed support; the support beam includes a left support beam 12, a right support beam 3, and a support beam arranged between the left support beam and The top support beam 4 between the right support beams.
  • the support beam adopts a symmetrical structural design, the left support beam and the right support beam are basically arranged in parallel, and are vertically installed on their respective corresponding supports.
  • a cantilever beam 11 is arranged on the left support beam.
  • the cantilever beam can be a cylinder or a cuboid, and its shape is not specifically limited here.
  • a cross-shaped cantilever beam fixing buckle 13 is used to fix the cantilever beam on the left support beam, and the cantilever beam is stably locked by welding.
  • the end of the cantilever beam away from the left support beam is provided with an inclined surface, and a limiting mechanism 10 is provided on one side of the inclined surface.
  • a blazed grating chip 9 is arranged on the inclined surface of the end of the cantilever beam away from the left support beam.
  • a collimation unit is arranged below the top support beam.
  • the collimation unit includes at least one optical lens, and the light entering the collimation unit is collimated and then emitted from the collimation unit in a substantially parallel manner.
  • the light incident side of the collimating unit receives a light source signal
  • the light output side of the collimating unit is used to output the collimated light source signal to the blazed grating chip.
  • the displacement measuring device is able to sensitively measure tiny displacements. Furthermore, the cantilever beam increases the measuring scale of the displacement sensor, thereby increasing the measurement sensitivity of the displacement measuring device.
  • the light incident side of the collimating unit is connected to an optical fiber 5, and the light source signal is input to the light incident side of the collimating unit through the optical fiber.
  • the light source signal of the present disclosure is emitted by a scanning light source.
  • light is used as a transmission medium in one embodiment.
  • the optical fiber is a gold-plated or polyimide-coated optical fiber, and the end of the optical fiber away from the collimation unit passes through the right support beam, and the gap between the optical fiber and the right support beam is sealed by welding.
  • a through hole for the optical fiber to pass through is provided on the right support beam. Since there is a gap between the through hole and the optical fiber, if the gap is not sealed and filled, the optical fiber will touch the through hole and wear or environmental pollutants will enter the interior of the measuring device, thereby affecting the measurement accuracy of the displacement measuring device.
  • a gold-plated optical fiber is used in an embodiment of the present disclosure, and then the gap between the optical fiber and the through hole can be sealed by gold-tin solder welding or the like.
  • the gold-plated material can be a metal or an alloy, and the alloy can be a kovar alloy or the like.
  • gold plating or coating the surface of the optical fiber with polyimide can improve the optical fiber's tolerance to high temperatures, allowing it to work normally in a high temperature environment, thereby increasing the scope of application of the displacement measuring device.
  • the left fixed support and the right fixed support are installed on the surface of the target object to be measured by bonding or welding.
  • the fixed support is fixed to the surface of the measured object by welding. This connection method effectively increases the pasting or welding contact surface, thereby enhancing the firmness of the fixing surface.
  • the blazed grating chip is a chip manufactured by MEMS process, on which a number of micro-lenses are arranged.
  • the light source signal of the collimating unit is irradiated to the micro-lenses, and after the micro-lenses selectively reflect the wavelength of the incident light, they enter the collimating unit and are collected by the signal receiving module.
  • a MEMS blazed grating chip is used in one embodiment of the present invention. .
  • the MEMS blazed grating chip (or blazed grating chip manufactured by MEMS process) can be obtained by wet etching of silicon wafers.
  • the grating is the most effective dispersion spectroscopic device.
  • the design of the blazed grating used for sensing measurement mainly considers the spectral resolution. The narrower the output line width, the better, so as to facilitate the subsequent signal demodulation to obtain higher wavelength resolution and wavelength accuracy.
  • the blazed grating needs to have a small size of millimeter level.
  • the blazed grating used in one embodiment of the present disclosure can achieve a measurement accuracy of several hundred nanometers, and has the characteristics of high response rate, long-distance transmission and easy reuse, and is suitable for strong electromagnetic interference environment and corrosive environment.
  • the displacement measurement device shown in the present disclosure can be widely used in distributed sensing, long-distance transmission of real-time signals, harsh environment, limited power supply and other occasions.
  • a plurality of micro-lenses are arranged on the MEMS blazed grating chip, and there is a preset angle between the micro-lens and the grating plane 51, that is, the blazed angle ⁇ 0.
  • the normal 55 of the grating surface is perpendicular to the grating plane 51.
  • the relationship between the bending angle and the spectral wavelength of the light source signal is as follows:
  • d is the grating pitch
  • is the angle between the incident light and the normal line of the microlens surface, which is determined by the bending angle of the object being measured
  • m is the diffraction order
  • is the diffraction wavelength
  • the light source signal is collimated by the collimation unit and then irradiated to the micro-lens, and after the micro-lens selectively reflects the wavelength of the incident light, it enters the collimation unit and is collected by the signal receiving module.
  • the corresponding angle ⁇ can be calculated, and then the bending angle of the object under test can be obtained.
  • the displacement of the object under test can be obtained by measuring the angle through the MEMS blazed grating chip. In other words, this embodiment discloses how to obtain a tiny displacement of the object under test by measuring the angle.
  • the left support beam is arranged on the left fixed support
  • the right support beam is arranged on the right fixed support
  • a sensitivity enhancement structure is arranged at the connection between the left support beam and the left fixed support
  • a sensitivity enhancement structure is arranged at the connection between the right support beam and the right fixed support.
  • a sensitivity enhancement structure may be provided at the connection between the left support beam and the left fixed support, and/or a sensitivity enhancement structure may be provided at the connection between the right support beam and the right fixed support.
  • the purpose of providing the sensitivity enhancement structure is to reduce the tensile strength of the support beam, so that under the condition of a small deformation of the object being measured, the support beam will undergo a larger displacement deformation or angle deformation.
  • the sensitivity enhancement structure may be a semicircular concave structure, which is only an example and does not limit the specific design of the sensitivity enhancement structure.
  • a sensitivity enhancement structure is provided at the connection between the top support beam and the left support beam, and/or, a sensitivity enhancement structure is provided at the connection between the top support beam and the right support beam. Furthermore, when it is necessary to further improve the sensitivity of the displacement measuring device, a sensitivity enhancement structure can be provided at other positions of the support beam, such as at the connection between the top support beam and the left support beam, and/or, at the connection between the top support beam and the right support beam.
  • a detachable protective beam is further provided between the left fixed support and the right fixed support, and the protective beam is used to prevent the displacement measuring device from deforming in the assembled state.
  • the structural strength of the displacement measuring device will be significantly reduced.
  • the size design or material selection of the support beam itself will also lead to its low structural strength.
  • the displacement measuring device may cause the support beam to deform or even be damaged during transportation or use.
  • a detachable protective beam 6 is provided between the left fixed support and the right fixed support. The protective beam 6 can provide support for the support beam to prevent it from deforming. After the displacement measuring device is installed on the surface of the object to be measured, the protective beam can be removed. In specific use, the protective beam can be fixed to the fixed support by fixing screws 1 and other components that are easy to disassemble and assemble.
  • the collimation unit is disposed on the top support beam via a fixing unit, and the fixing unit is used to adjust the posture and/or position of the collimation unit.
  • the collimation unit is fixed on the top support beam in order to accurately collect changes in the light source signal transmission caused by the measured object.
  • a mounting position is set on the top support beam, and then a fixing unit for fixing the collimation unit is assembled to the mounting position.
  • the fixing unit can adjust the posture and/or position of the collimation unit so that the emergent light of the collimation unit is basically parallel. It can be understood that the fixing unit greatly reduces the difficulty of installation and adjustment of the collimation unit, making the displacement measuring device easy to produce.
  • the collimation unit and the fixing unit are gold-plated, and the collimation unit and the fixing unit are connected by welding. After adjusting the angle and position of the collimation unit, it needs to be fixed. When a viscous material with a large temperature coefficient such as glue is used to bond the collimation unit, it will directly affect the fixing angle and position of the collimation unit, and thus the expected installation posture and position cannot be obtained. For this reason, in one embodiment of the present disclosure, the fixing unit 7 and the collimation unit 8 are first gold-plated, and then the two are fixed by welding.
  • the gold-plated material can be a metal or an alloy.
  • the alloy may be Kovar alloy or the like.
  • a limiting portion 10 is provided at one side of the end of the cantilever beam, and the limiting portion is used to locate the installation position of the blazed grating chip.
  • a distance range is required between the edge of the blazed grating chip 9 and the edge of the limiting portion 10 as a reference for the chip installation position.
  • the displacement measuring device further comprises a sealing unit, one end of the sealing unit is connected to the cantilever beam, and the other end is connected to the collimating element, so as to form a sealed channel between the cantilever beam and the collimating element.
  • a sealing unit is provided between the cantilever beam and the collimating unit.
  • the sealing unit may be a bellows, which has sufficient flexibility and can change with the displacement or angle of the object being measured, thereby reducing the influence on the deformation of the support beam and ensuring the measurement sensitivity and accuracy of the displacement measuring device.
  • a housing is provided outside the displacement measuring device, and the housing seals the components inside the displacement measuring device.
  • the displacement measuring device is encapsulated by an external housing to protect the various components inside.
  • a method for manufacturing a displacement measuring device as described in the first aspect comprising: fixing a support beam between a left fixed support and a right fixed support; and detachably connecting two ends of a protective beam to the left fixed support and the right fixed support respectively through a fixing element.
  • the support beam, cantilever beam, fixing unit, left fixed support and right fixed support and other parts can be processed first according to the design requirements of the drawings, and then assembled and debugged.
  • the frame structure of the displacement measuring device can be produced and assembled first, for example, the support beam and the protection beam can be fixed between the left fixed support and the right fixed support respectively.
  • a sensitivity enhancement structure is processed at the connection between the left support beam and the left fixed support, and/or a sensitivity enhancement structure is processed at the connection between the right support beam and the right fixed support, and/or a sensitivity enhancement structure is processed at the connection between the top support beam and the left support beam, and/or a sensitivity enhancement structure is processed at the connection between the top support beam and the right support beam. Since the support beam is relatively thin, processing the sensitivity enhancement structure directly on the support beam will cause the support beam to deform, thereby affecting the processing accuracy. Therefore, before processing the sensitivity enhancement structure, it is necessary to first install a protective beam to increase the strength of the support beam, and then process the sensitivity enhancement structure.
  • a cantilever beam is installed on the left support beam, a limiting portion is provided on one side of the end of the cantilever beam, and the blazed grating chip is installed according to the position of the limiting portion.
  • the collimating unit is installed on the fixing unit, and the fixing unit is adjusted to obtain the collimating unit posture and/or position required by the design;
  • the collimating unit is welded to the fixing unit, wherein the collimating unit and the fixing unit are gold-plated.
  • one end of the sealing unit is connected to the cantilever beam and the other end is connected to the collimating element to form a sealed channel between the cantilever beam and the collimating element; and a shell is provided on the outside of the displacement measuring device to seal the elements inside the displacement measuring device.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Length Measuring Devices By Optical Means (AREA)
  • Optical Transform (AREA)

Abstract

一种位移测量装置及其制造方法,包括:左侧固定支座(14)和右侧固定支座(2),左侧固定支座(14)和右侧固定支座(2)安装于待测目标物表面;以及设置在左侧固定支座(14)和右侧固定支座(2)之间的支撑梁;支撑梁包括左侧支撑梁(12)、右侧支撑梁(3)以及设置在左侧支撑梁(12)和右侧支撑梁(3)之间的顶部支撑梁(4);左侧支撑梁(12)上设置有悬臂梁(11),悬臂梁(11)远离左侧支撑梁(12)的端部设置有闪耀光栅芯片(9);顶部支撑梁(4)的下方设置有准直单元(8),准直单元(8)的入光侧接收光源信号,准直单元(8)的出光侧用于将准直后的光源信号输出至闪耀光栅芯片(9)。位移测量装置能够捕捉待测目标物的微小位移量,实现纳米级到毫米级的位移变化量的测量,具有高灵敏度和高精度特性,适用场景广泛。

Description

一种位移测量装置及其制造方法 技术领域
本发明涉及位移测量技术领域,具体涉及一种位移测量装置及其制造方法。
背景技术
位移测量技术广泛应用于工业、军事、航空航海以及通讯等各种领域。现有技术中的光学检测装置(如激光干涉仪,光电自准直仪等)的系统结构复杂,体积大,难以测量微小位移,或对微小位移变化量不敏感,而且上述仪器对测量环境要求高而很难应用于工业高精度在线测量领域,尤其在风力发电机叶片载荷监测、风机叶片法兰松动的微小位移监测、螺栓松动监测等领域。为此,需要设计一种能够测量微小位移、灵敏度高、且能够适用于多种复杂环境的位移测量装置。
发明内容
为了克服相关技术中诸多问题中的至少一者,本发明提供了一种位移测量装置及其制造方法。
根据本公开实施例的第一方面,提供一种位移测量装置,包括:左侧固定支座和右侧固定支座,所述的左侧固定支座和右侧固定支座安装于待测目标物表面;以及设置在左侧固定支座与右侧固定支座之间的支撑梁;
所述的支撑梁包括左侧支撑梁、右侧支撑梁以及设置在左侧支撑梁和右侧支撑梁之间的顶部支撑梁;
所述的左侧支撑梁上设置有悬臂梁,悬臂梁远离左侧支撑梁的端部设置有闪耀光栅芯片;
顶部支撑梁的下方设置有准直单元,所述准直单元的入光侧接收光源信号,所述准直单元的出光侧用于将准直后的光源信号输出至所述闪耀光栅芯片。
可选的一个实施例中,所述准直单元的入光侧连接有光纤,所述的光源信号通过所述光纤输入准直单元的入光侧。
可选的一个实施例中,所述的光纤为镀金或聚酰亚胺涂覆的光纤,所述光纤远离准直单元的一端穿过右侧支撑梁,所述光纤与右侧支撑梁之间的间隙采用焊接密封。
可选的一个实施例中,所述的左侧固定支座和右侧固定支座通过粘接或焊接方式安装于待测目标物表面。
可选的一个实施例中,所述闪耀光栅芯片为MEMS工艺制造芯片,其上设置有若干微镜片,经过准直单元的光源信号照射至所述微镜片,并经过所述微镜片对入射光波长选择 性反射后进入准直单元且被信号接收模块采集。
可选的一个实施例中,左侧支撑梁设置在所述左侧固定支座上,右侧支撑梁设置在所述右侧固定支座上,左侧支撑梁与左侧固定支座的连接处设置有增敏结构,和/或,右侧支撑梁与右侧固定支座的连接处设置有增敏结构。
可选的一个实施例中,所述的顶部支撑梁与左侧支撑梁的连接处设置有增敏结构,和/或,所述的顶部支撑梁与右侧支撑梁的连接处设置有增敏结构。
可选的一个实施例中,所述的左侧固定支座和右侧固定支座之间还设置有可拆卸的保护梁,所述的保护梁在装配状态下用于防止位移测量装置变形。
可选的一个实施例中,所述的准直单元通过固定单元设置于顶部支撑梁上,所述的固定单元用于调整准直单元的姿态和/或位置。
可选的一个实施例中,所述的准直单元和固定单元采用镀金处理,且准直单元和固定单元通过焊接连接。
可选的一个实施例中,所述悬臂梁的端部一侧设置有限位部,所述限位部用于定位闪耀光栅芯片的安装位置。
可选的一个实施例中,所述位移测量装置还包括密封单元,所述的密封单元一端连接所述的悬臂梁,另一端连接所述的准直元件,以在悬臂梁和准直元件之间形成密封通道。
可选的一个实施例中,所述的位移测量装置的外部设置有壳体,所述壳体密封位移测量装置内部的元件。
根据本公开实施例的第二方面,提供一种如第一方面所述的位移测量装置的制造方法,所述方法包括:
将支撑梁固定在左侧固定支座与右侧固定支座之间;
通过固定元件将保护梁的两端分别可拆卸的连接在左侧固定支座与右侧固定支座上。
可选的一个实施例中,在左侧支撑梁与左侧固定支座的连接处加工增敏结构,和/或,在右侧支撑梁与右侧固定支座的连接处加工增敏结构,和/或,在顶部支撑梁与左侧支撑梁的连接处加工增敏结构,和/或,在顶部支撑梁与右侧支撑梁的连接处加工增敏结构。
可选的一个实施例中,左侧支撑梁上安装悬臂梁,所述悬臂梁的端部一侧设置有限位部,根据所述限位部的位置安装闪耀光栅芯片。
可选的一个实施例中,固定单元安装于顶部支撑梁上后,将准直单元安装于固定单元,并调节固定单元以获得设计所需的准直单元姿态和/或位置;
调节完成以后,将准直单元焊接到固定单元上,其中,准直单元和固定单元采用镀金处理。
可选的一个实施例中,将密封单元一端连接所述的悬臂梁,另一端连接所述的准直元件,以在悬臂梁和准直元件之间形成密封通道;并在位移测量装置的外部罩设壳体以密封位移测量装置内部的元件。
本发明的技术方案具有如下优点或有益效果:
(1)所述的位移测量装置设置有支撑梁,并在支撑梁上集成有悬臂梁、闪耀光栅芯片、准直单元等器件,并采用光学测量原理以捕捉被测物体的微小位移量,所述的测量装置能够对纳米级的位移变化量进行测量。并且悬臂梁的安装方式增大了位移传感器的测量标距,进而增加了位移测量装置的测量灵敏度。另外,采用无源的光纤位移测量单元,使得本发明的装置适用于各种强磁场环境,以及室外恶劣环境等特殊环境,而且适合长期工作。
(2)左侧固定支座和右侧固定支座通过粘接或焊接方式安装于待测目标物表面,提高了位移测量装置的安装稳定性。
(3)一个实施例中闪耀光栅芯片为MEMS工艺制造芯片,其上设置有若干微镜片,经过准直单元的光源信号照射至所述微镜片。由于采用MEMS微纳制造技术,将微小的反射镜面组成所述闪耀光栅芯片上,进一步使得本发明能够实现微小角度的测量,并通过角度量和位移量的标定实现对微小位移的测量。
(4)左侧支撑梁与左侧固定支座的连接处设置有增敏结构,和/或,右侧支撑梁与右侧固定支座的连接处设置有增敏结构;以及所述的顶部支撑梁与左侧支撑梁的连接处设置有增敏结构,和/或,所述的顶部支撑梁与右侧支撑梁的连接处设置有增敏结构;通过上述增敏结构的设置有效保证了本发明的位移测量装置的高灵敏度和高精度性能。
(5)通过设置可拆卸的保护梁,不仅提高了装置的结构强度,同时也确保拆除保护梁后的位移测量装置的测量精度和灵敏度。再者,保护梁设计有效地保证高灵敏支撑梁在加工过程中不会变形,使得本发明的装置易于生产制造。
(6)采用低温度膨胀系数的金属对多个器件进行镀金处理,降低了器件因温度变化而产生变形的情形,确保了器件的安装精度。再者,所述镀金处理也便于器件进行焊接固定等。
附图说明
附图用于更好地理解本发明,不构成对本发明的不当限定。其中:
图1是根据本发明实施例的位移测量装置的核心部件装配示意图;
图2是根据本发明实施例的位移测量装置的核心部件轴测示意图;
图3是根据本发明实施例的位移测量装置的剖视示意图;
图4是根据本发明实施例的位移测量装置轴测示意图;
图5是根据本发明实施例的闪耀光栅芯片工作原理示意图。
具体实施方式
以下结合附图对本发明的示范性实施例做出说明,其中包括本发明实施例的各种细节以助于理解,应当将它们认为仅仅是示范性的。因此,本领域普通技术人员应当认识到,可以对这里描述的实施例做出各种改变和修改,而不会背离本发明的范围和精神。同样,为了清楚和简明,以下的描述中省略了对公知功能和结构的描述。
在本申请使用的术语是仅仅出于描述特定实施例的目的,而非旨在限制本申请。在本申请和所附权利要求书中所使用的单数形式的“一种”、“所述”和“该”也旨在包括多数形式,除非上下文清楚地表示其他含义。还应当理解,本文中使用的术语“和/或”是指并包含一个或多个相关联的列出项目的任何或所有可能组合。
应当理解,尽管在本申请可能采用术语第一、第二、第三等来描述各种信息,但这些信息不应限于这些术语。这些术语仅用来将同一类型的信息彼此区分开。例如,在不脱离本申请范围的情况下,第一信息也可以被称为第二信息,类似地,第二信息也可以被称为第一信息。取决于语境,如在此所使用的词语“如果”可以被解释成为“在……时”或“当……时”或“响应于确定”。
为了解决背景技术中的至少一个问题,根据本公开实施例的第一方面,提供一种位移测量装置,其包括:左侧固定支座和右侧固定支座,所述的左侧固定支座和右侧固定支座安装于待测目标物表面;以及设置在左侧固定支座与右侧固定支座之间的支撑梁;所述的支撑梁包括左侧支撑梁、右侧支撑梁以及设置在左侧支撑梁和右侧支撑梁之间的顶部支撑梁;所述的左侧支撑梁上设置有悬臂梁,悬臂梁远离左侧支撑梁的端部设置有闪耀光栅芯片;顶部支撑梁的下方设置有准直单元,所述准直单元的入光侧接收光源信号,所述准直单元的出光侧用于将准直后的光源信号输出至所述闪耀光栅芯片。
实践中,常规的位移测量手段难以测量微小的位移量,或者难以提供令人满意的测量精度,或者测量的灵敏度欠佳。为此,本公开提供了一种采用光学测量原理的位移测量装置。示例性的,如图1所示,所述的位移测量装置包括左侧固定支座14和右侧固定支座2,所述的左侧固定支座和右侧固定支座安装于待测目标物表面。所述的两个固定支座不仅用于支撑所述的位移测量装置,同时也作为位移测量装置的固定机构,通过复用结构有效降低了测量装置的结构复杂度和制造成本。进一步的,还包括设置在左侧固定支座与右侧固定支座之间的支撑梁;所述的支撑梁包括左侧支撑梁12、右侧支撑梁3以及设置在左侧支撑梁和 右侧支撑梁之间的顶部支撑梁4。为了便于生产,一个实施例中,所述的支撑梁采用对称结构设计,左侧支撑梁和右侧支撑梁基本平行设置,且竖直安装在各自的对应的支座上。如图1所示,所述的左侧支撑梁上设置有悬臂梁11。所述的悬臂梁可以为圆柱体或长方体,此处不对其形状做具体限定。为了便于安装和固定所述悬臂梁,一个实施例中采用十字形的悬臂梁固定卡扣13将悬臂梁固定于所述左侧支撑梁上,并通过焊接方式稳定锁住所述悬臂梁。所述悬臂梁远离左侧支撑梁的端部设置有斜面,所述斜面的一侧设置有限位机构10。悬臂梁远离左侧支撑梁的端部的斜面上设置有闪耀光栅芯片9。进一步的,顶部支撑梁的下方设置有准直单元。所述的准直单元包括至少一片光学透镜,射入所述准直单元的光线经过准直后,基本平行地射出准直单元。一个实施例中,所述准直单元的入光侧(如图1所示的准直单元的右侧)接收光源信号,所述准直单元的出光侧用于将准直后的光源信号输出至所述闪耀光栅芯片。当被测量目标物发生位移或折弯等时,其位移量将通过左侧固定支座和右侧固定支座中的至少一者传递至支撑梁上,进而引起闪耀光栅芯片反射的光源信号发生变化。通过收集和处理变化的光源信号即可获得被测量目标物的位移量。具体的测量过程将在下文展开。需要说明的是,由于采用了光学测量手段和闪耀光栅芯片,所述的位移测量装置能够敏锐的测量微小的位移量。再者,悬臂梁增大了位移传感器的测量标距,进而增加了位移测量装置的测量灵敏度。
可选的一个实施例中,所述准直单元的入光侧连接有光纤5,所述的光源信号通过所述光纤输入准直单元的入光侧。实践中,本公开的光源信号由扫描光源发出。为了能够使光源信号高效的传递至闪耀光栅芯片处,一个实施例中采用光线作为传输介质。
可选的一个实施例中,所述的光纤为镀金或聚酰亚胺涂覆的光纤,所述光纤远离准直单元的一端穿过右侧支撑梁,所述光纤与右侧支撑梁之间的间隙采用焊接密封。如图1和2所示的示例中,所述的右侧支撑梁上设置有供光纤穿过的通孔。由于所述的通孔与光纤之间存在间隙,如果未对所述缝隙进行密封填充,将导致光纤触碰通孔而磨损或者环境污染物进入测量装置内部,进而影响位移测量装置的测量精度。为此,本公开的一个实施例中采用镀金光纤,进而可采用金锡焊料焊接等方式密封光纤和所述通孔之间的间隙。所述的镀金材料可以为金属或者合金,所述的合金可以为可伐合金等。此外,在光纤表面镀金或者涂覆聚酰亚胺能够提高光纤对高温的耐受性,使其在高温环境下正常工作,进而增大位移测量装置的适用范围。
可选的一个实施例中,所述的左侧固定支座和右侧固定支座通过粘接或焊接方式安装于待测目标物表面。相较于采用平面固定支撑座的方式,本公开的一个实施例采用胶粘或 者焊接的方式将固定支座固定于被测量物体表面,此种连接方式有效增大粘贴或者焊接接触面,进而增强固定面的牢固性。
可选的一个实施例中,所述闪耀光栅芯片为MEMS工艺制造芯片,其上设置有若干微镜片,经过准直单元的光源信号照射至所述微镜片,并经过所述微镜片对入射光波长选择性反射后进入准直单元且被信号接收模块采集。为了获得良好的测量精度以及能够准确的测量微小的位移量,本发明的一个实施例中采用MEMS闪耀光栅芯片。。所述的MEMS闪耀光栅芯片(或称作MEMS工艺制造的闪耀光栅芯片)可通过对硅片的湿法腐蚀得到。光栅是最有效的色散分光器件,用于传感测量的闪耀光栅设计主要考虑光谱分辨率,输出线宽越窄越好,以便于后续信号解调获得更高的波长分辨率和波长精度。此外,为了在单个硅片一次批量制造出更多的MEMS敏感芯片从而降低单个芯片的成本,以及实现光纤MEMS位移传感器的微小型化封装,闪耀光栅需要具有毫米级的小尺寸。本公开一个实施例中采用的闪耀光栅可达到几百纳米的测量精度,且具有高响应速率,长距离传输以及易复用的特点,适用于强电磁干扰环境及腐蚀环境等。因此,本公开展示的位移测量装置可广泛应用在分布传感、实时信号长距离传输、环境恶劣、电源供应受限等场合。具体的,如图1和5所示,MEMS闪耀光栅芯片上设置有若干微镜片,所述的微镜片与光栅平面51存在预设的夹角,即闪耀角度β0。光栅表面的法线55与光栅平面51垂直。被测物体弯折而发生位移时,光线从入射方向54照射至微镜片表面后在表面法线53的另一侧产生沿最大衍射方向52的反射光;其折弯角度与光源信号的光谱波长之间的关系如下所示:
2dsinβ0cosθ=mλ
上式中d为光栅栅距;θ为入射光与微镜片表面法线的夹角,即其由被测物体的弯折角度决定;m为衍射级数;λ为衍射波长。
实际使用时,光源信号经过准直单元准直后照射至所述微镜片,并经过所述微镜片对入射光波长选择性反射后进入准直单元且被信号接收模块采集。通过分析微镜片选择性反射的波长即可计算出对应的角度θ,进而获得被测物体的弯折角度。进一步的,通过标定位移测量装置的角度θ与位移量之间的映射关系,即可通过MEMS闪耀光栅芯片测量角度而获得被测物体的位移量。换言之,该实施例中公开了如何通过测量角度而获得被测物体微小的位移量。
可选的一个实施例中,左侧支撑梁设置在所述左侧固定支座上,右侧支撑梁设置在所述右侧固定支座上,左侧支撑梁与左侧固定支座的连接处设置有增敏结构,和/或,右侧支撑梁与右侧固定支座的连接处设置有增敏结构。实践中,当位移测量装置的结构强度较大, 尤其是支撑梁的结构强度较大时,所述的位移测量装置对微小角度或位移变化量不敏感,难以捕捉到被测物体的细微变化。为此,本公开的一个实施例中,在支撑梁的至少一个位置上设置增敏结构以提高其为微小位移或角度的测量灵敏性。具体的,如图1所示,可在左侧支撑梁与左侧固定支座的连接处设置有增敏结构,和/或,右侧支撑梁与右侧固定支座的连接处设置有增敏结构。设置所述的增敏结构的目的是降低支撑梁的拉伸强度,进而在被测量物体的微小形变条件下,支撑梁就会发生较大的位移形变或角度形变。示例性的,所述的增敏结构可以是半圆形的凹陷结构,此处仅是一种举例,不对增敏结构的具体设计做限定。
可选的一个实施例中,所述的顶部支撑梁与左侧支撑梁的连接处设置有增敏结构,和/或,所述的顶部支撑梁与右侧支撑梁的连接处设置有增敏结构。进一步的,当需要进一步提高位移测量装置的灵敏度时,可在支撑梁的其它位置设置增敏结构。如在顶部支撑梁与左侧支撑梁的连接处,和/或,所述的顶部支撑梁与右侧支撑梁的连接处。
可选的一个实施例中,所述的左侧固定支座和右侧固定支座之间还设置有可拆卸的保护梁,所述的保护梁在装配状态下用于防止位移测量装置变形。如前文所述,当在支撑梁上设置增敏结构后,将显著降低位移测量装置的结构强度。当然,支撑梁自身的尺寸设计或材料选择等也会导致其结构强度较低。此时,位移测量装置在运输或使用等环节会造成支撑梁变形,甚至损坏等。为此,一个实施例中在左侧固定支座和右侧固定支座之间设置可拆卸的保护梁6。所述的所述保护梁6能够为支撑梁提供支撑,从而防止其变形。当位移测量装置安装于被测量物体表面后,则可将所述保护梁拆除。具体使用时,所述的保护梁可通过固定螺丝1等便于拆装的元件固定在固定支座上。
可选的一个实施例中,所述的准直单元通过固定单元设置于顶部支撑梁上,所述的固定单元用于调整准直单元的姿态和/或位置。一个实施例中,为了精确采集被测量物体引起的光源信号传输的变化,而将准直单元固定在顶部支撑梁上。一个实施例中,通过在顶部支撑梁上设置安装位,然后将固定准直单元的固定单元装配与所述安装位处。另外,所述的固定单元能够调整准直单元的姿态和/或位置,从而使准直单元的出射光基本平行。可以理解的是,固定单元极大的降低了准直单元的安装和调整难度,使得位移测量装置易于生产。
可选的一个实施例中,所述的准直单元和固定单元采用镀金处理,且准直单元和固定单元通过焊接连接。在调节好准直单元的角度和位置后,需要对其进行固定。当采用诸如胶水等温度系数较大粘性物质粘接准直单元时,其会直接影响准直单元的固定角度和位置,进而无法获得预期的安装姿态和位置。为此,本公开的一个实施例中,先对固定单元7和准直单元8进行镀金处理,再对两者进行焊接固定。所述的镀金材料可以为金属或者合金,所 述的合金可以为可伐合金等。
可选的一个实施例中,所述悬臂梁的端部一侧设置有限位部10,所述限位部用于定位闪耀光栅芯片的安装位置。在闪耀光栅芯片安装时,需要所述闪耀光栅芯片9的边缘与所述限位部10边缘有一个距离范围,作为所述芯片安装位置的参考。
可选的一个实施例中,所述位移测量装置还包括密封单元,所述的密封单元一端连接所述的悬臂梁,另一端连接所述的准直元件,以在悬臂梁和准直元件之间形成密封通道。一个实施例中,为了避免芯片表面和准直单元的表面被污染而影响测量精度,而在悬臂梁和准直单元之间设置密封单元。所述的密封单元可以为波纹管,所述的波纹管具有足够的挠性,其能够随被测量物体的位移或角度的变化而变化,降低对支撑梁形变的影响,确保位移测量装置的测量灵敏度和精度。
可选的一个实施例中,所述的位移测量装置的外部设置有壳体,所述壳体密封位移测量装置内部的元件。如图3和4所示的实施例中,所述的位移测量装置通过外部壳体进行封装,以保护其内部的各个元器件。
根据本公开实施例的第二方面,提供一种如第一方面所述的位移测量装置的制造方法,所述方法包括:将支撑梁固定在左侧固定支座与右侧固定支座之间;通过固定元件将保护梁的两端分别可拆卸的连接在左侧固定支座与右侧固定支座上。
实际制造过程中,可根据图纸设计要求,先加工出支撑梁、悬臂梁、固定单元、左侧固定支座和右侧固定支座等零件,然后进行组装和调试。为了便于产线上批量生产和组装,可先生产和组装位移测量装置的框架结构,例如将支撑梁和保护梁分别固定在左侧固定支座与右侧固定支座之间。
可选的一个实施例中,在左侧支撑梁与左侧固定支座的连接处加工增敏结构,和/或,在右侧支撑梁与右侧固定支座的连接处加工增敏结构,和/或,在顶部支撑梁与左侧支撑梁的连接处加工增敏结构,和/或,在顶部支撑梁与右侧支撑梁的连接处加工增敏结构。由于支撑梁较薄,直接在支撑梁上加工增敏结构会导致支撑梁变形,进而影响加工精度。因此,在加工增敏结构之前,需要先安装保护梁以提高支撑梁的强度,再进行增敏结构的加工。
可选的一个实施例中,左侧支撑梁上安装悬臂梁,所述悬臂梁的端部一侧设置有限位部,根据所述限位部的位置安装闪耀光栅芯片。
可选的一个实施例中,固定单元安装于顶部支撑梁上后,将准直单元安装于固定单元,并调节固定单元以获得设计所需的准直单元姿态和/或位置;
调节完成以后,将准直单元焊接到固定单元上,其中,准直单元和固定单元采用镀金处理。
可选的一个实施例中,将密封单元一端连接所述的悬臂梁,另一端连接所述的准直元件,以在悬臂梁和准直元件之间形成密封通道;并在位移测量装置的外部罩设壳体以密封位移测量装置内部的元件。
上述具体实施方式,并不构成对本发明保护范围的限制。本领域技术人员在考虑说明书及实践本申请公开的技术方案后,将容易想到本公开的其它实施方案。本申请旨在涵盖本公开的任何变型、用途或者适应性变化,这些变型、用途或者适应性变化遵循本公开的一般性原理并包括本公开未公开的本技术领域中的公知常识或惯用技术手段。说明书和实施例仅被视为示例性的,本公开的真正范围和精神由下面的权利要求指出。
应当理解的是,本公开并不局限于上面已经描述并在附图中示出的精确结构,并且可以在不脱离其范围进行各种修改和改变。本公开的范围仅由所附的权利要求来限制。

Claims (16)

  1. 一种位移测量装置,包括:左侧固定支座和右侧固定支座,所述的左侧固定支座和右侧固定支座安装于待测目标物表面;以及设置在左侧固定支座与右侧固定支座之间的支撑梁;其特征在于:
    所述的支撑梁包括左侧支撑梁、右侧支撑梁以及设置在左侧支撑梁和右侧支撑梁之间的顶部支撑梁;
    所述的左侧支撑梁上设置有悬臂梁,悬臂梁远离左侧支撑梁的端部设置有闪耀光栅芯片;
    顶部支撑梁的下方设置有准直单元,所述准直单元的入光侧接收光源信号,所述准直单元的出光侧用于将准直后的光源信号输出至所述闪耀光栅芯片。
  2. 根据权利要求1所述的位移测量装置,其特征在于,
    所述准直单元的入光侧连接有光纤,所述的光源信号通过所述光纤输入准直单元的入光侧。
  3. 根据权利要求2所述的位移测量装置,其特征在于,
    所述光纤为镀金或聚酰亚胺涂覆的光纤,所述光纤远离准直单元的一端穿过右侧支撑梁,所述光纤与右侧支撑梁之间的间隙采用焊接密封。
  4. 根据权利要求1所述的位移测量装置,其特征在于,
    所述的左侧固定支座和右侧固定支座通过粘接或焊接方式安装于待测目标物表面。
  5. 根据权利要求1所述的位移测量装置,其特征在于,
    所述闪耀光栅芯片为MEMS工艺制造芯片,其上设置有若干微镜片,经过准直单元的光源信号照射至所述微镜片,并经过所述微镜片对入射光波长选择性反射后进入准直单元且被信号接收模块采集。
  6. 根据权利要求1所述的位移测量装置,其特征在于,
    左侧支撑梁设置在所述左侧固定支座上,右侧支撑梁设置在所述右侧固定支座上,左侧支撑梁与左侧固定支座的连接处设置有增敏结构,和/或,右侧支撑梁与右侧固定支座的连接处设置有增敏结构;和/或,所述的顶部支撑梁与左侧支撑梁的连接处设置有增敏结构,和/或,所述的顶部支撑梁与右侧支撑梁的连接处设置有增敏结构。
  7. 根据权利要求1所述的位移测量装置,其特征在于,
    所述的左侧固定支座和右侧固定支座之间还设置有可拆卸的保护梁,所述的保护梁在装配状态下用于防止位移测量装置变形。
  8. 根据权利要求1所述的位移测量装置,其特征在于,
    所述的准直单元通过固定单元设置于顶部支撑梁上,所述的固定单元用于调整准直单元的姿态和/或位置;和/或,所述的准直单元和固定单元采用镀金处理,且准直单元和固定单元通 过焊接连接。
  9. 根据权利要求1所述的位移测量装置,其特征在于,
    所述悬臂梁的端部一侧设置有限位部,所述限位部用于定位闪耀光栅芯片的安装位置。
  10. 根据权利要求1所述的位移测量装置,其特征在于,
    所述位移测量装置还包括密封单元,所述的密封单元一端连接所述的悬臂梁,另一端连接所述的准直元件,以在悬臂梁和准直元件之间形成密封通道。
  11. 根据权利要求1所述的位移测量装置,其特征在于,
    所述的位移测量装置的外部设置有壳体,所述壳体密封位移测量装置内部的元件。
  12. 如权利要求1-11任一所述的位移测量装置的制造方法,其特征在于,
    将支撑梁固定在左侧固定支座与右侧固定支座之间;
    通过固定元件将保护梁的两端分别可拆卸的连接在左侧固定支座与右侧固定支座上。
  13. 根据权利要求12所述的制造方法,其特征在于,
    在左侧支撑梁与左侧固定支座的连接处加工增敏结构,和/或,在右侧支撑梁与右侧固定支座的连接处加工增敏结构,和/或,在顶部支撑梁与左侧支撑梁的连接处加工增敏结构,和/或,在顶部支撑梁与右侧支撑梁的连接处加工增敏结构。
  14. 根据权利要求13所述的制造方法,其特征在于,
    左侧支撑梁上安装悬臂梁,所述悬臂梁的端部一侧设置限位部,根据所述限位部的位置安装闪耀光栅芯片。
  15. 根据权利要求14所述的制造方法,其特征在于,
    固定单元安装于顶部支撑梁上后,将准直单元安装于固定单元,并调节固定单元以获得设计所需的准直单元姿态和/或位置;
    调节完成以后,将准直单元焊接到固定单元上,其中,准直单元和固定单元采用镀金处理。
  16. 根据权利要求15所述的制造方法,其特征在于,
    将密封单元一端连接所述的悬臂梁,另一端连接所述的准直元件,以在悬臂梁和准直元件之间形成密封通道;并在位移测量装置的外部罩设壳体以密封位移测量装置内部的元件。
PCT/CN2023/086034 2022-12-05 2023-04-03 一种位移测量装置及其制造方法 WO2024119680A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202211545084.8A CN115560682B (zh) 2022-12-05 2022-12-05 一种位移测量装置及其制造方法
CN202211545084.8 2022-12-05

Publications (1)

Publication Number Publication Date
WO2024119680A1 true WO2024119680A1 (zh) 2024-06-13

Family

ID=84770650

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/086034 WO2024119680A1 (zh) 2022-12-05 2023-04-03 一种位移测量装置及其制造方法

Country Status (2)

Country Link
CN (1) CN115560682B (zh)
WO (1) WO2024119680A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115560682B (zh) * 2022-12-05 2023-02-03 上海拜安传感技术有限公司 一种位移测量装置及其制造方法
CN115854889B (zh) * 2023-03-08 2023-06-06 上海拜安传感技术有限公司 一种接触式位移测量装置

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0973020A (ja) * 1995-09-05 1997-03-18 Toshiba Corp 光合分波器
US20020079432A1 (en) * 2000-08-07 2002-06-27 Lee Benjamin L. Two-dimensional blazed MEMS grating
JP2009133693A (ja) * 2007-11-29 2009-06-18 Anritsu Corp 光ファイバセンサ
CN102901840A (zh) * 2012-10-22 2013-01-30 浙江建设职业技术学院 一种高灵敏度fbg加速度传感器
EP3173752A1 (en) * 2015-11-27 2017-05-31 Universite Libre De Bruxelles Transducer with stiffness adjustment
CN107388982A (zh) * 2017-06-20 2017-11-24 西安交通大学 一种便携式纳米加工在线测量装置及测量方法
CN107917680A (zh) * 2017-11-07 2018-04-17 南京航空航天大学 基于闪耀光栅的微小角度快速识别方法
CN109506766A (zh) * 2018-12-21 2019-03-22 宁波中车时代传感技术有限公司 一种基于闪耀光栅和光纤光栅的光纤温振并联一体传感器
CN215984960U (zh) * 2021-04-20 2022-03-08 云南省建设投资控股集团有限公司 一种用于测量微小应变的光纤光栅传感器增敏装置
CN115560682A (zh) * 2022-12-05 2023-01-03 上海拜安传感技术有限公司 一种位移测量装置及其制造方法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3471368D1 (en) * 1984-10-31 1988-06-23 Ibm Deutschland Interferometric thickness analyzer and measuring method
JPH06294608A (ja) * 1993-04-07 1994-10-21 Res Dev Corp Of Japan 細線状反射型微小変位検出器
US7116430B2 (en) * 2002-03-29 2006-10-03 Georgia Technology Research Corporation Highly-sensitive displacement-measuring optical device
CN101825434B (zh) * 2010-04-28 2011-09-14 东北大学 一种基于闪耀光纤光栅解调的微位移传感器及检测方法
CN201903327U (zh) * 2010-12-17 2011-07-20 刘晓旻 纳米级微位移测量的自由空间微光学光杠杆系统
CN204007519U (zh) * 2014-08-20 2014-12-10 武汉光驰科技有限公司 光纤光栅传感实验仪
CN104406525B (zh) * 2014-11-13 2017-02-15 浙江大学 光栅组微位移传感器及其测量位移的方法

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0973020A (ja) * 1995-09-05 1997-03-18 Toshiba Corp 光合分波器
US20020079432A1 (en) * 2000-08-07 2002-06-27 Lee Benjamin L. Two-dimensional blazed MEMS grating
JP2009133693A (ja) * 2007-11-29 2009-06-18 Anritsu Corp 光ファイバセンサ
CN102901840A (zh) * 2012-10-22 2013-01-30 浙江建设职业技术学院 一种高灵敏度fbg加速度传感器
EP3173752A1 (en) * 2015-11-27 2017-05-31 Universite Libre De Bruxelles Transducer with stiffness adjustment
CN107388982A (zh) * 2017-06-20 2017-11-24 西安交通大学 一种便携式纳米加工在线测量装置及测量方法
CN107917680A (zh) * 2017-11-07 2018-04-17 南京航空航天大学 基于闪耀光栅的微小角度快速识别方法
CN109506766A (zh) * 2018-12-21 2019-03-22 宁波中车时代传感技术有限公司 一种基于闪耀光栅和光纤光栅的光纤温振并联一体传感器
CN215984960U (zh) * 2021-04-20 2022-03-08 云南省建设投资控股集团有限公司 一种用于测量微小应变的光纤光栅传感器增敏装置
CN115560682A (zh) * 2022-12-05 2023-01-03 上海拜安传感技术有限公司 一种位移测量装置及其制造方法

Also Published As

Publication number Publication date
CN115560682A (zh) 2023-01-03
CN115560682B (zh) 2023-02-03

Similar Documents

Publication Publication Date Title
WO2024119680A1 (zh) 一种位移测量装置及其制造方法
EP0548848B1 (en) Displacement detecting device
CN101608944B (zh) 一种光纤振动传感头及其制作方法
US20070127038A1 (en) Optical measuring device
CN111721235B (zh) 一种光电式边缘检测系统及其检测方法
CN105547201B (zh) 平面度测量装置
CN104502005A (zh) 一种基于mems工艺的f-p压力传感器及成型方法
JP2006030031A (ja) 分光器
CN104502016A (zh) 一种基于mems工艺的腔长可调f-p压力传感器及成型方法
JP2004006638A (ja) 高性能高信頼性小型光パワーモニタ及びその製造方法
US9829307B2 (en) Silicon based pressure and acceleration optical interferometric sensors with housing assembly
US5187545A (en) Integrated optical position measuring device and method with reference and measurement signals
CN217404626U (zh) 一种基于柔性万向支撑和压电陶瓷组成的快速反射镜系统
US11898899B2 (en) Micro-opto-mechanical system sensor, arrangement and manufacturing method
CN118149730A (zh) 一种角度测量装置及其制造方法
US7254290B1 (en) Enhanced waveguide metrology gauge collimator
CN115682952A (zh) 一种基于光谱共焦原理的几何量精密测量装置及方法
CN117906923B (zh) 一种基于环形腔系统的光学粘接技术稳定性测量方法
CN113819998A (zh) 一种基于二维单层光栅结构的多维角振动传感器
JPH05340719A (ja) 光学式変位センサ及びこれを用いた駆動システム
CN115728512A (zh) 光纤加速度传感器及光纤加速度传感器的形成方法
CN114895369B (zh) 一种基于压电驱动和fp干涉的激光告警装置
CN118150308A (zh) 一种旁压式张力测量装置
JP3489496B2 (ja) 光式圧力センサ及びそれを用いた圧力計測方法
CN118168586B (zh) 一种菲索成像模块及包括该模块的解调系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23899274

Country of ref document: EP

Kind code of ref document: A1