WO2024119405A1 - 一体式可降解心脏室间隔缺损封堵器及其制备方法 - Google Patents

一体式可降解心脏室间隔缺损封堵器及其制备方法 Download PDF

Info

Publication number
WO2024119405A1
WO2024119405A1 PCT/CN2022/137283 CN2022137283W WO2024119405A1 WO 2024119405 A1 WO2024119405 A1 WO 2024119405A1 CN 2022137283 W CN2022137283 W CN 2022137283W WO 2024119405 A1 WO2024119405 A1 WO 2024119405A1
Authority
WO
WIPO (PCT)
Prior art keywords
degradable
integrated
septal defect
ventricular septal
defect occluder
Prior art date
Application number
PCT/CN2022/137283
Other languages
English (en)
French (fr)
Inventor
邢泉生
Original Assignee
心弦跳动生物医疗科技(青岛)有限公司
青岛大学附属妇女儿童医院
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 心弦跳动生物医疗科技(青岛)有限公司, 青岛大学附属妇女儿童医院 filed Critical 心弦跳动生物医疗科技(青岛)有限公司
Priority to PCT/CN2022/137283 priority Critical patent/WO2024119405A1/zh
Publication of WO2024119405A1 publication Critical patent/WO2024119405A1/zh

Links

Images

Definitions

  • the present application relates to the field of medical devices, and more specifically, to an integrated degradable cardiac ventricular septal defect occluder and a preparation method thereof.
  • Ventricular septal defect is the most common congenital heart disease.
  • the human heart is composed of four chambers (left atrium, left ventricle, right atrium and right ventricle).
  • the opening of the ventricular septum between the left and right ventricles is called a ventricular septal defect.
  • Ventricular septal defect is mainly formed during the growth and development of the fetus.
  • blood usually flows from the left ventricle into the right ventricle through the ventricular septal defect, increasing the blood volume of the right ventricle.
  • the long-term presence of ventricular septal defect can cause increased pulmonary artery pressure, congestive heart failure, palpitations, shortness of breath, fatigue, repeated lung infections and other symptoms.
  • the traditional treatment for ventricular septal defect is surgery.
  • the patient needs to undergo a thoracotomy.
  • the biggest disadvantages are: (1) extracorporeal circulation is required during the operation, and the operation may cause complications and lead to death; (2) surgical trauma is large, leaving scars after the operation; (3) the cost of surgery is expensive.
  • the method of minimally invasive interventional treatment of ventricular septal defect is now very mature. Compared with traditional surgery, minimally invasive interventional treatment is a modern high-tech minimally invasive treatment.
  • ventricular septal defect occluder is pushed into the ventricular septal defect in the delivery catheter for occlusion treatment.
  • Such minimally invasive interventional treatment has the advantages of no surgery, less trauma, fewer complications, faster recovery, better results, a wide range of indications and relatively low surgical costs.
  • Nickel-titanium alloy is a non-degradable metal alloy material.
  • the ideal cardiac occluder should provide a temporary bridge for the heart's own repair, allowing its own cell tissues to climb and grow, and be degraded by the body after completing its mission, so that the defect is completely repaired by its own tissues, thereby avoiding the long-term complications and safety hazards caused by the retention of metals in the body.
  • the occluder currently widely used in clinical practice is a woven metal-non-woven fabric occluder that is gradually optimized based on the Amplatzer occluder.
  • the materials are mostly nickel-titanium alloys or other metals and non-degradable non-woven fabrics. Not only does it have no biodegradability and needs to be permanently retained in the human body, but it also has unavoidable disadvantages such as excessive stress, metal corrosion, and nickel poisoning.
  • the present application aims to solve one of the technical problems in the related art at least to a certain extent.
  • one purpose of the present application is to propose an integrated degradable cardiac ventricular septal defect occluder and a preparation method thereof.
  • the present application proposes an integrated degradable cardiac ventricular septal defect occluder.
  • the integrated degradable cardiac ventricular septal defect occluder includes: a main frame, the material forming the main frame is selected from at least one of a degradable polymer material, a degradable metal material, a bioceramic, and a bioglass; the main frame includes a strip frame, and the ends of the strip frame form an intersection; the strip frame includes a first disk surface, a middle waist, and a second disk surface, the middle waist is located between the first disk surface and the second disk surface, the first disk surface, the middle waist, and the second disk surface are an integrated structure, and the cross-sections of the first disk surface, the middle waist, and the second disk surface are circular, quasi-circular, or polygonal.
  • the integrated degradable cardiac ventricular septal defect occluder is an integrated structure, has a uniform degradation rate in the human body, has no risk of structural disintegration,
  • the integrated degradable cardiac ventricular septal defect occluder may also have the following additional technical features:
  • the density of the material forming the main frame is 0.5 g/cm 3 -10 g/cm 3 .
  • the tensile strength of the material forming the main frame is greater than or equal to 0.9 MPa.
  • the tensile strength at break of the material forming the main frame is greater than or equal to 0.9 MPa.
  • the elongation at break of the material forming the main frame is greater than or equal to 100%.
  • the cross-section of the strip-shaped frame is circular, fan-shaped, triangular, or a complex geometric shape.
  • reinforcing ribs are provided on the strip frame.
  • the projection areas of the first disk surface and the second disk surface are independently 5 mm 2 -35 cm 2 , and the thicknesses of the first disk surface and the second disk surface are independently 0.01 mm -8 mm.
  • the density of the material forming the flow-blocking structure is 0.5 g/cm 3 -10 g/cm 3 .
  • the tensile strength of the material forming the flow-blocking structure is greater than or equal to 0.9 MPa.
  • the elongation at break of the material forming the flow-blocking structure is greater than or equal to 100%.
  • the thickness of the degradable film is 5-2000 ⁇ m.
  • the integrated degradable cardiac ventricular septal defect occluder further includes: a delivery device interface, which is formed at one end of the main frame and is connected to a pushing component in the occluder delivery device.
  • the transport device interface is a sphere or a polyhedron.
  • the transport device interface is a hole, a pit, a flat protrusion or a cylindrical protrusion structure.
  • the thickness of the transport device interface is 0.5-5 mm.
  • the degradable polymer material is selected from at least one of polylactic acid, polyglycolic acid, polycaprolactone, polydioxanone, polyhydroxybutyric acid, polyhydroxyvaleric acid, polyhydroxyalkanoic acid ester, polyanhydride, polyamide, polyphosphate, polyurethane, polycarbonate, polyacrylate, polymethacrylate, polyphosphazene, and polyester.
  • the degradable polymer material is selected from a terpolymer obtained by polymerization of lactic acid, caprolactone and polyol.
  • the degradable polymer material contains a plasticizer.
  • the plasticizer is selected from at least one of chitosan, polylactic acid polyol, chitosan, nanoparticles, and cellulose nanocrystals.
  • the degradable metal material is selected from at least one of magnesium, zinc, and iron.
  • the material forming the main frame and the material forming the flow-blocking structure are further selected from at least one of a material developable under X-rays and a material developable under ultrasound.
  • the X-ray developable material is selected from at least one of iodalamic acid, diatrizoate, sodium diatrizoate, sodium iodide, potassium iodide, ioversol, diatrizoate meglumine, iopromide, iodixanol, iohexol, barium sulfate, bismuth subcarbonate, iron powder, and hydroxyapatite.
  • the material forming the main frame and the material forming the flow-blocking structure are the same or different.
  • the present application proposes a method for preparing the one-piece degradable cardiac ventricular septal defect occluder of the above-mentioned embodiment.
  • the method includes: providing a material for forming a main frame; molding the material for forming the main frame to obtain the one-piece degradable cardiac ventricular septal defect occluder.
  • the cardiac ventricular septal defect occluder prepared by the method is an integrated structure, has a uniform degradation rate in the human body, has no risk of structural disintegration, can overcome all the shortcomings of existing braided structure occluders, and can simplify surgical operations.
  • the method for preparing an integrated degradable cardiac ventricular septal defect occluder may also have the following additional technical features:
  • the method further includes: providing a material for forming a main frame and a material for forming a flow-blocking structure; molding the material for forming the main frame and the material for forming the flow-blocking structure to obtain the integrated degradable cardiac ventricular septal defect occluder.
  • the material is molded by 3D printing or mold molding.
  • the 3D printing is at least one of 3D photocuring printing, 3D thermal melting printing, and 3D photofusion printing.
  • molding the material by 3D printing includes heating the material to 30-140° C. to reduce the viscosity of the material.
  • the mold forming is at least one of injection molding, extrusion, compression molding, reaction injection molding, die casting, extrusion, stamping, and lost foam method.
  • molding the material by mold molding includes adding a curing agent to the material to facilitate molding.
  • the curing agent is selected from at least one of fatty amines, polyamines, acid anhydrides, or oligomers formed by monomers of the degradable polymer material.
  • FIG1 is a schematic structural diagram of an integrated degradable cardiac ventricular septal defect occluder according to an embodiment of the present application
  • FIG2 is a schematic structural diagram of the integrated degradable cardiac ventricular septal defect occluder from another perspective according to an embodiment of the present application.
  • the middle waist 12 is located between the first disk surface 11 and the second disk surface 13, and the first disk surface 11, the middle waist 12, and the second disk surface 13 are an integrated structure; the cross-sections of the first disk surface 11, the middle waist 12, and the second disk surface 13 are circular, quasi-circular, or polygonal.
  • the integrated degradable cardiac ventricular septal defect occluder is an integrated structure, has a uniform degradation rate in the human body, has no risk of structural disintegration, can overcome all the shortcomings of existing braided structure occluders, and can simplify surgical operations.
  • the density of the material forming the main frame 10 is 0.5g/cm 3 -10g/cm 3 , the tensile strength is greater than or equal to 0.9MPa, the tensile strength at break is greater than or equal to 0.9MPa, and the elongation at break is greater than or equal to 100%, thereby simultaneously meeting the performance requirements of the integrated degradable ventricular septal defect occluder in terms of hardness, elasticity, shape memory, etc.
  • the projection (parallel projection) areas of the first disk surface 11 and the second disk surface 13 are 5mm2-35cm2 , and the thicknesses of the first disk surface 11 and the second disk surface 13 are 0.01mm-8mm.
  • the overall thickness of the occluder can be 2mm-20mm.
  • the first disk surface 11 and the second disk surface 13 may be in the shape of a circle, an ellipse, a polygon or a composite geometric figure, and may be a plane, a convex surface, a prism or other geometric bodies, or a composite geometric body, with a major diameter and a minor diameter between 5 mm and 60 mm, and a single side length between 0.5 mm and 60 mm.
  • the height of the waist 12 may be 0.5mm-15mm, the diameter may be 3mm-60mm, the major diameter/minor diameter may be 3mm-60mm, and the single side length may be 0.25mm-60mm.
  • the strip frames 14 include 1-180 strips.
  • the main frame 10 is formed by 1-180 strip frames 14.
  • the strip frames 14 can be straight, curved, bent, twisted, spiral, or a composite structure of the above in three-dimensional space.
  • Multiple strip frames 14 can intersect at one point, or intersect separately to form the main frame 10.
  • the intersection point 15 of the multiple strip frames 14 is located on one of the first disk surface 11 and the second disk surface 13.
  • the intersection point 15 can be a convex structure or a concave structure on the first disk surface 11 or the second disk surface 13, or it can be on the plane of the first disk surface 11 or the second disk surface 13.
  • reinforcing ribs may be provided on the strip frame 14, and the cross-section of the strip frame 14 may be circular, fan-shaped, triangular or a composite geometric shape.
  • its cross-sectional area may be the same or different in its extension direction, or its cross-sectional area may be a gradual geometric shape, or there may be a hollow structure.
  • the length of a single side or radius of a single strip frame 14 is between 0.05 mm and 6 mm, and the cross-sectional area is between 2000 ⁇ m 2 and 30 mm 2 .
  • the integrated degradable cardiac ventricular septal defect occluder of the present application further includes: a flow blocking structure (not shown in the drawings), the flow blocking structure and the main frame 10 are an integrated structure for blocking blood flow, the material forming the flow blocking structure is selected from at least one of a degradable polymer material, a degradable metal material, a bioceramic, and a bioglass, and the flow blocking structure includes 1-N layers of degradable membranes, N is a natural number greater than or equal to 200, such as 200, 300, 400, 500, 600, 700, 800, 900, 1000, etc.
  • the degradable membrane may have structures such as holes and slits.
  • the density of the material forming the flow-blocking structure is 0.5 g/cm 3 -10 g/cm 3
  • the tensile strength is greater than or equal to 0.9 MPa
  • the tensile strength at break is greater than or equal to 0.9 MPa
  • the elongation at break is greater than or equal to 100%.
  • the thickness of the degradable film may be 5-2000 ⁇ m, and the thickness of each layer of the degradable film may be the same or different.
  • the integrated degradable cardiac ventricular septal defect occluder of the present application further includes: a delivery device interface 20, which is formed at one end of the main frame 10.
  • the delivery device interface 20 is an interface adapted to the push component of the occluder delivery device.
  • the push component of the occluder delivery device is connected to the occluder through the delivery device interface 20, and the occluder is delivered to a predetermined position.
  • the delivery device interface 20 may be a sphere or a polyhedron, and may have one or more holes, pits or protrusions thereon, which play a role of fixing and limiting, so as to facilitate connection with the occluder delivery device.
  • the hole, pit, and protrusion may be in the shape of a circle, an ellipse, a triangle, a composite geometric figure, or other geometric figures; the hole may be a through structure, the pit and protrusion may be a non-through structure, and the protrusion may be a flat protrusion or a cylindrical protrusion.
  • the thickness of the delivery device interface 20 may be 0.5-5 mm.
  • the diameter, the major and minor diameters, and the side length of the delivery device interface 20 are between 1.2 mm and 7 mm.
  • the above-mentioned degradable polymer material can be selected from at least one of polylactic acid, polyglycolic acid, polycaprolactone, polydioxanone, polyhydroxybutyric acid, polyhydroxyvaleric acid, polyhydroxyalkanoate, polyanhydride, polyamide, polyphosphate, polyurethane, polycarbonate, polyacrylate, polymethacrylate, polyphosphazene, and polyester, and the above-mentioned degradable metal material can be selected from at least one of magnesium, zinc, and iron.
  • the above-mentioned degradable polymer material is selected from a terpolymer obtained by polymerization of lactic acid, caprolactone and a polyol, wherein the polyol can be selected from at least one of propylene glycol, butanediol, glycerol, pentaerythritol, and sorbitol, and the molar ratio of lactic acid, caprolactone and polyol can be (110-130): (390-410): (1-10), and the catalyst can be selected from an organic metal catalyst, such as zinc octoate, stannous octoate, and bismuth octanoate, and the reaction temperature can be 130-150°C, and the reaction time can be 48-96 hours.
  • the polyol can be selected from at least one of propylene glycol, butanediol, glycerol, pentaerythritol, and sorbitol
  • the above-mentioned degradable polymer material contains a plasticizer, and the plasticizer is selected from at least one of chitin, polylactic acid polyol, chitosan, nanoparticles, and cellulose nanocrystals.
  • the mass percentage of the above-mentioned plasticizer to the monomer is 1%-25%. In this way, the hardness and strength of the material can be improved.
  • the material forming the main frame and the material forming the flow-blocking structure can be further selected from at least one of a material developable under X-rays and a material developable under ultrasound, thereby providing the occluder with the performance of developing under X-rays and/or ultrasound, so as to facilitate positioning during surgery.
  • the above-mentioned X-ray developable material can be selected from at least one of iodalamic acid, diatrizoate, sodium diatrizoate, sodium iodide, potassium iodide, ioversol, diatrizoate meglumine, iopromide, iodixanol, iohexol, barium sulfate, bismuth subcarbonate, iron powder, and hydroxyapatite.
  • the material forming the main frame 10 and the material forming the flow-blocking structure may be the same or different.
  • the present application proposes a method for preparing the one-piece degradable cardiac ventricular septal defect occluder of the above-mentioned embodiment.
  • the method includes: providing a material for forming a main frame; molding the material for forming the main frame to obtain an one-piece degradable cardiac ventricular septal defect occluder.
  • the cardiac ventricular septal defect occluder prepared by the method is an one-piece structure, has a uniform degradation rate in the human body, has no risk of structural disintegration, can overcome all the shortcomings of the existing braided structure occluder, and can simplify the surgical operation.
  • the method further comprises: providing a material forming the main frame and a material forming the flow-blocking structure; molding the material forming the main frame and the material forming the flow-blocking structure to obtain an integrated degradable cardiac ventricular septal defect occluder.
  • the material used to prepare the integrated degradable ventricular septal defect occluder may be as described above, and the material may be provided in at least one of the forms of solid, gel, and liquid.
  • the material can be molded through 3D printing or mold molding to obtain an integrated degradable cardiac ventricular septal defect occluder.
  • the above-mentioned 3D printing can be at least one of 3D photocuring printing, 3D thermal melting printing, and 3D photomelting printing.
  • 3D photocuring printing can specifically be stereolithography (SLA), digital light processing (DLP), etc.
  • 3D thermal melting printing can specifically be fused deposition modeling (FDM), laminated object manufacturing (LOM), binder jetting (BJ), etc.
  • 3D photomelting printing can specifically be selective laser sintering (SLS), selective laser melting (SLM), electron beam melting (EBM), 3D material jetting (MJ), etc.
  • the specific steps of 3D printing include: (1) using computer design software to create a 3D structural model file of the occluder, (2) inputting the model file into a 3D printer, (3) using the 3D printer to print the occluder, and (4) post-processing details to complete the preparation.
  • molding the material by 3D printing includes heating the material to 30-140° C. to reduce the viscosity of the material.
  • the printing temperature may be 80° C. or above, the printing filling density may be 20%-50%, and the printing speed may be 5 mm/s.
  • the above-mentioned mold forming is at least one of injection molding, extrusion, compression molding, reaction injection molding, die casting, extrusion, stamping, and lost foam method.
  • the specific steps of mold forming include: (1) injecting the material used for making the occluder into the mold at a predetermined temperature (10°C-350°C), (2) molding at a predetermined temperature (-80°C-250°C) and a predetermined time (2 seconds-7 days) until the material no longer flows, opening the mold, and taking out the prepared occluder; (3) post-processing details, and the preparation is completed.
  • molding a material by mold molding includes adding a curing agent to the material.
  • the curing agent can be at least one of fatty amines, polyamines, anhydrides or oligomers formed by monomers of the above-mentioned degradable polymer materials to promote material molding.
  • the amount of curing agent added is 0.1wt%-30wt% of the above-mentioned material.
  • Lactic acid, caprolactone and butanediol were mixed in a molar ratio of 122:405:1, and catalyst stannous octoate was added in a ratio of the molar percentage of catalyst to monomer ⁇ 0.125 ⁇ .
  • the monomers were heated under nitrogen protection to melt them and mixed evenly with the catalyst, and reacted at 140°C for 48 hours.
  • the product was separated and purified using a tetrahydrofuran-hexane system, and the precipitate was dried to constant weight under vacuum conditions to obtain a terpolymer as a material for forming a main frame; a 3D structural model file of the occluder was prepared using computer design software, the model file was input into a 3D printer, and the occluder was printed using a 3D printer.
  • the details were post-processed to obtain an integrated degradable cardiac ventricular septal defect occluder, the printing temperature was 80°C, the printing filling density was 20%, and the printing speed was 5 mm/s.
  • Lactic acid, caprolactone and butanediol were mixed in a molar ratio of 122:405:1, chitosan was added in a ratio of 5% of the mass percentage of chitosan to the monomer, and stannous octoate was added in a ratio of ⁇ 0.125 ⁇ of the molar ratio of the catalyst to the monomer, the monomer was heated under nitrogen protection to melt it and mixed evenly with the catalyst, and the reaction was carried out at 140°C for 48 hours, the product was separated and purified by a tetrahydrofuran-hexane system, and the precipitate was dried to constant weight under vacuum conditions to obtain a terpolymer as a material for forming a main frame; a 3D structural model file of the occluder was prepared by computer design software, the model file was input into a 3D printer, the occluder was printed by a 3D printer, and the material was heated to 30°C during the 3D printing process, and the details were post
  • Example 1 The elastic properties of the materials obtained in Example 1 and Example 2 were tested.
  • the test method referred to standard YY/T1553-2017.
  • the test results are shown in Table 1.
  • first and second are used for descriptive purposes only and should not be understood as indicating or implying relative importance or implicitly indicating the number of the indicated technical features. Therefore, the features defined as “first” and “second” may explicitly or implicitly include at least one of the features. In the description of this application, the meaning of "plurality” is at least two, such as two, three, etc., unless otherwise clearly and specifically defined.
  • the terms such as “installed”, “connected”, “connected”, “fixed” and the like should be understood in a broad sense, for example, it can be a fixed connection, a detachable connection, or an integral connection; it can be directly connected or indirectly connected through an intermediate medium, it can be the internal connection of two elements or the interaction relationship between two elements, unless otherwise clearly defined.
  • installed e.g., it can be a fixed connection, a detachable connection, or an integral connection; it can be directly connected or indirectly connected through an intermediate medium, it can be the internal connection of two elements or the interaction relationship between two elements, unless otherwise clearly defined.
  • a first feature being “above” or “below” a second feature may mean that the first and second features are in direct contact, or the first and second features are in indirect contact through an intermediate medium.
  • a first feature being “above”, “above”, and “above” a second feature may mean that the first feature is directly above or obliquely above the second feature, or simply means that the first feature is higher in level than the second feature.
  • a first feature being “below”, “below”, and “below” a second feature may mean that the first feature is directly below or obliquely below the second feature, or simply means that the first feature is lower in level than the second feature.

Landscapes

  • Prostheses (AREA)

Abstract

本申请公开了一体式可降解心脏室间隔缺损封堵器及其制备方法。该一体式可降解心脏室间隔缺损封堵器包括主体框架,形成所述主体框架的材料选自可降解高分子材料、可降解金属材料、生物陶瓷、生物玻璃中的至少之一;所述主体框架包括条状框架,所述条状框架的端部形成交汇点;所述条状框架包括第一盘面、中腰、第二盘面,所述第一盘面、所述中腰、所述第二盘面为一体式结构,所述第一盘面、所述中腰、所述第二盘面的横截面为圆形、类圆形或多边形。

Description

一体式可降解心脏室间隔缺损封堵器及其制备方法 技术领域
本申请涉及医疗器械领域,具体而言,本申请涉及一体式可降解心脏室间隔缺损封堵器及其制备方法。
背景技术
室间隔缺损是最常见的先天性心脏病。人的心脏是由四个腔室构成的(左心房、左心室、右心房和右心室),左心室和右心室之间室间隔的开口称为室间隔缺损。室间隔缺损主要形成于胎儿的生长发育过程中,对于室间隔缺损的患者来说,血液通常会由左心室经室间隔缺损流进右心室,使右心室的血液容量增大。室间隔缺损的长期存在会造成肺动脉压增高、充血性心力衰竭、心悸、气喘、乏力、反复肺部感染等病症。
室间隔缺损传统的治疗方式为外科手术。外科手术的治疗方法,患者需经外科手术开胸,其最大的缺点在于:(1)术中需要体外循环,手术可能造成并发症而导致死亡;(2)外科手术创伤大,术后留有疤痕;(3)手术费用昂贵。通过微创介入治疗室间隔缺损的方法现已非常成熟。相比传统外科手术,微创介入治疗是一种现代高科技微创性治疗,通过股静脉穿刺,在医学影像设备的引导下采用导引钢丝建立动静脉轨道,随后将输送导管顺导引钢丝置于室间隔缺损部位,最后将室间隔缺损封堵器于输送导管内推送至室间隔缺损处实施封堵治疗。这样的微创介入治疗具有不开刀、创伤小、并发症少、恢复快、效果好、适应症范围广且手术费用相对较低等优势。
通过微创介入手术植入室间隔缺损封堵器的治疗方法虽有以上许多相对于传统外科手术的优势,但是,由于现在临床使用的室间隔缺损封堵器的主体支架所用的材料主要为镍钛合金丝,这类金属材料不能在人体内降解,长期植入会和人体组织发生炎症、凝血等反应,甚至是一定程度的损伤,因此存在一定的缺陷,其仍有可能存在以下使用风险:(1)镍钛合金为不可降解的金属合金材料,虽然其生物相容性得到了论证,但长期永久植入的远期风险仍无法完全得到控制;(2)由于镍钛合金永久植入且不可降解,永久存留心脏对人体的安全性、大小固定的心脏封堵器对儿童不断生长发育的心脏的影响尚缺乏长期的随访资料,其可能会影响未发育成熟的患者心脏的发育成长;(3)镍析出、镍过敏等并发症仍未有明确的科学论证。
在心脏封堵器表面被完全内皮化,心脏缺损被机体自身组织修复以后,心脏封堵器完全没有在体内留存的必要。因此,理想的心脏封堵器应该是为心脏自身修复提供一座临时 桥梁,供自身细胞组织攀爬生长,完成使命后被机体降解,使缺损完全由自身组织修复,从而避免金属留存体内带来的远期并发症和安全隐患。目前临床广泛使用的封堵器是以Amplatzer封堵器为基础逐步优化而来的编织样金属-无纺布封堵器,材料多为镍钛合金或其他金属及不可降解的无纺布,不仅无生物降解性能,需要在人体内永久留存,而且存在应力过高、金属腐蚀、镍中毒等无法避免的弊端。
发明内容
本申请旨在至少在一定程度上解决相关技术中的技术问题之一。为此,本申请的一个目的在于提出一体式可降解心脏室间隔缺损封堵器及其制备方法。
在本申请的一个方面,本申请提出了一种一体式可降解心脏室间隔缺损封堵器。根据本申请的实施例,该一体式可降解心脏室间隔缺损封堵器包括:主体框架,形成所述主体框架的材料选自可降解高分子材料、可降解金属材料、生物陶瓷、生物玻璃中的至少之一;所述主体框架包括条状框架,所述条状框架的端部形成交汇点;所述条状框架包括第一盘面、中腰、第二盘面,所述中腰位于所述第一盘面和所述第二盘面之间,所述第一盘面、所述中腰、所述第二盘面为一体式结构,所述第一盘面、所述中腰、所述第二盘面的横截面为圆形、类圆形或多边形。该一体式可降解心脏室间隔缺损封堵器为一体式结构,在人体内降解速率均匀,无结构崩解风险,可以克服现有编织式结构封堵器的所有缺点,并可以简化手术操作。
另外,根据本申请上述实施例的一体式可降解心脏室间隔缺损封堵器还可以具有如下附加的技术特征:
在本申请的一些实施例中,形成所述主体框架的材料的密度为0.5g/cm 3-10g/cm 3
在本申请的一些实施例中,形成所述主体框架的材料的拉伸强度大于等于0.9Mpa。
在本申请的一些实施例中,形成所述主体框架的材料的断裂拉伸强度大于等于0.9MPa。
在本申请的一些实施例中,形成所述主体框架的材料的断裂伸长率大于等于100%。
在本申请的一些实施例中,所述条状框架包括1-180条。
在本申请的一些实施例中,所述条状框架的横截面为圆形、扇形、三角形或复合几何图形。
在本申请的一些实施例中,所述条状框架上设有加强筋。
在本申请的一些实施例中,所述第一盘面和所述第二盘面的投影面积分别独立地为5 mm 2-35cm 2,所述第一盘面和所述第二盘面的厚度分别独立地为0.01mm-8mm。
在本申请的一些实施例中,所述一体式可降解心脏室间隔缺损封堵器进一步包括:阻流结构,所述阻流结构和所述主体框架为一体式结构,形成所述阻流结构的材料选自可降解高分子材料、可降解金属材料、生物陶瓷、生物玻璃中的至少之一,所述阻流结构包括1-N层可降解膜,N为大于等于200的自然数。
在本申请的一些实施例中,形成所述阻流结构的材料的密度为0.5g/cm 3-10g/cm 3
在本申请的一些实施例中,形成所述阻流结构的材料的拉伸强度大于等于0.9MPa。
在本申请的一些实施例中,形成所述阻流结构的材料的断裂拉伸强度大于等于0.9MPa。
在本申请的一些实施例中,形成所述阻流结构的材料的断裂伸长率大于等于100%。
在本申请的一些实施例中,所述可降解膜的厚度为5-2000μm。
在本申请的一些实施例中,所述一体式可降解心脏室间隔缺损封堵器进一步包括:输送装置接口,所述输送装置接口形成在所述主体框架的一端,所述输送装置接口与封堵器输送装置中的推送组件连接。
在本申请的一些实施例中,所述输送装置接口为球体或多面体。
在本申请的一些实施例中,所述输送装置接口为孔洞、凹坑、扁平状凸起或圆柱状凸起结构。
在本申请的一些实施例中,所述输送装置接口的厚度为0.5-5mm。
在本申请的一些实施例中,所述可降解高分子材料选自聚乳酸、聚羟基乙酸、聚己内酯、聚对二氧环己酮、聚羟基丁酸、聚羟基戊酸、聚羟基脂肪酸酯、聚酸酐、聚酰胺、聚磷酸酯、聚氨酯、聚碳酸酯、聚丙烯酸酯、聚甲基丙烯酸酯、聚磷腈、聚酯中的至少之一。
在本申请的一些实施例中,所述可降解高分子材料选自采用乳酸、己内酯与多元醇聚合得到的三元共聚物。
在本申请的一些实施例中,所述可降解高分子材料中含有增塑剂。
在本申请的一些实施例中,所述增塑剂选自甲壳素、聚乳酸多元醇、壳聚糖、纳米颗粒、纤维素纳米晶中的至少之一。
在本申请的一些实施例中,所述可降解金属材料选自镁、锌、铁中的至少之一。
在本申请的一些实施例中,形成所述主体框架的材料和形成所述阻流结构的材料还进一步选自X射线下可显影材料、超声波下可显影材料中的至少之一。
在本申请的一些实施例中,所述X射线下可显影材料选自碘他拉酸、泛影酸、泛影酸 钠、碘化钠、碘化钾、碘佛醇、泛影葡胺、碘普罗胺、碘克沙醇、碘海醇、硫酸钡、碱式碳酸铋、铁粉、羟基磷灰石中的至少之一。
在本申请的一些实施例中,形成所述主体框架的材料和形成所述阻流结构的材料相同或不同。
在本申请的另一方面,本申请提出了一种制备上述实施例的一体式可降解心脏室间隔缺损封堵器的方法。根据本申请的实施例,该方法包括:提供形成主体框架的材料;对所述形成主体框架的材料进行成型,得到所述一体式可降解心脏室间隔缺损封堵器。由此,该方法制备得到的心脏室间隔缺损封堵器为一体式结构,在人体内降解速率均匀,无结构崩解风险,可以克服现有编织式结构封堵器的所有缺点,并可以简化手术操作。
另外,根据本申请上述实施例的制备一体式可降解心脏室间隔缺损封堵器的方法还可以具有如下附加的技术特征:
在本申请的一些实施例中,所述方法进一步包括:提供形成主体框架的材料和形成阻流结构的材料;对所述形成主体框架的材料和形成阻流结构的材料进行成型,得到所述一体式可降解心脏室间隔缺损封堵器。
在本申请的一些实施例中,通过3D打印或者模具成型,对所述材料进行成型。
在本申请的一些实施例中,所述3D打印为3D光固化打印、3D热融化打印、3D光熔化打印中的至少之一。
在本申请的一些实施例中,通过3D打印对所述材料进行成型包括将所述材料加热至30-140℃,以便降低所述材料的粘度。
在本申请的一些实施例中,所述模具成型为注塑、挤出、压塑、反应注射成型、压铸、挤压、冲压、消失模法中的至少之一。
在本申请的一些实施例中,通过模具成型对所述材料进行成型包括在所述材料中加入固化剂,以便促进成型。
在本申请的一些实施例中,所述固化剂选自脂肪胺、多胺、酸酐或者所述可降解高分子材料的单体形成的低聚物中的至少之一。
本申请的附加方面和优点将在下面的描述中部分给出,部分将从下面的描述中变得明显,或通过本申请的实践了解到。
附图说明
本申请的上述和/或附加的方面和优点从结合下面附图对实施例的描述中将变得明显 和容易理解,其中:
图1是根据本申请一个实施例的一体式可降解心脏室间隔缺损封堵器的结构示意图;
图2是根据本申请一个实施例的一体式可降解心脏室间隔缺损封堵器另一视角的结构示意图。
附图标记:
10-主体框架,
11-第一盘面,12-中腰,13-第二盘面,14-条状框架,15-交汇点,
20-输送装置接口。
具体实施方式
下面详细描述本申请的实施例,所述实施例的示例在附图中示出,其中自始至终相同或类似的标号表示相同或类似的元件或具有相同或类似功能的元件。下面通过参考附图描述的实施例是示例性的,旨在用于解释本申请,而不能理解为对本申请的限制。实施例中未注明具体技术或条件的,按照本领域内的文献所描述的技术或条件或者按照产品说明书进行。所用试剂或仪器未注明生产厂商者,均为可以通过市购获得的常规产品。
在本申请的一个方面,本申请提出了一种一体式可降解心脏室间隔缺损封堵器。参考图1和图2,根据本申请的实施例,该一体式可降解心脏室间隔缺损封堵器包括:主体框架10,形成主体框架10的材料选自可降解高分子材料、可降解金属材料、生物陶瓷、生物玻璃中的至少之一;主体框架10包括条状框架14,条状框架14的端部形成交汇点15;条状框架14包括第一盘面11、中腰12、第二盘面13。中腰12位于第一盘面11和第二盘面13之间,第一盘面11、中腰12、第二盘面13为一体式结构;第一盘面11、中腰12、第二盘面13的横截面为圆形、类圆形或多边形。该一体式可降解心脏室间隔缺损封堵器为一体式结构,在人体内降解速率均匀,无结构崩解风险,可以克服现有编织式结构封堵器的所有缺点,并可以简化手术操作。
根据本申请的一些实施例,形成主体框架10的材料的密度为0.5g/cm 3-10g/cm 3,拉伸强度大于等于0.9MPa,断裂拉伸强度大于等于0.9MPa,断裂伸长率大于等于100%,由此,可以同时满足一体式可降解心脏室间隔缺损封堵器在硬度、弹性、形状记忆等方面的性能要求。
根据本申请的一些实施例,第一盘面11和第二盘面13的投影(平行投影)面积分别独立地为5mm 2-35cm 2,第一盘面11和第二盘面13的厚度分别独立地为0.01mm-8mm。 在本申请的一些实施例中,封堵器的整体厚度可以为2mm-20mm。
第一盘面11和第二盘面13的形状可为圆形、椭圆形、多边形或复合几何图形,可为一平面、凸面、棱体或其他几何体,亦或复合几何体,其长径和短径在5mm-60mm之间,单边长在0.5mm-60mm之间。
根据本申请的一些实施例,中腰12的高度可以为0.5mm-15mm,其直径可以为3mm-60mm,长径/短径可以为3mm-60mm,单边长可以为0.25mm-60mm。
根据本申请的一些实施例,条状框架14包括1-180条。在一些实施例中,主体框架10由1-180条条状框架14形成。条状框架14在三维空间中,可以呈直线、弯曲、弯折、扭转、螺旋,或以上复合走形结构,多条条状框架14可以交汇于一点、或各自分别交汇,以形成主体框架10。在一些实施例中,参考图1和2,多条条状框架14的交汇点15位于第一盘面11和第二盘面13的其中之一上,交汇点15可以为第一盘面11或第二盘面13上的凸起结构或凹陷结构,也可以在第一盘面11或第二盘面13平面上。
根据本申请的一些实施例,为增加条状框架14的强度,条状框架14上可以设置加强筋,条状框架14的横截面可以为圆形、扇形、三角形或复合几何图形。需要说明的是,对于单条条状框架14,其横截面积在其延伸方向上可以相同或不同,或者,其横截面积可以为渐变几何图形,也可存在中空结构。具体地,单条条状框架14的单边或半径长度在0.05mm-6mm之间,横截面积在2000μm 2-30mm 2
根据本申请的一些实施例,本申请的一体式可降解心脏室间隔缺损封堵器还进一步包括:阻流结构(附图中未示出),阻流结构和主体框架10为一体式结构,用于阻挡血液流动,形成阻流结构的材料选自可降解高分子材料、可降解金属材料、生物陶瓷、生物玻璃中的至少之一,阻流结构包括1-N层可降解膜,N为大于等于200的自然数,例如200、300、400、500、600、700、800、900、1000等。在本申请的一些实施例中,可降解膜上可以有孔洞、开缝等结构。
根据本申请的一些实施例,形成阻流结构的材料的密度为0.5g/cm 3-10g/cm 3,拉伸强度大于等于0.9MPa,断裂拉伸强度大于等于0.9MPa,断裂伸长率大于等于100%。由此,可以同时满足一体式可降解心脏室间隔缺损封堵器在硬度、弹性、形状记忆等方面的性能要求。
根据本申请的一些实施例,可降解膜的厚度可以为5-2000μm,各层可降解膜的厚度可以相同或不同。
根据本申请的一些实施例,本申请的一体式可降解心脏室间隔缺损封堵器还进一步包 括:输送装置接口20,输送装置接口20形成在主体框架10的一端。输送装置接口20为与封堵器输送装置的推送组件适配的接口,在手术操作中,封堵器输送装置的推送组件通过输送装置接口20与封堵器连接,并将封堵器输送至预定位置。
根据本申请的一些实施例,输送装置接口20可以为球体或多面体,其上可以具有一个或多个孔洞、凹坑或凸起结构,起到固定、限位作用,以便于与封堵器输送装置连接。具体地,孔洞、凹坑、凸起形状可为圆形、椭圆形、三角形、复合几何图形等几何图形;孔洞可以为贯通结构,凹坑、凸起结构可以为不贯通结构,凸起结构可以为扁平状凸起或圆柱状凸起结构。
根据本申请的一些实施例,输送装置接口20的厚度可以为0.5-5mm。另外,输送装置接口20的直径、长短径、边长在1.2mm-7mm之间。
根据本申请的一些实施例,上述可降解高分子材料可以选自聚乳酸、聚羟基乙酸、聚己内酯、聚对二氧环己酮、聚羟基丁酸、聚羟基戊酸、聚羟基脂肪酸酯、聚酸酐、聚酰胺、聚磷酸酯、聚氨酯、聚碳酸酯、聚丙烯酸酯、聚甲基丙烯酸酯、聚磷腈、聚酯中的至少之一,上述可降解金属材料可以选自镁、锌、铁中的至少之一。具体地,上述可降解高分子材料选自采用乳酸、己内酯与多元醇聚合得到的三元共聚物,其中,多元醇可以选自丙二醇、丁二醇、甘油、季戊四醇、山梨醇中的至少之一,乳酸、己内酯与多元醇的摩尔比可以为(110-130):(390-410):(1-10),催化剂可以选自有机金属类催化剂,例如辛酸亚锌、辛酸亚锡、辛癸酸铋,反应温度可以为130-150℃,反应时间可以为48-96小时。
根据本申请的一些实施例,上述可降解高分子材料中含有增塑剂,增塑剂选自甲壳素、聚乳酸多元醇、壳聚糖、纳米颗粒、纤维素纳米晶中的至少之一。上述增塑剂占单体的质量百分比为1%-25%。由此,可以改善材料的硬度及强度。
形成主体框架的材料和形成阻流结构的材料还可以进一步选自X射线下可显影材料、超声波下可显影材料中的至少之一。由此,可以为封堵器提供X射线和/或超声波下显影的性能,以便于手术中定位的操作。
根据本申请的一些实施例,上述X射线下可显影材料可以选自碘他拉酸、泛影酸、泛影酸钠、碘化钠、碘化钾、碘佛醇、泛影葡胺、碘普罗胺、碘克沙醇、碘海醇、硫酸钡、碱式碳酸铋、铁粉、羟基磷灰石中的至少之一。
根据本申请的一些实施例,形成主体框架10的材料和形成阻流结构的材料可以相同或不同。
在本申请的另一方面,本申请提出了一种制备上述实施例的一体式可降解心脏室间隔 缺损封堵器的方法。根据本申请的实施例,该方法包括:提供形成主体框架的材料;对形成主体框架的材料进行成型,得到一体式可降解心脏室间隔缺损封堵器。由此,该方法制备得到的心脏室间隔缺损封堵器为一体式结构,在人体内降解速率均匀,无结构崩解风险,可以克服现有编织式结构封堵器的所有缺点,并可以简化手术操作。
根据本申请的一些实施例,对于包括主体框架和阻流结构的封堵器,该方法进一步包括:提供形成主体框架的材料和形成阻流结构的材料;对形成主体框架的材料和形成阻流结构的材料进行成型,得到一体式可降解心脏室间隔缺损封堵器。
其中,用于制备一体式可降解心脏室间隔缺损封堵器的材料可以为如前所述的,材料可以以固体、胶状、液体中的至少之一形式提供。
根据本申请的一些实施例,可以通过3D打印或者模具成型,对材料进行成型,得到一体式可降解心脏室间隔缺损封堵器。
根据本申请的一些实施例,上述3D打印可以为3D光固化打印、3D热融化打印、3D光熔化打印中的至少之一。其中,3D光固化打印具体可以为立体光刻技术(Stereolithography,SLA)、数字光学处理技术(Digital Light Processing,DLP)等,3D热熔化打印具体可以为热熔沉积技术(Fused deposition Modeling,FDM)、分层实体制造技术(Laminated Object Manufacturing,LOM)、粘接剂喷射打印技术(Binder Jetting,BJ)等,3D光融化式打印具体可以为选择性激光烧结打印技术(Selective Laser Sintering,SLS)、选择性激光熔化打印技术(Selective Laser Melting,SLM)、电子束熔化打印技术(Electronic Beam Melting,EBM)、3D材料喷射技术(Material Jetting,MJ)等。
根据本申请的一些实施例,3D打印的具体步骤包括:(1)用电脑设计软件制作封堵器3D结构模型文件,(2)将模型文件输入3D打印机,(3)利用3D打印机打印成封堵器,(4)后处理细节,制备完成。
根据本申请的一些实施例,通过3D打印对材料进行成型包括将材料加热至30-140℃,以便降低材料的粘度。
根据本申请的一些实施例,打印温度可以为80℃及以上,打印填充密度可以为20%-50%,打印速度可以为5mm/s。
根据本申请的一些实施例,上述模具成型为注塑、挤出、压塑、反应注射成型、压铸、挤压、冲压、消失模法中的至少之一。模具成型的具体步骤包括:(1)在预定温度下(10℃-350℃),将封堵器制作所用材料注入模具,(2)在预定温度(-80℃-250℃)和预定时间(2秒-7天)下成型至材料不再流动,打开模具,取出制备好的封堵器;(3)后处理细节, 制备完成。
根据本申请的一些实施例,通过模具成型对材料进行成型包括在材料中加入固化剂,固化剂可以为脂肪胺、多胺、酸酐或者上述可降解高分子材料的单体形成的低聚物中的至少之一,以便促进材料成型,固化剂的加入量为上述材料的0.1wt%-30wt%。
下面参考具体实施例,对本申请进行描述,需要说明的是,这些实施例仅仅是描述性的,而不以任何方式限制本申请。
实施例1
将乳酸、己内酯与丁二醇按照122:405:1的摩尔比混合,按照催化剂占单体的摩尔百分比≥0.125‰的比例加入催化剂辛酸亚锡,在氮气保护下加热单体使其熔融并与催化剂混合均匀,于140℃反应48小时,将产物采用四氢呋喃-己烷体系进行分离纯化,然后将沉淀物在真空条件下干燥至恒重,得到的三元共聚物,作为形成主体框架的材料;用电脑设计软件制作封堵器3D结构模型文件,将模型文件输入3D打印机,利用3D打印机打印成封堵器,后处理细节,得到一体式可降解心脏室间隔缺损封堵器,打印温度为80℃,打印填充密度为20%,打印速度为5mm/s。
实施例2
将乳酸、己内酯与丁二醇按照122:405:1的摩尔比混合,按照甲壳素占单体质量百分比为5%的比例加入甲壳素,按照催化剂占单体的摩尔比≥0.125‰的比例加入催化剂辛酸亚锡,在氮气保护下加热单体使其熔融并与催化剂混合均匀,于140℃反应48小时,将产物采用四氢呋喃-己烷体系进行分离纯化,然后将沉淀物在真空条件下干燥至恒重,得到的三元共聚物,作为形成主体框架的材料;用电脑设计软件制作封堵器3D结构模型文件,将模型文件输入3D打印机,利用3D打印机打印成封堵器,并在3D打印过程中对材料进行加热至30℃,后处理细节,得到一体式可降解心脏室间隔缺损封堵器,打印温度为80℃,打印填充密度为50%,打印速度为5mm/s。
对实施例1和实施例2所得材料的弹性性能进行测试,测试方法参照标准YY/T1553-2017,测试结果如表1所示。
表1
参数名称 实施例1 实施例2
宽度(mm) 6.31 6.18
厚度(mm) 1.60 1.22
原始标距(mm) 25.00 25.00
最大力(N) 9.40 13.2
拉伸强度(MPa) 0.93 1.75
断裂力(N) 8.36 13.2
断裂拉伸强度(MPa) 0.93 1.75
断裂伸长率(%) 1048.05 317.5
在本申请的描述中,需要理解的是,术语“中心”、“纵向”、“横向”、“长度”、“宽度”、“厚度”、“上”、“下”、“前”、“后”、“左”、“右”、“竖直”、“水平”、“顶”、“底”、“内”、“外”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本申请和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本申请的限制。
此外,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括至少一个该特征。在本申请的描述中,“多个”的含义是至少两个,例如两个,三个等,除非另有明确具体的限定。
在本申请中,除非另有明确的规定和限定,“安装”、“相连”、“连接”、“固定”等术语应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或成一体;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通或两个元件的相互作用关系,除非另有明确的限定。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本申请中的具体含义。
在本申请中,除非另有明确的规定和限定,第一特征在第二特征“上”或“下”可以是第一和第二特征直接接触,或第一和第二特征通过中间媒介间接接触。而且,第一特征在第二特征“之上”、“上方”和“上面”可是第一特征在第二特征正上方或斜上方,或仅仅表示第一特征水平高度高于第二特征。第一特征在第二特征“之下”、“下方”和“下面”可以是第一特征在第二特征正下方或斜下方,或仅仅表示第一特征水平高度小于第二特征。
在本说明书的描述中,参考术语“一个实施例”、“一些实施例”、“示例”、“具体示例”、或“一些示例”等的描述意指结合该实施例或示例描述的具体特征、结构、材料或者特点包含于本申请的至少一个实施例或示例中。在本说明书中,对上述术语的示意性表述不必须 针对的是相同的实施例或示例。而且,描述的具体特征、结构、材料或者特点可以在任一个或多个实施例或示例中以合适的方式结合。此外,在不相互矛盾的情况下,本领域的技术人员可以将本说明书中描述的不同实施例或示例以及不同实施例或示例的特征进行结合和组合。
尽管上面已经示出和描述了本申请的实施例,可以理解的是,上述实施例是示例性的,不能理解为对本申请的限制,本领域的普通技术人员在本申请的范围内可以对上述实施例进行变化、修改、替换和变型。

Claims (36)

  1. 一种一体式可降解心脏室间隔缺损封堵器,其中,包括:主体框架,形成所述主体框架的材料选自可降解高分子材料、可降解金属材料、生物陶瓷、生物玻璃中的至少之一;所述主体框架包括条状框架,所述条状框架的端部形成交汇点,所述条状框架包括第一盘面、中腰、第二盘面,所述中腰位于所述第一盘面和所述第二盘面之间,所述第一盘面、所述中腰、所述第二盘面为一体式结构,所述第一盘面、所述中腰、所述第二盘面的横截面为圆形、类圆形或多边形。
  2. 根据权利要求1所述的一体式可降解心脏室间隔缺损封堵器,其中,形成所述主体框架的材料的密度为0.5g/cm 3-10g/cm 3
  3. 根据权利要求1或2所述的一体式可降解心脏室间隔缺损封堵器,其中,形成所述主体框架的材料的拉伸强度大于等于0.9MPa。
  4. 根据权利要求1-3中任一项所述的一体式可降解心脏室间隔缺损封堵器,其中,形成所述主体框架的材料的断裂拉伸强度大于等于0.9MPa。
  5. 根据权利要求1-4中任一项所述的一体式可降解心脏室间隔缺损封堵器,其中,形成所述主体框架的材料的断裂伸长率大于等于100%。
  6. 根据权利要求1-5中任一项所述的一体式可降解心脏室间隔缺损封堵器,其中,所述条状框架包括1-180条。
  7. 根据权利要求1-6中任一项所述的一体式可降解心脏室间隔缺损封堵器,其中,所述条状框架的横截面为圆形、扇形、三角形或复合几何图形。
  8. 根据权利要求1-7中任一项所述的一体式可降解心脏室间隔缺损封堵器,其中,所述条状框架上设有加强筋。
  9. 根据权利要求1-8中任一项所述的一体式可降解心脏室间隔缺损封堵器,其中,所述第一盘面和所述第二盘面的投影面积分别独立地为5mm 2-35cm 2
  10. 根据权利要求1-9中任一项所述的一体式可降解心脏室间隔缺损封堵器,其中,所述第一盘面和所述第二盘面的厚度分别独立地为0.01mm-8mm。
  11. 根据权利要求1-10中任一项所述的一体式可降解心脏室间隔缺损封堵器,其中,进一步包括:阻流结构,所述阻流结构和所述主体框架为一体式结构,形成所述阻流结构的材料选自可降解高分子材料、可降解金属材料、生物陶瓷、生物玻璃中的至少之一,所述阻流结构包括1-N层可降解膜,N为大于等于200的自然数。
  12. 根据权利要求1-11中任一项所述的一体式可降解心脏室间隔缺损封堵器,其中,形成所述阻流结构的材料的密度为0.5g/cm 3-10g/cm 3
  13. 根据权利要求1-12中任一项所述的一体式可降解心脏室间隔缺损封堵器,其中,形成所述阻流结构的材料的拉伸强度大于等于0.9MPa。
  14. 根据权利要求1-13中任一项所述的一体式可降解心脏室间隔缺损封堵器,其中,形成所述阻流结构的材料的断裂拉伸强度大于等于0.9MPa。
  15. 根据权利要求1-14中任一项所述的一体式可降解心脏室间隔缺损封堵器,其中,形成所述阻流结构的材料的断裂伸长率大于等于100%。
  16. 根据权利要求1-15中任一项所述的一体式可降解心脏室间隔缺损封堵器,其中,所述可降解膜的厚度为5-2000μm。
  17. 根据权利要求1-16中任一项所述的一体式可降解心脏室间隔缺损封堵器,其中,进一步包括:输送装置接口,所述输送装置接口形成在所述主体框架的一端,所述输送装置接口与封堵器输送装置中的推送组件连接。
  18. 根据权利要求1-17中任一项所述的一体式可降解心脏室间隔缺损封堵器,其中,所述输送装置接口为球体或多面体。
  19. 根据权利要求1-18中任一项所述的一体式可降解心脏室间隔缺损封堵器,其中,所述输送装置接口为孔洞、凹坑、扁平状凸起或圆柱状凸起结构。
  20. 根据权利要求1-19中任一项所述的一体式可降解心脏室间隔缺损封堵器,其中,所述输送装置接口的厚度为0.5-5mm。
  21. 根据权利要求1-20中任一项所述的一体式可降解心脏室间隔缺损封堵器,其中,所述可降解高分子材料选自聚乳酸、聚羟基乙酸、聚己内酯、聚对二氧环己酮、聚羟基丁酸、聚羟基戊酸、聚羟基脂肪酸酯、聚酸酐、聚酰胺、聚磷酸酯、聚氨酯、聚碳酸酯、聚丙烯酸酯、聚甲基丙烯酸酯、聚磷腈、聚酯中的至少之一。
  22. 根据权利要求1-21中任一项所述的一体式可降解心脏室间隔缺损封堵器,其中,所述可降解高分子材料选自采用乳酸、己内酯与多元醇聚合得到的三元共聚物。
  23. 根据权利要求1-22中任一项所述的一体式可降解心脏室间隔缺损封堵器,其中,所述可降解高分子材料中含有增塑剂。
  24. 根据权利要求1-23中任一项所述的一体式可降解心脏室间隔缺损封堵器,其中,所述增塑剂选自甲壳素、聚乳酸多元醇、壳聚糖、纳米颗粒、纤维素纳米晶中的至少之一。
  25. 根据权利要求1-24中任一项所述的一体式可降解心脏室间隔缺损封堵器,其中, 所述可降解金属材料选自镁、锌、铁中的至少之一。
  26. 根据权利要求1-25中任一项所述的一体式可降解心脏室间隔缺损封堵器,其中,形成所述主体框架的材料和形成所述阻流结构的材料还进一步选自X射线下可显影材料、超声波下可显影材料中的至少之一。
  27. 根据权利要求1-26中任一项所述的一体式可降解心脏室间隔缺损封堵器,其中,所述X射线下可显影材料选自碘他拉酸、泛影酸、泛影酸钠、碘化钠、碘化钾、碘佛醇、泛影葡胺、碘普罗胺、碘克沙醇、碘海醇、硫酸钡、碱式碳酸铋、铁粉、羟基磷灰石中的至少之一。
  28. 根据权利要求1-27中任一项所述的一体式可降解心脏室间隔缺损封堵器,其中,形成所述主体框架的材料和形成所述阻流结构的材料相同或不同。
  29. 一种制备权利要求1-28中任一项所述的一体式可降解心脏室间隔缺损封堵器的方法,其中,包括:
    提供形成主体框架的材料;
    对所述形成主体框架的材料进行成型,得到所述一体式可降解心脏室间隔缺损封堵器。
  30. 根据权利要求29所述的方法,其中,进一步包括:提供形成主体框架的材料和形成阻流结构的材料;
    对所述形成主体框架的材料和形成阻流结构的材料进行成型,得到所述一体式可降解心脏室间隔缺损封堵器。
  31. 根据权利要求29或30所述的方法,其中,通过3D打印或者模具成型,对所述材料进行成型。
  32. 根据权利要求29-31中任一项所述的方法,其中,所述3D打印为3D光固化打印、3D热融化打印、3D光熔化打印中的至少之一。
  33. 根据权利要求29-32中任一项所述的方法,其中,通过3D打印对所述材料进行成型包括将所述材料加热至30-140℃。
  34. 根据权利要求29-33中任一项所述的方法,其中,所述模具成型为注塑、挤出、压塑、反应注射成型、压铸、挤压、冲压、消失模法中的至少之一。
  35. 根据权利要求29-34中任一项所述的方法,其中,通过模具成型对所述材料进行成型包括在所述材料中加入固化剂。
  36. 根据权利要求29-35中任一项所述的方法,其中,所述固化剂选自脂肪胺、多胺、酸酐或者权利要求21-28中任一项所述可降解高分子材料的单体形成的低聚物中的至少之 一。
PCT/CN2022/137283 2022-12-07 2022-12-07 一体式可降解心脏室间隔缺损封堵器及其制备方法 WO2024119405A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/137283 WO2024119405A1 (zh) 2022-12-07 2022-12-07 一体式可降解心脏室间隔缺损封堵器及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/137283 WO2024119405A1 (zh) 2022-12-07 2022-12-07 一体式可降解心脏室间隔缺损封堵器及其制备方法

Publications (1)

Publication Number Publication Date
WO2024119405A1 true WO2024119405A1 (zh) 2024-06-13

Family

ID=91378220

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/137283 WO2024119405A1 (zh) 2022-12-07 2022-12-07 一体式可降解心脏室间隔缺损封堵器及其制备方法

Country Status (1)

Country Link
WO (1) WO2024119405A1 (zh)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050065547A1 (en) * 2003-09-18 2005-03-24 Cardia, Inc. ASD closure device with self centering arm network
CN203153824U (zh) * 2013-04-02 2013-08-28 乐普(北京)医疗器械股份有限公司 一种心脏缺损封堵器
CN205697888U (zh) * 2015-12-31 2016-11-23 上海锦葵医疗器械有限公司 可显影可降解的心脏室间隔缺损封堵器
CN108420469A (zh) * 2018-03-16 2018-08-21 上海形状记忆合金材料有限公司 一种完全可降解封堵器骨架结构
CN208958188U (zh) * 2017-12-22 2019-06-11 上海形状记忆合金材料有限公司 一种可吸收心脏缺损的封堵器
CN112932561A (zh) * 2021-02-01 2021-06-11 上海锦葵医疗器械股份有限公司 两端面平整的心脏室间隔缺损封堵器及其制造方法
CN217014127U (zh) * 2021-08-24 2022-07-22 上海形状记忆合金材料有限公司 具有可调节倒钩的生物可降解左心耳封堵器

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050065547A1 (en) * 2003-09-18 2005-03-24 Cardia, Inc. ASD closure device with self centering arm network
CN203153824U (zh) * 2013-04-02 2013-08-28 乐普(北京)医疗器械股份有限公司 一种心脏缺损封堵器
CN205697888U (zh) * 2015-12-31 2016-11-23 上海锦葵医疗器械有限公司 可显影可降解的心脏室间隔缺损封堵器
CN208958188U (zh) * 2017-12-22 2019-06-11 上海形状记忆合金材料有限公司 一种可吸收心脏缺损的封堵器
CN108420469A (zh) * 2018-03-16 2018-08-21 上海形状记忆合金材料有限公司 一种完全可降解封堵器骨架结构
CN112932561A (zh) * 2021-02-01 2021-06-11 上海锦葵医疗器械股份有限公司 两端面平整的心脏室间隔缺损封堵器及其制造方法
CN217014127U (zh) * 2021-08-24 2022-07-22 上海形状记忆合金材料有限公司 具有可调节倒钩的生物可降解左心耳封堵器

Similar Documents

Publication Publication Date Title
US11452624B2 (en) Implant
JP7283808B2 (ja) 形状記憶高分子を含む血管吻合用部材
WO2008051279A1 (en) Self-expandable endovascular device for aneurysm occlusion
CN101234041A (zh) 可降解材料编织的房间隔缺损封堵器
WO2019184554A1 (zh) 一种封堵装置及其制备方法
JPWO2018164235A1 (ja) 留置カテーテル
WO2024119405A1 (zh) 一体式可降解心脏室间隔缺损封堵器及其制备方法
CN104001221B (zh) 一种降解速率可控的显影生物心脏封堵器
CN205322407U (zh) 可显影可降解的心脏左心耳封堵器
CN205322404U (zh) 可显影可降解的心脏卵圆孔未闭封堵器
CN205322379U (zh) 可降解的心脏房间隔缺损封堵器
DE102009036817A1 (de) Medizinisches, biologisch abbaubares Occlusionsinstrument und dessen Verwendung
CN207928564U (zh) 一种动脉瘤介入手术微导管塑形辅助支具
CN205322403U (zh) 可显影可降解的心脏房间隔缺损封堵器
CN201591648U (zh) 可降解可显影房间隔缺损闭合器
CN205849480U (zh) 可显影可降解的心脏房间隔缺损封堵器
CN118141431A (zh) 一体式可降解心脏室间隔缺损封堵器及其制备方法
CN205433805U (zh) 可降解的心脏动脉导管未闭封堵器
CN209187078U (zh) 一种微创通道下的椎间融合器及骨水泥注入装置
CN205697888U (zh) 可显影可降解的心脏室间隔缺损封堵器
KR102521685B1 (ko) 형상기억 고분자를 포함하는 비루관 튜브
CN111001043A (zh) 可吸收自锁定颈椎融合器及其制备方法
CN110527075A (zh) 一种用于4d打印的生物可降解体温感应材料和可降解体温感应记忆生物支架的制备方法
CN110742658B (zh) 一种双侧异性可吸收封堵器
CN108784890A (zh) 一种微创通道下的椎间融合器及骨水泥注入装置