WO2024117246A1 - Polyaryl ether ketone, polyaryl ether ketone resin composition, molded article of said polyaryl ether ketone or polyaryl ether ketone resin composition, and electronic instrument/device using said polyaryl ether ketone or polyaryl ether ketone resin composition - Google Patents

Polyaryl ether ketone, polyaryl ether ketone resin composition, molded article of said polyaryl ether ketone or polyaryl ether ketone resin composition, and electronic instrument/device using said polyaryl ether ketone or polyaryl ether ketone resin composition Download PDF

Info

Publication number
WO2024117246A1
WO2024117246A1 PCT/JP2023/043034 JP2023043034W WO2024117246A1 WO 2024117246 A1 WO2024117246 A1 WO 2024117246A1 JP 2023043034 W JP2023043034 W JP 2023043034W WO 2024117246 A1 WO2024117246 A1 WO 2024117246A1
Authority
WO
WIPO (PCT)
Prior art keywords
ether ketone
polyaryl ether
paek
electronic devices
general formula
Prior art date
Application number
PCT/JP2023/043034
Other languages
French (fr)
Japanese (ja)
Inventor
健太 萩原
佑磨 芝崎
Original Assignee
本州化学工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 本州化学工業株式会社 filed Critical 本州化学工業株式会社
Publication of WO2024117246A1 publication Critical patent/WO2024117246A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G65/00Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule
    • C08G65/34Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from hydroxy compounds or their metallic derivatives
    • C08G65/38Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from hydroxy compounds or their metallic derivatives derived from phenols
    • C08G65/40Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from hydroxy compounds or their metallic derivatives derived from phenols from phenols (I) and other compounds (II), e.g. OH-Ar-OH + X-Ar-X, where X is halogen atom, i.e. leaving group

Definitions

  • the present invention relates to polyaryl ether ketone (PAEK) and its uses, more specifically, to PAEK obtained using bisphenol as a raw material and its uses, in particular to PAEK with excellent heat resistance and its molded products, as well as electronic devices and devices.
  • PAEK polyaryl ether ketone
  • PAEK resin Polyaryletherketone (PAEK) resin is known as a thermoplastic that has excellent heat resistance, high strength and rigidity, and chemical resistance. For this reason, PAEK resin is used as a material in fields such as insulating coating agents, insulating films, semiconductors, electrode protective films, flexible printed circuit boards and other electric and electronic components, aerospace equipment, and transportation equipment. The use of PAEK in these applications tends to become more advanced and specialized, and improved heat resistance is also required.
  • PAEKs are also used as low dielectric materials.
  • PAEKs using 1,1'-bi-2-naphthol (Patent Document 1) and PAEKs copolymerized with hydroquinone, 4,4'-difluorobenzophenone, and 2,6-dichloropyridine (Patent Document 2) are known to be extremely useful as electrical insulating layers in laminates for electronic circuits and as base materials for flexible printed wiring boards.
  • the objective of the present invention is to provide a PAEK resin material with improved heat resistance.
  • PAEK polyaryl ether ketone
  • Dk dielectric constant
  • Df low dielectric loss tangent
  • the present invention is as follows.
  • a polyaryl ether ketone having a repeating unit represented by general formula (1) (In the formula, each R 1 independently represents an alkyl group having 1 to 4 carbon atoms, m represents 1 or 2, and each n independently represents 1 or 2.)
  • the polyaryl ether ketone according to 1. wherein the repeating unit represented by the general formula (1) has at least one selected from the repeating units represented by chemical formulas (1a) to (1d).
  • the polyaryl ether ketone according to 1. having a dielectric loss tangent (Df) measured at a frequency of 10 GHz of 0.004 or less and a relative dielectric constant (Dk) measured at a frequency of 10 GHz of 3.0 or less. 4.
  • Df dielectric loss tangent
  • Dk relative dielectric constant
  • a molded article of the polyaryletherketone according to 1. A polyaryl ether ketone resin composition comprising the polyaryl ether ketone according to 1. above and one or more additives selected from the group consisting of flame retardants, heat stabilizers, oxidation stabilizers, weather resistance stabilizers, antistatic agents, lubricants and plasticizers. 6. A molded article of the polyaryl ether ketone resin composition according to 5. 7. Electronic devices and devices using the polyaryl ether ketone described in 1. 8. A high-frequency communication electronic device or device using the polyaryl ether ketone described in 1. 9. A method for using the polyaryl ether ketone according to 1. as a resin material for an electronic device or device. 10.
  • the polyaryl ether ketone according to 1. wherein the structure at both ends of the polymer chain of the polyaryl ether ketone is any one of the structures (i) to (iii).
  • Both are a group selected from the groups represented by general formula (4) or chemical formula (5).
  • One of them is a group selected from the groups represented by general formula (4) or chemical formula (5), and the other is a halogen atom.
  • One of them is a group selected from the groups represented by general formula (4) or chemical formula (5), and the other is a hydroxy group.
  • R2 represents a hydrogen atom or a methyl group
  • * represents a bonding site to the end of a polymer chain.
  • the PAEK of the present invention Since the PAEK of the present invention has improved heat resistance (improved glass transition temperature), it can be used as a material in situations where even higher heat resistance is required in applications where PAEK has been used conventionally.
  • the PAEK of the present invention has improved heat resistance, i.e., an improved glass transition temperature, and also has excellent dielectric properties and low water absorption. Therefore, the PAEK can be suitably used as a resin material for electronic devices and electronic devices used therein (electronic devices and devices), and can be suitably used in particular as a resin material for electronic devices and devices used in high-speed communication using radio waves in the high-frequency band (electronic devices and devices for high-frequency communication).
  • the PAEK of the present invention has a repeating unit represented by general formula (1).
  • each R 1 independently represents an alkyl group having 1 to 4 carbon atoms
  • m represents 1 or 2
  • each n independently represents 1 or 2.
  • Each R1 independently represents an alkyl group having 1 to 4 carbon atoms, and specific examples thereof include a methyl group, an ethyl group, an n-propyl group, an isopropyl group, an n-butyl group, and a t-butyl group. Among these, a t-butyl group or a methyl group is preferred, and a methyl group is particularly preferred.
  • the bonding position of R1 is preferably the ortho position relative to the bonding position of the oxygen atom on the benzene ring.
  • m represents 1 or 2, and is preferably 1.
  • Each n independently represents 1 or 2, and is preferably 2.
  • repeating unit represented by general formula (1) of the PAEK of the present invention are shown below as chemical formulas (1a) to (1d).
  • the repeating unit represented by general formula (1) at least one selected from chemical formulas (1a) to (1d) is preferred, at least one selected from chemical formulas (1a) and (1b) is more preferred, chemical formula (1a) or (1b) is even more preferred, and chemical formula (1a) is particularly preferred.
  • the PAEK of the present invention may have other repeating units as long as it contains the repeating unit represented by the general formula (1), as long as the effect of the present invention is not impaired.
  • the content of the repeating unit represented by the general formula (1) is 100 mol%, that is, it does not have other repeating units.
  • the lower limit of the content range of the repeating unit represented by the general formula (1) is preferably 50 mol% or more of the entire PAEK, more preferably 70 mol% or more, even more preferably 80 mol% or more, and particularly preferably 90 mol% or more.
  • the upper limit is preferably less than 100 mol%, more preferably 99.9 mol% or less.
  • the above lower limit and upper limit in the range of the content range of the repeating unit represented by the general formula (1) may be combined.
  • the repeating unit represented by the general formula (1) and the other repeating units may be regularly arranged or may be present randomly.
  • PAEK having the repeating unit represented by general formula (1) and other repeating units can be produced by carrying out a polycondensation reaction described later using a biphenol compound represented by general formula (3) described later and other aromatic dihydroxy compounds in combination.
  • the structure of both ends of the polymer chain of the PAEK of the present invention is not particularly limited.
  • the end structure may be a halogen atom derived from a dihalogen compound represented by the general formula (2) described later, a hydroxyl group derived from a bisphenol compound represented by the general formula (3), or a reactive functional group modified from the hydroxyl group to a group represented by the general formula (4) (specifically, an acryloyloxy group or a methacryloyloxy group) or a group represented by the chemical formula (5) (a glycidyl ether group).
  • R2 represents a hydrogen atom or a methyl group, and * represents a bonding site to the end of a polymer chain.
  • the terminal structures are (i) both halogen atoms, (ii) both hydroxyl groups, or (iii) one halogen atom and the other hydroxyl group
  • the polyaryletherketone of the present invention can be used as a thermoplastic resin.
  • Conventional molding and processing methods for thermoplastic resins e.g., melt molding methods such as injection molding, extrusion molding, and compression molding
  • molded articles for use in electronic devices and devices can be manufactured, and electronic devices and devices can be manufactured.
  • terminal structures are (i) both of which are one group selected from the group represented by the general formula (4) or the chemical formula (5), (ii) one of which is one group selected from the group represented by the general formula (4) or the chemical formula (5) and the other is a halogen atom, or (iii) one of which is one group selected from the group represented by the general formula (4) or the chemical formula (5) and the other is a hydroxyl group, at least one of the terminal structures has a reactive functional group, so that it can be used as a curable resin.
  • Conventional molding and processing methods for curable resins e.g., compression molding and transfer molding
  • a molded product used in an electronic device or device can be manufactured to manufacture an electronic device or device.
  • the weight average molecular weight (Mw) of the PAEK of the present invention is not particularly limited, but is preferably in the range of 2,000 to 1,000,000, more preferably in the range of 10,000 to 500,000, even more preferably in the range of 20,000 to 200,000, and particularly preferably in the range of 30,000 to 150,000.
  • the weight average molecular weight (Mw) is more preferably in the range of 10,000 to 500,000, even more preferably in the range of 20,000 to 200,000, and particularly preferably in the range of 30,000 to 150,000.
  • the terminal structures of the PAEK according to the present invention are (i) both of which are a group selected from the group represented by the general formula (4) or the chemical formula (5), (ii) one of which is a group selected from the group represented by the general formula (4) or the chemical formula (5) and the other is a halogen atom, or (iii) one of which is a group selected from the group represented by the general formula (4) or the chemical formula (5) and the other is a hydroxy group, in order to provide good processability when used as a curable resin, the weight average molecular weight (Mw) is preferably in the range of 2,000 to 100,000, more preferably in the range of 2,000 to 50,000, even more preferably in the range of 2,000 to 30,000, and particularly preferably in the range of 2,000 to 10,000.
  • the ratio of weight average molecular weight (Mw) to number average molecular weight (Mn), Mw/Mn, is preferably in the range of 1.5 or more and 20 or less, more preferably in the range of 2 or more and 15 or less, even more preferably in the range of 2 or more and 10 or less, and particularly preferably in the range of 2 or more and 8 or less.
  • the reduced viscosity of the PAEK of the present invention is preferably 0.1 dL/g or more, more preferably 0.3 dL/g or more, and even more preferably 0.5 dL/g or more, which is a measured value of the viscosity of a 1.0 g/dL solution of the PAEK of the present invention in p-chlorophenol as a solvent at 40°C.
  • the glass transition temperature of the PAEK of the present invention is preferably 200° C. or higher. It can be suitably used as a PAEK material for electric and electronic components and electronic devices and electronic equipment using the same, which are exposed to high temperatures during manufacturing and use.
  • the glass transition temperature is more preferably 210° C. or higher, even more preferably 220° C. or higher, and particularly preferably 230° C. or higher.
  • the dielectric loss tangent of the PAEK of the present invention measured at a frequency of 10 GHz is preferably 0.004 or less. If the dielectric loss tangent is 0.004 or less, it can be suitably used as a PAEK material for electronic devices, such as communication devices that require compatibility with high frequencies, as described below.
  • the dielectric loss tangent is more preferably 0.0035 or less, even more preferably 0.0030 or less, and particularly preferably 0.0025 or less. The lower the dielectric loss tangent, the more preferable it is, so there is no particular limit to the lower limit, but it may be 0.0010 or more.
  • the PAEK of the present invention preferably has a relative dielectric constant of 3.5 or less measured at a frequency of 10 GHz. If it is 3.5 or less, it can be suitably used as a polyaryl ether ketone resin for electronic devices and devices, particularly for electronic devices used for high-speed communication using high-frequency radio waves and electronic devices used therein (high-frequency communication electronic devices and devices).
  • a relative dielectric constant is more preferably 3.0 or less, even more preferably 2.9 or less, and particularly preferably 2.8 or less. Since the relative dielectric constant is preferably as low as possible, the lower limit is not particularly limited, but it may be 2.0 or more.
  • the method for producing the PAEK of the present invention is not particularly limited, and for example, the PAEK can be produced by subjecting a dihalogen compound represented by general formula (2) and a bisphenol compound represented by general formula (3) to a desalting polycondensation reaction in the presence of an alkali metal compound.
  • a dihalogen compound represented by general formula (2) and a bisphenol compound represented by general formula (3) to a desalting polycondensation reaction in the presence of an alkali metal compound.
  • each X independently represents a halogen atom
  • m is defined as in general formula (1).
  • R 1 and n are defined as in general formula (1).
  • X in the general formula (2) represents a fluorine atom, a chlorine atom, a bromine atom, or an iodine atom.
  • a fluorine atom or a chlorine atom is preferable, and a fluorine atom is particularly preferable.
  • m is preferably 1.
  • dihalogen compound represented by the general formula (2) examples include 4,4'-difluorobenzophenone, 4,4'-dichlorobenzophenone, 4,4'-dibromobenzophenone, 4,4'-diiodobenzophenone, 1,4-bis(4-fluorobenzoyl)benzene, 1,4-bis(4-chlorobenzoyl)benzene, 1,4-bis(4-bromobenzoyl)benzene, and 1,4-bis(4-iodobenzoyl)benzene.
  • 4,4'-difluorobenzophenone and 4,4'-dichlorobenzophenone are preferred, with 4,4'-difluorobenzophenone being particularly preferred.
  • bisphenol compound represented by general formula (3) The definitions and preferred embodiments of R 1 and n in formula (3) are the same as those in formula (1).
  • Specific examples of the bisphenol compound represented by the general formula (3) include 4,4'-(3,3,5-trimethylcyclohexylidene)bis(2,6-dimethylphenol), 4,4'-(3,3,5-trimethylcyclohexylidene)bis(2,6-di-t-butylphenol), 4,4'-(3,3,5-trimethylcyclohexylidene)bis(2-methylphenol), and 4,4'-(3,3,5-trimethylcyclohexylidene)bis(2-t-butylphenol).
  • PAEK 4,4'-(3,3,5-trimethylcyclohexylidene)bis(2,6-dimethylphenol) is particularly preferred.
  • other aromatic dihydroxy compounds can be used in combination with the biphenol compound represented by the general formula (3).
  • the other repeating units have a structure derived from these aromatic dihydroxy compounds and a repeating unit having a structure derived from the dihalogen compound represented by the general formula (2).
  • aromatic dihydroxy compounds that can be used in combination include hydroquinone, resorcinol, 2-phenylhydroquinone, 4,4'-biphenol, 2,6-dihydroxynaphthalene, 2,7-dihydroxynaphthalene, 1,1'-bi-2-naphthol, 2,2'-bi-1-naphthol, 1,3-bis[1-methyl-1-(4-hydroxyphenyl)ethyl]benzene, 1,4-bis[1-methyl-1-(4-hydroxyphenyl)ethyl]benzene, 1,3-bis(4-hydroxybenzoyl)benzene, 1,4-bis(4-hydroxybenzoyl)benzene, 1,3-bis(4-hydroxyphenoxy)benzene, 1,4-bis(4-hydroxyphenoxy)benzene, 1,4-bis(4-hydroxyphenyl)benzene, 1,3-bis(4-hydroxyphenyl)benzene, 4,4'-methylenebis
  • alkali metal compounds Any alkali metal compound can be used as long as it can convert the bisphenol compound represented by the general formula (3) into an alkali metal salt, but usually, carbonates, hydrogen carbonates, hydroxides, etc. of alkali metals are preferably used, and carbonates are particularly preferred.
  • alkali metal include lithium, sodium, potassium, rubidium, and cesium, and among them, sodium and potassium are preferred, and potassium is particularly preferred.
  • solvent A solvent can be used in the polycondensation reaction to obtain PAEK, and it is preferable to use the solvent.
  • a neutral polar solvent such as N,N-dimethylformamide (DMF), N,N-dimethylacetamide (DMAc), N-methylpyrrolidone (NMP), dimethylimidazolidinone (DMI), dimethylsulfoxide (DMSO), sulfolane, diphenylsulfone, etc. is preferable, but any solvent can be used without any problem as long as the monomer and polymer are soluble in the solvent.
  • the solvent may be used alone or in combination of two or more kinds as a mixed solvent.
  • the amount of the dihalogen compound represented by the general formula (2) used depends on the target molecular weight relative to the bisphenol compound represented by the general formula (3) (when an aromatic dihydroxy compound other than the general formula (3) is used in combination, the total of the bisphenol compound represented by the general formula (3) and the other aromatic dihydroxy compound).
  • the amount is usually in the range of 0.9 to 1.1 times by mole, preferably in the range of 0.95 to 1.06 times by mole, and more preferably in the range of 1.0 to 1.04 times by mole.
  • the molar ratio is usually in the range of 0.6 to 1.4 times, preferably in the range of 0.7 to 1.3 times, and more preferably in the range of 0.8 to 1.2 times.
  • the molar ratio is in the range of 1.01 to 1.1 times by mole, preferably in the range of 1.01 to 1.06 times by mole, and more preferably in the range of 1.01 to 1.04 times by mole.
  • the molar ratio for a PAEK having a large molecular weight is in the range of 0.9 to 0.99 molar times, and preferably in the range of 0.95 to 0.99 molar times, while the molar ratio for a PAEK having a small molecular weight is usually in the range of 0.6 to 0.95 molar times, preferably in the range of 0.7 to 0.9 molar times, and more preferably in the range of 0.8 to 0.9 molar times.
  • the amount of the alkali metal compound used is usually in the range of 1.0 to 3.0 moles, preferably 1.01 to 1.3 moles, per mole of the bisphenol compound represented by formula (3).
  • the reaction temperature is usually in the range of 150 to 350° C., preferably 180 to 250° C.
  • the reaction time is usually in the range of 1 to 60 hours, preferably 2 to 50 hours.
  • These reactions are preferably carried out in an atmosphere of an inert gas such as nitrogen, argon, etc.
  • an inert gas such as nitrogen, argon, etc.
  • There is no limitation on the reaction pressure and the reaction may be carried out at reduced pressure, atmospheric pressure, or elevated pressure, but the reaction is usually carried out at atmospheric pressure.
  • the PAEK produced by the polycondensation reaction can be recovered by a commonly used method such as coagulation, solidification, washing, granulation, extraction, or solvent distillation.
  • the method for treating the PAEK produced by the polycondensation reaction will be described in more detail.
  • the liquid containing the PAEK produced by the polycondensation reaction can be diluted with a solvent as necessary, and mixed with a poor solvent to precipitate the PAEK, thereby obtaining a powdered PAEK.
  • the solvent used for precipitation of the precipitate for example, methanol, ethanol, acetone, methyl ethyl ketone, xylene, toluene, etc.
  • the powdered PAEK obtained by precipitation of the precipitate is preferably subjected to a washing step in order to remove alkali metal salts such as potassium chloride produced in the desalting polycondensation reaction, the solvent used in the reaction, and the solvent used in the precipitation of the precipitate.
  • alkali metal salts such as potassium chloride produced in the desalting polycondensation reaction
  • water is preferred, but acidic water containing low concentrations of hydrochloric acid, formic acid, oxalic acid, etc. may also be used.
  • the conditions for this washing step may be appropriately selected according to the amounts of residual reaction solvent and residual alkali metal salts to be removed, such as the amount of washing solvent used, the number of washings, and the washing temperature.
  • the powder After washing with water, the powder may be washed with, for example, methanol, ethanol, acetone, methyl ethyl ketone, xylene, or toluene, particularly acetone or methanol.
  • the washing apparatus may be a combination of a washing tank and a pressure filter or a centrifuge, or a multi-function filter capable of washing, filtering and drying in one apparatus.
  • a drying step can be carried out to dry the powdered PAEK containing moisture and solvent obtained after the completion of the washing step.
  • the conditions for this drying step may be any conditions that allow removal of moisture at a temperature equal to or lower than the melting point of the polycondensation reaction product. It is preferable to perform the drying step under an inert gas (nitrogen, argon, etc.) atmosphere, under an inert gas stream, or under reduced pressure so as to minimize contact with air.
  • the dryer may be a known device such as an evaporator, a tray oven, or a tumbler.
  • the PAEK of the present invention whose terminal structure is a group represented by general formula (4) (an acryloyl group or a methacryloyl group), can be produced by applying a conventionally known method for (meth)acrylation of a hydroxy compound to a polyaryl ether ketone having a repeating unit represented by general formula (1) containing a hydroxy group at the end of the polymer chain obtained by the above-mentioned method.
  • a method for (meth)acrylation for example, there is a method of reacting (meth)acrylic acid and its derivatives with the terminal hydroxyl group of polyaryletherketone having a repeating unit represented by general formula (1).
  • acrylic acid chloride is used as a derivative of (meth)acrylic acid
  • chloride ions are generated in the form of hydrogen chloride, so it is preferable to use a hydrogen chloride scavenger in combination.
  • the hydrogen chloride scavenger inorganic or organic basic substances such as carbonates or hydrogen carbonates of alkali metals, tertiary amines, etc. can be used.
  • Specific examples of (meth)acrylic acid and its derivatives include acrylic acid, methacrylic acid, acrylic acid chloride, methacrylic acid chloride, etc.
  • a solvent such as a halogenated hydrocarbon such as methylene chloride, tetrahydrofuran, dioxane, chlorobenzene, or the like may be used.
  • a polymerization inhibitor such as hydroquinone, hydroquinone monomethyl ether, phenothiazine, or 2,6-di-tert-butyl-4-methylphenol (BHT) may be added.
  • the PAEK of the present invention whose terminal structure is a group represented by chemical formula (5) (glycidyl ether group), can be produced by applying a conventionally known method for glycidyl etherifying a hydroxy compound to a polyaryl ether ketone having a repeating unit represented by general formula (1) containing a hydroxy group at the end of the polymer chain obtained by the above-mentioned method.
  • a glycidyl etherified PAEK can be produced by reacting a terminal hydroxy group of a polyaryletherketone having a repeating unit represented by the general formula (1) with epihalohydrin in the presence of an alkali metal hydroxide (e.g., sodium hydroxide or potassium hydroxide) or a quaternary ammonium salt (e.g., tetramethylammonium chloride or tetramethylammonium bromide).
  • an alkali metal hydroxide e.g., sodium hydroxide or potassium hydroxide
  • quaternary ammonium salt e.g., tetramethylammonium chloride or tetramethylammonium bromide.
  • the epihalohydrin used include epichlorohydrin and epibromohydrin.
  • the PAEK of the present invention can be blended with various additives such as flame retardants, heat stabilizers, oxidation stabilizers, weathering stabilizers, antistatic agents, lubricants, plasticizers, etc., as desired, by a conventional method of blending additives with raw resins, within a range that does not impair the effects of the present invention.
  • a polyaryl ether ketone resin composition can be obtained, which contains the PAEK of the present invention and one or more additives selected from the group consisting of flame retardants, heat stabilizers, oxidation stabilizers, weathering stabilizers, antistatic agents, lubricants, and plasticizers.
  • This polyaryl ether ketone resin composition can be used in the same manner as the PAEK of the present invention described below.
  • the material can be used as aerospace equipment, transportation equipment, medical equipment, medical instruments (e.g., injection needles, implants, dentures, artificial bones, etc.), modeling materials for 3D printers, and various resin materials used in instruments and machines in the food industry.
  • medical instruments e.g., injection needles, implants, dentures, artificial bones, etc.
  • modeling materials for 3D printers e.g., 3D printers, and various resin materials used in instruments and machines in the food industry.
  • the polyaryl ether ketone of the present invention has heat resistance, as well as excellent dielectric properties in the high frequency band and low water absorption. Therefore, a resin material containing the polyaryl ether ketone of the present invention is suitable as a polyaryl ether ketone resin material for use in electronic devices and electronic devices used therein (electronic devices and devices), and is particularly suitable as a polyaryl ether ketone resin material for use in electronic devices and devices used in high-speed communications using radio waves in the high frequency band (electronic devices and devices for high-frequency communication).
  • the polyaryletherketone resin material for electronic devices and devices may be a resin material containing only the polyaryletherketone of the present invention, depending on the properties required for the electronic devices and devices to be manufactured, or may be a resin material containing one or more additives selected from the group consisting of flame retardants, heat stabilizers, oxidation stabilizers, weather resistance stabilizers, antistatic agents, lubricants, and plasticizers.
  • the weight average molecular weight (Mw) of the polyaryl ether ketone resin material for electronic devices is preferably in the range of 2,000 to 1,000,000, more preferably in the range of 10,000 to 500,000, still more preferably in the range of 20,000 to 200,000, and particularly preferably in the range of 30,000 to 150,000.
  • both end structures of the polymer chain of the polyaryl ether ketone resin material for electronic devices are (i) both halogen atoms, (ii) both hydroxy groups, or (iii) one halogen atom and the other hydroxy group, in order to provide sufficient mechanical strength when used as a thermoplastic resin
  • the weight average molecular weight (Mw) is more preferably in the range of 10,000 or more and 500,000 or less, further preferably in the range of 20,000 or more and 200,000 or less, and particularly preferably in the range of 30,000 or more and 150,000 or less.
  • the terminal structures of the polyaryl ether ketone resin material for electronic devices and electronic devices are (i) both of which are a group selected from the group represented by general formula (4) or chemical formula (5), (ii) one of which is a group selected from the group represented by general formula (4) or chemical formula (5) and the other is a halogen atom, or (iii) one of which is a group selected from the group represented by general formula (4) or chemical formula (5) and the other is a hydroxy group
  • the weight average molecular weight (Mw) is preferably in the range of 2,000 to 100,000, more preferably in the range of 2,000 to 50,000, more preferably in the range of 2,000 to 30,000, and particularly preferably in the range of 2,000 to 10,000.
  • the ratio of weight average molecular weight (Mw) to number average molecular weight (Mn), Mw/Mn, is preferably in the range of 1.5 or more and 20 or less, more preferably in the range of 2 or more and 15 or less, even more preferably in the range of 2 or more and 10 or less, and particularly preferably in the range of 2 or more and 8 or less.
  • the glass transition temperature of the polyaryl ether ketone resin material for electronic devices and electronic devices is preferably 200° C. or higher. Furthermore, the glass transition temperature is more preferably 210° C. or higher, further preferably 220° C. or higher, and particularly preferably 230° C. or higher.
  • the dielectric loss tangent of the polyaryl ether ketone resin material for electronic devices and devices measured at a frequency of 10 GHz is preferably 0.004 or less. If the dielectric loss tangent is 0.004 or less, it can be suitably used as a polyaryl ether ketone resin material for electronic devices, particularly for electronic devices used in high-speed communication using radio waves in the high frequency band and electronic devices used therein (electronic devices and devices for high frequency communication).
  • the dielectric loss tangent is more preferably 0.0035 or less, even more preferably 0.0030 or less, and particularly preferably 0.0025 or less.
  • the dielectric constant of the polyaryl ether ketone resin material for electronic devices and devices measured at a frequency of 10 GHz is preferably 3.5 or less. If the dielectric constant is 3.5 or less, it can be suitably used as a polyaryl ether ketone resin material for electronic devices, particularly for electronic devices used in high-speed communication using high-frequency radio waves and electronic devices used therein (high-frequency communication electronic devices and devices).
  • the dielectric constant is more preferably 3.0 or less, even more preferably 2.9 or less, and particularly preferably 2.8 or less.
  • the water absorption rate of the polyaryl ether ketone resin material for electronic devices and devices is preferably 0.35% or less. If the water absorption rate is 0.35% or less, it can be suitably used as a polyaryl ether ketone resin material for electronic devices, particularly for electronic devices used in high-speed communication using high-frequency radio waves and electronic devices used therein (high-frequency communication electronic devices and devices).
  • the water absorption rate is more preferably 0.30% or less, even more preferably 0.20% or less, and particularly preferably 0.1% or less. The lower the water absorption rate, the more preferable it is, so there is no particular limit to the lower limit, but it may be 0.001% or more.
  • the PAEK of the present invention can be subjected to conventional melt molding methods such as injection molding, extrusion molding, and compression molding, and can be used to produce various molded products such as films, sheets, tapes, containers, threads, lenses, tubes, pellets, and chips.
  • the dielectric loss tangent of the molded article of the PAEK of the present invention measured at a frequency of 10 GHz is preferably 0.004 or less. If the dielectric loss tangent is 0.004 or less, it can be suitably used as a resin material for electronic devices and devices, particularly electronic devices and devices used for high-speed communication using radio waves in the high frequency band (electronic devices and devices for high frequency communication).
  • the dielectric loss tangent is more preferably 0.0035 or less, even more preferably 0.0030 or less, and particularly preferably 0.0025 or less.
  • the relative dielectric constant of the molded article of the PAEK of the present invention measured at a frequency of 10 GHz is preferably 3.5 or less. If the relative dielectric constant is 3.5 or less, it can be suitably used as a resin material for electronic devices and devices, particularly electronic devices and devices used for high-speed communication using radio waves in the high-frequency band (electronic devices and devices for high-frequency communication).
  • the relative dielectric constant is more preferably 3.0 or less, even more preferably 2.9 or less, and particularly preferably 2.8 or less.
  • the lower limit of the relative dielectric constant is not particularly limited, but it may be 2.0 or more.
  • the water absorption rate of the molded product of the PAEK of the present invention is preferably 0.35% or less. If the water absorption rate is 0.35% or less, it can be suitably used as a polyaryl ether ketone resin material for electronic devices, particularly for electronic devices used in high-speed communication using high-frequency radio waves and electronic devices used therein (high-frequency communication electronic devices and devices).
  • the water absorption rate is more preferably 0.30% or less, even more preferably 0.20% or less, and particularly preferably 0.1% or less.
  • the PAEK molded article of the present invention can be used as various resin materials used in aerospace equipment, transportation equipment, medical equipment, medical instruments (e.g., injection needles, implants, dentures, artificial bones, etc.), 3D printer modeling materials, and food industry instruments and machines.
  • it since it has heat resistance and excellent dielectric properties in the high frequency band, it is suitable as a resin material used in electronic devices and devices, and is particularly suitable as a resin material used in electronic devices and devices used for high-speed communication using high-frequency radio waves (electronic devices and devices for high-frequency communication).
  • the high-frequency radio waves in the present invention refer to radio waves having a frequency in the range of 1 GHz to 300 GHz, including microwaves, centimeter waves (SHF: Super High Frequency), millimeter waves (EHF: Extremely High Frequency), etc.
  • the range of such high-frequency radio waves is preferably 1 GHz to 100 GHz, more preferably 1 GHz to 80 GHz, and particularly preferably 1 GHz to 30 GHz.
  • electronic devices and electronic devices used therein are collectively referred to as electronic devices and devices.
  • electronic devices and devices used for high-speed communication using radio waves in a high frequency band are collectively referred to as high-frequency communication electronic devices and devices. Since the PAEK of the present invention has excellent dielectric properties in a high frequency band in addition to heat resistance, electronic devices and devices using the PAEK of the present invention are preferred, and high-frequency communication electronic devices and devices are particularly preferred.
  • the electronic device include mobile phones, smartphones, personal computers, mobile routers, data center communication equipment, base stations, radars, robots, drones, wearable computers, automobiles, aircraft, measuring and measurement equipment used in various industries such as industry, agriculture, logistics, and civil engineering, high-speed wireless communication equipment, electronic organizers, digital still cameras, video cameras, electronic paper, televisions, players, various audio equipment, car navigation devices, in-vehicle displays such as instrument panels, calculators, printers, scanners, copiers, refrigerators, and washing machines.
  • electronic devices used for high-speed communication using high-frequency radio waves include mobile phones, smartphones, personal computers, mobile routers, data center communication equipment, base stations, radar, robots, drones, wearable computers, measurement and gaging equipment used in various industries such as the automobile, aircraft, manufacturing, agriculture, logistics, and civil engineering industries, and high-speed wireless communication equipment.
  • Specific examples of the electronic devices include semiconductors, electronic displays, and electric/electronic components. Examples of the electric/electronic components include capacitors, printed circuits, connectors, various sensors, inductors, switches, and housings. These are also used in electronic devices for high-speed communication using high-frequency radio waves.
  • the polyaryl ether ketone of the present invention can be suitably used for, for example, exterior members, structural members, circuit boards, semiconductor encapsulants, or antenna element members of these electronic devices and devices (preferably, electronic devices and devices for high-frequency communication in the range of 1 GHz to 300 GHz).
  • the polyaryl ether ketone can be more suitably used for the circuit boards, semiconductor encapsulants, or antenna element members of the electronic devices and devices, and can be particularly suitably used for the circuit boards of the electronic devices and devices.
  • the analytical method in the present invention is as follows. ⁇ Analysis method> 1. Measurement of Glass Transition Temperature (Tg) The glass transition temperatures of the PAEKs obtained in the Examples and Comparative Examples were measured using the following apparatus and conditions. Measuring device: DSC7020 (manufactured by Hitachi, Ltd.) Pan: Aluminum Atmosphere: N2 Heating rate: 10° C./min. Analysis method: Glass transition point of 2nd heating (intersection of baseline and tangent line) 2. Measurement of dielectric constant and dielectric loss tangent The PAEK powder obtained in the examples and comparative examples described below was molded into test pieces by the following molding method. The obtained test pieces were used to measure the dielectric constant and dielectric loss tangent with the following device and conditions.
  • Tg Glass Transition Temperature
  • the PAEK powder was molded into a test piece using a Mini Test Press MP-2FH (Toyo Seiki Co., Ltd.) by melt degassing several times at a temperature of 350°C and a pressure of 1 to 5 MPa, and then pressing at a temperature of 350°C and a pressure of 12 MPa for 5 minutes.
  • MP-2FH Toyo Seiki Co., Ltd.
  • Measuring equipment Synthesized Sweeper 8340B (YHP) Network analyzer 8510B (YHP) Cylindrical cavity resonator (material: copper, internal mirror finish)
  • Semi-rigid cable for signal transmission Sample size: Cut into approximately 50 mm square
  • Measurement frequency Around 10 GHz
  • Measurement environment Room temperature (23 ⁇ 2°C/50 ⁇ 5% RH) 3.
  • Molecular weight measurement ⁇ Molecular weight measurement method 1> The molecular weights of the PAEKs obtained in Example 1 and Comparative Examples 1 to 3 described below were measured by gel permeation chromatography (GPC) using the following apparatus and conditions.
  • the PAEK powder obtained in the examples and comparative examples described later was prepared into a solution having a concentration of 1.0 g/dL using p-chlorophenol as a solvent, and the viscosity at 40° C. was measured. 5. Measurement of Water Absorption Rate Test pieces were prepared from the PAEK powders obtained in the Examples and Comparative Examples described below by the following molding method. The water absorption rate was measured using the obtained test pieces with the following device and under the following conditions. (Molding method) The PAEK powder was molded into a test piece using a Mini Test Press MP-2FH (Toyo Seiki Co., Ltd.).
  • the molding was performed by melting and degassing several times at a temperature of 350°C and a pressure of 1 to 5 MPa, and then pressing at a temperature of 350°C and a pressure of 12 MPa for 5 minutes.
  • the obtained PAEK sheet was cut into a size of 10 cm x 10 cm. (Water absorption measurement and calculation method)
  • the prepared PAEK sheet was dried in a vacuum dryer at 120°C and 1.0 kPa for 2 hours, and then the weight (weight before immersion) was measured.
  • the PAEK sheet was then completely immersed in a container filled with distilled water and allowed to absorb water for 24 hours at a water temperature of 25°C.
  • Example 1 Into a 1000 mL four-necked reaction vessel equipped with a Dean-Stark tube filled with toluene, a stirrer, and a nitrogen inlet tube, 31 g of 4,4'-difluorobenzophenone, 50 g of 4,4'-(3,3,5-trimethylcyclohexylidene)bis(2,6-dimethylphenol), 17 g of sodium carbonate, and 240 g of N-methylpyrrolidone (NMP) were charged and dissolved at room temperature while passing nitrogen through. Next, the reaction vessel was heated to 200°C over 1 hour, and then a small amount of toluene was added and refluxed, followed by polymerization at 200°C for 50 hours.
  • NMP N-methylpyrrolidone
  • the reaction solution was cooled to room temperature, and the solution diluted with 180 g of NMP was added to 3200 g of methanol to precipitate.
  • the precipitate was filtered off, and the resulting powder was suspended and washed in 1000 g of a 1.4% aqueous oxalic acid solution, and then repeatedly washed with hot water until the water after washing became neutral, and then washed with methanol.
  • the washed powder was dried at 150° C. for 12 hours to obtain 65 g of PAEK powder having a repeating unit represented by formula (1a) in a yield of 85%.
  • the resulting PAEK had a reduced viscosity of 0.45 dL/g.
  • the glass transition temperature (Tg) of the resulting PAEK was 243° C. as measured by differential scanning calorimetry. The water absorption of the resulting PAEK was measured and found to be 0.06%.
  • the reaction solution was cooled to room temperature, and the solution diluted with 150 g of NMP was added to 2400 g of methanol to precipitate.
  • the precipitate was filtered off, and the resulting powder was suspended and washed with 700 g of 1.4% oxalic acid aqueous solution, and then repeatedly washed with hot water until the water after washing became neutral, and then washed with methanol.
  • the washed powder was dried at 150° C. for 12 hours to obtain 40 g of PAEK powder in a yield of 90%.
  • the resulting PAEK had a reduced viscosity of 1.1 dL/g.
  • the glass transition temperature (Tg) of the resulting PAEK was 173° C. as measured by differential scanning calorimetry. The water absorption of the resulting PAEK was measured and found to be 0.38%.
  • the reaction solution was cooled to room temperature, and the solution diluted with 156 g of NMP was added to 2850 g of methanol to precipitate.
  • the precipitate was filtered off, and the resulting powder was suspended and washed in 1000 g of a 1.4% aqueous oxalic acid solution, and then repeatedly washed with hot water until the water after washing became neutral, and then washed with methanol.
  • the washed powder was dried under reduced pressure at 150° C. for 12 hours, and 65 g of PAEK powder was obtained in a yield of 87%.
  • the resulting PAEK had a reduced viscosity of 0.63 dL/g.
  • the glass transition temperature (Tg) of the resulting PAEK was 285° C. as measured by differential scanning calorimetry. The water absorption of the resulting PAEK was measured and found to be 0.53%.
  • the reaction solution was cooled to room temperature, and the solution diluted with 160 g of NMP was added to 3100 g of methanol to precipitate.
  • the precipitate was filtered off, and the resulting powder was suspended and washed in 1400 g of a 1.4% aqueous oxalic acid solution, and then repeatedly washed with hot water until the water after washing became neutral, and then washed with methanol.
  • the washed powder was dried at 150° C. for 12 hours to obtain 64 g of PAEK powder in a yield of 80%.
  • the resulting PAEK had a reduced viscosity of 1.1 dL/g.
  • the glass transition temperature (Tg) of the resulting PAEK was 223° C. as measured by differential scanning calorimetry. The water absorption of the resulting PAEK was measured and found to be 0.23%.
  • the PAEK obtained in Example 1 of the present invention has a glass transition temperature 70° C. higher and a greatly improved heat resistance, has excellent dielectric properties with equally low relative dielectric constant and dielectric dissipation factor, and has a water absorption rate of about one-sixth, compared to the PAEK of Comparative Example 2, the glass transition temperature is 42° C. lower, but the relative dielectric constant and dielectric dissipation factor are low and the water absorption rate is about one-ninth, and compared to the PAEK of Comparative Example 3, the glass transition temperature is 20° C.
  • the polyaryl ether ketone of the present invention is an excellent resin material having improved heat resistance, as well as a low dielectric constant (Dk), a low dielectric tangent (Df), and low water absorption.
  • Example 2 Into a 2 L four-necked reaction vessel equipped with a Dean-Stark tube filled with toluene, a stirrer, and a nitrogen inlet tube, 79 g of 4,4'-difluorobenzophenone, 150 g of 4,4'-(3,3,5-trimethylcyclohexylidene)bis(2,6-dimethylphenol), 50 g of potassium carbonate, 720 g of NMP, and 29 g of toluene were charged and dissolved at room temperature while passing nitrogen through. The reaction vessel was then heated to 196°C over one and a half hours, and polymerization was carried out for 10 hours.
  • the reaction solution was cooled to room temperature, and the cooled reaction solution was added to 3000 g of methanol to cause reprecipitation.
  • the precipitate that appeared was filtered off, and the obtained powder was suspended and washed in 4000 g of a 1.1% aqueous oxalic acid solution, and further repeatedly washed until the water became neutral, and then washed with methanol.
  • the washed powder was dried under reduced pressure at 55° C. for 8 hours to obtain 196 g of a PAEK powder (Mw: 9,000, Mw/Mn: 1.9) having a repeating unit represented by chemical formula (1a) in a yield of 96%.
  • the glass transition temperature (Tg) of the resulting PAEK was 216° C. as measured by differential scanning calorimetry.
  • the reaction solution was cooled to room temperature, and the cooled reaction solution was added to 1100 g of methanol to cause reprecipitation.
  • the precipitate that appeared was filtered off, and the obtained powder was suspended and washed in 1200 g of a 3.5% aqueous oxalic acid solution, and further washed repeatedly until the water became neutral, and then washed with methanol.
  • the washed powder was dried under reduced pressure at 60° C. for 8 hours to obtain 164 g of PAEK powder (Mw: 9,800, Mw/Mn: 2.0) in a yield of 96%.
  • the glass transition temperature (Tg) of the resulting PAEK was 159° C. as measured by differential scanning calorimetry.
  • the PAEKs obtained in Example 2 and Comparative Example 4 are polymers having the same repeating units as the PAEKs obtained in Example 1 and Comparative Example 1, respectively, but have relatively small molecular weights.
  • the PAEK obtained in Example 2, which is a specific example of the present invention has a glass transition temperature 57° C. higher than that of the PAEK obtained in Comparative Example 4, and it was revealed that the heat resistance was also greatly improved, even when comparing polymers with relatively small molecular weights.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Polyethers (AREA)

Abstract

The present invention addresses the problem of providing: a polyaryl ether ketone and a polyaryl ether ketone resin composition, each of which has improved heat resistance; a molded article of this polyaryl ether ketone or polyaryl ether ketone resin composition; and an electrical/electronic component, an electronic device and an electronic instrument, each of which uses this polyaryl ether ketone or polyaryl ether ketone resin composition. The present invention provides, as a means for solving the problem, a polyaryl ether ketone which has a repeating unit represented by general formula (1). (In the formula, each R1 independently represents an alkyl group having 1 to 4 carbon atoms; m represents 1 or 2; and each n independently represents 1 or 2.)

Description

ポリアリールエーテルケトン、ポリアリールエーテルケトン樹脂組成物、及びこれらの成形品、並びにこれらを用いた電子機器・デバイスPolyaryletherketone, polyaryletherketone resin composition, molded article thereof, and electronic device/device using the same
 本発明は、ポリアリールエーテルケトン(PAEK)とその利用に関するものであり、詳しくは、ビスフェノールを原料に用いて得られるPAEKとその利用、特に耐熱性に優れたPAEKとその成形品並びに電子機器・デバイスに関する。 The present invention relates to polyaryl ether ketone (PAEK) and its uses, more specifically, to PAEK obtained using bisphenol as a raw material and its uses, in particular to PAEK with excellent heat resistance and its molded products, as well as electronic devices and devices.
 ポリアリールエーテルケトン(PAEK)樹脂は、優れた耐熱性、高い強度と剛性、耐薬品性を備えている熱可塑性プラスチックとして知られている。このため、PAEK樹脂は、絶縁コーティング剤、絶縁膜、半導体、電極保護膜、フレキシブルプリント基板等の電気・電子部品、宇宙航空用機器、輸送機器などの分野で素材として使用されている。これらの用途におけるPAEKの利用は一層高度化、特殊化する傾向にあり、より向上した耐熱性も求められている。 Polyaryletherketone (PAEK) resin is known as a thermoplastic that has excellent heat resistance, high strength and rigidity, and chemical resistance. For this reason, PAEK resin is used as a material in fields such as insulating coating agents, insulating films, semiconductors, electrode protective films, flexible printed circuit boards and other electric and electronic components, aerospace equipment, and transportation equipment. The use of PAEK in these applications tends to become more advanced and specialized, and improved heat resistance is also required.
 近年、無線インターネット機器や通信機器では、流れる電気信号の伝送速度は非常に高速化・高周波数化が進んでおり、これらの機器が有する金属配線を絶縁する絶縁部にも高周波数化への対応が求められている。特に、センチメートル波(SHF:Super High Frequency)や、ミリ波(EHF:Extremely High Frequency)等のより高周波数の電波は更に高速なデータ通信を行うために用いられる。周波数が高いほど絶縁部の誘電損失が増加し、流れる電気信号が減衰する。したがって、高周波数化への対応として、誘電損失を低減することができる誘電特性に優れた材料が求められている。一方、電子機器やこれに用いる電子デバイス(以下、総称して、電子機器・デバイスと称することがある)の製造並びに使用の場面で優れた耐熱性も必要とされており、より向上した耐熱性を有する材料も求められている。
 低誘電材料としてPAEKも応用されており、例えば、1,1’-ビ-2-ナフトールを用いたPAEK(特許文献1)や、ハイドロキノン、4,4’-ジフルオロベンゾフェノン及び2,6-ジクロロピリジンを共重合したPAEK(特許文献2)が電子回路用積層板の電気絶縁層やフレキシブルプリント配線基板の基材として極めて有用であることなどが知られている。
In recent years, in wireless Internet devices and communication devices, the transmission speed of electric signals flowing therethrough has become extremely high and high frequency, and the insulating parts that insulate the metal wiring of these devices are also required to respond to high frequencies. In particular, higher frequency radio waves such as centimeter waves (SHF: Super High Frequency) and millimeter waves (EHF: Extremely High Frequency) are used to perform even faster data communication. The higher the frequency, the greater the dielectric loss of the insulating parts, and the more the electric signals flow attenuate. Therefore, in response to the increase in frequency, materials with excellent dielectric properties that can reduce dielectric loss are required. On the other hand, excellent heat resistance is also required in the manufacture and use of electronic devices and electronic devices used therein (hereinafter, collectively referred to as electronic devices and devices), and materials with improved heat resistance are also required.
PAEKs are also used as low dielectric materials. For example, PAEKs using 1,1'-bi-2-naphthol (Patent Document 1) and PAEKs copolymerized with hydroquinone, 4,4'-difluorobenzophenone, and 2,6-dichloropyridine (Patent Document 2) are known to be extremely useful as electrical insulating layers in laminates for electronic circuits and as base materials for flexible printed wiring boards.
特開2005-213393号公報JP 2005-213393 A 特開2006-002013号公報JP 2006-002013 A
 本発明は、耐熱性が向上したPAEK樹脂材料の提供を課題とする。 The objective of the present invention is to provide a PAEK resin material with improved heat resistance.
 本発明者は、上述の課題解決のために鋭意検討した結果、トリメチルシクロヘキシリデンビス(アルキル置換フェノール)に由来する構造を有するポリアリールエーテルケトン(PAEK)が、向上した耐熱性を有することを見出し、本発明を完成した。
 また、かかるポリアリールエーテルケトンは、向上した耐熱性を有することに加え、低い比誘電率(Dk)と低い誘電正接(Df)、低い吸水性も備えることを見出した。
As a result of intensive research to solve the above-mentioned problems, the present inventors have found that polyaryl ether ketone (PAEK) having a structure derived from trimethylcyclohexylidene bis(alkyl-substituted phenol) has improved heat resistance, and have completed the present invention.
The inventors also discovered that such polyaryletherketones have improved heat resistance, as well as a low dielectric constant (Dk), a low dielectric loss tangent (Df), and low water absorption.
 本発明は以下の通りである。
1.一般式(1)で表される繰り返し単位を有するポリアリールエーテルケトン。
(式中、Rは各々独立して炭素原子数1~4のアルキル基を示し、mは1又は2を示し、nは各々独立して1又は2を示す。)
2.前記一般式(1)で表される繰り返し単位が、化学式(1a)~(1d)で表される繰り返し単位から選択される少なくとも1つを有する、1.に記載のポリアリールエーテルケトン。
3.周波数10GHzで測定した誘電正接(Df)が0.004以下であり、周波数10GHzで測定した比誘電率(Dk)が3.0以下である、1.に記載のポリアリールエーテルケトン。
4.1.に記載のポリアリールエーテルケトンの成形品。
5.1.に記載のポリアリールエーテルケトンと、難燃剤、熱安定剤、酸化安定剤、耐候安定剤、帯電防止剤、滑剤及び可塑剤からなる群より1つ以上選択される添加剤を含む、ポリアリールエーテルケトン樹脂組成物。
6.5.に記載のポリアリールエーテルケトン樹脂組成物の成形品。
7.1.に記載のポリアリールエーテルケトンを用いた、電子機器・デバイス。
8.1.に記載のポリアリールエーテルケトンを用いた、高周波通信用電子機器・デバイス。
9.1.に記載のポリアリールエーテルケトンを電子機器・デバイスの樹脂材料として使用する方法。
10.前記ポリアリールエーテルケトンの高分子鎖の両末端の構造が、(i)~(iii)のいずれかの構造である、1.に記載のポリアリールエーテルケトン。
 (i)両方とも一般式(4)又は化学式(5)で表される基から選択される1つの基である。
 (ii)一方が一般式(4)又は化学式(5)で表される基から選択される1つの基であり、もう一方がハロゲン原子である。
 (iii)一方が一般式(4)又は化学式(5)で表される基から選択される1つの基であり、もう一方がヒドロキシ基である。
(式中、Rは水素原子又はメチル基を示し、*は高分子鎖の末端への結合部位を示す。)
The present invention is as follows.
1. A polyaryl ether ketone having a repeating unit represented by general formula (1).
(In the formula, each R 1 independently represents an alkyl group having 1 to 4 carbon atoms, m represents 1 or 2, and each n independently represents 1 or 2.)
2. The polyaryl ether ketone according to 1., wherein the repeating unit represented by the general formula (1) has at least one selected from the repeating units represented by chemical formulas (1a) to (1d).
3. The polyaryl ether ketone according to 1., having a dielectric loss tangent (Df) measured at a frequency of 10 GHz of 0.004 or less and a relative dielectric constant (Dk) measured at a frequency of 10 GHz of 3.0 or less.
4. A molded article of the polyaryletherketone according to 1.
5. A polyaryl ether ketone resin composition comprising the polyaryl ether ketone according to 1. above and one or more additives selected from the group consisting of flame retardants, heat stabilizers, oxidation stabilizers, weather resistance stabilizers, antistatic agents, lubricants and plasticizers.
6. A molded article of the polyaryl ether ketone resin composition according to 5.
7. Electronic devices and devices using the polyaryl ether ketone described in 1.
8. A high-frequency communication electronic device or device using the polyaryl ether ketone described in 1.
9. A method for using the polyaryl ether ketone according to 1. as a resin material for an electronic device or device.
10. The polyaryl ether ketone according to 1., wherein the structure at both ends of the polymer chain of the polyaryl ether ketone is any one of the structures (i) to (iii).
(i) Both are a group selected from the groups represented by general formula (4) or chemical formula (5).
(ii) One of them is a group selected from the groups represented by general formula (4) or chemical formula (5), and the other is a halogen atom.
(iii) One of them is a group selected from the groups represented by general formula (4) or chemical formula (5), and the other is a hydroxy group.
(In the formula, R2 represents a hydrogen atom or a methyl group, and * represents a bonding site to the end of a polymer chain.)
 本発明のPAEKは向上した耐熱性(向上したガラス転移温度)を有するため、従来PAEKが用いられた用途において、さらに高い耐熱性が求められる場面に用いる材料として利用することができる。
 本発明のPAEKは向上した耐熱性、すなわち向上したガラス転移温度を有することに加え、優れた誘電特性と、低い吸水性を有するため、電子機器やこれに用いる電子デバイス(電子機器・デバイス)に用いる樹脂材料として好適に利用することができ、特に、高周波数帯の電波を利用した高速通信に用いる電子機器・デバイス(高周波通信用電子機器・デバイス)に使用する樹脂材料として好適に利用することができる。
Since the PAEK of the present invention has improved heat resistance (improved glass transition temperature), it can be used as a material in situations where even higher heat resistance is required in applications where PAEK has been used conventionally.
The PAEK of the present invention has improved heat resistance, i.e., an improved glass transition temperature, and also has excellent dielectric properties and low water absorption. Therefore, the PAEK can be suitably used as a resin material for electronic devices and electronic devices used therein (electronic devices and devices), and can be suitably used in particular as a resin material for electronic devices and devices used in high-speed communication using radio waves in the high-frequency band (electronic devices and devices for high-frequency communication).
(本発明のPAEK)
 本発明のPAEKは、一般式(1)で表される繰り返し単位を有する。
(式中、Rは各々独立して炭素原子数1~4のアルキル基を示し、mは1又は2を示し、nは各々独立して1又は2を示す。)
 Rは、各々独立して炭素原子数1~4のアルキル基を示し、具体的には、例えば、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、t-ブチル基が挙げられる。これらのうち、t-ブチル基又はメチル基が好ましく、メチル基が特に好ましい。
 Rの結合位置は、ベンゼン環上の酸素原子が結合する位置に対してオルソ位であることが好ましい。
 mは、1又は2を示し、1であることが好ましい。
 nは、各々独立して1又は2を示し、2であることが好ましい。
(PAEK of the present invention)
The PAEK of the present invention has a repeating unit represented by general formula (1).
(In the formula, each R 1 independently represents an alkyl group having 1 to 4 carbon atoms, m represents 1 or 2, and each n independently represents 1 or 2.)
Each R1 independently represents an alkyl group having 1 to 4 carbon atoms, and specific examples thereof include a methyl group, an ethyl group, an n-propyl group, an isopropyl group, an n-butyl group, and a t-butyl group. Among these, a t-butyl group or a methyl group is preferred, and a methyl group is particularly preferred.
The bonding position of R1 is preferably the ortho position relative to the bonding position of the oxygen atom on the benzene ring.
m represents 1 or 2, and is preferably 1.
Each n independently represents 1 or 2, and is preferably 2.
 本発明のPAEKの一般式(1)で表される繰り返し単位の具体例である化学式(1a)~(1d)を示す。一般式(1)で表される繰り返し単位として、化学式(1a)~(1d)から選択される少なくとも1つが好ましく、化学式(1a)及び(1b)から選択される少なくとも1つがより好ましく、化学式(1a)又は(1b)さらに好ましく、化学式(1a)が特に好ましい。
Specific examples of the repeating unit represented by general formula (1) of the PAEK of the present invention are shown below as chemical formulas (1a) to (1d). As the repeating unit represented by general formula (1), at least one selected from chemical formulas (1a) to (1d) is preferred, at least one selected from chemical formulas (1a) and (1b) is more preferred, chemical formula (1a) or (1b) is even more preferred, and chemical formula (1a) is particularly preferred.
 本発明のPAEKは、一般式(1)で表される繰り返し単位を含有していれば、本発明の効果を損なわない限り、その他の繰り返し単位を有してもよいが、一般式(1)で表される繰り返し単位の含有量が100モル%、すなわち、その他の繰り返し単位を有さないことが好ましい。その他の繰り返し単位を有する場合の、一般式(1)で表される繰り返し単位の含有量の範囲について、その下限は、PAEK全体の50モル%以上が好ましく、70モル%以上がより好ましく、80モル%以上がさらに好ましく、90モル%以上が特に好ましい。上限は、100モル%未満が好ましく、99.9モル%以下がより好ましい。一般式(1)で表される繰り返し単位の含有量の範囲における、前記の下限と上限は、それぞれ組み合わせてよい。一般式(1)で表される繰り返し単位とその他の繰り返し単位は、規則的に配列されていてもよいし、ランダムに存在していてもよい。
 一般式(1)で表される繰り返し単位とその他の繰り返し単位を有するPAEKは、後述する一般式(3)で表されるビフェノール化合物とその他の芳香族ジヒドロキシ化合物を併用して、後述する重縮合反応を行うことにより、製造することができる。
The PAEK of the present invention may have other repeating units as long as it contains the repeating unit represented by the general formula (1), as long as the effect of the present invention is not impaired. However, it is preferable that the content of the repeating unit represented by the general formula (1) is 100 mol%, that is, it does not have other repeating units. When the PAEK has other repeating units, the lower limit of the content range of the repeating unit represented by the general formula (1) is preferably 50 mol% or more of the entire PAEK, more preferably 70 mol% or more, even more preferably 80 mol% or more, and particularly preferably 90 mol% or more. The upper limit is preferably less than 100 mol%, more preferably 99.9 mol% or less. The above lower limit and upper limit in the range of the content range of the repeating unit represented by the general formula (1) may be combined. The repeating unit represented by the general formula (1) and the other repeating units may be regularly arranged or may be present randomly.
PAEK having the repeating unit represented by general formula (1) and other repeating units can be produced by carrying out a polycondensation reaction described later using a biphenol compound represented by general formula (3) described later and other aromatic dihydroxy compounds in combination.
 本発明のPAEKの高分子鎖の両末端の構造については特に制限はない。後述する一般式(2)で表されるジハロゲン化合物に由来するハロゲン原子、一般式(3)で表されるビスフェノール化合物に由来するヒドロキシ基、又はこのヒドロキシ基を一般式(4)で表される基(具体的には、アクリロイルオキシ基又はメタクリロイルオキシ基)若しくは化学式(5)で表される基(グリシジルエーテル基)等の反応性官能基に修飾した末端構造を有していてもよい。
(式中、Rは水素原子又はメチル基を示し、*は高分子鎖の末端への結合部位を示す。)
 かかる末端構造が、(i)両方ともハロゲン原子である場合、(ii)両方ともヒドロキシ基である場合、(iii)一方がハロゲン原子でありもう一方がヒドロキシ基である場合は、本発明のポリアリールエーテルケトンは熱可塑性樹脂として利用することができる。熱可塑性樹脂の常法の成形・加工方法(例えば、射出成形、押出成形、圧縮成形などの溶融成形法)を適用することができる。このような成形・加工方法により、電子機器・デバイスに使用する成形品を製造して、電子機器・デバイスの製造を行うことができる。
 また、末端構造が、(i)両方とも一般式(4)又は化学式(5)で表される基から選択される1つの基である場合、(ii)一方が一般式(4)又は化学式(5)で表される基から選択される1つの基であり、もう一方がハロゲン原子である場合、(iii)一方が一般式(4)又は化学式(5)で表される基から選択される1つの基であり、もう一方がヒドロキシ基である場合は、末端構造のうち少なくともいずれか一方が反応性の官能基を有することから、硬化性樹脂として、利用することができる。硬化性樹脂の常法の成形・加工方法(例えば、圧縮成形やトランスファー成形)を適用することができる。このような成形・加工方法により、電子機器・デバイスに使用する成形品を製造して、電子機器・デバイスの製造を行うことができる。
The structure of both ends of the polymer chain of the PAEK of the present invention is not particularly limited. The end structure may be a halogen atom derived from a dihalogen compound represented by the general formula (2) described later, a hydroxyl group derived from a bisphenol compound represented by the general formula (3), or a reactive functional group modified from the hydroxyl group to a group represented by the general formula (4) (specifically, an acryloyloxy group or a methacryloyloxy group) or a group represented by the chemical formula (5) (a glycidyl ether group).
(In the formula, R2 represents a hydrogen atom or a methyl group, and * represents a bonding site to the end of a polymer chain.)
When the terminal structures are (i) both halogen atoms, (ii) both hydroxyl groups, or (iii) one halogen atom and the other hydroxyl group, the polyaryletherketone of the present invention can be used as a thermoplastic resin. Conventional molding and processing methods for thermoplastic resins (e.g., melt molding methods such as injection molding, extrusion molding, and compression molding) can be applied. By using such molding and processing methods, molded articles for use in electronic devices and devices can be manufactured, and electronic devices and devices can be manufactured.
In addition, when the terminal structures are (i) both of which are one group selected from the group represented by the general formula (4) or the chemical formula (5), (ii) one of which is one group selected from the group represented by the general formula (4) or the chemical formula (5) and the other is a halogen atom, or (iii) one of which is one group selected from the group represented by the general formula (4) or the chemical formula (5) and the other is a hydroxyl group, at least one of the terminal structures has a reactive functional group, so that it can be used as a curable resin. Conventional molding and processing methods for curable resins (e.g., compression molding and transfer molding) can be applied. By such a molding and processing method, a molded product used in an electronic device or device can be manufactured to manufacture an electronic device or device.
(分子量)
 本発明のPAEKの重量平均分子量(Mw)は、特に制限は無いが、2,000以上1,000,000以下の範囲が好ましく、10,000以上500,000以下の範囲がより好ましく、20,000以上200,000以下の範囲がさらに好ましく、30,000以上150,000以下の範囲が特に好ましい。
 本発明にかかるPAEKの高分子鎖の両末端構造が、(i)両方ともハロゲン原子である場合、(ii)両方ともヒドロキシ基である場合、(iii)一方がハロゲン原子でありもう一方がヒドロキシ基である場合は、熱可塑性樹脂として利用するにおいて、十分な機械強度を持たせるために、重量平均分子量(Mw)は、その中でも、10,000以上500,000以下の範囲がより好ましく、20,000以上200,000以下の範囲がさらに好ましく、30,000以上150,000以下の範囲が特に好ましい。
 本発明にかかるPAEKの末端構造が、(i)両方とも一般式(4)又は化学式(5)で表される基から選択される1つの基である場合、(ii)一方が一般式(4)又は化学式(5)で表される基から選択される1つの基であり、もう一方がハロゲン原子である場合、(iii)一方が一般式(4)又は化学式(5)で表される基から選択される1つの基であり、もう一方がヒドロキシ基である場合は、硬化性樹脂として利用するにおいて、良好な加工性を持たせるために、重量平均分子量(Mw)は、その中でも、2,000以上100,000以下の範囲が好ましく、2,000以上50,000以下の範囲がより好ましく、2,000以上30,000以下の範囲がさらに好ましく、2,000以上10,000以下の範囲が特に好ましい。
 数平均分子量(Mn)に対する重量平均分子量(Mw)の比であるMw/Mnは、1.5以上20以下の範囲であることが好ましく、2以上15以下の範囲であることがより好ましく、2以上10以下の範囲であることがさらに好ましく、2以上8以下の範囲であることが特に好ましい。
(Molecular Weight)
The weight average molecular weight (Mw) of the PAEK of the present invention is not particularly limited, but is preferably in the range of 2,000 to 1,000,000, more preferably in the range of 10,000 to 500,000, even more preferably in the range of 20,000 to 200,000, and particularly preferably in the range of 30,000 to 150,000.
When the end structures of both ends of the polymer chain of the PAEK according to the present invention are (i) both halogen atoms, (ii) both hydroxy groups, or (iii) one halogen atom and the other hydroxy group, in order to provide sufficient mechanical strength when used as a thermoplastic resin, the weight average molecular weight (Mw) is more preferably in the range of 10,000 to 500,000, even more preferably in the range of 20,000 to 200,000, and particularly preferably in the range of 30,000 to 150,000.
In the case where the terminal structures of the PAEK according to the present invention are (i) both of which are a group selected from the group represented by the general formula (4) or the chemical formula (5), (ii) one of which is a group selected from the group represented by the general formula (4) or the chemical formula (5) and the other is a halogen atom, or (iii) one of which is a group selected from the group represented by the general formula (4) or the chemical formula (5) and the other is a hydroxy group, in order to provide good processability when used as a curable resin, the weight average molecular weight (Mw) is preferably in the range of 2,000 to 100,000, more preferably in the range of 2,000 to 50,000, even more preferably in the range of 2,000 to 30,000, and particularly preferably in the range of 2,000 to 10,000.
The ratio of weight average molecular weight (Mw) to number average molecular weight (Mn), Mw/Mn, is preferably in the range of 1.5 or more and 20 or less, more preferably in the range of 2 or more and 15 or less, even more preferably in the range of 2 or more and 10 or less, and particularly preferably in the range of 2 or more and 8 or less.
(還元粘度)
 本発明のPAEKの還元粘度は、0.1dL/g以上であることが好ましく、0.3dL/g以上であることがより好ましく、0.5dL/g以上であることがさらに好ましい。かかる還元粘度は、p-クロロフェノールを溶媒とした本発明のPAEKの1.0g/dL濃度の溶液の40℃における粘度の測定値である。
(Reduced Viscosity)
The reduced viscosity of the PAEK of the present invention is preferably 0.1 dL/g or more, more preferably 0.3 dL/g or more, and even more preferably 0.5 dL/g or more, which is a measured value of the viscosity of a 1.0 g/dL solution of the PAEK of the present invention in p-chlorophenol as a solvent at 40°C.
(ガラス転移温度)
 本発明のPAEKのガラス転移温度は200℃以上であることが好ましい。高温にさらされる製造工程並びに使用場面がある、電気・電子部品及びこれを用いた電子デバイスや電子機器に用いるPAEK材料として好適に利用できる。ガラス転移温度は、210℃以上がより好ましく、220℃以上がさらに好ましく、230℃以上が特に好ましい。かかるガラス転移温度は、高いほど耐熱性に優れるため好ましいので上限値は、特に制限はないが、300℃以下であってもよい。
(Glass-transition temperature)
The glass transition temperature of the PAEK of the present invention is preferably 200° C. or higher. It can be suitably used as a PAEK material for electric and electronic components and electronic devices and electronic equipment using the same, which are exposed to high temperatures during manufacturing and use. The glass transition temperature is more preferably 210° C. or higher, even more preferably 220° C. or higher, and particularly preferably 230° C. or higher. The higher the glass transition temperature, the better the heat resistance, so the upper limit is not particularly limited, but may be 300° C. or lower.
(誘電正接)
 本発明のPAEKの周波数10GHzで測定した誘電正接は0.004以下が好ましい。かかる誘電正接が0.004以下であれば、特に、高周波数化への対応が求められる通信機器など、後述する電子機器用のPAEK材料として好適に利用することができる。かかる誘電正接は、0.0035以下であることがより好ましく、0.0030以下であることがさらに好ましく、0.0025以下であることが特に好ましい。かかる誘電正接は、低いほど好ましいので下限値は、特に制限はないが、0.0010以上であってもよい。
(Dielectric tangent)
The dielectric loss tangent of the PAEK of the present invention measured at a frequency of 10 GHz is preferably 0.004 or less. If the dielectric loss tangent is 0.004 or less, it can be suitably used as a PAEK material for electronic devices, such as communication devices that require compatibility with high frequencies, as described below. The dielectric loss tangent is more preferably 0.0035 or less, even more preferably 0.0030 or less, and particularly preferably 0.0025 or less. The lower the dielectric loss tangent, the more preferable it is, so there is no particular limit to the lower limit, but it may be 0.0010 or more.
(比誘電率)
 本発明のPAEKは、周波数10GHzで測定した比誘電率が3.5以下であることが好ましい。3.5以下であれば、電子機器・デバイス用、特に、高周波数帯の電波を利用した、高速通信に用いる電子機器やそれに使用する電子デバイス(高周波通信用電子機器・デバイス)用のポリアリールエーテルケトン樹脂として好適に利用することができる。かかる比誘電率は、3.0以下がより好ましく、2.9以下がさらに好ましく、2.8以下が特に好ましい。かかる比誘電率は、低いほど好ましいので下限値は、特に制限はないが、2.0以上であってもよい。
(Dielectric constant)
The PAEK of the present invention preferably has a relative dielectric constant of 3.5 or less measured at a frequency of 10 GHz. If it is 3.5 or less, it can be suitably used as a polyaryl ether ketone resin for electronic devices and devices, particularly for electronic devices used for high-speed communication using high-frequency radio waves and electronic devices used therein (high-frequency communication electronic devices and devices). Such a relative dielectric constant is more preferably 3.0 or less, even more preferably 2.9 or less, and particularly preferably 2.8 or less. Since the relative dielectric constant is preferably as low as possible, the lower limit is not particularly limited, but it may be 2.0 or more.
(本発明のPAEKの製造方法)
 本発明のPAEKの製造方法については特に限定されず、例えば、一般式(2)で表されるジハロゲン化合物と一般式(3)で表されるビスフェノール化合物を、アルカリ金属化合物存在下に、脱塩重縮合反応をすることにより製造することができる。
(式中、Xは各々独立してハロゲン原子を示し、mは一般式(1)の定義と同じである。)
(式中、R、nは一般式(1)の定義と同じである。)
(Method of producing PAEK of the present invention)
The method for producing the PAEK of the present invention is not particularly limited, and for example, the PAEK can be produced by subjecting a dihalogen compound represented by general formula (2) and a bisphenol compound represented by general formula (3) to a desalting polycondensation reaction in the presence of an alkali metal compound.
(In the formula, each X independently represents a halogen atom, and m is defined as in general formula (1).)
(In the formula, R 1 and n are defined as in general formula (1).)
 その具体例として、一般式(2)で表されるジハロゲン化合物として4,4’-ジフルオロベンゾフェノン(2a)、一般式(3)で表されるビスフェノール化合物として4,4’-(3,3,5-トリメチルシクロヘキシリデン)ビス(2,6-ジメチルフェノール)(3a)、アルカリ金属化合物として炭酸ナトリウムを使用した場合、化学式(1a)で表される繰り返し単位を有するポリアリールエーテルケトンを製造することができる。この反応式を以下に示す。
As a specific example, when 4,4'-difluorobenzophenone (2a) is used as the dihalogen compound represented by general formula (2), 4,4'-(3,3,5-trimethylcyclohexylidene)bis(2,6-dimethylphenol) (3a) is used as the bisphenol compound represented by general formula (3), and sodium carbonate is used as the alkali metal compound, a polyaryl ether ketone having a repeating unit represented by chemical formula (1a) can be produced. The reaction formula is shown below.
(一般式(2)で表されるジハロゲン化合物)
 一般式(2)におけるXは、具体的には、フッ素原子、塩素原子、臭素原子、ヨウ素原子を示し、この中でもフッ素原子又は塩素原子であることが好ましく、フッ素原子であることが特に好ましい。
 一般式(2)におけるmは、1であることが好ましい。
 一般式(2)で表されるジハロゲン化合物として、具体的には、例えば、4,4’-ジフルオロベンゾフェノン、4,4’-ジクロロベンゾフェノン、4,4’-ジブロモベンゾフェノン、4,4’-ジヨードベンゾフェノン、1,4-ビス(4-フルオロベンゾイル)ベンゼン、1,4-ビス(4-クロロベンゾイル)ベンゼン、1,4-ビス(4-ブロモベンゾイル)ベンゼン、1,4-ビス(4-ヨードベンゾイル)ベンゼンが挙げられる。
 この中でも、4,4’-ジフルオロベンゾフェノン、4,4’-ジクロロベンゾフェノンが好ましく、4,4’-ジフルオロベンゾフェノンが特に好ましい。
(Dihalogen compound represented by general formula (2))
Specifically, X in the general formula (2) represents a fluorine atom, a chlorine atom, a bromine atom, or an iodine atom. Among these, a fluorine atom or a chlorine atom is preferable, and a fluorine atom is particularly preferable.
In formula (2), m is preferably 1.
Specific examples of the dihalogen compound represented by the general formula (2) include 4,4'-difluorobenzophenone, 4,4'-dichlorobenzophenone, 4,4'-dibromobenzophenone, 4,4'-diiodobenzophenone, 1,4-bis(4-fluorobenzoyl)benzene, 1,4-bis(4-chlorobenzoyl)benzene, 1,4-bis(4-bromobenzoyl)benzene, and 1,4-bis(4-iodobenzoyl)benzene.
Of these, 4,4'-difluorobenzophenone and 4,4'-dichlorobenzophenone are preferred, with 4,4'-difluorobenzophenone being particularly preferred.
(一般式(3)表されるビスフェノール化合物)
 一般式(3)におけるR及びnは、一般式(1)における定義及び好ましい態様は同じである。
 一般式(3)で表されるビスフェノール化合物として、具体的には、例えば4,4’-(3,3,5-トリメチルシクロヘキシリデン)ビス(2,6-ジメチルフェノール)、4,4’-(3,3,5-トリメチルシクロヘキシリデン)ビス(2,6-ジ-t-ブチルフェノール)、4,4’-(3,3,5-トリメチルシクロヘキシリデン)ビス(2-メチルフェノール)、4,4’-(3,3,5-トリメチルシクロヘキシリデン)ビス(2-t-ブチルフェノール)が挙げられる。
 この中でも4,4’-(3,3,5-トリメチルシクロヘキシリデン)ビス(2,6-ジメチルフェノール)が特に好ましい。
 本発明にかかるPAEKにおいて、一般式(1)で表される繰り返し単位と他の繰り返し単位を有するPAEKを得るために、一般式(3)で表されるビフェノール化合物に加えて、その他の芳香族ジヒドロキシ化合物を併用することができる。他の繰り返し単位は、これら芳香族ジヒドロキシ化合物に由来する構造と、一般式(2)で表されるジハロゲン化合物に由来する構造を有する繰り返し単位を有する。併用できる芳香族ジヒドロキシ化合物として、具体的には、例えば、ハイドロキノン、レゾルシン、2-フェニルヒドロキノン、4,4’-ビフェノール、2,6-ジヒドロキシナフタレン、2,7-ジヒドロキシナフタレン、1,1’-ビ-2-ナフトール、2,2’-ビ-1-ナフトール、1,3-ビス[1-メチル-1-(4-ヒドロキシフェニル)エチル]ベンゼン、1,4-ビス[1-メチル-1-(4-ヒドロキシフェニル)エチル]ベンゼン、1,3-ビス(4-ヒドロキシベンゾイル)ベンゼン、1,4-ビス(4-ヒドロキシベンゾイル)ベンゼン、1,3-ビス(4-ヒドロキシフェノキシ)ベンゼン、1,4-ビス(4-ヒドロキシフェノキシ)ベンゼン、1,4-ビス(4-ヒドロキシフェニル)ベンゼン、1,3-ビス(4-ヒドロキシフェニル)ベンゼン、4,4’-メチレンビス(フェノール)、4,4’-メチレンビス(2,6-ジメチルフェノール)、4,4’-イソプロピリデンビフェノール(Bis-A)、2,2-ビス(4-ヒドロキシフェニル)-1,1,1,3,3,3-ヘキサフルオロプロパン、4,4’-ジヒドロキシベンゾフェノン、4,4’-ビス(ヒドロキシフェニル)スルホン、4,4’-ジヒドロキシジフェニルエーテル、ビス(4-ヒドロキシフェニル)メタン、9,9-ビス(4-ヒドロキシフェニル)フルオレン、9,9-ビス(3-フェニル-4-ヒドロキシフェニル)フルオレン、9,9-ビス(3,5-ジフェニル-4-ヒドロキシフェニル)フルオレン、9,9-ビス(4-ヒドロキシ-3-メチルフェニル)フルオレン、9,9-ビス(4-ヒドロキシ-3,5-ジメチルフェニル)フルオレン、9,9-ビス(4-ヒドロキシ-3-シクロヘキシルフェニル)フルオレン、2,2-ビス(4-ヒドロキシ-3-フェニルフェニル)プロパン、ビスフェノールZ(1,1-ビス(4-ヒドロキシフェニル)シクロヘキサン)、ビスフェノールTMC(1,1-ビス(4-ヒドロキシフェニル)-3,3,5-トリメチルシクロヘキサン)、1,1-ビス(4-ヒドロキシフェニル)シクロドデカン、1,1-ビス(4-ヒドロキシフェニル)-1-フェニルエタンが挙げられる。これらの化合物は1種のみを用いてもよいし、2種以上を組み合わせて用いることも可能である。
(Bisphenol compound represented by general formula (3))
The definitions and preferred embodiments of R 1 and n in formula (3) are the same as those in formula (1).
Specific examples of the bisphenol compound represented by the general formula (3) include 4,4'-(3,3,5-trimethylcyclohexylidene)bis(2,6-dimethylphenol), 4,4'-(3,3,5-trimethylcyclohexylidene)bis(2,6-di-t-butylphenol), 4,4'-(3,3,5-trimethylcyclohexylidene)bis(2-methylphenol), and 4,4'-(3,3,5-trimethylcyclohexylidene)bis(2-t-butylphenol).
Among these, 4,4'-(3,3,5-trimethylcyclohexylidene)bis(2,6-dimethylphenol) is particularly preferred.
In the PAEK according to the present invention, in order to obtain a PAEK having a repeating unit represented by the general formula (1) and another repeating unit, other aromatic dihydroxy compounds can be used in combination with the biphenol compound represented by the general formula (3). The other repeating units have a structure derived from these aromatic dihydroxy compounds and a repeating unit having a structure derived from the dihalogen compound represented by the general formula (2). Specific examples of aromatic dihydroxy compounds that can be used in combination include hydroquinone, resorcinol, 2-phenylhydroquinone, 4,4'-biphenol, 2,6-dihydroxynaphthalene, 2,7-dihydroxynaphthalene, 1,1'-bi-2-naphthol, 2,2'-bi-1-naphthol, 1,3-bis[1-methyl-1-(4-hydroxyphenyl)ethyl]benzene, 1,4-bis[1-methyl-1-(4-hydroxyphenyl)ethyl]benzene, 1,3-bis(4-hydroxybenzoyl)benzene, 1,4-bis(4-hydroxybenzoyl)benzene, 1,3-bis(4-hydroxyphenoxy)benzene, 1,4-bis(4-hydroxyphenoxy)benzene, 1,4-bis(4-hydroxyphenyl)benzene, 1,3-bis(4-hydroxyphenyl)benzene, 4,4'-methylenebis(phenol), 4,4'-methylenebis(2,6-dimethylphenol), 4,4'-isopropylidenebiphenol (Bis-A), 2,2-bis(4-hydroxyphenyl)-1,1,1,3,3,3-hexaphenyl Fluoropropane, 4,4'-dihydroxybenzophenone, 4,4'-bis(hydroxyphenyl)sulfone, 4,4'-dihydroxydiphenyl ether, bis(4-hydroxyphenyl)methane, 9,9-bis(4-hydroxyphenyl)fluorene, 9,9-bis(3-phenyl-4-hydroxyphenyl)fluorene, 9,9-bis(3,5-diphenyl-4-hydroxyphenyl)fluorene, 9,9-bis(4-hydroxy-3-methylphenyl)fluorene, 9,9-bis(4-hydroxy-3,5- Examples of such compounds include 1,1-bis(dimethylphenyl)fluorene, 9,9-bis(4-hydroxy-3-cyclohexylphenyl)fluorene, 2,2-bis(4-hydroxy-3-phenylphenyl)propane, bisphenol Z (1,1-bis(4-hydroxyphenyl)cyclohexane), bisphenol TMC (1,1-bis(4-hydroxyphenyl)-3,3,5-trimethylcyclohexane), 1,1-bis(4-hydroxyphenyl)cyclododecane, and 1,1-bis(4-hydroxyphenyl)-1-phenylethane. These compounds may be used alone or in combination of two or more.
(アルカリ金属化合物)
 アルカリ金属化合物としては、一般式(3)で表されるビスフェノール化合物をアルカリ金属塩に変えることが可能であれば、どのようなものも使用可能であるが、通常、アルカリ金属の炭酸塩、炭酸水素塩、水酸化物等が好適に使用され、特に、炭酸塩が好ましく使用される。該アルカリ金属としては、リチウム、ナトリウム、カリウム、ルビジウム及びセシウムを挙げることができるが、中でも、ナトリウム及びカリウムが好ましく、特にカリウムが好ましい。
(alkali metal compounds)
Any alkali metal compound can be used as long as it can convert the bisphenol compound represented by the general formula (3) into an alkali metal salt, but usually, carbonates, hydrogen carbonates, hydroxides, etc. of alkali metals are preferably used, and carbonates are particularly preferred. Examples of the alkali metal include lithium, sodium, potassium, rubidium, and cesium, and among them, sodium and potassium are preferred, and potassium is particularly preferred.
(溶媒)
 PAEKを得る重縮合反応において溶媒を使用することができ、使用することが好ましい。使用される溶媒としては、N,N-ジメチルホルムアミド(DMF)、N,N-ジメチルアセトアミド(DMAc)、N-メチルピロリドン(NMP)、ジメチルイミダゾリジノン(DMI)、ジメチルスルホキシド(DMSO)、スルホラン、ジフェニルスルホン等の中性極性溶媒が好ましいが、モノマーおよび重合体が溶解すれば如何なる溶媒であっても何ら問題なく使用できる。溶媒は1種単独で使用してもよく、2種以上を混合溶媒として併用してもよい。
(solvent)
A solvent can be used in the polycondensation reaction to obtain PAEK, and it is preferable to use the solvent. As the solvent to be used, a neutral polar solvent such as N,N-dimethylformamide (DMF), N,N-dimethylacetamide (DMAc), N-methylpyrrolidone (NMP), dimethylimidazolidinone (DMI), dimethylsulfoxide (DMSO), sulfolane, diphenylsulfone, etc. is preferable, but any solvent can be used without any problem as long as the monomer and polymer are soluble in the solvent. The solvent may be used alone or in combination of two or more kinds as a mixed solvent.
(重縮合反応の条件)
 使用する一般式(2)で表されるジハロゲン化合物の量は、一般式(3)で表されるビスフェノール化合物(一般式(3)以外の芳香族ジヒドロキシ化合物を併用する際は、一般式(3)で表されるビスフェノール化合物とそれ以外の芳香族ジヒドロキシ化合物の合計)に対して、目的とする分子量によるが、分子量が大きなPAEK(具体的には、好ましくは10,000以上500,000以下の範囲、さらに好ましくは20,000以上200,000以下の範囲、特に好ましくは30,000以上150,000以下の範囲)を製造するためには、通常0.9~1.1モル倍の範囲、好ましくは0.95~1.06モル倍の範囲、より好ましくは1.0~1.04モル倍の範囲である。
 一方、分子量が小さなPAEK(具体的には、好ましくは2,000以上100,000以下の範囲、より好ましくは2,000以上50,000以下の範囲、さらに好ましくは2,000以上30,000以下の範囲、特に好ましくは2,000以上10,000以下の範囲)を製造するためには、通常0.6~1.4モル倍の範囲、好ましくは0.7~1.3モル倍の範囲、より好ましくは0.8~1.2モル倍の範囲である。
 製造するPAEKの高分子鎖の末端構造が、両方ともハロゲン原子である場合のPAEKは、前記モル比が、1.01~1.1モル倍の範囲であり、1.01~1.06モル倍の範囲であることが好ましく、1.01~1.04モル倍の範囲であることがより好ましい。
 製造するPAEKの高分子鎖の末端構造が、両方ともヒドロキシ基である場合のPAEKにおいて、分子量が大きなPAEKは、前記モル比が、0.9~0.99モル倍の範囲であり、0.95~0.99モル倍の範囲であることが好ましく、分子量が小さなPAEKは、通常0.6~0.95モル倍の範囲、好ましくは0.7~0.9モル倍の範囲、より好ましくは0.8~0.9モル倍の範囲である。
 使用するアルカリ金属化合物の量は、一般式(3)で表されるビスフェノール化合物に対して、通常1.0~3.0モル倍の範囲、好ましくは1.01~1.3モル倍の範囲である。
 反応温度は、通常150~350℃、好ましくは180~250℃の範囲で、反応時間は、通常1~60時間、好ましくは2~50時間で行われる。
 これらの反応は窒素やアルゴンなどの不活性ガス雰囲気下で行うことが好ましい。また、反応圧力について制限はなく、減圧、大気圧、加圧のいずれでもよいが、通常大気圧で行われる。
(Polycondensation reaction conditions)
The amount of the dihalogen compound represented by the general formula (2) used depends on the target molecular weight relative to the bisphenol compound represented by the general formula (3) (when an aromatic dihydroxy compound other than the general formula (3) is used in combination, the total of the bisphenol compound represented by the general formula (3) and the other aromatic dihydroxy compound). In order to produce a PAEK having a large molecular weight (specifically, preferably in the range of 10,000 to 500,000, more preferably in the range of 20,000 to 200,000, and particularly preferably in the range of 30,000 to 150,000), the amount is usually in the range of 0.9 to 1.1 times by mole, preferably in the range of 0.95 to 1.06 times by mole, and more preferably in the range of 1.0 to 1.04 times by mole.
On the other hand, in order to produce a PAEK having a small molecular weight (specifically, preferably in the range of 2,000 to 100,000, more preferably in the range of 2,000 to 50,000, even more preferably in the range of 2,000 to 30,000, and particularly preferably in the range of 2,000 to 10,000), the molar ratio is usually in the range of 0.6 to 1.4 times, preferably in the range of 0.7 to 1.3 times, and more preferably in the range of 0.8 to 1.2 times.
In the case where the end structures of the polymer chain of the PAEK to be produced are both halogen atoms, the molar ratio is in the range of 1.01 to 1.1 times by mole, preferably in the range of 1.01 to 1.06 times by mole, and more preferably in the range of 1.01 to 1.04 times by mole.
In the case where the terminal structures of the polymer chain of the PAEK to be produced are both hydroxy groups, the molar ratio for a PAEK having a large molecular weight is in the range of 0.9 to 0.99 molar times, and preferably in the range of 0.95 to 0.99 molar times, while the molar ratio for a PAEK having a small molecular weight is usually in the range of 0.6 to 0.95 molar times, preferably in the range of 0.7 to 0.9 molar times, and more preferably in the range of 0.8 to 0.9 molar times.
The amount of the alkali metal compound used is usually in the range of 1.0 to 3.0 moles, preferably 1.01 to 1.3 moles, per mole of the bisphenol compound represented by formula (3).
The reaction temperature is usually in the range of 150 to 350° C., preferably 180 to 250° C., and the reaction time is usually in the range of 1 to 60 hours, preferably 2 to 50 hours.
These reactions are preferably carried out in an atmosphere of an inert gas such as nitrogen, argon, etc. There is no limitation on the reaction pressure, and the reaction may be carried out at reduced pressure, atmospheric pressure, or elevated pressure, but the reaction is usually carried out at atmospheric pressure.
<反応後の処理>
 前記重縮合反応により生成したPAEKは、凝析、固化、洗浄、粒状化、抽出、溶媒留去など通常用いられている方法に従って回収できる。
 前記重縮合反応により生成したPAEKの処理方法として、より詳細に例示して説明する。重縮合反応により生成したPAEKを含む液を、必要に応じて重合体を含む反応液を溶媒で希釈して、貧溶媒に混合することにより沈殿を析出させて、粉体状のPAEKを得ることができる。沈殿の析出に用いる溶媒としては、例えば、メタノール、エタノール、アセトン、メチルエチルケトン、キシレン、トルエン等が好ましく、操作性や洗浄後の反応溶媒の蒸留回収の容易さから、特に、アセトンやメタノールが好ましい。
 沈殿の析出により得られた粉体状のPAEKは、脱塩重縮合反応で生成した塩化カリウムなどのアルカリ金属塩や、反応で使用した溶媒、沈殿の析出に用いた溶媒を除去するために洗浄する、洗浄工程を行うことが好ましい。
 脱塩重縮合反応で生成した塩化カリウムなどのアルカリ金属塩の洗浄には、水が好ましく、塩酸、ギ酸、シュウ酸等を低濃度で含んだ酸性水を使用しても良い。
 この洗浄工程の条件は、除去目標とする残留反応溶媒、残留アルカリ金属塩の量にあわせて、洗浄溶媒の使用量、洗浄回数、洗浄温度を適宜選択すればよい。
 水を用いた洗浄の後、例えば、メタノール、エタノール、アセトン、メチルエチルケトン、キシレン、トルエン、その中でもアセトンやメタノールを用いた粉体の洗浄を行ってもよい。
 洗浄に用いる装置としては、洗浄槽と加圧ろ過機又は遠心分離機の他、1つの装置で洗浄、ろ過、乾燥が可能な多機能ろ過装置等を用いてもよい。
<Post-reaction treatment>
The PAEK produced by the polycondensation reaction can be recovered by a commonly used method such as coagulation, solidification, washing, granulation, extraction, or solvent distillation.
The method for treating the PAEK produced by the polycondensation reaction will be described in more detail. The liquid containing the PAEK produced by the polycondensation reaction can be diluted with a solvent as necessary, and mixed with a poor solvent to precipitate the PAEK, thereby obtaining a powdered PAEK. As the solvent used for precipitation of the precipitate, for example, methanol, ethanol, acetone, methyl ethyl ketone, xylene, toluene, etc. are preferable, and acetone and methanol are particularly preferable in view of operability and ease of distillation recovery of the reaction solvent after washing.
The powdered PAEK obtained by precipitation of the precipitate is preferably subjected to a washing step in order to remove alkali metal salts such as potassium chloride produced in the desalting polycondensation reaction, the solvent used in the reaction, and the solvent used in the precipitation of the precipitate.
For washing away alkali metal salts such as potassium chloride produced in the desalting polycondensation reaction, water is preferred, but acidic water containing low concentrations of hydrochloric acid, formic acid, oxalic acid, etc. may also be used.
The conditions for this washing step may be appropriately selected according to the amounts of residual reaction solvent and residual alkali metal salts to be removed, such as the amount of washing solvent used, the number of washings, and the washing temperature.
After washing with water, the powder may be washed with, for example, methanol, ethanol, acetone, methyl ethyl ketone, xylene, or toluene, particularly acetone or methanol.
The washing apparatus may be a combination of a washing tank and a pressure filter or a centrifuge, or a multi-function filter capable of washing, filtering and drying in one apparatus.
 上記洗浄工程により得られた洗浄終了後の水分や溶媒を含む粉体状のPAEKを、乾燥する乾燥工程を行うことができる。
 この乾燥工程の条件は、重縮合反応物の融点以下の温度で、水分の除去が可能な条件であればよい。できるだけ空気に触れないよう、不活性ガス(窒素、アルゴン等)の雰囲気下や、不活性ガス気流下、減圧下で行うのが好ましい。
 乾燥機は、エバポレーター、棚段式オーブン、タンブラーなど、公知の装置を用いることができる。
A drying step can be carried out to dry the powdered PAEK containing moisture and solvent obtained after the completion of the washing step.
The conditions for this drying step may be any conditions that allow removal of moisture at a temperature equal to or lower than the melting point of the polycondensation reaction product. It is preferable to perform the drying step under an inert gas (nitrogen, argon, etc.) atmosphere, under an inert gas stream, or under reduced pressure so as to minimize contact with air.
The dryer may be a known device such as an evaporator, a tray oven, or a tumbler.
 末端構造が一般式(4)で表される基(アクリロイル基又はメタクリロイル基)である本発明のPAEKは、上記方法により得られた高分子鎖の末端にヒドロキシ基を含む一般式(1)で表される繰り返し単位を有するポリアリールエーテルケトンに対して、従来公知のヒドロキシ化合物の(メタ)アクリル化の方法を適用することにより製造することができる。
 (メタ)アクリル化をする方法としては、例えば、一般式(1)で表される繰り返し単位を有するポリアリールエーテルケトンの末端ヒドロキシ基に対して、(メタ)アクリル酸及びその誘導体を反応させる方法がある。(メタ)アクリル酸の誘導体として、アクリル酸クロライドを用いた場合、クロライドイオンが塩化水素の形で発生するので、塩化水素補足剤を併用して行うのが好ましい。塩化水素補足剤としては、アルカリ金属の炭酸塩や炭酸水素塩、3級アミン類等の無機又は有機塩基性物質であれば使用できる。(メタ)アクリル酸及びその誘導体としては、具体的には、例えば、アクリル酸、メタクリル酸、アクリル酸クロライド、メタクリル酸クロライド等が挙げられる。
 アクリル化の反応において、塩化メチレンのようなハロゲン化炭化水素やテトラヒドロフラン、ジオキサン、クロロベンゼン等の溶媒を使用してもよい。
 反応時に重合禁止剤として、例えば、ハイドロキノン、ハイドロキノンモノメチルエーテル、フェノチアジン、2,6-ジ-tert-ブチル-4-メチルフェノール(BHT)等を添加しても良い。
The PAEK of the present invention, whose terminal structure is a group represented by general formula (4) (an acryloyl group or a methacryloyl group), can be produced by applying a conventionally known method for (meth)acrylation of a hydroxy compound to a polyaryl ether ketone having a repeating unit represented by general formula (1) containing a hydroxy group at the end of the polymer chain obtained by the above-mentioned method.
As a method for (meth)acrylation, for example, there is a method of reacting (meth)acrylic acid and its derivatives with the terminal hydroxyl group of polyaryletherketone having a repeating unit represented by general formula (1). When acrylic acid chloride is used as a derivative of (meth)acrylic acid, chloride ions are generated in the form of hydrogen chloride, so it is preferable to use a hydrogen chloride scavenger in combination. As the hydrogen chloride scavenger, inorganic or organic basic substances such as carbonates or hydrogen carbonates of alkali metals, tertiary amines, etc. can be used. Specific examples of (meth)acrylic acid and its derivatives include acrylic acid, methacrylic acid, acrylic acid chloride, methacrylic acid chloride, etc.
In the acrylation reaction, a solvent such as a halogenated hydrocarbon such as methylene chloride, tetrahydrofuran, dioxane, chlorobenzene, or the like may be used.
During the reaction, a polymerization inhibitor such as hydroquinone, hydroquinone monomethyl ether, phenothiazine, or 2,6-di-tert-butyl-4-methylphenol (BHT) may be added.
 末端構造が化学式(5)で表される基(グリシジルエーテル基)である本発明のPAEKは、上記方法により得られた高分子鎖の末端にヒドロキシ基を含む一般式(1)で表される繰り返し単位を有するポリアリールエーテルケトンに対して、従来公知のヒドロキシ化合物のグリシジルエーテル化の方法を適用することにより製造することができる。
 グリシジルエーテル化をする方法としては、例えば、一般式(1)で表される繰り返し単位を有するポリアリールエーテルケトンの末端ヒドロキシ基に対して、エピハロヒドリンを、アルカリ金属水酸化物(例えば水酸化ナトリウムや水酸化カリウム)や4級アンモニウム塩(例えば、テトラメチルアンモニウムクロライドやテトラメチルアンモニウムブロマイド)の存在下に反応を行うことにより、グリシジルエーテル化されたPAEKを製造することができる。使用するエピハロヒドリンとして、具体的には、エピクロルヒドリン、エピブロムヒドリンが挙げられる。
The PAEK of the present invention, whose terminal structure is a group represented by chemical formula (5) (glycidyl ether group), can be produced by applying a conventionally known method for glycidyl etherifying a hydroxy compound to a polyaryl ether ketone having a repeating unit represented by general formula (1) containing a hydroxy group at the end of the polymer chain obtained by the above-mentioned method.
As a method for glycidyl etherification, for example, a glycidyl etherified PAEK can be produced by reacting a terminal hydroxy group of a polyaryletherketone having a repeating unit represented by the general formula (1) with epihalohydrin in the presence of an alkali metal hydroxide (e.g., sodium hydroxide or potassium hydroxide) or a quaternary ammonium salt (e.g., tetramethylammonium chloride or tetramethylammonium bromide). Specific examples of the epihalohydrin used include epichlorohydrin and epibromohydrin.
<ポリアリールエーテルケトン樹脂組成物>
 本発明のPAEKには、所望に応じて難燃剤、熱安定剤、酸化安定剤、耐候安定剤、帯電防止剤、滑剤、可塑剤等の各種添加剤を、本発明の効果を損なわない範囲で、原料樹脂に添加剤を配合する常法により配合することができる。本発明のPAEKと、難燃剤、熱安定剤、酸化安定剤、耐候安定剤、帯電防止剤、滑剤、可塑剤からなる群より1つ以上選択される添加剤を含む、ポリアリールエーテルケトン樹脂組成物とすることができる。
 このポリアリールエーテルケトン樹脂組成物は、後述する本発明のPAEKの利用と同様に利用をすることができる。
<Polyaryletherketone resin composition>
The PAEK of the present invention can be blended with various additives such as flame retardants, heat stabilizers, oxidation stabilizers, weathering stabilizers, antistatic agents, lubricants, plasticizers, etc., as desired, by a conventional method of blending additives with raw resins, within a range that does not impair the effects of the present invention. A polyaryl ether ketone resin composition can be obtained, which contains the PAEK of the present invention and one or more additives selected from the group consisting of flame retardants, heat stabilizers, oxidation stabilizers, weathering stabilizers, antistatic agents, lubricants, and plasticizers.
This polyaryl ether ketone resin composition can be used in the same manner as the PAEK of the present invention described below.
<本発明のポリアリールエーテルケトンの利用>
 後に詳述する電子機器及びそれに用いる電子デバイスのほか、宇宙航空用機器、輸送機器、医療機器、医療器具(例えば、注射針、インプラント、義歯、人工骨など)、3Dプリンタの造形用材料、食品分野の器具・機械に用いる各種樹脂材料として利用することができる。
<Use of the polyaryl ether ketone of the present invention>
In addition to electronic devices and electronic devices used therein, which will be described in detail later, the material can be used as aerospace equipment, transportation equipment, medical equipment, medical instruments (e.g., injection needles, implants, dentures, artificial bones, etc.), modeling materials for 3D printers, and various resin materials used in instruments and machines in the food industry.
(電子機器・デバイス用ポリアリールエーテルケトン樹脂材料)
 本発明のポリアリールエーテルケトンは、耐熱性を有することに加え、優れた高周波数帯の誘電特性と、低い吸水性を有するため、本発明のポリアリールエーテルケトンを含む樹脂材料は、電子機器やこれに用いる電子デバイス(電子機器・デバイス)に用いるポリアリールエーテルケトン樹脂材料として好適であり、特に、高周波数帯の電波を利用した高速通信に用いる電子機器・デバイス(高周波通信用電子機器・デバイス)に用いるポリアリールエーテルケトン樹脂材料として好適である。
 電子機器・デバイス用ポリアリールエーテルケトン樹脂材料は、製造する電子機器・デバイスに必要な特性に合わせて、本発明のポリアリールエーテルケトンのみの樹脂材料であってもよく、その他に、難燃剤、熱安定剤、酸化安定剤、耐候安定剤、帯電防止剤、滑剤、可塑剤からなる群より1つ以上選択される添加剤を含む樹脂材料であってもよい。
 電子機器・デバイス用ポリアリールエーテルケトン樹脂材料の重量平均分子量(Mw)は、2,000以上1,000,000以下の範囲が好ましく、10,000以上500,000以下の範囲がより好ましく、20,000以上200,000以下の範囲がさらに好ましく、30,000以上150,000以下の範囲が特に好ましい。
 電子機器・デバイス用ポリアリールエーテルケトン樹脂材料の高分子鎖の両末端構造が、(i)両方ともハロゲン原子である場合、(ii)両方ともヒドロキシ基である場合、(iii)一方がハロゲン原子でありもう一方がヒドロキシ基である場合ある場合は、熱可塑性樹脂として利用するにおいて、十分な機械強度を持たせるために、重量平均分子量(Mw)は、その中でも、10,000以上500,000以下の範囲がより好ましく、20,000以上200,000以下の範囲がさらに好ましく、30,000以上150,000以下の範囲が特に好ましい。
 電子機器・デバイス用ポリアリールエーテルケトン樹脂材料の末端構造が、(i)両方とも一般式(4)又は化学式(5)で表される基から選択される1つの基である場合、(ii)一方が一般式(4)又は化学式(5)で表される基から選択される1つの基であり、もう一方がハロゲン原子である場合、(iii)一方が一般式(4)又は化学式(5)で表される基から選択される1つの基であり、もう一方がヒドロキシ基である場合は、硬化性樹脂として利用するにおいて、良好な加工性を持たせるために、重量平均分子量(Mw)は、その中でも、2,000以上100,000以下の範囲が好ましく、2,000以上50,000以下の範囲がより好ましく、2,000以上30,000以下の範囲がより好ましく、2,000以上10,000以下の範囲が特に好ましい。
 数平均分子量(Mn)に対する重量平均分子量(Mw)の比であるMw/Mnは、1.5以上20以下の範囲が好ましく、2以上15以下の範囲がより好ましく、2以上10以下の範囲がさらに好ましく、2以上8以下の範囲が特に好ましい。
 電子機器・デバイス用ポリアリールエーテルケトン樹脂材料のガラス転移温度は200℃以上が好ましい。更にガラス転移温度は、210℃以上がより好ましく、220℃以上がさらに好ましく、230℃以上が特に好ましい。かかるガラス転移温度は、高いほど耐熱性に優れるため好ましいので上限値は、特に制限はないが、300℃以下であっても良い。
 電子機器・デバイス用ポリアリールエーテルケトン樹脂材料の周波数10GHzで測定した誘電正接は0.004以下が好ましい。かかる誘電正接が0.004以下であれば、電子機器用、特に、高周波数帯の電波を利用した高速通信に用いる電子機器やそれに使用する電子デバイス(高周波通信用電子機器・デバイス)用のポリアリールエーテルケトン樹脂材料として好適に利用することができる。かかる誘電正接は、0.0035以下がより好ましく、0.0030以下がさらに好ましく、0.0025以下が特に好ましい。かかる誘電正接は、低いほど好ましいので下限値は、特に制限はないが、0.0010以上であってもよい。
 電子機器・デバイス用ポリアリールエーテルケトン樹脂材料の周波数10GHzで測定した比誘電率は3.5以下が好ましい。かかる比誘電率が3.5以下であれば、電子機器用、特に、高周波数帯の電波を利用した高速通信に用いる電子機器やそれに使用する電子デバイス(高周波通信用電子機器・デバイス)用のポリアリールエーテルケトン樹脂材料として好適に利用することができる。かかる比誘電率は、3.0以下がより好ましく、2.9以下がさらに好ましく、2.8以下が特に好ましい。かかる比誘電率は、低いほど好ましいので下限値は、特に制限はないが、2.0以上であってもよい。
 電子機器・デバイス用ポリアリールエーテルケトン樹脂材料の吸水率は、0.35%以下であることが好ましい。かかる吸水率が0.35%以下であれば、電子機器用、特に、高周波数帯の電波を利用した高速通信に用いる電子機器やそれに使用する電子デバイス(高周波通信用電子機器・デバイス)用のポリアリールエーテルケトン樹脂材料として好適に利用することができる。かかる吸水率は、0.30%以下がより好ましく、0.20%以下がさらに好ましく、0.1%以下が特に好ましい。かかる吸水率は、低いほど好ましいので下限値は、特に制限はないが、0.001%以上であってもよい。
(Polyaryletherketone resin materials for electronic devices)
The polyaryl ether ketone of the present invention has heat resistance, as well as excellent dielectric properties in the high frequency band and low water absorption. Therefore, a resin material containing the polyaryl ether ketone of the present invention is suitable as a polyaryl ether ketone resin material for use in electronic devices and electronic devices used therein (electronic devices and devices), and is particularly suitable as a polyaryl ether ketone resin material for use in electronic devices and devices used in high-speed communications using radio waves in the high frequency band (electronic devices and devices for high-frequency communication).
The polyaryletherketone resin material for electronic devices and devices may be a resin material containing only the polyaryletherketone of the present invention, depending on the properties required for the electronic devices and devices to be manufactured, or may be a resin material containing one or more additives selected from the group consisting of flame retardants, heat stabilizers, oxidation stabilizers, weather resistance stabilizers, antistatic agents, lubricants, and plasticizers.
The weight average molecular weight (Mw) of the polyaryl ether ketone resin material for electronic devices is preferably in the range of 2,000 to 1,000,000, more preferably in the range of 10,000 to 500,000, still more preferably in the range of 20,000 to 200,000, and particularly preferably in the range of 30,000 to 150,000.
In the case where both end structures of the polymer chain of the polyaryl ether ketone resin material for electronic devices are (i) both halogen atoms, (ii) both hydroxy groups, or (iii) one halogen atom and the other hydroxy group, in order to provide sufficient mechanical strength when used as a thermoplastic resin, the weight average molecular weight (Mw) is more preferably in the range of 10,000 or more and 500,000 or less, further preferably in the range of 20,000 or more and 200,000 or less, and particularly preferably in the range of 30,000 or more and 150,000 or less.
In the case where the terminal structures of the polyaryl ether ketone resin material for electronic devices and electronic devices are (i) both of which are a group selected from the group represented by general formula (4) or chemical formula (5), (ii) one of which is a group selected from the group represented by general formula (4) or chemical formula (5) and the other is a halogen atom, or (iii) one of which is a group selected from the group represented by general formula (4) or chemical formula (5) and the other is a hydroxy group, in order to provide good processability when used as a curable resin, the weight average molecular weight (Mw) is preferably in the range of 2,000 to 100,000, more preferably in the range of 2,000 to 50,000, more preferably in the range of 2,000 to 30,000, and particularly preferably in the range of 2,000 to 10,000.
The ratio of weight average molecular weight (Mw) to number average molecular weight (Mn), Mw/Mn, is preferably in the range of 1.5 or more and 20 or less, more preferably in the range of 2 or more and 15 or less, even more preferably in the range of 2 or more and 10 or less, and particularly preferably in the range of 2 or more and 8 or less.
The glass transition temperature of the polyaryl ether ketone resin material for electronic devices and electronic devices is preferably 200° C. or higher. Furthermore, the glass transition temperature is more preferably 210° C. or higher, further preferably 220° C. or higher, and particularly preferably 230° C. or higher. The higher the glass transition temperature, the more excellent the heat resistance, and therefore the upper limit is not particularly limited, but may be 300° C. or lower.
The dielectric loss tangent of the polyaryl ether ketone resin material for electronic devices and devices measured at a frequency of 10 GHz is preferably 0.004 or less. If the dielectric loss tangent is 0.004 or less, it can be suitably used as a polyaryl ether ketone resin material for electronic devices, particularly for electronic devices used in high-speed communication using radio waves in the high frequency band and electronic devices used therein (electronic devices and devices for high frequency communication). The dielectric loss tangent is more preferably 0.0035 or less, even more preferably 0.0030 or less, and particularly preferably 0.0025 or less. The lower the dielectric loss tangent, the more preferable it is, so there is no particular limit to the lower limit, but it may be 0.0010 or more.
The dielectric constant of the polyaryl ether ketone resin material for electronic devices and devices measured at a frequency of 10 GHz is preferably 3.5 or less. If the dielectric constant is 3.5 or less, it can be suitably used as a polyaryl ether ketone resin material for electronic devices, particularly for electronic devices used in high-speed communication using high-frequency radio waves and electronic devices used therein (high-frequency communication electronic devices and devices). The dielectric constant is more preferably 3.0 or less, even more preferably 2.9 or less, and particularly preferably 2.8 or less. The lower the dielectric constant, the more preferable it is, so there is no particular limit to the lower limit, but it may be 2.0 or more.
The water absorption rate of the polyaryl ether ketone resin material for electronic devices and devices is preferably 0.35% or less. If the water absorption rate is 0.35% or less, it can be suitably used as a polyaryl ether ketone resin material for electronic devices, particularly for electronic devices used in high-speed communication using high-frequency radio waves and electronic devices used therein (high-frequency communication electronic devices and devices). The water absorption rate is more preferably 0.30% or less, even more preferably 0.20% or less, and particularly preferably 0.1% or less. The lower the water absorption rate, the more preferable it is, so there is no particular limit to the lower limit, but it may be 0.001% or more.
(成形品)
 本発明のPAEKは、射出成形、押出成形、圧縮成形などの通常の溶融成形法を適用することができ、フィルム、シート、テープ、容器、糸、レンズ、チューブ、ペレット、チップなどの種々の成形品を製造することができる。
 本発明のPAEKの成形品の周波数10GHzで測定した誘電正接は0.004以下が好ましい。かかる誘電正接が0.004以下であれば、電子機器・デバイス、特に高周波数帯の電波を利用した高速通信に用いる電子機器・デバイス(高周波通信用電子機器・デバイス)に用いる樹脂材料として好適に利用することができる。かかる誘電正接は、0.0035以下がより好ましく、0.0030以下がさらに好ましく、0.0025以下が特に好ましい。かかる誘電正接は、低いほど好ましいので下限値は、特に制限はないが、0.0010以上であってもよい。
 本発明のPAEKの成形品の周波数10GHzで測定した比誘電率は3.5以下が好ましい。かかる比誘電率が3.5以下であれば、電子機器・デバイス、特に高周波数帯の電波を利用した高速通信に用いる電子機器・デバイス(高周波通信用電子機器・デバイス)に用いる樹脂材料として好適に利用することができる。かかる比誘電率は、3.0以下がより好ましく、2.9以下がさらに好ましく、2.8以下が特に好ましい。かかる比誘電率は、低いほど好ましいので下限値は、特に制限はないが、2.0以上であってもよい。
 本発明のPAEKの成形品の吸水率は、0.35%以下であることが好ましい。かかる吸水率が0.35%以下であれば、中でも電子機器用、特に、高周波数帯の電波を利用した高速通信に用いる電子機器やそれに使用する電子デバイス(高周波通信用電子機器・デバイス)用のポリアリールエーテルケトン樹脂材料として好適に利用することができる。かかる吸水率は、0.30%以下がより好ましく、0.20%以下がさらに好ましく、0.1%以下が特に好ましい。かかる吸水率は、低いほど好ましいので下限値は、特に制限はないが、0.001%以上であってもよい。
 本発明のPAEKの成形品は、宇宙航空用機器、輸送機器、医療機器、医療器具(例えば、注射針、インプラント、義歯、人工骨など)、3Dプリンタの造形用材料、食品分野の器具・機械に用いる各種樹脂材料として利用することができる他、耐熱性を有することに加え、優れた高周波数帯の誘電特性を有するため、電子機器・デバイスに用いる樹脂材料として好適であり、特に高周波数帯の電波を利用した高速通信に用いる電子機器・デバイス(高周波通信用電子機器・デバイス)に用いる樹脂材料として好適である。
(Molding)
The PAEK of the present invention can be subjected to conventional melt molding methods such as injection molding, extrusion molding, and compression molding, and can be used to produce various molded products such as films, sheets, tapes, containers, threads, lenses, tubes, pellets, and chips.
The dielectric loss tangent of the molded article of the PAEK of the present invention measured at a frequency of 10 GHz is preferably 0.004 or less. If the dielectric loss tangent is 0.004 or less, it can be suitably used as a resin material for electronic devices and devices, particularly electronic devices and devices used for high-speed communication using radio waves in the high frequency band (electronic devices and devices for high frequency communication). The dielectric loss tangent is more preferably 0.0035 or less, even more preferably 0.0030 or less, and particularly preferably 0.0025 or less. The lower the dielectric loss tangent, the more preferable it is, so there is no particular limit to the lower limit, but it may be 0.0010 or more.
The relative dielectric constant of the molded article of the PAEK of the present invention measured at a frequency of 10 GHz is preferably 3.5 or less. If the relative dielectric constant is 3.5 or less, it can be suitably used as a resin material for electronic devices and devices, particularly electronic devices and devices used for high-speed communication using radio waves in the high-frequency band (electronic devices and devices for high-frequency communication). The relative dielectric constant is more preferably 3.0 or less, even more preferably 2.9 or less, and particularly preferably 2.8 or less. The lower limit of the relative dielectric constant is not particularly limited, but it may be 2.0 or more.
The water absorption rate of the molded product of the PAEK of the present invention is preferably 0.35% or less. If the water absorption rate is 0.35% or less, it can be suitably used as a polyaryl ether ketone resin material for electronic devices, particularly for electronic devices used in high-speed communication using high-frequency radio waves and electronic devices used therein (high-frequency communication electronic devices and devices). The water absorption rate is more preferably 0.30% or less, even more preferably 0.20% or less, and particularly preferably 0.1% or less. The lower the water absorption rate, the more preferable it is, so there is no particular limit to the lower limit, but it may be 0.001% or more.
The PAEK molded article of the present invention can be used as various resin materials used in aerospace equipment, transportation equipment, medical equipment, medical instruments (e.g., injection needles, implants, dentures, artificial bones, etc.), 3D printer modeling materials, and food industry instruments and machines. In addition, since it has heat resistance and excellent dielectric properties in the high frequency band, it is suitable as a resin material used in electronic devices and devices, and is particularly suitable as a resin material used in electronic devices and devices used for high-speed communication using high-frequency radio waves (electronic devices and devices for high-frequency communication).
(高周波数帯の電波)
 本発明における高周波数帯の電波とは、1GHz以上300GHz以下の範囲の周波数の電波であって、マイクロ波や、センチメートル波(SHF:Super High Frequency)、ミリ波(EHF:Extremely High Frequency)等の電波を含む。かかる高周波数帯の電波の範囲は、好ましくは1GHz以上100GHz以下の範囲であり、さらに好ましくは1GHz以上80GHz以下の範囲であり、特に好ましくは1GHz以上30GHz以下の範囲である。
(High-frequency radio waves)
The high-frequency radio waves in the present invention refer to radio waves having a frequency in the range of 1 GHz to 300 GHz, including microwaves, centimeter waves (SHF: Super High Frequency), millimeter waves (EHF: Extremely High Frequency), etc. The range of such high-frequency radio waves is preferably 1 GHz to 100 GHz, more preferably 1 GHz to 80 GHz, and particularly preferably 1 GHz to 30 GHz.
(電子機器・デバイス)
 本発明において、電子機器やこれに用いる電子デバイスを、電子機器・デバイスと総称する。特に、高周波数帯の電波を利用した高速通信に用いる電子機器・デバイスを高周波通信用電子機器・デバイスと総称する。本発明のPAEKは、耐熱性を有することに加え、優れた高周波数帯の誘電特性を有するため、本発明のPAEKを使用した電子機器・デバイスは好ましく、高周波通信用電子機器・デバイスは特に好ましい。
 前記電子機器として、具体的には、例えば、携帯電話、スマートフォン、パソコン、モバイルルータ、データセンター通信機器、基地局、レーダー、ロボット、ドローン、ウェアラブルコンピュータ、自動車、航空機、工業、農業、物流業、土木業等の各種業種で用いる測定・計測機器、高速無線通信機器、電子手帳、デジタルスチルカメラ、ビデオカメラ、電子ペーパー、テレビ、プレーヤー、各種オーディオ機器、カーナビゲーション装置やインストルメントパネルなどの車載用表示器、電卓、プリンタ、スキャナー、複写機、冷蔵庫、洗濯機などが挙げられる。
 この中でも特に、高周波数帯の電波を利用した高速通信に用いる電子機器としては、携帯電話、スマートフォン、パソコン、モバイルルータ、データセンター通信機器、基地局、レーダー、ロボット、ドローン、ウェアラブルコンピュータ、自動車・航空機・工業・農業・物流業・土木業等の各種業種で用いる測定・計測機器、高速無線通信機器が挙げられる。
 前記電子デバイスとしては、具体的には、半導体、電子ディスプレイ、電気・電子部品がある。前記電気・電子部品としては、例えば、コンデンサー、プリント回路、コネクター、各種センサー、インダクター、スイッチ、筐体が挙げられる。これらは、高周波数帯の電波を利用した高速通信に用いる電子機器にも用いられる。
 本発明のポリアリールエーテルケトンは、より詳しくは、例えば、これら電子機器・デバイス(好ましくは、1GHz以上300GHz以下の範囲の高周波通信用電子機器・デバイス)の外装部材、構造部材、回路基板、半導体用封止材若しくはアンテナ素子部材に好適に使用できる。これらの中でも、電子機器・デバイスの回路基板、半導体用封止材若しくはアンテナ素子部材により好適に使用でき、電子機器・デバイスの回路基板が特に好適に使用できる。
(Electronic equipment and devices)
In the present invention, electronic devices and electronic devices used therein are collectively referred to as electronic devices and devices. In particular, electronic devices and devices used for high-speed communication using radio waves in a high frequency band are collectively referred to as high-frequency communication electronic devices and devices. Since the PAEK of the present invention has excellent dielectric properties in a high frequency band in addition to heat resistance, electronic devices and devices using the PAEK of the present invention are preferred, and high-frequency communication electronic devices and devices are particularly preferred.
Specific examples of the electronic device include mobile phones, smartphones, personal computers, mobile routers, data center communication equipment, base stations, radars, robots, drones, wearable computers, automobiles, aircraft, measuring and measurement equipment used in various industries such as industry, agriculture, logistics, and civil engineering, high-speed wireless communication equipment, electronic organizers, digital still cameras, video cameras, electronic paper, televisions, players, various audio equipment, car navigation devices, in-vehicle displays such as instrument panels, calculators, printers, scanners, copiers, refrigerators, and washing machines.
Among these, electronic devices used for high-speed communication using high-frequency radio waves include mobile phones, smartphones, personal computers, mobile routers, data center communication equipment, base stations, radar, robots, drones, wearable computers, measurement and gaging equipment used in various industries such as the automobile, aircraft, manufacturing, agriculture, logistics, and civil engineering industries, and high-speed wireless communication equipment.
Specific examples of the electronic devices include semiconductors, electronic displays, and electric/electronic components. Examples of the electric/electronic components include capacitors, printed circuits, connectors, various sensors, inductors, switches, and housings. These are also used in electronic devices for high-speed communication using high-frequency radio waves.
More specifically, the polyaryl ether ketone of the present invention can be suitably used for, for example, exterior members, structural members, circuit boards, semiconductor encapsulants, or antenna element members of these electronic devices and devices (preferably, electronic devices and devices for high-frequency communication in the range of 1 GHz to 300 GHz). Among these, the polyaryl ether ketone can be more suitably used for the circuit boards, semiconductor encapsulants, or antenna element members of the electronic devices and devices, and can be particularly suitably used for the circuit boards of the electronic devices and devices.
 以下、本発明を実施例により具体的に説明するが、本発明はこれら実施例に限定されるものではない。 The present invention will be explained in detail below with reference to examples, but the present invention is not limited to these examples.
 本発明における分析方法は以下のとおりである。
<分析方法>
1.ガラス転移温度(Tg)の測定
 実施例及び比較例で得たPAEKのガラス転移温度を下記装置及び条件で測定した。
 測定装置:DSC7020 (株式会社日立製作所製)
 パン:アルミ
 雰囲気下:N 
 昇温速度:10℃/min.
 解析法:2nd heatingのガラス転移点(ベースラインと接線の交点)
2.比誘電率と誘電正接の測定
 後述する実施例及び比較例で得たPAEK粉末は、以下の成形方法で試験片を作成した。得られた試験片を用いて、比誘電率と誘電正接を下記装置及び条件で測定した。
(成形方法)
 PAEK粉末を、Mini Test Press MP-2FH ((株)東洋精機)を用いて、試験片に成形した。成形は、温度350℃、圧力1~5Mpaで溶融脱気を数回行い、その後温度350℃、圧力12MPa、5分間で圧着することにより行った。
(測定装置及び条件)
 測定機器:シンセサイズドスイーパー 8340B (YHP社製)
 ネットワークアナライザー 8510B (YHP社製)
 円筒空洞共振器(材質:銅、内部鏡面仕上げ)
 信号伝送用セミリジッドケーブル
 試料寸法:約50mm角に切断
 測定周波数:10 GHz近傍
 測定環境:室温(23±2℃/50±5%RH)
3.分子量測定
<分子量測定方法1>
 後述する実施例1及び比較例1~3で得たPAEKの分子量を、ゲル浸透クロマトグラフィー(GPC)により、下記装置及び条件で測定した。
 装置:515 HPLCポンプ、717plus 自動挿入装置、2487紫外可視検出装置(ウォーターズ社製)
 カラム/温度:2xPLgel 5μ MIXED-D、 7.5x300mm(アジレント・テクノロジー社製)/40℃
 移動相:HPLC用クロロホルム
 流量:1.0mL/min.
 注入量:2.5uL
 検出:紫外可視検出器 254nm
 カラム較正:単分散PS;EasiCal Type PS-1 ポリスチレン(アジレント・テクノロジー社)
 分子量較正:PS換算
<分子量測定方法2>
 後述する実施例2及び比較例4で得たPAEKの分子量を、ゲル浸透クロマトグラフィー(GPC)により、下記装置及び条件で測定した。
 装置:東ソー株式会社製 HLC-8320GPC
 カラム/温度:Guard ColumnHXL-L+G4000HXL+G3000HXL+G2000HXL×2本(7.8mmID×30cm、東ソー(株)製)/40℃
 移動相:テトラヒドロフラン
 流量:1.0mL/min.
 注入量:10uL
 検出:紫外可視検出器254nm
 分子量較正:PS換算
4.還元粘度の測定
 後述する実施例及び比較例で得たPAEK粉末を、p-クロロフェノールを溶媒とする濃度1.0g/dLの溶液に調製し、40℃における粘度を測定した。
5.吸水率の測定
 後述する実施例、及び比較例で得たPAEK粉末は、以下の成形方法で試験片を作成した。得られた試験片を用いて、吸水率を下記装置及び条件で測定した。
(成形方法)
 PAEK粉末を、Mini Test Press MP-2FH ((株)東洋精機)を用いて、試験片に成形した。成形は、温度350℃、圧力1~5Mpaで溶融脱気を数回行い、その後温度350℃、圧力12MPa、5分間で圧着することにより行った。得られたPAEKシートを10cm×10cmにカットした。
(吸水率測定、算出方法)
 作製したPAEKシートを真空乾燥機で120℃、1.0kPaで2時間乾燥させた後に重量(浸漬前重量)を測定した。その後、蒸留水で満たした容器にPAEKシートを完全に浸漬させ、水温25℃で24時間吸水させた。24時間後にPAEKシートを取り出し、表面の水分をふき取り再度重量(浸漬後重量)を測定し、下記計算式により吸水率を算出した。
[計算式]
 吸水率(%)=(浸漬後重量-浸漬前重量)÷浸漬前重量×100
The analytical method in the present invention is as follows.
<Analysis method>
1. Measurement of Glass Transition Temperature (Tg) The glass transition temperatures of the PAEKs obtained in the Examples and Comparative Examples were measured using the following apparatus and conditions.
Measuring device: DSC7020 (manufactured by Hitachi, Ltd.)
Pan: Aluminum Atmosphere: N2
Heating rate: 10° C./min.
Analysis method: Glass transition point of 2nd heating (intersection of baseline and tangent line)
2. Measurement of dielectric constant and dielectric loss tangent The PAEK powder obtained in the examples and comparative examples described below was molded into test pieces by the following molding method. The obtained test pieces were used to measure the dielectric constant and dielectric loss tangent with the following device and conditions.
(Molding method)
The PAEK powder was molded into a test piece using a Mini Test Press MP-2FH (Toyo Seiki Co., Ltd.) by melt degassing several times at a temperature of 350°C and a pressure of 1 to 5 MPa, and then pressing at a temperature of 350°C and a pressure of 12 MPa for 5 minutes.
(Measurement equipment and conditions)
Measuring equipment: Synthesized Sweeper 8340B (YHP)
Network analyzer 8510B (YHP)
Cylindrical cavity resonator (material: copper, internal mirror finish)
Semi-rigid cable for signal transmission Sample size: Cut into approximately 50 mm square Measurement frequency: Around 10 GHz Measurement environment: Room temperature (23±2°C/50±5% RH)
3. Molecular weight measurement <Molecular weight measurement method 1>
The molecular weights of the PAEKs obtained in Example 1 and Comparative Examples 1 to 3 described below were measured by gel permeation chromatography (GPC) using the following apparatus and conditions.
Equipment: 515 HPLC pump, 717plus automatic insertion device, 2487 UV-Vis detector (Waters)
Column/temperature: 2x PLgel 5μ MIXED-D, 7.5x300mm (Agilent Technologies)/40°C
Mobile phase: chloroform for HPLC Flow rate: 1.0 mL/min.
Injection volume: 2.5uL
Detection: UV-visible detector 254 nm
Column calibration: monodisperse PS; EasiCal Type PS-1 polystyrene (Agilent Technologies)
Molecular weight calibration: PS conversion <Molecular weight measurement method 2>
The molecular weights of the PAEKs obtained in Example 2 and Comparative Example 4 described below were measured by gel permeation chromatography (GPC) using the following apparatus and conditions.
Apparatus: Tosoh Corporation HLC-8320GPC
Column/temperature: Guard Column HXL-L + G4000HXL + G3000HXL + G2000HXL x 2 (7.8 mm ID x 30 cm, manufactured by Tosoh Corporation) / 40°C
Mobile phase: tetrahydrofuran Flow rate: 1.0 mL/min.
Injection volume: 10 uL
Detection: UV-Vis detector 254 nm
Molecular weight calibration: PS conversion 4. Measurement of reduced viscosity The PAEK powder obtained in the examples and comparative examples described later was prepared into a solution having a concentration of 1.0 g/dL using p-chlorophenol as a solvent, and the viscosity at 40° C. was measured.
5. Measurement of Water Absorption Rate Test pieces were prepared from the PAEK powders obtained in the Examples and Comparative Examples described below by the following molding method. The water absorption rate was measured using the obtained test pieces with the following device and under the following conditions.
(Molding method)
The PAEK powder was molded into a test piece using a Mini Test Press MP-2FH (Toyo Seiki Co., Ltd.). The molding was performed by melting and degassing several times at a temperature of 350°C and a pressure of 1 to 5 MPa, and then pressing at a temperature of 350°C and a pressure of 12 MPa for 5 minutes. The obtained PAEK sheet was cut into a size of 10 cm x 10 cm.
(Water absorption measurement and calculation method)
The prepared PAEK sheet was dried in a vacuum dryer at 120°C and 1.0 kPa for 2 hours, and then the weight (weight before immersion) was measured. The PAEK sheet was then completely immersed in a container filled with distilled water and allowed to absorb water for 24 hours at a water temperature of 25°C. After 24 hours, the PAEK sheet was removed, the surface moisture was wiped off, and the weight (weight after immersion) was measured again, and the water absorption rate was calculated using the following calculation formula.
[a formula]
Water absorption rate (%) = (weight after immersion - weight before immersion) ÷ weight before immersion × 100
<実施例1>
 トルエンを満たしたディーンスターク管、撹拌装置及び窒素吹き込み管を備えた1000mL4つ口反応容器に、31gの4,4’-ジフルオロベンゾフェノン、50gの4,4’-(3,3,5-トリメチルシクロヘキシリデン)ビス(2,6-ジメチルフェノール)、17gの炭酸ナトリウム、240gのN-メチルピロリドン(NMP)を投入し、これらを室温において窒素を流通させながら溶解させた。次いで、反応容器を200℃まで1時間かけて昇温した後で、少量のトルエンを加えて還流させ、200℃において50時間重合させた。
 反応終了後、反応液を室温まで冷却し、NMP180gで希釈した溶液を、3200gのメタノールに添加して沈殿を析出させた。現れた沈殿物を濾別し、得られた粉体を1.4%シュウ酸水溶液1000gで懸濁洗浄し、さらに熱水で洗浄後の水が中性になるまで繰り返し洗浄し、次いでメタノールで洗浄した。洗浄した粉末を150℃で12時間乾燥し、式(1a)で表される繰り返し単位を有するPAEK粉末を65g、85%の収率で得た。
 得られたPAEKの還元粘度は0.45dL/gであった。
 得られたPAEKのガラス転移点(Tg)を、示差走査熱量測定で測定したところ243℃であった。
 得られたPAEKの吸水率を測定した結果、0.06%であった。
Example 1
Into a 1000 mL four-necked reaction vessel equipped with a Dean-Stark tube filled with toluene, a stirrer, and a nitrogen inlet tube, 31 g of 4,4'-difluorobenzophenone, 50 g of 4,4'-(3,3,5-trimethylcyclohexylidene)bis(2,6-dimethylphenol), 17 g of sodium carbonate, and 240 g of N-methylpyrrolidone (NMP) were charged and dissolved at room temperature while passing nitrogen through. Next, the reaction vessel was heated to 200°C over 1 hour, and then a small amount of toluene was added and refluxed, followed by polymerization at 200°C for 50 hours.
After the reaction was completed, the reaction solution was cooled to room temperature, and the solution diluted with 180 g of NMP was added to 3200 g of methanol to precipitate. The precipitate was filtered off, and the resulting powder was suspended and washed in 1000 g of a 1.4% aqueous oxalic acid solution, and then repeatedly washed with hot water until the water after washing became neutral, and then washed with methanol. The washed powder was dried at 150° C. for 12 hours to obtain 65 g of PAEK powder having a repeating unit represented by formula (1a) in a yield of 85%.
The resulting PAEK had a reduced viscosity of 0.45 dL/g.
The glass transition temperature (Tg) of the resulting PAEK was 243° C. as measured by differential scanning calorimetry.
The water absorption of the resulting PAEK was measured and found to be 0.06%.
<比較例1>
 トルエンを満たしたディーンスターク管、撹拌装置及び窒素吹き込み管を備えた500mL4つ口反応容器に、25.4gの4,4’-ジフルオロベンゾフェノン、30.0gの1,1-ビス(4-ハイドロキシフェニル)シクロヘキサン、14.2gの炭酸ナトリウム、145gのNMPを投入し、これらを室温において窒素を流通させながら溶解させた。次いで反応容器を200℃まで1時間かけて昇温した後で、少量のトルエンを加えて還流させ、200℃において10時間重合させた。
 反応終了後、反応液を室温まで冷却し、NMP150gで希釈した溶液を、2400gのメタノールに添加して沈殿を析出させた。現れた沈殿物を濾別し、得られた粉末を1.4%シュウ酸水溶液700gで懸濁洗浄し、さらに熱水で洗浄後の水が中性になるまで洗浄を繰り返し、次いでメタノールで洗浄した。洗浄した粉末を150℃で12時間乾燥し、PAEK粉末を40g、90%の収率で得た。
 得られたPAEKの還元粘度は1.1dL/gであった。
 得られたPAEKのガラス転移温度(Tg)を示差走査熱量測定で測定したところ173℃であった。
 得られたPAEKの吸水率を測定した結果、0.38%であった。
<Comparative Example 1>
In a 500 mL four-necked reaction vessel equipped with a Dean-Stark tube filled with toluene, a stirrer, and a nitrogen inlet tube, 25.4 g of 4,4'-difluorobenzophenone, 30.0 g of 1,1-bis(4-hydroxyphenyl)cyclohexane, 14.2 g of sodium carbonate, and 145 g of NMP were charged and dissolved at room temperature while passing nitrogen through. The reaction vessel was then heated to 200°C over 1 hour, after which a small amount of toluene was added and refluxed, followed by polymerization at 200°C for 10 hours.
After the reaction was completed, the reaction solution was cooled to room temperature, and the solution diluted with 150 g of NMP was added to 2400 g of methanol to precipitate. The precipitate was filtered off, and the resulting powder was suspended and washed with 700 g of 1.4% oxalic acid aqueous solution, and then repeatedly washed with hot water until the water after washing became neutral, and then washed with methanol. The washed powder was dried at 150° C. for 12 hours to obtain 40 g of PAEK powder in a yield of 90%.
The resulting PAEK had a reduced viscosity of 1.1 dL/g.
The glass transition temperature (Tg) of the resulting PAEK was 173° C. as measured by differential scanning calorimetry.
The water absorption of the resulting PAEK was measured and found to be 0.38%.
<比較例2>
 トルエンを満たしたディーンスターク管、撹拌装置及び窒素吹き込み管を備えた500mL4つ口反応容器に27gの4,4’-ジフルオロベンゾフェノン、50gの4,4’-(9-フルオレニリデン)ビス(2,6-ジメチルフェノール)、20gの炭酸カリウム、200gのNMPを投入し、これらを室温において窒素を流通させながら溶解させた。次いで反応容器を200℃まで1時間かけて昇温した後で、少量のトルエンを加えて還流させ、200℃において10時間重合させた。
 反応終了後、反応液を室温まで冷却し、NMP156gで希釈した溶液を、2850gのメタノールに添加して沈殿を析出させた。現れた沈殿物を濾別し、得られた粉体を1.4%シュウ酸水溶液1000gで懸濁洗浄し、さらに熱水で洗浄後の水が中性になるまで繰り返し洗浄し、次いでメタノールで洗浄した。洗浄した粉末を150℃で12時間減圧下に乾燥し、PAEKの粉末を65g、87%の収率で得た。
 得られたPAEKの還元粘度は0.63dL/gであった。
 得られたPAEKのガラス転移温度(Tg)を示差走査熱量測定で測定したところ285℃であった。
 得られたPAEKの吸水率を測定した結果、0.53%であった。
<Comparative Example 2>
27 g of 4,4'-difluorobenzophenone, 50 g of 4,4'-(9-fluorenylidene)bis(2,6-dimethylphenol), 20 g of potassium carbonate, and 200 g of NMP were charged into a 500 mL four-necked reaction vessel filled with toluene and equipped with a Dean-Stark tube, a stirrer, and a nitrogen inlet tube, and these were dissolved at room temperature while passing nitrogen through the vessel. The reaction vessel was then heated to 200°C over 1 hour, after which a small amount of toluene was added and refluxed, followed by polymerization at 200°C for 10 hours.
After the reaction was completed, the reaction solution was cooled to room temperature, and the solution diluted with 156 g of NMP was added to 2850 g of methanol to precipitate. The precipitate was filtered off, and the resulting powder was suspended and washed in 1000 g of a 1.4% aqueous oxalic acid solution, and then repeatedly washed with hot water until the water after washing became neutral, and then washed with methanol. The washed powder was dried under reduced pressure at 150° C. for 12 hours, and 65 g of PAEK powder was obtained in a yield of 87%.
The resulting PAEK had a reduced viscosity of 0.63 dL/g.
The glass transition temperature (Tg) of the resulting PAEK was 285° C. as measured by differential scanning calorimetry.
The water absorption of the resulting PAEK was measured and found to be 0.53%.
<比較例3>
 トルエンを満たしたディーンスターク管、撹拌装置及び窒素吹き込み管を備えた500mL4つ口反応容器に、35.8gの4,4’-ジフルオロベンゾフェノン、50.0gの1,1-ビス(4-ハイドロキシフェニル)-3,3,5-トリメチルシクロヘキサン、26.7gの炭酸カリウム、240gのNMPを投入し、これらを室温において窒素を流通させながら溶解させた。次いで反応容器を180℃まで2時間かけて昇温した後で、少量のトルエンを加えて還流させ、180℃において6時間重合させた。
 反応終了後、反応液を室温まで冷却し、NMP160gで希釈した溶液を、3100gのメタノールに添加して沈殿を析出させた。現れた沈殿物を濾別し、得られた粉末を1.4%シュウ酸水溶液1400gで懸濁洗浄し、さらに熱水で洗浄後の水が中性になるまで洗浄を繰り返し、次いでメタノールで洗浄した。洗浄した粉末を150℃で12時間乾燥し、PAEK粉末を64g、80%の収率で得た。
 得られたPAEKの還元粘度は1.1dL/gであった。
 得られたPAEKのガラス転移温度(Tg)を示差走査熱量測定で測定したところ223℃であった。
 得られたPAEKの吸水率を測定した結果、0.23%であった。
<Comparative Example 3>
In a 500 mL four-necked reaction vessel equipped with a Dean-Stark tube filled with toluene, a stirrer, and a nitrogen inlet tube, 35.8 g of 4,4'-difluorobenzophenone, 50.0 g of 1,1-bis(4-hydroxyphenyl)-3,3,5-trimethylcyclohexane, 26.7 g of potassium carbonate, and 240 g of NMP were charged and dissolved at room temperature while passing nitrogen through. The reaction vessel was then heated to 180°C over 2 hours, after which a small amount of toluene was added and refluxed, followed by polymerization at 180°C for 6 hours.
After the reaction was completed, the reaction solution was cooled to room temperature, and the solution diluted with 160 g of NMP was added to 3100 g of methanol to precipitate. The precipitate was filtered off, and the resulting powder was suspended and washed in 1400 g of a 1.4% aqueous oxalic acid solution, and then repeatedly washed with hot water until the water after washing became neutral, and then washed with methanol. The washed powder was dried at 150° C. for 12 hours to obtain 64 g of PAEK powder in a yield of 80%.
The resulting PAEK had a reduced viscosity of 1.1 dL/g.
The glass transition temperature (Tg) of the resulting PAEK was 223° C. as measured by differential scanning calorimetry.
The water absorption of the resulting PAEK was measured and found to be 0.23%.
 実施例1及び比較例1、2及び3で得られたPAEKについて、重量平均分子量(Mw)、数平均分子量(Mn)、分散度(Mw/Mn)、ガラス転移温度、比誘電率、誘電正接、吸水率(%)の測定結果を表1にまとめて示す。 The results of measuring the weight average molecular weight (Mw), number average molecular weight (Mn), dispersity (Mw/Mn), glass transition temperature, relative dielectric constant, dielectric loss tangent, and water absorption (%) for the PAEKs obtained in Example 1 and Comparative Examples 1, 2, and 3 are summarized in Table 1.
 本発明の実施例1で得られたPAEKは、比較例1のPAEKと比較すると、ガラス転移温度は70℃高く、耐熱性が大きく向上していること、比誘電率と誘電正接は同等に低く優れた誘電特性を有すること、吸水率は6分の1程度になること、比較例2のPAEKと比較すると、ガラス転移温度は42℃低いものの、比誘電率と誘電正接は低く、吸水率は9分の1程度となること、比較例3のPAEKと比較すると、ガラス転移温度は20℃高く、比誘電率と誘電正接は同等程度に低く、吸水率は4分の1程度となることが明らかになった。
 以上のことから、本発明のポリアリールエーテルケトンは、向上した耐熱性を有することさらに、低い比誘電率(Dk)と低い誘電正接(Df)、低い吸水性も備える、優れた樹脂材料であることが明らかになった。
It was revealed that, compared to the PAEK of Comparative Example 1, the PAEK obtained in Example 1 of the present invention has a glass transition temperature 70° C. higher and a greatly improved heat resistance, has excellent dielectric properties with equally low relative dielectric constant and dielectric dissipation factor, and has a water absorption rate of about one-sixth, compared to the PAEK of Comparative Example 2, the glass transition temperature is 42° C. lower, but the relative dielectric constant and dielectric dissipation factor are low and the water absorption rate is about one-ninth, and compared to the PAEK of Comparative Example 3, the glass transition temperature is 20° C. higher, the relative dielectric constant and dielectric dissipation factor are equally low, and the water absorption rate is about one-quarter.
From the above, it has become clear that the polyaryl ether ketone of the present invention is an excellent resin material having improved heat resistance, as well as a low dielectric constant (Dk), a low dielectric tangent (Df), and low water absorption.
<実施例2>
 トルエンを満たしたディーンスターク管、撹拌装置及び窒素吹き込み管を備えた2L4つ口反応容器に、79gの4,4’-ジフルオロベンゾフェノン、150gの4,4’-(3,3,5-トリメチルシクロヘキシリデン)ビス(2,6-ジメチルフェノール)、50gの炭酸カリウム、720gのNMP、29gのトルエンを投入し、これらを室温において窒素を流通させながら溶解させた。次いで反応容器を196℃まで1時間半かけて昇温させ、10時間重合させた。
 反応終了後、反応液を室温まで冷却し、冷却した反応液を3000gのメタノールに添加して再沈させた。現れた沈殿物を濾別し、得られた粉体を1.1%シュウ酸水溶液4000gで懸濁洗浄し、さらに水が中性になるまで繰り返し洗浄し、次いでメタノールで洗浄した。洗浄した粉末を55℃で8時間減圧下に乾燥し、化学式(1a)で表される繰り返し単位を有するPAEKの粉末(Mw:9,000、Mw/Mn:1.9)を196g、96%の収率で得た。
 得られたPAEKのガラス転移温度(Tg)を、示差走査熱量測定で測定したところ216℃であった。
Example 2
Into a 2 L four-necked reaction vessel equipped with a Dean-Stark tube filled with toluene, a stirrer, and a nitrogen inlet tube, 79 g of 4,4'-difluorobenzophenone, 150 g of 4,4'-(3,3,5-trimethylcyclohexylidene)bis(2,6-dimethylphenol), 50 g of potassium carbonate, 720 g of NMP, and 29 g of toluene were charged and dissolved at room temperature while passing nitrogen through. The reaction vessel was then heated to 196°C over one and a half hours, and polymerization was carried out for 10 hours.
After the reaction was completed, the reaction solution was cooled to room temperature, and the cooled reaction solution was added to 3000 g of methanol to cause reprecipitation. The precipitate that appeared was filtered off, and the obtained powder was suspended and washed in 4000 g of a 1.1% aqueous oxalic acid solution, and further repeatedly washed until the water became neutral, and then washed with methanol. The washed powder was dried under reduced pressure at 55° C. for 8 hours to obtain 196 g of a PAEK powder (Mw: 9,000, Mw/Mn: 1.9) having a repeating unit represented by chemical formula (1a) in a yield of 96%.
The glass transition temperature (Tg) of the resulting PAEK was 216° C. as measured by differential scanning calorimetry.
<比較例4>
 トルエンを満たしたディーンスターク管、撹拌装置及び窒素吹き込み管を備えた2L4つ口反応容器に、80gの4,4’-ジフルオロベンゾフェノン、110gの1,1-ビス(4-ハイドロキシフェニル)シクロヘキサン、50gの炭酸カリウム、528gのNMP、21gのトルエンを投入し、これらを室温において窒素を流通させながら溶解させた。次いで反応容器を196℃まで2時間かけて昇温させ、10時間重合させた。
 反応終了後、反応液を室温まで冷却し、冷却した反応液を1100gのメタノールに添加して再沈させた。現れた沈殿物を濾別し、得られた粉体を3.5%シュウ酸水溶液1200gで懸濁洗浄し、さらに水が中性になるまで繰り返し洗浄し、次いでメタノールで洗浄した。洗浄した粉末を60℃で8時間減圧下に乾燥し、PAEKの粉末(Mw:9、800、Mw/Mn:2.0)を164g、96%の収率で得た。
 得られたPAEKのガラス転移温度(Tg)を、示差走査熱量測定で測定したところ159℃であった。
<Comparative Example 4>
Into a 2 L four-necked reaction vessel filled with toluene and equipped with a Dean-Stark tube, a stirrer, and a nitrogen inlet tube, 80 g of 4,4'-difluorobenzophenone, 110 g of 1,1-bis(4-hydroxyphenyl)cyclohexane, 50 g of potassium carbonate, 528 g of NMP, and 21 g of toluene were charged and dissolved at room temperature while passing nitrogen through the vessel. The reaction vessel was then heated to 196°C over 2 hours and polymerized for 10 hours.
After the reaction was completed, the reaction solution was cooled to room temperature, and the cooled reaction solution was added to 1100 g of methanol to cause reprecipitation. The precipitate that appeared was filtered off, and the obtained powder was suspended and washed in 1200 g of a 3.5% aqueous oxalic acid solution, and further washed repeatedly until the water became neutral, and then washed with methanol. The washed powder was dried under reduced pressure at 60° C. for 8 hours to obtain 164 g of PAEK powder (Mw: 9,800, Mw/Mn: 2.0) in a yield of 96%.
The glass transition temperature (Tg) of the resulting PAEK was 159° C. as measured by differential scanning calorimetry.
 実施例2と比較例4で得られたPAEKは、それぞれ、実施例1と比較例1で得られたPAEKと同じ繰り返し単位を有するポリマーであるが、比較的分子量が小さいポリマーである。
 本発明の具体例である実施例2で得られたPAEKは、比較例4で得られたPAEKと比較すると、ガラス転移温度は57℃高く、比較的分子量が小さいポリマー同士で比較をしても、同様に耐熱性が大きく向上していることが明らかになった。
 
The PAEKs obtained in Example 2 and Comparative Example 4 are polymers having the same repeating units as the PAEKs obtained in Example 1 and Comparative Example 1, respectively, but have relatively small molecular weights.
The PAEK obtained in Example 2, which is a specific example of the present invention, has a glass transition temperature 57° C. higher than that of the PAEK obtained in Comparative Example 4, and it was revealed that the heat resistance was also greatly improved, even when comparing polymers with relatively small molecular weights.

Claims (10)

  1.  一般式(1)で表される繰り返し単位を有するポリアリールエーテルケトン。
    (式中、Rは各々独立して炭素原子数1~4のアルキル基を示し、mは1又は2を示し、nは各々独立して1又は2を示す。)
    A polyaryl ether ketone having a repeating unit represented by general formula (1).
    (In the formula, each R 1 independently represents an alkyl group having 1 to 4 carbon atoms, m represents 1 or 2, and each n independently represents 1 or 2.)
  2.  前記一般式(1)で表される繰り返し単位が、化学式(1a)~(1d)で表される繰り返し単位から選択される少なくとも1つを有する、請求項1に記載のポリアリールエーテルケトン。
    The polyaryl ether ketone according to claim 1, wherein the repeating unit represented by the general formula (1) has at least one selected from the repeating units represented by chemical formulas (1a) to (1d).
  3.  周波数10GHzで測定した誘電正接(Df)が0.004以下であり、周波数10GHzで測定した比誘電率(Dk)が3.0以下である、請求項1に記載のポリアリールエーテルケトン。 The polyaryl ether ketone according to claim 1, having a dielectric loss tangent (Df) measured at a frequency of 10 GHz of 0.004 or less and a relative dielectric constant (Dk) measured at a frequency of 10 GHz of 3.0 or less.
  4.  請求項1に記載のポリアリールエーテルケトンの成形品。  A molded article of the polyaryl ether ketone described in claim 1.
  5.  請求項1に記載のポリアリールエーテルケトンと、難燃剤、熱安定剤、酸化安定剤、耐候安定剤、帯電防止剤、滑剤及び可塑剤からなる群より1つ以上選択される添加剤を含む、ポリアリールエーテルケトン樹脂組成物。 A polyaryl ether ketone resin composition comprising the polyaryl ether ketone according to claim 1 and one or more additives selected from the group consisting of flame retardants, heat stabilizers, oxidation stabilizers, weathering stabilizers, antistatic agents, lubricants and plasticizers.
  6.  請求項5に記載のポリアリールエーテルケトン樹脂組成物の成形品。 A molded article made from the polyaryl ether ketone resin composition according to claim 5.
  7.  請求項1に記載のポリアリールエーテルケトンを用いた、電子機器・デバイス。 Electronic devices and devices using the polyaryl ether ketone described in claim 1.
  8.  請求項1に記載のポリアリールエーテルケトンを用いた、高周波通信用電子機器・デバイス。 Electronic devices and devices for high-frequency communication using the polyaryl ether ketone described in claim 1.
  9.  請求項1に記載のポリアリールエーテルケトンを電子機器・デバイスの樹脂材料として使用する方法。 A method for using the polyaryl ether ketone according to claim 1 as a resin material for electronic devices.
  10.  前記ポリアリールエーテルケトンの高分子鎖の両末端の構造が、(i)~(iii)のいずれかの構造である、請求項1に記載のポリアリールエーテルケトン。
     (i)両方とも一般式(4)又は化学式(5)で表される基から選択される1つの基である。
     (ii)一方が一般式(4)又は化学式(5)で表される基から選択される1つの基であり、もう一方がハロゲン原子である。
     (iii)一方が一般式(4)又は化学式(5)で表される基から選択される1つの基であり、もう一方がヒドロキシ基である。
    (式中、Rは水素原子又はメチル基を示し、*は高分子鎖の末端への結合部位を示す。)
     
    The polyaryl ether ketone according to claim 1, wherein the structure at both ends of the polymer chain of the polyaryl ether ketone is any one of the structures (i) to (iii).
    (i) Both are a group selected from the groups represented by general formula (4) or chemical formula (5).
    (ii) One of them is a group selected from the groups represented by general formula (4) or chemical formula (5), and the other is a halogen atom.
    (iii) One of them is a group selected from the groups represented by general formula (4) or chemical formula (5), and the other is a hydroxy group.
    (In the formula, R2 represents a hydrogen atom or a methyl group, and * represents a bonding site to the end of a polymer chain.)
PCT/JP2023/043034 2022-12-01 2023-12-01 Polyaryl ether ketone, polyaryl ether ketone resin composition, molded article of said polyaryl ether ketone or polyaryl ether ketone resin composition, and electronic instrument/device using said polyaryl ether ketone or polyaryl ether ketone resin composition WO2024117246A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2022192876 2022-12-01
JP2022-192876 2022-12-01
JP2023-167577 2023-09-28
JP2023167577 2023-09-28

Publications (1)

Publication Number Publication Date
WO2024117246A1 true WO2024117246A1 (en) 2024-06-06

Family

ID=91324028

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/043034 WO2024117246A1 (en) 2022-12-01 2023-12-01 Polyaryl ether ketone, polyaryl ether ketone resin composition, molded article of said polyaryl ether ketone or polyaryl ether ketone resin composition, and electronic instrument/device using said polyaryl ether ketone or polyaryl ether ketone resin composition

Country Status (1)

Country Link
WO (1) WO2024117246A1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02170853A (en) * 1988-10-24 1990-07-02 Bayer Ag Polymer mixture
JPH0312423A (en) * 1989-05-31 1991-01-21 Bayer Ag Aromatic copolyether ketone

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02170853A (en) * 1988-10-24 1990-07-02 Bayer Ag Polymer mixture
JPH0312423A (en) * 1989-05-31 1991-01-21 Bayer Ag Aromatic copolyether ketone

Similar Documents

Publication Publication Date Title
JP7069124B2 (en) Thermoplastic liquid crystal polymer and its film
JP6689475B1 (en) Maleimide resin, curable resin composition and cured product thereof
Liu et al. Poly (aryl ether ketone) s with (3‐methyl) phenyl and (3‐trifluoromethyl) phenyl side groups
Wang et al. Biobased anethole-functionalized poly (phenylene oxides): new low dielectric materials with high T g and good dimensional stability
KR20100040965A (en) Aromatic polyether sulfone having hydroxyphenyl end group and method for producing the same
US10087284B2 (en) Fluorine-containing polymerizable monomer and polymer compound using same
JP2017031276A (en) Thermosetting resin composition, resin varnish, metal foil with resin, resin film, metal clad laminated board and printed wiring board using the same
JP7200060B2 (en) Polyphenylene ethers, curable compositions containing polyphenylene ethers, dry films, prepregs, cured products, laminates, and electronic components
Yang et al. Crosslinked copolymer with low dielectric constant and dissipation factor based on poly (2, 6‐Dimethylphenol‐co− 2, 6‐Diphenylphenol) and a crosslinker
Pu et al. Novel low‐dielectric‐constant fluorine‐functionalized polysulfone with outstanding comprehensive properties
Wu et al. Preparation and characterization of high temperature resistant thermosetting polyphenylene ether resin
JP2009040934A (en) Curable resin composition
JP5708160B2 (en) Resin substrate for high frequency circuit board and high frequency circuit board
JP7005821B1 (en) Maleimide resin and its production method, maleimide solution, and curable resin composition and its cured product.
WO2024117246A1 (en) Polyaryl ether ketone, polyaryl ether ketone resin composition, molded article of said polyaryl ether ketone or polyaryl ether ketone resin composition, and electronic instrument/device using said polyaryl ether ketone or polyaryl ether ketone resin composition
JP7497143B2 (en) Polyphenylene ether, curable composition, dry film, prepreg, cured product, and electronic component
Chen et al. Structure-property relationship of vinyl-terminated oligo (2, 6-dimethyl-1, 4-phenylene ether) s (OPEs): Seeking an OPE with better properties
WO2024117252A1 (en) Polyaryl ether ketone resin material for electronic equipment/devices and electronic equipment/devices using same
JP7350548B2 (en) Polyphenylene ether, curable compositions, dry films, cured products, and electronic components
Ma et al. Synthesis and characterization of fluorinated poly (aryl ether ether ketone) s terminated with a phenylethynyl group
JP7350547B2 (en) Curable compositions, dry films, cured products, electronic components and polyphenylene ether
US6815523B2 (en) Polyether and its production method
WO2023162693A1 (en) Epoxy resin, polyhydric hydroxy resin, epoxy resin composition, cured epoxy resin product, and method for producing polyhydric hydroxy resin
JP7410661B2 (en) Terminal-modified polyphenylene ether, curable composition, dry film, cured product, and electronic components
JP4283658B2 (en) Cross-linked polyether ketone resin