WO2024117252A1 - Polyaryl ether ketone resin material for electronic equipment/devices and electronic equipment/devices using same - Google Patents

Polyaryl ether ketone resin material for electronic equipment/devices and electronic equipment/devices using same Download PDF

Info

Publication number
WO2024117252A1
WO2024117252A1 PCT/JP2023/043048 JP2023043048W WO2024117252A1 WO 2024117252 A1 WO2024117252 A1 WO 2024117252A1 JP 2023043048 W JP2023043048 W JP 2023043048W WO 2024117252 A1 WO2024117252 A1 WO 2024117252A1
Authority
WO
WIPO (PCT)
Prior art keywords
general formula
devices
paek
ether ketone
polyaryl ether
Prior art date
Application number
PCT/JP2023/043048
Other languages
French (fr)
Japanese (ja)
Inventor
健太 萩原
佑磨 芝崎
Original Assignee
本州化学工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 本州化学工業株式会社 filed Critical 本州化学工業株式会社
Publication of WO2024117252A1 publication Critical patent/WO2024117252A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G65/00Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule
    • C08G65/34Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from hydroxy compounds or their metallic derivatives
    • C08G65/38Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from hydroxy compounds or their metallic derivatives derived from phenols
    • C08G65/40Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from hydroxy compounds or their metallic derivatives derived from phenols from phenols (I) and other compounds (II), e.g. OH-Ar-OH + X-Ar-X, where X is halogen atom, i.e. leaving group

Definitions

  • the present invention relates to the use of polyaryl ether ketone (PAEK), and more specifically, to the use of PAEK obtained using bisphenol as a raw material, in particular to a resin material for electronic devices and devices made of PAEK with excellent heat resistance and dielectric properties, and to electronic devices and devices using the same.
  • PAEK polyaryl ether ketone
  • PAEK resin Polyaryletherketone (PAEK) resin is known as a thermoplastic that has excellent heat resistance, high strength and rigidity, and chemical resistance. For this reason, PAEK resin is used as a material in fields such as insulating coating agents, insulating films, semiconductors, electrode protective films, flexible printed circuit boards and other electrical and electronic components, aerospace equipment, and transportation equipment. The use of PAEK in these applications tends to become more advanced and specialized, and improved heat resistance is also required.
  • PAEKs are also used as low dielectric materials.
  • PAEKs using 1,1'-bi-2-naphthol (Patent Document 1) and PAEKs copolymerized with hydroquinone, 4,4'-difluorobenzophenone, and 2,6-dichloropyridine (Patent Document 2) are known to be extremely useful as electrical insulating layers in laminates for electronic circuits and as base materials for flexible printed wiring boards.
  • the objective of the present invention is to provide a PAEK resin material that has excellent dielectric properties and excellent heat resistance and is suitable for use in electronic devices and devices, particularly in electronic devices and devices in the field of high-speed communications that require high frequencies.
  • PAEKs polyaryletherketones
  • a polyaryl ether ketone resin material for electronic devices comprising a polyaryl ether ketone having a repeating unit represented by general formula (1), having a dielectric loss tangent (Df) measured at a frequency of 10 GHz of 0.004 or less, a relative dielectric constant (Dk) measured at a frequency of 10 GHz of 3.5 or less, a glass transition temperature of 150°C or more, and a weight average molecular weight (Mw) in the range of 2,000 to 1,000,000.
  • Df dielectric loss tangent
  • Dk relative dielectric constant
  • Mw weight average molecular weight
  • R1 and R2 each independently represent an alkyl group having 1 to 4 carbon atoms, a represents 1 or 2, b each independently represents 0, 1, or 2, and c represents 0 or an integer of 1 to 4.
  • R 2 , a and c are defined as in general formula (1).
  • a is defined as in general formula (1).
  • Df dielectric loss tangent
  • Dk relative dielectric constant
  • Mw weight average molecular weight
  • R1 and R2 each independently represent an alkyl group having 1 to 4 carbon atoms, a represents 1 or 2, b each independently represents 0, 1, or 2, and c represents 0 or an integer of 1 to 4.
  • 6. A method for using the polyaryl ether ketone according to 5. in an electronic device or device, wherein the repeating unit represented by the general formula (1) is a repeating unit represented by the general formula (1').
  • R 2 , a and c are defined as in general formula (1).
  • 7. A method for using the polyaryl ether ketone according to 6. in an electronic device or device, wherein the repeating unit represented by general formula (1') is a repeating unit represented by general formula (1'').
  • a is defined as in general formula (1).
  • the polyaryl ether ketone resin material for electronic devices of the present invention has excellent dielectric properties, excellent heat resistance (high glass transition temperature), and low water absorption. Therefore, it is suitable as a material resin for electronic devices in the field of high-speed communications, which requires high frequencies, and for the electric and electronic components and electronic devices used therein.
  • the PAEK in the polyaryl ether ketone resin material for electronic devices of the present invention has a repeating unit represented by general formula (1).
  • R1 and R2 each independently represent an alkyl group having 1 to 4 carbon atoms, a represents 1 or 2, b each independently represents 0, 1, or 2, and c represents 0 or an integer of 1 to 4.
  • R1 and R2 each independently represent an alkyl group having 1 to 4 carbon atoms, preferably a t-butyl group or a methyl group, and particularly preferably a methyl group.
  • the bonding position of R1 is preferably the ortho position relative to the bonding position of the oxygen atom on the benzene ring.
  • a represents 1 or 2, and is preferably 1.
  • Each b independently represents 0, 1 or 2, and from the viewpoint of the heat resistance of the resulting PAEK, it is preferable that each b independently represents 0 or 2, more preferably that both b's represent 0 or 2, and particularly preferably represent 2.
  • c represents 0 or an integer of 1 to 4, preferably an integer of 1 to 4, more preferably 1, 2 or 3, and particularly preferably 3.
  • an embodiment having a repeating unit represented by general formula (1') in which R 1 is a methyl group, b is 2, and R 1 is bonded at the ortho position relative to the position to which the oxygen atom on each benzene ring is bonded is preferred.
  • R 2 , a and c are defined as in general formula (1).
  • the repeating unit represented by formula (1') it is particularly preferable that the repeating unit further has a repeating unit represented by formula (1'') in which R2 is a methyl group and c is 3.
  • a is defined as in general formula (1).
  • repeating unit represented by general formula (1) of the PAEK of the present invention are shown below as chemical formulas (1a) to (1d).
  • the repeating unit represented by general formula (1) at least one selected from chemical formulas (1a) to (1d) is preferred, at least one selected from chemical formulas (1a) and (1b) is more preferred, chemical formula (1a) or (1b) is even more preferred, and chemical formula (1a) is particularly preferred.
  • the PAEK according to the present invention may have other repeating units as long as it contains the repeating unit represented by the general formula (1), as long as the effect of the present invention is not impaired.
  • the content of the repeating unit represented by the general formula (1) is 100 mol%, that is, it does not have other repeating units.
  • the lower limit of the range of the content of the repeating unit represented by the general formula (1) is preferably 50 mol% or more of the entire PAEK, more preferably 70 mol% or more, even more preferably 80 mol% or more, and particularly preferably 90 mol% or more.
  • the upper limit is preferably less than 100 mol%, and more preferably 99.9 mol% or less.
  • the above lower limit and upper limit in the range of the content of the repeating unit represented by the general formula (1) may be combined.
  • the repeating unit represented by the general formula (1) and the other repeating units may be regularly arranged or may be randomly present.
  • PAEK having the repeating unit represented by general formula (1) and other repeating units can be produced by carrying out a polycondensation reaction described later using a biphenol compound represented by general formula (3) described later and other aromatic dihydroxy compounds in combination.
  • the structures at both ends of the polymer chain of the PAEK according to the present invention are not particularly limited.
  • the end structure may be a halogen atom derived from a dihalogen compound represented by the following general formula (2), a hydroxyl group derived from a bisphenol compound represented by the following general formula (3), or a reactive functional group modified from the hydroxyl group to a group represented by the following general formula (4) (specifically, an acryloyloxy group or a methacryloyloxy group) or a group represented by the following chemical formula (5) (glycidyl ether group).
  • R3 represents a hydrogen atom or a methyl group, and * represents a bonding site to the end of a polymer chain.
  • the terminal structures are (i) both halogen atoms, (ii) both hydroxyl groups, or (iii) one halogen atom and the other hydroxyl group
  • the polyaryletherketone of the present invention can be used as a thermoplastic resin.
  • Conventional molding and processing methods for thermoplastic resins e.g., melt molding methods such as injection molding, extrusion molding, and compression molding
  • molded articles for use in electronic devices and devices can be manufactured, and electronic devices and devices can be manufactured.
  • terminal structures are (i) both of which are one group selected from the group represented by the general formula (4) or the chemical formula (5), (ii) one of which is one group selected from the group represented by the general formula (4) or the chemical formula (5) and the other is a halogen atom, or (iii) one of which is one group selected from the group represented by the general formula (4) or the chemical formula (5) and the other is a hydroxyl group, at least one of the terminal structures has a reactive functional group, so that it can be used as a curable resin.
  • Conventional molding and processing methods for curable resins e.g., compression molding and transfer molding
  • a molded product used in an electronic device or device can be manufactured to manufacture an electronic device or device.
  • the dielectric loss tangent of the PAEK of the polyaryl ether ketone resin material for electronic devices and devices of the present invention measured at a frequency of 10 GHz is 0.004 or less. Since it is 0.004 or less, it can be suitably used as a PAEK material for electronic devices, which will be described later, such as communication devices that require compatibility with high frequencies.
  • the dielectric loss tangent is preferably 0.0038 or less, more preferably 0.0036 or less, and particularly preferably 0.0035 or less. The lower the dielectric loss tangent, the more preferable it is, so there is no particular limit to the lower limit, but it may be 0.0020 or more.
  • the dielectric constant of the PAEK of the polyaryl ether ketone resin material for electronic devices and devices of the present invention measured at a frequency of 10 GHz is 3.5 or less. If it is 3.5 or less, it can be suitably used as a PAEK material for electronic devices and devices described later, such as communication devices that are particularly required to support high frequencies.
  • the dielectric constant is preferably 3.0 or less, more preferably 2.9 or less, and particularly preferably 2.8 or less.
  • the lower limit of the dielectric constant is not particularly limited because the lower the dielectric constant, the more preferable it is, but it may be 2.0 or more.
  • the weight average molecular weight (Mw) of the PAEK in the polyaryl ether ketone resin material for electronic devices of the present invention is in the range of 2,000 to 1,000,000. By being in this range, it can be used as a material with sufficient strength. It is preferably in the range of 10,000 to 500,000, more preferably in the range of 20,000 to 200,000, and particularly preferably in the range of 30,000 to 150,000.
  • the weight average molecular weight (Mw) is more preferably in the range of 10,000 to 500,000, even more preferably in the range of 20,000 to 200,000, and particularly preferably in the range of 30,000 to 150,000.
  • the terminal structures of the PAEK according to the present invention are (i) both of which are a group selected from the group represented by the general formula (4) or the chemical formula (5), (ii) one of which is a group selected from the group represented by the general formula (4) or the chemical formula (5) and the other is a halogen atom, or (iii) one of which is a group selected from the group represented by the general formula (4) or the chemical formula (5) and the other is a hydroxy group, in order to provide good processability when used as a curable resin, the weight average molecular weight (Mw) is preferably in the range of 2,000 to 100,000, more preferably in the range of 2,000 to 50,000, even more preferably in the range of 2,000 to 30,000, and particularly preferably in the range of 2,000 to 10,000.
  • the ratio of weight average molecular weight (Mw) to number average molecular weight (Mn), Mw/Mn, is preferably in the range of 1.5 or more and 20 or less, more preferably in the range of 2 or more and 15 or less, even more preferably in the range of 2 or more and 10 or less, and particularly preferably in the range of 2 or more and 8 or less.
  • the reduced viscosity of the PAEK in the polyaryl ether ketone resin material for electronic devices of the present invention is preferably 0.1 dL/g or more, more preferably 0.3 dL/g or more, and even more preferably 0.5 dL/g or more.
  • the reduced viscosity is a measured value of the viscosity of a 1.0 g/dL solution of the PAEK in the present invention using p-chlorophenol as a solvent at 40°C.
  • the glass transition temperature of the PAEK in the polyaryl ether ketone resin material for electronic devices and devices of the present invention is 150°C or higher. It can be suitably used as a PAEK material for electronic devices and electronic devices that are exposed to high temperatures during the manufacturing process and in use.
  • the glass transition temperature is preferably 170°C or higher, more preferably 200°C or higher, even more preferably 215°C or higher, and particularly preferably 230°C or higher.
  • the higher the glass transition temperature, the better the heat resistance, so the upper limit is not particularly limited, but it may be 300°C or lower.
  • the water absorption rate of the polyaryl ether ketone resin material for electronic devices and devices of the present invention is preferably 0.35% or less. If the water absorption rate is 0.35% or less, the material can be suitably used as a polyaryl ether ketone resin material for electronic devices, particularly for electronic devices used in high-speed communication using high-frequency radio waves and electronic devices used therein (electronic devices and devices for high-frequency communication).
  • the water absorption rate is more preferably 0.30% or less, even more preferably 0.20% or less, and particularly preferably 0.1% or less. The lower the water absorption rate, the better, so there is no particular restriction on the lower limit, but it may be 0.001% or more.
  • the method for producing the PAEK of the polyaryl ether ketone resin material for electronic devices of the present invention is not particularly limited, and the PAEK can be produced, for example, by subjecting a dihalogen compound represented by general formula (2) and a bisphenol compound represented by general formula (3) to a desalting polycondensation reaction in the presence of an alkali metal compound.
  • a dihalogen compound represented by general formula (2) and a bisphenol compound represented by general formula (3) to a desalting polycondensation reaction in the presence of an alkali metal compound.
  • each X independently represents a halogen atom, and a is defined as in general formula (1).
  • R 1 , R 2 , b and c are defined as in general formula (1).
  • X in the general formula (2) represents a fluorine atom, a chlorine atom, a bromine atom, or an iodine atom.
  • a fluorine atom or a chlorine atom is preferable, and a fluorine atom is particularly preferable.
  • a is preferably 1.
  • dihalogen compound represented by the general formula (2) examples include 4,4'-difluorobenzophenone, 4,4'-dichlorobenzophenone, 4,4'-dibromobenzophenone, 4,4'-diiodobenzophenone, 1,4-bis(4-fluorobenzoyl)benzene, 1,4-bis(4-chlorobenzoyl)benzene, 1,4-bis(4-bromobenzoyl)benzene, and 1,4-bis(4-iodobenzoyl)benzene.
  • 4,4'-difluorobenzophenone and 4,4'-dichlorobenzophenone are preferred, with 4,4'-difluorobenzophenone being particularly preferred.
  • bisphenol compound represented by general formula (3) The definitions and preferred embodiments of R 1 and n in formula (3) are the same as those in formula (1).
  • Specific examples of the bisphenol compound represented by the general formula (3) include 1,1-bis(4-hydroxyphenyl)cyclohexane, 1,1-bis(4-hydroxy-3-methylphenyl)cyclohexane, 4,4'-cyclohexylidenebis(2,6-dimethylphenol), 4-[1-(4-hydroxyphenyl)cyclohexyl]-2-methylphenol, 4-[1-(4-hydroxyphenyl)cyclohexyl]-2,6-dimethylphenol, 4,4'-(3,5-dimethylcyclohexylidene)bisphenol, 4,4'-(2-methylcyclohexylidene)bisphenol, 4,4'-(2-methylcyclohexylidene)bis(2-methylphenol), 4,4'-(2-methylcyclohexylidene)bis(2,6-dimethylphenol),
  • PAEK in order to obtain a PAEK having a repeating unit represented by the general formula (1) and another repeating unit, other aromatic dihydroxy compounds can be used in combination with the biphenol compound represented by the general formula (3).
  • the other repeating units have a structure derived from these aromatic dihydroxy compounds and a repeating unit having a structure derived from the dihalogen compound represented by the general formula (2).
  • aromatic dihydroxy compounds that can be used in combination include hydroquinone, resorcin, 2-phenylhydroquinone, 4,4'-biphenol, 2,6-dihydroxynaphthalene, 2,7-dihydroxynaphthalene, 1,1'-bi-2-naphthol, 2,2'-bi-1-naphthol, 1,3-bis[1-methyl-1-(4-hydroxyphenyl)ethyl]benzene, 1,4-bis[1-methyl-1-(4-hydroxyphenyl)ethyl]benzene, 1,3 -Bis(4-hydroxybenzoyl)benzene, 1,4-bis(4-hydroxybenzoyl)benzene, 1,3-bis(4-hydroxyphenoxy)benzene, 1,4-bis(4-hydroxyphenoxy)benzene, 1,4-bis(4-hydroxyphenyl)benzene, 1,3-bis(4-hydroxyphenyl)benzene, 4,4'-m
  • alkali metal compounds As the alkali metal compound, any compound can be used as long as it can convert the bisphenol compound represented by the general formula (3) into an alkali metal salt, but usually, carbonates, hydrogen carbonates, hydroxides, etc. of alkali metals are preferably used, and carbonates are particularly preferred.
  • alkali metal include lithium, sodium, potassium, rubidium, and cesium, and among them, sodium and potassium are preferred, and potassium is particularly preferred.
  • solvent A solvent can be used in the polycondensation reaction to obtain PAEK, and it is preferable to use the solvent.
  • a neutral polar solvent such as N,N-dimethylformamide (DMF), N,N-dimethylacetamide (DMAc), N-methylpyrrolidone (NMP), dimethylimidazolidinone (DMI), dimethylsulfoxide (DMSO), sulfolane, diphenylsulfone, etc. is preferable, but any solvent can be used without any problem as long as the monomer and polymer are soluble in the solvent.
  • the solvent may be used alone or in combination of two or more kinds as a mixed solvent.
  • the amount of the dihalogen compound represented by the general formula (2) used depends on the target molecular weight relative to the bisphenol compound represented by the general formula (3) (when an aromatic dihydroxy compound other than the general formula (3) is used in combination, the total of the bisphenol compound represented by the general formula (3) and the other aromatic dihydroxy compound).
  • the amount is usually in the range of 0.9 to 1.1 times by mole, preferably in the range of 0.95 to 1.06 times by mole, and more preferably in the range of 1.0 to 1.04 times by mole.
  • more than 1.00 molar equivalents are used within the above range, and in order to increase the proportion of hydroxyl groups, less than 1.00 molar equivalents are used within the above range.
  • the molar ratio is in the range of 1.01 to 1.1 times by mole, preferably in the range of 1.01 to 1.06 times by mole, and more preferably in the range of 1.01 to 1.04 times by mole.
  • the molar ratio for a PAEK having a large molecular weight is in the range of 0.9 to 0.99 molar times, and preferably in the range of 0.95 to 0.99 molar times, while the molar ratio for a PAEK having a small molecular weight is usually in the range of 0.6 to 0.95 molar times, preferably in the range of 0.7 to 0.9 molar times, and more preferably in the range of 0.8 to 0.9 molar times.
  • the amount of the alkali metal compound used is usually in the range of 1.0 to 3.0 moles, preferably 1.01 to 1.3 moles, per mole of the bisphenol compound represented by formula (3).
  • the reaction temperature is usually in the range of 150 to 350° C., preferably 180 to 250° C.
  • the reaction time is usually in the range of 1 to 60 hours, preferably 2 to 50 hours.
  • These reactions are preferably carried out in an atmosphere of an inert gas such as nitrogen, argon, etc.
  • an inert gas such as nitrogen, argon, etc.
  • There is no limitation on the reaction pressure and the reaction may be carried out at reduced pressure, atmospheric pressure, or elevated pressure, but the reaction is usually carried out at atmospheric pressure.
  • the PAEK produced by the polycondensation reaction can be recovered by a commonly used method such as coagulation, solidification, washing, granulation, extraction, or solvent distillation.
  • the method for treating the PAEK produced by the polycondensation reaction will be described in more detail.
  • the liquid containing the PAEK produced by the polycondensation reaction can be diluted with a solvent as necessary, and mixed with a poor solvent to precipitate the PAEK, thereby obtaining a powdered PAEK.
  • the solvent used for precipitation of the precipitate for example, methanol, ethanol, acetone, methyl ethyl ketone, xylene, toluene, etc.
  • the powdered PAEK obtained by precipitation of the precipitate is preferably subjected to a washing step in order to remove alkali metal salts such as potassium chloride produced in the desalting polycondensation reaction, the solvent used in the reaction, and the solvent used in the precipitation of the precipitate.
  • alkali metal salts such as potassium chloride produced in the desalting polycondensation reaction
  • water is preferred, but acidic water containing low concentrations of hydrochloric acid, formic acid, oxalic acid, etc. may also be used.
  • the conditions for this washing step may be appropriately selected according to the amounts of residual reaction solvent and residual alkali metal salts to be removed, such as the amount of washing solvent used, the number of washings, and the washing temperature.
  • the powder After washing with water, the powder may be washed with, for example, methanol, ethanol, acetone, methyl ethyl ketone, xylene, or toluene, particularly acetone or methanol.
  • the washing apparatus may be a combination of a washing tank and a pressure filter or a centrifuge, or a multi-function filter capable of washing, filtering and drying in one apparatus.
  • a step of drying the powdered PAEK containing moisture and solvent after completion of the washing step obtained by the above washing step can be carried out.
  • the conditions for this drying step may be any conditions that allow removal of moisture at a temperature equal to or lower than the melting point of the polycondensation reaction product. It is preferable to perform the drying step under an inert gas (nitrogen, argon, etc.) atmosphere, under an inert gas stream, or under reduced pressure so as to minimize contact with air.
  • the dryer may be a known device such as an evaporator, a tray oven, or a tumbler.
  • the structure of both ends of the polymer chain of the aryl ether ketone (PAEK) of the present invention is a terminal structure modified with reactive functional groups such as a group represented by general formula (4) (acryloyloxy group, methacryloyloxy group) or a group represented by chemical formula (5) (glycidyl ether group)
  • the PAEK can be obtained by modifying the hydroxy group derived from the bisphenol compound represented by general formula (3) to a reactive substituent such as an acryloyloxy group, methacryloyloxy group, or glycidyl ether group.
  • the PAEK according to the present invention whose terminal structure is a group represented by general formula (4) (an acryloyl group or a methacryloyl group), can be produced by applying a conventionally known method for (meth)acrylation of a hydroxy compound to a polyaryletherketone having a repeating unit represented by general formula (1) containing a hydroxy group at the end of the polymer chain obtained by the above-mentioned method.
  • a method for (meth)acrylation for example, there is a method of reacting (meth)acrylic acid and its derivatives with the terminal hydroxyl group of polyaryletherketone having a repeating unit represented by general formula (1).
  • acrylic acid chloride is used as a derivative of (meth)acrylic acid
  • chloride ions are generated in the form of hydrogen chloride, so it is preferable to use a hydrogen chloride scavenger in combination.
  • the hydrogen chloride scavenger inorganic or organic basic substances such as carbonates or hydrogen carbonates of alkali metals, tertiary amines, etc. can be used.
  • Specific examples of (meth)acrylic acid and its derivatives include acrylic acid, methacrylic acid, acrylic acid chloride, methacrylic acid chloride, etc.
  • a solvent such as a halogenated hydrocarbon such as methylene chloride, tetrahydrofuran, dioxane, chlorobenzene, or the like may be used.
  • a polymerization inhibitor such as hydroquinone, hydroquinone monomethyl ether, phenothiazine, or 2,6-di-tert-butyl-4-methylphenol (BHT) may be added.
  • the PAEK according to the present invention whose terminal structure is a group represented by chemical formula (5) (glycidyl ether group), can be produced by applying a conventionally known method for glycidyl etherifying a hydroxy compound to a polyaryl ether ketone having a repeating unit represented by general formula (1) containing a hydroxy group at the end of the polymer chain obtained by the above-mentioned method.
  • a glycidyl etherified PAEK can be produced by reacting a terminal hydroxy group of a polyaryletherketone having a repeating unit represented by the general formula (1) with epihalohydrin in the presence of an alkali metal hydroxide (e.g., sodium hydroxide or potassium hydroxide) or a quaternary ammonium salt (e.g., tetramethylammonium chloride or tetramethylammonium bromide).
  • an alkali metal hydroxide e.g., sodium hydroxide or potassium hydroxide
  • quaternary ammonium salt e.g., tetramethylammonium chloride or tetramethylammonium bromide.
  • the epihalohydrin used include epichlorohydrin and epibromohydrin.
  • the PAEK according to the present invention can be blended with various additives such as flame retardants, heat stabilizers, oxidation stabilizers, weathering stabilizers, antistatic agents, lubricants, plasticizers, etc., as desired, by a conventional method of blending additives with raw resins, within a range that does not impair the effects of the present invention.
  • a polyaryl ether ketone resin composition can be obtained, which contains the PAEK according to the present invention and one or more additives selected from the group consisting of flame retardants, heat stabilizers, oxidation stabilizers, weathering stabilizers, antistatic agents, lubricants, and plasticizers.
  • This polyaryl ether ketone resin composition can be used in the same manner as the PAEK of the present invention described below.
  • the high-frequency radio waves in the present invention refer to radio waves having a frequency in the range of 1 GHz to 300 GHz, including microwaves, centimeter waves (SHF: Super High Frequency), millimeter waves (EHF: Extremely High Frequency), etc.
  • the range of such high-frequency radio waves is preferably 1 GHz to 100 GHz, more preferably 1 GHz to 80 GHz, and particularly preferably 1 GHz to 30 GHz.
  • the PAEK according to the present invention has heat resistance, as well as excellent dielectric properties in the high frequency band and low water absorption. Therefore, a resin material containing the polyaryl ether ketone of the present invention is suitable as a polyaryl ether ketone resin material used in electronic devices and electronic devices used therein (electronic devices and devices), and is particularly suitable as a polyaryl ether ketone resin material used in electronic devices and devices used in high-speed communication using radio waves in the high frequency band (electronic devices and devices for high-frequency communication).
  • the polyaryletherketone resin material for electronic devices and devices which contains the PAEK according to the present invention, may be a resin material containing only the polyaryletherketone according to the present invention, depending on the properties required for the electronic device or device to be manufactured, or may be a resin material containing the PAEK according to the present invention and one or more additives selected from the group consisting of a flame retardant, a heat stabilizer, an oxidation stabilizer, a weather resistance stabilizer, an antistatic agent, a lubricant, and a plasticizer.
  • the polyaryletherketone resin material for electronic devices can be used as a resin material for electronic devices and devices to produce molded products such as films, sheets, tapes, containers, threads, lenses, tubes, pellets, and chips by applying a conventional molding/processing method for thermoplastic resins (e.g., melt molding methods such as injection molding, extrusion molding, and compression molding) or a conventional molding/processing method for curable resins (e.g., compression molding and transfer molding). Then, the molded products can be used as resin materials for electronic devices and devices to produce electronic devices and devices.
  • a conventional molding/processing method for thermoplastic resins e.g., melt molding methods such as injection molding, extrusion molding, and compression molding
  • curable resins e.g., compression molding and transfer molding
  • electronic devices and electronic devices used therein are collectively referred to as electronic devices and devices.
  • electronic devices and devices used for high-speed communication using radio waves in a high frequency band are collectively referred to as high-frequency communication electronic devices and devices. Since the PAEK of the present invention has excellent dielectric properties in a high frequency band in addition to heat resistance, electronic devices and devices using the PAEK of the present invention are preferred, and high-frequency communication electronic devices and devices are particularly preferred.
  • the electronic device include mobile phones, smartphones, personal computers, mobile routers, data center communication equipment, base stations, radars, robots, drones, wearable computers, automobiles, aircraft, measuring and measurement equipment used in various industries such as industry, agriculture, logistics, and civil engineering, high-speed wireless communication equipment, electronic organizers, digital still cameras, video cameras, electronic paper, televisions, players, various audio equipment, car navigation devices, in-vehicle displays such as instrument panels, calculators, printers, scanners, copiers, refrigerators, and washing machines.
  • electronic devices used for high-speed communication using high-frequency radio waves include mobile phones, smartphones, personal computers, mobile routers, data center communication equipment, base stations, radar, robots, drones, wearable computers, measurement and gaging equipment used in various industries such as the automobile, aircraft, manufacturing, agriculture, logistics, and civil engineering industries, and high-speed wireless communication equipment.
  • Specific examples of the electronic devices include semiconductors, electronic displays, and electric/electronic components. Examples of the electric/electronic components include capacitors, printed circuits, connectors, various sensors, inductors, switches, and housings. These are also used in electronic devices for high-speed communication using high-frequency radio waves.
  • the polyaryl ether ketone resin material of the present invention can be suitably used for, for example, exterior members, structural members, circuit boards, semiconductor encapsulants, or antenna element members of these electronic devices and devices (preferably, electronic devices and devices for high-frequency communication in the range of 1 GHz to 300 GHz).
  • the polyaryl ether ketone resin material can be suitably used for the circuit boards, semiconductor encapsulants, or antenna element members of the electronic devices and devices, and can be particularly suitably used for the circuit boards of the electronic devices and devices.
  • the analytical method in the present invention is as follows. ⁇ Analysis method> 1. Measurement of Glass Transition Temperature (Tg) The glass transition temperatures of the PAEKs obtained in the Examples and Comparative Examples were measured using the following apparatus and conditions. Measuring device: DSC7020 (manufactured by Hitachi, Ltd.) Pan: Aluminum Atmosphere: N2 Heating rate: 10° C./min. Analysis method: Glass transition point of 2nd heating (intersection of baseline and tangent line) 2. Measurement of dielectric constant and dielectric loss tangent The PAEK powder obtained in the examples and comparative examples described below was molded into test pieces by the following molding method.
  • Tg Glass Transition Temperature
  • the dielectric constant and dielectric loss tangent of the obtained test pieces were measured using the following device and conditions.
  • the PAEK powder was molded into a test piece using a Mini Test Press MP-2FH (Toyo Seiki Co., Ltd.). The molding was performed by melting and degassing the powder several times at a temperature of 350°C and a pressure of 1 to 5 MPa, and then pressing the powder at a temperature of 350°C and a pressure of 12 MPa for 5 minutes.
  • Measurement device Synthesized Sweeper 8340B (YHP) Network analyzer 8510B (YHP) Cylindrical cavity resonator (material: copper, internal mirror finish) Semi-rigid cable for signal transmission Sample size: Cut into approximately 50 mm square Measurement frequency: Around 10 GHz Measurement environment: Room temperature (23 ⁇ 2°C/50 ⁇ 5% RH) 3. Molecular Weight Measurement The molecular weights of the PAEKs obtained in the Examples and Comparative Examples described below were measured by gel permeation chromatography (GPC) using the following apparatus and conditions.
  • the PAEK powder obtained in the examples and comparative examples described later was prepared into a solution having a concentration of 1.0 g/dL using p-chlorophenol as a solvent, and the viscosity at 40° C. was measured. 5. Measurement of Water Absorption Rate Test pieces were prepared from the PAEK powders obtained in the Examples and Comparative Examples described below by the following molding method. The water absorption rate was measured using the obtained test pieces with the following device and under the following conditions. (Molding method) The PAEK powder was molded into a test piece using a Mini Test Press MP-2FH (Toyo Seiki Co., Ltd.).
  • the molding was performed by melting and degassing several times at a temperature of 350°C and a pressure of 1 to 5 MPa, and then pressing at a temperature of 350°C and a pressure of 12 MPa for 5 minutes.
  • the obtained PAEK sheet was cut into a size of 10 cm x 10 cm. (Water absorption measurement and calculation method)
  • the prepared PAEK sheet was dried in a vacuum dryer at 120° C. and 1.0 kPa for 2 hours, and then the weight (weight before immersion) was measured.
  • the PAEK sheet was then completely immersed in a container filled with distilled water and allowed to absorb water for 24 hours at a water temperature of 25° C.
  • Example 1 In a 500 mL four-necked reaction vessel equipped with a Dean-Stark tube filled with toluene, a stirrer, and a nitrogen inlet tube, 25.4 g of 4,4'-difluorobenzophenone, 30.0 g of 1,1-bis(4-hydroxyphenyl)cyclohexane, 14.2 g of sodium carbonate, and 145 g of N-methylpyrrolidone (NMP) were charged and dissolved at room temperature while passing nitrogen through. The reaction vessel was then heated to 200°C over 1 hour, after which a small amount of toluene was added and refluxed, followed by polymerization at 200°C for 10 hours.
  • NMP N-methylpyrrolidone
  • the reaction solution was cooled to room temperature, and the solution diluted with 150 g of NMP was added to 2400 g of methanol to precipitate.
  • the precipitate was filtered off, and the resulting powder was suspended and washed with 700 g of 1.4% oxalic acid aqueous solution, and then repeatedly washed with hot water until the water after washing became neutral, and then washed with methanol.
  • the washed powder was dried at 150° C. for 12 hours to obtain 40 g of PAEK powder in a yield of 90%.
  • the resulting PAEK had a reduced viscosity of 1.1 dL/g.
  • the glass transition temperature (Tg) of the resulting PAEK was 173° C.
  • the water absorption rate of the obtained PAEK was measured to be 0.38%.
  • the PAEK sheet produced by this measurement can be bent into an arc shape, and is a resin material having excellent flexibility.
  • Example 2 In a 1000 mL four-necked reaction vessel equipped with a Dean-Stark tube filled with toluene, a stirrer, and a nitrogen inlet tube, 31 g of 4,4'-difluorobenzophenone, 50 g of 4,4'-(3,3,5-trimethylcyclohexylidene)bis(2,6-dimethylphenol), 17 g of sodium carbonate, and 240 g of NMP were charged and dissolved at room temperature while passing nitrogen through. The reaction vessel was then heated to 200°C over 1 hour, after which a small amount of toluene was added and refluxed, followed by polymerization at 200°C for 50 hours.
  • the reaction solution was cooled to room temperature, and the solution diluted with 180 g of NMP was added to 3200 g of methanol to precipitate.
  • the precipitate was filtered off, and the resulting powder was suspended and washed in 1000 g of a 1.4% aqueous oxalic acid solution, and then repeatedly washed with hot water until the water after washing became neutral, and then washed with methanol.
  • the washed powder was dried at 150° C. for 12 hours to obtain 65 g of PAEK powder in a yield of 85%.
  • the resulting PAEK had a reduced viscosity of 0.45 dL/g.
  • the glass transition temperature (Tg) of the resulting PAEK was 243° C. as measured by differential scanning calorimetry. The water absorption of the resulting PAEK was measured and found to be 0.06%.
  • the reaction solution was cooled to room temperature, and the solution diluted with 156 g of NMP was added to 2850 g of methanol to precipitate.
  • the precipitate was filtered off, and the resulting powder was suspended and washed in 1000 g of a 1.4% aqueous oxalic acid solution, and then repeatedly washed with hot water until the water after washing became neutral, and then washed with methanol.
  • the washed powder was dried under reduced pressure at 150° C. for 12 hours, and 65 g of PAEK powder was obtained in a yield of 87%.
  • the resulting PAEK had a reduced viscosity of 0.63 dL/g.
  • the glass transition temperature (Tg) of the resulting PAEK was 285° C. as measured by differential scanning calorimetry. The water absorption of the resulting PAEK was measured and found to be 0.53%.
  • the product was cooled to room temperature, and a solution diluted with 107 g of NMP was added to 2150 g of methanol to precipitate a precipitate.
  • the precipitate was filtered, suspended and washed with 800 g of a 1.4% aqueous oxalic acid solution, washed with hot water until neutral, and then washed with methanol.
  • 44 g of PAEK powder was obtained in a yield of 87%.
  • the resulting PAEK had a reduced viscosity of 0.56 dL/g.
  • the glass transition temperature (Tg) of the resulting PAEK was 243° C. as measured by differential scanning calorimetry. The water absorption of the resulting PAEK was measured and found to be 0.32%.
  • the PAEK obtained in Examples 1 and 2 of the present invention is compared with the PEEK resin of Comparative Example 1. It was revealed that the glass transition temperature (Tg) is 24°C or 94°C higher, and has excellent heat resistance. It was revealed that the relative dielectric constant (Dk) is 0.3 or 0.5 lower, and the dielectric loss tangent (Df) is 0.0003 higher in Example 2 but is the same as in Example 1, and thus the PAEK has equally low and excellent dielectric properties.
  • the PAEK resins obtained in Comparative Examples 2 and 3 are compared with the PEEK resin in Comparative Example 1.
  • the glass transition temperature (Tg) is high and excellent in heat resistance, and the dielectric constant (Dk) among the dielectric properties is low, but the dielectric loss tangent (Df) is about twice as large, and it can be seen that the resin is generally significantly inferior in dielectric properties. Therefore, it can be seen that the resin is not suitable as a resin material for electronic devices and devices, particularly electronic devices and devices in the high-speed communication field that require high frequency compatibility.
  • the PAEK resins obtained in Examples 1 and 2 of the present invention are compared with the PAEK resins of Comparative Examples 2 and 3. Although the heat resistance of Example 2 and Comparative Example 3 is equivalent, Example 1 is lower than Comparative Examples 2 and 3.
  • the relative dielectric constant (Dk) of Example 1 is equivalent to Comparative Example 2, but is lower than Comparative Example 3, and in particular, Example 2 is lower than Comparative Examples 2 and 3.
  • Df dielectric loss tangent
  • Examples 1 and 2 are significantly lower, about half that of Comparative Examples 2 and 3. From these facts, it has become clear that the resins have both good heat resistance and excellent dielectric properties. Furthermore, the water absorption rates of the PAEK resins obtained in Examples 1 and 2 of the present invention were 0.38% and 0.06%, respectively, and it was also revealed that they also had low water absorption. From the above, it has become clear that the polyaryl ether ketone according to the present invention is a resin material that combines good heat resistance, excellent dielectric properties, and low water absorption, and can be suitably used as a resin material for electronic devices and devices.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Polyethers (AREA)

Abstract

The present invention addresses the problem of providing a polyaryl ether ketone resin material that has excellent dielectric properties, excellent heat resistance, and is suitable as a material for use in electronic equipment/devices, especially electronic equipment/devices in the high-speed communications field that require high-frequency support. Provided as a solution is a polyaryl ether ketone resin material for electronic equipment/devices that contains polyaryl ether ketone having a repeating unit represented by general formula (1), that has a dielectric tangent (Df) measured at a frequency of 10 GHz of 0.004 or less, that has a relative permittivity (Dk) measured at a frequency of 10 GHz of 3.5 or less, that has a glass transition temperature of 150°C or more, and that has a weight average molecular weight (Mw) in the range 2,000-1,000,000. (In the formula, R1 and R2 each independently represent a C1-4 alkyl group, a represents 1 or 2, b each independently represents 0, 1, or 2, and c represents 0 or an integer of 1-4.)

Description

電子機器・デバイス用ポリアリールエーテルケトン樹脂材料及びこれを用いた電子機器・デバイスPolyaryl ether ketone resin material for electronic devices and electronic devices using the same
 本発明は、ポリアリールエーテルケトン(PAEK)の利用に関するものであり、詳しくは、ビスフェノールを原料に用いて得られるPAEKの利用、特に耐熱性、誘電特性に優れたPAEKによる電子機器・デバイス用樹脂材料、及びこれを用いた電子機器・デバイスに関する。 The present invention relates to the use of polyaryl ether ketone (PAEK), and more specifically, to the use of PAEK obtained using bisphenol as a raw material, in particular to a resin material for electronic devices and devices made of PAEK with excellent heat resistance and dielectric properties, and to electronic devices and devices using the same.
 ポリアリールエーテルケトン(PAEK)樹脂は、優れた耐熱性、高い強度と剛性、耐薬品性を備えている熱可塑性プラスチックとして知られている。このため、PAEK樹脂は、絶縁コーティング剤、絶縁膜、半導体、電極保護膜、フレキシブルプリント基板等の電気・電子部品、宇宙航空用機器、輸送機器などの分野で素材として使用されている。これらの用途におけるPAEKの利用は一層高度化、特殊化する傾向にあり、より向上した耐熱性も求められている。 Polyaryletherketone (PAEK) resin is known as a thermoplastic that has excellent heat resistance, high strength and rigidity, and chemical resistance. For this reason, PAEK resin is used as a material in fields such as insulating coating agents, insulating films, semiconductors, electrode protective films, flexible printed circuit boards and other electrical and electronic components, aerospace equipment, and transportation equipment. The use of PAEK in these applications tends to become more advanced and specialized, and improved heat resistance is also required.
 近年、無線インターネット機器や通信機器では、流れる電気信号の伝送速度は非常に高速化・高周波数化が進んでおり、これらの機器が有する金属配線を絶縁する絶縁部にも高周波数化への対応が求められている。特に、センチメートル波(SHF:Super High Frequency)や、ミリ波(EHF:Extremely High Frequency)等のより高周波数の電波は更に高速なデータ通信を行うために用いられる。周波数が高いほど絶縁部の誘電損失が増加し、流れる電気信号が減衰する。したがって、高周波数化への対応として、誘電損失を低減することができる誘電特性に優れた材料が求められている。それと同時に、電子機器やこれに用いる電子デバイス(以下、本発明において、総称して、電子機器・デバイスと称することがある)の製造並びに使用の場面で、例えば、デバイスとして使用するにあたってパワー半導体のように高い耐熱性も必要となる場合もある。
 低誘電材料としてPAEKも応用されており、例えば、1,1’-ビ-2-ナフトールを用いたPAEK(特許文献1)や、ハイドロキノン、4,4’-ジフルオロベンゾフェノン及び2,6-ジクロロピリジンを共重合したPAEK(特許文献2)が電子回路用積層板の電気絶縁層やフレキシブルプリント配線基板の基材として極めて有用であることなどが知られている。
In recent years, in wireless Internet devices and communication devices, the transmission speed of electric signals flowing therethrough has become extremely high and high frequency, and the insulating parts that insulate the metal wiring of these devices are also required to respond to high frequencies. In particular, higher frequency radio waves such as centimeter waves (SHF: Super High Frequency) and millimeter waves (EHF: Extremely High Frequency) are used to perform even faster data communication. The higher the frequency, the greater the dielectric loss of the insulating parts, and the more the electric signals flow attenuate. Therefore, in response to the increase in frequency, materials with excellent dielectric properties that can reduce dielectric loss are required. At the same time, in the manufacturing and use of electronic devices and electronic devices used therein (hereinafter, in the present invention, they may be collectively referred to as electronic devices and devices), for example, high heat resistance may be required as in power semiconductors when used as devices.
PAEKs are also used as low dielectric materials. For example, PAEKs using 1,1'-bi-2-naphthol (Patent Document 1) and PAEKs copolymerized with hydroquinone, 4,4'-difluorobenzophenone, and 2,6-dichloropyridine (Patent Document 2) are known to be extremely useful as electrical insulating layers in laminates for electronic circuits and as base materials for flexible printed wiring boards.
特開2005-213393号公報JP 2005-213393 A 特開2006-002013号公報JP 2006-002013 A
 本発明は、電子機器・デバイス、特に高周波数対応が求められる高速通信分野における電子機器・デバイスに用いる材料として好適な、優れた誘電特性と、優れた耐熱性を有するPAEK樹脂材料の提供を課題とする。 The objective of the present invention is to provide a PAEK resin material that has excellent dielectric properties and excellent heat resistance and is suitable for use in electronic devices and devices, particularly in electronic devices and devices in the field of high-speed communications that require high frequencies.
 本発明者は、上述の課題解決のために鋭意検討した結果、特定の脂肪族環構造を有するポリアリールエーテルケトン(PAEK)が、優れた誘電特性、優れた耐熱性、低い吸水性を有することを見出し、本発明を完成した。 As a result of extensive research into solving the above problems, the inventors discovered that polyaryletherketones (PAEKs) with a specific aliphatic ring structure have excellent dielectric properties, excellent heat resistance, and low water absorption, and thus completed the present invention.
 本発明は以下の通りである。
1.一般式(1)で表される繰り返し単位を有するポリアリールエーテルケトンを含み、周波数10GHzで測定した誘電正接(Df)が0.004以下であり、周波数10GHzで測定した比誘電率(Dk)が3.5以下であり、ガラス転移温度が150℃以上であり、重量平均分子量(Mw)が2,000以上1,000,000以下の範囲である、電子機器・デバイス用ポリアリールエーテルケトン樹脂材料。
(式中、R及びRは、各々独立して、炭素原子数1~4のアルキル基を示し、aは1又は2を示し、bは、各々独立して0、1、又は2を示し、cは0又は1~4の整数を示す。)
2.前記一般式(1)で表される繰り返し単位が、一般式(1’)で表される繰り返し単位である、1.に記載の電子機器・デバイス用ポリアリールエーテルケトン樹脂材料。
(式中、R、a及びcは、一般式(1)の定義と同じである。)
3.前記一般式(1’)で表される繰り返し単位が、一般式(1’’)で表される繰り返し単位である、2.に記載の電子機器・デバイス用ポリアリールエーテルケトン樹脂材料。
(式中、aは、一般式(1)の定義と同じである。)
4.1.に記載の電子機器・デバイス用ポリアリールエーテルケトン樹脂材料を用いた、電子機器・デバイス。
5.周波数10GHzで測定した誘電正接(Df)が0.004以下であり、周波数10GHzで測定した比誘電率(Dk)が3.5以下であり、ガラス転移温度が150℃以上であり、重量平均分子量(Mw)が2,000以上1,000,000以下の範囲である、一般式(1)で表される繰り返し単位を有するポリアリールエーテルケトンを電子機器・デバイスに使用する方法。
(式中、R及びRは、各々独立して、炭素原子数1~4のアルキル基を示し、aは1又は2を示し、bは、各々独立して0、1、又は2を示し、cは0又は1~4の整数を示す。)
6.前記一般式(1)で表される繰り返し単位が、一般式(1’)で表される繰り返し単位である、5.に記載のポリアリールエーテルケトンを電子機器・デバイスに使用する方法。
(式中、R、a及びcは、一般式(1)の定義と同じである。)
7.前記一般式(1’)で表される繰り返し単位が、一般式(1’’)で表される繰り返し単位である、6.に記載のポリアリールエーテルケトンを電子機器・デバイスに使用する方法。
(式中、aは、一般式(1)の定義と同じである。)
The present invention is as follows.
1. A polyaryl ether ketone resin material for electronic devices, comprising a polyaryl ether ketone having a repeating unit represented by general formula (1), having a dielectric loss tangent (Df) measured at a frequency of 10 GHz of 0.004 or less, a relative dielectric constant (Dk) measured at a frequency of 10 GHz of 3.5 or less, a glass transition temperature of 150°C or more, and a weight average molecular weight (Mw) in the range of 2,000 to 1,000,000.
(In the formula, R1 and R2 each independently represent an alkyl group having 1 to 4 carbon atoms, a represents 1 or 2, b each independently represents 0, 1, or 2, and c represents 0 or an integer of 1 to 4.)
2. The polyaryl ether ketone resin material for electronic devices and devices according to 1., wherein the repeating unit represented by the general formula (1) is a repeating unit represented by the general formula (1′).
(In the formula, R 2 , a and c are defined as in general formula (1).)
3. The polyaryl ether ketone resin material for electronic devices and devices according to 2., wherein the repeating unit represented by general formula (1') is a repeating unit represented by general formula (1'').
(In the formula, a is defined as in general formula (1).)
4. An electronic device or device using the polyaryl ether ketone resin material for electronic devices or devices according to 4.1.
5. A method for using a polyaryl ether ketone having a repeating unit represented by general formula (1), which has a dielectric loss tangent (Df) of 0.004 or less measured at a frequency of 10 GHz, a relative dielectric constant (Dk) of 3.5 or less measured at a frequency of 10 GHz, a glass transition temperature of 150°C or more, and a weight average molecular weight (Mw) in the range of 2,000 to 1,000,000, in an electronic device or device.
(In the formula, R1 and R2 each independently represent an alkyl group having 1 to 4 carbon atoms, a represents 1 or 2, b each independently represents 0, 1, or 2, and c represents 0 or an integer of 1 to 4.)
6. A method for using the polyaryl ether ketone according to 5. in an electronic device or device, wherein the repeating unit represented by the general formula (1) is a repeating unit represented by the general formula (1').
(In the formula, R 2 , a and c are defined as in general formula (1).)
7. A method for using the polyaryl ether ketone according to 6. in an electronic device or device, wherein the repeating unit represented by general formula (1') is a repeating unit represented by general formula (1'').
(In the formula, a is defined as in general formula (1).)
 本発明の電子機器用ポリアリールエーテルケトン樹脂材料は、優れた誘電特性、優れた耐熱性(高いガラス転移温度)、及び低い吸水性を有する。そのため、特に高周波数対応が求められる高速通信分野における電子機器及びこれに用いる電気・電子部品や電子デバイスに用いる材料樹脂として好適である。 The polyaryl ether ketone resin material for electronic devices of the present invention has excellent dielectric properties, excellent heat resistance (high glass transition temperature), and low water absorption. Therefore, it is suitable as a material resin for electronic devices in the field of high-speed communications, which requires high frequencies, and for the electric and electronic components and electronic devices used therein.
(本発明の電子機器用ポリアリールエーテルケトン樹脂材料)
 本発明の電子機器用ポリアリールエーテルケトン樹脂材料にかかるPAEKは、一般式(1)で表される繰り返し単位を有する。
(式中、R及びRは、各々独立して、炭素原子数1~4のアルキル基を示し、aは1又は2を示し、bは、各々独立して0、1、又は2を示し、cは0又は1~4の整数を示す。)
 R及びRは、各々独立して炭素原子数1~4のアルキル基を示し、t-ブチル基又はメチル基であることが好ましく、メチル基が特に好ましい。
 Rの結合位置は、ベンゼン環上の酸素原子が結合する位置に対してオルソ位であることが好ましい。
 aは、1又は2を示し、1であることが好ましい。
 bは、各々独立して0、1又は2を示し、得られるPAEKの耐熱性の観点から各々独立して0又は2であることが好ましく、共に0又は2であることがより好ましく、2であることが特に好ましい。
 cは、0又は1~4の整数を示し、1~4の整数であることが好ましく、1、2又は3であることがより好ましく、3であることが特に好ましい。
 本発明にかかるPAEKとして、耐熱性と低い吸水性の観点から、Rがメチル基であり、bが2であり、Rが各々のベンゼン環上の酸素原子が結合する位置に対してオルソ位に結合している一般式(1’)で表される繰り返し単位を有する態様が好ましい。
(式中、R、a及びcは、一般式(1)の定義と同じである。)
 一般式(1’)で表される繰り返し単位において、さらに、Rがメチル基であり、cが3である、一般式(1’’)で表される繰り返し単位を有する態様であることが特に好ましい。
(式中、aは、一般式(1)の定義と同じである。)
(Polyaryl ether ketone resin material for electronic devices according to the present invention)
The PAEK in the polyaryl ether ketone resin material for electronic devices of the present invention has a repeating unit represented by general formula (1).
(In the formula, R1 and R2 each independently represent an alkyl group having 1 to 4 carbon atoms, a represents 1 or 2, b each independently represents 0, 1, or 2, and c represents 0 or an integer of 1 to 4.)
R1 and R2 each independently represent an alkyl group having 1 to 4 carbon atoms, preferably a t-butyl group or a methyl group, and particularly preferably a methyl group.
The bonding position of R1 is preferably the ortho position relative to the bonding position of the oxygen atom on the benzene ring.
a represents 1 or 2, and is preferably 1.
Each b independently represents 0, 1 or 2, and from the viewpoint of the heat resistance of the resulting PAEK, it is preferable that each b independently represents 0 or 2, more preferably that both b's represent 0 or 2, and particularly preferably represent 2.
c represents 0 or an integer of 1 to 4, preferably an integer of 1 to 4, more preferably 1, 2 or 3, and particularly preferably 3.
As the PAEK according to the present invention, from the viewpoint of heat resistance and low water absorption, an embodiment having a repeating unit represented by general formula (1') in which R 1 is a methyl group, b is 2, and R 1 is bonded at the ortho position relative to the position to which the oxygen atom on each benzene ring is bonded is preferred.
(In the formula, R 2 , a and c are defined as in general formula (1).)
In the repeating unit represented by formula (1'), it is particularly preferable that the repeating unit further has a repeating unit represented by formula (1'') in which R2 is a methyl group and c is 3.
(In the formula, a is defined as in general formula (1).)
 本発明のPAEKの一般式(1)で表される繰り返し単位の具体例である化学式(1a)~(1d)を示す。一般式(1)で表される繰り返し単位として、化学式(1a)~(1d)から選択される少なくとも1つが好ましく、化学式(1a)及び(1b)から選択される少なくとも1つがより好ましく、化学式(1a)又は(1b)さらに好ましく、化学式(1a)が特に好ましい。
Specific examples of the repeating unit represented by general formula (1) of the PAEK of the present invention are shown below as chemical formulas (1a) to (1d). As the repeating unit represented by general formula (1), at least one selected from chemical formulas (1a) to (1d) is preferred, at least one selected from chemical formulas (1a) and (1b) is more preferred, chemical formula (1a) or (1b) is even more preferred, and chemical formula (1a) is particularly preferred.
 本発明にかかるPAEKは、一般式(1)で表される繰り返し単位を含有していれば、本発明の効果を損なわない限り、その他の繰り返し単位を有してもよいが、一般式(1)で表される繰り返し単位の含有量が100モル%、すなわち、その他の繰り返し単位を有さないことが好ましい。その他の繰り返し単位を有する場合の、一般式(1)で表される繰り返し単位の含有量の範囲について、その下限は、PAEK全体の50モル%以上が好ましく、70モル%以上がより好ましく、80モル%以上がさらに好ましく、90モル%以上が特に好ましい。上限は、100モル%未満が好ましく、99.9モル%以下がより好ましい。一般式(1)で表される繰り返し単位の含有量の範囲における、前記の下限と上限は、それぞれ組み合わせてよい。一般式(1)で表される繰り返し単位とその他の繰り返し単位は、規則的に配列されていてもよいし、ランダムに存在していてもよい。
 一般式(1)で表される繰り返し単位とその他の繰り返し単位を有するPAEKは、後述する一般式(3)で表されるビフェノール化合物とその他の芳香族ジヒドロキシ化合物を併用して、後述する重縮合反応を行うことにより、製造することができる。
The PAEK according to the present invention may have other repeating units as long as it contains the repeating unit represented by the general formula (1), as long as the effect of the present invention is not impaired. However, it is preferable that the content of the repeating unit represented by the general formula (1) is 100 mol%, that is, it does not have other repeating units. When the PAEK has other repeating units, the lower limit of the range of the content of the repeating unit represented by the general formula (1) is preferably 50 mol% or more of the entire PAEK, more preferably 70 mol% or more, even more preferably 80 mol% or more, and particularly preferably 90 mol% or more. The upper limit is preferably less than 100 mol%, and more preferably 99.9 mol% or less. The above lower limit and upper limit in the range of the content of the repeating unit represented by the general formula (1) may be combined. The repeating unit represented by the general formula (1) and the other repeating units may be regularly arranged or may be randomly present.
PAEK having the repeating unit represented by general formula (1) and other repeating units can be produced by carrying out a polycondensation reaction described later using a biphenol compound represented by general formula (3) described later and other aromatic dihydroxy compounds in combination.
 本発明にかかるPAEKの高分子鎖の両末端の構造については特に制限はない。下記に示す一般式(2)で表されるジハロゲン化合物に由来するハロゲン原子、一般式(3)で表されるビスフェノール化合物に由来するヒドロキシ基、又はこのヒドロキシ基を一般式(4)で表される基(具体的には、アクリロイルオキシ基又はメタクリロイルオキシ基)若しくは化学式(5)で表される基(グリシジルエーテル基)等の反応性官能基に修飾した末端構造を有していてもよい。
(式中、Rは水素原子又はメチル基を示し、*は高分子鎖の末端への結合部位を示す。)
 かかる末端構造が、(i)両方ともハロゲン原子である場合、(ii)両方ともヒドロキシ基である場合、(iii)一方がハロゲン原子でありもう一方がヒドロキシ基である場合は、本発明のポリアリールエーテルケトンは熱可塑性樹脂として利用することができる。熱可塑性樹脂の常法の成形・加工方法(例えば、射出成形、押出成形、圧縮成形などの溶融成形法)を適用することができる。このような成形・加工方法により、電子機器・デバイスに使用する成形品を製造して、電子機器・デバイスの製造を行うことができる。
 また、末端構造が、(i)両方とも一般式(4)又は化学式(5)で表される基から選択される1つの基である場合、(ii)一方が一般式(4)又は化学式(5)で表される基から選択される1つの基であり、もう一方がハロゲン原子である場合、(iii)一方が一般式(4)又は化学式(5)で表される基から選択される1つの基であり、もう一方がヒドロキシ基である場合は、末端構造のうち少なくともいずれか一方が反応性の官能基を有することから、硬化性樹脂として、利用することができる。硬化性樹脂の常法の成形・加工方法(例えば、圧縮成形やトランスファー成形)を適用することができる。このような成形・加工方法により、電子機器・デバイスに使用する成形品を製造して、電子機器・デバイスの製造を行うことができる。
The structures at both ends of the polymer chain of the PAEK according to the present invention are not particularly limited. The end structure may be a halogen atom derived from a dihalogen compound represented by the following general formula (2), a hydroxyl group derived from a bisphenol compound represented by the following general formula (3), or a reactive functional group modified from the hydroxyl group to a group represented by the following general formula (4) (specifically, an acryloyloxy group or a methacryloyloxy group) or a group represented by the following chemical formula (5) (glycidyl ether group).
(In the formula, R3 represents a hydrogen atom or a methyl group, and * represents a bonding site to the end of a polymer chain.)
When the terminal structures are (i) both halogen atoms, (ii) both hydroxyl groups, or (iii) one halogen atom and the other hydroxyl group, the polyaryletherketone of the present invention can be used as a thermoplastic resin. Conventional molding and processing methods for thermoplastic resins (e.g., melt molding methods such as injection molding, extrusion molding, and compression molding) can be applied. By using such molding and processing methods, molded articles for use in electronic devices and devices can be manufactured, and electronic devices and devices can be manufactured.
In addition, when the terminal structures are (i) both of which are one group selected from the group represented by the general formula (4) or the chemical formula (5), (ii) one of which is one group selected from the group represented by the general formula (4) or the chemical formula (5) and the other is a halogen atom, or (iii) one of which is one group selected from the group represented by the general formula (4) or the chemical formula (5) and the other is a hydroxyl group, at least one of the terminal structures has a reactive functional group, so that it can be used as a curable resin. Conventional molding and processing methods for curable resins (e.g., compression molding and transfer molding) can be applied. By such a molding and processing method, a molded product used in an electronic device or device can be manufactured to manufacture an electronic device or device.
(誘電正接)
 本発明の電子機器・デバイス用ポリアリールエーテルケトン樹脂材料にかかるPAEKの周波数10GHzで測定した誘電正接は0.004以下である。0.004以下であることにより、特に、高周波数化への対応が求められる通信機器など、後述する電子機器用のPAEK材料として好適に利用することができる。かかる誘電正接は、0.0038以下であることが好ましく、0.0036以下であることがより好ましく、0.0035以下であることが特に好ましい。かかる誘電正接は、低いほど好ましいので下限値は、特に制限はないが、0.0020以上であってもよい。
(Dielectric tangent)
The dielectric loss tangent of the PAEK of the polyaryl ether ketone resin material for electronic devices and devices of the present invention measured at a frequency of 10 GHz is 0.004 or less. Since it is 0.004 or less, it can be suitably used as a PAEK material for electronic devices, which will be described later, such as communication devices that require compatibility with high frequencies. The dielectric loss tangent is preferably 0.0038 or less, more preferably 0.0036 or less, and particularly preferably 0.0035 or less. The lower the dielectric loss tangent, the more preferable it is, so there is no particular limit to the lower limit, but it may be 0.0020 or more.
(比誘電率)
 本発明の電子機器・デバイス用ポリアリールエーテルケトン樹脂材料にかかるPAEKの周波数10GHzで測定した比誘電率は3.5以下である。3.5以下であれば、特に高周波数化への対応が求められる通信機器など、後述する電子機器・デバイス用のPAEK材料として好適に利用することができる。かかる比誘電率は、3.0以下であることが好ましく、2.9以下であることがより好ましく、2.8以下であることが特に好ましい。かかる比誘電率は、低いほど好ましいので下限値は、特に制限はないが、2.0以上であってもよい。
(Dielectric constant)
The dielectric constant of the PAEK of the polyaryl ether ketone resin material for electronic devices and devices of the present invention measured at a frequency of 10 GHz is 3.5 or less. If it is 3.5 or less, it can be suitably used as a PAEK material for electronic devices and devices described later, such as communication devices that are particularly required to support high frequencies. The dielectric constant is preferably 3.0 or less, more preferably 2.9 or less, and particularly preferably 2.8 or less. The lower limit of the dielectric constant is not particularly limited because the lower the dielectric constant, the more preferable it is, but it may be 2.0 or more.
(分子量)
 本発明の電子機器・デバイス用ポリアリールエーテルケトン樹脂材料にかかるPAEKの重量平均分子量(Mw)は2,000以上1,000,000以下の範囲である。かかる範囲であることにより、十分な強度を備える材料として利用することができる。10,000以上500,000以下の範囲であることが好ましく、20,000以上200,000以下の範囲であることがより好ましく、30,000以上150,000以下の範囲であることが特に好ましい。
 本発明にかかるPAEKの高分子鎖の両末端構造が、(i)両方ともハロゲン原子である場合、(ii)両方ともヒドロキシ基である場合、(iii)一方がハロゲン原子でありもう一方がヒドロキシ基である場合は、熱可塑性樹脂として利用するにおいて、十分な機械強度を持たせるために、重量平均分子量(Mw)は、その中でも、10,000以上500,000以下の範囲がより好ましく、20,000以上200,000以下の範囲がさらに好ましく、30,000以上150,000以下の範囲が特に好ましい。
 本発明にかかるPAEKの末端構造が、(i)両方とも一般式(4)又は化学式(5)で表される基から選択される1つの基である場合、(ii)一方が一般式(4)又は化学式(5)で表される基から選択される1つの基であり、もう一方がハロゲン原子である場合、(iii)一方が一般式(4)又は化学式(5)で表される基から選択される1つの基であり、もう一方がヒドロキシ基である場合は、硬化性樹脂として利用するにおいて、良好な加工性を持たせるために、重量平均分子量(Mw)は、その中でも、2,000以上100,000以下の範囲が好ましく、2,000以上50,000以下の範囲がより好ましく、2,000以上30,000以下の範囲がさらに好ましく、2,000以上10,000以下の範囲が特に好ましい。
 数平均分子量(Mn)に対する重量平均分子量(Mw)の比であるMw/Mnは、1.5以上20以下の範囲が好ましく、2以上15以下の範囲であることがより好ましく、2以上10以下の範囲がさらに好ましく、2以上8以下の範囲が特に好ましい。
(Molecular Weight)
The weight average molecular weight (Mw) of the PAEK in the polyaryl ether ketone resin material for electronic devices of the present invention is in the range of 2,000 to 1,000,000. By being in this range, it can be used as a material with sufficient strength. It is preferably in the range of 10,000 to 500,000, more preferably in the range of 20,000 to 200,000, and particularly preferably in the range of 30,000 to 150,000.
When the end structures of both ends of the polymer chain of the PAEK according to the present invention are (i) both halogen atoms, (ii) both hydroxy groups, or (iii) one halogen atom and the other hydroxy group, in order to provide sufficient mechanical strength when used as a thermoplastic resin, the weight average molecular weight (Mw) is more preferably in the range of 10,000 to 500,000, even more preferably in the range of 20,000 to 200,000, and particularly preferably in the range of 30,000 to 150,000.
In the case where the terminal structures of the PAEK according to the present invention are (i) both of which are a group selected from the group represented by the general formula (4) or the chemical formula (5), (ii) one of which is a group selected from the group represented by the general formula (4) or the chemical formula (5) and the other is a halogen atom, or (iii) one of which is a group selected from the group represented by the general formula (4) or the chemical formula (5) and the other is a hydroxy group, in order to provide good processability when used as a curable resin, the weight average molecular weight (Mw) is preferably in the range of 2,000 to 100,000, more preferably in the range of 2,000 to 50,000, even more preferably in the range of 2,000 to 30,000, and particularly preferably in the range of 2,000 to 10,000.
The ratio of weight average molecular weight (Mw) to number average molecular weight (Mn), Mw/Mn, is preferably in the range of 1.5 or more and 20 or less, more preferably in the range of 2 or more and 15 or less, even more preferably in the range of 2 or more and 10 or less, and particularly preferably in the range of 2 or more and 8 or less.
(還元粘度)
 本発明の電子機器・デバイス用ポリアリールエーテルケトン樹脂材料にかかるPAEKの還元粘度は、0.1dL/g以上が好ましく、0.3dL/g以上がより好ましく、0.5dL/g以上がさらに好ましい。かかる還元粘度は、p-クロロフェノールを溶媒とした本発明にかかるPAEKの1.0g/dL濃度の溶液の40℃における粘度の測定値である。
(Reduced Viscosity)
The reduced viscosity of the PAEK in the polyaryl ether ketone resin material for electronic devices of the present invention is preferably 0.1 dL/g or more, more preferably 0.3 dL/g or more, and even more preferably 0.5 dL/g or more. The reduced viscosity is a measured value of the viscosity of a 1.0 g/dL solution of the PAEK in the present invention using p-chlorophenol as a solvent at 40°C.
(ガラス転移温度)
 本発明の電子機器・デバイス用ポリアリールエーテルケトン樹脂材料にかかるPAEKのガラス転移温度は150℃以上である。高温にさらされる製造工程並びに使用場面がある電子機器やこれに用いる電子デバイスに用いるPAEK材料として好適に利用できる。かかるガラス転移温度は、170℃以上が好ましく、200℃以上がより好ましく、215℃以上がさらに好ましく、230℃以上が特に好ましい。かかるガラス転移温度は、高いほど耐熱性に優れるため好ましいので上限値は、特に制限はないが、300℃以下であってもよい。
(Glass-transition temperature)
The glass transition temperature of the PAEK in the polyaryl ether ketone resin material for electronic devices and devices of the present invention is 150°C or higher. It can be suitably used as a PAEK material for electronic devices and electronic devices that are exposed to high temperatures during the manufacturing process and in use. The glass transition temperature is preferably 170°C or higher, more preferably 200°C or higher, even more preferably 215°C or higher, and particularly preferably 230°C or higher. The higher the glass transition temperature, the better the heat resistance, so the upper limit is not particularly limited, but it may be 300°C or lower.
 本発明の電子機器・デバイス用ポリアリールエーテルケトン樹脂材料の吸水率は、0.35%以下であることが好ましい。かかる吸水率が0.35%以下であれば、電子機器用、特に、高周波数帯の電波を利用した高速通信に用いる電子機器やそれに使用する電子デバイス(高周波通信用電子機器・デバイス)用のポリアリールエーテルケトン樹脂材料として好適に利用することができる。かかる吸水率は、0.30%以下がより好ましく、0.20%以下がさらに好ましく、0.1%以下が特に好ましい。かかる吸水率は、低いほど好ましいので下限値は、特に制限はないが、0.001%以上であってもよい。 The water absorption rate of the polyaryl ether ketone resin material for electronic devices and devices of the present invention is preferably 0.35% or less. If the water absorption rate is 0.35% or less, the material can be suitably used as a polyaryl ether ketone resin material for electronic devices, particularly for electronic devices used in high-speed communication using high-frequency radio waves and electronic devices used therein (electronic devices and devices for high-frequency communication). The water absorption rate is more preferably 0.30% or less, even more preferably 0.20% or less, and particularly preferably 0.1% or less. The lower the water absorption rate, the better, so there is no particular restriction on the lower limit, but it may be 0.001% or more.
(本発明にかかるPAEKの製造方法)
 本発明の電子機器・デバイス用ポリアリールエーテルケトン樹脂材料にかかるPAEKの製造方法については特に限定されず、例えば、一般式(2)で表されるジハロゲン化合物と一般式(3)で表されるビスフェノール化合物を、アルカリ金属化合物存在下に、脱塩重縮合反応をすることにより製造することができる。
(式中、各々独立してXはハロゲン原子を示し、aは、一般式(1)の定義と同じである。)
(式中、R、R、b及びcは一般式(1)の定義と同じである。)
(Method of producing PAEK according to the present invention)
The method for producing the PAEK of the polyaryl ether ketone resin material for electronic devices of the present invention is not particularly limited, and the PAEK can be produced, for example, by subjecting a dihalogen compound represented by general formula (2) and a bisphenol compound represented by general formula (3) to a desalting polycondensation reaction in the presence of an alkali metal compound.
(In the formula, each X independently represents a halogen atom, and a is defined as in general formula (1).)
(In the formula, R 1 , R 2 , b and c are defined as in general formula (1).)
 その具体例として、一般式(2)で表されるジハロゲン化合物として4,4’-ジフルオロベンゾフェノン(2a)を、一般式(3)で表されるビスフェノール化合物として1,1-ビス(4-ハイドロキシフェニル)シクロヘキサン(3a)を、アルカリ金属化合物として炭酸ナトリウムを使用した場合、化学式(1a)で表される繰り返し単位を有するポリアリールエーテルケトンを製造することができる。この反応式を以下に示す。
As a specific example, when 4,4'-difluorobenzophenone (2a) is used as the dihalogen compound represented by general formula (2), 1,1-bis(4-hydroxyphenyl)cyclohexane (3a) is used as the bisphenol compound represented by general formula (3), and sodium carbonate is used as the alkali metal compound, a polyaryl ether ketone having a repeating unit represented by chemical formula (1a) can be produced. The reaction formula is shown below.
 (一般式(2)で表されるジハロゲン化合物)
 一般式(2)におけるXは、具体的には、フッ素原子、塩素原子、臭素原子、ヨウ素原子を示し、この中でもフッ素原子又は塩素原子であることが好ましく、フッ素原子であることが特に好ましい。
 一般式(2)におけるaは、1であることが好ましい。
 一般式(2)で表されるジハロゲン化合物として、具体的には、例えば、4,4’-ジフルオロベンゾフェノン、4,4’-ジクロロベンゾフェノン、4,4’-ジブロモベンゾフェノン、4,4’-ジヨードベンゾフェノン、1,4-ビス(4-フルオロベンゾイル)ベンゼン、1,4-ビス(4-クロロベンゾイル)ベンゼン、1,4-ビス(4-ブロモベンゾイル)ベンゼン、1,4-ビス(4-ヨードベンゾイル)ベンゼンが挙げられる。
 この中でも、4,4’-ジフルオロベンゾフェノン、4,4’-ジクロロベンゾフェノンが好ましく、4,4’-ジフルオロベンゾフェノンが特に好ましい。
(Dihalogen compound represented by general formula (2))
Specifically, X in the general formula (2) represents a fluorine atom, a chlorine atom, a bromine atom, or an iodine atom. Among these, a fluorine atom or a chlorine atom is preferable, and a fluorine atom is particularly preferable.
In formula (2), a is preferably 1.
Specific examples of the dihalogen compound represented by the general formula (2) include 4,4'-difluorobenzophenone, 4,4'-dichlorobenzophenone, 4,4'-dibromobenzophenone, 4,4'-diiodobenzophenone, 1,4-bis(4-fluorobenzoyl)benzene, 1,4-bis(4-chlorobenzoyl)benzene, 1,4-bis(4-bromobenzoyl)benzene, and 1,4-bis(4-iodobenzoyl)benzene.
Of these, 4,4'-difluorobenzophenone and 4,4'-dichlorobenzophenone are preferred, with 4,4'-difluorobenzophenone being particularly preferred.
 (一般式(3)表されるビスフェノール化合物)
 一般式(3)におけるR及びnは、一般式(1)における定義及び好ましい態様は同じである。
 一般式(3)で表されるビスフェノール化合物として、具体的には、例えば、1,1-ビス(4-ハイドロキシフェニル)シクロヘキサン、1,1-ビス(4-ハイドロキシ-3-メチルフェニル)シクロヘキサン、4,4’-シクロヘキシリデンビス(2,6-ジメチルフェノール)、4-[1-(4-ヒドロキシフェニル)シクロヘキシル]-2-メチルフェノール、4-[1-(4-ヒドロキシフェニル)シクロヘキシル]-2,6-ジメチルフェノール、4,4’-(3、5-ジメチルシクロヘキシリデン)ビスフェノール、4,4’-(2-メチルシクロヘキシリデン)ビスフェノール、4,4’-(2-メチルシクロヘキシリデン)ビス(2-メチルフェノール)、4,4’-(2-メチルシクロヘキシリデン)ビス(2,6-ジメチルフェノール)、4,4’-(3-メチルシクロヘキシリデン)ビスフェノール、4,4’-(3-メチルシクロヘキシリデン)ビス(2-メチルフェノール)、4,4’-(3-メチルシクロヘキシリデン)ビス(2,6-ジメチルフェノール)、4,4’-(4-メチルシクロヘキシリデン)ビスフェノール、4,4’-(4-メチルシクロヘキシリデン)ビス(2-メチルフェノール)、4,4’-(4-メチルシクロヘキシリデン)ビス(2,6-ジメチルフェノール)、1,1-ビス(4-ハイドロキシフェニル)-3,3,5-トリメチルシクロヘキサン、1,1-ビス(4-ハイドロキシ-3-メチルフェニル)-3,3,5-トリメチルシクロヘキサン、1,1-ビス(4-ハイドロキシ-3,5-ジメチルフェニル)-3,3,5-トリメチルシクロヘキサンが挙げられる。
 この中でも1,1-ビス(4-ハイドロキシフェニル)シクロヘキサン、1,1-ビス(4-ハイドロキシ-3-メチルフェニル)シクロヘキサン、4,4’-シクロヘキシリデンビス(2,6-ジメチルフェノール)、4,4’-(3-メチルシクロヘキシリデン)ビスフェノール、4,4’-(3-メチルシクロヘキシリデン)ビス(2-メチルフェノール)、4,4’-(3-メチルシクロヘキシリデン)ビス(2,6-ジメチルフェノール)、4,4’-(4-メチルシクロヘキシリデン)ビスフェノール、4,4’-(4-メチルシクロヘキシリデン)ビス(2-メチルフェノール)、4,4’-(4-メチルシクロヘキシリデン)ビス(2,6-ジメチルフェノール)、1,1-ビス(4-ハイドロキシフェニル)-3,3,5-トリメチルシクロヘキサン、1,1-ビス(4-ハイドロキシ-3-メチルフェニル)-3,3,5-トリメチルシクロヘキサン、1,1-ビス(4-ハイドロキシ-3,5-ジメチルフェニル)-3,3,5-トリメチルシクロヘキサンが好ましく、1,1-ビス(4-ハイドロキシフェニル)シクロヘキサン、1,1-ビス(4-ハイドロキシ-3-メチルフェニル)シクロヘキサン、4,4’-シクロヘキシリデンビス(2,6-ジメチルフェノール)、4,4’-(3-メチルシクロヘキシリデン)ビスフェノール、4,4’-(3-メチルシクロヘキシリデン)ビス(2-メチルフェノール)、4,4’-(3-メチルシクロヘキシリデン)ビス(2,6-ジメチルフェノール)、1,1-ビス(4-ハイドロキシフェニル)-3,3,5-トリメチルシクロヘキサン、1,1-ビス(4-ハイドロキシ-3-メチルフェニル)-3,3,5-トリメチルシクロヘキサン、1,1-ビス(4-ハイドロキシ-3,5-ジメチルフェニル)-3,3,5-トリメチルシクロヘキサンがより好ましく、4,4’-シクロヘキシリデンビス(2,6-ジメチルフェノール)、4,4’-(3-メチルシクロヘキシリデン)ビス(2,6-ジメチルフェノール)、1,1-ビス(4-ハイドロキシフェニル)-3,3,5-トリメチルシクロヘキサン、1,1-ビス(4-ハイドロキシ-3-メチルフェニル)-3,3,5-トリメチルシクロヘキサン、1,1-ビス(4-ハイドロキシ-3,5-ジメチルフェニル)-3,3,5-トリメチルシクロヘキサンがさらに好ましく、4,4’-シクロヘキシリデンビス(2,6-ジメチルフェノール)、4,4’-(3-メチルシクロヘキシリデン)ビス(2,6-ジメチルフェノール)、1,1-ビス(4-ハイドロキシ-3,5-ジメチルフェニル)-3,3,5-トリメチルシクロヘキサンが特に好ましい。
 本発明にかかるPAEKにおいて、一般式(1)で表される繰り返し単位と他の繰り返し単位を有するPAEKを得るために、一般式(3)で表されるビフェノール化合物に加えて、その他の芳香族ジヒドロキシ化合物を併用することができる。他の繰り返し単位は、これら芳香族ジヒドロキシ化合物に由来する構造と、一般式(2)で表されるジハロゲン化合物に由来する構造を有する繰り返し単位を有する。併用できる芳香族ジヒドロキシ化合物として、具体的には、例えば、ハイドロキノン、レゾルシン、2-フェニルヒドロキノン、4,4’-ビフェノール、2,6-ジヒドロキシナフタレン、2,7-ジヒドロキシナフタレン、1,1’-ビ-2-ナフトール、2,2’-ビ-1-ナフトール、1,3-ビス[1-メチル-1-(4-ヒドロキシフェニル)エチル]ベンゼン、1,4-ビス[1-メチル-1-(4-ヒドロキシフェニル)エチル]ベンゼン、1,3-ビス(4-ヒドロキシベンゾイル)ベンゼン、1,4-ビス(4-ヒドロキシベンゾイル)ベンゼン、1,3-ビス(4-ヒドロキシフェノキシ)ベンゼン、1,4-ビス(4-ヒドロキシフェノキシ)ベンゼン、1,4-ビス(4-ヒドロキシフェニル)ベンゼン、1,3-ビス(4-ヒドロキシフェニル)ベンゼン、4,4’-メチレンビス(フェノール)、4,4’-メチレンビス(2,6-ジメチルフェノール)、4,4’-イソプロピリデンビフェノール(Bis-A)、2,2-ビス(4-ヒドロキシフェニル)-1,1,1,3,3,3-ヘキサフルオロプロパン、4,4’-ジヒドロキシベンゾフェノン、4,4’-ビス(ヒドロキシフェニル)スルホン、4,4’-ジヒドロキシジフェニルエーテル、ビス(4-ヒドロキシフェニル)メタン、9,9-ビス(4-ヒドロキシフェニル)フルオレン、9,9-ビス(3-フェニル-4-ヒドロキシフェニル)フルオレン、9,9-ビス(3,5-ジフェニル-4-ヒドロキシフェニル)フルオレン、9,9-ビス(4-ヒドロキシ-3-メチルフェニル)フルオレン、9,9-ビス(4-ヒドロキシ-3,5-ジメチルフェニル)フルオレン、9,9-ビス(4-ヒドロキシ-3-シクロヘキシルフェニル)フルオレン、2,2-ビス(4-ヒドロキシ-3-フェニルフェニル)プロパン、1,1-ビス(4-ヒドロキシフェニル)シクロドデカン、1,1-ビス(4-ヒドロキシフェニル)-1-フェニルエタンが挙げられる。これらの化合物は1種のみを用いてもよいし、2種以上を組み合わせて用いることも可能である。
(Bisphenol compound represented by general formula (3))
The definitions and preferred embodiments of R 1 and n in formula (3) are the same as those in formula (1).
Specific examples of the bisphenol compound represented by the general formula (3) include 1,1-bis(4-hydroxyphenyl)cyclohexane, 1,1-bis(4-hydroxy-3-methylphenyl)cyclohexane, 4,4'-cyclohexylidenebis(2,6-dimethylphenol), 4-[1-(4-hydroxyphenyl)cyclohexyl]-2-methylphenol, 4-[1-(4-hydroxyphenyl)cyclohexyl]-2,6-dimethylphenol, 4,4'-(3,5-dimethylcyclohexylidene)bisphenol, 4,4'-(2-methylcyclohexylidene)bisphenol, 4,4'-(2-methylcyclohexylidene)bis(2-methylphenol), 4,4'-(2-methylcyclohexylidene)bis(2,6-dimethylphenol), 4, Examples of the cyclohexylidene ester include 4'-(3-methylcyclohexylidene)bisphenol, 4,4'-(3-methylcyclohexylidene)bis(2-methylphenol), 4,4'-(3-methylcyclohexylidene)bis(2,6-dimethylphenol), 4,4'-(4-methylcyclohexylidene)bisphenol, 4,4'-(4-methylcyclohexylidene)bis(2-methylphenol), 4,4'-(4-methylcyclohexylidene)bis(2,6-dimethylphenol), 1,1-bis(4-hydroxyphenyl)-3,3,5-trimethylcyclohexane, 1,1-bis(4-hydroxy-3-methylphenyl)-3,3,5-trimethylcyclohexane, and 1,1-bis(4-hydroxy-3,5-dimethylphenyl)-3,3,5-trimethylcyclohexane.
Among these, 1,1-bis(4-hydroxyphenyl)cyclohexane, 1,1-bis(4-hydroxy-3-methylphenyl)cyclohexane, 4,4'-cyclohexylidenebis(2,6-dimethylphenol), 4,4'-(3-methylcyclohexylidene)bisphenol, 4,4'-(3-methylcyclohexylidene)bis(2-methylphenol), 4,4'-(3-methylcyclohexylidene)bis(2,6-dimethylphenol), 4,4'-(4-methylcyclohexylidene)bisphenol, 4,4'-(4-methylcyclohexylidene)bis(2-methylphenol), 4,4'-(4-methylcyclohexylidene)bisphenol, Preferred are 1,1-bis(4-hydroxyphenyl)cyclohexane, 1,1-bis(4-hydroxy-3-methylphenyl)cyclohexane, 4,4'-cyclohexylidenebis(2,6-dimethylphenol), 1,1-bis(4-hydroxyphenyl)-3,3,5-trimethylcyclohexane, 1,1-bis(4-hydroxy-3,5-dimethylphenyl)-3,3,5-trimethylcyclohexane, and more preferred are 1,1-bis(4-hydroxyphenyl)cyclohexane, 1,1-bis(4-hydroxy-3-methylphenyl)cyclohexane, 4,4'-cyclohexylidenebis(2,6-dimethylphenol), 4,4'-(3-methylcyclohexylidene)bis Phenol, 4,4'-(3-methylcyclohexylidene)bis(2-methylphenol), 4,4'-(3-methylcyclohexylidene)bis(2,6-dimethylphenol), 1,1-bis(4-hydroxyphenyl)-3,3,5-trimethylcyclohexane, 1,1-bis(4-hydroxy-3-methylphenyl)-3,3,5-trimethylcyclohexane, and 1,1-bis(4-hydroxy-3,5-dimethylphenyl)-3,3,5-trimethylcyclohexane are more preferred, and 4,4'-cyclohexylidenebis(2,6-dimethylphenol) and 4,4'-(3-methylcyclohexylidene)bis(2,6 -dimethylphenol), 1,1-bis(4-hydroxyphenyl)-3,3,5-trimethylcyclohexane, 1,1-bis(4-hydroxy-3-methylphenyl)-3,3,5-trimethylcyclohexane, and 1,1-bis(4-hydroxy-3,5-dimethylphenyl)-3,3,5-trimethylcyclohexane are more preferred, and 4,4'-cyclohexylidenebis(2,6-dimethylphenol), 4,4'-(3-methylcyclohexylidene)bis(2,6-dimethylphenol), and 1,1-bis(4-hydroxy-3,5-dimethylphenyl)-3,3,5-trimethylcyclohexane are particularly preferred.
In the PAEK according to the present invention, in order to obtain a PAEK having a repeating unit represented by the general formula (1) and another repeating unit, other aromatic dihydroxy compounds can be used in combination with the biphenol compound represented by the general formula (3). The other repeating units have a structure derived from these aromatic dihydroxy compounds and a repeating unit having a structure derived from the dihalogen compound represented by the general formula (2). Specific examples of aromatic dihydroxy compounds that can be used in combination include hydroquinone, resorcin, 2-phenylhydroquinone, 4,4'-biphenol, 2,6-dihydroxynaphthalene, 2,7-dihydroxynaphthalene, 1,1'-bi-2-naphthol, 2,2'-bi-1-naphthol, 1,3-bis[1-methyl-1-(4-hydroxyphenyl)ethyl]benzene, 1,4-bis[1-methyl-1-(4-hydroxyphenyl)ethyl]benzene, 1,3 -Bis(4-hydroxybenzoyl)benzene, 1,4-bis(4-hydroxybenzoyl)benzene, 1,3-bis(4-hydroxyphenoxy)benzene, 1,4-bis(4-hydroxyphenoxy)benzene, 1,4-bis(4-hydroxyphenyl)benzene, 1,3-bis(4-hydroxyphenyl)benzene, 4,4'-methylenebis(phenol), 4,4'-methylenebis(2,6-dimethylphenol), 4,4'-isopropylidenebiphenol (Bis-A), 2,2-bis(4-hydroxyphenyl)-1,1,1,3,3,3-hexafluoropropane, 4,4'-dihydroxybenzophenone, 4,4'-bis(hydroxyphenyl)sulfone, 4,4'-dihydroxydiphenyl ether, bis(4-hydroxyphenyl)methane, 9,9-bis(4-hydroxyphenyl)fluorene, 9,9-bis(3-phenyl-4-hydroxyphenyl)fluorene, 9,9-bis(3,5-diphenyl-4- Examples of the fluorene include 9,9-bis(4-hydroxy-3-methylphenyl)fluorene, 9,9-bis(4-hydroxy-3,5-dimethylphenyl)fluorene, 9,9-bis(4-hydroxy-3-cyclohexylphenyl)fluorene, 2,2-bis(4-hydroxy-3-phenylphenyl)propane, 1,1-bis(4-hydroxyphenyl)cyclododecane, and 1,1-bis(4-hydroxyphenyl)-1-phenylethane. These compounds may be used alone or in combination of two or more.
(アルカリ金属化合物)
 アルカリ金属化合物としては、一般式(3)で表されるビスフェノール化合物をアルカリ金属塩に変えることが可能であればどのようなものも使用可能であるが、通常、アルカリ金属の炭酸塩、炭酸水素塩、水酸化物等が好適に使用され、特に炭酸塩が好ましく使用される。該アルカリ金属としては、リチウム、ナトリウム、カリウム、ルビジウム及びセシウムを挙げることができるが、中でも、ナトリウム及びカリウムが好ましく、特にカリウムが好ましい。
(alkali metal compounds)
As the alkali metal compound, any compound can be used as long as it can convert the bisphenol compound represented by the general formula (3) into an alkali metal salt, but usually, carbonates, hydrogen carbonates, hydroxides, etc. of alkali metals are preferably used, and carbonates are particularly preferred. Examples of the alkali metal include lithium, sodium, potassium, rubidium, and cesium, and among them, sodium and potassium are preferred, and potassium is particularly preferred.
(溶媒)
 PAEKを得る重縮合反応において溶媒を使用することができ、使用することが好ましい。使用される溶媒としては、N,N-ジメチルホルムアミド(DMF)、N,N-ジメチルアセトアミド(DMAc)、N-メチルピロリドン(NMP)、ジメチルイミダゾリジノン(DMI)、ジメチルスルホキシド(DMSO)、スルホラン、ジフェニルスルホン等の中性極性溶媒が好ましいが、モノマーおよび重合体が溶解すれば如何なる溶媒であっても何ら問題なく使用できる。溶媒は1種単独で使用してもよく、2種以上を混合溶媒として併用してもよい。
(solvent)
A solvent can be used in the polycondensation reaction to obtain PAEK, and it is preferable to use the solvent. As the solvent to be used, a neutral polar solvent such as N,N-dimethylformamide (DMF), N,N-dimethylacetamide (DMAc), N-methylpyrrolidone (NMP), dimethylimidazolidinone (DMI), dimethylsulfoxide (DMSO), sulfolane, diphenylsulfone, etc. is preferable, but any solvent can be used without any problem as long as the monomer and polymer are soluble in the solvent. The solvent may be used alone or in combination of two or more kinds as a mixed solvent.
(重縮合反応の条件)
 使用する一般式(2)で表されるジハロゲン化合物の量は、一般式(3)で表されるビスフェノール化合物(一般式(3)以外の芳香族ジヒドロキシ化合物を併用する際は、一般式(3)で表されるビスフェノール化合物とそれ以外の芳香族ジヒドロキシ化合物の合計)に対して、目的とする分子量によるが、分子量が大きなPAEK(具体的には、好ましくは10,000以上500,000以下の範囲、さらに好ましくは20,000以上200,000以下の範囲、特に好ましくは30,000以上150,000以下の範囲)を製造するためには、通常0.9~1.1モル倍の範囲、好ましくは0.95~1.06モル倍の範囲、より好ましくは1.0~1.04モル倍の範囲である。
 得られるPAEKの高分子鎖の両末端の構造を、ハロゲン原子の割合を多くするためには上記範囲の中でも、1.00モル倍よりも多く使用し、ヒドロキシ基の割合を多くするためには上記範囲の中でも1.00モル倍よりも少なく使用する。
 製造するPAEKの高分子鎖の末端構造が、両方ともハロゲン原子である場合のPAEKは、前記モル比が、1.01~1.1モル倍の範囲であり、1.01~1.06モル倍の範囲であることが好ましく、1.01~1.04モル倍の範囲であることがより好ましい。
 製造するPAEKの高分子鎖の末端構造が、両方ともヒドロキシ基である場合のPAEKにおいて、分子量が大きなPAEKは、前記モル比が、0.9~0.99モル倍の範囲であり、0.95~0.99モル倍の範囲であることが好ましく、分子量が小さなPAEKは、通常0.6~0.95モル倍の範囲、好ましくは0.7~0.9モル倍の範囲、より好ましくは0.8~0.9モル倍の範囲である。
 使用するアルカリ金属化合物の量は、一般式(3)で表されるビスフェノール化合物に対して、通常1.0~3.0モル倍の範囲、好ましくは1.01~1.3モル倍の範囲である。
 反応温度は通常150~350℃、好ましくは180~250℃の範囲で、反応時間は通常1~60時間、好ましくは2~50時間で行われる。
 これらの反応は窒素やアルゴンなどの不活性ガス雰囲気下で行うことが好ましい。また、反応圧力について制限はなく、減圧、大気圧、加圧のいずれでもよいが、通常大気圧で行われる。
(Polycondensation reaction conditions)
The amount of the dihalogen compound represented by the general formula (2) used depends on the target molecular weight relative to the bisphenol compound represented by the general formula (3) (when an aromatic dihydroxy compound other than the general formula (3) is used in combination, the total of the bisphenol compound represented by the general formula (3) and the other aromatic dihydroxy compound). In order to produce a PAEK having a large molecular weight (specifically, preferably in the range of 10,000 to 500,000, more preferably in the range of 20,000 to 200,000, and particularly preferably in the range of 30,000 to 150,000), the amount is usually in the range of 0.9 to 1.1 times by mole, preferably in the range of 0.95 to 1.06 times by mole, and more preferably in the range of 1.0 to 1.04 times by mole.
In order to increase the proportion of halogen atoms in the structures at both ends of the polymer chain of the resulting PAEK, more than 1.00 molar equivalents are used within the above range, and in order to increase the proportion of hydroxyl groups, less than 1.00 molar equivalents are used within the above range.
In the case where the end structures of the polymer chain of the PAEK to be produced are both halogen atoms, the molar ratio is in the range of 1.01 to 1.1 times by mole, preferably in the range of 1.01 to 1.06 times by mole, and more preferably in the range of 1.01 to 1.04 times by mole.
In the case where the terminal structures of the polymer chain of the PAEK to be produced are both hydroxy groups, the molar ratio for a PAEK having a large molecular weight is in the range of 0.9 to 0.99 molar times, and preferably in the range of 0.95 to 0.99 molar times, while the molar ratio for a PAEK having a small molecular weight is usually in the range of 0.6 to 0.95 molar times, preferably in the range of 0.7 to 0.9 molar times, and more preferably in the range of 0.8 to 0.9 molar times.
The amount of the alkali metal compound used is usually in the range of 1.0 to 3.0 moles, preferably 1.01 to 1.3 moles, per mole of the bisphenol compound represented by formula (3).
The reaction temperature is usually in the range of 150 to 350° C., preferably 180 to 250° C., and the reaction time is usually in the range of 1 to 60 hours, preferably 2 to 50 hours.
These reactions are preferably carried out in an atmosphere of an inert gas such as nitrogen, argon, etc. There is no limitation on the reaction pressure, and the reaction may be carried out at reduced pressure, atmospheric pressure, or elevated pressure, but the reaction is usually carried out at atmospheric pressure.
<反応後の処理>
 前記重縮合反応により生成したPAEKは、凝析、固化、洗浄、粒状化、抽出、溶媒留去など通常用いられている方法に従って回収できる。
 前記重縮合反応により生成したPAEKの処理方法として、より詳細に例示して説明する。重縮合反応により生成したPAEKを含む液を、必要に応じて重合体を含む反応液を溶媒で希釈して、貧溶媒に混合することにより沈殿を析出させて、粉体状のPAEKを得ることができる。沈殿の析出に用いる溶媒としては、例えば、メタノール、エタノール、アセトン、メチルエチルケトン、キシレン、トルエン等が好ましく、操作性や洗浄後の反応溶媒の蒸留回収の容易さから、特に、アセトンやメタノールが好ましい。
 沈殿の析出により得られた粉体状のPAEKは、脱塩重縮合反応で生成した塩化カリウムなどのアルカリ金属塩や、反応で使用した溶媒、沈殿の析出に用いた溶媒を除去するために洗浄する、洗浄工程を行うことが好ましい。
 脱塩重縮合反応で生成した塩化カリウムなどのアルカリ金属塩の洗浄には、水が好ましく、塩酸、ギ酸、シュウ酸等を低濃度で含んだ酸性水を使用しても良い。
 この洗浄工程の条件は、除去目標とする残留反応溶媒、残留アルカリ金属塩の量にあわせて、洗浄溶媒の使用量、洗浄回数、洗浄温度を適宜選択すればよい。
 水を用いた洗浄の後、例えば、メタノール、エタノール、アセトン、メチルエチルケトン、キシレン、トルエン、その中でもアセトンやメタノールを用いた粉体の洗浄を行ってもよい。
 洗浄に用いる装置としては、洗浄槽と加圧ろ過機又は遠心分離機の他、1つの装置で洗浄、ろ過、乾燥が可能な多機能ろ過装置等を用いてもよい。
<Post-reaction treatment>
The PAEK produced by the polycondensation reaction can be recovered by a commonly used method such as coagulation, solidification, washing, granulation, extraction, or solvent distillation.
The method for treating the PAEK produced by the polycondensation reaction will be described in more detail. The liquid containing the PAEK produced by the polycondensation reaction can be diluted with a solvent as necessary, and mixed with a poor solvent to precipitate the PAEK, thereby obtaining a powdered PAEK. As the solvent used for precipitation of the precipitate, for example, methanol, ethanol, acetone, methyl ethyl ketone, xylene, toluene, etc. are preferable, and acetone and methanol are particularly preferable in view of operability and ease of distillation recovery of the reaction solvent after washing.
The powdered PAEK obtained by precipitation of the precipitate is preferably subjected to a washing step in order to remove alkali metal salts such as potassium chloride produced in the desalting polycondensation reaction, the solvent used in the reaction, and the solvent used in the precipitation of the precipitate.
For washing away alkali metal salts such as potassium chloride produced in the desalting polycondensation reaction, water is preferred, but acidic water containing low concentrations of hydrochloric acid, formic acid, oxalic acid, etc. may also be used.
The conditions for this washing step may be appropriately selected according to the amounts of residual reaction solvent and residual alkali metal salts to be removed, such as the amount of washing solvent used, the number of washings, and the washing temperature.
After washing with water, the powder may be washed with, for example, methanol, ethanol, acetone, methyl ethyl ketone, xylene, or toluene, particularly acetone or methanol.
The washing apparatus may be a combination of a washing tank and a pressure filter or a centrifuge, or a multi-function filter capable of washing, filtering and drying in one apparatus.
 上記洗浄工程により得られた、洗浄終了後の水分や溶媒を含む粉体状のPAEKを、乾燥する工程を行うことができる。
 この乾燥工程の条件は、重縮合反応物の融点以下の温度で、水分の除去が可能な条件であればよい。できるだけ空気に触れないよう、不活性ガス(窒素、アルゴン等)の雰囲気下や、不活性ガス気流下、減圧下で行うのが好ましい。
 乾燥機は、エバポレーター、棚段式オーブン、タンブラーなど、公知の装置を用いることができる。
A step of drying the powdered PAEK containing moisture and solvent after completion of the washing step obtained by the above washing step can be carried out.
The conditions for this drying step may be any conditions that allow removal of moisture at a temperature equal to or lower than the melting point of the polycondensation reaction product. It is preferable to perform the drying step under an inert gas (nitrogen, argon, etc.) atmosphere, under an inert gas stream, or under reduced pressure so as to minimize contact with air.
The dryer may be a known device such as an evaporator, a tray oven, or a tumbler.
 本発明にかかるアリールエーテルケトン(PAEK)の高分子鎖の両末端の構造が、一般式(4)で表される基(アクリロイルオキシ基、メタクリロイルオキシ基)、化学式(5)で表される基(グリシジルエーテル基)等の反応性官能基に修飾した末端構造である場合のPAEKは、一般式(3)で表されるビスフェノール化合物に由来するヒドロキシ基をアクリロイルオキシ基やメタクリロイルオキシ基、グリシジルエーテル基などの反応性置換基に改質することにより得られる。  In the case where the structure of both ends of the polymer chain of the aryl ether ketone (PAEK) of the present invention is a terminal structure modified with reactive functional groups such as a group represented by general formula (4) (acryloyloxy group, methacryloyloxy group) or a group represented by chemical formula (5) (glycidyl ether group), the PAEK can be obtained by modifying the hydroxy group derived from the bisphenol compound represented by general formula (3) to a reactive substituent such as an acryloyloxy group, methacryloyloxy group, or glycidyl ether group.
 末端構造が一般式(4)で表される基(アクリロイル基又はメタクリロイル基)である本発明にかかるPAEKは、上記方法により得られた高分子鎖の末端にヒドロキシ基を含む一般式(1)で表される繰り返し単位を有するポリアリールエーテルケトンに対して、従来公知のヒドロキシ化合物の(メタ)アクリル化の方法を適用することにより製造することができる。
 (メタ)アクリル化をする方法としては、例えば、一般式(1)で表される繰り返し単位を有するポリアリールエーテルケトンの末端ヒドロキシ基に対して、(メタ)アクリル酸及びその誘導体を反応させる方法がある。(メタ)アクリル酸の誘導体として、アクリル酸クロライドを用いた場合、クロライドイオンが塩化水素の形で発生するので、塩化水素補足剤を併用して行うのが好ましい。塩化水素補足剤としては、アルカリ金属の炭酸塩や炭酸水素塩、3級アミン類等の無機又は有機塩基性物質であれば使用できる。(メタ)アクリル酸及びその誘導体としては、具体的には、例えば、アクリル酸、メタクリル酸、アクリル酸クロライド、メタクリル酸クロライド等が挙げられる。
 アクリル化の反応において、塩化メチレンのようなハロゲン化炭化水素やテトラヒドロフラン、ジオキサン、クロロベンゼン等の溶媒を使用してもよい。
 反応時に重合禁止剤として、例えば、ハイドロキノン、ハイドロキノンモノメチルエーテル、フェノチアジン、2,6-ジ-tert-ブチル-4-メチルフェノール(BHT)等を添加しても良い。
The PAEK according to the present invention, whose terminal structure is a group represented by general formula (4) (an acryloyl group or a methacryloyl group), can be produced by applying a conventionally known method for (meth)acrylation of a hydroxy compound to a polyaryletherketone having a repeating unit represented by general formula (1) containing a hydroxy group at the end of the polymer chain obtained by the above-mentioned method.
As a method for (meth)acrylation, for example, there is a method of reacting (meth)acrylic acid and its derivatives with the terminal hydroxyl group of polyaryletherketone having a repeating unit represented by general formula (1). When acrylic acid chloride is used as a derivative of (meth)acrylic acid, chloride ions are generated in the form of hydrogen chloride, so it is preferable to use a hydrogen chloride scavenger in combination. As the hydrogen chloride scavenger, inorganic or organic basic substances such as carbonates or hydrogen carbonates of alkali metals, tertiary amines, etc. can be used. Specific examples of (meth)acrylic acid and its derivatives include acrylic acid, methacrylic acid, acrylic acid chloride, methacrylic acid chloride, etc.
In the acrylation reaction, a solvent such as a halogenated hydrocarbon such as methylene chloride, tetrahydrofuran, dioxane, chlorobenzene, or the like may be used.
During the reaction, a polymerization inhibitor such as hydroquinone, hydroquinone monomethyl ether, phenothiazine, or 2,6-di-tert-butyl-4-methylphenol (BHT) may be added.
 末端構造が化学式(5)で表される基(グリシジルエーテル基)である本発明にかかるPAEKは、上記方法により得られた高分子鎖の末端にヒドロキシ基を含む一般式(1)で表される繰り返し単位を有するポリアリールエーテルケトンに対して、従来公知のヒドロキシ化合物のグリシジルエーテル化の方法を適用することにより製造することができる。
 グリシジルエーテル化をする方法としては、例えば、一般式(1)で表される繰り返し単位を有するポリアリールエーテルケトンの末端ヒドロキシ基に対して、エピハロヒドリンを、アルカリ金属水酸化物(例えば水酸化ナトリウムや水酸化カリウム)や4級アンモニウム塩(例えば、テトラメチルアンモニウムクロライドやテトラメチルアンモニウムブロマイド)の存在下に反応を行うことにより、グリシジルエーテル化されたPAEKを製造することができる。使用するエピハロヒドリンとして、具体的には、エピクロルヒドリン、エピブロムヒドリンが挙げられる。
The PAEK according to the present invention, whose terminal structure is a group represented by chemical formula (5) (glycidyl ether group), can be produced by applying a conventionally known method for glycidyl etherifying a hydroxy compound to a polyaryl ether ketone having a repeating unit represented by general formula (1) containing a hydroxy group at the end of the polymer chain obtained by the above-mentioned method.
As a method for glycidyl etherification, for example, a glycidyl etherified PAEK can be produced by reacting a terminal hydroxy group of a polyaryletherketone having a repeating unit represented by the general formula (1) with epihalohydrin in the presence of an alkali metal hydroxide (e.g., sodium hydroxide or potassium hydroxide) or a quaternary ammonium salt (e.g., tetramethylammonium chloride or tetramethylammonium bromide). Specific examples of the epihalohydrin used include epichlorohydrin and epibromohydrin.
<ポリアリールエーテルケトン樹脂組成物>
 本発明にかかるPAEKには、所望に応じて難燃剤、熱安定剤、酸化安定剤、耐候安定剤、帯電防止剤、滑剤、可塑剤等の各種添加剤を、本発明の効果を損なわない範囲で、原料樹脂に添加剤を配合する常法により配合することができる。本発明にかかるPAEKと、難燃剤、熱安定剤、酸化安定剤、耐候安定剤、帯電防止剤、滑剤、可塑剤からなる群より1つ以上選択される添加剤を含む、ポリアリールエーテルケトン樹脂組成物とすることができる。
 このポリアリールエーテルケトン樹脂組成物は、後述する本発明にかかるPAEKの使用と同様に使用をすることができる。
<Polyaryletherketone resin composition>
The PAEK according to the present invention can be blended with various additives such as flame retardants, heat stabilizers, oxidation stabilizers, weathering stabilizers, antistatic agents, lubricants, plasticizers, etc., as desired, by a conventional method of blending additives with raw resins, within a range that does not impair the effects of the present invention. A polyaryl ether ketone resin composition can be obtained, which contains the PAEK according to the present invention and one or more additives selected from the group consisting of flame retardants, heat stabilizers, oxidation stabilizers, weathering stabilizers, antistatic agents, lubricants, and plasticizers.
This polyaryl ether ketone resin composition can be used in the same manner as the PAEK of the present invention described below.
<本発明にかかるPAEKの使用>
(高周波数帯の電波)
 本発明における高周波数帯の電波とは、1GHz以上300GHz以下の範囲の周波数の電波であって、マイクロ波や、センチメートル波(SHF:Super High Frequency)、ミリ波(EHF:Extremely High Frequency)等の電波を含む。かかる高周波数帯の電波の範囲は、好ましくは1GHz以上100GHz以下の範囲であり、さらに好ましくは1GHz以上80GHz以下の範囲であり、特に好ましくは1GHz以上30GHz以下の範囲である。
Use of the PAEK according to the present invention
(High-frequency radio waves)
The high-frequency radio waves in the present invention refer to radio waves having a frequency in the range of 1 GHz to 300 GHz, including microwaves, centimeter waves (SHF: Super High Frequency), millimeter waves (EHF: Extremely High Frequency), etc. The range of such high-frequency radio waves is preferably 1 GHz to 100 GHz, more preferably 1 GHz to 80 GHz, and particularly preferably 1 GHz to 30 GHz.
(電子機器・デバイス用ポリアリールエーテルケトン樹脂材料)
 本発明にかかるPAEKは、耐熱性を有することに加え、優れた高周波数帯の誘電特性と、低い吸水性を有するため、本発明のポリアリールエーテルケトンを含む樹脂材料は、電子機器やこれに用いる電子デバイス(電子機器・デバイス)に用いるポリアリールエーテルケトン樹脂材料として好適であり、特に、高周波数帯の電波を利用した高速通信に用いる電子機器・デバイス(高周波通信用電子機器・デバイス)に用いるポリアリールエーテルケトン樹脂材料として好適である。
 本発明にかかるPAEKを含む、電子機器・デバイス用ポリアリールエーテルケトン樹脂材料は、製造する電子機器・デバイスに必要な特性に合わせて、本発明にかかるポリアリールエーテルケトンのみの樹脂材料であってもよく、本発明にかかるPAEKに、難燃剤、熱安定剤、酸化安定剤、耐候安定剤、帯電防止剤、滑剤、可塑剤からなる群より1つ以上選択される添加剤を含む樹脂材料であってもよい。
 電子機器・デバイス用ポリアリールエーテルケトン樹脂材料は、上述のように、熱可塑性樹脂の常法の成形・加工方法(例えば、射出成形、押出成形、圧縮成形など溶融成形法)を適用することや、硬化性樹脂の常法の成形・加工方法(例えば、圧縮成形やトランスファー成形)を適用することにより、フィルム、シート、テープ、容器、糸、レンズ、チューブ、ペレット、チップなどの成形品を製造して、電子機器・デバイスの樹脂材料として使用し、電子機器・デバイスを製造することができる。
(Polyaryletherketone resin materials for electronic devices)
The PAEK according to the present invention has heat resistance, as well as excellent dielectric properties in the high frequency band and low water absorption. Therefore, a resin material containing the polyaryl ether ketone of the present invention is suitable as a polyaryl ether ketone resin material used in electronic devices and electronic devices used therein (electronic devices and devices), and is particularly suitable as a polyaryl ether ketone resin material used in electronic devices and devices used in high-speed communication using radio waves in the high frequency band (electronic devices and devices for high-frequency communication).
The polyaryletherketone resin material for electronic devices and devices, which contains the PAEK according to the present invention, may be a resin material containing only the polyaryletherketone according to the present invention, depending on the properties required for the electronic device or device to be manufactured, or may be a resin material containing the PAEK according to the present invention and one or more additives selected from the group consisting of a flame retardant, a heat stabilizer, an oxidation stabilizer, a weather resistance stabilizer, an antistatic agent, a lubricant, and a plasticizer.
As described above, the polyaryletherketone resin material for electronic devices can be used as a resin material for electronic devices and devices to produce molded products such as films, sheets, tapes, containers, threads, lenses, tubes, pellets, and chips by applying a conventional molding/processing method for thermoplastic resins (e.g., melt molding methods such as injection molding, extrusion molding, and compression molding) or a conventional molding/processing method for curable resins (e.g., compression molding and transfer molding).Then, the molded products can be used as resin materials for electronic devices and devices to produce electronic devices and devices.
(電子機器・デバイス)
 本発明において、電子機器やこれに用いる電子デバイスを、電子機器・デバイスと総称する。特に、高周波数帯の電波を利用した高速通信に用いる電子機器・デバイスを高周波通信用電子機器・デバイスと総称する。本発明のPAEKは、耐熱性を有することに加え、優れた高周波数帯の誘電特性を有するため、本発明のPAEKを使用した電子機器・デバイスは好ましく、高周波通信用電子機器・デバイスは特に好ましい。
 前記電子機器として、具体的には、例えば、携帯電話、スマートフォン、パソコン、モバイルルータ、データセンター通信機器、基地局、レーダー、ロボット、ドローン、ウェアラブルコンピュータ、自動車、航空機、工業、農業、物流業、土木業等の各種業種で用いる測定・計測機器、高速無線通信機器、電子手帳、デジタルスチルカメラ、ビデオカメラ、電子ペーパー、テレビ、プレーヤー、各種オーディオ機器、カーナビゲーション装置やインストルメントパネルなどの車載用表示器、電卓、プリンタ、スキャナー、複写機、冷蔵庫、洗濯機などが挙げられる。
 この中でも特に、高周波数帯の電波を利用した高速通信に用いる電子機器としては、携帯電話、スマートフォン、パソコン、モバイルルータ、データセンター通信機器、基地局、レーダー、ロボット、ドローン、ウェアラブルコンピュータ、自動車・航空機・工業・農業・物流業・土木業等の各種業種で用いる測定・計測機器、高速無線通信機器が挙げられる。
前記電子デバイスとしては、具体的には、半導体、電子ディスプレイ、電気・電子部品がある。前記電気・電子部品としては、例えば、コンデンサー、プリント回路、コネクター、各種センサー、インダクター、スイッチ、筐体が挙げられる。これらは、高周波数帯の電波を利用した高速通信に用いる電子機器にも用いられる。
 本発明のポリアリールエーテルケトン樹脂材料は、より詳しくは、例えば、これら電子機器・デバイス(好ましくは、1GHz以上300GHz以下の範囲の高周波通信用電子機器・デバイス)の外装部材、構造部材、回路基板、半導体用封止材若しくはアンテナ素子部材に好適に使用できる。これらの中でも、電子機器・デバイスの回路基板、半導体用封止材若しくはアンテナ素子部材により好適に使用でき、電子機器・デバイスの回路基板が特に好適に使用できる。
(Electronic equipment and devices)
In the present invention, electronic devices and electronic devices used therein are collectively referred to as electronic devices and devices. In particular, electronic devices and devices used for high-speed communication using radio waves in a high frequency band are collectively referred to as high-frequency communication electronic devices and devices. Since the PAEK of the present invention has excellent dielectric properties in a high frequency band in addition to heat resistance, electronic devices and devices using the PAEK of the present invention are preferred, and high-frequency communication electronic devices and devices are particularly preferred.
Specific examples of the electronic device include mobile phones, smartphones, personal computers, mobile routers, data center communication equipment, base stations, radars, robots, drones, wearable computers, automobiles, aircraft, measuring and measurement equipment used in various industries such as industry, agriculture, logistics, and civil engineering, high-speed wireless communication equipment, electronic organizers, digital still cameras, video cameras, electronic paper, televisions, players, various audio equipment, car navigation devices, in-vehicle displays such as instrument panels, calculators, printers, scanners, copiers, refrigerators, and washing machines.
Among these, electronic devices used for high-speed communication using high-frequency radio waves include mobile phones, smartphones, personal computers, mobile routers, data center communication equipment, base stations, radar, robots, drones, wearable computers, measurement and gaging equipment used in various industries such as the automobile, aircraft, manufacturing, agriculture, logistics, and civil engineering industries, and high-speed wireless communication equipment.
Specific examples of the electronic devices include semiconductors, electronic displays, and electric/electronic components. Examples of the electric/electronic components include capacitors, printed circuits, connectors, various sensors, inductors, switches, and housings. These are also used in electronic devices for high-speed communication using high-frequency radio waves.
More specifically, the polyaryl ether ketone resin material of the present invention can be suitably used for, for example, exterior members, structural members, circuit boards, semiconductor encapsulants, or antenna element members of these electronic devices and devices (preferably, electronic devices and devices for high-frequency communication in the range of 1 GHz to 300 GHz). Among these, the polyaryl ether ketone resin material can be suitably used for the circuit boards, semiconductor encapsulants, or antenna element members of the electronic devices and devices, and can be particularly suitably used for the circuit boards of the electronic devices and devices.
 以下、本発明を実施例により具体的に説明するが、本発明はこれら実施例に限定されるものではない。
 本発明における分析方法は以下のとおりである。
<分析方法>
1.ガラス転移温度(Tg)の測定
 実施例及び比較例で得たPAEKのガラス転移温度を下記装置及び条件で測定した。
 測定装置:DSC7020 (株式会社日立製作所製)
 パン:アルミ
 雰囲気下:N
 昇温速度:10℃/min.
 解析法:2nd heatingのガラス転移点(ベースラインと接線の交点)
2.比誘電率と誘電正接の測定
 後述する実施例及び比較例で得たPAEK粉末は以下の成形方法で試験片を作成した。得られた試験片を用いて、比誘電率と誘電正接を下記装置及び条件で測定した。
(成形方法)
 PAEK粉末を、Mini Test Press MP-2FH ((株)東洋精機)を用いて、試験片に成形した。成形は、温度350℃、圧力1~5Mpaで溶融脱気を数回行い、その後温度350℃、圧力12MPa、5分間で圧着することにより行った。(測定装置及び条件)
 測定装置:シンセサイズドスイーパー 8340B (YHP社製)
 ネットワークアナライザー 8510B (YHP社製)
 円筒空洞共振器(材質:銅、内部鏡面仕上げ)
 信号伝送用セミリジッドケーブル
 試料寸法:約50mm角に切断
 測定周波数:10GHz近傍
 測定環境:室温(23±2℃/50±5%RH)
3.分子量測定
 後述する実施例及び比較例で得たPAEKの分子量をゲル浸透クロマトグラフィー(GPC)により、下記装置及び条件で測定した。
 装置:515 HPLCポンプ、717plus 自動挿入装置、2487紫外可視検出装置(ウォーターズ社)
 カラム/温度:2xPLgel 5μ MIXED-D、 7.5x300mm(アジレント・テクノロジー社)/40℃
 移動相:HPLC用クロロホルム
 流量:1.0mL/min.
 注入量:2.5uL
 検出:紫外可視検出器 254nm
 カラム較正:単分散PS;EasiCal Type PS-1 ポリスチレン(アジレント・テクノロジー社)
 分子量較正:PS換算
4.還元粘度の測定
 後述する実施例及び比較例で得たPAEK粉末を、p-クロロフェノールを溶媒とする濃度1.0g/dLの溶液に調製し、40℃における粘度を測定した。
5.吸水率の測定
 後述する実施例、及び比較例で得たPAEK粉末は、以下の成形方法で試験片を作成した。得られた試験片を用いて、吸水率を下記装置及び条件で測定した。
(成形方法)
 PAEK粉末を、Mini Test Press MP-2FH ((株)東洋精機)を用いて、試験片に成形した。成形は、温度350℃、圧力1~5Mpaで溶融脱気を数回行い、その後温度350℃、圧力12MPa、5分間で圧着することにより行った。得られたPAEKシートを10cm×10cmにカットした。
(吸水率測定、算出方法)
 作製したPAEKシートを真空乾燥機で120℃、1.0kPaで2時間乾燥させた後に重量(浸漬前重量)を測定した。その後、蒸留水で満たした容器にPAEKシートを完全に浸漬させ、水温25℃で24時間吸水させた。24時間後にPAEKシートを取り出し、表面の水分をふき取り再度重量(浸漬後重量)を測定し、下記計算式により吸水率を算出した。
[計算式]
 吸水率(%)=(浸漬後重量-浸漬前重量)÷浸漬前重量×100
The present invention will be described in more detail below with reference to examples, but the present invention is not limited to these examples.
The analytical method in the present invention is as follows.
<Analysis method>
1. Measurement of Glass Transition Temperature (Tg) The glass transition temperatures of the PAEKs obtained in the Examples and Comparative Examples were measured using the following apparatus and conditions.
Measuring device: DSC7020 (manufactured by Hitachi, Ltd.)
Pan: Aluminum Atmosphere: N2
Heating rate: 10° C./min.
Analysis method: Glass transition point of 2nd heating (intersection of baseline and tangent line)
2. Measurement of dielectric constant and dielectric loss tangent The PAEK powder obtained in the examples and comparative examples described below was molded into test pieces by the following molding method. The dielectric constant and dielectric loss tangent of the obtained test pieces were measured using the following device and conditions.
(Molding method)
The PAEK powder was molded into a test piece using a Mini Test Press MP-2FH (Toyo Seiki Co., Ltd.). The molding was performed by melting and degassing the powder several times at a temperature of 350°C and a pressure of 1 to 5 MPa, and then pressing the powder at a temperature of 350°C and a pressure of 12 MPa for 5 minutes. (Measurement device and conditions)
Measurement device: Synthesized Sweeper 8340B (YHP)
Network analyzer 8510B (YHP)
Cylindrical cavity resonator (material: copper, internal mirror finish)
Semi-rigid cable for signal transmission Sample size: Cut into approximately 50 mm square Measurement frequency: Around 10 GHz Measurement environment: Room temperature (23±2°C/50±5% RH)
3. Molecular Weight Measurement The molecular weights of the PAEKs obtained in the Examples and Comparative Examples described below were measured by gel permeation chromatography (GPC) using the following apparatus and conditions.
Equipment: 515 HPLC pump, 717plus automatic insertion device, 2487 UV-Vis detector (Waters)
Column/temperature: 2x PLgel 5μ MIXED-D, 7.5x300mm (Agilent Technologies)/40°C
Mobile phase: chloroform for HPLC Flow rate: 1.0 mL/min.
Injection volume: 2.5uL
Detection: UV-visible detector 254 nm
Column calibration: monodisperse PS; EasiCal Type PS-1 polystyrene (Agilent Technologies)
Molecular weight calibration: PS conversion 4. Measurement of reduced viscosity The PAEK powder obtained in the examples and comparative examples described later was prepared into a solution having a concentration of 1.0 g/dL using p-chlorophenol as a solvent, and the viscosity at 40° C. was measured.
5. Measurement of Water Absorption Rate Test pieces were prepared from the PAEK powders obtained in the Examples and Comparative Examples described below by the following molding method. The water absorption rate was measured using the obtained test pieces with the following device and under the following conditions.
(Molding method)
The PAEK powder was molded into a test piece using a Mini Test Press MP-2FH (Toyo Seiki Co., Ltd.). The molding was performed by melting and degassing several times at a temperature of 350°C and a pressure of 1 to 5 MPa, and then pressing at a temperature of 350°C and a pressure of 12 MPa for 5 minutes. The obtained PAEK sheet was cut into a size of 10 cm x 10 cm.
(Water absorption measurement and calculation method)
The prepared PAEK sheet was dried in a vacuum dryer at 120° C. and 1.0 kPa for 2 hours, and then the weight (weight before immersion) was measured. The PAEK sheet was then completely immersed in a container filled with distilled water and allowed to absorb water for 24 hours at a water temperature of 25° C. After 24 hours, the PAEK sheet was removed, the surface moisture was wiped off, and the weight (weight after immersion) was measured again, and the water absorption rate was calculated using the following calculation formula.
[a formula]
Water absorption rate (%) = (weight after immersion - weight before immersion) ÷ weight before immersion × 100
<実施例1>
 トルエンを満たしたディーンスターク管、撹拌装置及び窒素吹き込み管を備えた500mL4つ口反応容器に25.4gの4,4’-ジフルオロベンゾフェノン、30.0gの1,1-ビス(4-ハイドロキシフェニル)シクロヘキサン、14.2gの炭酸ナトリウム、145gのN-メチルピロリドン(NMP)を投入し、これらを室温において窒素を流通させながら溶解させた。次いで反応容器を200℃まで1時間かけて昇温した後で、少量のトルエンを加えて還流させ、200℃において10時間重合させた。
 反応終了後、反応液を室温まで冷却し、NMP150gで希釈した溶液を、2400gのメタノールに添加して沈殿を析出させた。現れた沈殿物を濾別し、得られた粉末を1.4%シュウ酸水溶液700gで懸濁洗浄し、さらに熱水で洗浄後の水が中性になるまで洗浄を繰り返し、次いでメタノールで洗浄した。洗浄した粉末を150℃で12時間乾燥し、PAEK粉末を40g、90%の収率で得た。
 得られたPAEKの還元粘度は1.1dL/gであった。
 得られたPAEKのガラス転移温度(Tg)を示差走査熱量測定で測定したところ173℃であった。
 得られたPAEKの吸水率を測定した結果、0.38%であった。また、本測定にて作製したPAEKシートは、円弧状に曲げることができ、優れた柔軟性を有する樹脂材料であることも明らかになった。
Example 1
In a 500 mL four-necked reaction vessel equipped with a Dean-Stark tube filled with toluene, a stirrer, and a nitrogen inlet tube, 25.4 g of 4,4'-difluorobenzophenone, 30.0 g of 1,1-bis(4-hydroxyphenyl)cyclohexane, 14.2 g of sodium carbonate, and 145 g of N-methylpyrrolidone (NMP) were charged and dissolved at room temperature while passing nitrogen through. The reaction vessel was then heated to 200°C over 1 hour, after which a small amount of toluene was added and refluxed, followed by polymerization at 200°C for 10 hours.
After the reaction was completed, the reaction solution was cooled to room temperature, and the solution diluted with 150 g of NMP was added to 2400 g of methanol to precipitate. The precipitate was filtered off, and the resulting powder was suspended and washed with 700 g of 1.4% oxalic acid aqueous solution, and then repeatedly washed with hot water until the water after washing became neutral, and then washed with methanol. The washed powder was dried at 150° C. for 12 hours to obtain 40 g of PAEK powder in a yield of 90%.
The resulting PAEK had a reduced viscosity of 1.1 dL/g.
The glass transition temperature (Tg) of the resulting PAEK was 173° C. as measured by differential scanning calorimetry.
The water absorption rate of the obtained PAEK was measured to be 0.38%. In addition, it was revealed that the PAEK sheet produced by this measurement can be bent into an arc shape, and is a resin material having excellent flexibility.
<実施例2>
 トルエンを満たしたディーンスターク管、撹拌装置及び窒素吹き込み管を備えた1000mL4つ口反応容器に31gの4,4’-ジフルオロベンゾフェノン、50gの4,4’-(3,3,5-トリメチルシクロヘキシリデン)ビス(2,6-ジメチルフェノール)、17gの炭酸ナトリウム、240gのNMPを投入し、これらを室温において窒素を流通させながら溶解させた。次いで反応容器を200℃まで1時間かけて昇温した後で、少量のトルエンを加えて還流させ、200℃において50時間重合させた。
 反応終了後、反応液を室温まで冷却し、NMP180gで希釈した溶液を、3200gのメタノールに添加して沈殿を析出させた。現れた沈殿物を濾別し、得られた粉体を1.4%シュウ酸水溶液1000gで懸濁洗浄し、さらに熱水で洗浄後の水が中性になるまで繰り返し洗浄し、次いでメタノールで洗浄した。洗浄した粉末を150℃で12時間乾燥し、PAEK粉末を65g、85%の収率で得た。
 得られたPAEKの還元粘度は0.45dL/gであった。
 得られたPAEKのガラス転移点(Tg)を示差走査熱量測定で測定したところ243℃であった。
 得られたPAEKの吸水率を測定した結果、0.06%であった。
Example 2
In a 1000 mL four-necked reaction vessel equipped with a Dean-Stark tube filled with toluene, a stirrer, and a nitrogen inlet tube, 31 g of 4,4'-difluorobenzophenone, 50 g of 4,4'-(3,3,5-trimethylcyclohexylidene)bis(2,6-dimethylphenol), 17 g of sodium carbonate, and 240 g of NMP were charged and dissolved at room temperature while passing nitrogen through. The reaction vessel was then heated to 200°C over 1 hour, after which a small amount of toluene was added and refluxed, followed by polymerization at 200°C for 50 hours.
After the reaction was completed, the reaction solution was cooled to room temperature, and the solution diluted with 180 g of NMP was added to 3200 g of methanol to precipitate. The precipitate was filtered off, and the resulting powder was suspended and washed in 1000 g of a 1.4% aqueous oxalic acid solution, and then repeatedly washed with hot water until the water after washing became neutral, and then washed with methanol. The washed powder was dried at 150° C. for 12 hours to obtain 65 g of PAEK powder in a yield of 85%.
The resulting PAEK had a reduced viscosity of 0.45 dL/g.
The glass transition temperature (Tg) of the resulting PAEK was 243° C. as measured by differential scanning calorimetry.
The water absorption of the resulting PAEK was measured and found to be 0.06%.
<比較例1>
 市販のPEEK450G(Victrex社製)を使用して、上記分析方法により、分子量、ガラス転移温度、比誘電率、誘電正接及び吸水率を測定した。
<Comparative Example 1>
Commercially available PEEK450G (manufactured by Victrex) was used to measure the molecular weight, glass transition temperature, relative dielectric constant, dielectric loss tangent, and water absorption rate by the above-mentioned analytical methods.
<比較例2>
 トルエンを満たしたディーンスターク管、撹拌装置及び窒素吹き込み管を備えた500mL4つ口反応容器に27gの4,4’-ジフルオロベンゾフェノン、50gの4,4’-(9-フルオレニリデン)ビス(2,6-ジメチルフェノール)、20gの炭酸カリウム、200gのNMPを投入し、これらを室温において窒素を流通させながら溶解させた。次いで反応容器を200℃まで1時間かけて昇温した後で、少量のトルエンを加えて還流させ、200℃において10時間重合させた。
 反応終了後、反応液を室温まで冷却し、NMP156gで希釈した溶液を、2850gのメタノールに添加して沈殿を析出させた。現れた沈殿物を濾別し、得られた粉体を1.4%シュウ酸水溶液1000gで懸濁洗浄し、さらに熱水で洗浄後の水が中性になるまで繰り返し洗浄し、次いでメタノールで洗浄した。洗浄した粉末を150℃で12時間減圧下に乾燥し、PAEKの粉末を65g、87%の収率で得た。
 得られたPAEKの還元粘度は0.63dL/gであった。
 得られたPAEKのガラス転移温度(Tg)を示差走査熱量測定で測定したところ285℃であった。
 得られたPAEKの吸水率を測定した結果、0.53%であった。
<Comparative Example 2>
In a 500 mL four-necked reaction vessel equipped with a Dean-Stark tube filled with toluene, a stirrer, and a nitrogen inlet tube, 27 g of 4,4'-difluorobenzophenone, 50 g of 4,4'-(9-fluorenylidene)bis(2,6-dimethylphenol), 20 g of potassium carbonate, and 200 g of NMP were charged and dissolved at room temperature while passing nitrogen through. The reaction vessel was then heated to 200°C over 1 hour, after which a small amount of toluene was added and refluxed, followed by polymerization at 200°C for 10 hours.
After the reaction was completed, the reaction solution was cooled to room temperature, and the solution diluted with 156 g of NMP was added to 2850 g of methanol to precipitate. The precipitate was filtered off, and the resulting powder was suspended and washed in 1000 g of a 1.4% aqueous oxalic acid solution, and then repeatedly washed with hot water until the water after washing became neutral, and then washed with methanol. The washed powder was dried under reduced pressure at 150° C. for 12 hours, and 65 g of PAEK powder was obtained in a yield of 87%.
The resulting PAEK had a reduced viscosity of 0.63 dL/g.
The glass transition temperature (Tg) of the resulting PAEK was 285° C. as measured by differential scanning calorimetry.
The water absorption of the resulting PAEK was measured and found to be 0.53%.
<比較例3>
 トルエンを満たしたディーンスターク管、撹拌装置及び窒素吹き込み管を備えた500mL4つ口反応容器に34gの4,4’-ジフルオロベンゾフェノン、19gの1,3-ジヒドロ-3,3-ビス(4-ヒドロキシフェニル)-1-フェニル-2H-インドール-2-オン、11gの炭酸ナトリウム、161gのNMPを投入し、これらを室温において窒素を流通させながら溶解させた。次いで反応容器を200℃まで1時間かけて昇温した後で、少量のトルエンを加えて還流させ、200℃において7時間重合させた。反応終了後、生成物を室温まで冷却してNMP107gで希釈した溶液を2150gのメタノールに添加して沈殿を析出させた。沈殿物を濾別後、1.4%シュウ酸水溶液800gで懸濁洗浄し、さらに熱水で中性になるまで洗浄し次いでメタノールで洗浄した。150℃で12時間減圧乾燥しPAEKの粉末を44g、87%の収率で得た。
 得られたPAEKの還元粘度は0.56dL/gであった。
 得られたPAEKのガラス転移点(Tg)を示差走査熱量測定で測定したところ243℃であった。
 得られたPAEKの吸水率を測定した結果、0.32%であった。
<Comparative Example 3>
In a 500 mL four-necked reaction vessel equipped with a Dean-Stark tube filled with toluene, a stirrer and a nitrogen inlet tube, 34 g of 4,4'-difluorobenzophenone, 19 g of 1,3-dihydro-3,3-bis(4-hydroxyphenyl)-1-phenyl-2H-indol-2-one, 11 g of sodium carbonate and 161 g of NMP were charged and dissolved at room temperature while passing nitrogen. Next, the reaction vessel was heated to 200°C over 1 hour, after which a small amount of toluene was added and refluxed, and polymerization was carried out at 200°C for 7 hours. After the reaction was completed, the product was cooled to room temperature, and a solution diluted with 107 g of NMP was added to 2150 g of methanol to precipitate a precipitate. The precipitate was filtered, suspended and washed with 800 g of a 1.4% aqueous oxalic acid solution, washed with hot water until neutral, and then washed with methanol. After drying under reduced pressure at 150°C for 12 hours, 44 g of PAEK powder was obtained in a yield of 87%.
The resulting PAEK had a reduced viscosity of 0.56 dL/g.
The glass transition temperature (Tg) of the resulting PAEK was 243° C. as measured by differential scanning calorimetry.
The water absorption of the resulting PAEK was measured and found to be 0.32%.
 実施例1及び2で得られたPAEK、比較例1で用いたPEEK樹脂並びに比較例2及び3で得られたPAEKについて、重量平均分子量(Mw)、数平均分子量(Mn)、分散度(Mw/Mn)、ガラス転移温度(Tg)、比誘電率(Dk)及び誘電正接(Df)、吸水率(%)の上記分析方法による測定結果を表1にまとめて示す。 The results of the measurements of the weight average molecular weight (Mw), number average molecular weight (Mn), dispersity (Mw/Mn), glass transition temperature (Tg), relative dielectric constant (Dk) and dielectric loss tangent (Df), and water absorption rate (%) for the PAEK obtained in Examples 1 and 2, the PEEK resin used in Comparative Example 1, and the PAEK obtained in Comparative Examples 2 and 3, measured by the above analytical methods, are summarized in Table 1.
 本発明の実施例1及び2で得られたPAEKについて、比較例1のPEEK樹脂と比較する。ガラス転移温度(Tg)は、24℃又は94℃高く、優れた耐熱性を有していることが明らかになった。比誘電率(Dk)は0.3又は0.5低いこと、誘電正接(Df)は、実施例2は0.0003高いが、実施例1は同じであり、同等に低くて優れた誘電特性を有することが明らかになった。
 また、比較例2及び3で得られたPAEK樹脂を比較例1のPEEK樹脂と比較する。ガラス転移温度(Tg)は高くなって耐熱性に優れ、誘電特性のうち比誘電率(Dk)は低くなっているが、誘電正接(Df)が2倍程度大きくなっており、総じて誘電特性は大きく劣る樹脂であることが理解できる。そのため、電子機器・デバイス、特に、高周波数対応が求められる高速通信分野における電子機器・デバイスに用いる樹脂材料として適さないことが理解できる。
 かかる中、本発明の実施例1及び2で得られたPAEK樹脂は、比較例2及び3のPAEK樹脂と比べると、実施例2と比較例3の耐熱性は同等であるものの、実施例1は比較例2、3よりは低い。しかしながら、誘電特性のうち、比誘電率(Dk)においては、実施例1は比較例2と同等である一方、比較例3より低く、特に、実施例2は比較例2、3よりも低い。また、誘電正接(Df)においては、実施例1、2は、比較例2、3の半分程度に大きく低い。これらのことから、良好な耐熱性と優れた誘電特性を兼ね備えていることが明らかになった。
 さらに、本発明の実施例1及び2で得られたPAEK樹脂の吸水率は、それぞれ、0.38%、0.06%であり、低い吸水性も併せ持つことも明らかになった。
 以上のことから、本発明にかかるポリアリールエーテルケトンは良好な耐熱性と優れた誘電特性及び低い吸水性を兼ね備えた樹脂材料であり、電子機器・デバイス用の樹脂材料として好適に使用することができることが明らかになった。
 
The PAEK obtained in Examples 1 and 2 of the present invention is compared with the PEEK resin of Comparative Example 1. It was revealed that the glass transition temperature (Tg) is 24°C or 94°C higher, and has excellent heat resistance. It was revealed that the relative dielectric constant (Dk) is 0.3 or 0.5 lower, and the dielectric loss tangent (Df) is 0.0003 higher in Example 2 but is the same as in Example 1, and thus the PAEK has equally low and excellent dielectric properties.
The PAEK resins obtained in Comparative Examples 2 and 3 are compared with the PEEK resin in Comparative Example 1. The glass transition temperature (Tg) is high and excellent in heat resistance, and the dielectric constant (Dk) among the dielectric properties is low, but the dielectric loss tangent (Df) is about twice as large, and it can be seen that the resin is generally significantly inferior in dielectric properties. Therefore, it can be seen that the resin is not suitable as a resin material for electronic devices and devices, particularly electronic devices and devices in the high-speed communication field that require high frequency compatibility.
In this regard, the PAEK resins obtained in Examples 1 and 2 of the present invention are compared with the PAEK resins of Comparative Examples 2 and 3. Although the heat resistance of Example 2 and Comparative Example 3 is equivalent, Example 1 is lower than Comparative Examples 2 and 3. However, in terms of the dielectric properties, the relative dielectric constant (Dk) of Example 1 is equivalent to Comparative Example 2, but is lower than Comparative Example 3, and in particular, Example 2 is lower than Comparative Examples 2 and 3. In terms of the dielectric loss tangent (Df), Examples 1 and 2 are significantly lower, about half that of Comparative Examples 2 and 3. From these facts, it has become clear that the resins have both good heat resistance and excellent dielectric properties.
Furthermore, the water absorption rates of the PAEK resins obtained in Examples 1 and 2 of the present invention were 0.38% and 0.06%, respectively, and it was also revealed that they also had low water absorption.
From the above, it has become clear that the polyaryl ether ketone according to the present invention is a resin material that combines good heat resistance, excellent dielectric properties, and low water absorption, and can be suitably used as a resin material for electronic devices and devices.

Claims (7)

  1.  一般式(1)で表される繰り返し単位を有するポリアリールエーテルケトンを含み、周波数10GHzで測定した誘電正接(Df)が0.004以下であり、周波数10GHzで測定した比誘電率(Dk)が3.5以下であり、ガラス転移温度が150℃以上であり、重量平均分子量(Mw)が2,000以上1,000,000以下の範囲である、電子機器・デバイス用ポリアリールエーテルケトン樹脂材料。
    (式中、R及びRは、各々独立して、炭素原子数1~4のアルキル基を示し、aは1又は2を示し、bは、各々独立して0、1、又は2を示し、cは0又は1~4の整数を示す。)
    A polyaryl ether ketone resin material for use in an electronic device or device, comprising a polyaryl ether ketone having a repeating unit represented by general formula (1), having a dielectric loss tangent (Df) measured at a frequency of 10 GHz of 0.004 or less, a relative dielectric constant (Dk) measured at a frequency of 10 GHz of 3.5 or less, a glass transition temperature of 150°C or more, and a weight average molecular weight (Mw) in the range of 2,000 or more and 1,000,000 or less.
    (In the formula, R1 and R2 each independently represent an alkyl group having 1 to 4 carbon atoms, a represents 1 or 2, b each independently represents 0, 1, or 2, and c represents 0 or an integer of 1 to 4.)
  2.  前記一般式(1)で表される繰り返し単位が、一般式(1’)で表される繰り返し単位である、請求項1に記載の電子機器・デバイス用ポリアリールエーテルケトン樹脂材料。
    (式中、R、a及びcは、一般式(1)の定義と同じである。)
    2. The polyaryl ether ketone resin material for electronic devices according to claim 1, wherein the repeating unit represented by general formula (1) is a repeating unit represented by general formula (1').
    (In the formula, R 2 , a and c are defined as in general formula (1).)
  3.  前記一般式(1’)で表される繰り返し単位が、一般式(1’’)で表される繰り返し単位である、請求項2に記載の電子機器・デバイス用ポリアリールエーテルケトン樹脂材料。
    (式中、aは、一般式(1)の定義と同じである。)
    The polyaryl ether ketone resin material for electronic devices and devices according to claim 2, wherein the repeating unit represented by general formula (1') is a repeating unit represented by general formula (1'').
    (In the formula, a is defined as in general formula (1).)
  4.  請求項1に記載の電子機器・デバイス用ポリアリールエーテルケトン樹脂材料を用いた、電子機器・デバイス。 Electronic devices and devices using the polyaryl ether ketone resin material for electronic devices and devices described in claim 1.
  5.  周波数10GHzで測定した誘電正接(Df)が0.004以下であり、周波数10GHzで測定した比誘電率(Dk)が3.5以下であり、ガラス転移温度が150℃以上であり、重量平均分子量(Mw)が2,000以上1,000,000以下の範囲である、一般式(1)で表される繰り返し単位を有するポリアリールエーテルケトンを電子機器・デバイスに使用する方法。
    (式中、R及びRは、各々独立して、炭素原子数1~4のアルキル基を示し、aは1又は2を示し、bは、各々独立して0、1、又は2を示し、cは0又は1~4の整数を示す。)
    A method for using a polyaryl ether ketone having a repeating unit represented by general formula (1), which has a dielectric loss tangent (Df) of 0.004 or less measured at a frequency of 10 GHz, a relative dielectric constant (Dk) of 3.5 or less measured at a frequency of 10 GHz, a glass transition temperature of 150°C or more, and a weight average molecular weight (Mw) in the range of 2,000 or more and 1,000,000 or less, in an electronic device or device.
    (In the formula, R1 and R2 each independently represent an alkyl group having 1 to 4 carbon atoms, a represents 1 or 2, b each independently represents 0, 1, or 2, and c represents 0 or an integer of 1 to 4.)
  6.  前記一般式(1)で表される繰り返し単位が、一般式(1’)で表される繰り返し単位である、請求項5に記載のポリアリールエーテルケトンを電子機器・デバイスに使用する方法。
    (式中、R、a及びcは、一般式(1)の定義と同じである。)
    A method for using the polyaryl ether ketone according to claim 5 in an electronic device or device, wherein the repeating unit represented by the general formula (1) is a repeating unit represented by the general formula (1').
    (In the formula, R 2 , a and c are defined as in general formula (1).)
  7.  前記一般式(1’)で表される繰り返し単位が、一般式(1’’)で表される繰り返し単位である、請求項6に記載のポリアリールエーテルケトンを電子機器・デバイスに使用する方法。
    (式中、aは、一般式(1)の定義と同じである。)
     
    A method for using the polyaryletherketone according to claim 6 in an electronic device or device, wherein the repeating unit represented by the general formula (1') is a repeating unit represented by the general formula (1'').
    (In the formula, a is defined as in general formula (1).)
PCT/JP2023/043048 2022-12-01 2023-12-01 Polyaryl ether ketone resin material for electronic equipment/devices and electronic equipment/devices using same WO2024117252A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2022192877 2022-12-01
JP2022-192877 2022-12-01
JP2023167578 2023-09-28
JP2023-167578 2023-09-28

Publications (1)

Publication Number Publication Date
WO2024117252A1 true WO2024117252A1 (en) 2024-06-06

Family

ID=91323993

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/043048 WO2024117252A1 (en) 2022-12-01 2023-12-01 Polyaryl ether ketone resin material for electronic equipment/devices and electronic equipment/devices using same

Country Status (1)

Country Link
WO (1) WO2024117252A1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02170853A (en) * 1988-10-24 1990-07-02 Bayer Ag Polymer mixture
JPH0312423A (en) * 1989-05-31 1991-01-21 Bayer Ag Aromatic copolyether ketone

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02170853A (en) * 1988-10-24 1990-07-02 Bayer Ag Polymer mixture
JPH0312423A (en) * 1989-05-31 1991-01-21 Bayer Ag Aromatic copolyether ketone

Similar Documents

Publication Publication Date Title
JP6689475B1 (en) Maleimide resin, curable resin composition and cured product thereof
Liu et al. Poly (aryl ether ketone) s with (3‐methyl) phenyl and (3‐trifluoromethyl) phenyl side groups
US10240015B2 (en) Modified polyphenylene ether, method for preparing same, polyphenylene ether resin composition, resin varnish, prepreg, metal-clad laminate and printed circuit board
Wang et al. Biobased anethole-functionalized poly (phenylene oxides): new low dielectric materials with high T g and good dimensional stability
TW201231553A (en) Curable resin composition
JP2017031276A (en) Thermosetting resin composition, resin varnish, metal foil with resin, resin film, metal clad laminated board and printed wiring board using the same
JP2018095815A (en) Thermosetting resin composition, and resin varnish, prepreg, metal foil with resin, resin film, metal-clad laminate and printed wiring board each using the same
US11905409B2 (en) Resin composition, and prepreg, resin-coated film, resin-coated metal foil, metal-clad laminate, and wiring board each obtained using said resin composition
Su et al. Preparation, characterization and curing properties of epoxy-terminated poly (alkyl-phenylene oxide) s
EP1416007A1 (en) Epoxy resin composition
JP2020015909A (en) Polyphenylene ether, curable composition containing polyphenylene ether, dry film, prepreg, cured product, laminate, and electronic component
Yang et al. Crosslinked copolymer with low dielectric constant and dissipation factor based on poly (2, 6‐Dimethylphenol‐co− 2, 6‐Diphenylphenol) and a crosslinker
Pu et al. Novel low‐dielectric‐constant fluorine‐functionalized polysulfone with outstanding comprehensive properties
Wu et al. Preparation and characterization of high temperature resistant thermosetting polyphenylene ether resin
JP7005821B1 (en) Maleimide resin and its production method, maleimide solution, and curable resin composition and its cured product.
JP5708160B2 (en) Resin substrate for high frequency circuit board and high frequency circuit board
WO2024117252A1 (en) Polyaryl ether ketone resin material for electronic equipment/devices and electronic equipment/devices using same
Chen et al. Structure-property relationship of vinyl-terminated oligo (2, 6-dimethyl-1, 4-phenylene ether) s (OPEs): Seeking an OPE with better properties
WO2024117246A1 (en) Polyaryl ether ketone, polyaryl ether ketone resin composition, molded article of said polyaryl ether ketone or polyaryl ether ketone resin composition, and electronic instrument/device using said polyaryl ether ketone or polyaryl ether ketone resin composition
JP7350548B2 (en) Polyphenylene ether, curable compositions, dry films, cured products, and electronic components
JP2004256717A (en) Oligomer-modified epoxy resin, its composition, and printed wiring board using the composition
JP7350547B2 (en) Curable compositions, dry films, cured products, electronic components and polyphenylene ether
JP4465979B2 (en) Divinylbenzyl ether compound and curable composition containing the compound
US6815523B2 (en) Polyether and its production method
WO2010119885A1 (en) Polyphenylene ether copolymer and manufacturing method therefor