WO2024117144A1 - 焼結鉱の製造方法 - Google Patents
焼結鉱の製造方法 Download PDFInfo
- Publication number
- WO2024117144A1 WO2024117144A1 PCT/JP2023/042626 JP2023042626W WO2024117144A1 WO 2024117144 A1 WO2024117144 A1 WO 2024117144A1 JP 2023042626 W JP2023042626 W JP 2023042626W WO 2024117144 A1 WO2024117144 A1 WO 2024117144A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- ignition
- sintering
- oxygen
- sintered ore
- raw material
- Prior art date
Links
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 91
- 238000005245 sintering Methods 0.000 claims abstract description 253
- 239000002994 raw material Substances 0.000 claims abstract description 232
- 239000003575 carbonaceous material Substances 0.000 claims abstract description 229
- 239000002245 particle Substances 0.000 claims abstract description 143
- 238000002485 combustion reaction Methods 0.000 claims abstract description 124
- 238000000034 method Methods 0.000 claims abstract description 124
- 238000005345 coagulation Methods 0.000 claims abstract description 5
- 230000015271 coagulation Effects 0.000 claims abstract description 5
- 239000001301 oxygen Substances 0.000 claims description 238
- 229910052760 oxygen Inorganic materials 0.000 claims description 238
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims description 235
- 239000007789 gas Substances 0.000 claims description 147
- 239000003610 charcoal Substances 0.000 claims description 94
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims description 69
- 238000000926 separation method Methods 0.000 claims description 65
- 239000000463 material Substances 0.000 claims description 58
- 229910052799 carbon Inorganic materials 0.000 claims description 50
- 239000002023 wood Substances 0.000 claims description 50
- 238000005469 granulation Methods 0.000 claims description 42
- 230000003179 granulation Effects 0.000 claims description 42
- 239000000701 coagulant Substances 0.000 claims description 39
- 230000008569 process Effects 0.000 claims description 35
- 238000011144 upstream manufacturing Methods 0.000 claims description 30
- 238000007906 compression Methods 0.000 claims description 16
- 239000011230 binding agent Substances 0.000 claims description 12
- 238000005728 strengthening Methods 0.000 claims description 12
- 230000006835 compression Effects 0.000 claims description 11
- 239000005539 carbonized material Substances 0.000 claims description 7
- 238000000465 moulding Methods 0.000 claims description 6
- 238000003763 carbonization Methods 0.000 claims description 5
- 238000004898 kneading Methods 0.000 claims description 3
- 239000010410 layer Substances 0.000 description 152
- 238000012360 testing method Methods 0.000 description 134
- 239000000571 coke Substances 0.000 description 59
- 230000000694 effects Effects 0.000 description 47
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 37
- 238000005516 engineering process Methods 0.000 description 36
- 230000000052 comparative effect Effects 0.000 description 33
- 238000002156 mixing Methods 0.000 description 31
- 239000008187 granular material Substances 0.000 description 27
- 239000000203 mixture Substances 0.000 description 24
- 238000005204 segregation Methods 0.000 description 23
- 230000007423 decrease Effects 0.000 description 22
- 239000003245 coal Substances 0.000 description 19
- 229910052742 iron Inorganic materials 0.000 description 18
- RHZUVFJBSILHOK-UHFFFAOYSA-N anthracen-1-ylmethanolate Chemical compound C1=CC=C2C=C3C(C[O-])=CC=CC3=CC2=C1 RHZUVFJBSILHOK-UHFFFAOYSA-N 0.000 description 16
- 239000003830 anthracite Substances 0.000 description 16
- 238000005054 agglomeration Methods 0.000 description 15
- 230000002776 aggregation Effects 0.000 description 15
- AFCARXCZXQIEQB-UHFFFAOYSA-N N-[3-oxo-3-(2,4,6,7-tetrahydrotriazolo[4,5-c]pyridin-5-yl)propyl]-2-[[3-(trifluoromethoxy)phenyl]methylamino]pyrimidine-5-carboxamide Chemical compound O=C(CCNC(=O)C=1C=NC(=NC=1)NCC1=CC(=CC=C1)OC(F)(F)F)N1CC2=C(CC1)NN=N2 AFCARXCZXQIEQB-UHFFFAOYSA-N 0.000 description 13
- 239000003795 chemical substances by application Substances 0.000 description 13
- 238000010304 firing Methods 0.000 description 13
- 230000006872 improvement Effects 0.000 description 13
- 239000007787 solid Substances 0.000 description 13
- 241000512897 Elaeis Species 0.000 description 11
- 235000001950 Elaeis guineensis Nutrition 0.000 description 11
- 238000006243 chemical reaction Methods 0.000 description 11
- 238000000748 compression moulding Methods 0.000 description 11
- 238000010586 diagram Methods 0.000 description 11
- 238000005192 partition Methods 0.000 description 11
- 238000009826 distribution Methods 0.000 description 9
- 230000009467 reduction Effects 0.000 description 9
- 238000010438 heat treatment Methods 0.000 description 8
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 7
- 239000002028 Biomass Substances 0.000 description 7
- MYMOFIZGZYHOMD-UHFFFAOYSA-N Dioxygen Chemical compound O=O MYMOFIZGZYHOMD-UHFFFAOYSA-N 0.000 description 7
- WZFUQSJFWNHZHM-UHFFFAOYSA-N 2-[4-[2-(2,3-dihydro-1H-inden-2-ylamino)pyrimidin-5-yl]piperazin-1-yl]-1-(2,4,6,7-tetrahydrotriazolo[4,5-c]pyridin-5-yl)ethanone Chemical compound C1C(CC2=CC=CC=C12)NC1=NC=C(C=N1)N1CCN(CC1)CC(=O)N1CC2=C(CC1)NN=N2 WZFUQSJFWNHZHM-UHFFFAOYSA-N 0.000 description 6
- ODINCKMPIJJUCX-UHFFFAOYSA-N Calcium oxide Chemical compound [Ca]=O ODINCKMPIJJUCX-UHFFFAOYSA-N 0.000 description 6
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 6
- 229910000831 Steel Inorganic materials 0.000 description 6
- 238000010000 carbonizing Methods 0.000 description 6
- 238000005259 measurement Methods 0.000 description 6
- 230000036284 oxygen consumption Effects 0.000 description 6
- 239000010959 steel Substances 0.000 description 6
- 239000002344 surface layer Substances 0.000 description 6
- 238000010998 test method Methods 0.000 description 6
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 6
- VCUFZILGIRCDQQ-KRWDZBQOSA-N N-[[(5S)-2-oxo-3-(2-oxo-3H-1,3-benzoxazol-6-yl)-1,3-oxazolidin-5-yl]methyl]-2-[[3-(trifluoromethoxy)phenyl]methylamino]pyrimidine-5-carboxamide Chemical compound O=C1O[C@H](CN1C1=CC2=C(NC(O2)=O)C=C1)CNC(=O)C=1C=NC(=NC=1)NCC1=CC(=CC=C1)OC(F)(F)F VCUFZILGIRCDQQ-KRWDZBQOSA-N 0.000 description 5
- 238000004458 analytical method Methods 0.000 description 5
- 239000011324 bead Substances 0.000 description 5
- 230000000977 initiatory effect Effects 0.000 description 5
- 239000003077 lignite Substances 0.000 description 5
- 230000035699 permeability Effects 0.000 description 5
- 230000002195 synergetic effect Effects 0.000 description 5
- NIPNSKYNPDTRPC-UHFFFAOYSA-N N-[2-oxo-2-(2,4,6,7-tetrahydrotriazolo[4,5-c]pyridin-5-yl)ethyl]-2-[[3-(trifluoromethoxy)phenyl]methylamino]pyrimidine-5-carboxamide Chemical compound O=C(CNC(=O)C=1C=NC(=NC=1)NCC1=CC(=CC=C1)OC(F)(F)F)N1CC2=C(CC1)NN=N2 NIPNSKYNPDTRPC-UHFFFAOYSA-N 0.000 description 4
- 229910001882 dioxygen Inorganic materials 0.000 description 4
- 239000000428 dust Substances 0.000 description 4
- 238000002474 experimental method Methods 0.000 description 4
- 235000019738 Limestone Nutrition 0.000 description 3
- 239000002802 bituminous coal Substances 0.000 description 3
- 239000000292 calcium oxide Substances 0.000 description 3
- 235000012255 calcium oxide Nutrition 0.000 description 3
- 229910002092 carbon dioxide Inorganic materials 0.000 description 3
- 230000008859 change Effects 0.000 description 3
- 238000001816 cooling Methods 0.000 description 3
- 238000011549 displacement method Methods 0.000 description 3
- 238000001035 drying Methods 0.000 description 3
- 238000001125 extrusion Methods 0.000 description 3
- 239000010419 fine particle Substances 0.000 description 3
- 239000000446 fuel Substances 0.000 description 3
- LIKBJVNGSGBSGK-UHFFFAOYSA-N iron(3+);oxygen(2-) Chemical compound [O-2].[O-2].[O-2].[Fe+3].[Fe+3] LIKBJVNGSGBSGK-UHFFFAOYSA-N 0.000 description 3
- 239000006028 limestone Substances 0.000 description 3
- 229910052757 nitrogen Inorganic materials 0.000 description 3
- 239000010450 olivine Substances 0.000 description 3
- 229910052609 olivine Inorganic materials 0.000 description 3
- 150000002926 oxygen Chemical class 0.000 description 3
- 238000007873 sieving Methods 0.000 description 3
- 239000003476 subbituminous coal Substances 0.000 description 3
- 238000002411 thermogravimetry Methods 0.000 description 3
- OHVLMTFVQDZYHP-UHFFFAOYSA-N 1-(2,4,6,7-tetrahydrotriazolo[4,5-c]pyridin-5-yl)-2-[4-[2-[[3-(trifluoromethoxy)phenyl]methylamino]pyrimidin-5-yl]piperazin-1-yl]ethanone Chemical compound N1N=NC=2CN(CCC=21)C(CN1CCN(CC1)C=1C=NC(=NC=1)NCC1=CC(=CC=C1)OC(F)(F)F)=O OHVLMTFVQDZYHP-UHFFFAOYSA-N 0.000 description 2
- YLZOPXRUQYQQID-UHFFFAOYSA-N 3-(2,4,6,7-tetrahydrotriazolo[4,5-c]pyridin-5-yl)-1-[4-[2-[[3-(trifluoromethoxy)phenyl]methylamino]pyrimidin-5-yl]piperazin-1-yl]propan-1-one Chemical compound N1N=NC=2CN(CCC=21)CCC(=O)N1CCN(CC1)C=1C=NC(=NC=1)NCC1=CC(=CC=C1)OC(F)(F)F YLZOPXRUQYQQID-UHFFFAOYSA-N 0.000 description 2
- 229920002261 Corn starch Polymers 0.000 description 2
- 230000004913 activation Effects 0.000 description 2
- 239000000654 additive Substances 0.000 description 2
- 239000011362 coarse particle Substances 0.000 description 2
- 239000008120 corn starch Substances 0.000 description 2
- 239000013078 crystal Substances 0.000 description 2
- 238000000280 densification Methods 0.000 description 2
- 239000006185 dispersion Substances 0.000 description 2
- 238000004868 gas analysis Methods 0.000 description 2
- 238000000691 measurement method Methods 0.000 description 2
- 239000000843 powder Substances 0.000 description 2
- 238000009725 powder blending Methods 0.000 description 2
- 230000002250 progressing effect Effects 0.000 description 2
- 230000001737 promoting effect Effects 0.000 description 2
- 238000000197 pyrolysis Methods 0.000 description 2
- 238000005070 sampling Methods 0.000 description 2
- 230000001629 suppression Effects 0.000 description 2
- HMUNWXXNJPVALC-UHFFFAOYSA-N 1-[4-[2-(2,3-dihydro-1H-inden-2-ylamino)pyrimidin-5-yl]piperazin-1-yl]-2-(2,4,6,7-tetrahydrotriazolo[4,5-c]pyridin-5-yl)ethanone Chemical compound C1C(CC2=CC=CC=C12)NC1=NC=C(C=N1)N1CCN(CC1)C(CN1CC2=C(CC1)NN=N2)=O HMUNWXXNJPVALC-UHFFFAOYSA-N 0.000 description 1
- VZSRBBMJRBPUNF-UHFFFAOYSA-N 2-(2,3-dihydro-1H-inden-2-ylamino)-N-[3-oxo-3-(2,4,6,7-tetrahydrotriazolo[4,5-c]pyridin-5-yl)propyl]pyrimidine-5-carboxamide Chemical compound C1C(CC2=CC=CC=C12)NC1=NC=C(C=N1)C(=O)NCCC(N1CC2=C(CC1)NN=N2)=O VZSRBBMJRBPUNF-UHFFFAOYSA-N 0.000 description 1
- LDXJRKWFNNFDSA-UHFFFAOYSA-N 2-(2,4,6,7-tetrahydrotriazolo[4,5-c]pyridin-5-yl)-1-[4-[2-[[3-(trifluoromethoxy)phenyl]methylamino]pyrimidin-5-yl]piperazin-1-yl]ethanone Chemical compound C1CN(CC2=NNN=C21)CC(=O)N3CCN(CC3)C4=CN=C(N=C4)NCC5=CC(=CC=C5)OC(F)(F)F LDXJRKWFNNFDSA-UHFFFAOYSA-N 0.000 description 1
- 239000004484 Briquette Substances 0.000 description 1
- 241000218645 Cedrus Species 0.000 description 1
- 241000196324 Embryophyta Species 0.000 description 1
- MKYBYDHXWVHEJW-UHFFFAOYSA-N N-[1-oxo-1-(2,4,6,7-tetrahydrotriazolo[4,5-c]pyridin-5-yl)propan-2-yl]-2-[[3-(trifluoromethoxy)phenyl]methylamino]pyrimidine-5-carboxamide Chemical compound O=C(C(C)NC(=O)C=1C=NC(=NC=1)NCC1=CC(=CC=C1)OC(F)(F)F)N1CC2=C(CC1)NN=N2 MKYBYDHXWVHEJW-UHFFFAOYSA-N 0.000 description 1
- 229910000805 Pig iron Inorganic materials 0.000 description 1
- 229920002472 Starch Polymers 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 230000000996 additive effect Effects 0.000 description 1
- 239000003513 alkali Substances 0.000 description 1
- 239000000440 bentonite Substances 0.000 description 1
- 229910000278 bentonite Inorganic materials 0.000 description 1
- SVPXDRXYRYOSEX-UHFFFAOYSA-N bentoquatam Chemical compound O.O=[Si]=O.O=[Al]O[Al]=O SVPXDRXYRYOSEX-UHFFFAOYSA-N 0.000 description 1
- 150000001721 carbon Chemical class 0.000 description 1
- 239000001569 carbon dioxide Substances 0.000 description 1
- 239000011818 carbonaceous material particle Substances 0.000 description 1
- 150000004649 carbonic acid derivatives Chemical class 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- 239000004568 cement Substances 0.000 description 1
- 239000011280 coal tar Substances 0.000 description 1
- 238000009833 condensation Methods 0.000 description 1
- 230000005494 condensation Effects 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 239000007771 core particle Substances 0.000 description 1
- 238000006731 degradation reaction Methods 0.000 description 1
- 229910001873 dinitrogen Inorganic materials 0.000 description 1
- 238000000921 elemental analysis Methods 0.000 description 1
- 239000012530 fluid Substances 0.000 description 1
- 230000006870 function Effects 0.000 description 1
- 239000005431 greenhouse gas Substances 0.000 description 1
- 238000000227 grinding Methods 0.000 description 1
- 239000010732 heat treating oil Substances 0.000 description 1
- 229910052595 hematite Inorganic materials 0.000 description 1
- 239000011019 hematite Substances 0.000 description 1
- SZVJSHCCFOBDDC-UHFFFAOYSA-N iron(II,III) oxide Inorganic materials O=[Fe]O[Fe]O[Fe]=O SZVJSHCCFOBDDC-UHFFFAOYSA-N 0.000 description 1
- 239000007791 liquid phase Substances 0.000 description 1
- 230000014759 maintenance of location Effects 0.000 description 1
- 238000004949 mass spectrometry Methods 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 238000012856 packing Methods 0.000 description 1
- 239000008188 pellet Substances 0.000 description 1
- 239000011301 petroleum pitch Substances 0.000 description 1
- 239000011148 porous material Substances 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 238000005096 rolling process Methods 0.000 description 1
- 238000010079 rubber tapping Methods 0.000 description 1
- 235000019698 starch Nutrition 0.000 description 1
- 239000008107 starch Substances 0.000 description 1
- 238000009628 steelmaking Methods 0.000 description 1
- 239000011269 tar Substances 0.000 description 1
- 238000012795 verification Methods 0.000 description 1
- 239000002699 waste material Substances 0.000 description 1
- 230000004580 weight loss Effects 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22B—PRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
- C22B1/00—Preliminary treatment of ores or scrap
- C22B1/14—Agglomerating; Briquetting; Binding; Granulating
- C22B1/16—Sintering; Agglomerating
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22B—PRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
- C22B1/00—Preliminary treatment of ores or scrap
- C22B1/14—Agglomerating; Briquetting; Binding; Granulating
- C22B1/16—Sintering; Agglomerating
- C22B1/20—Sintering; Agglomerating in sintering machines with movable grates
Definitions
- the main raw material for blast furnace iron production is sintered ore.
- a reignition sintering method (Patent Document 1 below) has been proposed as a method for producing sintered ore, in which two stages (twice) of ignition are performed to improve the sintering yield.
- the reignition sintering method is a technique in which, after the first ignition is completed, air is sucked in for a specified period of time in the air suction area, and then a second ignition (reignition) is performed.
- Patent Document 1 discloses a method for producing sintered ore (reignition sintering method) using a Dwight Lloyd (DL) type sintering machine, which includes multiple pallets arranged in succession in the traveling direction from upstream to downstream and into which sintering raw materials are charged, an igniter that ignites the raw material packed layer in the upstream pallet in the traveling direction from above, a wind box that draws in air from below the multiple pallets, a frame heating device that is arranged at a distance downstream of the igniter and frame heats the entire width of the upper surface of the raw material packed layer, and an air suction area formed between the igniter and the frame heating device, where air is drawn in by downward suction and no direct heating is performed from the upper surface. It describes that it is possible to improve both the yield and cold strength of sintered ore while maintaining reducibility.
- DL Dwight Lloyd
- Patent Document 2 discloses a method for producing sintered ore using a Dwight Lloyd sintering machine, in which a raw material packed layer is divided into a lower layer and a surface layer on each of multiple pallets that circulate in the traveling direction from upstream to downstream, and the concentration of solid combustibles in the lower layer is made lower than that of solid combustibles in the surface layer to produce sintered ore.
- the raw material packed layer in the upstream pallet in the traveling direction is ignited from above, and after the ignition part of the raw material packed layer moves downstream in the traveling direction, the ignition part is reignited. It describes how by increasing the concentration of solid combustibles in the surface layer while reducing unburned content so that it can be effectively used as heat, it is possible to increase the sintering speed and increase yield, thereby further improving productivity.
- Patent Document 3 discloses a technology that uses a Dwight Lloyd (DL) type sintering machine equipped with an igniter and a frame heating device that is installed at a distance downstream from the igniter and that flame heats the upper surface of the raw material packed bed, and that the mixed raw materials that are charged are those from which only part or all of the carbonaceous material has been removed, and then the removed carbonaceous material is added to the raw materials during or after granulation by adding moisture, and the carbonaceous material added later is char (coal char) obtained by carbonizing raw coal with a Roga index of 10 or less. It describes that by adding coal char later in the granulation process of the re-ignition sintering method, yield and productivity are improved.
- DL Dwight Lloyd
- Patent Document 4 discloses a method for producing sintered ore as a technology for improving the yield of sintering, in which a low-combustibility carbonaceous material consisting of at least one of coke powder and anthracite, and a highly-combustible carbonaceous material that has a lower combustion start temperature than the low-combustibility carbonaceous material, are used as agglomerating materials for the sintering raw materials, the carbon content of the highly-combustible carbonaceous material being 25% to 75% by mass relative to the carbon content of the agglomerating material, and at least one of the low-combustibility carbonaceous material and the highly-combustible carbonaceous material is added in the latter half of the granulation process of the sintering raw materials.
- Patent Document 5 discloses a technique for producing sintered ore in which pseudo-particles obtained by granulating sintering raw materials consisting of iron ore, auxiliary raw materials, return ore and solid carbonaceous material are segregated and charged onto the pallet of a sintering machine, and then fired while creating a carbon concentration difference in the height direction of the raw material layer.
- the technique blends oil palm kernel shell charcoal with an average particle size adjusted to 2.7 mm to 6.0 mm.
- oil palm kernel shell charcoal as the solid carbonaceous material for sintering, it is possible to reduce emissions of carbon dioxide, a greenhouse gas, and improve sintering productivity through appropriate operating techniques.
- oil palm kernel shell charcoal when blending oil palm kernel shell charcoal as part of the solid carbonaceous material in the sintering raw material, it is preferable to blend oil palm kernel shell charcoal whose average particle size is adjusted to be coarser within the range of 1.0 mm to 4.5 mm than the average particle size of the solid carbonaceous material, coke powder or anthracite.
- Patent Document 6 discloses a method for producing carbonaceous material for sintering, which calculates the Roga index of coal and produces carbonaceous material for sintering using coal with a Roga index of 10 or less, and a method for adding at least a part of a predetermined blend amount of carbonaceous material for sintering during or at the end of the granulation process of the raw material for sintering. It also discloses that it is possible to reduce the amount of NOx emissions generated when producing sintered ore.
- Highly combustible carbonaceous materials are carbonaceous materials with high combustibility, i.e., carbonaceous materials with a high combustion rate.
- Various measurement methods and results have already been published for the combustion rate of carbonaceous materials (aggregated materials), but there is a problem that the measurement results obtained will vary greatly unless the measurements are well-controlled. For this reason, the combustion start temperature (ignition temperature), which has a substantial correspondence with the combustion rate, is used as an index of the combustion rate.
- low combustible carbonaceous materials are carbonaceous materials with high combustion start temperatures such as coke and anthracite (carbonaceous materials with a combustion start temperature exceeding 550°C), and high combustible carbonaceous materials are carbonaceous materials with a lower combustion start temperature than low combustible carbonaceous materials (carbonaceous materials with a combustion start temperature of 550°C or less).
- the object of the present invention is to provide a method for producing sintered ore that improves the production rate when using the technology of the reignition sintering method.
- a method for producing sintered ore using a Dwight Lloyd sintering machine that includes an ignition furnace for performing an initial ignition and a re-ignition furnace that is disposed downstream of the ignition furnace at a predetermined interval for re-ignition and that advances sintering by downward suction,
- a low combustible carbonaceous material having a combustion start temperature of more than 550°C and a high combustible carbonaceous material having a combustion start temperature of 550°C or less are used as a coagulant for the blended raw materials
- the method for producing sintered ore, wherein the ratio of the particle size of the highly combustible carbonaceous material being 2.8 mm or more is 30 mass % or more and 80 mass % or less.
- the method for producing sintered ore described in [2] includes a carbonization process for producing wood carbonized material by dry distilling wood, a process for crushing the wood carbonized material as needed to produce wood carbonized material, and a process for producing an aggregate of wood carbonized material by kneading the wood carbonized material alone or with a binder, a compression process for compressing the aggregate to produce a compression molded product, and a process for crushing the compression molded product.
- [4] A method for producing sintered ore according to any one of [1] to [3], wherein the mass ratio of the carbon content of the highly combustible carbonaceous material to the carbon content of the coagulant is 25 mass% or more and 75 mass% or less.
- [5] The method for producing sintered ore according to [4], wherein the average particle size of the low combustibility carbonaceous material is in the range of 0.8 mm or more and 1.2 mm or less.
- a segregation strengthening type charging device is used as the charging device for the blended raw materials.
- [18] A method for producing sintered ore described in any one of [1] to [3], wherein a support member having a sinter cake support surface is suspended above a grate bar so as to be embedded in the raw material packed bed on a pallet into which the blended raw materials are loaded.
- the present invention uses a combination of low combustible carbonaceous material and highly combustible carbonaceous material as agglomeration materials, and the ratio of the highly combustible carbonaceous material with a particle size of 2.8 mm or more is set to 30 mass% or more and 80 mass% or less, thereby further improving the production rate.
- FIG. 1 is a schematic diagram showing an example of a DL-type sintering machine used in a sintered ore manufacturing method (re-ignition sintering method) according to a first embodiment.
- FIG. 1 is a schematic diagram showing an example of a segregation strengthening type charging device.
- 1 is a graph showing the particle size distribution of the sintering raw material in each layer (first layer to fifth layer) of a raw material packed bed in which segregation strengthening charging was performed.
- 1 is a graph showing the ratio of the average particle size of each layer (first layer to fifth layer) to the overall average particle size in a raw material packed bed in which segregation strengthening charging was carried out.
- FIG. 11 is a schematic diagram illustrating an example of air volume control in a DL-type sintering machine used in a sintered ore manufacturing method (re-ignition sintering method) according to a second embodiment.
- FIG. 11 is a schematic diagram illustrating an example of oxygen enrichment in a DL-type sintering machine used in a sintered ore manufacturing method (reignition sintering method) according to a third embodiment.
- FIG. 11 is a schematic diagram illustrating another example of oxygen enrichment in a DL-type sintering machine used in a sintered ore manufacturing method (reignition sintering method) according to the fourth embodiment.
- FIG. 13 is a schematic diagram illustrating an example of a sintering pallet used in the production of sintered ore using stand-supported sintering technology according to a fifth embodiment.
- 1 is a graph showing a relationship between a rate of particle size of +2.8 mm of highly combustible carbonaceous material and a productivity according to Example 1.
- 1 is a graph showing a relationship between a mass ratio of a carbon content of a highly combustible carbonaceous material to a carbon content of a coagulant and a productivity according to the first embodiment.
- FIG. 4 is a graph showing a relationship between an average particle size of low combustibility carbonaceous material (coke breeze) and productivity according to the first embodiment.
- 11 is a graph showing the relationship between the empty-cylinder air volume ratio and the productivity according to the second embodiment.
- 11 is a graph showing the relationship between oxygen concentration and productivity according to the third embodiment.
- 11 is a graph showing the relationship between oxygen concentration and productivity in Example 4 (Test 1).
- 1 is a graph showing the relationship between oxygen enrichment time and productivity in Example 4 (Test 2).
- 13 is a graph showing the relationship between separation time and productivity in Example 5 (highly combustible carbonaceous material blending: 50 mass % (mass ratio of carbon)).
- 11 is a graph showing the relationship between separation time and productivity in Example 5 (highly combustible carbonaceous material blending 0 mass%).
- DL Dwight Lloyd
- a reigniter that performs the second ignition is provided at a predetermined distance (corresponding to the "separation distance” described later) downstream in the pallet traveling direction of the igniter that performs the first ignition.
- the reigniter is a flame heating device that heats the upper surface (surface) of the raw material packed bed after the first ignition is completed with a flame.
- FIG. 1 is a schematic diagram showing an example of a Dwight Lloyd (DL) type sintering machine used in the re-ignition sintering method.
- the ore supply side (left side of FIG. 1) is the upstream side
- the ore discharge side (right side of FIG. 1) is the downstream side based on the pallet traveling direction 5x.
- the DL type sintering machine 101 is provided with a re-ignition furnace 4 at a predetermined interval (separation distance) downstream of the ignition furnace 3.
- the ignition furnace 3 has an igniter 31 that performs the first (initial) ignition (initial ignition) and a hood 32 that covers it.
- the re-ignition furnace 4 has a re-igniter 41 that performs the second (second) ignition (re-ignition) and a hood 42 that covers it.
- the ignition furnace 3 is an ignition furnace equipped with a burner or the like used in the one-stage ignition sintering method, and the re-ignition furnace 4 can be the same as the ignition furnace used in the one-stage ignition sintering method.
- the hood 32 of the ignition furnace 3 and the hood 42 of the re-ignition furnace 4 are independent of each other, and an air suction area 7 is provided between the ignition furnace 3 and the re-ignition furnace 4, which are spaced a predetermined distance apart in the pallet travel direction 5x.
- the atmospheric suction region 7 is a section (area) where the upper surface of the raw material packed bed 10 in the pallet is not heated by a burner or the like, and the atmosphere (air) is sucked in by downward suction 6x and supplied into the raw material packed bed 10.
- the section between the partition wall 32a on the downstream side of the hood 32 of the ignition furnace 3 and the partition wall 42a on the upstream side of the hood 42 of the re-ignition furnace 4 is the atmospheric suction region 7.
- the separation distance the distance in the pallet traveling direction 5x between the partition walls 32a and 42a, i.e., the distance in the pallet traveling direction 5x in the atmospheric suction region 7, is referred to as the separation distance
- the time required for the pallet (multiple connected pallet carts moving on a caterpillar track, not shown) of the DL-type sintering machine 101 to pass this separation distance (atmospheric suction region passing time) is referred to as the separation time.
- the raw material packed bed 10 refers to a layer of mixed raw materials formed on a pallet, regardless of whether ignition (including initial ignition) or re-ignition has occurred, and includes the combustion zone 10A where the sintering reaction is progressing due to ignition, and the sinter cake 10B where the sintering reaction has been completed.
- the raw material packed bed 10 after initial ignition has been performed (after firing has started) is also referred to as the sintered layer.
- the lower limit (minimum value) of the above-mentioned optimum range of the separation time is the limit at which the expansion of the combustion zone 10A can be sufficiently obtained
- the upper limit (maximum value) of the optimum range of the separation time is governed by the cooling of the upper layer of the sintered layer after the initial ignition. Therefore, the optimum range of the separation time varies depending on the embodiment (first embodiment to fifth embodiment) (details will be described later), and can be in the range of 0.5 minutes to 6 minutes. If it is less than the lower limit of the optimum range, sufficient oxygen cannot be supplied to the combustion zone 10A of the upper layer of the sintered layer, and the expansion of the combustion zone 10A is suppressed.
- the separation distance is calculated by multiplying the separation time by the transport speed (pallet speed) of the raw material packed layer 10 by the pallet. If a pallet speed of 3 m/min is adopted for a standard commercial sintering machine, the optimum range of the separation distance is 1.5 m to 18 m. Of course, the optimum separation distance also changes depending on the pallet speed. Therefore, the distance varies for each sintering machine.
- the reignition sintering method is a technique for producing sintered ore by adding a reignition process to the one-stage ignition sintering method (described in detail later).
- sintering raw material iron raw material such as iron ore (powder), iron-containing miscellaneous raw material such as scale and iron-making dust, MgO-containing auxiliary raw material such as olivine, CaO-containing auxiliary raw material such as limestone, return ore, and agglomeration material (carbon material) serving as fuel for sintering (agglomeration) are appropriately used.
- iron raw material such as iron ore (powder)
- iron-containing miscellaneous raw material such as scale and iron-making dust
- MgO-containing auxiliary raw material such as olivine
- CaO-containing auxiliary raw material such as limestone, return ore
- agglomeration material carbon material serving as fuel for sintering (agglomeration)
- each sintering raw material is stored in each raw material tank (1 1 to 1 x ) of the raw material tank group 1, and is cut out at a predetermined ratio and mixed.
- the mixed raw material (mixed raw material) is charged into a drum mixer 2 and granulated to produce pseudo particles.
- the granulated mixed raw material (hereinafter, the mixed raw material after granulation is also called the mixed raw material granules) is charged from a mixed raw material surge hopper 81 onto a pallet covered with bedding ore (not shown), forming a raw material packed bed 10.
- the raw material packed bed 10 moves continuously in the pallet travel direction 5x as the pallet moves.
- the frame of the igniter 31 ignites the carbonaceous material on the surface of the raw material packed bed 10, and sintering of the raw material packed bed 10 begins.
- a downward suction device 6 (see Figure 6) is provided below the pallet moving in the pallet travel direction 5x, and sucks in the atmosphere (air) from below the pallet. This downward suction 6x supplies oxygen into the raw material packed bed 10, and the combustion of the condensed material in the raw material packed bed 10 (combustion zone 10A) progresses from the top to the bottom, and the raw material packed bed 10 is sequentially fired by the combustion heat of the condensed material.
- the raw material packed bed 10 passes through the air suction area 7 and moves to below the reignition furnace 4, the raw material packed bed 10 is reignited by the frame of the reigniter 41.
- the sinter cake 10B obtained by sintering the raw material packed bed 10 is discharged at the downstream end of the DL-type sintering machine 101 in the pallet travel direction 5x, and is sized by crushing, sieving, etc., so that sintered ore of a particle size suitable for blast furnace charging becomes the raw material for blast furnace iron production.
- the raw material packed bed 10 is reignited by the reignition furnace 4 after passing through the atmospheric suction region 7, i.e., after a predetermined time interval (corresponding to the above-mentioned separation time).
- a predetermined time interval corresponding to the above-mentioned separation time.
- heating from above, i.e., combustion by a flame burner such as an igniter, is not performed, so sufficient oxygen is supplied to the raw material packed bed 10, and the combustion of the condensed material in the combustion zone 10A progresses.
- the atmospheric suction region 7 is provided between the ignition furnace 3 and the reignition furnace 4, the combustion of the condensed material progresses further down due to the increase in the superficial tower wind speed.
- the thickness of the combustion zone 10A expands in the upper part of the raw material packed bed 10. Then, after the thickness of the combustion zone 10A expands in the atmospheric suction region 7, the upper surface of the raw material packed bed 10 is reignited by the frame of the reignition furnace 4 provided downstream of the atmospheric suction region 7.
- the separation time is the time required for the pallet to move through the air suction area 7, that is, the time from the end of the initial ignition to the execution of reignition, and in this embodiment, it can be, for example, 0.5 minutes or more and 3.5 minutes or less. Furthermore, by promoting combustion by using highly combustible carbonaceous material in combination, it is preferable that the separation time be 30 seconds or more and 2 minutes or less.
- a charging device equipped with a segregation mechanism is used when charging the blended raw material granules onto the pallet, and an inclined flat plate chute type charging device 8 shown in FIG. 1 is usually used.
- the inclined flat plate chute type charging device 8 is equipped with a blended raw material surge hopper 81 in which the blended raw material granules are stored, and an inclined flat plate chute 82 that is installed with a downward inclination in the opposite direction to the pallet advancement direction 5x.
- the blended raw material granules in the blended raw material surge hopper 81 are charged onto the pallet using the inclined flat plate chute 82, forming a slope 10x on the upstream side of the raw material packed bed 10.
- particle size segregation occurs in the layer thickness (layer height) direction of the raw material packed bed 10. Specifically, small particle sizes tend to be charged into the upper layer side of the raw material packed bed 10, and large particle sizes tend to be charged into the lower layer side of the raw material packed bed 10.
- the granulation process of the blended raw materials described above aims to ensure the breathability of the raw material packed bed 10.
- fine raw materials with a particle size of less than 0.25 mm which are the main target of the granulation process, form pseudo-particles by adhering to the periphery of particles of 1.00 mm or more as core particles, but intermediate particle sizes of 0.25 mm or more and less than 1.00 mm are difficult to granulate and do not easily become pseudo-particles. Therefore, even when granulation is performed, it is possible to adjust the distribution of the blended coagulant in the height direction of the raw material packed bed by adjusting the particle size of the coagulant and charging it using the inclined flat plate chute type charging device 8 described above.
- the coke or anthracite is usually used as the coagulant.
- Sintered coke is made by crushing coke of a particle size unsuitable for blast furnace use (usually 40 mm or less) to a particle size of less than 10 mm suitable for sintering during the process of manufacturing blast furnace coke. However, since sieving may not be done after crushing, some particles of 10 mm or more may remain. Sintered coke is also called breeze coke, as opposed to lump coke for blast furnace use.
- Anthracite is one of the classifications given to coal (lignite, bituminous coal, anthracite), and is the most carbonized coal.
- Anthracite is also crushed to a particle size of less than 10 mm, just like breeze coke.
- the inventors focused on the following two points in the above-mentioned reignition sintering method.
- the first point is that by using a highly combustible carbonaceous material in addition to a low combustible carbonaceous material as an agglomeration material, and by coarsening the highly combustible carbonaceous material and distributing it unevenly in the lower layer of the raw material packed bed 10, the effect of reducing the air flow resistance due to the coarsening can be enjoyed from the start to the end of sintering.
- the second point is that if the highly combustible carbonaceous material is used as the target for coarsening, the high combustibility of the material reduces the impact of reduced sinter ore production caused by the delay in the end of combustion due to the coarsening.
- the inventors focused on these two points and conducted extensive research, leading to the completion of the present invention.
- the inventors also considered influencing factors applicable to the present invention (type of highly combustible carbonaceous material, particle size of low combustible carbonaceous material, segregation charging method, etc.).
- the present invention is a method for producing sintered ore using a Dwight Lloyd sintering machine that is equipped with an ignition furnace for initial ignition and a re-ignition furnace that is arranged downstream of the ignition furnace at a predetermined interval for re-ignition, and that advances sintering by downward suction.
- the method uses low combustible carbonaceous material with a combustion start temperature exceeding 550°C and highly combustible carbonaceous material with a combustion start temperature of 550°C or less as the coagulant of the blended raw materials, and the ratio of the highly combustible carbonaceous material with a particle size of 2.8 mm or more is 30% by mass to 80% by mass.
- the initial ignition refers to the initial ignition of the coagulant on the surface of the raw material packed bed 10 loaded in the pallet (first ignition).
- the re-ignition refers to the re-ignition after the completion of the initial ignition (second ignition).
- the downward suction refers to the sucking in of the atmosphere (air) from below the pallet, sucking the oxygen-containing gas above the raw material packed bed 10 into the raw material packed bed 10, and supplying oxygen into the raw material packed bed 10.
- Low combustibility carbonaceous materials and high combustibility carbonaceous materials The aggregate (carbonaceous material) of the sintering raw material is classified into low combustibility carbonaceous material and high combustibility carbonaceous material.
- Low combustibility carbonaceous materials are, for example, coke and anthracite, and high combustibility carbonaceous materials are carbonaceous materials with higher combustibility (low combustion initiation temperature) than low combustibility carbonaceous materials.
- low combustibility carbonaceous materials and high combustibility carbonaceous materials are classified based on the combustion initiation temperature obtained by differential thermogravimetry analysis.
- Low combustibility carbonaceous materials are carbonaceous materials with a combustion initiation temperature of more than 550°C, and high combustibility carbonaceous materials are carbonaceous materials with a combustion initiation temperature of 550°C or less.
- the combustion initiation temperature is defined as the temperature at which a rapid weight loss begins based on a temperature-weight change curve obtained by thermogravimetry (TG) in an air stream using a differential thermogravimetry-mass spectrometry (TG-DTA/MS).
- Highly combustible carbonaceous materials include, for example, coal char and biomass charcoal (oil palm kernel shell charcoal and wood charcoal produced by carbonization of wood).
- the combustion start temperatures (ignition temperatures) of coke and anthracite, which are low-combustible carbonaceous materials, are approximately 670°C and 690°C, respectively.
- the combustion start temperatures of highly combustible carbonaceous materials are low.
- the combustion start temperatures of coal char sini-coke, lignite char, and subbituminous coal char
- coal char sini-coke, lignite char, and subbituminous coal char
- the combustion start temperatures of coal char are 430°C to 550°C
- that of oil palm kernel shell charcoal is approximately 470°C
- wood charcoal is approximately 400°C to 450°C.
- Coal char and biomass charcoal have roughly the same ignition temperature, and therefore have similar combustibility.
- compressed molded products made primarily from wood charcoal, which is biomass charcoal (biochar) are also highly combustible carbonaceous materials, and crushed products of these can also be used.
- the combustion start temperature of this compressed material is low, between 250°C and 450°C, and the same is true for crushed compressed material. It is known that the combustion speed of highly combustible carbonaceous materials is 1.03 to 30.00 times that of coke.
- coal char refers to a carbonaceous material (char) produced by carbonizing raw coal such as low-caking bituminous coal, lignite, and subbituminous coal at a temperature between 700°C and 900°C.
- Carbonaceous materials produced by carbonizing low-caking bituminous coal, lignite, and subbituminous coal are called semi-coke, lignite char, and subbituminous char, respectively.
- These carbonaceous materials are produced by carbonizing the raw coal (including blended coal) in a pyrolysis furnace (e.g., a rotary kiln).
- Biomass charcoal is a carbonaceous material produced by heat-treating (dry distilling) biological resources (biomass) such as oil palm kernel shells and wood.
- Oil palm kernel shell charcoal (PKS charcoal) is a solid charcoal produced by heat-treating (dry distilling) oil palm kernel shells. Note that the method for producing PKS charcoal can be carried out by referring to documents such as the above-mentioned Patent Document 5, so a detailed explanation will be omitted here.
- the sintering raw material may be a pulverized compressed product made mainly of wood charcoal, which is biomass charcoal (biochar).
- This compressed product is a compressed product (hereinafter, for convenience, simply referred to as a charcoal compressed product) obtained by compressing an aggregate of wood charcoal, and the pulverized product (hereinafter, for convenience, simply referred to as a charcoal compressed product) is used as the pulverized material.
- a charcoal compressed product a compressed product obtained by compressing an aggregate of wood charcoal
- pulverized product hereinafter, for convenience, simply referred to as a charcoal compressed product
- wood charcoal refers to a charcoal obtained by heat treatment (dry distillation) of "wood”
- the above “wood” refers to the trunks and branches of trees, or materials made from these, including, for example, construction waste.
- aggregates of wood charcoal refers to aggregates of wood charcoal particles, or aggregates of wood charcoal particles bonded with a binder, and the size and shape of the wood charcoal particles are not limited.
- Molded by compression refers to compression during molding, and includes not only compression molding, but also extrusion molding in which pressure is applied when extruding, for example.
- the “main raw material” is the raw material that is used in the largest proportion (mass ratio) of all solid raw materials.
- crushing refers to reducing the particle size using a crusher (e.g., rod mill, hammer crusher, roll crusher, super sander, jaw crusher, fret mill, etc.).
- the above-mentioned pulverized compressed wood charcoal is produced as follows. First, wood material is obtained and carbonized to produce charcoal (charcoal production process). Next, the produced charcoal is crushed as necessary to produce charcoal particles, and these charcoal particles are kneaded alone or with a binder to produce an aggregate of charcoal (hereinafter referred to as charcoal aggregate) (aggregate production process). The binder is used to form a strong aggregate. Next, the charcoal aggregate is compressed to produce a compressed product (compression process). Then, the charcoal compression product is crushed to produce a crushed product of charcoal (crushed compressed charcoal) (compressed product crushing process).
- wood charcoal is produced using wood as the material in a carbonization device (external combustion rotary kiln, internal combustion rotary kiln, fluidized bed reactor, moving bed reactor (shaft furnace), etc.) with appropriate settings for carbonization conditions (temperature, time, etc.). It is preferable that the volatile content of the produced wood charcoal (measured in accordance with JIS M8812:2006) is 15 mass% or less. For example, in the case of cedar wood chips, the volatile content of the charcoal (wood charcoal) can be reduced to 4.8 mass% by carbonizing at 800°C for one hour.
- the wood charcoal produced in the charcoal manufacturing process is crushed as necessary (for example, to an average particle size of 1 mm or less).
- the wood charcoal particles are mixed alone, with a binder, with a binder and water, or with a binder, water, and additives to produce a wood charcoal aggregate.
- Corn starch (starch), bentonite, coal tar, biomass tar, petroleum pitch, cement, etc. are used as binders, and additives such as alkali and acid are added to some binders (such as corn starch) to produce strong molded products.
- a device for example, an extruder
- the amount of binder added is preferably 1% by mass or more and 10% by mass or less (excluding numbers) when the wood charcoal is 100% by mass.
- the wood carbonized aggregate (mixture) produced in the aggregate production process is compressed and molded to produce a compressed and molded product, a charcoal compressed product.
- the compression molding method may be a compression molding machine or an extrusion molding machine, and for example, a roll press method using a roll rotary compression molding machine (ring die type, flat die type, etc.) or a tableting method using a two-axis compression molding machine (screw type extrusion molding machine) can be used.
- the shape of the charcoal compressed product is arbitrary, and it can be molded into, for example, a pellet (cylindrical) or a briquette (pillow shape).
- the compressed charcoal produced in the compression process is crushed by a crusher to produce a crushed product of the compressed charcoal (crushed compressed charcoal).
- crushers include rod mills, hammer crushers, roll crushers, super sanders, jaw crushers, and fret mills.
- the material is sieved using a sieve conforming to JIS Z8801-1:2019, for example, and material of a specified particle size is used as the highly combustible carbonaceous material.
- the crushed material has a particle size of less than 10 mm (sieve size of 10 mm), more preferably less than 5 mm (sieve size of 5 mm).
- a compressed charcoal product having the following properties.
- the volatile content and apparent density of the compressed charcoal product do not change before and after the crushing process, and the crushed product of the compressed charcoal product has similar properties.
- the volatile content of the charcoal compression molding is preferably 20% by mass or less.
- the volatile content of the agglomeration material is controlled to be a specified value (for example, 10% by mass) or less in order to prevent failure of the exhaust gas electric dust collector that collects the exhaust gas generated during manufacturing, so it is preferable to specify an upper limit for the volatile content of the charcoal compression molding.
- the increase in the volatile content of the charcoal compression molding relative to the volatile content of the wood carbonized material is due to the use of a binder in the aggregate manufacturing process.
- the charcoal compression molding (highly combustible carbonaceous material) is used in combination with a low-combustible carbonaceous material (coke powder, anthracite).
- a low-combustible carbonaceous material coke powder, anthracite
- the volatile content of the coke powder in particular is often much lower than the above-mentioned specified value (10% by mass).
- the volatile content of anthracite is also low, around 5% by mass.
- the upper limit for the volatile content of the charcoal compression molding is set to 20% by mass, which is higher than 10% by mass. By increasing the upper limit, it becomes possible to use materials with high volatile content as materials for the compressed charcoal.
- the apparent density of the charcoal compression molded product is preferably 0.6 g/cm 3 or more, more preferably 0.7 g/cm 3 or more.
- the apparent density is measured by a bead volume displacement method.
- the bead volume displacement method is a measurement method adopted by Micromeritics, and is a volume displacement method using DryFlo (pseudo fluid), which is a bead with high fluidity, as a measurement sample. Specifically, the volume of only the beads placed in the sample chamber is measured first, and then the sample is placed in the layer of beads in the sample chamber and the volume is measured, and the volume including the pores and cavities of the measurement sample is calculated from the difference between the two volumes.
- the apparent density is the value obtained by dividing the mass of the measurement sample by the calculated volume.
- the apparent density of the charcoal compression molded product 0.6 g/cm 3 or more, the atmospheric temperature in the vicinity of the combustion of the agglomeration material increases when producing sintered ore, so that the sintering productivity can be improved through the improvement of the yield.
- the apparent density exceeds 1.3 g/cm 3 , the burning speed of the charcoal compression molded product decreases, and the sintering speed decreases.
- the particle size of the highly combustible carbonaceous material is determined as follows. After drying the highly combustible carbonaceous material at 105°C for 2 hours or more, the material is shaken by head tapping for 5 minutes using a rotary tap shaker equipped with a sieve with a mesh size of 2.8 mm as specified in JIS Z8801-1:2019, and the ratio of particles with a particle size of 2.8 mm or more on the sieve is examined. In the present invention, a highly combustible carbonaceous material having a particle size of 2.8 mm or more of 30% by mass to 80% by mass is used.
- the ratio of particle sizes of 2.8 mm or more is less than 30% by mass, the yield rate decreases and the productivity decreases. Also, if the ratio of particle sizes of 2.8 mm or more exceeds 80% by mass, the productivity decreases due to uneven sintering.
- the permeability of the lower layer can be improved by coarsening the highly combustible carbonaceous material and distributing it unevenly in the lower layer.
- the improved permeability of the lower layer increases the sintering speed during sintering, and as a result, the productivity is improved.
- the only coarsening material is the highly combustible carbonaceous material, and since the highly combustible carbonaceous material has a high combustion speed, the effect of the decrease in the combustion speed due to the coarsening is small. Therefore, the decrease in the sintering speed is unlikely to occur.
- the cooling rate of the combustion zone 10A increases due to the improvement in the sintering speed.
- the hematite (Fe 2 O 3 ) particles crystallized from the liquid phase generated in the high-temperature sintering reaction become finer.
- the crystals expand when hematite is reduced to magnetite (Fe 3 O 4 ).
- the cracks generated cause the sintering to break down.
- This powdering phenomenon is reduction disintegration, and here, as described above, the amount of expansion of the crystals is reduced by the fineness of the hematite (Fe 2 O 3 ) particles, so that the effect of suppressing reduction disintegration of the sintered ore is obtained.
- pulverized compressed wood charcoal As the highly combustible carbonaceous material.
- the reason for this is that the wood charcoal or pulverized wood charcoal is compressed and molded once, and then pulverized for use, rather than using the wood charcoal or pulverized wood charcoal as is, because the apparent density increases and the product yield improves, resulting in an improved productivity.
- the wood charcoal or pulverized wood charcoal has excellent combustibility because it is a porous body (generally with an apparent density of less than 0.6 g/ cm3 ), but the sintering speed increases too much, which in turn reduces the yield and productivity of sintered ore.
- the mass ratio of the carbon content of the highly combustible carbonaceous material to the carbon content of the entire aggregate is preferably 25% by mass or more and 75% by mass or less.
- the mass ratio of the carbon content of the highly combustible carbonaceous material to the carbon content of the entire aggregate is adjusted based on the carbon content of each carbonaceous material (low combustible carbonaceous material, high combustible carbonaceous material) from industrial analysis of the low combustible carbonaceous material and the high combustible carbonaceous material.
- the blending ratio of the highly combustible carbonaceous material is less than 25% by mass, the effect of improving the sintering speed (combustion front descent speed), which is the blending effect of the highly combustible carbonaceous material, cannot be obtained, and if the blending ratio of the highly combustible carbonaceous material exceeds 75% by mass, the product yield is thought to decrease due to the high-speed combustion specific to the highly combustible carbonaceous material.
- the average particle size of the low combustibility carbonaceous material is in the range of 0.8 mm to 1.2 mm.
- the average particle size of the low combustibility carbonaceous material is in the range of 0.8 mm to 1.2 mm.
- the average particle size of low-combustible carbonaceous materials is determined as follows. After drying low-combustible carbonaceous materials at 105°C for at least 2 hours, they are classified using five sieves with different mesh sizes (mesh opening size) by shaking with a rotary tap shaker for 5 minutes, and the sample mass wi of each particle size category i is measured. As shown in Table 1, the particle sizes (0.5 mm, 1.0 mm, 2.8 mm, 4.76 mm, 10.0 mm) that are the boundary values of the particle size categories are the mesh sizes of the sieves used for classification. For example, particle size category 2 "0.5-1.0" is an oversieve when sieved using a sieve with 0.5 mm mesh, and an undersieve when sieved using a sieve with 1.0 mm mesh.
- the average particle size (mm) is an arithmetic mean diameter calculated by weighting the representative value x ( ⁇ median) of the particle size division by the mass fraction (mass ratio) of each particle size division, as shown in the following formula (1).
- Average particle size ⁇ w i x i / ⁇ w i ... formula (1)
- x i Representative value of particle size division i
- w i Sample mass of particle size division i
- the present invention it is also preferable to use a segregation-strengthened charging device instead of the normal charging device 8.
- a segregation-strengthened charging device instead of the normal charging device 8.
- the mixed raw material granules are charged onto the pallet using the segregation-strengthened charging device, it is also preferable to charge the raw material so that when the raw material packed bed after charging is divided into five equal parts in the layer thickness (layer height) direction, the average particle size of the raw material in the top layer of the five divided raw material packed beds is 0.3 to 0.5 times the average particle size of the raw material in the bottom layer.
- the carbon ratio of the top layer of the five divided raw material packed beds is 1.10 to 1.16 times the carbon ratio of the entire raw material packed bed.
- a segregation-strengthened charging device is a charging device that can increase particle size segregation in the thickness direction of the raw material packed bed compared to the inclined flat chute 82 shown in Figure 1.
- Examples include the slit bar type charging device shown in Figure 2 (Otone et al., Materials and Processes 10 (1997), p. 191, The Iron and Steel Institute of Japan), the slit wire type charging device (Takai et al., Materials and Processes 6 (1993), p. 916), the ISF (Intensified Sifting Feeder) type charging device, which is a rectified dispersion type (Nagai et al., Materials and Processes 29 (2016), p.
- the sieve member of the slit bar type charging device 8A is a wire 82A (or rod) parallel to the pallet width direction, which is arranged so that the intervals between the wires become wider from the top to the bottom of the pallet (Yoshinaga et al., Iron and Steel (1987) Vol. 73, Lecture Summary of the 114th Lecture Meeting of the Iron and Steel Institute of Japan, S846).
- the wires may be arranged so that they are parallel to the top and bottom of the pallet.
- the sieve member of the rectifying dispersion type charging device is configured by arranging a large number of bars along the raw material flow, and installing them so that the step between adjacent bars becomes larger from upstream to downstream (Inazumi et al., Iron and Steel 77 (1991), P. 63-70).
- the configuration of each segregation strengthening type charging device is described in the above-mentioned documents, and can be implemented by referring to each document, so a detailed explanation is omitted here.
- the raw material blend granules were charged on top of the bottom lid placed on the bedding layer, and then a cylindrical collection tube was driven directly above the bottom lid and closed with the bottom lid to collect the samples.
- a cylindrical collection tube was driven directly above the bottom lid and closed with the bottom lid to collect the samples.
- the collected samples were divided into five equal-spaced sections in the height direction of the raw material packed bed (first to fifth layers from the top), and each section was subjected to analysis.
- Table 2 shows the analysis results for each layer (first to fifth layers). As shown in Table 2, from the top (first layer) side, the masses of each layer were 4.30 kg, 5.16 kg, 4.88 kg, 4.62 kg, and 5.33 kg, and the mass ratios were 18%, 21%, 20%, 19%, and 22%, respectively, and the recovered masses in each layer were almost equal.
- the mass fractions in Table 2 were obtained by taking 300 g of the blended raw material granules from each layer (first to fifth layers), drying them at 105°C for more than two hours, shaking them for 15 seconds using a rotary tap shaker without hitting the head using the sieves with the mesh sizes shown on the horizontal axis (particle size classification), and classifying them. This operation allows the particle size distribution of the sintered raw material before granulation to be understood, and the mass ratio of each particle size class of the sintered raw material in each layer is shown as the abundance ratio (mass%).
- the average particle size of each layer in Table 2 is an arithmetic mean diameter calculated in a manner similar to the above formula (1) based on the representative value of the particle size class and the mass fraction of each particle size class.
- the particle size class "+8.0” is the oversize when sieved with a sieve with 8.0 mm mesh.
- the particle size class "up to 4.0” is the oversize when sieved with a sieve with 4.0 mm mesh and is the undersize when sieved with a sieve with 8.0 mm mesh indicated by the particle size class "+8.0" in the left column, and the same applies to the particle size classes "up to 2.0", “up to 1.0”, “up to 0.5", “up to 0.25", and "up to 0.125”.
- the particle size category “-0.125” is the size that falls below the sieve size when sieved through a sieve with 0.125 mm mesh.
- Figures 3 to 5 are graphs created based on Table 2.
- Figure 3 shows the particle size distribution of the sintered raw material before granulation in each layer (1st to 5th layers) of the raw material packed bed.
- Figure 4 shows the ratio of the average particle size of each layer (1st to 5th layers) to the overall average particle size.
- Figure 5 shows the carbon concentration distribution in each layer (1st to 5th layers) of the raw material packed bed. Note that this carbon concentration is the free carbon value involved in combustion, excluding carbon contained in carbonates, etc., and is calculated based on the combustion-infrared absorption method (JIS G1211-3:2018).
- the lower layer had a higher mass fraction of coarse-grained sintered raw material, i.e., the "+8.0 mm" particle size category (particle size of 8.0 mm or more) and the "up to 4.0 mm” particle size category (particle size of 4.0 mm or more but less than 8.0 mm), compared to the upper layer.
- the average particle size of the raw material mixture in the bottom layer (fifth layer) was in the range of 3 mm to 5 mm
- the average particle size of the top layer (first layer) was 2 mm or less.
- the average particle size of each layer there was a difference in the average particle size of each layer, with the average particle size of the first layer being 0.4 times that of the fifth layer.
- the carbon concentration as shown in Figure 5, the top layer (first layer) had the highest carbon concentration at 5.06 mass%, which was 1.13 times the average carbon concentration of all layers.
- the ratio of highly combustible carbonaceous materials with a particle size of 2.8 mm or more is set to 30% by mass or more to make the mixture coarse, and the average particle size of low combustible carbonaceous materials is set to a range of 0.8 mm to 1.2 mm.
- the aggregates with a particle size of 0.25 mm to 1.00 mm are segregated in the upper layer, which becomes weak after sintering, and the carbon concentration is concentrated.
- the heat required for the sintering reaction is supplied to the upper layer, which promotes the improvement of the product yield and also improves the productivity.
- the ratio of highly combustible carbonaceous materials with a particle size of 2.8 mm or more increases too much, the number of aggregate particles decreases, causing temperature unevenness in the raw material packed bed, so it is preferable to set the upper limit of the ratio of particle sizes of 2.8 mm or more to 80% by mass.
- segregation of coarse and fine particles is evident because a segregation-strengthening charging device was used, but it is believed that similar segregation of coarse and fine particles would occur in segregation charging using a normal inclined flat chute.
- the present invention it is also preferable to add only the low combustible carbonaceous material, which is a part of the sintering raw material, in its entirety in the latter half of the granulation process.
- the "later half of the granulation process” refers to the latter half of the time period when the "total granulation time” described later is divided into two parts.
- the sintering raw material excluding the low combustible carbonaceous material, which is cut out from the raw material tank, is first put into the granulator, mixed, and granulation is started after humidity adjustment (hereinafter, the granulated sintering raw material excluding the low combustible carbonaceous material is referred to as the pre-granulated material).
- the low combustible carbonaceous material hereinafter, also referred to as the post-added coagulant
- the blended raw material granulated material is granulated material.
- the post-added coagulant is coated on the pre-granulated material, that is, it is not included in the pre-granulated material, but exists as an independent particle attached or not attached to the surface layer of the pre-granulated material.
- the blended raw material granules coated with the post-addition coagulant it is possible to adjust the timing of the start of combustion of the post-addition coagulant in the sintering process.
- the post-addition in the granulation process is carried out, for example, as follows.
- a piston-flow type cylindrical granulator with a central axis tilted downward toward the downstream side is used for granulation, and a small transport conveyor is inserted from the downstream outlet to a specified position inside the granulator.
- the pre-post-addition sintering raw materials are added from the upstream inlet, the pre-post-addition sintering raw materials are mixed and then water is added, and they move downstream while being granulated.
- the post-addition coagulant is carried on the transport conveyor from the downstream outlet of the granulator to the internal upstream side.
- the post-addition coagulant is added at a specified position to the pre-granulated material that has been granulated while moving from the upstream side inside the granulator, and all the sintering raw materials (pre-granulated material and post-addition coagulant) are further granulated and discharged from the downstream outlet as mixed raw material granules.
- the granulation time of the pre-addition sintering raw materials before adding the post-addition coagulant is 80% or more and 96% or less of the total granulation time of the sintering raw materials, that is, the timing of the post-addition is within the range of 80% to 96% of the total granulation time of the sintering raw materials in the granulation process. For example, if the total granulation time is 240 seconds, the mixed raw materials (pre-addition sintering raw materials) excluding the low combustible carbonaceous material may be granulated for 225 seconds, and then the low combustible carbonaceous material may be added and granulated for 15 seconds.
- the post-addition position can be determined by adjusting the granulation time to correspond to the longitudinal distance of the drum mixer.
- the overall combustion speed increases and the production rate is further improved.
- the productivity is improved by using a predetermined amount (30% by mass or more and 80% by mass or less) of coarse-grained highly combustible carbonaceous material.
- the blended raw material contains highly combustible carbonaceous material with a particle size of less than 2.8 mm, the highly combustible carbonaceous material (particularly fine particles) is present in the upper layer of the raw material packed bed.
- the temperature drop in the upper layer of the sintered layer (from the surface to a depth of about 100 mm) in the section from the first ignition to the start of reignition is fast, which reduces the yield and reduces the effect of improving the productivity.
- Air volume control technology 6 is a schematic diagram for explaining an example of air volume control in a DL-type sintering machine used in the reignition sintering method.
- a downward suction device 6 (not shown in FIG. 1) is provided under the pallet of the DL-type sintering machine 101 to cause the sintering reaction to proceed downward.
- the downward suction device 6 controls the downward suction air volume in the sintered strand direction (the same as the pallet traveling direction 5x).
- the downward suction device 6 includes a plurality of wind boxes 61 and wind legs 62 arranged in series in the sintered strand direction below the raw material packed bed 10, and the wind boxes 61 and wind legs 62 are each connected to a blower 65 via a duct 64.
- a damper 63 is provided at the connection between each wind box 61 and the wind leg 62 or in the middle of the wind leg 62, and the suction air volume distribution in the sintered strand direction (pallet traveling direction) can be controlled by adjusting the opening degree of the damper 63 to adjust the suction air volume by each wind box 61.
- the above section S corresponds to the section from the entrance of the ignition furnace 3 to the exit of the reignition furnace 4 of the sintered strand.
- a preferred mode for reducing the air volume is to set the average air volume of the air sucked in the section S from the upstream side of the sintered strand to the re-ignition furnace outlet to 60% to 80% of the average air volume of the air sucked in the section downstream of the re-ignition furnace outlet, or to set the average negative pressure in the wind box 61 or wind leg 62 in the above section S to 40% to 70% of the average negative pressure in the wind box 61 or wind leg 62 in the section downstream of the re-ignition furnace outlet.
- the empty air volume is measured in the wind box 61 or wind leg 62, for example, by a Pitot tube, and the average empty air volume is calculated.
- the measurement environment in the wind box 61 or wind leg 62 is not necessarily good because the gas contains dust. Therefore, it may be measured using a hot wire anemometer or the like on the surface of the raw material packed bed 10.
- the average empty air volume of the air sucked in in section S is set to 60% to 80% after the end of re-ignition because if it is less than 60%, the sintering speed drops significantly and the productivity deteriorates, and if it exceeds 80%, the effect of improving the productivity by improving the yield due to the reduced air volume cannot be obtained.
- JPU Japanese Permeability Unit
- JPU is the airflow resistance index of the raw material packed bed, and is an index that indicates the air permeability (ease of gas passing) of the raw material packed bed.
- JPU (Q/A) x (H/P) 0.6 ...
- Q Air volume (suction air flow rate) ( Nm3 /min)
- P negative pressure ( mH2O )
- the separation time which is the time required for the pallet to pass through the section (atmospheric suction area 7) between the ignition furnace 3 and the re-ignition furnace 4, can be, for example, 0.5 minutes or more and 3.5 minutes or less, and a more suitable separation time is 0.5 minutes or more and 2.0 minutes or less (30 seconds or more and 2 minutes or less). If it is less than 0.5 minutes, sufficient oxygen cannot be supplied to the combustion zone 10A in the upper layer of the sintered layer, and if it exceeds 2.0 minutes, the upper layer of the sintered layer will drop to a temperature below the sintering reaction, making it difficult to achieve the productivity improvement effect of the re-ignition technology. Note that "the pallet passes through the section" means that the pallet moves between one position and another position.
- the oxygen enrichment technology is a technology that enriches the air sucked downward with oxygen and supplies it to the raw material packed bed.
- an oxygen-enriched gas supplying equipment 9 is provided above the raw material packed bed 10.
- an oxygen-enriched gas having a higher oxygen concentration than the air supplied during normal operation is supplied as the gas sucked downward (sucked gas).
- FIG. 7 is a schematic diagram for explaining an example of a DL-type sintering machine of this embodiment (oxygen enrichment).
- the DL-type sintering machine 103 is equipped with an oxygen-enriched gas supplying equipment 9 above the raw material packed bed 10.
- the oxygen-enriched gas supplying equipment 9 supplies oxygen-enriched gas (such as a gas obtained by mixing air with oxygen) having a higher oxygen concentration than air into the raw material packed bed 10.
- the oxygen-enriched gas supplying equipment 9 has, for example, a hood 91 and a gas pipe 92 for supplying oxygen-enriched gas into the hood 91, and is configured to continuously supply oxygen-enriched gas.
- the supplied oxygen-enriched gas is led into the raw material packed bed 10 by the downward suction of the downward suction device 6 to advance the sintering reaction in the combustion zone 10A, and is then collected as exhaust gas by the downward suction device 6 (wind box 61).
- the oxygen concentration of the oxygen-enriched gas can be set to a predetermined concentration having a higher oxygen content than the atmosphere.
- the oxygen-enriched gas supply equipment 9 is disposed in the section between the ignition furnace 3 and the re-ignition furnace 4 (atmospheric suction area 7, see FIG. 6), and supplies oxygen-enriched gas from the surface side of the raw material packed bed 10 (sintered layer) passing through the atmospheric suction area 7, and causes it to be sucked downward. That is, in this embodiment, the atmospheric suction area 7 to which the atmospheric air is supplied in the first and second embodiments becomes the oxygen-enriched gas suction area 7x (see FIG. 6 and FIG. 7) to which oxygen-enriched gas is supplied. Note that FIG.
- the section where the hood 91 of the oxygen-enriched gas supply equipment 9 is installed is the oxygen-enriched gas suction area 7x, but if there is no safety problem, it is preferable to install each hood 32, 42, 91 without such a gap, or to connect the hood 91 of the oxygen-enriched gas supply equipment 9 to the hood 32 of the ignition furnace 33 and/or the hood 42 of the re-ignition furnace 4.
- the gap between the ignition furnace 3 (downstream partition 32a) and the oxygen-enriched gas supply equipment 9 (upstream wall of the hood 91), and the gap between the oxygen-enriched gas supply equipment 9 (downstream wall of the hood 91) and the re-ignition furnace 4 (upstream partition 42a) are provided only when necessary for safety reasons, and even in that case, it is preferable not to provide a distance longer than the minimum required distance. This is because the effect of improving the productivity decreases when the oxygen enrichment time decreases.
- the amount of oxygen gas introduced into the suction gas supplied to the oxygen-enriched gas suction area 7x can be controlled by a method of measuring and adjusting the oxygen concentration on the surface of the sintered layer by providing a sampling tube on the surface of the sintered layer in the oxygen-enriched gas suction area 7x, or by adjusting the amount according to the air volume of the wind box 61 of the DL-type sintering machine 103.
- the oxygen gas is introduced, for example, by directly supplying oxygen (e.g., industrial oxygen) into the hood 91 provided above the oxygen-enriched gas suction area 7x, and supplying it into the raw material packed bed 10 together with the air (hereinafter also referred to as the air outside the hood) sucked from around the hood 91 (outside the hood 91).
- oxygen e.g., industrial oxygen
- an oxygen-enriched gas with a predetermined oxygen concentration which is a mixture of oxygen and air, may be supplied into the hood 91 from the gas pipe 92.
- industrial oxygen produced in an oxygen plant in a steelworks can be used.
- the time required for the pallet to pass through the section between the ignition furnace 3 and the re-ignition furnace 4 can be, for example, 0.5 minutes or more and 6 minutes or less (see Table 8 described later). It is also preferable to set the separation time to 1 minute or more and set the oxygen concentration of the suction gas sucked downward from the surface side of the sintered layer in this section to 30 volume % or more.
- the separation time includes the time to pass through the above-mentioned safety gap (for example, more than 0 seconds and less than 2 seconds). As shown in the examples described later, if the oxygen concentration in the suction gas is less than 30 volume % or the separation time is less than 1 minute, the amount of oxygen supplied is insufficient and sufficient productivity improvement effect cannot be obtained.
- the separation time is preferably 6 minutes or less. If it exceeds 6 minutes, the sintered layer will have already been cooled by the suction gas even if the layer is enriched with oxygen, and the effect of reignition will not be obtained.
- the oxygen concentration in the suction gas is preferably 50% by volume or less. In a method in which pure oxygen is supplied to the raw material packed bed 10 together with the air outside the hood as the suction gas, when the oxygen concentration in the suction gas is 50% by volume, the ratio of the amount of pure oxygen gas to the amount of air outside the hood (external number) reaches 60% by volume.
- the amount of gas sucked into the raw material packed bed is determined by the permeability of the raw material packed bed and the power of the sintering machine blower (blower 65), so the amount of suction gas fluctuates on a minute to second basis. Therefore, when the pure oxygen supply ratio in the suction gas increases, the fluctuation in the amount of suction gas causes the fluctuation in the oxygen concentration in the suction gas to become apparent. (The amount of pure oxygen supply is adjusted according to the change in the amount of suction gas, but this becomes difficult to control.) As a result, this causes problems in the stable supply of oxygen concentration in the suction gas to the sintered layer.
- the oxygen concentration in the suction gas is 40% by volume or less and the separation time is 5 minutes or less. As shown in the examples below, if the oxygen concentration exceeds 40% by volume or the separation time exceeds 5 minutes, the increase in production rate with an increase in the oxygen supply amount becomes slow, and the effect of oxygen enrichment is not effectively manifested.
- oxygen enrichment in the oxygen-enriched gas suction area 7x of the present invention has the effect of improving product yield and production rate despite an increase in sintering speed, and the appropriate separation time is extended to a longer time.
- the reason for the former increase in production rate is that re-ignition immediately after oxygen enrichment supplies heat to the coke combustion field activated by oxygen enrichment, and has the effect of maintaining and continuing the activation of the coke combustion field. Therefore, even a short period of oxygen enrichment leads to an improvement in product yield and production rate.
- the reason for the latter extension of the appropriate separation time is that the sintered layer temperature increases through the activation of coke combustion due to oxygen enrichment.
- oxygen enrichment in the oxygen-enriched gas suction area 7x makes it difficult for the layer to cool, so the effect is manifested even with a long separation time. Furthermore, a long separation time extends the high-temperature retention time of the sintered ore, leading to an improvement in yield. On the other hand, oxygen enrichment without re-ignition only suppresses the general decrease in production rate due to an increase in sintering speed.
- the upper part of the high temperature zone (zone of approximately 1000°C or more) of the sintered layer formed by the first ignition is heated again by reignition, and the remaining condensed material (carbonaceous material) that was not burned in the first ignition is burned.
- combustion reactions occur at two points in the layer height direction by 1) the combustion zone formed by reignition (hereinafter also referred to as reignition combustion zone 10A 2 ) where the remaining condensed material is burned, and 2) the combustion zone formed by the first ignition (hereinafter also referred to as initial ignition combustion zone 10A 1 ) where the condensed material is burned.
- the air containing oxygen necessary for combustion is sucked downward and flows vertically from the upper part to the lower part in the layer height direction of the sintered layer.
- a lot of oxygen is required.
- highly combustible carbonaceous material even if it is coarse-grained (30% to 80% by mass of particles with a grain size of 2.8 mm or more), more oxygen is required because the combustion speed is fast.
- the high temperature zone in sintering includes the combustion zone, which is the zone where the combustion of the sintering material starts and ends, and the zone thereafter until the temperature is cooled to a temperature (approximately 1000°C) where the metallurgical reaction continues.
- the re-ignition sintering method has a problem in that the sintering rate decreases when normal atmospheric air is sucked downward due to the increased amount of oxygen required. Therefore, the inventors thought that in the present invention, which uses the re-ignition method, implementing oxygen enrichment technology immediately after re-ignition could improve the sintering rate and thereby the productivity rate, and after repeated sintering experiments, they found the preferred embodiment shown below. In addition, they also investigated configurations for optimizing the timing of the start of oxygen enrichment, the oxygen enrichment time, and the oxygen concentration of the oxygen-enriched gas supplied in the oxygen enrichment region. These details are explained below.
- FIG. 8 is a schematic diagram for explaining another example of the DL-type sintering machine of this embodiment (oxygen enrichment). The above-mentioned phenomenon will be explained in detail below with reference to FIG. 8.
- an air suction area 7 is provided between the ignition furnace 3 and the reignition furnace 4 to supply sufficient oxygen (air) to the combustion zone 10A formed on the surface layer of the raw material packed bed 10 by initial ignition, and the unignited remaining condensed material on the surface layer is burned by the subsequent reignition.
- the temperature of the flowing gas drawn in from above and passing through the initial ignition combustion zone 10A 1 is increased by the combustion of the remaining condensed material by reignition, and the width of the combustion zone 10A and the high temperature zone is further expanded to promote the combustion of the condensed material directly below the initial ignition combustion zone 10A 1 .
- the high temperature holding time of the upper layer for example, the time held at 1200° C. or higher
- the high temperature holding time can be increased, and it is expected that the product yield and productivity will be improved.
- the region (oxygen-enriched gas suction region) where oxygen-enriched gas is supplied to the surface of the raw material packed bed 10 (sintered layer) and sucked downward is a specified section after the end of re-ignition. Therefore, in addition to the components of the DL-type sintering machine 101 described above, the DL-type sintering machine 104 of this embodiment is equipped with an oxygen-enriched gas supplying device 9 similar to the configuration described in the third embodiment, downstream of the re-ignition furnace 4 in the pallet traveling direction.
- the separation time in this embodiment can be, for example, 0.5 minutes or more and 3.5 minutes or less.
- a small gap is provided between the re-ignition furnace 4 and the oxygen-enriched gas supply equipment 9, but if there is no safety problem, the re-ignition furnace 4 and the oxygen-enriched gas supply equipment 9 may be connected.
- the oxygen-enriched gas supply equipment 9 is configured to continuously supply oxygen-enriched gas for a predetermined time as the oxygen enrichment time. It is preferable that the time it takes for the pallet to move between the gap between the re-ignition furnace 4 (downstream partition 42b) and the oxygen-enriched gas supply equipment 9 (upstream wall of the hood 91), i.e., the time from the end of re-ignition to the start of oxygen enrichment, is short.
- the time is more than 0 seconds and less than 30 seconds, more preferably more than 0 seconds and less than 10 seconds, and even more preferably that oxygen enrichment starts immediately after the end of re-ignition (more than 0 seconds and less than 2 seconds). If it exceeds 30 seconds, the time period during which oxygen enrichment is effective decreases, and the effect decreases (see Test 2 in Example 4 described later).
- the oxygen concentration in the suction gas sucked from the surface of the sintered layer by downward suction is 30% by volume or more
- the oxygen enrichment time by the oxygen-enriched gas supply equipment 9 after the end of re-ignition is 30 seconds or more.
- the oxygen enrichment time refers to the time required for the pallet to move through the oxygen-enriched gas suction area, that is, the time from the start of oxygen enrichment to the end of oxygen enrichment when oxygen-enriched gas is supplied after the end of re-ignition. If the oxygen concentration in the suction gas is less than 30% by volume or the oxygen enrichment time is less than 30 seconds, the amount of oxygen supplied is insufficient, and sufficient improvement in sintering speed and productivity cannot be obtained (see Example 4, Test 2 described later).
- the oxygen concentration in the suction gas in the oxygen-enriched gas suction region is preferably 40% by volume or less.
- the oxygen enrichment time by the oxygen-enriched gas supply equipment 9 is preferably 2 minutes or less. This is because if the oxygen concentration exceeds 40% by volume or the oxygen enrichment time exceeds 2 minutes, the increase in the sintering speed and productivity due to the increase in the oxygen supply amount becomes slow, and oxygen enrichment becomes ineffective.
- the timing at which the two combustion zones (initial ignition combustion zone 10A 1 and reignition combustion zone 10A 2 ) merge has not been known until now, but based on the appropriate oxygen enrichment time obtained from the experimental results (see Example 4 Test 1 described later), it is estimated that the merger occurs at a time between 2 minutes and 3 minutes after the end of reignition.
- oxygen enrichment after re-ignition significantly increases the sintering rate, as will be demonstrated in Example 4 described below.
- This increase is greater than the increase in sintering rate in oxygen enrichment without re-ignition, as described in conventional examples (Tetsu to Hagane Vol. 92 (2006), pp. 417-426).
- the reason for the increase in sintering rate is that oxygen is effectively utilized due to the existence of two combustion zones that become active due to oxygen enrichment after the end of re-ignition. Therefore, even a short period of oxygen enrichment leads to an increase in sintering rate, improving productivity.
- the inventors focused on the effect of improving the productivity in the upper part of the sintered layer, but on the other hand, the effect of improving the productivity in the lower part of the sintered layer is extremely small.
- the inventors focused on the stand-supported sintering technology, which is effective in improving the firing speed of the lower part of the sintered layer. Below, the stand-supported sintering technology will be explained, and the inventors' aim regarding the preferred embodiment will be described.
- the stand supports the sinter cake formed in the upper layer of the raw material packed bed, and when the lower layer of the raw material packed bed (hereinafter also referred to as the lower layer) is sintered, the upper load on the lower layer is reduced, and voids in the lower layer are secured. As a result, the air flow resistance in the lower layer is reduced and the sintering speed is improved (see JP Patent Publication 4-168234).
- the inventors thought that by applying stand-supported sintering technology, which has the effect of improving the productivity of the lower layer, it would be possible to improve the overall productivity of sintered ore.
- the increase in the combustion zone width in the upper layer according to the present invention also affects the sintering conditions in the lower layer.
- the inventors found that a synergistic effect of the present invention and stand-supported sintering technology could be obtained that exceeded expectations, as shown in Example 5 described below.
- the appropriate range of the separation distance (the distance between the ignition furnace and the re-ignition furnace) was also examined.
- FIG. 9 is a schematic diagram for explaining an example of a pallet used in this embodiment (applied stand support sintering technology).
- the pallet 5 includes a main frame 52 on which a grate bar 51 is arranged, and pallet side walls 53 erected at both opposing end portions of the main frame 52.
- the pallet 5 includes a stand 16 (support member) which is a substantially isosceles trapezoidal plate-shaped member arranged in the center of the upper surface of the grate bar 51.
- the stand 16 has a sinter cake support surface 16a and is vertically installed so as to be embedded in the raw material packed bed 10 parallel to the pallet traveling direction 5x.
- the upper layer of the sintered layer (raw material packed bed 10) in the pallet 5 becomes a sintered sinter cake 10B, and the lower layer (the lower layer of the combustion zone 10A) remains in a state of unsintered raw material.
- the upper surface portion (sinter cake support surface 16a) of the stand (support member) 16 supports the sinter cake 10B of the upper layer, suppressing the densification of the sintering raw material of the lower layer.
- the air resistance of the sintered layer during the firing of the lower layer is reduced, and the sintering speed is improved.
- there is an effect of suppressing the uneven flow of the gas flowing through the sintered layer reducing the amount of unfired parts and improving the sintering yield.
- the pallet 5 into which the blended raw materials are loaded has a support member (stand 16) having a sinter cake support surface 16a suspended from the grate bar 51 so as to be embedded in the raw material packed layer 10.
- the arrangement of the support member (stand 16) may be such that it can support the sinter cake 10B formed in the upper layer, and for example, two rows of support stands may be installed in the width direction of the pallet.
- the sinter cake 10B formed in the upper layer can be supported during sintering of the lower layer, and the load on the unsintered lower layer can be reduced, thereby ensuring the gap in the lower layer and making the gas flow rate in the width direction of the pallet uniform.
- the effects of applying the stand-supported sintering technique to the present invention, which uses the reignition sintering method, are considered to be as follows.
- (Product yield) A feature of the stand support sintering technique is that the effect of improving the sintering speed and product yield is limited to the lower layer.
- the time required for the pallet to pass through the section (air suction area 7) between the ignition furnace 3 and the re-ignition furnace 4 can be, for example, 0.5 minutes or more and 3.5 minutes or less, but it is preferable to make it less than 3.0 minutes (see Table 12 described later).
- the effect of improving the yield of all layers from the upper layer to the lower layer can be obtained when the separation time is within a predetermined range (less than 3.0 minutes). From the above, additivity is established in terms of product yield. If the separation time exceeds 3.0 minutes, the effect of improving the yield by re-ignition becomes weaker, and the product yield starts to deteriorate due to the influence of the shortened sintering time by the stand support.
- the combustion zone width of the sintered layer is increased by igniting twice.
- the increase in the combustion zone width of the sintered layer leads to an improvement in the product yield.
- the combustion zone width is sufficiently secured even with the one-stage ignition sintering method, so further improvement effects cannot be expected.
- the increase in the combustion zone width leads to an increase in the air flow resistance, and as a result, the sintering speed (BTS: Burn through speed) decreases.
- the combustion start temperature is low and the combustion speed is fast, so the combustion zone width increases.
- the stand support sintering technology is applied, the increase in the air flow resistance in the sintering of the lower layer is reduced by the upper sinter cake support, and the sintering speed of the lower layer is improved.
- the increase in the sintering speed of the lower layer suppresses the increase in the combustion zone width in the lower layer. As a result, the sintering speed is improved at an accelerated rate. From the above, a synergistic effect is obtained in terms of the sintering speed.
- the productivity is proportional to the product yield times the sintering rate. Due to the additive effect in product yield and the synergistic effect in sintering rate described above, a synergistic effect between the reignition sintering method and the stand-supported sintering technique is obtained that exceeds expectations (see Example 5 below).
- Examples 1 to 5 correspond to the first to fifth embodiments described above, respectively.
- Example 4 is described separately as two tests (Test 1 and Test 2).
- the mixing ratio of the sintering raw materials excluding the coagulant was the same in all examples (Examples 1 to 5).
- the downward suction conditions (suction pressure or air volume) during sintering were constant at 1300 mmAq (12.7 kPa) measured under the pan in Examples 1 and 5, and constant air volume (exhaust gas) at 1.80 Nm 3 /min in Examples 3 and 4.
- air volume control was performed as shown in the test conditions described later, based on an air volume (exhaust gas) of 1.80 Nm 3 /min.
- Example 1 Tests on the conditions of the composition ratio of the carbonaceous materials (low combustibility carbonaceous materials and high combustibility carbonaceous materials) described in the first embodiment, the average particle size of the low combustibility carbonaceous materials, and the particle size of the high combustibility carbonaceous materials will be described. In the following tests, only coke powder is used as the low combustibility carbonaceous materials, but the same effect can be obtained by using both anthracite and coke, or only anthracite, as the low combustibility carbonaceous materials.
- sintering pot test sintering raw materials (mixed raw materials) containing a fuel coagulant are charged into a container of a specified size, ignited from the top, and sintering is promoted by sucking downwards.
- the sintering pot test equipment does not move the raw material packed bed using pallets as in a Dwight Lloyd (DL) type sintering machine, it is a test equipment that can simulate sintering using a DL type sintering machine.
- Table 6 17 tests were performed: Comparative Examples 1-0 to 1-3 and Invention Examples 1-1 to 1-13. First, the raw materials used in the tests and the test method will be explained in order, and then the test results will be described.
- Table 3 shows the results of proximate and elemental analysis of the low combustibility and high combustibility carbonaceous materials used in the test.
- the coke breeze shown in Table 3 was prepared as the low combustibility carbonaceous material, and semi-coke and charcoal compressed moldings (pulverized) were prepared as the high combustibility carbonaceous materials.
- Tables 4 and 5 show the blending ratios (mass%) of each sintering raw material for the blended raw materials used in the tests. As shown in Table 4, the ratios of new raw materials (iron ore, limestone, quicklime, and olivine) and return ore were constant in all test examples. Iron ores A to E are iron ores of different brands (origins). The blending ratio of return ore was 15.0 mass%, with the new raw materials (iron ore, limestone, quicklime, and olivine) being 100 mass%. The blending ratios of raw materials excluding the coagulant were the same for Examples 1 to 5.
- Table 5 shows the proportion (mass %) of the agglomerating agent in the raw material blend used in the tests.
- Coke powder was used as the low combustibility carbonaceous material in all test examples.
- Crushed compressed charcoal was used as the high combustibility carbonaceous material in invention examples 1-12 and 1-13, while semi-coke was used in the other test examples.
- test examples comparativative examples 1-0 and 1-2 in which only low combustibility carbonaceous material (coke powder) was used as the agglomerating agent, the new raw material was taken as 100 mass % and the proportion of the agglomerating agent (coke powder) was an additional 4.5 mass %.
- the blending ratio of the coagulant (4.5 mass% coke powder) in Comparative Examples 1-0 and 1-2 was based on the blending ratio of the coagulant (4.5 mass%) in Comparative Examples 1-0 and 1-2, and the mass ratio of the carbon content of the low combustible carbonaceous materials (coke powder) and the high combustible carbonaceous materials (semi-coke, compressed charcoal) (top row of Table 5) and the fixed carbon content of the low combustible carbonaceous materials (coke powder) and the high combustible carbonaceous materials (semi-coke, compressed charcoal) (Table 3) were adjusted so that the fixed carbon content (carbon content) of the industrial analysis of all the coagulants (coke powder, semi-coke, compressed charcoal) contained in the blended raw materials was constant in all test examples.
- the blending ratio of the coagulant (low combustible carbonaceous materials and high combustible carbonaceous materials) to the new raw materials was adjusted.
- the lower row of Table 5 shows the blending ratio of the low combustible carbonaceous materials and the high combustible carbonaceous materials to the total amount of coagulant.
- Comparative Example 1-0 is a case in which reignition was not performed and only low combustible carbonaceous material (coke powder) was used as the condensation material without any highly combustible carbonaceous material.
- Invention Examples 1-12 and 1-13 are cases in which compressed charcoal crushed into highly combustible carbonaceous material was used.
- the average particle size of the low combustible carbonaceous material was 0.6 mm, 0.8 mm, 1.2 mm, and 1.4 mm in Examples 1-6 to 1-9, 1.2 mm in Examples 1-12 and 1-13, and 1.0 mm in the other test cases.
- the ratio of highly combustible carbonaceous material with a particle size of 2.8 mm or more was 20 mass%, 50 mass%, and 70 mass% in Comparative Example 1-3, Example 1-4, and Example 1-5, respectively, 80 mass% in Examples 1-12 and 1-13, and 30 mass% in the other test cases.
- Examples 1-11 and 1-13 the entire amount of only the low combustible carbonaceous material was added in the latter half of the granulation process of the sintering raw material.
- the mixed raw materials after granulation were charged using a segregation strengthening charging device.
- the ladle test apparatus used was a cylindrical ladle with a diameter of 300 mm and a height of 500 mm.
- charging was performed according to the method using a slit bar type classifier described in Materials and Processes 24 (2011), p. 795 (Hara et al.), simulating segregation-strengthened charging using the above-mentioned segregation-strengthened charging device (slit bar type charging device, see paragraph 0051).
- a flat plate was used instead of the slit bar type classifier.
- Example 1-10 and 1-13 the mixed raw material granules classified using a slit bar type classifier were charged into a sintering pot. Specifically, the mixed raw material granules were placed into the slit bar type classifier, and the mixed raw material granules that fell between the slit bars were collected in four collection boxes lined up from the upstream side to the downstream side directly under the slit bars, and the mixed raw material granules that slid on the slit bars were collected in another collection box.
- the mixed raw material granules had already been classified and collected in five collection boxes, the mixed raw material granules that slid on the slit bars and the mixed raw material granules that fell between the slit bars were first dropped into the sintering pot from the top, starting from the collection box on the downstream side.
- thermocouple Below the pot, temperature was measured with a thermocouple along with pressure.
- the sintering time was defined as the time from the start of ignition to the time the exhaust gas temperature reached its peak.
- the sintering speed (BTS: Burn through speed) was calculated by dividing the raw material layer thickness by the sintering time.
- Production rate The productivity was calculated by dividing the amount of sintered product (amount of product (tons)) by the above-mentioned sintering time (time converted into days) and the firing area (pot bottom area ( m2 )) as shown in the following formula (3).
- Production rate (t/( Dm2 )) product amount (t)/ ⁇ sintering time (days) ⁇ pot bottom area ( m2 ) ⁇ (3)
- the reduction disintegration of sintered ore indicates the degree of disintegration of sintered ore under conditions simulating the low-temperature reduction zone of a blast furnace, and a method specified in the JIS method (JIS M8720:2017 "Iron ore - Low-temperature reduction disintegration test method”) was used.
- 500 g of the obtained sintered ore having a particle size of more than 15 mm and less than 20 mm was reduced at 550°C for 30 minutes by passing a gas of CO (30 vol%)-N 2 (70 vol%) composition at 15 liters/min, and then rotated at 30 rpm for 30 minutes in a cylindrical rotating drum (diameter 130 mm ⁇ 200 mmL), and the particle size-2.8 mm ratio (mass ratio of iron ore under the sieve of the 2.8 mm sieve) was used as an index of reduction disintegration (RDI: Reduction Degradation Index).
- RDI Reduction Degradation Index
- FIG. 10 is a graph showing the test results of Comparative Example 1-1 (only highly combustible carbonaceous material is used as the agglomeration material), Invention Examples 1-1 to 1-3 (carbon content mass ratio of highly combustible carbonaceous material: 75 mass%, 50 mass%, 25 mass%), Comparative Example 1-3 (carbon content mass ratio of highly combustible carbonaceous material: 50 mass%), Invention Examples 1-4 to 1-5 (carbon content mass ratio of highly combustible carbonaceous material: 50 mass%), and Invention Examples 1-12 to 1-13 (carbon content mass ratio of highly combustible carbonaceous material: 20 mass%, 25 mass%, highly combustible carbonaceous material: charcoal compressed moldings) in Table 6, and is a graph showing the relationship between the ratio of the particle size of the
- FIG. 11 is a graph showing the test results of Comparative Example 1-0 (single-stage ignition), Comparative Examples 1-1 to 1-2 (using only highly combustible carbonaceous material as the condensing agent, using only low combustible carbonaceous material as the condensing agent), Comparative Example 1-3 (proportion of semi-coke with particle size of 2.8 mm or more: less than 30 mass%), Invention Examples 1-1 to 1-5 (average particle size of powdered coke: 1.0 mm, highly combustible carbonaceous material: semi-coke), and Invention Examples 1-12 to 1-13 (average particle size of powdered coke: 1.2 mm, highly combustible carbonaceous material: compressed charcoal) in Table 6, and shows the relationship between the mass ratio (mass%) of the carbon content of the highly combustible carbonaceous material to the carbon content of the condensing agent and the productivity (t/(Dm 2 )).
- FIG. 12 is a graph showing the test results of Examples 1-6 to 1-11 in Table 6 (carbon mass ratio of semi-coke: 50 mass%, ratio of semi-coke particle size of 2.8 mm or more: 30 mass%), and shows the relationship between the average particle size (mm) of the fine coke and the productivity (t/(Dm 2 )).
- Example 1-12 since the combustion start temperature of compressed charcoal is lower than that of semi-coke, even when the mass ratio of the agglomeration material to the carbon content was as low as 20 mass% (Example 1-12) (Example 1-12), the production rate was equivalent to that of semi-coke at 25 mass% (Example 1-3). Also, as shown in Table 6 and Figure 12, in Examples 1-7 and 1-8, in which the average particle size of the coke fines, which is a low-combustibility carbonaceous material, is 0.8 to 1.2 mm, the productivity and reduction disintegration properties are further improved (compared to Examples 1-6 and 1-9).
- Example 1-10 in which segregation-strengthened feeding was implemented, the product yield was greatly improved, and the productivity was further improved.
- Example 1-11 in which post-addition of coke fines was implemented, the combustion front descent speed (sintering speed) and product yield were significantly improved, and the productivity was greatly improved.
- Comparative Example 1-0 single-stage ignition sintering method
- Comparative Example 1-2 reactive sintering method
- Example 2 (Test level)
- the application of the air volume control technology to the present invention was verified using a sintering pot test similar to that of Example 1.
- test cases of Example 2 Comparative Examples 2-1 to 2-2, Invention Examples 2-1 to 2-3
- test conditions, etc. that are different from those of Example 1 will be explained using Table 7 described later. In the following explanation, duplicate explanations of the same conditions and test methods as those of Example 1 will be omitted as appropriate.
- the raw material blending was the same as in Table 4 of Example 1, except for the agglomeration agent.
- the blending of the agglomeration agent (carbonaceous material) in the sintering raw material and the particle size of the agglomeration agent (average particle size of low combustible carbonaceous material, ratio of particle size of high combustible carbonaceous material of 2.8 mm or more) were the same as in Comparative Example 1-2 or Invention Example 1-2 of Example 1.
- Example 2-1 similarly to the latter (Example 1-2), the carbon content mass ratio was 50 mass% coke fines (low combustibility carbonaceous material) and 50 mass% semi-coke (high combustibility carbonaceous material), and the average particle size of the coke fines and the ratio of the particle size of the high combustibility carbonaceous material of 2.8 mm or more were 1.00 mm and 30 mass%, respectively.
- the granulation method was lump granulation, and the charging method was normal charging.
- the suction air volume was adjusted by the valve opening on the suction side of the blower so that the empty air volume in the pot was one of the following conditions 0 to 2.
- Condition 0 Airflow control OFF: Constant airflow of 1.80 Nm3 /min
- Condition 1 Airflow control ON Airflow rate 1.35Nm 3 /min until reignition is complete, then 1.80Nm 3 /min
- Airflow control ON2 Airflow rate 1.20Nm 3 /min until reignition is complete, then 1.80Nm 3 /min
- Comparative Examples 2-1 and 2-2 were set to Condition 0 (OFF) and Condition 2 (ON2), respectively.
- the test was performed under Condition 0 (OFF) in Invention Example 2-1, Condition 1 (ON1) in Invention Example 2-2, and Condition 2 (ON2) in Invention Example 2-3.
- Test results The test results (sintering speed, product yield, and productivity for each test case) are shown in the right column of Table 7. The cases in which the productivity was 36.0 t/( Dm2 ) or more in the test results are the inventive examples of Example 2. The sintering speed, product yield, and productivity were determined in the same manner as in Example 1.
- Figure 13 is a graph showing the test results, showing the relationship between the empty-cylinder air volume ratio (a/b) and the productivity (t/( Dm2 )).
- Example 2-2 empty cylinder air volume 1.35 Nm3 /min
- Example 2-3 empty cylinder air volume 1.20 Nm3 /min
- the productivity was improved more than that of Example 2-1, in which the air volume was not suppressed, and the decrease in sintering speed could be covered, and the productivity improved to 0.3 t/( Dm2 ) and 0.4 t/( Dm2 ), respectively.
- Example 3 (Test level) In this example, the application of oxygen enrichment technology to the present invention was verified using a sintering pot test similar to that in Example 1. Below, for the test cases of Example 3 (Invention Examples 3-1 to 3-10), the test conditions, etc. that are different from those in Example 1 will be explained using Table 8 described later. In the following explanation, duplicate explanations of the same conditions and test methods as in Example 1 will be omitted as appropriate.
- the raw material blend was the same as in Table 4 of Example 1, except for the agglomerating agent.
- the blend of the agglomerating agent (carbonaceous material) among the raw materials and the particle size of the agglomerating agent (average particle size of low combustible carbonaceous material, ratio of particle size of 2.8 mm or more of high combustible carbonaceous material) were the same as those of Invention Example 1-2 of Example 1 in all test cases of Example 3 (excluding Comparative Example 2-1 shown for reference in Table 8). In all test cases of Example 3, the granulation method was lump-sum, and the charging method was normal. Semi-coke was used as the high combustible carbonaceous material.
- Example 3 (Firing conditions) In all test cases of Example 3, the ignition time for both ignition (corresponding to ignition (initial ignition) by ignition furnace 3) and re-ignition (corresponding to re-ignition by re-ignition furnace 4) was 1 minute (amount of heat: 25 MJ/t of blended raw material as sensible heat of suction gas). As shown in Table 8, for each test case (Invention Examples 3-1 to 3-10), the time (separation time) between ignition and re-ignition (corresponding to movement of the oxygen-enriched gas suction region) and the oxygen concentration of the suction gas were changed at the levels shown in Table 8 as test conditions.
- the suction air volume was kept constant and adjusted to 1.80 Nm3 /min for exhaust gas.
- the suction of the blower was stopped 3 minutes after the exhaust gas temperature reached its peak, and firing was terminated.
- the sintering time was defined as the time from the start of ignition to the time when the exhaust gas temperature reached its peak.
- oxygen enrichment was not performed, and atmospheric air (air) was used as the suction gas.
- the oxygen supply method was to mix atmospheric air and oxygen in a gas blender to a predetermined oxygen concentration (oxygen concentration in Table 8), and to supply this mixed gas for a predetermined time (oxygen enrichment time in Table 8) using a hood placed on the pot.
- the supply and suction of oxygen-enriched gas were limited to the period immediately after the end of ignition (after 0 seconds or more but not exceeding 2 seconds after the end of ignition) until immediately before re-ignition (before 0 seconds or more but not exceeding 2 seconds after the start of re-ignition).
- the hood was set to supply oxygen-enriched gas with a predetermined oxygen concentration, and this oxygen-enriched gas was sucked in, and the hood was removed immediately after the predetermined time had passed and re-ignition was performed.
- the inlet gas flow rate is calculated from the inlet gas nitrogen concentration, exhaust gas nitrogen concentration, and exhaust gas flow rate. This is because the amounts of nitrogen gas on the inlet and outlet sides are equal.
- the exhaust gas nitrogen concentration is calculated by subtraction ( N2 ⁇ 100 - (CO + CO2 + O2 )) from the exhaust gas analysis (CO, CO2 , O2 ). In this example, the exhaust gas flow rate was kept constant, making it easy to adjust the suction gas.
- Test results The test results (sintering speed, product yield, and productivity) for each test case are shown in the right column of Table 8.
- the case in which the test results showed a productivity of 36.0 t/( Dm2 ) or more is the inventive example of Example 3.
- the sintering speed, product yield, and productivity were determined in the same manner as in Example 1.
- Figure 14 is a graph showing the test results, showing the relationship between the oxygen concentration (vol.%) of the suction gas during the separation time (corresponding to the time period when the pallet passes through the oxygen-enriched gas suction area 7x of the actual machine) and the productivity (t/( Dm2 )).
- Example 3-3 As shown in the test results for Examples 3-1 to 3-3, when the separation time is 0.5 minutes, the increase in sintering speed, product yield, and productivity with the increase in oxygen concentration (Example 3-1 ⁇ Example 3-2 ⁇ Example 3-3) is slow. This is thought to be due to the short separation time and the short oxygen enrichment time of 0.5 minutes.
- invention examples 3-4 and 3-5 when the separation time is set to 1.0 minute, increasing the oxygen concentration from 21% by volume to 30% by volume (invention example 3-4 ⁇ invention example 3-5) results in a significant increase in product yield and production rate.
- invention examples 3-5 and 3-6 by increasing the separation time from 1.0 to 2.0 minutes (invention example 3-5 ⁇ invention example 3-6) at the same oxygen concentration (30 volume percent), the sintering speed, product yield, and productivity increase significantly. This is the effect of increasing the oxygen enrichment time that accompanies the increase in separation time.
- Example 4 (Test level)
- the application of oxygen enrichment technology to the present invention was verified using a sintering pot test similar to that of Example 1.
- the test conditions and test results of Test 1 (a total of 15 test cases including Invention Examples 4-1 to 4-15, see Table 9) and Test 2 (a total of 6 test cases including Invention Examples 4-16 to 21, see Table 11) will be described below using Tables 9 to 11 described later.
- Invention Example 4-1 in Table 9 described later is the same test case as Invention Example 2-1.
- Table 9 also shows Comparative Example 2-1 of Example 2 for reference, and Table 11 also shows Invention Example 4-10 of Test 1 for reference.
- duplicate descriptions of the same conditions and test methods as those of Example 1 are appropriately omitted.
- Test 1 (Raw material mix, etc.) The raw material blending was the same as that in Table 4 of Example 1, except for the coagulant.
- the blending of the coagulant (carbonaceous material) among the raw materials and the particle size of the coagulant (average particle size of low combustible carbonaceous material, ratio of particle size of high combustible carbonaceous material of 2.8 mm or more) were the same as those in Example 1-2 of Example 1 in all test cases of Example 4 (Test 1 and Test 2 (Invention Examples 4-1 to 4-21)).
- the granulation method was lump-sum, and the charging method was normal.
- Example 4 In all test cases of Example 4, the combustion time for both ignition (corresponding to ignition (initial ignition) by the ignition furnace 3) and re-ignition (corresponding to re-ignition by the re-ignition furnace 4) was 1 minute (amount of heat: 25 MJ/t of blended raw material as sensible heat of the suction gas). As shown in Table 9, the interval between ignition and re-ignition (separation time: corresponding to the time to move through the air suction region 7) was 1 minute. The oxygen enrichment time and oxygen concentration were changed to the levels shown as test conditions under the condition that oxygen enrichment was started immediately after the end of re-ignition (more than 0 seconds but within 2 seconds from the end of re-ignition).
- the firing after ignition was performed under a constant air volume condition, and the air volume was adjusted to 1.80 Nm3 /min with exhaust gas. As in Examples 1 to 3, the suction of the blower was stopped 3 minutes after the exhaust gas temperature reached its peak, and firing was terminated.
- the sintering time was defined as the time from the start of ignition to the time when the exhaust gas temperature reached its peak.
- Example 4-1 oxygen enrichment was not performed, and atmospheric air (air) was used as the suction gas.
- the oxygen supply method in Examples 4-2 to 4-15 was the same as in Example 3, where atmospheric air and oxygen were mixed in a gas blender to a specified oxygen concentration (oxygen concentration in Table 9), and this mixed gas was supplied for a specified time (oxygen enrichment time in Table 9) using a hood placed over the pot. Specifically, when re-ignition was finished, the hood was set and oxygen-enriched gas with the specified oxygen concentration was supplied, this oxygen-enriched gas was inhaled, and the hood was removed immediately after the specified time had passed.
- Test results The test results (sintering speed, product yield, and productivity) for each test case are shown in the right column of Table 9. The case in which the productivity was 36.0 t/( Dm2 ) or more in the test results is the inventive example of Example 4 (Test 1). The sintering speed, product yield, and productivity were obtained in the same manner as in Example 1.
- FIG. 15 is a graph showing the results of this test, showing the relationship between oxygen concentration (vol.%) and productivity (t/(Dm 2 )). As shown in Fig. 15, the following results were obtained. Effect of oxygen concentration: The oxygen concentration increases up to 40 vol. % (volume %), but tends to plateau at an oxygen concentration of 50 vol. % (Invention Examples 4-9 and 4-13). Effect of oxygen enrichment time: When the oxygen concentration was 30 vol.%, the effect was large up to 2.0 minutes (Example 4-11), but the effect plateaued even when the time was extended to 3.0 minutes (Example 4-14) or 4.0 minutes (Example 4-15).
- Table 10 shows the results of calculating the oxygen utilization rate and oxygen consumption rate for the above-mentioned invention examples 4-1 and 4-14.
- Table 10 also shows the test conditions and results of comparative examples 4-1 and 4-2, which were carried out to compare and evaluate the effect of one-stage ignition for the case of invention example 4-14 (oxygen concentration 30 vol.%, oxygen enrichment time 3.0 minutes), which had the largest productivity improvement effect.
- oxygen enrichment was carried out for 3.0 minutes immediately after the end of ignition. Note that the time period during which the oxygen utilization rate and oxygen consumption rate were evaluated was 3 minutes immediately after the end of ignition for comparative examples 4-1 and 4-2 (single-stage ignition sintering method).
- invention examples 4-1 and 4-14 (reignition sintering method), it was 3 minutes immediately after the end of reignition. That is, for comparative example 4-2 and invention example 4-14, the oxygen utilization rate and oxygen consumption rate during the oxygen enrichment time period are shown.
- the oxygen release rate in the exhaust gas (b) shown in Table 10 was calculated from the results of exhaust gas analysis using a magnetic oxygen concentration meter.
- the oxygen consumption rate (a) was calculated by subtracting the oxygen release rate in the exhaust gas (b) from the oxygen flow rate sucked into the sintered layer.
- the oxygen flow rate sucked into the sintered layer can be calculated by multiplying the inlet gas flow rate by the oxygen concentration.
- Test 2 In this test, the influence of changing only the oxygen enrichment start time from the re-ignition end time in 10 second intervals was examined, using the invention example 4-10 of test 1 as a reference. That is, the test conditions of invention examples 4-16 to 4-21 are the same as those of invention example 4-10, except for the oxygen enrichment start time. Table 11 shows the test conditions and test results of invention examples 4-10 and invention examples 4-16 to 4-21.
- the oxygen enrichment start time in Table 11 indicates the elapsed time (in seconds) from the re-ignition end time to the start of re-ignition
- the "0 seconds" of invention example 4-10 which started oxygen enrichment immediately after the end of re-ignition, indicates a time of more than 0 seconds and less than 2 seconds, including the operation time from the end of re-ignition to the start of oxygen enrichment.
- the "10 seconds" of invention example 4-16 indicates a time of more than 10 seconds and less than 12 seconds, including the operation time from the end of re-ignition to the start of oxygen enrichment.
- the number of seconds for each of the oxygen enrichment start times in Examples 4-17 to 4-21 is the same as that in Examples 4-10 and 4-16.
- Test results The right column of Table 11 shows the test results (sintering speed, product yield, and productivity) of each test case.
- the case in which the productivity was 36.0 t/(Dm 2 ) or more in the test results is the inventive example of Example 4 (Test 2).
- the sintering speed, product yield, and productivity were obtained in the same manner as in Example 1.
- FIG. 16 is a graph of the test results in the right column of Table 4, showing the relationship between the oxygen enrichment time and the productivity. From FIG.
- Example 5 (Test level)
- the application of the stand-supported sintering technique to the present invention was verified using a sintering pot test similar to that in Example 1.
- the test conditions and test results of the test cases in Example 5 (Comparative Examples 5-1 to 5-2, and Invention Examples 5-1 to 5-6) are explained below with reference to Table 12. Note that in the following explanation, duplicate explanations of the same conditions and test methods as in Example 1 are omitted as appropriate.
- the raw material blending was the same as in Table 4 of Example 1, except for the coagulant.
- the blending of the coagulant (carbonaceous material) among the raw materials and the particle size of the coagulant (average particle size of low combustible carbonaceous material, ratio of particle size of high combustible carbonaceous material of 2.8 mm or more) were the same as those in Comparative Example 1-2 or Invention Example 1-2 of Example 1.
- Comparative Examples 5-1 to 5-2 as in the former (Comparative Example 1-2), only 4.5 mass% of coke powder (low combustible carbonaceous material) was used relative to the new raw materials (carbon content mass ratio of the coagulant was 0 mass% for semi-coke blending and 100 mass% for coke powder blending), and the average particle size of the coke powder was 1.0 mm.
- Example 5 similarly to the latter (Example 1-2), the carbon content mass ratio was 50 mass% coke fines (low combustibility carbonaceous material) and 50 mass% semi-coke (high combustibility carbonaceous material), and the average particle size of the coke fines and the ratio of the highly combustible carbonaceous material having a particle size of 2.8 mm or more were 1.00 mm and 30 mass%, respectively.
- the granulation method was lump-sum, and the charging method was normal.
- Example 5 (Firing conditions) In all test cases of Example 5, the ignition time for both ignition (corresponding to ignition (initial ignition) by ignition furnace 3) and re-ignition (corresponding to re-ignition by re-ignition furnace 4) was 1 minute (calorific value 25 MJ/t of blended raw materials). As shown in the separation time column of Table 12, the separation time was either 0.5 minutes, 1 minute, 2.5 minutes, or 3.5 minutes. As with Example 1, the suction pressure was adjusted by the valve opening on the suction side of the blower so that the measured value under the pot was constant at 1300 mmAq (12.75 kPa) in all test cases of Example 5.
- Table 12 shows the test conditions and test results for each test case in this example.
- Table 12 shows the test conditions and test results for each test case in this example.
- Table 12 shows the test conditions and test results for each test case in this example.
- Table 12 shows the test conditions and test results for each test case in this example.
- Table 12 shows the test conditions and test results for each test case in this example.
- Table 12 shows the test conditions and test results for each test case in this example.
- Table 12 shows the test conditions and test results for a test case in this example.
- Table 12 shows the test results (sintering speed, product yield, productivity) for each test case.
- the case in which the productivity was 29.5 t/( Dm2 ) or more in the test results is the invention example of Example 5.
- the sintering speed, product yield, and productivity were determined in the same manner as in Example 1.
- Figure 17 (semi-coke blending 50 mass%) and Figure 18 (semi-coke blending 0 mass%) are graphs showing the test results in Table 12, and show the relationship between separation time (min) and productivity (t/( Dm2 )).
- the ignition time and re-ignition time were both 1 minute (heat amount: 25 MJ/t of blended raw materials as suction gas sensible heat), but this embodiment is not limited to this example. This is because the ignition time in the test case was set taking into consideration the heat loss in the pot test. In an actual machine (commercial sintering machine), if the operation is performed with an ignition time of, for example, 30 seconds, there is no need to set this ignition time to 1 minute, and the re-ignition sintering method can be performed while maintaining the ignition time of the actual operation. Similarly, the re-ignition time does not need to be 1 minute in an actual machine.
- Reference Signs List 1 1... group of raw material tanks, 2... drum mixer, 3... ignition furnace, 31... igniter, 32... ignition furnace hood, 32a... partition wall (downstream side), 4... re-ignition furnace, 41... re-ignition furnace hood, 42a... partition wall (upstream side), 42b... partition wall (downstream side), 5... pallet, 5x... pallet travel direction, 51... grate bar, 52... main frame, 53... pallet side wall, 6... downward suction device, 6x... downward suction, 6 1 ... Wind box, 62 ... Wind leg, 63 ... Damper, 64 ... Duct, 65 ... Blower, 7 ... Atmospheric air suction area, 7x ... Oxygen-enriched gas suction area, 8 ...
- Inclined flat chute type charging device 81 ... Blended raw material surge hopper, 82 ... Inclined flat chute, 9 ... Oxygen-enriched gas supply equipment, 91 ... Hood of oxygen-enriched gas supply equipment, 92 ... Gas pipe, 10 ... Raw material packed bed, 10x ... Slope, 10A ... Combustion zone, 10A 1 ... Initial ignition combustion zone, 10A 2 ... Re-ignition combustion zone, 10B ... Sinter cake, 16 ... Stand, 16a ... Sinter cake support surface, 101, 103, 104 ... DL type sintering machine, S ... Section
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Manufacturing & Machinery (AREA)
- Geochemistry & Mineralogy (AREA)
- Geology (AREA)
- General Life Sciences & Earth Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Environmental & Geological Engineering (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Manufacture And Refinement Of Metals (AREA)
Abstract
最初の点火を行う点火炉と、該点火炉の下流側に所定の間隔を空けて配置されて再点火を行う再点火炉とを備え、下方吸引により焼結を進行させるドワイトロイド式焼結機を用いて焼結鉱を製造する焼結鉱の製造方法において、配合原料の凝結材として、燃焼開始温度が550℃を超える低燃焼性炭材と、燃焼開始温度が550℃以下である高燃焼性炭材とを使用し、高燃焼性炭材において粒度2.8mm以上の比率が30質量%以上80質量%以下とする。
Description
本発明は、高炉原料用の焼結鉱を製造する焼結鉱の製造方法に関する。
高炉製銑の主原料は、焼結鉱である。近年、焼結鉱の製造方法として、焼結歩留の向上を目的とした二段階(2回)の点火を行う再点火焼結法(下記特許文献1)が提案されている。再点火焼結法は、第1の点火終了後、大気吸引領域において所定の時間大気を吸引させ、続いて、第2の点火(再点火)を実施する技術である。また、再点火焼結法を改良した技術として、原料充填層の層厚方向において炭材(凝結材)の偏析を強化する方法(下記特許文献2)や、ロガ指数が10以下である石炭を原炭として乾留したチャー(後述する高燃焼性炭材)を凝結材として活用する方法(下記特許文献3)が提案されている。
通常の一段階(1回)の点火のみを行う一段点火焼結法については、高燃焼性炭材(コークスや無煙炭などの低燃焼性炭材よりも燃焼開始温度の低い炭材)を活用する技術がすでに種々示されている。例えば、高燃焼性炭材と低燃焼性炭材との適正配合比に関する技術(下記特許文献4)、高燃焼性炭材の好ましい粒度に関する技術(下記特許文献5)、および造粒工程での添加方法(下記特許文献4、6)などが提案されている。
特許文献1には、上流から下流に至る進行方向に連続して設けられ、焼結原料が装入される複数のパレットと、複数のパレットのうち、進行方向上流のパレット内の原料充填層を上部から点火する点火器と、複数のパレットの下方から大気を吸引する風箱と、点火器の下流側に離間して配置され、原料充填層の上面の全幅をフレーム加熱するフレーム加熱装置と、点火器及びフレーム加熱装置の間に形成され、下方吸引により大気が吸引され、上面からは直接加熱が行われない大気吸引領域と、を備えるドワイトロイド(DL)式焼結機を用いた焼結鉱の製造方法(再点火焼結法)が開示されている。被還元性を維持しつつ、焼結鉱の歩留、冷間強度の両方を向上させることができることが記載されている。
特許文献2には、ドワイトロイド式焼結機を用いて、上流から下流に至る進行方向に循環移動する複数のパレットに対して、それぞれ原料充填層を下層と表層とに分けて形成し、下層の固体可燃物の濃度を表層の固体可燃物の濃度より低くして焼結鉱を製造するにあたり、進行方向上流のパレット内の原料充填層に対して上方から点火し、原料充填層の点火部が進行方向下流側に移動した後、該点火部に対して再点火を行う焼結鉱の製造方法が開示されている。表層の固体可燃物の濃度を高くしながらも、未燃分を減らして熱として有効活用できるようにすることで、焼成速度を高めつつ、歩留まりを高めて、生産性を更に向上させることができることが記載されている。
特許文献3には、点火器と、点火器下流側に離間して設けられ、原料充填層の上面をフレーム加熱するフレーム加熱装置とを備えたドワイトロイド(DL)式焼結機を用い、装入される配合原料は、炭材の一部または全量のみを取り除いた原料を、水分を添加して造粒する途中または造粒した後に、取り除いていた炭材を前記原料に添加したものであり、後から添加する炭材を、ロガ指数が10以下である石炭を原炭として乾留したチャー(石炭チャー)とする技術が開示されている。再点火焼結法の造粒工程において、石炭チャーを後から添加することで、歩留および生産性が向上することが記載されている。
特許文献4には、焼結原料の凝結材として、粉コークス及び無煙炭の少なくともどちらか一方からなる低燃焼性炭材と、低燃焼性炭材よりも燃焼開始温度が低い炭材である高燃焼性炭材とを用い、高燃焼性炭材の炭素分は、凝結材の炭素分に対して質量比率が25質量%~75質量%であり、低燃焼性炭材及び高燃焼性炭材の少なくともいずれか一方を、焼結原料の造粒工程後半において添加する焼結鉱の製造方法が、焼結の歩留を向上させる技術として開示されている。
特許文献5には、鉄鉱石、副原料、返鉱及び固体炭材からなる焼結原料を造粒処理して得られた擬似粒子を焼結機のパレットに偏析装入し、原料層の高さ方向に炭素濃度差を生じさせて焼成する焼結鉱の製造方法において、焼結原料中の固体炭材の一部又は全部として、アブラ椰子核殻を加熱処理して製造した固体炭化物であるアブラ椰子核殻炭を配合する際に、平均粒度を2.7mm~6.0mmに調整したアブラ椰子核殻炭を配合する技術が開示されている。アブラ椰子核殻炭を焼結用固体炭材として利用することにより、地球温暖化ガスである炭酸ガス排出量を抑制するとともに、適正な操業技術により、焼結生産性を向上させる。また、焼結原料中の固体炭材の一部として、アブラ椰子核殻炭を配合する際に、平均粒度を、固体炭材である粉コークス又は無煙炭の平均粒度よりも1.0mm~4.5mmの範囲内で粗粒に調整したアブラ椰子核殻炭を配合することが好ましいとしている。
特許文献6には、石炭のロガ指数を算出し、このロガ指数が10以下である石炭を用いて焼結用炭材を製造する焼結用炭材の製造方法、および焼結用原料の造粒工程において、予め決められた配合量の少なくとも一部の焼結用炭材を、造粒工程の途中又は造粒工程の終了時に後添加することが開示されている。焼結鉱を製造するときに発生するNOxの排出量を低減することができることが記載されている。
高燃焼性炭材とは、燃焼性の高い炭材、すなわち、燃焼速度の速い炭材である。炭材(凝結材)の燃焼速度に関しては、すでに種々の測定法や測定結果が公表されているが、十分管理された測定を行わないと得られる測定結果が大きくばらつく問題点がある。そのため、燃焼速度を表す指標として、燃焼速度と実質的な対応関係がある燃焼開始温度(着火温度)が採用されている。本発明において、低燃焼性炭材とは、コークスや無煙炭などの燃焼開始温度が高い炭材(燃焼開始温度が550℃を超える炭材)であり、高燃焼性炭材とは、低燃焼性炭材よりも燃焼開始温度が低い炭材(燃焼開始温度が550℃以下の炭材)をいう。
上述のように、一段点火焼結法において高燃焼性炭材を使用することにより、原料充填層中の炭材の燃焼速度向上を介して歩留および生産率が向上するとされ、再点火焼結法においても高燃焼性炭材である石炭チャーを使用することにより、歩留および生産率が向上するとされている。しかしながら、これまで、再点火焼結法において、高燃焼性炭材使用の好ましい要件について、詳細な検討はなされてこなかった。本発明者らは、この要件について鋭意検討した結果、特定の条件下において、生産率がより向上することを見出し、本発明を完成した。本発明は、再点火焼結法の技術を用いた際に、生産率がより向上する焼結鉱の製造方法を提供することを目的とする。
本発明のいくつかの観点によれば、以下が提供される。
[1]最初の点火を行う点火炉と、該点火炉の下流側に所定の間隔を空けて配置されて再点火を行う再点火炉とを備え、下方吸引により焼結を進行させるドワイトロイド式焼結機を用いて焼結鉱を製造する焼結鉱の製造方法において、
配合原料の凝結材として、燃焼開始温度が550℃を超える低燃焼性炭材と、前記燃焼開始温度が550℃以下である高燃焼性炭材とを使用し、
前記高燃焼性炭材において粒度2.8mm以上の比率が30質量%以上80質量%以下である、焼結鉱の製造方法。
[2]前記高燃焼性炭材に、木材炭化物の集合体を圧縮して成形した圧縮成形物を粉砕した粉砕物を使用する、[1]に記載の焼結鉱の製造方法。
[3]前記木材炭化物の集合体を圧縮して成形した圧縮成形物を粉砕した粉砕物の製造は、木材を乾留して木材炭化物を製造する炭化物製造工程と、前記木材炭化物を必要に応じて粉砕して木材炭化物粒子とし、該木材炭化物粒子を、単体で、又は、バインダと混錬して、木材炭化物の集合体を製造する集合体製造工程と、前記集合体を圧縮して成形した圧縮成形物を製造する圧縮工程と、前記圧縮成形物を粉砕する圧縮品粉砕工程と、を有する、[2]に記載の焼結鉱の製造方法。
[4]前記凝結材の炭素分に対する前記高燃焼性炭材の炭素分の質量比率が25質量%以上75質量%以下である、[1]から[3]のいずれか一項に記載の焼結鉱の製造方法。
[5]前記低燃焼性炭材の平均粒度が0.8mm以上1.2mm以下の範囲である、[4]に記載の焼結鉱の製造方法。
[6]前記配合原料の装入装置として、偏析強化型装入装置を用いる、[5]に記載の焼結鉱の製造方法。
[7]前記凝結材のうち、前記低燃焼性炭材のみを造粒工程後半において添加する、[5]に記載の焼結鉱の製造方法。
[8]焼結ストランド上流側の再点火炉出口までの区間でのみ下方吸引の風量を抑制する、[1]から[3]のいずれか一項に記載の焼結鉱の製造方法。
[9]前記焼結ストランド上流側の再点火炉出口までの区間で吸引される大気の平均空筒風量を、前記再点火炉出口より下流側の区間で吸引される大気の平均空筒風量に対して60%以上80%以下とする、[8]に記載の焼結鉱の製造方法。
[10]前記焼結ストランド上流側の再点火炉出口までの区間のウインドボックス若しくはウインドレグにおける平均負圧を、再点火炉出口より下流側の区間のウインドボックス若しくはウインドレグにおける平均負圧に対して40%以上70%以下とする、[8]に記載の焼結鉱の製造方法。
[11]前記点火炉と前記再点火炉との間の区間をパレットが通過するのに要する時間である離間時間を30秒以上2分以下とする、[8]に記載の焼結鉱の製造方法。
[12]前記点火炉と前記再点火炉との間の区間をパレットが通過するのに要する時間である離間時間が1分以上であり、前記区間において焼結層の表層側から下方吸引される吸引ガスの酸素濃度が30体積%以上である、[1]から[3]のいずれか一項に記載の焼結鉱の製造方法。
[13]前記離間時間が5分以下であり、前記吸引ガスの酸素濃度が40体積%以下である、[12]に記載の焼結鉱の製造方法。
[14]焼結層の表層側から下方吸引される吸引ガスの酸素富化開始は、再点火終了後とし、前記酸素富化開始から酸素富化終了までの酸素富化時間は30秒以上であり、前記酸素富化時間において下方吸引される前記吸引ガスの酸素濃度が30体積%以上である、[1]から[3]のいずれか一項に記載の焼結鉱の製造方法。
[15]前記酸素富化時間が2分以下であり、前記吸引ガスの酸素濃度が40体積%以下である、[14]に記載の焼結鉱の製造方法。
[16]前記酸素富化開始は、再点火終了時刻から0秒越え30秒以内である、[14]に記載の焼結鉱の製造方法。
[17]前記酸素富化開始は、再点火終了時刻から0秒越え10秒以内である、[16]に記載の焼結鉱の製造方法。
[18]前記配合原料が装入されるパレットには、シンターケーキ支持面を有する支持部材が原料充填層に埋設するようにグレートバー上に垂設されている、[1]から[3]のいずれか一項に記載の焼結鉱の製造方法。
[1]最初の点火を行う点火炉と、該点火炉の下流側に所定の間隔を空けて配置されて再点火を行う再点火炉とを備え、下方吸引により焼結を進行させるドワイトロイド式焼結機を用いて焼結鉱を製造する焼結鉱の製造方法において、
配合原料の凝結材として、燃焼開始温度が550℃を超える低燃焼性炭材と、前記燃焼開始温度が550℃以下である高燃焼性炭材とを使用し、
前記高燃焼性炭材において粒度2.8mm以上の比率が30質量%以上80質量%以下である、焼結鉱の製造方法。
[2]前記高燃焼性炭材に、木材炭化物の集合体を圧縮して成形した圧縮成形物を粉砕した粉砕物を使用する、[1]に記載の焼結鉱の製造方法。
[3]前記木材炭化物の集合体を圧縮して成形した圧縮成形物を粉砕した粉砕物の製造は、木材を乾留して木材炭化物を製造する炭化物製造工程と、前記木材炭化物を必要に応じて粉砕して木材炭化物粒子とし、該木材炭化物粒子を、単体で、又は、バインダと混錬して、木材炭化物の集合体を製造する集合体製造工程と、前記集合体を圧縮して成形した圧縮成形物を製造する圧縮工程と、前記圧縮成形物を粉砕する圧縮品粉砕工程と、を有する、[2]に記載の焼結鉱の製造方法。
[4]前記凝結材の炭素分に対する前記高燃焼性炭材の炭素分の質量比率が25質量%以上75質量%以下である、[1]から[3]のいずれか一項に記載の焼結鉱の製造方法。
[5]前記低燃焼性炭材の平均粒度が0.8mm以上1.2mm以下の範囲である、[4]に記載の焼結鉱の製造方法。
[6]前記配合原料の装入装置として、偏析強化型装入装置を用いる、[5]に記載の焼結鉱の製造方法。
[7]前記凝結材のうち、前記低燃焼性炭材のみを造粒工程後半において添加する、[5]に記載の焼結鉱の製造方法。
[8]焼結ストランド上流側の再点火炉出口までの区間でのみ下方吸引の風量を抑制する、[1]から[3]のいずれか一項に記載の焼結鉱の製造方法。
[9]前記焼結ストランド上流側の再点火炉出口までの区間で吸引される大気の平均空筒風量を、前記再点火炉出口より下流側の区間で吸引される大気の平均空筒風量に対して60%以上80%以下とする、[8]に記載の焼結鉱の製造方法。
[10]前記焼結ストランド上流側の再点火炉出口までの区間のウインドボックス若しくはウインドレグにおける平均負圧を、再点火炉出口より下流側の区間のウインドボックス若しくはウインドレグにおける平均負圧に対して40%以上70%以下とする、[8]に記載の焼結鉱の製造方法。
[11]前記点火炉と前記再点火炉との間の区間をパレットが通過するのに要する時間である離間時間を30秒以上2分以下とする、[8]に記載の焼結鉱の製造方法。
[12]前記点火炉と前記再点火炉との間の区間をパレットが通過するのに要する時間である離間時間が1分以上であり、前記区間において焼結層の表層側から下方吸引される吸引ガスの酸素濃度が30体積%以上である、[1]から[3]のいずれか一項に記載の焼結鉱の製造方法。
[13]前記離間時間が5分以下であり、前記吸引ガスの酸素濃度が40体積%以下である、[12]に記載の焼結鉱の製造方法。
[14]焼結層の表層側から下方吸引される吸引ガスの酸素富化開始は、再点火終了後とし、前記酸素富化開始から酸素富化終了までの酸素富化時間は30秒以上であり、前記酸素富化時間において下方吸引される前記吸引ガスの酸素濃度が30体積%以上である、[1]から[3]のいずれか一項に記載の焼結鉱の製造方法。
[15]前記酸素富化時間が2分以下であり、前記吸引ガスの酸素濃度が40体積%以下である、[14]に記載の焼結鉱の製造方法。
[16]前記酸素富化開始は、再点火終了時刻から0秒越え30秒以内である、[14]に記載の焼結鉱の製造方法。
[17]前記酸素富化開始は、再点火終了時刻から0秒越え10秒以内である、[16]に記載の焼結鉱の製造方法。
[18]前記配合原料が装入されるパレットには、シンターケーキ支持面を有する支持部材が原料充填層に埋設するようにグレートバー上に垂設されている、[1]から[3]のいずれか一項に記載の焼結鉱の製造方法。
最初の点火を行う点火炉と、該点火炉の下流側に所定の間隔を空けて配置されて再点火を行う再点火炉とを備え、下方吸引により焼結を進行させるドワイトロイド式焼結機を用いた焼結鉱の製造方法において、凝結材として低燃焼性炭材と高燃焼性炭材とを併用し、高燃焼性炭材において粒度2.8mm以上の比率を30質量%(mass%)以上80質量%以下とする本発明によれば、生産率をより向上させることができる。
以下に、本発明とその好適な各実施形態について、図面を参照しながら詳細に説明する。なお、本明細書および図面において、実質的に同一の機能を有する構成については、同一または同様の名称、もしくは、同一または同様の符号を付することにより重複説明を省略する。
≪第1実施形態≫
まずは、再点火焼結法に使用されるドワイトロイド(DL)式焼結機と、それを用いた焼結鉱の製造方法について説明する。再点火焼結法に使用されるDL式焼結機には、第1の点火を実施する点火器のパレット進行方向下流側に、所定の間隔(後述する「離間距離」に該当)を空けて、第2の点火を実施する再点火器が設けられる。再点火器は、第1の点火完了後の原料充填層の上面(表面)を、フレーム(火炎)により加熱するフレーム加熱装置である。
まずは、再点火焼結法に使用されるドワイトロイド(DL)式焼結機と、それを用いた焼結鉱の製造方法について説明する。再点火焼結法に使用されるDL式焼結機には、第1の点火を実施する点火器のパレット進行方向下流側に、所定の間隔(後述する「離間距離」に該当)を空けて、第2の点火を実施する再点火器が設けられる。再点火器は、第1の点火完了後の原料充填層の上面(表面)を、フレーム(火炎)により加熱するフレーム加熱装置である。
図1は、再点火焼結法に使用されるドワイトロイド(DL)式焼結機の一例を示す概要図である。なお、以下の説明においては、パレット進行方向5xに基づき、給鉱側(図1の左側)を上流側、排鉱側(図1の右側)を下流側とする。図1に示すように、DL式焼結機101には、点火炉3の下流側に、所定の間隔(離間距離)を空けて、再点火炉4が設けられている。図1に示すように、点火炉3は、第1(最初)の点火(初点火)を実施する点火器31とそれを覆うフード32とを有する。また、再点火炉4は、第2(再度)の点火(再点火)を実施する再点火器41とそれを覆うフード42とを有する。例えば、点火炉3は一段点火焼結法に用いられる、バーナー等を備えた点火炉であり、再点火炉4にも一段点火焼結法に用いられる点火炉と同じものを使用することができる。図1に示すように、点火炉3のフード32と再点火炉4のフード42とはそれぞれ独立しており、パレット進行方向5xにおいて所定の間隔(離間距離)を空けて設けられた点火炉3と再点火炉4の間には、大気吸引領域7が設けられている。
大気吸引領域7は、パレット内の原料充填層10上面に対して、バーナー等による加熱を行わず、かつ、下方吸引6xにより大気(空気)が吸引されて原料充填層10内に供給される区間(領域)である。図1に示すように、点火炉3のフード32の下流側の隔壁32aと再点火炉4のフード42の上流側の隔壁42aとの間の区間が大気吸引領域7である。ここで、本明細書において、隔壁32aと隔壁42aの間のパレット進行方向5xの距離、すなわち、大気吸引領域7のパレット進行方向5xの距離を、離間距離といい、この離間距離をDL式焼結機101のパレット(無限軌道上を移動する、連結された複数のパレット台車、図示省略)が通過するのに要する時間(大気吸引領域通過時間)を離間時間という。なお、本明細書において、原料充填層10とは、点火(初点火を含む)や再点火の有無に関係なく、パレット上に形成された配合原料の層をいい、点火により焼結反応が進行している燃焼帯10Aや、焼結反応が完了しているシンターケーキ10Bなどを含む。また、以下の説明において、初点火が実施された後(焼成開始後)の原料充填層10を、焼結層ともいう。
ここで、上述した離間時間の適正範囲の下限値(最小値)は、燃焼帯10Aの拡大が十分に得られる限界であり、離間時間の適正範囲の上限値(最大値)は、初点火後の焼結層上層の冷却に支配される。そのため、離間時間の適正範囲は、実施形態(第1実施形態~第5実施形態)によって異なり(詳細は後述)、0.5分以上6分以下の範囲内とすることができる。適正範囲の下限値未満の場合、焼結層上層の燃焼帯10Aに十分な酸素を供給することができず、燃焼帯10Aの拡大が抑制される。一方。適正範囲の上限値を超えると焼結層上層が焼結反応以下の温度に低下し、再点火技術の生産率向上効果を得にくい 。次に、離間距離は、離間時間にパレットによる原料充填層10の移送速度(パレット速度)を乗じて求まる。標準的な商用焼結機のパレット速度3m/minを採用すると離間距離の適正範囲は1.5m以上18m以下となる。無論、パレット速度に応じて、適正な離間距離も変化する。従って、焼結機毎に離間距離は異なる。
再点火焼結法による焼結鉱の製造方法は、一段点火焼結法に再点火工程が加わる技術である(詳細は後述)。焼結鉱の原料(焼結原料)には、鉄鉱石(粉)等の鉄原料、スケール・製鉄ダスト等の含鉄雑原料、橄欖岩等のMgO含有副原料、石灰石等のCaO含有副原料、返鉱、焼結(凝結)の燃料となる凝結材(炭材)などが、適宜用いられる。図1に示すように、各焼結原料は原料槽群1の各原料槽(11~1X)内に貯留され、所定の割合で切り出されて配合される。配合された原料(配合原料)は、ドラムミキサー2に投入されて造粒処理されて疑似粒子が作られる。造粒処理された配合原料(以下、造粒処理後の配合原料を配合原料造粒物ともいう)は、配合原料サージホッパ81から床敷鉱(図示省略)を敷きつめたパレット上に装入されて、原料充填層10が形成される。
原料充填層10はパレットの移動によりパレット進行方向5xへ連続的に移動する。原料充填層10が点火炉3下まで移動すると、点火器31のフレームにより原料充填層10表面の炭材が点火され、原料充填層10の焼結が開始される。パレット進行方向5xに移動するパレットの下側には下方吸引装置6(図6参照)が設けられており、パレットの下方から大気(空気)を吸引する。この下方吸引6xにより原料充填層10内に酸素が供給され、原料充填層10中の凝結材の燃焼(燃焼帯10A)は上部から下部に向けて進行し、凝結材の燃焼熱により原料充填層10が順次焼成される。原料充填層10が大気吸引領域7を通過して再点火炉4下まで移動すると、原料充填層10は再点火器41のフレームにより再点火される。原料充填層10の焼結により得られたシンターケーキ10Bは、DL式焼結機101のパレット進行方向5xの下流端で排鉱され、破砕、篩分け等により整粒されて、高炉装入可能な粒度の焼結鉱が高炉製銑の原料となる。
上述したように、再点火焼結法では、点火炉3による点火後、大気吸引領域7を通過したのちに、すなわち、所定の時間間隔(上述の離間時間に該当)を空けたのちに、原料充填層10に対して再点火炉4による再点火が実施される。点火炉3下流側の大気吸引領域7においては、上方からの加熱、すなわち点火器などの火炎バーナー等による燃焼が行われていないため、原料充填層10内に十分に酸素が供給され、燃焼帯10A内の凝結材の燃焼が進行する。また、大気吸引領域7は、点火炉3と再点火炉4の間に設けられていることから、空塔風速上昇により凝結材の燃焼がより下部まで進行する。その結果、原料充填層10の上層部において、燃焼帯10Aの厚みが拡大する。そして、大気吸引領域7において燃焼帯10Aの厚みが拡大した上で、大気吸引領域7の下流側に設けられた再点火炉4のフレームにより原料充填層10上面が再点火される。再点火により、点火炉3による点火では未着火で燃焼しなかった、燃え残りの凝結材(残留凝結材)を余さず燃焼させることができ、また、再点火と残留凝結材の燃焼により温められた気体が原料充填層10内に吸引されることにより、原料充填層10の上層部の高温保持時間(例えば、1200℃以上に保持される時間)が増加して焼結反応が促進され、歩留向上効果が得られる。離間時間は、上述したように、大気吸引領域7をパレットが移動するのに要する時間、すなわち、初点火終了後再点火が実施されるまでの時間であり、本実施形態においては、例えば、0.5分以上3.5分以下とすることができる。さらに高燃焼性炭材を併用することによる燃焼促進により、30秒以上2分以内が好ましい。
一段点火焼結法と同様、再点火焼結法においても、配合原料造粒物をパレット上に装入する際には偏析機構を備える装入装置が用いられ、通常、図1に示す傾斜平板シュート式装入装置8などが使用される。傾斜平板シュート式装入装置8は、配合原料造粒物が貯留される配合原料サージホッパ81と、下方に向かってパレット進行方向5xと反対方向に傾斜して装備される傾斜平板シュート82とを備える。配合原料サージホッパ81内の配合原料造粒物を、傾斜平板シュート82を用いてパレット上に装入することにより、原料充填層10の上流側に斜面10xを形成する。この斜面10xにおける配合原料造粒物の転動分級作用により、原料充填層10の層厚(層高)方向に粒度偏析が起きる。具体的には、粒度が小さいものが原料充填層10の上層側に、粒度が大きいものが原料充填層10の下層側に装入されやすくなる。
ここで、上述した配合原料の造粒処理は原料充填層10の通気性確保を目的としており、一般的には、第3版鉄鋼便覧II製銑・製鋼P84(図2.4)[昭和54年10月15日]に記載のように、造粒処理の主対象物である粒度0.25mm未満の微粉原料は、1.00mm以上の粒子を核粒子としてその周囲に付着して疑似粒子を形成するが、0.25mm以上1.00mm未満の中間粒度の粒子は造粒が難しく疑似粒子になりにくい、とされている。そのため、造粒処理を行った場合においても、配合する凝結材の粒度を調整し、上述の傾斜平板シュート式装入装置8を用いて装入することにより、原料充填層高さ方向における凝結材の分布を調整することが可能となる。
凝結材には、通常、コークスや無煙炭が用いられる。焼結用のコークスは、高炉用のコークスを製造する過程で、高炉使用に適さない粒度(通常40mm以下)のものを、焼結使用に適する粒度10mm未満に粉砕したものである。但し、破砕後篩分けしない場合もあるいので若干の10mm以上の粒子が残存する場合もある。高炉用の塊コークスに対して焼結用のコークスを粉コークスとも呼ぶ。無煙炭は、石炭に付与される分類(褐炭、瀝青炭、無煙炭)の一つで、最も炭化が進行した石炭である。燃料比(固定炭素/揮発分(質量比))で4以上の石炭、簡易には、炭素含有量が90質量%以上の石炭が無煙炭に分類される。なお、無煙炭も粉コークスと同様に概ね粒度10mm未満となるように破砕処理される。
発明者らは、上述の再点火焼結法において、以下の2点に着目した。1点目は、凝結材として低燃焼性炭材に加えて高燃焼性炭材を使用し、かつ、高燃焼性炭材を粗粒化して原料充填層10の下層に偏在させることで、焼結の開始から終了まで粗粒化による通気抵抗の低減効果が享受できることである。また、2点目は、粗粒化の対象を高燃焼性炭材とすれば、高燃焼性ゆえに粗粒化による燃焼終了時刻の遅れに起因する焼結鉱減産の影響が少ないと考えられることである。発明者らは、この2点に着目し、鋭意検討して、本発明を完成するに至った。また、発明者らは、本発明に適用可能な影響因子(高燃焼性炭材の種類、低燃焼性炭材の粒度、偏析装入方法など)についても併せて検討した。
本発明は、最初の点火を行う点火炉と、該点火炉の下流側に所定の間隔を空けて配置されて再点火を行う再点火炉とを備え、下方吸引により焼結を進行させるドワイトロイド式焼結機を用いて焼結鉱を製造する焼結鉱の製造方法において、配合原料の凝結材として、燃焼開始温度が550℃を超える低燃焼性炭材と、燃焼開始温度が550℃以下である高燃焼性炭材とを使用し、高燃焼性炭材のうち粒度2.8mm以上の比率が30質量%以上80質量%以下である、焼結鉱の製造方法である。最初の点火とは、パレット内に装入された原料充填層10表面の凝結材に最初に火を付けること(1番目の点火)である。再点火とは、最初の点火完了後に行う再度火を付けること(2番目の点火)である。下方吸引とは、パレットの下方から大気(空気)を吸引することであり、原料充填層10の上方の酸素含有ガスを原料充填層10内に吸い込み、原料充填層10内に酸素を供給する。以下に、まず、凝結材として使用する低燃焼性炭材および高燃焼性炭材について順に説明する。なお、本明細書において、「粒度」とは、JIS Z8801-1:2019に準じた篩を用いた篩分けにより測定した値(粒径)である。
(低燃焼性炭材と高燃焼性炭材)
焼結原料の凝結材(炭材)は、低燃焼性炭材と高燃焼性炭材とに分類される。
低燃焼性炭材は、例えば、コークスや無煙炭であり、高燃焼性炭材は、低燃焼性炭材より燃焼性の高い炭材(燃焼開始温度が低い炭材)である。具体的には、低燃焼性炭材と高燃焼性炭材とは示差熱天秤分析で得られる燃焼開始温度に基づいて分類される。低燃焼性炭材は燃焼開始温度が550℃を超える炭材であり、高燃焼性炭材は燃焼開始温度が550℃以下の炭材である。燃焼開始温度(着火温度)は、示差熱天秤-質量分析装置(TG-DTA/MS)により、大気気流中での熱重量測定(TG:Thermogravimetry)で得られる温度-重量変化曲線に基づいて、急激な重量減少が始まる温度として定義する。
焼結原料の凝結材(炭材)は、低燃焼性炭材と高燃焼性炭材とに分類される。
低燃焼性炭材は、例えば、コークスや無煙炭であり、高燃焼性炭材は、低燃焼性炭材より燃焼性の高い炭材(燃焼開始温度が低い炭材)である。具体的には、低燃焼性炭材と高燃焼性炭材とは示差熱天秤分析で得られる燃焼開始温度に基づいて分類される。低燃焼性炭材は燃焼開始温度が550℃を超える炭材であり、高燃焼性炭材は燃焼開始温度が550℃以下の炭材である。燃焼開始温度(着火温度)は、示差熱天秤-質量分析装置(TG-DTA/MS)により、大気気流中での熱重量測定(TG:Thermogravimetry)で得られる温度-重量変化曲線に基づいて、急激な重量減少が始まる温度として定義する。
高燃焼性炭材には、例えば、石炭チャーやバイオマス炭(アブラ椰子核殻炭や、木材を乾留して製造した木材炭化物など)などがある。低燃焼性炭材であるコークス、無煙炭の燃焼開始温度(着火温度)は、それぞれ、約670℃、約690℃である。それに対し、高燃焼性炭材の燃焼開始温度は低い。石炭チャー(セミコークス、褐炭チャー、および亜瀝青炭チャー)の燃焼開始温度は430℃以上550℃以下、アブラ椰子核殻炭の燃焼開始温度は約470℃、木材炭化物の燃焼開始温度は400℃以上450℃以下程度の温度である。石炭チャーとバイオマス炭は、着火温度がおおよそ同じ温度であるので、同様の燃焼性を有する。また、詳細は後述するが、バイオマス炭(バイオ炭)である木材炭化物を主原料とした圧縮成形物も高燃焼性炭材であり、これを粉砕した粉砕物を用いることもできる。この圧縮成形物の燃焼開始温度は250℃以上450℃以下程度の低温であり、圧縮成形物の粉砕物も同じである。なお、高燃焼性炭材の燃焼速度は、コークスに対して、1.03~30.00倍であることが知られている。
ここで、石炭チャーとは、例えば、粘結性の低い瀝青炭、褐炭、および亜瀝青炭などを原炭として、700℃以上900℃以下の温度で乾留して製造した炭材(チャー)である。粘結性の低い瀝青炭、褐炭、亜瀝青炭を乾留して製造した炭材を、それぞれ、セミコークス、褐炭チャー、亜瀝青炭チャーという。これらの炭材は、原料となる石炭(混炭を含む)を、熱分解炉(例えばロータリーキルン)により乾留して製造される。
また、バイオマス炭とは、例えば、アブラ椰子核殻や木材などの生物資源(バイオマス)を材料として、これを加熱処理(乾留)して製造された炭材である。アブラ椰子核殻炭(PKS炭)は、アブラ椰子核殻(Palm Kernel Shell)を加熱処理(乾留)して製造した固体炭化物である。なお、PKS炭の製造方法については、例えば上述した特許文献5などの文献を参照することによって実施可能であるため、ここでは詳細な説明は省略する。
また、上述したように、焼結原料の凝結材として、バイオマス炭(バイオ炭)である木材炭化物を主原料とした圧縮成形物の粉砕物を用いてもよい。この圧縮成形物は、木材炭化物の集合体を圧縮して成形した圧縮成形物(以下、便宜上、単に木炭圧縮成形物ともいう)であり、これを粉砕した粉砕物(以下、便宜上、単に木炭圧縮成形粉砕物ともいう)を凝結材として用いる。ここで、「木材炭化物」とは、「木材」を加熱処理(乾留)して得られる炭化物であり、上記「木材」とは、樹木の幹や枝、またはこれらが材料となっているものをいい、例えば、建築廃材なども含む。また、「木材炭化物の集合体」とは、木材炭化物粒子の集合体、または、バインダで接合した状態の木材炭化物粒子の集合体であり、木材炭化物粒子の大きさや形状は限定されない。「圧縮して成形した」とは、成形する際に圧縮を伴うことをいい、圧縮成形だけでなく、例えば、押し出す際に圧力を掛ける押し出し成形も含む。「主原料」とは、その固体原料の中で、全固体原料に占める使用割合(質量比)が一番多い原料である。「粉砕」とは、粉砕機(例えば、ロッドミル、ハンマークラッシャ、ロールクラッシャ、スーパーサンダー、ジョークラッシャ、フレットミルなど)で粒度を下げることをいう。
上述の木炭圧縮成形物の粉砕物は、以下のように製造する。まず、材料となる木材を入手し、この木材を乾留して木材炭化物を製造する(炭化物製造工程)。次に、製造された木材炭化物を必要に応じて粉砕等を行って木材炭化物粒子とし、この木材炭化物粒子を、単体で、または、バインダなどと混錬して、木材炭化物の集合体(以下、木材炭化物集合体という)を製造する(集合体製造工程)。バインダは、強固な集合とするために用いられる。次に、この木材炭化物集合体を圧縮して成形した圧縮成形物(木炭圧縮成形物)を製造する(圧縮工程)。そして、この木炭圧縮成形物を粉砕して、木炭圧縮成形物の粉砕物(木炭圧縮成形粉砕物)を製造する(圧縮品粉砕工程)。
炭化物製造工程において、木材炭化物は、乾留装置(外燃式ロータリーキルン、内燃式ロータリーキルン、流動層反応器、移動層反応器(シャフト炉)など)により、乾留条件(温度、時間など)を適宜設定して、木材を材料として製造される。製造された木材炭化物の揮発分(JIS M8812:2006に準じて測定)は15質量%以下となることが好ましい。例えば、杉のウッドチップであれば800℃で1時間乾留することにより、炭化物(木材炭化物)の揮発分を4.8質量%まで低減することができる。
集合体製造工程においては、炭化物製造工程で製造された木材炭化物を、必要に応じて粉砕(例えば、平均粒度を1mm以下にまで)する。木材炭化物粒子は、単体で、バインダとともに、バインダと水とともに、または、バインダと水と添加剤とともに混錬されて、木材炭化物集合体が製造される。バインダには、コーンスターチ(デンプン)、ベントナイト、コールタール、バイオマスタール、石油ピッチ、セメントなどが用いられ、また、一部のバインダ(コーンスターチなど)については強固な成形物を製造するためにアルカリや酸などの添加剤を加える。なお、混練には木材炭化物の粉砕も同時に実施可能な装置(例えば、エクストルーダー)を使用しても良い。添加するバインダ量は、木材炭化物を100質量%としたときに、1質量%以上10質量%以下の配合比率(外数)で添加することが好ましい。
圧縮工程においては、集合体製造工程において製造された木材炭化物集合体(混練物)を圧縮して成形し、圧縮成形物である木炭圧縮成形物を製造する。圧縮成形方法としては、圧縮成形機を用いても押出成形機を用いてもよく、例えば、ロール回転式圧縮成形機(リングダイ式、フラットダイ式など)を用いたロールプレス法や、2軸圧縮式成形機(スクリュー型押出成形機)を用いたタブレッティング法などを用いることができる。木炭圧縮成形物の形状は任意であり、例えば、ペレット(円柱形)、ブリケット(ピロー形)に成形する。
圧縮品粉砕工程においては、圧縮工程において製造された木炭圧縮成形物を粉砕機により粉砕して、木炭圧縮成形物の粉砕物(木炭圧縮成形粉砕物)を製造する。粉砕機には、例えば、ロッドミル、ハンマークラッシャ、ロールクラッシャ、スーパーサンダー、ジョークラッシャ、フレットミルなどが挙げられる。粉砕後に、例えば、JIS Z8801-1:2019に準じた篩を用いて篩分けし、所定の粒度のものを高燃焼性炭材として使用する。例えば、粒度が粒径10mm未満(篩目10mmの篩下)、より好ましくは粒径5mm未満(篩目5mmの篩下)の粉砕物である。
ここで、圧縮工程においては、以下のような性質を有する木炭圧縮成形物を製造することが好ましい。なお、木炭圧縮成形物の揮発分および見掛け密度は、圧縮品粉砕工程の粉砕前後で変化せず、木炭圧縮成形物の粉砕物も同様の性質を有している。
木炭圧縮成形物の揮発分(JIS M8812:2006に準じて測定)は、20質量%以下となることが好ましい。通常、焼結鉱を製造するときには、製造時に発生する排ガスを集塵する排ガス電気集塵機の故障を抑制するために、凝結材の揮発分が所定値(例えば、10質量%)以下となるように管理していることから、木炭圧縮成形物の揮発分の上限値を規定することが好ましい。木材炭化物の揮発分に対する、木炭圧縮成形物の揮発分の上昇は、集合体製造工程におけるバインダの使用による。なお、本発明においては、木炭圧縮成形物(高燃焼性炭材)を、低燃焼性炭材(粉コークス・無煙炭)と併用する。ここで、特に粉コークスの揮発分は上述した所定値(10質量%)よりも極めて低いことが多い。また、無煙炭の揮発分も5質量%前後と低い。これらの点を考慮して、木炭圧縮成形物の揮発分の上限を10質量%よりも高い20質量%に設定している。設定上限値の上昇により、揮発分の高い材料を木炭圧縮成形物の材料として用いることが可能となる。なお、木炭圧縮成形物と低燃焼性炭材(粉コークス又は/及び無煙炭)の配合比率は、使用する木炭圧縮成形物の揮発分および低燃焼性炭材の揮発分に基づいて、排ガス電気集塵機の能力に応じた揮発分の所定値を超えることのないように決定することも好ましい。
また、木炭圧縮成形物の見掛け密度は0.6g/cm3以上であることが好ましく、0.7g/cm3以上であることがより好ましい。見掛け密度は、ビーズ容積置換法によって測定される。ビーズ容積置換法とは、マイクロメリティックス社が採用している測定方法であり、測定サンプルを流動性の高いビーズであるDryFlо(疑似流体)を用いた体積置換法である。具体的には、初めにサンプルチャンバーに入れたビーズのみの体積を測定し、次にサンプルをサンプルチャンバーのビーズの層に投入して体積を測定して、2つの体積の差から測定サンプルの細孔と空洞を含む体積を算出する方法である。見掛け密度は、算出された体積で測定サンプルの質量を割った値である。木炭圧縮成形物の見掛け密度を0.6g/cm3以上とすることにより、焼結鉱を製造する際に凝結材の燃焼近傍の雰囲気温度が上昇するので、歩留向上を介して、焼結生産率の向上させることができる。但し、見掛け密度が1.3g/cm3を超えると木炭圧縮成形物の燃焼速度が低下してしまい、焼結速度が低下する。
(高燃焼性炭材の粒度)
高燃焼性炭材の粒度は次のように求められる。高燃焼性炭材を105℃で2時間以上乾燥させた後に、JIS Z8801-1:2019で規定されている篩目2.8mmの篩が設置されたロータップ振盪器を用いて5分間頭叩きで振盪させ、篩上の粒度2.8mm以上の比率を調べる。本発明では、粒度2.8mm以上の比率が30質量%以上80質量%以下である高燃焼性炭材を使用する。粒度2.8mm以上の比率が30質量%未満であると、歩留が低下し、生産率が低下する。また、粒度2.8mm以上の比率が80質量%を超えると、焼結ムラにより、生産率が低下する。
高燃焼性炭材の粒度は次のように求められる。高燃焼性炭材を105℃で2時間以上乾燥させた後に、JIS Z8801-1:2019で規定されている篩目2.8mmの篩が設置されたロータップ振盪器を用いて5分間頭叩きで振盪させ、篩上の粒度2.8mm以上の比率を調べる。本発明では、粒度2.8mm以上の比率が30質量%以上80質量%以下である高燃焼性炭材を使用する。粒度2.8mm以上の比率が30質量%未満であると、歩留が低下し、生産率が低下する。また、粒度2.8mm以上の比率が80質量%を超えると、焼結ムラにより、生産率が低下する。
本発明によれば、高燃焼性炭材を粗粒化して下層に偏在させることにより、下層における通気性を向上させることができる。下層の通気性向上により焼結時の焼結速度が速くなり、その結果、生産率が改善する。ここで、粗粒化する凝結材は高燃焼性炭材のみであり、高燃焼性炭材は燃焼速度が速いため、粗粒化による燃焼速度の低下の影響が少ない。よって、焼結速度の低下は生じにくい。さらに、焼結速度向上により燃焼帯10Aの冷却速度が上昇する。その結果、高温焼結反応で生成する液相から晶出するヘマタイト(Fe2O3)粒子が細かくなる。高炉の焼結鉱は、ヘマタイトからマグネタイト(Fe3O4)への還元の際に、結晶が膨張する。その際、生じたクラックが原因で粉化する。この粉化現象が還元粉化であるが、ここで上述のようにヘマタイト(Fe2O3)粒子が細かくなることで結晶の膨張量が低減されるため、焼結鉱の還元粉化を抑制する効果が得られる。
(粉砕した木炭圧縮成形物の使用)
本発明において、高燃焼性炭材に、木炭圧縮成形物の粉砕物を使用することが好ましい。その理由として、木材炭化物または木材炭化物の粉砕物をそのまま使用するよりも、木材炭化物または木材炭化物の粉砕物を一度圧縮して成形した後に粉砕して使用した方が、見掛け密度の上昇によって成品歩留が向上し、その結果、生産率が向上する点が挙げられる。木材炭化物または木材炭化物の粉砕物は多孔質体(一般的に見掛け密度0.6g/cm3未満)であるため優れた燃焼性を有するが、焼結速度が上昇しすぎることによりかえって焼結鉱の歩留や生産率を低下させてしまうためである。
本発明において、高燃焼性炭材に、木炭圧縮成形物の粉砕物を使用することが好ましい。その理由として、木材炭化物または木材炭化物の粉砕物をそのまま使用するよりも、木材炭化物または木材炭化物の粉砕物を一度圧縮して成形した後に粉砕して使用した方が、見掛け密度の上昇によって成品歩留が向上し、その結果、生産率が向上する点が挙げられる。木材炭化物または木材炭化物の粉砕物は多孔質体(一般的に見掛け密度0.6g/cm3未満)であるため優れた燃焼性を有するが、焼結速度が上昇しすぎることによりかえって焼結鉱の歩留や生産率を低下させてしまうためである。
(炭素分の質量比率)
本発明において、全凝結材の炭素分に対する高燃焼性炭材の炭素分の質量比率は、25質量%以上75質量%以下とすることが好ましい。全凝結材の炭素分に対する高燃焼性炭材の炭素分の質量比率は、低燃焼性炭材と高燃焼性炭材の工業分析から、各炭材(低燃焼性炭材、高燃焼性炭材)の炭素分に基づいて調整する。高燃焼性炭材の配合比率が25質量%未満であると、高燃焼性炭材配合効果である焼結速度(燃焼前線降下速度)の向上効果が得られず、高燃焼性炭材の配合比率が75質量%を超えると、高燃焼性炭材特有の高速燃焼によって、成品歩留が低下すると考えられるためである。
本発明において、全凝結材の炭素分に対する高燃焼性炭材の炭素分の質量比率は、25質量%以上75質量%以下とすることが好ましい。全凝結材の炭素分に対する高燃焼性炭材の炭素分の質量比率は、低燃焼性炭材と高燃焼性炭材の工業分析から、各炭材(低燃焼性炭材、高燃焼性炭材)の炭素分に基づいて調整する。高燃焼性炭材の配合比率が25質量%未満であると、高燃焼性炭材配合効果である焼結速度(燃焼前線降下速度)の向上効果が得られず、高燃焼性炭材の配合比率が75質量%を超えると、高燃焼性炭材特有の高速燃焼によって、成品歩留が低下すると考えられるためである。
(低燃焼性炭材の平均粒度)
本発明において、低燃焼性炭材の平均粒度が0.8mm以上1.2mm以下の範囲とすることも好ましい。低燃焼性炭材の平均粒度を細かくすることで、炭材の粒子数が増加するため、燃焼帯10Aの各部分において一辺の長さが数mm以上10mm以内の範囲内の立方体領域における熱源供与が均一化するため、成品歩留が向上する。また、偏析装入によって、熱不足となる原料充填層の上層において、凝結材量を増加させることができ、さらに成品歩留が向上する。その結果、生産率向上効果が加速する。
本発明において、低燃焼性炭材の平均粒度が0.8mm以上1.2mm以下の範囲とすることも好ましい。低燃焼性炭材の平均粒度を細かくすることで、炭材の粒子数が増加するため、燃焼帯10Aの各部分において一辺の長さが数mm以上10mm以内の範囲内の立方体領域における熱源供与が均一化するため、成品歩留が向上する。また、偏析装入によって、熱不足となる原料充填層の上層において、凝結材量を増加させることができ、さらに成品歩留が向上する。その結果、生産率向上効果が加速する。
低燃焼性炭材の平均粒度は次のように求められる。低燃焼性炭材を105℃で2時間以上乾燥させた後に、篩目(目開き寸法)の異なる5種類の篩を使用してロータップ振盪器を用いて5分間頭叩きで振盪させて分級し、各粒度区分iの試料質量wiを計測する。表1に示すように、粒度区分の境界値となる粒度(0.5mm、1.0mm、2.8mm、4.76mm、10.0mm)は分級に使用した篩の篩目である。例えば、粒度区分2「0.5-1.0」とは、0.5mmの篩目の篩で篩分けた際に篩上であり、1.0mmの篩目の篩で篩分けた際に篩下である。
平均粒度(mm)は、下記式(1)に示すように、粒度区分の代表値xi(≒中央値)を、粒度区分毎の質量分率(質量比率)で荷重して算出した算術平均径である。
平均粒度=Σwixi/Σwi ・・・式(1)
xi:粒度区分iの代表値
wi:粒度区分iの試料質量
平均粒度=Σwixi/Σwi ・・・式(1)
xi:粒度区分iの代表値
wi:粒度区分iの試料質量
(偏析強化型装入装置)
本発明において、通常の装入装置8に代えて、偏析強化型の装入装置を用いることも好ましい。ここで偏析強化型の装入装置を用いて配合原料造粒物をパレット上に装入する場合において、装入後の原料充填層を層厚(層高)方向において等間隔に5分割した際に、5分割した原料充填層の最上層の原料の平均粒度が最下層の原料の平均粒度の0.3倍以上0.5倍以下となるように装入することも好ましい。また、装入後の原料充填層を層厚(層高)方向に5分割した際に、5分割した原料充填層の最上層の炭素割合が、原料充填層全層の炭素割合の1.10倍以上1.16倍以下となるように偏析装入することも好ましい。
本発明において、通常の装入装置8に代えて、偏析強化型の装入装置を用いることも好ましい。ここで偏析強化型の装入装置を用いて配合原料造粒物をパレット上に装入する場合において、装入後の原料充填層を層厚(層高)方向において等間隔に5分割した際に、5分割した原料充填層の最上層の原料の平均粒度が最下層の原料の平均粒度の0.3倍以上0.5倍以下となるように装入することも好ましい。また、装入後の原料充填層を層厚(層高)方向に5分割した際に、5分割した原料充填層の最上層の炭素割合が、原料充填層全層の炭素割合の1.10倍以上1.16倍以下となるように偏析装入することも好ましい。
偏析強化型の装入装置(偏析強化型装入装置)とは、図1に示す傾斜平板シュート82に比較して、原料充填層の層厚方向の粒度偏析を大きくすることが可能な装入装置であり、例えば、図2に示すようなスリットバー式装入装置(大根ら、材料とプロセス10(1997),P.191、日本鉄鋼協会)、スリットワイヤー式装入装置(高井ら、材料とプロセス6(1993),P.916)、整流分散式であるISF(Intensified Sifting Feeder)式装入装置(長井ら、材料とプロセス29(2016),P.563)、ハイブリッド式磁力偏析装入装置(大山ら、材料とプロセス11(1998),P.225)、風力偏析装置(柴田ら、材料とプロセス14(2001),P.193)などである。図2に示すように、スリットバー式装入装置8Aの篩部材は、パレット幅方向に平行なワイヤ82A(又はロッド)が、パレットの上から下部に向かうにつれてその間隔が広くなるように設けられているものである(吉永ら、鉄と鋼(1987年)73巻 日本鉄鋼協会第114回講演大会講演概要集,S846)。ワイヤ(又はロッド)は、パレットの上下方向に平行となるように設けてもよい。整流分散式装入装置の篩部材は、多数のバーを原料流れに沿って並べられ、かつ上流から下流にむけて隣接のバー同士を互いに下流に向かうほど段差が大きくなるように設置して構成される(稲角ら、鉄と鋼77(1991),P.63-70)。なお、各偏析強化型装入装置の構成は上述の各文献に記載されており、各文献を参照することによって実施可能であるため、ここでは詳細な説明は省略する。
ここで、後述する発明例1-10で使用した配合原料(表6参照)を、偏析強化型装入装置の一種であるスリットバー式装入装置(大根ら、材料とプロセス10(1997),P.191、日本鉄鋼協会)を用いて実機に装入した際の、原料充填層高さ方向における原料粒度分布および炭素濃度分布を調査した結果の一例を示す。原料充填層高さ方向の試料の採取は、サンプリング装置(特開2018-044188に記載)を用いた方法で実施した。具体的には、床敷層上に置いた底蓋の上に配合原料造粒物を装入し、その後、底蓋の真上から円筒状の採取管を打ち込んで底蓋で塞いで採取した。なお、試料の採取方法は、上述の文献(特開2018-044188)を参照することによって実施可能であるため、ここでは詳細な説明は省略する。
採取した試料は、原料充填層高さ方向において等間隔に5分割(上から順に第1層~第5層とする)して、それぞれ分析に供した。表2に各層(第1層~第5層)の分析結果を示す。表2に示すように、上層(第1層)側より順に、各層の質量は4.30kg、5.16kg、4.88kg、4.62kg、5.33kgであり、質量比率は、18%、21%、20%、19%、22%となり、各層における回収質量はほぼ均等であった。表2の質量分率は、各層(第1層~第5層)の配合原料造粒物を300g分取して105℃で2時間以上乾燥させた後、横軸(粒度区分)に示す各篩目の篩を用いてロータップ振盪機を用いて15秒間頭叩きなしで振盪させ、分級して得た。なお、この操作によって造粒処理前の焼結原料の状態での粒度分布が把握でき、各層における焼結原料の各粒度区分の質量比率を存在比(質量%)として示したものである。表2の各層の平均粒度は、粒度区分の代表値と各粒度区分の質量分率に基づいて、上述の式(1)とほぼ同様に算出した算術平均径である。なお、表2において、粒度区分「+8.0」とは、8.0mmの篩目の篩で篩分けた際の篩上である。また、粒度区分「~4.0」とは、4.0mmの篩目の篩で篩分けた際の篩上であり、かつ、左の欄の粒度区分「+8.0」が示す8.0mmの篩目の篩で篩分けた際の篩下であり、粒度区分「~2.0」、「~1.0」、「~0.5」、「~0.25」、「~0.125」についても同様である。粒度区分「-0.125」とは、0.125mmの篩目の篩で篩分けた際の篩下である。
図3~図5は、表2に基づいて作成したグラフである。図3は、原料充填層の各層(第1層~第5層)における造粒前の焼結原料の状態での粒度分布を示す。また、図4は、全体の平均粒度に対する各層(第1層~第5層)の平均粒度の比率を示す。図5は、原料充填層の各層(第1層~第5層)における炭素濃度分布を示す。なお、この炭素濃度は、炭酸塩等に含まれるカーボンを除いた、燃焼に関与するフリーカーボン値であり、燃焼-赤外吸収法(JIS G1211-3:2018)に基づいて算出している。
図3に示すように、上層に対して下層は、粗粒の焼結原料、すなわち「+8.0mm」の粒度区分(8.0mm以上の粒度)、および「~4.0mm」の粒度区分(8.0mm未満4.0mm以上の粒度)の質量分率が高くなった。その結果、表2に示すように、最下層(第5層)の配合原料の平均粒度が3mm以上5mm以下の範囲内となり、最上層(第1層)の平均粒度が2mm以下となった。また、図4に示すように各層の平均粒度に違いが生じ、第1層の平均粒度が第5層の平均粒度の0.4倍となった。一方、炭素濃度については、図5に示すように最上層(第1層)が5.06質量%と最も高く、全層平均の炭素濃度の1.13倍となった。このように、高燃焼性炭材のうちの粒度2.8mm以上のものの比率が30質量%以上として粗粒化するとともに、低燃焼性炭材の平均粒度を0.8mm以上1.2mm以下の範囲として粒度を細粒化した配合原料を、偏析強化型装入装置を用いて装入することにより、焼結後脆弱になる上層に0.25mm以上1.00mm未満の粒度の凝結材が偏析して炭素濃度が濃化する。その結果、後述する発明例1-10に示すように、上層に焼結反応に必要な熱量が供給されて成品歩留向上が促進され、生産率も向上する。なお、高燃焼性炭材のうち粒度2.8mm以上の比率が増加しすぎると凝結材粒子数の減少によって、原料充填層に温度ムラが生じるため、粒度2.8mm以上の比率の上限値を80質量%とすることが好ましい。なお、ここでは偏析強化型の装入装置を用いたため、粗粒粒子および細粒粒子の偏析が顕著に表れているが、通常の傾斜平板シュートを用いた偏析装入においても同様に、粗粒粒子および細粒粒子の偏析が起きると考えられる。
(後添加法)
本発明において、焼結原料の一部である低燃焼性炭材のみ、その全量を造粒工程の後半において添加することも好ましい。ここで、「造粒工程後半」とは、後述する「全造粒時間」を前後2つに分けた場合の後半の時間帯をいう。造粒機を用いて焼結原料の造粒処理を行う造粒工程において、まず、原料槽から切り出された、低燃焼性炭材を除く焼結原料を、先に造粒機に投入して混合し、調湿して造粒を開始する(以下、低燃焼性炭材を除く焼結原料を造粒したものを先造粒物という)。一定時間経過後に、低燃焼性炭材(以下、後添加凝結材ともいう)を(造粒工程の途中で)造粒機内に投入して、配合原料造粒物を製造する。後添加凝結材を適正なタイミングで後から添加することにより、先造粒物に後添加凝結材が外装され、すなわち先造粒物へ内包されることはなく、先造粒物の表層に付着または未付着な独立粒として存在する。後添加凝結材が外装された配合原料造粒物を用いることにより、焼結工程における後添加凝結材の燃焼開始のタイミングを調整することが可能となる。
本発明において、焼結原料の一部である低燃焼性炭材のみ、その全量を造粒工程の後半において添加することも好ましい。ここで、「造粒工程後半」とは、後述する「全造粒時間」を前後2つに分けた場合の後半の時間帯をいう。造粒機を用いて焼結原料の造粒処理を行う造粒工程において、まず、原料槽から切り出された、低燃焼性炭材を除く焼結原料を、先に造粒機に投入して混合し、調湿して造粒を開始する(以下、低燃焼性炭材を除く焼結原料を造粒したものを先造粒物という)。一定時間経過後に、低燃焼性炭材(以下、後添加凝結材ともいう)を(造粒工程の途中で)造粒機内に投入して、配合原料造粒物を製造する。後添加凝結材を適正なタイミングで後から添加することにより、先造粒物に後添加凝結材が外装され、すなわち先造粒物へ内包されることはなく、先造粒物の表層に付着または未付着な独立粒として存在する。後添加凝結材が外装された配合原料造粒物を用いることにより、焼結工程における後添加凝結材の燃焼開始のタイミングを調整することが可能となる。
造粒工程における後添加は、例えば、以下のように行う。造粒には、下流側に向かって下方に中心軸が傾斜するピストンフロー形式の筒型の造粒機を使用し、下流出口から小さな搬送コンベアを造粒機内部の所定位置まで差し入れた状態とする。上流入口から後添加凝結材を除く焼結原料(以下、後添加前焼結原料ともいう)を投入すると、投入した後添加前焼結原料は混合された後に加水され、造粒されながら下流側へ移動する。後添加凝結材は搬送コンベアに載って造粒機の下流出口から内部上流側に搬入される。後添加凝結材は、造粒機内を上流側から造粒されつつ移動してきた先造粒物に、所定位置で添加されて、全焼結原料(先造粒物および後添加凝結材)がさらに造粒され、下流出口から配合原料造粒物として排出される。
後添加凝結材を添加するまでの後添加前焼結原料の造粒時間を、焼結原料の全造粒時間に対して80%以上96%以下、すなわち、後添加のタイミングを造粒工程における焼結原料の全造粒時間の80%から96%の範囲内の時間とすることが好ましい。例えば、全造粒時間が240秒である場合、低燃焼性炭材を除く配合原料(後添加前焼結原料)を225秒造粒した後、低燃焼性炭材を添加して15秒間造粒を行ってもよい。後添加が全造粒時間の80%の時間よりも早いと、後添加凝結材が造粒物への内包されてしまうことを十分に回避することができない。また、後添加が全造粒時間の96%の時間よりも遅いと、後添加凝結材の造粒処理が不十分となる。ここで、造粒工程における全造粒時間は、焼結原料が造粒機に投入されて加水されるまでの、単に混合されている時間(混合時間)は含まない。焼結においては、主としてドラムミキサーを使用するが、これは等速のピストンフロー型である。従って、後添加位置は、上述の造粒時間をドラムミキサーの機長方向の距離に対応させることにより実施することができる。
上述のように、低燃焼性炭材を後添加すると、低燃焼性炭材は配合原料の造粒物に外装されるため、原料充填層中に供給される大気中の酸素との反応が促進される。また、加熱された大気により十分な熱量供給を受けて燃焼する。その結果、凝結材の燃焼速度が向上するので、生産率がより向上する。一括造粒により内包されてしまうと、低燃焼性炭材の燃焼に必要な酸素および熱量の供給を受けにくい。一方、後添加しない高燃焼性炭材は配合原料造粒物に内包されるが、高燃焼性炭材は燃焼開始温度が低く、燃焼速度も速い。凝結材の燃焼開始のタイミングを、外装された低燃焼性炭材から内包された高燃焼性炭材へと進行させて凝結材の燃焼特性の差異を利用することにより、全体としての燃焼速度が増し、生産率がさらに向上する。
≪第2実施形態≫
本発明に風量制御技術を用いた好適様態について、第2実施形態として以下に説明する。第1実施形態に示すように、本発明では、粗粒の高燃焼性炭材を所定の量(30質量%以上80質量%以下)使用することにより生産率が改善する。しかしながら粒度2.8mm未満の高燃焼性炭材を配合原料に含んでいるため、高燃焼性炭材(特に細粒)が原料充填層上層に存在することになる。高燃焼性炭材は燃焼速度が速いため、最初の点火後から再点火開始までの区間における焼結層上層(表層から深度100mm程度まで)の温度低下が早くなり歩留が低下し、生産率の向上効果が低下してしまうという課題がある。発明者らは、その対策として、風量制御技術を用いることが有効であると考えた。以下に、まず風量制御技術を説明し、発明者の狙いを述べる。
本発明に風量制御技術を用いた好適様態について、第2実施形態として以下に説明する。第1実施形態に示すように、本発明では、粗粒の高燃焼性炭材を所定の量(30質量%以上80質量%以下)使用することにより生産率が改善する。しかしながら粒度2.8mm未満の高燃焼性炭材を配合原料に含んでいるため、高燃焼性炭材(特に細粒)が原料充填層上層に存在することになる。高燃焼性炭材は燃焼速度が速いため、最初の点火後から再点火開始までの区間における焼結層上層(表層から深度100mm程度まで)の温度低下が早くなり歩留が低下し、生産率の向上効果が低下してしまうという課題がある。発明者らは、その対策として、風量制御技術を用いることが有効であると考えた。以下に、まず風量制御技術を説明し、発明者の狙いを述べる。
(風量制御技術)
図6は、再点火焼結法に使用されるDL式焼結機における風量制御の一例を説明する概要図である。図6に示すように、DL式焼結機101のパレットの下部には、焼結反応を下方へ進行させるための下方吸引装置6(図1では図示省略)が設けられている。下方吸引装置6により焼結ストランド方向(パレット進行方向5xと同じ)における下方吸引風量が制御される。具体的には、下方吸引装置6は、原料充填層10の下方に焼結ストランド方向に連設される複数組のウインドボックス61およびウインドレグ62を備え、ウインドボックス61およびウインドレグ62はそれぞれダクト64を介してブロア65に接続されている。各組のウインドボックス61とウインドレグ62との接続部あるいはウインドレグ62の途中にはダンパー63が設けられており、ダンパー63の開度調整によって、各ウインドボックス61による吸引風量を調節して、焼結ストランド方向(パレット進行方向)における吸引風量分布を制御することができる。
図6は、再点火焼結法に使用されるDL式焼結機における風量制御の一例を説明する概要図である。図6に示すように、DL式焼結機101のパレットの下部には、焼結反応を下方へ進行させるための下方吸引装置6(図1では図示省略)が設けられている。下方吸引装置6により焼結ストランド方向(パレット進行方向5xと同じ)における下方吸引風量が制御される。具体的には、下方吸引装置6は、原料充填層10の下方に焼結ストランド方向に連設される複数組のウインドボックス61およびウインドレグ62を備え、ウインドボックス61およびウインドレグ62はそれぞれダクト64を介してブロア65に接続されている。各組のウインドボックス61とウインドレグ62との接続部あるいはウインドレグ62の途中にはダンパー63が設けられており、ダンパー63の開度調整によって、各ウインドボックス61による吸引風量を調節して、焼結ストランド方向(パレット進行方向)における吸引風量分布を制御することができる。
発明者らは、再点火焼結法を用いる本発明の上記課題について、風量抑制領域を焼結ストランド上流側の再点火炉出口までに限定し、再点火終了後は風量抑制を行わないことにより、焼結層上層の焼結速度低下抑制かつ成品歩留大幅向上によって生産率向上効果が得られるのではないかと考え、焼結実験を重ねて、以下に示す好ましい実施形態を見出した。加えて、風量抑制領域において低減する風量や圧力、再点火のタイミング(離間時間)を適正化するための構成についても検討した。以下、これらの内容について説明する。
本発明を実施する際には、焼結ストランド上流側の焼結ストランド上流側端部から再点火炉出口までの区間(図6の区間S)でのみ下方吸引の風量を抑制することが好ましい。焼結ストランド上流側の再点火炉出口までの区間Sでは、再点火炉出口より下流側の区間よりも風量を抑制して下方吸引を行うことが生産率の向上に有効であるからである(後述する実施例2参照)。なお、図6に示すように、焼結ストランド方向において、最も上流側のウインドボックス61が点火炉3の入口の直下に配設されている場合(最も上流側のウインドボックス61の上流端が点火炉3の上流端の直下に位置するように配設されている場合)には、上記区間Sは、焼結ストランドの点火炉3の入口から再点火炉4の出口までの区間に相当する。
また、風量低減の好適様態は、焼結ストランド上流側の再点火炉出口までの区間Sで吸引される大気の平均空筒風量を再点火炉出口より下流側の区間で吸引される大気の平均空筒風量に対して60%以上80%以下にするか、または、上記区間Sのウインドボックス61若しくはウインドレグ62における平均負圧を、再点火炉出口より下流側の区間のウインドボックス61若しくはウインドレグ62における平均負圧に対して40%以上70%以下とすることである。
ここに、空筒風量は、ウインドボックス61またはウインドレグ62において、例えばピトー管により計測して、平均空筒風量を算出する。なお、ウインドボックス61またはウインドレグ62ではガス中にダストを含有しているので計測環境は必ずしも良くない。よって、原料充填層10表面に熱線風速計等を用いて計測しても良い。区間Sで吸引される大気の平均空筒風量を、再点火終了後の60%以上80%以下とするのは、60%未満では焼結速度の低下が大きくなり生産率が悪化し、80%を超えると風量減による歩留向上による生産率向上効果が得られないためである。
しかしながら、空筒風量測定は困難な場合もある。その場合は、各区間の平均負圧で管理することができる。原料充填層10を通過する風量と吸引負圧の間には、下記のJPU(Japanese Permeability Unit)の式(2)で記述される関係がある。JPUは原料充填層の通気抵抗指数で、原料充填層の通気性(ガスの通りやすさ)を示す指数である。
JPU=(Q/A)・(H/P)0.6 ・・・(2)
Q:風量(吸引空気流量)(Nm3/min)
A:吸引面積(m2)
H:充填層層厚(m)
P:負圧(mH2O)
JPU=(Q/A)・(H/P)0.6 ・・・(2)
Q:風量(吸引空気流量)(Nm3/min)
A:吸引面積(m2)
H:充填層層厚(m)
P:負圧(mH2O)
上記式(2)から、風量60%(40%減)は負圧40%(60%減)に相当し、風量80%(20%減)は負圧70%(30%減)に相当することが導かれる。
また、本実施形態において、点火炉3と再点火炉4との間の区間(大気吸引領域7)をパレットが通過するのに要する時間である離間時間は、例えば、0.5分以上3.5分以下とすることができ、より好適な離間時間は0.5分以上2.0分以下(30秒以上2分以下)である。0.5分未満であると焼結層上層の燃焼帯10Aに十分な酸素を供給することができず、2.0分を超えると焼結層上層が焼結反応以下の温度に低下し、再点火技術の生産率向上効果を得にくい。なお、「区間をパレットが通過する」とは、ある位置と他の位置との間をパレットが移動することをいう。
≪第3実施形態≫
本発明に酸素富化技術を用いた好適態様について、第3実施形態として以下に説明する。再点火焼結法を用いる本発明において、焼結層の高温保持時間を延長し、さらに生産率を向上させようとするとき、初点火完了後再点火が実施されるまでの時間である離間時間(点火炉と再点火炉の間の区間をパレットが移動する時間)を延長しようとすると、再点火が実施されるまでに焼結層上層の温度が低下しすぎてしまうことから、離間時間の延長には限界があった。特に高燃焼性炭材使用時には、たとえ粗粒化(粒度2.8mm以上が30質量%以上80質量%以下)しても、燃焼時間が短いので、冷却速度が上昇する。発明者らは、その方策として、離間時間を延長するのではなく、酸素富化技術を用いることが有効であると考えた。以下に、酸素富化技術を説明し、発明者の狙いを述べる。
本発明に酸素富化技術を用いた好適態様について、第3実施形態として以下に説明する。再点火焼結法を用いる本発明において、焼結層の高温保持時間を延長し、さらに生産率を向上させようとするとき、初点火完了後再点火が実施されるまでの時間である離間時間(点火炉と再点火炉の間の区間をパレットが移動する時間)を延長しようとすると、再点火が実施されるまでに焼結層上層の温度が低下しすぎてしまうことから、離間時間の延長には限界があった。特に高燃焼性炭材使用時には、たとえ粗粒化(粒度2.8mm以上が30質量%以上80質量%以下)しても、燃焼時間が短いので、冷却速度が上昇する。発明者らは、その方策として、離間時間を延長するのではなく、酸素富化技術を用いることが有効であると考えた。以下に、酸素富化技術を説明し、発明者の狙いを述べる。
(酸素富化技術)
酸素富化技術は、下方吸引される空気に酸素を富化して原料充填層内に供給する技術である。具体的には、例えば、後述する図7、図8に示すように、酸素富化ガス供給設備9を原料充填層10の上方に設ける。この酸素富化ガス供給設備9を用いて、通常操業時に供給している空気よりも酸素濃度の高い酸素富化ガスを、下方吸引されるガス(吸引ガス)として供給する。酸素濃度を高くすることにより、単位時間当たりの凝結材の燃焼量を上昇させることができる。
酸素富化技術は、下方吸引される空気に酸素を富化して原料充填層内に供給する技術である。具体的には、例えば、後述する図7、図8に示すように、酸素富化ガス供給設備9を原料充填層10の上方に設ける。この酸素富化ガス供給設備9を用いて、通常操業時に供給している空気よりも酸素濃度の高い酸素富化ガスを、下方吸引されるガス(吸引ガス)として供給する。酸素濃度を高くすることにより、単位時間当たりの凝結材の燃焼量を上昇させることができる。
発明者らは、本発明の上記課題について、再点火焼結法において設けられる大気吸引領域7において酸素富化ガスを供給することにより、焼結層の高温保持時間を延長して生産率を向上させることができるのではないかと考え、焼結実験を重ねて、以下に示す好適様態を見出した。加えて、離間時間、大気吸引領域7において供給する酸素富化ガスの酸素濃度を適正化するための構成についても検討した。以下、これらの内容について説明する。
図7は、本実施形態(酸素富化)のDL式焼結機の一例を説明する概要図である。図7に示すように、DL式焼結機103は、上述したDL式焼結機101の各構成に加え、原料充填層10の上方に酸素富化ガス供給設備9を備えている。酸素富化ガス供給設備9は、空気よりも酸素濃度の高い酸素富化ガス(空気に酸素を混合したガスなど)を原料充填層10内に供給する。酸素富化ガス供給設備9は、例えば、フード91と、このフード91内に酸素富化ガスを供給するガス管92とを有し、酸素富化ガスを連続的に供給する構成となっている。供給された酸素富化ガスは、下方吸引装置6の下方吸引により、原料充填層10内に導かれて燃焼帯10Aでの焼結反応を進行させ、その後、下方吸引装置6(ウインドボックス61)により排ガスとして回収される。ガス管92から噴射される酸素ガスの供給量を調整することにより、酸素富化ガスの酸素濃度は大気よりも酸素含有量の多い所定の濃度とすることができる。
図7に示すように、酸素富化ガス供給設備9は、点火炉3と再点火炉4の間の区間(大気吸引領域7、図6参照)に配設され、大気吸引領域7を通過する原料充填層10(焼結層)の表層側から酸素富化ガスを供給して、下方吸引させる。すなわち、本実施形態において、第1実施形態および第2実施形態において大気が供給される大気吸引領域7は、酸素富化ガスが供給される酸素富化ガス吸引領域7x(図6および図7参照)となる。なお、図7の図示においては、大気吸引領域7に設けられた酸素富化ガス供給設備9のフード91と、点火炉3のフード32(隔壁32a)および再点火炉4のフード42(隔壁42a)の間に、わずかに安全上の間隔を設けた例を図示している。この場合、酸素富化ガス供給設備9のフード91が配設されている区間が酸素富化ガス吸引領域7xであるが、安全上の問題なければ、このような間隔を空けずに各フード32,42,91を配設したり、酸素富化ガス供給設備9のフード91と、点火炉33のフード32または/および再点火炉4のフード42を連設したりすることが好ましい。なお、点火炉3(下流側の隔壁32a)と酸素富化ガス供給設備9(フード91の上流側壁)との間隔、および酸素富化ガス供給設備9(フード91の下流側壁)と再点火炉4(上流側の隔壁42a)との間隔は、安全上設ける必要がある場合のみに設け、その場合でも必要最低限の距離よりも長くは設けないことが好ましい。酸素富化時間が減少すると、生産率向上効果が低下するためである。
ここで、酸素富化ガス吸引領域7xに供給する吸引ガス中の酸素ガス投入量は、酸素富化ガス吸引領域7xの焼結層表面に採取管を設けて焼結層表面の酸素濃度を計測して調整する方法、あるいはDL式焼結機103のウインドボックス61の風量に応じて調整する方法などで制御可能である。そして、酸素ガスの投入方法は、例えば、酸素富化ガス吸引領域7xの上方に設けたフード91内へ直接酸素(例えば、工業用酸素)を供給して、フード91周辺(フード91外)から吸引された大気(以下、フード外大気ともいう)とともに原料充填層10内に供給する。その際、DL式焼結機103の幅方向(パレット進行方向5xに対して垂直な方向)における複数箇所から供給するのが望ましい。また、予め酸素と空気とを混合した、所定の酸素濃度の酸素富化ガスをガス管92からフード91内へ供給してもよい。なお、工業用酸素は製鉄所内の酸素プラントで製造したものを用いることができる。
本発明を実施する際には、点火炉3と再点火炉4との間の区間をパレットが通過するのに要する時間(離間時間)は、例えば、0.5分以上6分以下とすることができる(後述する表8参照)。また、離間時間を1分以上として、この区間において焼結層の表層側から下方吸引される吸引ガスの酸素濃度を30体積%以上とすることが好ましい。ここで、離間時間には、上述の安全上設けられる間隔を通過する時間(例えば、0秒越え2秒以内)を含む。後述する実施例で示すように、吸引ガス中の酸素濃度が30体積%未満、または、離間時間を1分未満の場合は酸素供給量が十分でなく、十分な生産率向上効果が得られないからである。
なお、離間時間は6分以下が好ましい。6分を超えると酸素富化しても、すでに吸引ガスにより焼結層が冷却されてしまい、再点火の効果が得られない。一方、吸引ガス中の酸素濃度は50体積%以下が好ましい。純酸素をフード外大気とともに吸引ガスとして原料充填層10内へ供給する方法では、吸引ガス中の酸素濃度が50体積%では、フード外大気ガス量に対する純酸素ガス量比率(外数)が60体積%に達する。一方、原料充填層へ吸引されるガス量は、原料充填層通気性と焼結機送風機(ブロア65)の動力で決定されるので、吸引ガス量は分単位秒単位で変動する。従って、吸引ガス中の純酸素供給比率が上昇すると、吸引ガス量の変動によって吸引ガス中の酸素濃度の変動が顕在化する。(吸引ガス量変化に応じて純酸素供給量を調整するが、制御が困難になる。)その結果、焼結層への吸引ガス中の酸素濃度の安定供給に支障をきたすからである。
さらには、吸引ガス中の酸素濃度は40体積%以下であり、離間時間は5分以下であることがより好ましい。後述する実施例で示すように、酸素濃度が40体積%を超えるか、または、離間時間が5分を超えると、酸素供給量の増加に伴う生産率の上昇が緩慢になり、酸素富化による効果が有効に表れなくなるためである。
本発明の酸素富化ガス吸引領域7xにおける酸素富化は、後述する実施例に裏付けられるように、焼結速度が上昇するにも関わらず成品歩留および生産率が向上する効果を有し、適正な離間時間が長時間側へ拡大する。前者の生産率向上の理由として、酸素富化直後の再点火によって、酸素富化により活発化したコークス燃焼場への熱量供給がなされ、コークス燃焼場の活発化を維持継続する効果を有する点が挙げられる。そのため、短時間の酸素富化でも成品歩留および生産率向上に結び付く。後者の適正離間時間拡大の理由として、酸素富化によるコークス燃焼活発化を介して焼結層温度が上昇する点が挙げられる。焼結層が冷える前に再点火する必要があるが、酸素富化ガス吸引領域7xでの酸素富化の実施により冷えにくくなるため、長い離間時間でも効果発現する。そして、離間時間が長いと焼結鉱の高温保持時間が伸延して歩留向上に結び付く。一方、再点火を実施しない酸素富化は、一般的な焼結速度上昇による生産率低下を抑制する程度である。
≪第4実施形態≫
本発明に酸素富化技術を用いた他の好適態様について、第4実施形態として以下に説明する。発明者らは、酸素富化技術は、上述した大気吸引領域7で実施するのではなく、再点火直後に実施する方法でも効果が発現すると考えた。以下に、発明者の狙いを述べ、その後、好適態様について説明する。
本発明に酸素富化技術を用いた他の好適態様について、第4実施形態として以下に説明する。発明者らは、酸素富化技術は、上述した大気吸引領域7で実施するのではなく、再点火直後に実施する方法でも効果が発現すると考えた。以下に、発明者の狙いを述べ、その後、好適態様について説明する。
再点火法においては、最初の点火で形成された焼結層の高温帯(概ね1000℃以上のゾーン)の上部が再点火により再び加熱され、初点火では未燃で残存した凝結材(炭材)が燃焼する。後述する図8に示すように、1)再点火で形成された燃焼帯(以下、再点火燃焼帯10A2ともいう)における残存凝結材燃焼と、2)初点火で形成された燃焼帯(以下、初点火燃焼帯10A1ともいう)における凝結材燃焼とにより、層高方向での2箇所において燃焼反応が生じる。焼結機では、燃焼に必要な酸素を含む大気は下方吸引されて、焼結層の層高方向上部から下部へ垂直に流通する。上記2箇所の燃焼反応を促進させるためには、多くの酸素が必要となる。特に高燃焼性炭材使用時には、たとえ粗粒化(粒度2.8mm以上が30質量%以上80質量%以下)しても、燃焼速度が速いため、さらに多くの酸素を必要とする。
また、再点火終了直後には、初点火燃焼帯10A1に加えて層高方向にもう1箇所、再点火燃焼帯10A2が発生することになり、その結果、高温帯が層高方向に拡大する。再点火燃焼帯10A2においては、初点火ですでに焼結化された、空隙率が高いシンターケーキ内を熱が伝播するので、下方吸引されるガスと接触する固体(シンターケーキ)の表面積が小さい。これに対し、初点火燃焼帯10A1においては、粒度1mm未満の微粉を含む焼結原料を熱が伝播するので、下方吸引されるガスと接触する固体(焼結原料)の表面積が大きい。そのため、再点火燃焼帯10A2の降下速度は初点火燃焼帯10A1の降下速度よりも速く、再点火燃焼帯10A2は再点火終了から早い段階で初点火燃焼帯10A1に合流する(図8参照)。なお、焼結における高温帯とは、凝結材が燃焼を開始し終了するまでのゾーンである燃焼帯と、それ以降の冶金反応が継続する温度(概ね1000℃)に冷却するまでのゾーンとを含む。
このように、再点火焼結法においては、所要酸素量の増加により、通常の大気の下方吸引では焼結速度が低下するという問題が顕在化している。そこで、発明者らは、再点火法を用いる本発明において、酸素富化技術を再点火直後に実施することで、焼結速度向上およびそれを介した生産率向上が可能となるのではないかと考え、焼結実験を重ねて、以下に示す好適様態を見出した。加えて、酸素富化開始のタイミング、酸素富化時間、酸素富化領域において供給する酸素富化ガスの酸素濃度を適正化するための構成についても検討した。以下、これらの内容について説明する。
図8は、本実施形態(酸素富化)のDL式焼結機の他の一例を説明する概要図である。以下に、図8を用いて上述の現象を詳細に説明する。再点火焼結法を用いた焼結鉱の製造においては、点火炉3と再点火炉4の間に大気吸引領域7を設けて初点火により原料充填層10の表層に形成された燃焼帯10Aに十分な酸素(大気)を供給し、その後の再点火により、表層に未着火で残留している凝結材の燃焼を生じさせる。また、上述した2つの燃焼帯(初点火燃焼帯10A1および再点火燃焼帯10A2)の合流に加え、再点火による残存凝結材の燃焼により上方から吸引されて初点火燃焼帯10A1を通過する流通ガスが高温化し、初点火燃焼帯10A1直下の凝結材燃焼を促進するため、燃焼帯10Aおよび高温帯の幅がさらに拡大する。また、再点火を、大気吸引領域7における大気の供給によりシンターケーキ10Bが冷えてしまう前に実施することで、上層の高温保持時間(例えば、1200℃以上に保持される時間)が増加する。適正なタイミングで再点火して熱量を供給することにより高温保持時間を増加させることができ、成品歩留および生産率の向上が期待される。
本実施形態では、原料充填層10(焼結層)の表面に酸素富化ガスを供給し下方吸引する領域(酸素富化ガス吸引領域)は、再点火終了後の所定の区間とする。そのため、本実施形態のDL式焼結機104は、上述したDL式焼結機101の各構成に加え、再点火炉4の、パレット進行方向下流側に、第3実施形態において説明した構成と同様の酸素富化ガス供給設備9を備える。なお、本実施形態での離間時間は、例えば、0.5分以上3.5分以下がとすることができる。
図8においては、再点火炉4と酸素富化ガス供給設備9との間にわずかに間隔が設けてあるが、安全上問題なければ、再点火炉4と酸素富化ガス供給設備9とを連設してもよい。酸素富化ガス供給設備9は、所定の時間を酸素富化時間として酸素富化ガスを連続的に供給する構成となっている。なお、再点火炉4(下流側の隔壁42b)と酸素富化ガス供給設備9(フード91の上流側壁)との間隔をパレットが移動する時間、すなわち、再点火終了時刻から酸素富化開始時刻までの時間は短いことが好ましい。例えば、安全上の問題を考慮しても0秒超え30秒以内が好ましく、0秒超え10秒以内がより好ましく、再点火終了直後(0秒超え2秒以内)の酸素富化開始がさらに好ましい。30秒超えると、酸素富化が有効な時間帯が減少するため、効果が低下する(後述する実施例4の試験2参照)。
本発明を実施する際に、上述の酸素富化ガス吸引領域(パレット進行方向5xにおける、酸素富化ガス供給設備9が配設されている区間)において、下方吸引により焼結層表層から吸引される吸引ガス中の酸素濃度は30体積%以上、かつ、再点火終了後の酸素富化ガス供給設備9による酸素富化時間を30秒以上とすることが好ましい。ここで、酸素富化時間とは、酸素富化ガス吸引領域をパレットが移動するのに要する時間、すなわち、再点火終了後において酸素富化ガスの供給が実施される際、酸素富化開始から酸素富化終了までの時間をいう。吸引ガス中の酸素濃度が30体積%未満または酸素富化時間30秒未満では、酸素供給量が十分でなく、十分な焼結速度および生産率の向上効果が得られないからである(後述する実施例4試験2参照)。
さらには、酸素富化ガス吸引領域における吸引ガス中の酸素濃度は40体積%以下であることが好ましい。また、酸素富化ガス供給設備9による酸素富化時間は2分以内であることが好ましい。酸素濃度が40体積%を超える、または、酸素富化時間が2分を超えると酸素供給量の増加に伴う焼結速度および生産率の上昇が緩慢になり、酸素富化が有効ではなくなるためである。2つの燃焼帯(初点火燃焼帯10A1と再点火燃焼帯10A2)が合流するタイミングは今まで不明であったが、実験結果(後述する実施例4試験1参照)により得られた適正な酸素富化時間に基づき、合流が再点火終了時刻から2分を越え3分以内の時点で起きていることが推定される。
本実施形態では、再点火後における酸素富化により、後述する実施例4に裏付けられるように焼結速度が大幅に上昇する。この上昇幅は、従来例(鉄と鋼 Vol.92(2006),p.417-426)などに記載されている、再点火を実施しない酸素富化における焼結速度上昇よりも大きい。焼結速度上昇幅向上の理由として、再点火終了後の酸素富化によって活発化する燃焼帯が2箇所存在することにより、酸素が有効利用されることによる。そのため、短時間の酸素富化でも焼結速度向上に結び付き、生産率が向上する。
≪第5実施形態≫
発明者らは、上述の第2~第4実施形態においては、焼結層上層部における生産率向上効果に着目したが、その一方で焼結層下層部における生産率向上効果は極めて小さい。本実施形態は、焼結層下層部への効果として、焼結層下層部の焼成速度向上に有効なスタンド支持焼結技術に着目した。以下に、スタンド支持焼結技術について説明し、好適様態に関する発明者の狙いを述べる。
発明者らは、上述の第2~第4実施形態においては、焼結層上層部における生産率向上効果に着目したが、その一方で焼結層下層部における生産率向上効果は極めて小さい。本実施形態は、焼結層下層部への効果として、焼結層下層部の焼成速度向上に有効なスタンド支持焼結技術に着目した。以下に、スタンド支持焼結技術について説明し、好適様態に関する発明者の狙いを述べる。
スタンド支持焼結技術によれば、原料充填層上層部に形成されるシンターケーキをスタンドが支えることにより、原料充填層下層部(以下、下層部ともいう)の焼結時において、下層部への上部荷重低減によって、下層部の空隙が確保される。その結果、下層部において通気抵抗が低減し焼結速度が向上する(特開平4-168234号公報参照)。発明者らは、本発明を実施するに際して、下段層の生産率の向上効果のあるスタンド支持焼結技術を適用することにより、焼結鉱全体の生産率の向上が可能となると考えた。しかしながら、本発明による上層部における燃焼帯幅の増大は、下層部における焼結条件にも影響を与える。発明者らは、焼結実験を重ねた結果、後述する実施例5に示すように予測を超えた、本発明とスタンド支持焼結技術の相乗効果が得られることが明らかとなった。加えて、本発明にスタンド支持焼結技術を併用する場合に、離間距離(点火炉と再点火炉の間隔)の適切な範囲についても検討した。以下に、これらの内容について説明する。
(スタンド支持焼結技術)
図9は、本実施形態(スタンド支持焼結技術適用)に用いるパレットの一例を説明するための概要図である。図9に示すように、パレット5は、グレートバー51が配置されるメインフレーム52と、メインフレーム52の対向する両端部分に立設されたパレット側壁53とを備える。また、パレット5は、グレートバー51の上面中央部に、略等脚台形形状の略板状の部材であるスタンド16(支持部材)が1つ配設されている。スタンド16は、シンターケーキ支持面16aを有し、パレット進行方向5xに平行に原料充填層10に埋設するように垂設されている。原料充填層10の焼成の進行途中においては、図9に示すように、パレット5内の焼結層(原料充填層10)の上層部は焼結が完了したシンターケーキ10Bとなり、下層部(燃焼帯10Aの下層)は未焼結の焼結原料のままの状態となる。ここで、スタンド(支持部材)16の上面部分(シンターケーキ支持面16a)は、上層部のシンターケーキ10Bを支えて、下層部の焼結原料の圧密化を抑制する。圧密化の抑制により、下層部焼成の際の焼結層の通気抵抗が低減し焼結速度が向上する。さらに、焼結層を流通するガスの偏流が抑制される効果もあり、未焼成部の量が低減し、焼結歩留が向上する。
図9は、本実施形態(スタンド支持焼結技術適用)に用いるパレットの一例を説明するための概要図である。図9に示すように、パレット5は、グレートバー51が配置されるメインフレーム52と、メインフレーム52の対向する両端部分に立設されたパレット側壁53とを備える。また、パレット5は、グレートバー51の上面中央部に、略等脚台形形状の略板状の部材であるスタンド16(支持部材)が1つ配設されている。スタンド16は、シンターケーキ支持面16aを有し、パレット進行方向5xに平行に原料充填層10に埋設するように垂設されている。原料充填層10の焼成の進行途中においては、図9に示すように、パレット5内の焼結層(原料充填層10)の上層部は焼結が完了したシンターケーキ10Bとなり、下層部(燃焼帯10Aの下層)は未焼結の焼結原料のままの状態となる。ここで、スタンド(支持部材)16の上面部分(シンターケーキ支持面16a)は、上層部のシンターケーキ10Bを支えて、下層部の焼結原料の圧密化を抑制する。圧密化の抑制により、下層部焼成の際の焼結層の通気抵抗が低減し焼結速度が向上する。さらに、焼結層を流通するガスの偏流が抑制される効果もあり、未焼成部の量が低減し、焼結歩留が向上する。
本発明を実施する際には、上述のスタンド支持技術を用いることが好ましい。すなわち、配合原料が装入されるパレット5には、シンターケーキ支持面16aを有する支持部材(スタンド16)が原料充填層10に埋設するようにグレートバー51上に垂設されていることが好ましい。本実施形態において、支持部材(スタンド16)の配置は、上層部に形成されるシンターケーキ10Bを支えられる構成であればよく、例えば、パレット幅方向に2列の支持スタンドを設置してもよい。支持部材(スタンド16)を複数設けることにより、下層部焼結時において、上層部に形成されるシンターケーキ10Bを支え、未焼成の下層部に掛かる荷重を低減することによって、下層部の空隙を確保するとともに、パレット幅方向のガス流速を均一化することができる。
再点火焼結法を用いる本発明に、スタンド支持焼結技術を適用した際の効果について、以下のように考えられる。
(成品歩留)
スタンド支持焼結技術の特徴として、焼結速度や成品歩留の向上効果は、下層部に限定される。本実施形態において、点火炉3と再点火炉4との間の区間(大気吸引領域7)をパレットが通過するのに要する時間(離間時間)は、例えば、0.5分以上3.5分以下とすることができるが、3.0分未満とすることが好ましい(後述する表12参照)。上層部の歩留向上効果のある再点火焼結法と組み合わせることにより、離間時間が所定の範囲内(3.0分未満)において、上層から下層にわたる全層の歩留向上効果が得られる。以上より、成品歩留の点では加算性が成立する。離間時間が3.0分を超えると再点火による歩留向上効果が鈍化し、スタンド支持による焼結時間短縮の影響で成品歩留が悪化に転じる。
(成品歩留)
スタンド支持焼結技術の特徴として、焼結速度や成品歩留の向上効果は、下層部に限定される。本実施形態において、点火炉3と再点火炉4との間の区間(大気吸引領域7)をパレットが通過するのに要する時間(離間時間)は、例えば、0.5分以上3.5分以下とすることができるが、3.0分未満とすることが好ましい(後述する表12参照)。上層部の歩留向上効果のある再点火焼結法と組み合わせることにより、離間時間が所定の範囲内(3.0分未満)において、上層から下層にわたる全層の歩留向上効果が得られる。以上より、成品歩留の点では加算性が成立する。離間時間が3.0分を超えると再点火による歩留向上効果が鈍化し、スタンド支持による焼結時間短縮の影響で成品歩留が悪化に転じる。
(焼結速度)
再点火焼結法では2度点火することにより、焼結層の燃焼帯幅が増大する。焼結層の燃焼帯幅の増大は、上層においては成品歩留向上に結び付く。しかしながら、下層では一段点火焼結法でも十分に燃焼帯幅が確保されているため、さらなる向上効果が望めない。むしろ、下層において、燃焼帯幅の増大は通気抵抗の増大を招いてしまい、その結果焼結速度(BTS:Burn through speed)が低下する。特に高燃焼性炭材使用時には、たとえ粗粒化(粒度2.8mm以上が30質量%以上80質量%以下)しても、燃焼開始温度が低く燃焼速度も速いので、燃焼帯幅が大きくなる。ここでスタンド支持焼結技術を適用すると、上部シンタ―ケーキ支持により、下層部焼結において通気抵抗の増大を低減され、下層の焼結速度が向上する。下層の焼結速度の向上により、下層における燃焼帯幅の増大が抑制される。その結果、焼結速度が加速的に向上する。以上より、焼結速度の点では相乗効果が得られる。
再点火焼結法では2度点火することにより、焼結層の燃焼帯幅が増大する。焼結層の燃焼帯幅の増大は、上層においては成品歩留向上に結び付く。しかしながら、下層では一段点火焼結法でも十分に燃焼帯幅が確保されているため、さらなる向上効果が望めない。むしろ、下層において、燃焼帯幅の増大は通気抵抗の増大を招いてしまい、その結果焼結速度(BTS:Burn through speed)が低下する。特に高燃焼性炭材使用時には、たとえ粗粒化(粒度2.8mm以上が30質量%以上80質量%以下)しても、燃焼開始温度が低く燃焼速度も速いので、燃焼帯幅が大きくなる。ここでスタンド支持焼結技術を適用すると、上部シンタ―ケーキ支持により、下層部焼結において通気抵抗の増大を低減され、下層の焼結速度が向上する。下層の焼結速度の向上により、下層における燃焼帯幅の増大が抑制される。その結果、焼結速度が加速的に向上する。以上より、焼結速度の点では相乗効果が得られる。
(生産率)
生産率は、成品歩留と焼結速度との積に比例する。上述のような成品歩留における加算効果と焼結速度における相乗効果とにより、予測を超えた、再点火焼結法とスタンド支持焼結技術との相乗効果が得られる(後述する実施例5参照)。
生産率は、成品歩留と焼結速度との積に比例する。上述のような成品歩留における加算効果と焼結速度における相乗効果とにより、予測を超えた、再点火焼結法とスタンド支持焼結技術との相乗効果が得られる(後述する実施例5参照)。
上述した本発明、および上述した本発明に適用可能な好ましい各構成に関する試験について、以下に説明する。実施例1から実施例5は、それぞれ、上述した第1実施形態から第5実施形態に対応している。また、実施例4では2つの試験(試験1、試験2)に分けて記載している。
ここで、全実施例(実施例1~5)において、凝結材を除く焼結原料の配合割合(後述の表4参照)は共通とした。また、焼結時の下方吸引条件(吸引圧力または風量)について、実施例1および実施例5では、鍋下における計測値で1300mmAq(12.7kPa)一定とし、実施例3および実施例4では、風量(排ガス)で1.80Nm3/min一定とした。また、実施例2では、風量(排ガス)で1.80Nm3/minを基本として、後述する試験条件に示す風量制御を行った。
≪実施例1≫
(試験水準)
第1実施形態で述べた炭材(低燃焼性炭材と高燃焼性炭材)の構成比率、低燃焼性炭材の平均粒度、および高燃焼性炭材の粒度の各条件に関する試験について説明する。以下の試験においては、低燃焼性炭材として、粉コークスのみを使用しているが、低燃焼性炭材として、無煙炭とコークスの両方、または無煙炭のみを使用しても同様の効果がある。また、以下の試験においては、高燃焼性炭材として、セミコークスのみ、または木炭圧縮成形物(粉砕したもの)のみを使用しているが、これらに限らず、例えば、他の高燃焼性炭材のいずれか1種類、または、高燃焼性炭材の複数種類を混合するなどして使用しても同様の効果が得られる。
(試験水準)
第1実施形態で述べた炭材(低燃焼性炭材と高燃焼性炭材)の構成比率、低燃焼性炭材の平均粒度、および高燃焼性炭材の粒度の各条件に関する試験について説明する。以下の試験においては、低燃焼性炭材として、粉コークスのみを使用しているが、低燃焼性炭材として、無煙炭とコークスの両方、または無煙炭のみを使用しても同様の効果がある。また、以下の試験においては、高燃焼性炭材として、セミコークスのみ、または木炭圧縮成形物(粉砕したもの)のみを使用しているが、これらに限らず、例えば、他の高燃焼性炭材のいずれか1種類、または、高燃焼性炭材の複数種類を混合するなどして使用しても同様の効果が得られる。
実施例では、通称焼結鍋試験と呼ばれる方法を用いて検証した。焼結鍋試験は、所定の大きさの容器に燃料となる凝結材を含む焼結原料(配合原料)を装入し、上面から点火して下方吸引することで焼結を進行させる試験である。焼結鍋試験の装置では、ドワイトロイド(DL)式焼結機のようにパレットによる原料充填層の移動こそないが、DL式焼結機による焼結を模擬できる試験装置である。後述する表6に示すように、比較例1-0~1-3、および発明例1-1~1-13の17の試験を行った。まず、試験に使用した原料、および試験方法について順に説明し、その後、試験結果について述べる。
(原料)
表3は、試験に使用した低燃焼性炭材および高燃焼性炭材の工業分析および元素分析の結果を示す。表3に示す粉コークスを低燃焼性炭材として、セミコークスおよび木炭圧縮成形物(粉砕)を高燃焼性炭材として準備した。
表3は、試験に使用した低燃焼性炭材および高燃焼性炭材の工業分析および元素分析の結果を示す。表3に示す粉コークスを低燃焼性炭材として、セミコークスおよび木炭圧縮成形物(粉砕)を高燃焼性炭材として準備した。
(原料配合)
表4、表5は、試験に使用した配合原料について、各焼結原料の配合割合(質量%)を示す。表4に示すように、新原料(鉄鉱石、石灰石、生石灰、および橄欖石)および返鉱の割合は、全試験例において一定とした。鉄鉱石A~Eはそれぞれ銘柄(産地)が異なる鉄鉱石である。返鉱の配合割合は、新原料(鉄鉱石、石灰石、生石灰、および橄欖石)を100質量%として、外数で15.0質量%とした。なお、凝結材を除いた原料の配合割合は実施例1~実施例5で共通としている。
表4、表5は、試験に使用した配合原料について、各焼結原料の配合割合(質量%)を示す。表4に示すように、新原料(鉄鉱石、石灰石、生石灰、および橄欖石)および返鉱の割合は、全試験例において一定とした。鉄鉱石A~Eはそれぞれ銘柄(産地)が異なる鉄鉱石である。返鉱の配合割合は、新原料(鉄鉱石、石灰石、生石灰、および橄欖石)を100質量%として、外数で15.0質量%とした。なお、凝結材を除いた原料の配合割合は実施例1~実施例5で共通としている。
表5は、試験に使用した配合原料中の凝結材の配合割合(質量%)を示す。低燃焼性炭材には、全試験例において粉コークスを用いた。高燃焼性炭材には、発明例1-12,1-13では粉砕した木炭圧縮成形物を、それ以外の試験例ではセミコークスを用いた。凝結材として低燃焼性炭材(粉コークス)のみを使用した試験例(比較例1-0,1-2)において、新原料を100質量%として、凝結材(粉コークス)の配合割合を外数で4.5質量%とした。高燃焼性炭材(セミコークスまたは木炭圧縮成形物)を配合した試験例(比較例1-0,1-2以外の試験例)では、比較例1-0,1-2の凝結材(粉コークス4.5質量%)の配合量を基本として、低燃焼性炭材(粉コークス)および高燃焼性炭材(セミコークス、木炭圧縮成形物)の炭素分の質量比率(表5上段)と、低燃焼性炭材(粉コークス)および高燃焼性炭材(セミコークス、木炭圧縮成形物)の固定炭素量(表3)とに基づき、配合原料に含まれる全凝結材(粉コークス、セミコークス、木炭圧縮成形物)の工業分析の固定炭素量(炭素分)が全試験例において一定になるように、新原料に対する凝結材(低燃焼性炭材および高燃焼性炭材)の配合割合(表5中段)を調整した。なお、表5下段は、凝結材総量に対する、低燃焼性炭材および高燃焼性炭材の配合割合を示す。
後述の表6の上段に、試験条件を示す。表6に示す炭素分質量比率は、表5上段に示す炭素分の質量比率と同じである。表5および表6に示すように、比較例1-0は、再点火を実施せず、凝結材として、高燃焼性炭材無配合で低燃焼性炭材(粉コークス)のみを用いたケースである。また、発明例1-12と発明例1-13は、高燃焼性炭材に粉砕した木炭圧縮成形物を用いたケースである。
表6に示すように、低燃焼性炭材の平均粒度(段落0046参照)は、発明例1-6~1-9ではそれぞれ0.6mm、0.8mm、1.2mm、1.4mmとして、発明例1-12および発明例1-13では1.2mmとして、それ以外の試験ケースでは1.0mmとした。高燃焼性炭材おいて粒度2.8mm以上の比率(高燃焼性炭材全体に対する粒度2.8mm以上の高燃焼性炭材の比率)は、比較例1-3、発明例1-4、発明例1-5ではそれぞれ20質量%、50質量%、70質量%として、発明例1-12と発明例1-13では80質量%として、それ以外の試験ケースでは30質量%とした。発明例1-11および発明例1-13では、焼結原料のうち、低燃焼性炭材のみを全量、焼結原料の造粒工程後半において添加した。また、発明例1-10および発明例1-13は、偏析強化型装入装置を使用して造粒処理後の配合原料を装入した。
(造粒方法)
造粒機として直径600mm長さ800mmの円筒型のバッチ式ドラムミキサー(回転数25rpm)を使用した。発明例1-11および発明例1-13以外の一括造粒の試験ケースでは、新原料、凝結材および返鉱で構成される全焼結原料を造粒機に投入し、4分間混合処理した後に、目標水分値となるように水分を添加(調湿)してさらに4分間混合(造粒)した。また、発明例1-11および発明例1-13(低燃焼性炭材のみを後添加するケース)については、低燃焼性炭材を除く焼結原料を造粒機に投入し、4分間混合処理した後に、目標水分値となるように水を添加(調湿)して3分45秒混合(造粒)し、一旦造粒機を停止させ、低燃焼性炭材(粉コークス)を加えてさらに15秒混合(造粒)した(段落0056参照)。なお、最終的な目標水分値は、全凝結材および返鉱を含めた全焼結原料の質量に対して、外数で7.5質量%とした。
造粒機として直径600mm長さ800mmの円筒型のバッチ式ドラムミキサー(回転数25rpm)を使用した。発明例1-11および発明例1-13以外の一括造粒の試験ケースでは、新原料、凝結材および返鉱で構成される全焼結原料を造粒機に投入し、4分間混合処理した後に、目標水分値となるように水分を添加(調湿)してさらに4分間混合(造粒)した。また、発明例1-11および発明例1-13(低燃焼性炭材のみを後添加するケース)については、低燃焼性炭材を除く焼結原料を造粒機に投入し、4分間混合処理した後に、目標水分値となるように水を添加(調湿)して3分45秒混合(造粒)し、一旦造粒機を停止させ、低燃焼性炭材(粉コークス)を加えてさらに15秒混合(造粒)した(段落0056参照)。なお、最終的な目標水分値は、全凝結材および返鉱を含めた全焼結原料の質量に対して、外数で7.5質量%とした。
(装入方法)
使用した鍋試験装置は直径300mm、高さ500mmの円筒形状の鍋である。また、発明例1-10および発明例1-13(偏析強化給鉱のケース)については、以下に示すように、材料とプロセス24(2011),P.795(原ら)に記載のスリットバー式分級装置を用いた方法に従って装入し、上述の偏析強化型装入装置(スリットバー式装入装置、段落0051参照)による偏析強化装入を模擬した。発明例1-10および発明例1-13以外の通常装入の試験ケースでは、スリットバー式分級装置の代わりに平板プレートを用いた。
使用した鍋試験装置は直径300mm、高さ500mmの円筒形状の鍋である。また、発明例1-10および発明例1-13(偏析強化給鉱のケース)については、以下に示すように、材料とプロセス24(2011),P.795(原ら)に記載のスリットバー式分級装置を用いた方法に従って装入し、上述の偏析強化型装入装置(スリットバー式装入装置、段落0051参照)による偏析強化装入を模擬した。発明例1-10および発明例1-13以外の通常装入の試験ケースでは、スリットバー式分級装置の代わりに平板プレートを用いた。
(偏析強化装入)
発明例1-10および発明例1-13では、スリットバー式分級装置を用いて分級した配合原料造粒物を、焼結鍋に装入した。具体的には、配合原料造粒物をスリットバー式分級装置に入れ、スリットバー間から落下した配合原料造粒物をスリットバー真下に上流側から下流側へ4箱並べた回収箱で回収し、さらにスリットバー上を滑走した配合原料造粒物は、別の回収箱で回収した。配合原料造粒物は既に5つの回収箱に分級回収されているので、まずスリットバー上を滑走した配合原料造粒物を、次いでスリットバー間から落下した配合原料造粒物を下流側の回収箱内のものから順に鍋上部から落下装入した。
発明例1-10および発明例1-13では、スリットバー式分級装置を用いて分級した配合原料造粒物を、焼結鍋に装入した。具体的には、配合原料造粒物をスリットバー式分級装置に入れ、スリットバー間から落下した配合原料造粒物をスリットバー真下に上流側から下流側へ4箱並べた回収箱で回収し、さらにスリットバー上を滑走した配合原料造粒物は、別の回収箱で回収した。配合原料造粒物は既に5つの回収箱に分級回収されているので、まずスリットバー上を滑走した配合原料造粒物を、次いでスリットバー間から落下した配合原料造粒物を下流側の回収箱内のものから順に鍋上部から落下装入した。
(焼成条件)
配合原料造粒物装入後まず点火装置(フレーム加熱)で1.0分間原料充填層の表面を点火(初点火)した。点火終了後から1.0分後に再点火を1.0分間実施した。なお、点火終了から再点火開始までの時間(離間時間)1.0分は実機に換算すると全ストランドの4%の長さとなる。点火時間および再点火時間は共に1.0分間(熱量:吸引ガス顕熱として25MJ/配合原料t)とした。なお、鍋試験ではヒートロスが大きいのでLPGガス焚き量としては100MJ/配合原料t程度必要である。また、焼結時の吸引負圧は、鍋下における計測値で1300mmAq(12.7kPa)一定となるように、送風機吸引側のバルブ開度で調整した。
配合原料造粒物装入後まず点火装置(フレーム加熱)で1.0分間原料充填層の表面を点火(初点火)した。点火終了後から1.0分後に再点火を1.0分間実施した。なお、点火終了から再点火開始までの時間(離間時間)1.0分は実機に換算すると全ストランドの4%の長さとなる。点火時間および再点火時間は共に1.0分間(熱量:吸引ガス顕熱として25MJ/配合原料t)とした。なお、鍋試験ではヒートロスが大きいのでLPGガス焚き量としては100MJ/配合原料t程度必要である。また、焼結時の吸引負圧は、鍋下における計測値で1300mmAq(12.7kPa)一定となるように、送風機吸引側のバルブ開度で調整した。
鍋下では圧力とともに熱電対で温度計測も行った。焼結では、燃焼帯が原料充填層の最下部に到達すると、鍋下における排ガス温度が上昇を開始し、やがてピークを迎え、コークスの燃焼終了により低下する。この排ガス温度がピークとなった3分後に送風機の吸引を停止した。なお、焼結時間は、点火開始時刻から排ガス温度がピークに達した時刻までの時間とした。焼結速度(BTS:Burn through speed)は、原料層厚を焼結時間で割って求めた。
(成品歩留)
焼結後、得られたシンターケーキを、2mの高さから4回落下処理を行い、床敷鉱を除く粒度+5mm(5mm超え)の焼結鉱を焼結成品として回収して質量を求め、焼結成品質量とした。そして、焼結成品質量を、床敷鉱を除くシンターケーキ質量で除した値を成品歩留と定義した。
焼結後、得られたシンターケーキを、2mの高さから4回落下処理を行い、床敷鉱を除く粒度+5mm(5mm超え)の焼結鉱を焼結成品として回収して質量を求め、焼結成品質量とした。そして、焼結成品質量を、床敷鉱を除くシンターケーキ質量で除した値を成品歩留と定義した。
(生産率)
生産率は、以下の式(3)に示すように、焼結成品質量(成品量(ton))を、上述の焼結時間(時間を日に換算したもの)と焼成面積(鍋底面積(m2))とで割って算出した。
生産率(t/(Dm2))=成品量(t)/{焼結時間(Day)・鍋底面積(m2)}・・・式(3)
生産率は、以下の式(3)に示すように、焼結成品質量(成品量(ton))を、上述の焼結時間(時間を日に換算したもの)と焼成面積(鍋底面積(m2))とで割って算出した。
生産率(t/(Dm2))=成品量(t)/{焼結時間(Day)・鍋底面積(m2)}・・・式(3)
(還元粉化性)
焼結鉱の還元粉化性は高炉の低温還元帯を模した条件での焼結鉱の粉化の度合いを示し、JIS法(JIS M8720:2017「鉄鉱石-低温還元粉化試験方法」)に定められた手法を用いた。すなわち、得られた粒度15mm越え20mm未満の焼結鉱500gをCO(30vol%)-N2(70vol%)組成のガスを15リットル/min流通させて、550℃で30分間還元処理したのちに、円筒型回転ドラム(径130mmφ×200mmL)にて、30rpmで30分間回転処理して、粒度-2.8mm比率(2.8mm篩目の篩の篩下の鉄鉱石の質量比率)を還元粉化性の指標(RDI:Reduction Degradation Index)とした。
焼結鉱の還元粉化性は高炉の低温還元帯を模した条件での焼結鉱の粉化の度合いを示し、JIS法(JIS M8720:2017「鉄鉱石-低温還元粉化試験方法」)に定められた手法を用いた。すなわち、得られた粒度15mm越え20mm未満の焼結鉱500gをCO(30vol%)-N2(70vol%)組成のガスを15リットル/min流通させて、550℃で30分間還元処理したのちに、円筒型回転ドラム(径130mmφ×200mmL)にて、30rpmで30分間回転処理して、粒度-2.8mm比率(2.8mm篩目の篩の篩下の鉄鉱石の質量比率)を還元粉化性の指標(RDI:Reduction Degradation Index)とした。
(試験結果)
試験結果を表6の下欄に示す。試験結果において生産率が29.5t/(Dm2)以上となったケースが、実施例1の発明例である。
図10は、表6の比較例1-1(凝結材として高燃焼性炭材のみ使用)、発明例1-1~1-3(高燃焼性炭材の炭素分質量比率:75質量%、50質量%、25質量%)、比較例1-3(高燃焼性炭材の炭素分質量比率:50質量%)、発明例1-4~1-5(高燃焼性炭材の炭素分質量比率:50質量%)、および発明例1-12~1-13(高燃焼性炭材の炭素分質量比率:20質量%、25質量%、高燃焼性炭材:木炭圧縮成形物)の試験結果をグラフに表したものであり、高燃焼性炭材の粒度+2.8mmの比率と生産率との関係を示すグラフである。図11は、表6の比較例1-0(一段点火)、比較例1-1~1-2(凝結材として高燃焼性炭材のみ使用、凝結材として低燃焼性炭材のみ使用)、比較例1-3(セミコークスの粒度2.8mm以上の比率:30質量%未満)、発明例1-1~1-5(粉コークスの平均粒度:1.0mm、高燃焼性炭材:セミコークス)、および発明例1-12~1-13(粉コークスの平均粒度:1.2mm、高燃焼性炭材:木炭圧縮成形物)の試験結果をグラフに表したものであり、凝結材の炭素分に対する高燃焼性炭材の炭素分の質量比率(mass%)と、生産率(t/(Dm2))との関係を示す。図12は、表6の発明例1-6~1-11(セミコークスの炭素分質量比率:50質量%、セミコークスの粒度2.8mm以上の比率:30質量%)の試験結果をグラフに表したものであり、粉コークスの平均粒度(mm)と生産率(t/(Dm2))との関係を示す。
試験結果を表6の下欄に示す。試験結果において生産率が29.5t/(Dm2)以上となったケースが、実施例1の発明例である。
図10は、表6の比較例1-1(凝結材として高燃焼性炭材のみ使用)、発明例1-1~1-3(高燃焼性炭材の炭素分質量比率:75質量%、50質量%、25質量%)、比較例1-3(高燃焼性炭材の炭素分質量比率:50質量%)、発明例1-4~1-5(高燃焼性炭材の炭素分質量比率:50質量%)、および発明例1-12~1-13(高燃焼性炭材の炭素分質量比率:20質量%、25質量%、高燃焼性炭材:木炭圧縮成形物)の試験結果をグラフに表したものであり、高燃焼性炭材の粒度+2.8mmの比率と生産率との関係を示すグラフである。図11は、表6の比較例1-0(一段点火)、比較例1-1~1-2(凝結材として高燃焼性炭材のみ使用、凝結材として低燃焼性炭材のみ使用)、比較例1-3(セミコークスの粒度2.8mm以上の比率:30質量%未満)、発明例1-1~1-5(粉コークスの平均粒度:1.0mm、高燃焼性炭材:セミコークス)、および発明例1-12~1-13(粉コークスの平均粒度:1.2mm、高燃焼性炭材:木炭圧縮成形物)の試験結果をグラフに表したものであり、凝結材の炭素分に対する高燃焼性炭材の炭素分の質量比率(mass%)と、生産率(t/(Dm2))との関係を示す。図12は、表6の発明例1-6~1-11(セミコークスの炭素分質量比率:50質量%、セミコークスの粒度2.8mm以上の比率:30質量%)の試験結果をグラフに表したものであり、粉コークスの平均粒度(mm)と生産率(t/(Dm2))との関係を示す。
表6、図10、図11、および図12に示すように、全凝結材の炭素分に対する高燃焼性炭材の炭素分の質量比率が25質量%以上75質量%以下であり、かつ、高燃焼性炭材(セミコークス)の粒度2.8mm以上の比率が30質量%以上80質量%以下である発明例1-1~1-13において、生産率が向上した。木炭圧縮成形物は燃焼開始温度が低いため、セミコークス同様に生産率が向上する。さらに木炭圧縮成形物はセミコークスよりも燃焼開始温度が低いため、凝結材の炭素分に対する質量比率が20質量%(発明例1-12)と低比率でも、セミコークスにおける25質量%(発明例1-3)と同等の生産率となった。また、表6、および図12に示すように、低燃焼性炭材である粉コークスの平均粒度が0.8~1.2mmである発明例1-7,1-8においては、生産率および還元粉化性がさらに向上する(発明例1-6、1-9との比較)。さらに、偏析強化給鉱を実施した発明例1-10では、成品歩留向上が大きくなり、生産率がより向上した。粉コークス後添加を実施した発明例1―11では、燃焼前線降下速度(焼結速度)および成品歩留向上が著しく生産率が大幅に向上した。なお、比較例1-0(一段点火焼結法)と比較例1-2(再点火焼結法)との比較により、再点火の実施は、焼結速度を維持しつつ成品歩留が向上して、生産率の改善効果が得られることが確認された。
≪実施例2≫
(試験水準)
本実施例では、実施例1と同様の焼結鍋試験を用いて、本発明への風量制御技術の適用について検証した。以下に、実施例2の試験ケース(比較例2-1~2-2、発明例2-1~2-3)について、実施例1と異なる試験条件等について、後述する表7を用いて説明する。また、以下の説明において、実施例1と同じ条件や同じ試験方法などについては、重複説明を適宜省略している。
(試験水準)
本実施例では、実施例1と同様の焼結鍋試験を用いて、本発明への風量制御技術の適用について検証した。以下に、実施例2の試験ケース(比較例2-1~2-2、発明例2-1~2-3)について、実施例1と異なる試験条件等について、後述する表7を用いて説明する。また、以下の説明において、実施例1と同じ条件や同じ試験方法などについては、重複説明を適宜省略している。
(原料配合など)
原料配合は、凝結材を除き実施例1の表4と同じとした。焼結原料のうちの凝結材(炭材)配合、および凝結材の粒度(低燃焼性炭材の平均粒度、高燃焼性炭材の粒度2.8mm以上の比率)は、実施例1の比較例1-2または発明例1-2と同じ条件とした。具体的には、表5から表7に示すように、比較例2-1~2-2では、前者(比較例1-2)と同様、新原料に対して外数で4.5質量%の粉コークス(低燃焼性炭材)のみを使用し(凝結材の炭素分質量比率がセミコークス配合0質量%、粉コークス配合100質量%)、粉コークスの平均粒度は、1.0mmとした。また、発明例2-1~2-3では、後者(発明例1-2)と同様、炭素分質量比率で、粉コークス(低燃焼性炭材)配合50質量%、セミコークス(高燃焼性炭材)配合50質量%とし、粉コークスの平均粒度および高燃焼性炭材の粒度2.8mm以上の比率は、それぞれ、1.00mmおよび30質量%とした。なお、実施例2の全試験ケースにおいて、造粒方法は一括造粒とし、装入方法は通常装入とした。
原料配合は、凝結材を除き実施例1の表4と同じとした。焼結原料のうちの凝結材(炭材)配合、および凝結材の粒度(低燃焼性炭材の平均粒度、高燃焼性炭材の粒度2.8mm以上の比率)は、実施例1の比較例1-2または発明例1-2と同じ条件とした。具体的には、表5から表7に示すように、比較例2-1~2-2では、前者(比較例1-2)と同様、新原料に対して外数で4.5質量%の粉コークス(低燃焼性炭材)のみを使用し(凝結材の炭素分質量比率がセミコークス配合0質量%、粉コークス配合100質量%)、粉コークスの平均粒度は、1.0mmとした。また、発明例2-1~2-3では、後者(発明例1-2)と同様、炭素分質量比率で、粉コークス(低燃焼性炭材)配合50質量%、セミコークス(高燃焼性炭材)配合50質量%とし、粉コークスの平均粒度および高燃焼性炭材の粒度2.8mm以上の比率は、それぞれ、1.00mmおよび30質量%とした。なお、実施例2の全試験ケースにおいて、造粒方法は一括造粒とし、装入方法は通常装入とした。
(焼成条件)
実施例2の全試験ケースにおいて、点火(点火炉3による点火(初点火)に相当)および再点火(再点火炉4による再点火に相当)での点火時間は共に1分間(熱量:吸引ガス顕熱として25MJ/配合原料t)とした。また、表7の両点火間隔の欄に示すように、再点火開始時刻を点火完了時刻の1分後(離間時間1分)とした。
実施例2の全試験ケースにおいて、点火(点火炉3による点火(初点火)に相当)および再点火(再点火炉4による再点火に相当)での点火時間は共に1分間(熱量:吸引ガス顕熱として25MJ/配合原料t)とした。また、表7の両点火間隔の欄に示すように、再点火開始時刻を点火完了時刻の1分後(離間時間1分)とした。
吸引風量は送風機吸引側のバルブ開度により、鍋内の空筒風量が以下の条件0~条件2のいずれかとなるように調整した。
条件0.風量制御OFF:風量1.80Nm3/minで一定
条件1.風量制御ON1:
再点火終了まで風量1.35Nm3/min、その後風量1.80Nm3/min
条件2.風量制御ON2:
再点火終了まで風量1.20Nm3/min、その後風量1.80Nm3/min
表7の風量制御の欄に示すように、比較例2-1および2-2では、それぞれ、条件0(OFF)および条件2(ON2)とした。また、発明例2-1では条件0(OFF)で、発明例2-2では条件1(ON1)で、発明例2-3では条件2(ON2)で試験を実施した。
条件0.風量制御OFF:風量1.80Nm3/minで一定
条件1.風量制御ON1:
再点火終了まで風量1.35Nm3/min、その後風量1.80Nm3/min
条件2.風量制御ON2:
再点火終了まで風量1.20Nm3/min、その後風量1.80Nm3/min
表7の風量制御の欄に示すように、比較例2-1および2-2では、それぞれ、条件0(OFF)および条件2(ON2)とした。また、発明例2-1では条件0(OFF)で、発明例2-2では条件1(ON1)で、発明例2-3では条件2(ON2)で試験を実施した。
(試験結果)
表7の右欄に、試験結果(各試験ケースの焼結速度、成品歩留、生産率)を示す。試験結果において生産率が36.0t/(Dm2)以上となったケースが、実施例2の発明例である。なお、焼結速度、成品歩留、および生産率は、実施例1と同じ方法で求めた。また、図13は、本試験結果をグラフに表したものであり、空筒風量比(a/b)と生産率(t/(Dm2))の関係を示す。
表7の右欄に、試験結果(各試験ケースの焼結速度、成品歩留、生産率)を示す。試験結果において生産率が36.0t/(Dm2)以上となったケースが、実施例2の発明例である。なお、焼結速度、成品歩留、および生産率は、実施例1と同じ方法で求めた。また、図13は、本試験結果をグラフに表したものであり、空筒風量比(a/b)と生産率(t/(Dm2))の関係を示す。
表7および図13に示すように、高燃焼性炭材を使用しなかった比較例2-1,2-2よりも、高燃焼性炭材を使用した発明例2-1~2-3の方が、生産率が向上した。また、再点火終了までの区間で風量抑制を行った発明例2-2(空筒風量1.35Nm3/min)、および発明例2-3(空筒風量1.20Nm3/min)では、風量抑制を行わない発明例2-1よりも、成品歩留向上が大きく焼結速度の低下をカバーすることでき、生産率がそれぞれ0.3t/(Dm2)、0.4t/(Dm2)に改善した。
≪実施例3≫
(試験水準)
本実施例では、実施例1と同様の焼結鍋試験を用いて、本発明への酸素富化技術の適用について検証した。以下に、実施例3の試験ケース(発明例3-1~3-10)について、実施例1と異なる試験条件等について、後述する表8を用いて説明する。また、以下の説明において、実施例1と同じ条件や同じ試験方法などについては、重複説明を適宜省略している。
(試験水準)
本実施例では、実施例1と同様の焼結鍋試験を用いて、本発明への酸素富化技術の適用について検証した。以下に、実施例3の試験ケース(発明例3-1~3-10)について、実施例1と異なる試験条件等について、後述する表8を用いて説明する。また、以下の説明において、実施例1と同じ条件や同じ試験方法などについては、重複説明を適宜省略している。
(原料配合など)
原料配合は凝結材を除き実施例1の表4と同じとした。原料のうちの凝結材(炭材)配合、および凝結材の粒度(低燃焼性炭材の平均粒度、高燃焼性炭材の粒度2.8mm以上の比率)は、実施例3の全試験ケース(表8に参考として示す比較例2-1を除く)で、実施例1の発明例1-2と同じ条件とした。なお、実施例3の全試験ケースにおいて、造粒方法は一括、装入方法は通常とした。なお、高燃焼性炭材としてセミコークスを使用した。
原料配合は凝結材を除き実施例1の表4と同じとした。原料のうちの凝結材(炭材)配合、および凝結材の粒度(低燃焼性炭材の平均粒度、高燃焼性炭材の粒度2.8mm以上の比率)は、実施例3の全試験ケース(表8に参考として示す比較例2-1を除く)で、実施例1の発明例1-2と同じ条件とした。なお、実施例3の全試験ケースにおいて、造粒方法は一括、装入方法は通常とした。なお、高燃焼性炭材としてセミコークスを使用した。
(焼成条件)
実施例3の全試験ケースにおいて、点火(点火炉3による点火(初点火)に相当)および再点火(再点火炉4による再点火に相当)での点火時間は共に1分間(熱量:吸引ガス顕熱として25MJ/配合原料t)とした。表8に示すように、各試験ケース(発明例3-1~3-10)について、点火と再点火の間(酸素富化ガス吸引領域の移動に相当)の時間(離間時間)および吸引ガスの酸素濃度を、表8に試験条件として示す水準で変更した。
実施例3の全試験ケースにおいて、点火(点火炉3による点火(初点火)に相当)および再点火(再点火炉4による再点火に相当)での点火時間は共に1分間(熱量:吸引ガス顕熱として25MJ/配合原料t)とした。表8に示すように、各試験ケース(発明例3-1~3-10)について、点火と再点火の間(酸素富化ガス吸引領域の移動に相当)の時間(離間時間)および吸引ガスの酸素濃度を、表8に試験条件として示す水準で変更した。
点火後の焼成において、吸引風量は一定条件として、その風量は排ガスで1.80Nm3/minとなるように調整した。実施例1,2と同様、排ガス温度がピークに到達した3分後に送風機の吸引を停止し、焼成を終了した。ここに、焼結時間は、点火開始時刻から排ガス温度がピークに達した時刻までの時間とした。
発明例3-1,3-4では、酸素富化を行わず、吸引ガスに大気(空気)を使用した。発明例3-2~3-3,3-5~3-10における酸素投入方法は、ガスブレンダーで大気と酸素を所定の酸素濃度(表8の酸素濃度)となるように混合しておき、この混合ガスを鍋上にかぶせたフードを用いて、所定時間(表8の酸素富化時間)供給した。なお、酸素富化ガスの供給および吸引は点火終了直後(点火終了時刻から0秒越え2秒以内の時間後)から再点火直前(再点火開始時刻より0秒越え2秒以内の時間前)までに限定した。即ち、点火終了とともにフードをセットして所定の酸素濃度の酸素富化ガスの供給し、この酸素富化ガスを吸引させて、所定時間経過後直ちにフードを取り外して再点火した。ここで、入側ガス風量(=吸引ガス量)はすべてガスブレンダー経由の混合ガスとなるように流量を決定した。なお、入側ガス風量は、入側ガス窒素濃度、排ガス窒素濃度、および排ガス風量から求まる。これは、入側と出側の窒素ガス量が等しいことによる。さらに、排ガス窒素濃度は、排ガス分析(CO、CO2、O2)から引き算(N2≒100-(CO+CO2+O2))で求められる。本実施例では排ガス風量一定条件としたため、吸引ガス調整が容易であった。
(試験結果)
表8の右欄に、各試験ケースの試験結果(焼結速度、成品歩留、生産率)を示す。試験結果において生産率が36.0t/(Dm2)以上となったケースが、実施例3の発明例である。なお、焼結速度、成品歩留、および生産率は、実施例1と同じ方法で求めた。また、図14は、本試験結果をグラフに表したものであり、離間時間(実機の酸素富化ガス吸引領域7xをパレットが通過する時間帯に相当)における吸引ガスの酸素濃度(vol.%)と生産率(t/(Dm2))の関係を示す。
表8の右欄に、各試験ケースの試験結果(焼結速度、成品歩留、生産率)を示す。試験結果において生産率が36.0t/(Dm2)以上となったケースが、実施例3の発明例である。なお、焼結速度、成品歩留、および生産率は、実施例1と同じ方法で求めた。また、図14は、本試験結果をグラフに表したものであり、離間時間(実機の酸素富化ガス吸引領域7xをパレットが通過する時間帯に相当)における吸引ガスの酸素濃度(vol.%)と生産率(t/(Dm2))の関係を示す。
発明例3-1~3-3の試験結果に示されるように、離間時間を0.5分とした場合、酸素濃度上昇(発明例3-1⇒発明例3-2⇒発明例3-3)にともなう焼結速度、成品歩留、生産率の上昇が鈍い。これは、離間時間が短く酸素富化時間も0.5分と短いことによると考えられる。
一方、発明例3-4および発明例3-5の試験結果に示されるように、離間時間を1.0分とした場合、酸素濃度を21体積%から30体積%へ上昇(発明例3-4⇒発明例3-5)させることで、成品歩留および生産率上昇が顕著となる。
また、発明例3-5および発明例3-6の試験結果に示されるように、同じ酸素濃度(30体積%)で離間時間を1.0分から2.0分へと増加させる(発明例3-5⇒発明例3-6)ことで焼結速度、成品歩留、および生産率が大きく上昇する。これは離間時間増加に伴う酸素富化時間増加の効果である。
発明例3-6および発明例3-7の試験結果に示されるように、離間時間2.0分において、酸素濃度30体積%から40体積%へ上昇(発明例3-6⇒発明例3-7)させることで、焼結速度、および生産率が大きく上昇する。
また、発明例3-7および発明例3-8の試験結果に示されるように、離間時間を2分から5分へ増大する(発明例3-7⇒発明例3-8)ことで焼結速度、成品歩留、生産率が向上する。
しかしながら、発明例3-8~3-10の試験結果に示されるように、酸素濃度が40体積%を超えると(発明例3-8⇒発明例3-9)、または、離間時間が5分を超えると(発明例3-8⇒発明例3-10)、焼結速度、成品歩留、および生産率の向上効果が頭打ちとなった。
≪実施例4≫
(試験水準)
本実施例では、実施例1と同様の焼結鍋試験を用いて、本発明への酸素富化技術の適用について検証した。以下に、後述する表9~11を用いて、試験1(発明例4-1~4-15との計15の試験ケース、表9参照)、および試験2(発明例4-16~21との計6の試験ケース、表11参照)の試験条件と試験結果について説明する。なお、後述する表9の発明例4-1は発明例2-1と同じ試験ケースである。また、表9には実施例2の比較例2-1も参考のために示し、表11には試験1の発明例4-10も参考のために示している。以下の説明において、実施例1と同じ条件や同じ試験方法などについては、重複説明を適宜省略している。
(試験水準)
本実施例では、実施例1と同様の焼結鍋試験を用いて、本発明への酸素富化技術の適用について検証した。以下に、後述する表9~11を用いて、試験1(発明例4-1~4-15との計15の試験ケース、表9参照)、および試験2(発明例4-16~21との計6の試験ケース、表11参照)の試験条件と試験結果について説明する。なお、後述する表9の発明例4-1は発明例2-1と同じ試験ケースである。また、表9には実施例2の比較例2-1も参考のために示し、表11には試験1の発明例4-10も参考のために示している。以下の説明において、実施例1と同じ条件や同じ試験方法などについては、重複説明を適宜省略している。
≪試験1≫
(原料配合など)
原料配合は凝結材を除き実施例1の表4と同じとした。原料のうちの凝結材(炭材)配合、および凝結材の粒度(低燃焼性炭材の平均粒度、高燃焼性炭材の粒度2.8mm以上の比率)は、実施例4の全試験ケース(試験1および試験2(発明例4-1~4-21))で、実施例1の発明例1-2と同じ条件とした。また、実施例4の全試験ケースにおいて、造粒方法は一括、装入方法は通常とした。
(原料配合など)
原料配合は凝結材を除き実施例1の表4と同じとした。原料のうちの凝結材(炭材)配合、および凝結材の粒度(低燃焼性炭材の平均粒度、高燃焼性炭材の粒度2.8mm以上の比率)は、実施例4の全試験ケース(試験1および試験2(発明例4-1~4-21))で、実施例1の発明例1-2と同じ条件とした。また、実施例4の全試験ケースにおいて、造粒方法は一括、装入方法は通常とした。
(焼成条件)
実施例4の全試験ケースにおいて、点火(点火炉3による点火(初点火)に相当)および再点火(再点火炉4による再点火に相当)での燃焼時間は共に1分間(熱量:吸引ガス顕熱として25MJ/配合原料t)とした。また、表9に示すように、点火と再点火との間隔(離間時間:大気吸引領域7を移動する時間に相当)は1分とした。再点火終了直後(再点火終了時刻から0秒越え2秒以内)より酸素富化を開始する条件で、酸素富化時間および酸素濃度を、試験条件として示す水準で変更した。
実施例4の全試験ケースにおいて、点火(点火炉3による点火(初点火)に相当)および再点火(再点火炉4による再点火に相当)での燃焼時間は共に1分間(熱量:吸引ガス顕熱として25MJ/配合原料t)とした。また、表9に示すように、点火と再点火との間隔(離間時間:大気吸引領域7を移動する時間に相当)は1分とした。再点火終了直後(再点火終了時刻から0秒越え2秒以内)より酸素富化を開始する条件で、酸素富化時間および酸素濃度を、試験条件として示す水準で変更した。
点火後の焼成は風量一定条件とし、その風量は排ガスで1.80Nm3/minで調整した。実施例1~3と同様、排ガス温度がピークに到達した3分後に送風機の吸引を停止し、焼成を終了した。ここに、焼結時間は、点火開始時刻から排ガス温度がピークに達した時刻までの時間とした。
発明例4-1では、酸素富化を行わず、吸引ガスに大気(空気)を使用した。発明例4-2~4-15における酸素投入方法は、実施例3と同様、ガスブレンダーで大気と酸素を所定の酸素濃度(表9の酸素濃度)となるように混合しておき、この混合ガスを鍋上にかぶせたフードを用いて、所定時間(表9の酸素富化時間)供給した。具体的には、再点火終了とともにフードをセットして所定の酸素濃度の酸素富化ガスの供給し、この酸素富化ガスを吸引させて、所定時間経過後直ちにフードを取り外した。ここで、入側ガス風量(=吸引ガス量)はすべてガスブレンダー経由の混合ガスとなるように流量を決定した。
(試験結果)
表9の右欄に、各試験ケースの試験結果(焼結速度、成品歩留、生産率)を示す。試験結果において生産率が36.0t/(Dm2)以上となったケースが、実施例4(試験1)の発明例である。なお、焼結速度、成品歩留、および生産率は、実施例1と同じ方法で求めた。
表9の右欄に、各試験ケースの試験結果(焼結速度、成品歩留、生産率)を示す。試験結果において生産率が36.0t/(Dm2)以上となったケースが、実施例4(試験1)の発明例である。なお、焼結速度、成品歩留、および生産率は、実施例1と同じ方法で求めた。
(焼結速度)
酸素濃度の影響:酸素濃度が40vol.%(体積%)までは上昇するが、酸素濃度50vol.%(発明例4-9,4-13)では頭打ちの傾向となっている。
酸素富化時間の影響:酸素濃度30vol.%の条件で見ると、2.0分(発明例4-11)までは効果が大きくなるが、3.0分(発明例4-14)や4.0分(発明例4-15)まで延ばしても効果は頭打ちとなった。
酸素濃度の影響:酸素濃度が40vol.%(体積%)までは上昇するが、酸素濃度50vol.%(発明例4-9,4-13)では頭打ちの傾向となっている。
酸素富化時間の影響:酸素濃度30vol.%の条件で見ると、2.0分(発明例4-11)までは効果が大きくなるが、3.0分(発明例4-14)や4.0分(発明例4-15)まで延ばしても効果は頭打ちとなった。
(成品歩留)
再点火法での酸素富化なしの条件(発明例4-1)で76.2mass%(質量%)、再点火法での酸素富化ありの条件では全試験水準が76.2±0.5mass%に収まった。従って、成品歩留に対する効果は現われなかった。
再点火法での酸素富化なしの条件(発明例4-1)で76.2mass%(質量%)、再点火法での酸素富化ありの条件では全試験水準が76.2±0.5mass%に収まった。従って、成品歩留に対する効果は現われなかった。
(生産率)
図15は、本試験結果をグラフに表したものであり、酸素濃度(vol.%)と生産率(t/(Dm2))の関係を示す。図15に示すように、以下のような結果となった。
酸素濃度の影響:酸素濃度が40vol.%(体積%)までは上昇するが、酸素濃度50vol.%(発明例4-9,4-13)では頭打ちの傾向となっている。
酸素富化時間の影響:酸素濃度30vol.%の条件で見ると、2.0分(発明例4-11)までは効果が大きくなるが、3.0分(発明例4-14)や4.0分(発明例4-15)まで延ばしても効果は頭打ちとなった。
図15は、本試験結果をグラフに表したものであり、酸素濃度(vol.%)と生産率(t/(Dm2))の関係を示す。図15に示すように、以下のような結果となった。
酸素濃度の影響:酸素濃度が40vol.%(体積%)までは上昇するが、酸素濃度50vol.%(発明例4-9,4-13)では頭打ちの傾向となっている。
酸素富化時間の影響:酸素濃度30vol.%の条件で見ると、2.0分(発明例4-11)までは効果が大きくなるが、3.0分(発明例4-14)や4.0分(発明例4-15)まで延ばしても効果は頭打ちとなった。
ここで、上述の発明例4-1および発明例4-14について酸素利用率および酸素消費速度を算出した結果を表10に示す。表10には、生産率向上効果が最も大きかった発明例4-14(酸素濃度30vol.%、酸素富化時間3.0分)のケースについて、一段点火における効果と比較して評価するために実施した比較例4-1および比較例4-2の試験条件とその結果も示している。比較例4-2では、点火終了直後から3.0分間酸素富化を実施している。なお、酸素利用率および酸素消費速度の評価を行った時間帯は、比較例4-1および比較例4-2(一段点火焼結法)では、点火終了直後からの3分間である。また、発明例4-1および発明例4-14(再点火焼結法)では、再点火終了直後からの3分間とした。すなわち、比較例4-2および発明例4-14については、酸素富化時間帯における酸素利用率および酸素消費速度が示されている。また、表10に示す排ガス中酸素放出速度(b)は、磁気式酸素濃度計による排ガス分析結果より算出した。酸素消費速度(a)は、焼結層へ吸引される酸素流通速度から排ガス中酸素放出速度(b)を引いて求めた。なお、焼結層へ吸引される酸素流通速度は入側ガス流通速度に酸素濃度を掛けて求めることができる。
表10に示すように、酸素富化無し同士(発明例4-1および比較例4-1)を比較すると、再点火終了直後の3分間は一段点火における点火終了直後の3分間よりも酸素消費速度および酸素利用率が高い。そして、再点火実施同士(発明例4-1および発明例4-14)を比較すると、再点火終了直後の3分間の酸素富化を実施した発明例4-14では、酸素利用率を維持しつつ、酸素濃度が上昇した分、酸素消費速度が上昇する結果となった。
≪試験2≫
本試験では、試験1の発明例4-10を基準として、酸素富化開始時刻のみを再点火終了時刻から10秒ピッチで変更して、その影響を調べた。すなわち、発明例4-16~4-21の試験条件は、酸素富化開始時刻以外は、発明例4-10と同じである。表11に発明例4-10および発明例4-16~4-21の試験条件と試験結果を示す。表11の酸素富化開始時間は、再点火終了時刻から再点火開始までの経過時間(秒数)を示し、再点火終了直後に酸素富化を開始した発明例4-10の「0秒」は再点火終了から酸素富化開始までの操作時間を含む0秒越え2秒以内の時間を示す。また、発明例4-16の「10秒」は再点火終了から酸素富化開始までの操作時間を含む10秒越え12秒以内を示す。発明例4-17~4-21の酸素富化開始時間の各秒数についても、発明例4-10、発明例4-16と同様である。
本試験では、試験1の発明例4-10を基準として、酸素富化開始時刻のみを再点火終了時刻から10秒ピッチで変更して、その影響を調べた。すなわち、発明例4-16~4-21の試験条件は、酸素富化開始時刻以外は、発明例4-10と同じである。表11に発明例4-10および発明例4-16~4-21の試験条件と試験結果を示す。表11の酸素富化開始時間は、再点火終了時刻から再点火開始までの経過時間(秒数)を示し、再点火終了直後に酸素富化を開始した発明例4-10の「0秒」は再点火終了から酸素富化開始までの操作時間を含む0秒越え2秒以内の時間を示す。また、発明例4-16の「10秒」は再点火終了から酸素富化開始までの操作時間を含む10秒越え12秒以内を示す。発明例4-17~4-21の酸素富化開始時間の各秒数についても、発明例4-10、発明例4-16と同様である。
(試験結果)
表11の右欄に、各試験ケースの試験結果(焼結速度、成品歩留、生産率)を示す。試験結果において生産率が36.0t/(Dm2)以上となったケースが、実施例4(試験2)の発明例である。なお、焼結速度、成品歩留、および生産率は、実施例1と同じ方法で求めた。図16は、表4右欄の試験結果をグラフにしたものであり、酸素富化時間と生産率との関係を示す。図16および表4右欄の試験結果(焼結速度ならびに生産率)より、再点火終了時刻から10秒以内に酸素富化を開始することが好ましいが、再点火終了時刻から30秒以内でもかなり大きな効果が得られることがわかる。また、60秒経過後でも表9に示した発明例4-1~4-3よりは効果が大きい。
表11の右欄に、各試験ケースの試験結果(焼結速度、成品歩留、生産率)を示す。試験結果において生産率が36.0t/(Dm2)以上となったケースが、実施例4(試験2)の発明例である。なお、焼結速度、成品歩留、および生産率は、実施例1と同じ方法で求めた。図16は、表4右欄の試験結果をグラフにしたものであり、酸素富化時間と生産率との関係を示す。図16および表4右欄の試験結果(焼結速度ならびに生産率)より、再点火終了時刻から10秒以内に酸素富化を開始することが好ましいが、再点火終了時刻から30秒以内でもかなり大きな効果が得られることがわかる。また、60秒経過後でも表9に示した発明例4-1~4-3よりは効果が大きい。
≪実施例5≫
(試験水準)
本実施例では、実施例1と同様の焼結鍋試験を用いて、本発明へのスタンド支持焼結技術の適用について検証した。以下に、後述する表12を用いて、実施例5の試験ケース(比較例5-1~5-2、発明例5-1~5-6)の試験条件と試験結果について説明する。なお、以下の説明において、実施例1と同じ条件や同じ試験方法などについては、重複説明を適宜省略している。
(試験水準)
本実施例では、実施例1と同様の焼結鍋試験を用いて、本発明へのスタンド支持焼結技術の適用について検証した。以下に、後述する表12を用いて、実施例5の試験ケース(比較例5-1~5-2、発明例5-1~5-6)の試験条件と試験結果について説明する。なお、以下の説明において、実施例1と同じ条件や同じ試験方法などについては、重複説明を適宜省略している。
(原料配合など)
原料配合は凝結材を除き実施例1の表4と同じとした。原料のうち凝結材(炭材)配合、および凝結材の粒度(低燃焼性炭材の平均粒度、高燃焼性炭材の粒度2.8mm以上の比率)は、実施例1の比較例1-2または発明例1-2と同じ条件とした。比較例5-1~5-2では、前者(比較例1-2)と同様、新原料に対して外数で4.5質量%の粉コークス(低燃焼性炭材)のみを使用し(凝結材の炭素分質量比率がセミコークス配合0質量%、粉コークス配合100質量%)、粉コークスの平均粒度は、1.0mmとした。また、発明例5-1~5-6では、後者(発明例1-2)と同様、炭素分質量比率で、粉コークス(低燃焼性炭材)配合50質量%、セミコークス(高燃焼性炭材)配合50質量%とし、粉コークスの平均粒度および高燃焼性炭材の粒度2.8mm以上の比率は、それぞれ、1.00mmおよび30質量%とした。なお、実施例5の全試験ケースにおいて、造粒方法は一括、装入方法は通常とした。
原料配合は凝結材を除き実施例1の表4と同じとした。原料のうち凝結材(炭材)配合、および凝結材の粒度(低燃焼性炭材の平均粒度、高燃焼性炭材の粒度2.8mm以上の比率)は、実施例1の比較例1-2または発明例1-2と同じ条件とした。比較例5-1~5-2では、前者(比較例1-2)と同様、新原料に対して外数で4.5質量%の粉コークス(低燃焼性炭材)のみを使用し(凝結材の炭素分質量比率がセミコークス配合0質量%、粉コークス配合100質量%)、粉コークスの平均粒度は、1.0mmとした。また、発明例5-1~5-6では、後者(発明例1-2)と同様、炭素分質量比率で、粉コークス(低燃焼性炭材)配合50質量%、セミコークス(高燃焼性炭材)配合50質量%とし、粉コークスの平均粒度および高燃焼性炭材の粒度2.8mm以上の比率は、それぞれ、1.00mmおよび30質量%とした。なお、実施例5の全試験ケースにおいて、造粒方法は一括、装入方法は通常とした。
(焼成条件)
実施例5の全試験ケースにおいて、点火(点火炉3による点火(初点火)に相当)および再点火(再点火炉4による再点火に相当)での点火時間は共に1分間(熱量25MJ/配合原料t)とした。また、表12の離間時間の欄に示すように、離間時間は0.5分、1分、2.5分、3.5分のいずれかとした。吸引圧力については、実施例1と同じく、実施例5の全試験ケースにおいて鍋下における計測値で1300mmAq(12.75kPa)一定となるように、送風機吸引側のバルブ開度で調整した。
実施例5の全試験ケースにおいて、点火(点火炉3による点火(初点火)に相当)および再点火(再点火炉4による再点火に相当)での点火時間は共に1分間(熱量25MJ/配合原料t)とした。また、表12の離間時間の欄に示すように、離間時間は0.5分、1分、2.5分、3.5分のいずれかとした。吸引圧力については、実施例1と同じく、実施例5の全試験ケースにおいて鍋下における計測値で1300mmAq(12.75kPa)一定となるように、送風機吸引側のバルブ開度で調整した。
表12は、本実施例の各試験ケースの試験条件および試験結果を示す。表12に示すように、セミコークス(高燃焼性炭材)配合50質量%についてはスタンド支持焼結技術の効果を離間時間3水準(0.5分、2.5分、3.5分)で評価した(発明例5-1~5-6)。また、比較のため、セミコークス配合0質量%については離間時間0.5分条件で評価し(比較例5-1~5-2)、参考のため、実施例1の比較例1-2および発明例1-2も示している。
(試験結果)
表12に、各試験ケースの試験結果(焼結速度、成品歩留、生産率)を示す。試験結果において生産率が29.5t/(Dm2)以上となったケースが、実施例5の発明例である。なお、焼結速度、成品歩留、および生産率は、実施例1と同じ方法で求めた。また、図17(セミコークス配合50質量%)および図18(セミコークス配合0質量%)は、表12の試験結果をグラフに表したものであり、離間時間(min)と生産率(t/(Dm2))の関係を示す。
表12に、各試験ケースの試験結果(焼結速度、成品歩留、生産率)を示す。試験結果において生産率が29.5t/(Dm2)以上となったケースが、実施例5の発明例である。なお、焼結速度、成品歩留、および生産率は、実施例1と同じ方法で求めた。また、図17(セミコークス配合50質量%)および図18(セミコークス配合0質量%)は、表12の試験結果をグラフに表したものであり、離間時間(min)と生産率(t/(Dm2))の関係を示す。
表12および図17に示すように、セミコークス配合50質量%については、焼結速度、成品歩留、生産率いずれも、離間時間0.5分および2.5分においてスタンド支持焼結技術を適用すると、生産率が高値となり、向上効果が顕著であった。
一方、表12および図18に示すように、セミコークス配合0質量%については、焼結速度、成品歩留、生産率いずれも、スタンド支持焼結技術の効果が目減りした。このように、高燃焼性炭材(セミコークス)配合とスタンド支持焼結技術の予想を超えた相乗効果が、再点火焼結法において確認された。
なお、本試験ケース(実施例1~5)では、点火時間および再点火時間を共に1分(熱量:吸引ガス顕熱として25MJ/配合原料t)で実施したが、本実施形態はこの例に限定されるものではない。試験ケースにおける点火時間は、鍋試験におけるヒートロスを考慮して設定されているためである。実機(商用焼結機)において、例えば点火時間30秒での操業であれば、この点火時間を1分とする必要はなく、実操業の点火時間を維持して、再点火焼結法を行えばよい。また、再点火時間についても、同様に、実機で1分間である必要はない。
以上、添付図面を参照しながら本発明の好適な実施形態および実施例について詳細に説明したが、本発明はかかる例に限定されない。本発明の属する技術の分野における通常の知識を有する者であれば、特許請求の範囲に記載された技術的思想の範疇内において、各種の変更例または修正例に想到し得ることは明らかであり、これらについても、当然に本発明の技術的範囲に属するものと了解される。
1…原料槽群、2…ドラムミキサー、3…点火炉、31…点火器、32…点火炉のフード、32a…隔壁(下流側)、4…再点火炉、41…再点火器、42…再点火炉のフード、42a…隔壁(上流側)、42b…隔壁(下流側)、5…パレット、5x…パレット進行方向、51…グレートバー、52…メインフレーム、53…パレット側壁、6…下方吸引装置、6x…下方吸引、61…ウインドボックス、62…ウインドレグ、63…ダンパー、64…ダクト、65…ブロア、7…大気吸引領域、7x…酸素富化ガス吸引領域、8…傾斜平板シュート式装入装置、81…配合原料サージホッパ、82…傾斜平板シュート、9…酸素富化ガス供給設備、91…酸素富化ガス供給設備のフード、92…ガス管、10…原料充填層、10x…斜面、10A…燃焼帯、10A1…初点火燃焼帯、10A2…再点火燃焼帯、10B…シンターケーキ、16…スタンド、16a…シンターケーキ支持面、101,103,104…DL式焼結機、S…区間
Claims (18)
- 最初の点火を行う点火炉と、該点火炉の下流側に所定の間隔を空けて配置されて再点火を行う再点火炉とを備え、下方吸引により焼結を進行させるドワイトロイド式焼結機を用いて焼結鉱を製造する焼結鉱の製造方法において、
配合原料の凝結材として、燃焼開始温度が550℃を超える低燃焼性炭材と、前記燃焼開始温度が550℃以下である高燃焼性炭材とを使用し、
前記高燃焼性炭材において粒度2.8mm以上の比率が30質量%以上80質量%以下である、焼結鉱の製造方法。 - 前記高燃焼性炭材に、木材炭化物の集合体を圧縮して成形した圧縮成形物を粉砕した粉砕物を使用する、請求項1に記載の焼結鉱の製造方法。
- 前記木材炭化物の集合体を圧縮して成形した圧縮成形物を粉砕した粉砕物の製造は、
木材を乾留して木材炭化物を製造する炭化物製造工程と、
前記木材炭化物を必要に応じて粉砕して木材炭化物粒子とし、該木材炭化物粒子を、単体で、又は、バインダと混錬して、木材炭化物の集合体を製造する集合体製造工程と、
前記集合体を圧縮して成形した圧縮成形物を製造する圧縮工程と、
前記圧縮成形物を粉砕する圧縮品粉砕工程と、
を有する、請求項2に記載の焼結鉱の製造方法。 - 前記凝結材の炭素分に対する前記高燃焼性炭材の炭素分の質量比率が25質量%以上75質量%以下である、請求項1から請求項3のいずれか一項に記載の焼結鉱の製造方法。
- 前記低燃焼性炭材の平均粒度が0.8mm以上1.2mm以下の範囲である、請求項4に記載の焼結鉱の製造方法。
- 前記配合原料の装入装置として、偏析強化型装入装置を用いる、請求項5に記載の焼結鉱の製造方法。
- 前記凝結材のうち、前記低燃焼性炭材のみを造粒工程後半において添加する、請求項5に記載の焼結鉱の製造方法。
- 焼結ストランド上流側の再点火炉出口までの区間でのみ下方吸引の風量を抑制する、請求項1から請求項3のいずれか一項に記載の焼結鉱の製造方法。
- 前記焼結ストランド上流側の再点火炉出口までの区間で吸引される大気の平均空筒風量を、前記再点火炉出口より下流側の区間で吸引される大気の平均空筒風量に対して60%以上80%以下とする、請求項8に記載の焼結鉱の製造方法。
- 前記焼結ストランド上流側の再点火炉出口までの区間のウインドボックス若しくはウインドレグにおける平均負圧を、再点火炉出口より下流側の区間のウインドボックス若しくはウインドレグにおける平均負圧に対して40%以上70%以下とする、請求項8に記載の焼結鉱の製造方法。
- 前記点火炉と前記再点火炉との間の区間をパレットが通過するのに要する時間である離間時間を30秒以上2分以下とする、請求項8に記載の焼結鉱の製造方法。
- 前記点火炉と前記再点火炉との間の区間をパレットが通過するのに要する時間である離間時間が1分以上であり、
前記区間において焼結層の表層側から下方吸引される吸引ガスの酸素濃度が30体積%以上である、請求項1から請求項3のいずれか一項に記載の焼結鉱の製造方法。 - 前記離間時間が5分以下であり、前記吸引ガスの酸素濃度が40体積%以下である、請求項12に記載の焼結鉱の製造方法。
- 焼結層の表層側から下方吸引される吸引ガスの酸素富化開始は、再点火終了後とし、
前記酸素富化開始から酸素富化終了までの酸素富化時間は30秒以上であり、
前記酸素富化時間において下方吸引される前記吸引ガスの酸素濃度が30体積%以上である、請求項1から請求項3のいずれか一項に記載の焼結鉱の製造方法。 - 前記酸素富化時間が2分以下であり、前記吸引ガスの酸素濃度が40体積%以下である、請求項14に記載の焼結鉱の製造方法。
- 前記酸素富化開始は、再点火終了時刻から0秒越え30秒以内である、請求項14に記載の焼結鉱の製造方法。
- 前記酸素富化開始は、再点火終了時刻から0秒越え10秒以内である、請求項16に記載の焼結鉱の製造方法。
- 前記配合原料が装入されるパレットには、シンターケーキ支持面を有する支持部材が原料充填層に埋設するようにグレートバー上に垂設されている、請求項1から請求項3のいずれか一項に記載の焼結鉱の製造方法。
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2022-190150 | 2022-11-29 | ||
JP2022190150 | 2022-11-29 | ||
JP2023178326 | 2023-10-16 | ||
JP2023-178326 | 2023-10-16 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2024117144A1 true WO2024117144A1 (ja) | 2024-06-06 |
Family
ID=91324151
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2023/042626 WO2024117144A1 (ja) | 2022-11-29 | 2023-11-28 | 焼結鉱の製造方法 |
Country Status (2)
Country | Link |
---|---|
TW (1) | TW202428890A (ja) |
WO (1) | WO2024117144A1 (ja) |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102260567A (zh) * | 2011-06-30 | 2011-11-30 | 中南大学 | 一种铁矿烧结用生物质成型燃料及应用 |
JP2013237876A (ja) * | 2012-05-11 | 2013-11-28 | Nippon Steel & Sumitomo Metal Corp | アブラ椰子核殻炭による焼結鉱製造方法 |
JP2014218713A (ja) * | 2013-05-09 | 2014-11-20 | 新日鐵住金株式会社 | 焼結鉱の製造方法 |
JP2015157980A (ja) * | 2014-02-24 | 2015-09-03 | Jfeスチール株式会社 | 焼結鉱の製造方法 |
JP2020186436A (ja) * | 2019-05-14 | 2020-11-19 | 日本製鉄株式会社 | 焼結鉱の製造方法 |
JP2021042468A (ja) * | 2019-09-03 | 2021-03-18 | 日本製鉄株式会社 | 焼結鉱の製造方法 |
JP2022033594A (ja) * | 2020-08-17 | 2022-03-02 | 日本製鉄株式会社 | 焼結鉱の製造方法 |
JP2022043500A (ja) * | 2020-09-04 | 2022-03-16 | 日本製鉄株式会社 | 焼結鉱の製造方法 |
-
2023
- 2023-11-28 WO PCT/JP2023/042626 patent/WO2024117144A1/ja unknown
- 2023-11-29 TW TW112146325A patent/TW202428890A/zh unknown
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102260567A (zh) * | 2011-06-30 | 2011-11-30 | 中南大学 | 一种铁矿烧结用生物质成型燃料及应用 |
JP2013237876A (ja) * | 2012-05-11 | 2013-11-28 | Nippon Steel & Sumitomo Metal Corp | アブラ椰子核殻炭による焼結鉱製造方法 |
JP2014218713A (ja) * | 2013-05-09 | 2014-11-20 | 新日鐵住金株式会社 | 焼結鉱の製造方法 |
JP2015157980A (ja) * | 2014-02-24 | 2015-09-03 | Jfeスチール株式会社 | 焼結鉱の製造方法 |
JP2020186436A (ja) * | 2019-05-14 | 2020-11-19 | 日本製鉄株式会社 | 焼結鉱の製造方法 |
JP2021042468A (ja) * | 2019-09-03 | 2021-03-18 | 日本製鉄株式会社 | 焼結鉱の製造方法 |
JP2022033594A (ja) * | 2020-08-17 | 2022-03-02 | 日本製鉄株式会社 | 焼結鉱の製造方法 |
JP2022043500A (ja) * | 2020-09-04 | 2022-03-16 | 日本製鉄株式会社 | 焼結鉱の製造方法 |
Also Published As
Publication number | Publication date |
---|---|
TW202428890A (zh) | 2024-07-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Lovel et al. | The influence of fuel reactivity on iron ore sintering | |
JP5786795B2 (ja) | アブラ椰子核殻炭による焼結鉱製造方法 | |
JP4893136B2 (ja) | 木質バイオマスを原料とした高炉操業方法 | |
KR101475130B1 (ko) | 소결광의 제조 방법 | |
WO2011034195A1 (ja) | フェロコークスの製造方法 | |
JP6075231B2 (ja) | 焼結鉱の製造方法 | |
JP2022033594A (ja) | 焼結鉱の製造方法 | |
JP5403027B2 (ja) | 木質バイオマスを原料とした高炉操業方法およびコークスの製造方法 | |
JP6102484B2 (ja) | 焼結鉱の製造方法 | |
JP6421666B2 (ja) | 焼結鉱の製造方法 | |
KR101409516B1 (ko) | 소결광의 제조 방법 | |
WO2024117144A1 (ja) | 焼結鉱の製造方法 | |
CN108103307A (zh) | 一种铁矿石烧结点火及冷却的实验方法 | |
JP4681688B2 (ja) | 鉄鉱石焼結用炭材 | |
JP2023047300A (ja) | 焼結鉱の製造方法 | |
JP5561443B2 (ja) | 焼結鉱の製造方法 | |
KR101220596B1 (ko) | 소결용 고체 연료의 제조 방법, 소결용 고체 연료 및 이것을 사용한 소결광의 제조 방법 | |
JP7553759B2 (ja) | 焼結機、焼結機の操業方法 | |
JP7095561B2 (ja) | 焼結鉱の製造方法 | |
WO2024116616A1 (ja) | 焼結鉱の製造方法 | |
TWI632241B (zh) | Method for manufacturing sinter ore in carbon material | |
JP2002371322A (ja) | 焼結鉱の製造方法 | |
JP2024078406A (ja) | 焼結鉱の製造方法 | |
WO2024209499A1 (ja) | 焼結鉱の製造方法 | |
JP5929491B2 (ja) | アブラ椰子核殻の有効活用方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 23897791 Country of ref document: EP Kind code of ref document: A1 |