WO2024116941A1 - 加熱調理器用トッププレート - Google Patents

加熱調理器用トッププレート Download PDF

Info

Publication number
WO2024116941A1
WO2024116941A1 PCT/JP2023/041661 JP2023041661W WO2024116941A1 WO 2024116941 A1 WO2024116941 A1 WO 2024116941A1 JP 2023041661 W JP2023041661 W JP 2023041661W WO 2024116941 A1 WO2024116941 A1 WO 2024116941A1
Authority
WO
WIPO (PCT)
Prior art keywords
refractive index
low refractive
layer
index layer
top plate
Prior art date
Application number
PCT/JP2023/041661
Other languages
English (en)
French (fr)
Inventor
千恵 平井
佑紀 岩崎
武央 頭川
Original Assignee
パナソニックIpマネジメント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニックIpマネジメント株式会社 filed Critical パナソニックIpマネジメント株式会社
Publication of WO2024116941A1 publication Critical patent/WO2024116941A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B17/00Layered products essentially comprising sheet glass, or glass, slag, or like fibres
    • B32B17/06Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/02Physical, chemical or physicochemical properties
    • B32B7/023Optical properties
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/34Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24CDOMESTIC STOVES OR RANGES ; DETAILS OF DOMESTIC STOVES OR RANGES, OF GENERAL APPLICATION
    • F24C15/00Details
    • F24C15/10Tops, e.g. hot plates; Rings
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B6/00Heating by electric, magnetic or electromagnetic fields
    • H05B6/02Induction heating
    • H05B6/10Induction heating apparatus, other than furnaces, for specific applications
    • H05B6/12Cooking devices

Definitions

  • This disclosure relates to a top plate for a cooking device.
  • Transparent heat-resistant glass is used as the substrate for the top plates of cooking appliances, such as electromagnetic induction cooking appliances and electric cooking appliances that heat with infrared rays radiated from a heating element.
  • a light-shielding colored layer is provided on the underside of the heat-resistant glass substrate, i.e., the side of the heat-resistant glass substrate opposite the cooking surface, to realize cooking appliances with colors tailored to customer needs.
  • quartz glass substrates, borosilicate glass substrates, crystallized glass substrates, etc. have been used as the heat-resistant glass substrate.
  • crystallized glass substrates which have high strength and a low coefficient of thermal expansion, have come to be widely used.
  • Patent Document 1 discloses a glass top plate for an electromagnetic cooker that is formed by laminating one or more layers of matte decorative glass made of a glass composition on the back surface of a substrate glass made of transparent low expansion glass, and further laminating one or more layers of a glossy layer or a light-shielding layer, and that specifies the linear thermal expansion coefficient of the substrate glass and the linear thermal expansion coefficient of the matte decorative glass.
  • Patent Document 2 discloses a glass top plate for a cooker that is laminated on the back side, which is the side opposite to the cooking surface of a substrate glass made of transparent low expansion glass, with a highly reflective film that is mainly composed of one or more of TiO 2 , CeO 2 , and ZrO 2 and has a thickness of 20 to 300 nm, a pearlescent layer containing a pearlescent material is laminated on the highly reflective film, and further a light-shielding layer is laminated on the pearlescent layer.
  • Patent Document 3 discloses a glass top plate for a cooker that combines texture and visibility of the display, in which a light-shielding portion and a light-transmitting display portion are provided on a substrate glass, a display body is arranged below the display portion, the substrate glass has a cooking surface that is a smooth surface and a back side that is a roughened surface, the light-shielding portion is provided by laminating a light-shielding layer on the back side of the substrate glass, the display portion is provided by bonding a light-transmitting plate to the back side of the substrate glass via a transparent intermediate layer, and further, at least the exposed surface of the light-transmitting plate that does not face the transparent intermediate layer is smooth.
  • Patent Document 4 also discloses an aesthetically pleasing top plate for a cooker, which includes a transparent crystallized glass substrate containing titanium oxide, a reflective film formed on the back surface of the transparent crystallized glass substrate and reflecting light in at least a portion of the visible wavelength range, and a color correction film between the transparent crystallized glass substrate and the reflective film, the light transmittance of which gradually decreases as the wavelength becomes longer in the visible wavelength range, and the reflective film and the color correction film are configured such that the average light reflectance at the interface between the color correction film and the transparent crystallized glass substrate is lower than the average light reflectance at the interface between the color correction film and the reflective film in the visible wavelength range.
  • Patent Document 5 discloses a top plate for a cooker made of a low-expansion transparent crystallized glass plate, which is used as a top plate for a cooker equipped with an electromagnetic induction heating device, and which is characterized in that a decorative layer made of a dense inorganic pigment layer is formed on part or all of the cooking surface side of the low-expansion transparent crystallized glass plate, and a light-shielding layer made of a porous inorganic pigment layer is formed on part or all of the heating device side.
  • Patent Document 6 discloses a light-shielding glass plate, which is characterized in that a porous light-shielding layer made of 40 to 90% by weight of inorganic pigment powder and 10 to 60% by weight of glass flux is provided on the surface of a glass plate made of transparent low-expansion crystallized glass, and that adjacent inorganic pigment powders or the inorganic pigment powder and the glass plate are bonded together with glass made by melting and solidifying the glass flux.
  • Patent document 7 discloses a method for producing a glass or glass-ceramic product having a decorative layer, which comprises mixing at least one decorative pigment with a sol-gel binder and hardening the pigment mixed with the sol-gel binder on the glass or glass-ceramic substrate of the product by annealing to form a decorative layer having a porous ceramic-like structure.
  • Patent Document 8 proposes a glass ceramic plate or glass plate with reinforced mechanical strength, which comprises a glass ceramic or glass substrate in the form of a plate having two substantially parallel main surfaces, and at least one layer or a porous silica-based inorganic matrix containing at least one type of (co)polymer that is resistant to high temperatures, fixed to at least one of the two main surfaces, and the thickness of the glass ceramic or glass substrate is less than 4 mm.
  • the crystallized glass has excellent strength characteristics, the glass itself is yellowish.
  • the crystallized glass is mainly composed of Li 2 O-Al 2 O 3 -SiO 2 , and transition elements such as Ti and Zr are added for crystallization.
  • the transition elements are said to be the cause of the yellowish color. If the colored layer provided on the lower surface of the crystallized glass substrate is dark in color, there is almost no problem even if the crystallized glass substrate is yellowish. However, customers may need a white top plate for a cooker. When conventional borosilicate glass is used for the substrate, a white top plate for a cooker can be realized by making the colored layer provided on the lower surface of the substrate white. However, when crystallized glass is used for the substrate, even if the colored layer is white, the color tone seen through the crystallized glass substrate is yellowish, making it difficult to realize a white top plate for a cooker.
  • Patent Documents 1 to 3 and Patent Document 5 aim to enhance the texture of the design, such as a matte finish or metallic luster, but do not aim to realize a white cooker top plate in particular.
  • Patent Document 4 discloses a cooker top plate with excellent aesthetics, but does not aim to realize a white cooker top plate, which is particularly difficult.
  • Patent Documents 6 to 8 further aim to increase the mechanical strength of cooker top plates, but do not aim to realize a white cooker top plate in particular.
  • the present disclosure aims to solve the above problem by providing a white-colored top plate for a cooking device using crystallized glass that exhibits high strength and low thermal expansion as the substrate.
  • a white top plate for a cooking device can be provided by using crystallized glass that exhibits high strength and low thermal expansion as the substrate.
  • FIG. 1 is a schematic cross-sectional view of a top plate for a cooking device according to an embodiment of the present invention.
  • FIG. 2 is a schematic cross-sectional view of a top plate for a cooking appliance according to another embodiment of the present invention.
  • the present inventors have conducted various studies on a means for correcting the color tone of the crystallized glass substrate used in the top plate for a cooking device from yellow to white. Based on the results of a preliminary experiment that a colored layer containing a blue pigment, which is a complementary color of yellow, is provided on the underside of the crystallized glass substrate, the substrate exhibits a gray color, whereas a blue-white printed paper is placed on the underside of the crystallized glass substrate, the substrate exhibits a color closer to that of a conventional (borosilicate glass + white ink) substrate, the inventors have conducted extensive studies on a means for correcting the color tone of the crystallized glass substrate from yellow to white to be closer to that of (borosilicate glass + white ink).
  • the top plate for a cooking device is A crystallized glass substrate containing Li2O - Al2O3 - SiO2 as a main component and a transition element; a low refractive index stack provided on the lower surface of the crystallized glass substrate, the low refractive index stack having at least a first low refractive index layer and a second low refractive index layer, both of which have a refractive index smaller than that of the crystallized glass substrate, in this order from the crystallized glass substrate side; a thickness of the first low refractive index layer is 0.01% or more and 10% or less of a thickness of the second low refractive index layer, It has been found that it is sufficient that at least the second low refractive index layer contains a blue pigment.
  • the top plate for a heating cooker according to this embodiment will be described.
  • the top plate for the cooking device of this embodiment uses a crystallized glass substrate containing Li 2 O—Al 2 O 3 —SiO 2 as the main component and a transition element.
  • the glass constituting the substrate preferably contains one or more low-expansion crystals such as ⁇ -quartz, ⁇ -spodumene, aluminum titanate, cordierite, etc.
  • a substrate containing ⁇ -quartz solid solution or ⁇ -spodumene solid solution as the main crystal is more preferable.
  • the crystallized glass can keep the thermal expansion coefficient of the entire crystallized glass low by canceling out the ⁇ -quartz solid solution crystals that show negative expansion characteristics and the remaining glass layer that shows positive expansion characteristics.
  • the low thermal expansion property can be, for example, an absolute value of the thermal expansion coefficient of 30 ⁇ 10 ⁇ 7 /° C. or less.
  • the thickness of the crystallized glass substrate can be, for example, 3 mm to 10 mm.
  • the refractive index of the crystallized glass substrate is, for example, approximately 1.4 to 2.0.
  • Li 2 O-Al 2 O 3 -SiO 2 as the main component means (a) The proportion of these oxides in the raw materials of the glass, or (b) The total amount of at least one of Li, Al, and Si in the glass, calculated by converting each of the elements into a single oxide, accounts for 50 mass % or more of the glass.
  • the top plate for a cooking device of this embodiment has a low refractive index stack provided on the underside of the crystallized glass substrate, i.e., on the side of the crystallized glass substrate opposite the cooking surface, and has at least a first low refractive index layer and a second low refractive index layer, both of which have refractive indices smaller than those of the crystallized glass substrate, in that order from the crystallized glass substrate side.
  • the first and second low refractive index layers included in the low refractive index stack must have a refractive index smaller than that of the crystallized glass substrate.
  • the refractive index of these low refractive index layers is more preferably 0.1 or more smaller than that of the crystallized glass substrate, and even more preferably 0.3 or more smaller than that of the crystallized glass substrate.
  • the refractive index of these low refractive index layers is most preferably 1.0, which is the same as the refractive index of the air layer.
  • the refractive index of the first and second low refractive index layers can be determined by the method shown in the examples described below.
  • the low-refractive index laminate has at least a first low-refractive index layer and a second low-refractive index layer in this order from the crystallized glass substrate side.
  • the first low-refractive index layer in the low-refractive index laminate may have one surface directly in contact with the crystallized glass substrate, or may be formed in the order of the crystallized glass substrate, an adhesion improving layer (for example, a thin-film adhesion improving layer with a thickness equal to or less than that of the first low-refractive index layer), and the first low-refractive index layer.
  • the other surface of the first low-refractive index layer in the low-refractive index laminate is in direct contact with the second low-refractive index layer.
  • the second low-refractive index layer in the low-refractive index laminate has one surface directly in contact with the first low-refractive index layer, and the other surface is exposed to the outside air, is in direct contact with a further layer constituting the low-refractive index laminate, or may be in direct contact with a reflective layer, a light-shielding layer, or the like, which will be described later.
  • the ratio of the thickness of the first low refractive index layer to the thickness of the second low refractive index layer i.e., (thickness of the first low refractive index layer/thickness of the second low refractive index layer) is in the range of 0.01% to 10%.
  • the brightness of the top plate for a cooking device can be reliably increased by providing a first low refractive index layer that is sufficiently thinner than the thickness of the second low refractive index layer between the crystallized glass substrate and the second low refractive index layer.
  • the color tone of the borosilicate glass coated with a white paint can be made closer than ever before, and the white color can be more easily recognized.
  • another layer such as a reflective layer is further provided on the lower surface of the low refractive index stack, the decrease in brightness can be suppressed.
  • the ratio may be further 0.1% or more.
  • the ratio may be further 5% or less, further 2% or less, or further 1% or less.
  • the thickness of the first low refractive index layer and the thickness of the second low refractive index layer refer to the thickness in the stacking direction of the low refractive index stack in the top plate for a cooking appliance, and the thickness can be determined from a cross-sectional photograph taken with a scanning electron microscope (SEM).
  • the individual thicknesses of the first low refractive index layer and the second low refractive index layer are not limited, and may be any thickness that satisfies the above ratio.
  • the thickness of the first low refractive index layer may be, for example, 1.0 ⁇ m or less.
  • the thickness of the first low refractive index layer may be, for example, 0.8 ⁇ m or less, and may further be 0.5 ⁇ m or less.
  • the thickness of the first low refractive index layer may be, for example, 20 nm or more, and may further be 50 nm or more, and may further be 0.1 ⁇ m or more.
  • the thickness of the second low refractive index layer may be, for example, 10 ⁇ m or more.
  • the thickness of the second low refractive index layer may be, for example, 200 ⁇ m or less, and may further be 100 ⁇ m or less.
  • the overall thickness of the low refractive index laminate is not limited. From the viewpoint of sufficiently enhancing the brightness improvement effect, it is preferably, for example, 10 ⁇ m or more, more preferably more than 10 ⁇ m, and even more preferably 20 ⁇ m or more. On the other hand, from the viewpoint of further suppressing peeling and cracks of the low refractive index laminate, the thickness of the low refractive index laminate can be, for example, 200 ⁇ m or less.
  • further layers constituting the low refractive index stack may be included, as long as the lightness-improving effect achieved by providing the low refractive index stack is not impaired.
  • the further layers constituting the low refractive index stack also need to have a refractive index smaller than that of the crystallized glass substrate.
  • At least one of the first low refractive index layer and the second low refractive index layer is made to be a layer having a plurality of voids.
  • both the first low refractive index layer and the second low refractive index layer is made to be layers having a plurality of voids, it is preferable because the refractive indexes of both layers can be easily made smaller than that of the crystallized glass substrate.
  • the voids contained in at least one of the first and second low refractive index layers can be confirmed, for example, in a scanning electron microscope (SEM) image of a cross section of the first and second low refractive index layers in the lamination direction.
  • the ratio of voids in each low refractive index layer is preferably 10% or more in volume ratio, more preferably 30% or more, and even more preferably 50% or more, from the viewpoint of easily achieving a refractive index smaller than that of a crystallized glass substrate.
  • the volume ratio is preferably 90% or less, more preferably 80% or less, and even more preferably 60% or less.
  • volume ratio is considered to be the same value as the area ratio obtained in a cross-sectional photograph of the lamination direction of the low refractive index stack of the top plate for a cooking device.
  • the multiple voids that may be included in the low refractive index laminate may be composed of one or more selected from the group consisting of hollow particles, porous materials, and structures having voids between particles.
  • the structure having voids between particles is a structure having voids between particles that is formed when multiple solid particles and/or multiple hollow particles overlap.
  • the structure having voids between particles can be formed, for example, when forming a low refractive index layer using solid particles and a binder, by binding only the contact points of the solid particles with the binder without filling the spaces between the solid particles with the binder. With this structure, voids can be formed without using hollow particles. Alternatively, it is also possible to form the voids using a foam.
  • hollow and solid particles are not important, and examples include spheres, cylinders, amorphous bodies, and cellular bodies.
  • the hollow particles may be sealed or unsealed. If the hollow particles are sealed, the pressure inside the cavity of the hollow particles may be atmospheric pressure or close to a vacuum.
  • the first low refractive index layer and the second low refractive index layer contains hollow particles. It is even more preferable that both the first low refractive index layer and the second low refractive index layer contain hollow particles. By containing hollow particles, the cavities (hollow portions) of the hollow particles can mitigate the thermal expansion difference and also improve heat resistance.
  • hollow particles are contained in both the first low refractive index layer and the second low refractive index layer, and the average particle diameter of the hollow particles contained in the first low refractive index layer is 0.01% to 50% of the average particle diameter of the hollow particles contained in the second low refractive index layer.
  • the ratio of the average particle diameters of the hollow particles in the first low refractive index layer and the second low refractive index layer, (average particle diameter of hollow particles contained in the first low refractive index layer/average particle diameter of hollow particles contained in the second low refractive index layer), may be 10% or less, or even 5% or less.
  • the ratio of the film thicknesses of the first low refractive index layer and the second low refractive index layer described above is satisfied, and that the ratio of the average particle diameters of the hollow particles in the first low refractive index layer and the second low refractive index layer is satisfied.
  • the size of the hollow particles in the first low refractive index layer and the size of the hollow particles in the second low refractive index layer are not limited.
  • the size of the hollow particles in each of the first low refractive index layer and the second low refractive index layer may be, for example, within a range of 10 nm to 100 ⁇ m in terms of median diameter (d50).
  • the average particle diameter of the hollow particles contained in the first low refractive index layer is preferably 10 nm or more, more preferably 20 nm or more, and is preferably 500 nm or less, more preferably 200 nm or less, and even more preferably 100 nm or less.
  • FIG. 1 is a schematic cross-sectional view of one embodiment of a top plate for a cooking device according to the present embodiment.
  • the top plate for a cooking device is A crystallized glass substrate 1 containing Li2O - Al2O3 - SiO2 as a main component and a transition element;
  • the low refractive index laminate 2 provided on the lower surface of the crystallized glass substrate 1 includes a first low refractive index layer 3 and a second low refractive index layer 5, both of which have a refractive index smaller than that of the crystallized glass substrate 1.
  • FIG. 1 is a schematic cross-sectional view of one embodiment of a top plate for a cooking device according to the present embodiment.
  • the top plate for a cooking device is A crystallized glass substrate 1 containing Li2O - Al2O3 - SiO2 as a main component and a transition element;
  • the low refractive index laminate 2 provided on the lower surface of the crystallized glass substrate 1 includes a first low refractive index layer 3
  • FIG. 1 shows, as an embodiment, an embodiment in which hollow particles 4 are included in the first low refractive index layer 3 to provide voids, and hollow particles 6 are included in the second low refractive index layer 5 to provide voids.
  • the second low refractive index layer 5 also contains a blue pigment. Note that, for convenience of explanation, FIG. 1 differs from the actual situation in that the thickness of the first low refractive index layer 3 and the size of the hollow particles 4 included in the first low refractive index layer 3 are shown larger than the thickness of the second low refractive index layer 5 and the size of the hollow particles 6 included in the second low refractive index layer. The same applies to FIG. 2 described later.
  • the material constituting the low refractive index laminate is determined from the viewpoint of improving the brightness, and must be determined according to the thermal expansion of the crystallized glass substrate in contact with the low refractive index laminate and the thermal expansion of the layer placed on the opposite side of the crystallized glass substrate of the low refractive index laminate. It is also necessary to consider the thermal expansion coefficient and melting point of the binder and the contents such as hollow particles contained in the low refractive index laminate.
  • the component composition of the material constituting the low refractive index laminate including the first low refractive index layer and the second low refractive index layer can be adjusted by changing the ratio in the batch raw material of, for example, SiO 2 , A1 2 O 3 , Li 2 O, TiO 2 , ZrO 2 , P 2 O 5 , ZnO, BaO, Na 2 O + K 2 O, SnO, etc.
  • the low refractive index laminate may contain, as necessary, a blue pigment containing Co, a binder made of an organic resin such as a silicone resin, etc.
  • hollow particles examples include hollow glass particles, glass beads, hollow alumina particles, hollow ceramic particles such as hollow silica particles, and hollow polymer particles.
  • hollow polymer particles examples include those formed from, for example, silicone resins, which have excellent heat resistance.
  • Hollow particles are preferably hollow glass particles.
  • the solid particles include, for example, solid glass particles, solid ceramic particles, and solid silica particles. The surfaces of the hollow particles and solid particles may be treated with a silane coupling agent or the like.
  • the specific material of the hollow glass particles is not particularly limited, and examples thereof include crystallized glass, borosilicate glass, alumina borosilicate glass, soda glass, etc.
  • the hollow glass particles for example, commercially available products can be used. Examples of such commercially available products include Glass Bubbles manufactured by 3M, Hollow Glass Beads manufactured by Potters Ballotini Co., Ltd., Cell Spheres manufactured by Taiheiyo Cement Co., Ltd., and Silinax (registered trademark) manufactured by Nippon Steel Mining Co., Ltd.
  • porous material examples include porous particles such as porous glass particles and porous ceramic particles.
  • porous particles a mixed material containing a glass material or ceramic material for forming pores and, for example, a polymer material that foams at high temperatures may be applied onto a crystallized glass substrate, and the polymer material may be foamed by, for example, firing to form pores.
  • the porous material is not limited to the material having cavities as described above, but may be, for example, a material in which voids are formed by the aggregation of fibers such as glass or ceramic.
  • a material in which voids are formed by the aggregation of fibers such as glass or ceramic.
  • An example of an aggregate of glass fibers is cotton-like glass wool.
  • the binder may contain glass paste containing powdered glass or transparent ink for adhesion between particles.
  • the binder material include materials having thermal expansion properties close to the thermal expansion properties of the particles.
  • a binder made of a glass-based material such as the above-mentioned SiO 2 can be used.
  • the oxidation number of the above compound is not limited to this.
  • the ratio of the binder can be, for example, in the range of 0.1% or more and 90% or less in terms of volume ratio in each low refractive index layer, and can further be in the range of 0.5% or more and 50% or less.
  • binder examples include glass paste made by Nippon Electric Glass Co., Ltd., glass frit and glass paste made by AGC Inc., and heat-resistant clear ink made by Teikoku Ink Mfg. Co., Ltd. It is also possible to mix and use a plurality of types of binder.
  • the second low refractive index layer contains a blue pigment.
  • the refractive indexes of the first low refractive index layer and the second low refractive index layer and setting the ratio of the thickness of the first low refractive index layer to the thickness of the second low refractive index layer in the low refractive index stack within the above-mentioned range, it is possible to increase the brightness, thereby reducing the amount of blue pigment contained and realizing a white color closer to the color of (borosilicate glass + white ink) than in the past.
  • the proportion of blue pigment contained in the second low refractive index layer is not particularly limited as long as it causes the cooking device top plate to have a white color.
  • the proportion of blue pigment in the second low refractive index layer, by volume, is greater than 0% and can be, for example, 5% or less.
  • the second low refractive index layer may contain only blue pigment as a pigment, or may contain blue pigment as well as other pigments such as white pigment and red pigment for adjusting the color tone.
  • Methods for adjusting the color tone include selecting the type of blue pigment and controlling the ratio of each pigment in a mixed pigment containing blue pigment and white pigment.
  • the blue pigment may be a blue inorganic pigment, such as Prussian blue (ferric ferrocyanide), ultramarine, cobalt-based inorganic pigments (Co-Al, Co-Al-Si, Co-Zn-Si), V-Zr-Si inorganic pigments (turquoise blue), and manganese-based inorganic pigments.
  • the white pigment may be titanium oxide, cerium oxide, zinc oxide, barium sulfate, or other white inorganic pigments. Commercially available blue and white pigments include Mitsuboshi Hicolor, Teikoku Ink Mfg. Co., Ltd. XGL-HF Screen Ink, Okuno Chemical Industries Co., Ltd. Decorative Glass Color HZ Series, PLN Series, and the like.
  • red inorganic pigments such as iron oxide, iron hydroxide, and iron titanate may be included as a red pigment.
  • the coloring pigments can be mixed in any ratio to obtain the desired color tone. The pigments are not limited to those listed here.
  • the first low refractive index layer may or may not contain a blue pigment.
  • the first low refractive index layer may or may not contain a blue pigment.
  • layers other than the second low refractive index layer that do not contain a blue pigment may contain, for example, a white pigment.
  • the pigment may contain only a white pigment, or may contain a non-white pigment together with the white pigment.
  • At least one of the first low refractive index layer and the second low refractive index layer may contain a filler as necessary.
  • the filler exhibits the effect of, for example, a strength improving member.
  • the material, shape, size and content of the filler are not particularly limited.
  • they can be appropriately determined according to the desired strength.
  • Metals such as aluminum and titanium, metal oxides such as alumina, titania, zirconia, and zinc oxide, ceramics containing the above-mentioned alumina, metal salts such as calcium carbonate and barium sulfate, glass, silica, mica, talc, clay, zeolite, organic materials, and composites thereof, It is preferable that the surface of the material is made of one or more materials selected from the group consisting of materials having at least one of a coupling material, an active group, a reactive group, an organic substance, and a metal oxide bonded, adsorbed or vapor-deposited thereon.
  • the shape of the filler may be particulate, spherical, angular, rod-like, branch-like, needle-like, thin plate-like, scale-like, fibrous, petal-like, tetrapod-like, or porous. It may be a hollow particle as long as it can ensure strength.
  • the size of the filler is not particularly limited and may be determined appropriately taking into account the target strength of the layer.
  • the size of the filler may be, for example, a short or long length of 1 nm to 100 ⁇ m.
  • the short or long length may further be in the range of 100 nm to 50 ⁇ m.
  • the proportion of the filler contained in each low refractive index layer may be 0 to 50% by volume, and more preferably 0 to 30%.
  • the filler may serve both to ensure strength and to act as a glittering material and/or a reflector.
  • An example of a method for forming a low refractive index laminate is to apply an inorganic coating material such as a paste containing a glass composition to the surface of a crystallized glass substrate or an already formed first low refractive index layer, etc., and then dry it.
  • the coating method is not particularly specified, but examples thereof include doctor blade, bar coating, spray coating, dip coating, spin coating, slit coating, roll coating, screen printing, inkjet printing, and gravure printing.
  • the low refractive index laminate may be baked at a temperature of 550 to 900°C, for example, at a further temperature of 600 to 800°C.
  • the low refractive index laminate may be baked only when the final layer of the low refractive index laminate is formed. Therefore, baking when forming the first low refractive index layer, or baking when forming the first low refractive index layer and the second low refractive index layer of a low refractive index laminate of three or more layers can be omitted.
  • a paste containing hollow particles and a binder is applied by the method described above, for example by screen printing, and then dried and baked at a temperature according to the material used.
  • a porous layer may be formed as a low refractive index layer having voids, for example, using a foaming material.
  • a mixed material containing, for example, a polymer material that foams at high temperatures is applied to a crystallized glass substrate by screen printing or the like, dried, and then baked at a temperature according to the material used, thereby foaming the polymer material and forming a porous low refractive index layer.
  • the top plate for the cooking device may have one or more layers selected from the group consisting of a reflective layer, a light-shielding layer, and a coating strength improving layer on the lower surface of the low refractive index laminate.
  • the reflective layer, the light-shielding layer, and the coating strength improving layer are each described below.
  • the refractive index of layers other than the low refractive index laminate, such as the reflective layer, the light-shielding layer, and the coating strength improving layer described below does not matter.
  • the film thickness of the reflective layer, the light-shielding layer, and the coating strength improving layer, which are layers other than the low refractive index laminate is not particularly limited and can be determined appropriately.
  • the reflective layer may be formed as necessary to further enhance the brightness improvement effect.
  • the reflective layer may be, for example, a layer that uses a silicone resin or the like as a base material and contains one or more of a reflective material and a glittering material.
  • the reflective material and the glittering material may be one or more selected from the group consisting of mica, silica, metal oxide, aluminum flakes, glass particles, glass flakes, glass flakes having a metal deposition layer, and mica having a metal oxide layer.
  • the glass particles may be, for example, self-reflective glass beads.
  • pearl mica as mica having a metal oxide layer, it is possible to enhance the reflection characteristics while assisting in color tone adjustment.
  • the shape of one or more of the reflective material and lustrous material may be particulate, spherical, angular, rod-like, branch-like, needle-like, thin plate-like, scale-like, fibrous, petal-like, tetrapod-like, porous, etc.
  • the size of one or more of the reflective material and lustrous material is not particularly limited and may be appropriately determined taking into account the target reflectance.
  • the size of one or more of the reflective material and lustrous material may be, for example, an average particle diameter of 0.1 ⁇ m to 100 ⁇ m.
  • the proportion of one or more of the reflective material and lustrous material in the reflective layer is not particularly limited and may be appropriately determined taking into account the target reflectance.
  • the reflective layer can be formed, for example, by applying a paste containing a base material such as silicone resin, a solvent, and at least one of the above-mentioned reflective material and lustrous material to the surface of, for example, a low refractive index laminate by screen printing or the like, drying it, and then baking it at, for example, 200 to 400°C.
  • a paste containing a base material such as silicone resin, a solvent, and at least one of the above-mentioned reflective material and lustrous material
  • Figure 2 shows a schematic cross-sectional view of another embodiment of the top plate for a cooking device according to this embodiment.
  • Figure 2 shows an embodiment of the top plate for a cooking device that further includes a reflective layer 7 on the lower surface of the low refractive index laminate 2 of the top plate for a cooking device in Figure 1.
  • the reflective layer 7 includes one or more 8 of a reflective material and a lustrous material.
  • the light-shielding layer can be formed, for example, by applying a heat-resistant paint to the lower surface of the low refractive index laminate, or the reflective layer, or the coating strength improving layer, etc.
  • a heat-resistant paint a mixture of a heat-resistant resin containing a silicone resin, a polyamide resin, a fluororesin, or a composite thereof and an inorganic pigment for coloring can be used.
  • a layer obtained by applying an ink containing a glass component mainly composed of SiO 2 , Al 2 O 3 , Li 2 O, etc., which are components similar to those of a crystallized glass substrate, and a black inorganic pigment (metal oxide pigment such as Fe 2 O 3 , MnO 2 , CuO, Co 2 O 3 , etc.) as a pigment for light shielding may be provided as necessary on the lower surface of the low refractive index laminate, the reflective layer, or the coating strength improving layer, etc., in consideration of heat resistance.
  • a black inorganic pigment metal oxide pigment such as Fe 2 O 3 , MnO 2 , CuO, Co 2 O 3 , etc.
  • the coating strength improving layer is useful for increasing the strength and durability of the top plate for cooking appliances.
  • the coating strength improving layer include an adhesion improving layer between the low refractive index laminate and a reflective layer, a light-shielding layer, etc., which are provided on the lower surface of the low refractive index laminate as necessary, and an adhesion improving layer between the crystallized glass substrate and the low refractive index laminate.
  • the adhesion between each layer is improved, and for example, when the top plate for cooking appliances is subjected to vibration or external impact, even if there is a difference in the thermal expansion coefficient between the crystallized glass substrate and the low refractive index laminate, each layer is unlikely to peel off, and as a result, the strength and durability of the top plate for cooking appliances as a whole can be increased.
  • the material constituting the coating strength improving layer may be a glass material whose main component is Li 2 O-Al 2 O 3 -SiO 2 or the like.
  • the material constituting the coating strength improving layer may be a material whose thermal expansion coefficient is close to that of the material such as the hollow glass constituting the low refractive index laminate. Therefore, when the hollow glass contained in the low refractive index laminate is, for example, a borosilicate glass, a material showing a thermal expansion coefficient larger than that of Li 2 O-Al 2 O 3 -SiO 2 may be used for the coating strength improving layer.
  • the coating strength improving layer may contain the above-mentioned filler.
  • the coating strength improving layer may contain an additive such as an organic binder such as silicone.
  • the thickness of the coating strength improving layer is preferably equal to or thinner than that of the low refractive index laminate.
  • the coating strength improving layer can be formed, for example, by applying a paste containing the above-mentioned glass material, organic binder, etc., to the surface of the low refractive index laminate by screen printing or the like, drying it, and then baking it when a reflective layer, etc. is further formed on the surface of the coating strength improving layer.
  • a barrier layer or clear layer may be provided to prevent the penetration of adhesives, solvents, etc. that are applied in further processes.
  • the barrier layer or clear layer can be applied between layers or on the outermost layer.
  • the barrier layer or clear layer has a higher resin content and can prevent penetration.
  • the top plate for a cooking device of this embodiment may further have, as a second glass substrate, a tempered glass substrate or a crystallized glass substrate on the lower surface of the low refractive index laminate, in addition to the crystallized glass substrate constituting the outermost surface of the top plate for a cooking device, as necessary.
  • Example 1 For the formation of the first cambium, Dispersion liquid obtained by dispersing hollow silica particles (Surulia manufactured by JGC Catalysts and Chemicals Co., Ltd.) having a particle diameter of about 60 nm in an organic solvent: 6.2 g (solid content concentration: about 20% by mass), Ethyl silicate: 0.35 g, A solution for forming the first forming layer was obtained by mixing 0.1 g of 0.3N nitric acid and an appropriate amount of a solvent (ethanol).
  • a solvent ethanol
  • the solution was dropped onto the surface of a crystallized glass substrate (Neoceram N-0, manufactured by Nippon Electric Glass Co., Ltd., thickness 4 mm) and spin-coated under conditions of 1000 rpm x 30 seconds. After that, the substrate was dried at 160°C for 10 minutes to obtain a first forming layer before firing.
  • the "particle size" in Examples 1 to 6 and Comparative Example 1 refers to the average particle size (median size (d50).
  • the size of hollow particles, etc. is described in terms of the particle size of the raw material particles, but it may also be the average particle size measured from a cross-sectional photograph in the lamination direction of the low refractive index layer, etc. of the obtained product (top plate for a cooking device).
  • a paste containing a blue inorganic pigment: 0.1 g and an appropriate amount of oil were kneaded to obtain a paste for forming a second forming layer.
  • the paste was used to perform screen printing on the surface of the first forming layer before firing.
  • the mesh used for screen printing had a mesh number of #80.
  • the sample was dried at 160°C for 15 minutes, and then fired at 600 to 680°C for 10 minutes to obtain an intermediate sample in which the first forming layer and the second forming layer were laminated.
  • the intermediate sample in which the first forming layer and the second forming layer were laminated on the crystallized glass substrate was used to measure the L * a * b * value described later (the same applies to Examples 2 to 6 below).
  • the thicknesses of the first and second formation layers were approximately 250 nm and 40 ⁇ m, respectively, based on cross-sectional observation using an SEM. In other words, the film thickness of the first low refractive index layer was 0.83% of the film thickness of the second low refractive index layer.
  • the third formation layer was fired at 250 to 350°C when it was formed, but the film thickness and ratio were almost unchanged after firing.
  • the laminated film of the first and second formation layers was formed through a process similar to that of Example 1, and it is estimated that (thickness of the first low refractive index layer/thickness of the second low refractive index layer) was in the range of 0.01% to 10%.
  • an ink containing silicone resin, a solvent, and titanium oxide was kneaded to obtain a paste for forming the third formation layer.
  • screen printing was performed on the surface of the second formation layer after the above-mentioned firing.
  • the mesh used for screen printing had a mesh number of #325.
  • the substrate was dried at 160°C for 15 minutes, and then fired at 250-350°C for 1 hour to obtain a completed sample in which the first formation layer, second formation layer, and third formation layer were laminated in that order on the surface of the crystallized glass substrate.
  • Example 2 For the formation of the first cambium, Dispersion liquid in which hollow silica particles (Surulia manufactured by JGC Catalysts and Chemicals Co., Ltd.) having a particle diameter of about 60 nm are dispersed in an organic solvent: 3.4 g (solid content concentration: about 20% by mass), Ethyl silicate: 1.8 g, A liquid for forming a first forming layer was obtained by mixing 0.5 g of 0.3N nitric acid and an appropriate amount of a solvent (ethanol). The liquid was dropped onto the surface of a crystallized glass substrate (Neoceram N-0, manufactured by Nippon Electric Glass Co., Ltd., thickness 4 mm) and coated with a bar coater. After that, it was dried at 160°C for 10 minutes to obtain a first forming layer before firing.
  • a crystallized glass substrate Naeoceram N-0, manufactured by Nippon Electric Glass Co., Ltd., thickness 4 mm
  • a paste containing a blue inorganic pigment: 0.1 g and an appropriate amount of oil were kneaded to obtain a paste for forming a second forming layer.
  • the paste was used to perform screen printing on the surface of the first forming layer before firing.
  • the mesh used for screen printing had a mesh number of #80. After screen printing, the sample was dried at 160°C for 15 minutes, and then fired at 600 to 680°C for 10 minutes to obtain an intermediate sample in which the first forming layer and the second forming layer were laminated.
  • an ink containing silicone resin, a solvent, and titanium oxide was kneaded to obtain a paste for forming the third formation layer.
  • screen printing was performed on the surface of the second formation layer after the above-mentioned firing.
  • the mesh used for screen printing had a mesh number of #325.
  • the substrate was dried at 160°C for 15 minutes, and then fired at 250-350°C for 1 hour to obtain a completed sample in which the first formation layer, second formation layer, and third formation layer were laminated in that order on the surface of the crystallized glass substrate.
  • Example 3 For the formation of the first cambium, Dispersion liquid in which hollow silica particles (Surulia manufactured by JGC Catalysts and Chemicals Co., Ltd.) having a particle diameter of about 60 nm are dispersed in an organic solvent: 4.8 g (solid content concentration: about 20% by mass), Ethyl silicate: 1.1 g, A liquid for forming a first forming layer was obtained by mixing 0.3 g of 0.3N nitric acid and an appropriate amount of a solvent (ethanol). The liquid was dropped onto the surface of a crystallized glass substrate (Neoceram N-0, manufactured by Nippon Electric Glass Co., Ltd., thickness 4 mm) and coated by spray coating. After that, it was dried at 160°C for 10 minutes to obtain a first forming layer before firing.
  • a crystallized glass substrate Naeoceram N-0, manufactured by Nippon Electric Glass Co., Ltd., thickness 4 mm
  • a paste containing a blue inorganic pigment: 0.1 g and an appropriate amount of oil were kneaded to obtain a paste for forming a second forming layer.
  • the paste was used to perform screen printing on the surface of the first forming layer before firing.
  • the mesh used for screen printing had a mesh number of #80. After screen printing, the sample was dried at 160°C for 15 minutes, and then fired at 600 to 680°C for 10 minutes to obtain an intermediate sample in which the first forming layer and the second forming layer were laminated.
  • an ink containing silicone resin, a solvent, and titanium oxide was kneaded to obtain a paste for forming the third formation layer.
  • screen printing was performed on the surface of the second formation layer after the above-mentioned firing.
  • the mesh used for screen printing had a mesh number of #250.
  • the substrate was dried at 160°C for 15 minutes, and then fired at 250-350°C for 1 hour to obtain a completed sample in which the first formation layer, second formation layer, and third formation layer were laminated in that order on the surface of the crystallized glass substrate.
  • Example 4 For the formation of the first cambium, Dispersion liquid in which hollow silica particles (Surulia manufactured by JGC Catalysts and Chemicals Co., Ltd.) having a particle diameter of about 60 nm are dispersed in an organic solvent: 4.8 g (solid content concentration: about 20% by mass), Ethyl silicate: 1.1 g, A liquid for forming a first forming layer was obtained by mixing 0.3 g of 0.3N nitric acid and an appropriate amount of a solvent (ethanol). The liquid was dropped onto the surface of a crystallized glass substrate (Neoceram N-0, manufactured by Nippon Electric Glass Co., Ltd., thickness 4 mm) and coated with a bar coater. After that, it was dried at 160°C for 10 minutes to obtain a first forming layer before firing.
  • a crystallized glass substrate Naeoceram N-0, manufactured by Nippon Electric Glass Co., Ltd., thickness 4 mm
  • an ink containing silicone resin, a solvent, and titanium oxide was kneaded to obtain a paste for forming the third formation layer.
  • screen printing was performed on the surface of the second formation layer after the above-mentioned firing.
  • the mesh used for screen printing had a mesh number of #250.
  • the substrate was dried at 160°C for 15 minutes, and then fired at 250-350°C for 1 hour to obtain a completed sample in which the first formation layer, second formation layer, and third formation layer were laminated in that order on the surface of the crystallized glass substrate.
  • Example 5 For the formation of the first cambium, Dispersion liquid in which hollow silica particles (Surulia manufactured by JGC Catalysts and Chemicals Co., Ltd.) having a particle diameter of about 60 nm are dispersed in an organic solvent: 4.8 g (solid content concentration: about 20% by mass), Ethyl silicate: 1.1 g, A solution for forming a first forming layer was obtained by mixing 0.3 g of 0.3N nitric acid and an appropriate amount of a solvent (ethanol). The solution was dropped onto the surface of a crystallized glass substrate (Neoceram N-0, manufactured by Nippon Electric Glass Co., Ltd., thickness 4 mm) and coated by spray coating. After that, it was dried at 160°C for 10 minutes to obtain a first forming layer before firing.
  • a crystallized glass substrate Naeoceram N-0, manufactured by Nippon Electric Glass Co., Ltd., thickness 4 mm
  • a paste containing a blue inorganic pigment: 0.1 g and an appropriate amount of oil were kneaded to obtain a paste for forming a second forming layer.
  • the paste was used to perform screen printing on the surface of the first forming layer before firing.
  • the mesh used for screen printing had a mesh number of #80. After screen printing, the sample was dried at 160°C for 15 minutes, and then fired at 600 to 680°C for 10 minutes to obtain an intermediate sample in which the first forming layer and the second forming layer were laminated.
  • an ink containing silicone resin, solvent, titanium oxide, and metal composite oxide was kneaded to obtain a paste for forming the third formation layer.
  • screen printing was performed on the surface of the second formation layer after the above-mentioned firing.
  • the mesh used for screen printing had a mesh number of #325. After screen printing, it was dried at 160°C for 15 minutes, and then fired at 250-350°C for 1 hour to obtain a completed sample in which the first formation layer, second formation layer, and third formation layer were laminated in that order on the surface of the crystallized glass substrate.
  • Example 6 For the formation of the first cambium, Dispersion liquid in which hollow silica particles (Surulia manufactured by JGC Catalysts and Chemicals Co., Ltd.) having a particle diameter of about 60 nm are dispersed in an organic solvent: 4.7 g (solid content concentration: about 20% by mass), As a binder, a paste containing a solvent and mainly composed of the glass component SiO 2 —B 2 O 3 —ZnO: 0.5 g A suitable amount of vehicle as the first solvent and a suitable amount of terpineol as the second solvent were kneaded to obtain a paste for forming a first forming layer.
  • an organic solvent 4.7 g (solid content concentration: about 20% by mass)
  • a paste containing a solvent and mainly composed of the glass component SiO 2 —B 2 O 3 —ZnO 0.5 g
  • a suitable amount of vehicle as the first solvent and a suitable amount of terpineol as the second solvent were k
  • the paste was used for screen printing on the surface of a crystallized glass substrate (Neoceram N-0, manufactured by Nippon Electric Glass Co., Ltd., thickness 4 mm).
  • the mesh used for screen printing was #400. After screen printing, the substrate was dried at 160°C for 15 minutes to obtain a first forming layer before firing.
  • a paste containing a blue inorganic pigment: 0.1 g and an appropriate amount of oil were kneaded to obtain a paste for forming a second forming layer.
  • the paste was used to perform screen printing on the surface of the first forming layer before firing.
  • the mesh used for screen printing had a mesh number of #100. After screen printing, the sample was dried at 160°C for 15 minutes, and then fired at 600 to 680°C for 10 minutes to obtain an intermediate sample in which the first forming layer and the second forming layer were laminated.
  • an ink containing silicone resin, a solvent, and titanium oxide was mixed to obtain a paste for forming the third formation layer.
  • screen printing was performed on the surface of the second formation layer after the above-mentioned firing.
  • the mesh used for screen printing had a mesh number of #180.
  • the substrate was dried at 160°C for 15 minutes, and then fired at 250-350°C for 1 hour to obtain a completed sample in which the first formation layer, second formation layer, and third formation layer were laminated in that order on the surface of the crystallized glass substrate.
  • the mesh used for screen printing had a mesh number of #80.
  • the substrate was dried at 160°C for 15 minutes, and then baked at 600 to 680°C for 10 minutes to obtain a first forming layer.
  • Comparative Example 1 an intermediate sample in which a first forming layer was formed on a crystallized glass substrate was used to measure the L * a * b * value described later.
  • the thickness of the first forming layer was about 40 ⁇ m from SEM cross-sectional observation.
  • an ink containing a silicone resin, a solvent, and titanium oxide was kneaded to obtain a paste for forming the second formation layer.
  • screen printing was performed on the surface of the first formation layer after the above-mentioned firing.
  • the mesh used for screen printing had a mesh number of #325. After screen printing, drying was performed at 160°C for 15 minutes, and then firing was performed at 250 to 350°C for 1 hour to obtain a completed sample in which the first formation layer and the second formation layer were laminated in this order on the surface of the crystallized glass substrate.
  • the first formation layer in this comparative example 1 corresponds to the second low refractive index layer in the low refractive index stack of this embodiment
  • the second formation layer in comparative example 1 corresponds to the reflective layer in this embodiment.
  • the completed sample of comparative example 1 is an embodiment that does not have the first low refractive index layer in the low refractive index stack of this embodiment.
  • the term "finished sample” refers to a sample that has been completed in this embodiment, and does not necessarily refer to a finished product as a top plate for a cooking device, and the top plate for a cooking device may have additional layers such as a coating.
  • the refractive index of each low refractive index layer was determined as follows. (Method of determining the refractive index of each low refractive index layer) The refractive index of the solid portion constituting the low refractive index layer is measured by an Abbe refractometer or a spectroscopic ellipsometer if possible, and if it is difficult to measure, the theoretical value or literature value of the refractive index of the component constituting the solid portion is used.
  • the refractive index of the solid portion composed of a plurality of components can be calculated by using the theoretical value or literature value of the refractive index of each component and taking into account the ratio of each component.
  • the refractive index of the main component can be used as a representative value, and for example, the refractive index of the main component glass can be used as a representative value to calculate an approximate refractive index.
  • the low refractive index layer being composed of a solid portion and a void (air)
  • the low refractive index layer is formed of a plurality of hollow particles, or a case where a void is formed between solid portions, etc.
  • the refractive index of each layer of the low refractive index laminate is determined.
  • the second low refractive index layer is made of glass binder, hollow glass, mica, and voids (if the solid portion is made of multiple components)
  • a bulk body of (glass + mica) is produced and the refractive index is measured, and the refractive index of the second low refractive index layer is calculated using this refractive index and the void fraction of the second low refractive index layer determined from an electron microscope photograph of a cross section of the low refractive index laminate in the lamination direction.
  • the refractive indexes of the first and second low refractive index layers in Example 1 and Comparative Example 1 were calculated by determining the porosity of each layer from SEM cross-sectional photographs of the first and second low refractive index layers in the lamination direction, and using the refractive index of the glass, which is the solid part.
  • the refractive index of the first low refractive index layer in Example 1 was 1.39
  • the refractive index of the second low refractive index layer in Example 1 was 1.24
  • the refractive index of the second low refractive index layer in Comparative Example 1 was 1.25.
  • the refractive index of the crystallized glass substrate was 1.54, and in all examples, the refractive indexes of the first and second low refractive index layers were smaller than that of the crystallized glass substrate.
  • the first and second low refractive index layers in Examples 2 to 6 have similar component compositions to those of the first and second low refractive index layers in Example 1, so it is presumed that the refractive indexes of the first and second low refractive index layers in these examples are also smaller than that of the crystallized glass substrate.
  • the brightness is improved by providing a low refractive index laminate including a first low refractive index layer and a second low refractive index layer.
  • the third formation layer which is a reflective layer, is formed, but in order to confirm whether the brightness improvement effect is obtained in the state in which the first low refractive index layer and the second low refractive index layer are formed, an intermediate sample in which the first low refractive index layer and the second low refractive index layer are laminated on a crystallized glass substrate is used, and color measurement is performed with the crystallized glass substrate as the outermost surface.
  • a completed sample further provided with a third formation layer is used, and color measurement is performed with the crystallized glass substrate as the outermost surface.
  • an intermediate sample provided with only the first formation layer corresponding to the second low refractive index layer of the low refractive index laminate of this embodiment is used, and color measurement is performed with the crystallized glass substrate as the outermost surface
  • a completed sample further provided with a second formation layer corresponding to the reflective layer is used, and color measurement is performed with the crystallized glass substrate as the outermost surface.
  • a color difference meter (CR410 manufactured by Konica Minolta) is used to measure the color space L * a * b * .
  • the results are shown in Table 1. It is considered preferable that each of a * and b * is within the range of -3.0 to 3.0.
  • Example 1 the intermediate samples had high brightness, and even when the third formation layer was formed, the decrease in brightness was suppressed, and the brightness of the finished sample was also high.
  • Comparative Example 1 the intermediate sample had low brightness, and the brightness improvement effect could not be achieved by forming only the second low refractive index layer of the low refractive index stack. Furthermore, when the third formation layer was formed, the brightness decreased significantly, and the brightness of the finished sample was low.
  • (Aspect 2) The top plate for a heating cooker according to claim 1, wherein the first low refractive index layer has a thickness of 1.0 ⁇ m or less.
  • (Aspect 3) The top plate for a cooking appliance according to claim 1 or 2, wherein the first low refractive index layer and the second low refractive index layer each have a plurality of voids.
  • At least one of the first low refractive index layer and the second low refractive index layer contains hollow particles, A top plate for a cooking appliance according to claim 3, wherein the voids include cavities of the hollow particles.
  • both the first low refractive index layer and the second low refractive index layer contain hollow particles;
  • the filler is Metals, metal oxides, ceramics, metal salts, glasses, silica, mica, talc, clays, zeolites, organic materials, and composites thereof;
  • the top plate for a cooking device according to aspect 7 is composed of one or more materials selected from the group consisting of materials having at least one of a coupling material, an active group, a reactive group, an organic substance, and a metal oxide bonded, adsorbed, or vapor-deposited on their surfaces.
  • the top plate for a cooking device according to any one of aspects 1 to 8, further comprising one or more layers selected from the group consisting of a reflective layer, a light-shielding layer, and a coating strength improving layer on a lower surface of the low refractive index laminate.
  • the top plate for the cooking device according to this embodiment uses crystallized glass, which has high strength and low thermal expansion, as the substrate and is white in color. This makes it possible to provide a white-colored cooking device that can be used on the dining table, kitchen counter, etc. of an ordinary household, or in a commercial kitchen, and can be a tabletop, freestanding, or built-in type.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Surface Treatment Of Glass (AREA)
  • Induction Heating Cooking Devices (AREA)
  • Laminated Bodies (AREA)

Abstract

Li2O-Al2O3-SiO2を主成分とし、遷移元素を含む結晶化ガラス基板と、前記結晶化ガラス基板の下面に設けられ、屈折率がいずれも前記結晶化ガラス基板よりも小さい第1低屈折率層と第2低屈折率層を、前記結晶化ガラス基板側から順に少なくとも有する低屈折率積層とを有し、前記第1低屈折率層の厚さは、前記第2低屈折率層の厚さの0.01%以上10%以下であり、少なくとも前記第2低屈折率層に青色顔料が含まれる、加熱調理器用トッププレート。

Description

加熱調理器用トッププレート
 本開示は、加熱調理器用トッププレートに関する。
 電磁誘導加熱式調理器、発熱体から放射される赤外線によって加熱する電熱式調理器等の、加熱調理器のトッププレートには、透明な耐熱ガラスが基板として用いられる。そして、耐熱ガラス基板の下面、すなわち耐熱ガラス基板の調理面とは反対側の面に、遮光性の着色層を設けることで、顧客のニーズに合わせた色調の加熱調理器を実現している。
 従来、前記耐熱ガラス基板として、石英ガラス基板、ホウケイ酸ガラス基板、結晶化ガラス基板等が使用されている。近年は、強度が高くかつ熱膨張率の抑えられた結晶化ガラス基板が多く用いられている。
 前記結晶化ガラス基板を用いたトッププレートとして、例えば、基板ガラス本来の強度を失うことなく、意匠性を高めた電磁調理器用ガラストッププレートが提案されている。例えば特許文献1には、透明低膨張ガラスからなる基板ガラスの裏面に、ガラス組成物からなるマット装飾用ガラスを1層又は複数層積層し、さらに、光沢層あるいは遮光層を1層又は複数層積層してなり、上記基板ガラスの線熱膨張係数と、上記マット装飾用ガラスの線熱膨張係数を特定した電磁調理器用ガラストッププレートが開示されている。また、特許文献2には、透明低膨張ガラスからなる基板ガラスの調理面とは反対側の面である裏側面に、TiO2、CeO2、ZrO2のうち1種以上を主成分とすると共に、厚みが20~300nmである高反射膜を積層し、該高反射膜上にパール調材料を含有するパール調層を積層し、さらに、該パール調層上に遮光層を積層した調理器用ガラストッププレートが開示されている。
 更に、特許文献3には、質感と、表示の視認性を両立した調理器用ガラストッププレートとして、基板ガラスに遮光部と透光性の表示部とが設けられ、該表示部の下方に表示体が配置され、上記基板ガラスは、平滑な面よりなる調理面と粗面化面よりなる裏側面とを有し、上記遮光部は、上記基板ガラスの裏側面に遮光層を積層することにより設けられ、上記表示部は、上記基板ガラスの裏側面に透明中間層を介して透光性板を接着することにより設けられ、更に上記透光性板は、少なくとも透明中間層と面しない露出する面が平滑である、調理器用ガラストッププレートが開示されている。
 また特許文献4には、美観性に優れた調理器用トッププレートとして、酸化チタンを含む透明結晶化ガラス基板と、前記透明結晶化ガラス基板の裏面に形成され、可視波長域における少なくとも一部の波長域の光を反射させる反射膜と、前記透明結晶化ガラス基板と前記反射膜との間に、可視波長域において、波長が長くなるに従って光透過率が漸減する色調補正膜とを備え、前記反射膜と前記色調補正膜とは、可視波長域において、前記色調補正膜と前記透明結晶化ガラス基板との間の界面における平均光反射率が、前記色調補正膜と前記反射膜との間の界面における平均光反射率よりも低くなるように構成された調理器用トッププレートが開示されている。
 特許文献5には、電磁誘導加熱装置を備えた調理器のトッププレートとして用いられ、低膨張透明結晶化ガラス板からなる調理器用トッププレートであって、低膨張透明結晶化ガラス板の調理面側の一部又は全部に緻密な無機顔料層からなる装飾層が形成され、加熱装置側の一部又は全部に多孔質の無機顔料層からなる遮光層が形成されてなることを特徴とする調理器用トッププレートが開示されている。また特許文献6には、透明な低膨張結晶化ガラスからなるガラスプレートの表面に,無機顔料粉末40~90重量%とガラスフラックス10~60重量%とからなる多孔質の遮光層を設けてなり,且つ,隣接する無機顔料粉末同士,又は無機顔料粉末とガラスプレートとの間は,上記ガラスフラックスを溶融,固化してなるガラスにより接着してなることを特徴とする遮光性ガラスプレートが開示されている。
 特許文献7には、装飾層を有するガラス、又はガラス・セラミック製品を製造する方法であって、少なくとも1つの装飾用顔料をゾル・ゲル結合剤と混合し、そして該ゾル・ゲル結合剤と混合された前記顔料を、アニーリングにより前記製品の前記ガラス、又はガラス・セラミック基板上で硬化して、多孔性セラミック様構造を有する装飾層を形成する方法が開示されている。
 特許文献8には、機械的強度の補強されたガラスセラミックプレートまたはガラスプレートとして、ほぼ平行な2つ主面を有するプレートの形態にある、ガラスセラミックまたはガラスの基板、および2つの主面の少なくとも一方に固定された、耐高温性である少なくとも一種類の(コ)ポリマーを含む少なくとも1つの層または多孔質のシリカベースの無機マトリクスを備え、ガラスセラミックまたはガラスの基板の厚さが4mm未満であるものが提案されている。
特開2008-16318号公報 特開2008-215651号公報 特開2008-267633号公報 特開2011-208820号公報 特開2003-168548号公報 特開平10-273342号公報 特表2008-536791号公報 特表2007-530405号公報
 前記結晶化ガラスは、強度特性には優れているものの、ガラス自体が黄色味を帯びている。この結晶化ガラスは、Li2O-Al23-SiO2を主成分とし、結晶化のためにTi、Zr等の遷移元素が添加される。この遷移元素が上記黄色味の原因といわれている。結晶化ガラス基板の下面に設ける着色層が濃い色調の場合、結晶化ガラス基板が黄色味を帯びていてもほとんど問題ない。しかし顧客のニーズとして、白色の調理器用トッププレートが求められ得る。従来のホウケイ酸ガラスを基板に使用する場合、基板の下面に設ける着色層を白色とすることで白色の調理器用トッププレートを実現できた。しかし結晶化ガラスを基板に使用する場合、着色層を白色としても、結晶化ガラス基板を介して視認される色調は黄色味を帯び、白色の調理器用トッププレートを実現することが困難であった。
 特許文献1~3および特許文献5は、意匠性としてマット調、または金属光沢等の質感を高めるものであって、特に白色の調理器用トッププレートの実現を課題とするものでない。また、特許文献4は、美観性に優れた調理器用トッププレートを開示しているが、特に困難な白色の調理器用トッププレートの実現を課題とするものではない。更に特許文献6~8は、調理器用トッププレートの特に機械的強度を高めたものであって、特に白色の調理器用トッププレートの実現を課題とするものでない。
 本開示は、上記課題を解決するものであって、高強度かつ低熱膨張性を示す結晶化ガラスを基板に使用し、白色を呈する加熱調理器用トッププレートを提供することを目的とする。
 本発明の1つの要旨によれば、
 Li2O-Al23-SiO2を主成分とし、遷移元素を含む結晶化ガラス基板と、
 前記結晶化ガラス基板の下面に設けられ、屈折率がいずれも前記結晶化ガラス基板よりも小さい第1低屈折率層と第2低屈折率層を、前記結晶化ガラス基板側から順に少なくとも有する低屈折率積層とを有し、
 前記第1低屈折率層の厚さは、前記第2低屈折率層の厚さの0.01%以上10%以下であり、
 少なくとも前記第2低屈折率層に青色顔料が含まれる、加熱調理器用トッププレートが提供される。
 本開示によれば、高強度かつ低熱膨張性を示す結晶化ガラスを基板に使用し、白色を呈する加熱調理器用トッププレートを提供できる。
図1は、本発明の一実施形態として示す加熱調理器用トッププレートの模式断面図である。 図2は、本発明の別の一実施形態として示す加熱調理器用トッププレートの模式断面図である。
 本発明者らは、白色を呈する加熱調理器用トッププレートを実現すべく、該加熱調理器用トッププレートで使用する結晶化ガラス基板の呈する黄色味から、白色へ色調を補正する手段について種々の検討を行ってきた。そして、黄色味の補色である青色顔料を配合した着色層を結晶化ガラス基板の下面に設けた場合には、灰色を呈するのに対し、結晶化ガラス基板の下面に青白色の印刷紙を配置させた場合には、従来の(ホウケイ酸ガラス+白色インク)基材の色味に近くなる、との予備実験結果をふまえ、結晶化ガラス基板の呈する黄色味から、(ホウケイ酸ガラス+白色インク)の色味により近づけるための、白色への色調補正手段について鋭意検討を行った。その結果、加熱調理器用トッププレートが、
 Li2O-Al23-SiO2を主成分とし、遷移元素を含む結晶化ガラス基板と、
 前記結晶化ガラス基板の下面に設けられ、屈折率がいずれも前記結晶化ガラス基板よりも小さい第1低屈折率層と第2低屈折率層を、前記結晶化ガラス基板側から順に少なくとも有する低屈折率積層とを有し、
 前記第1低屈折率層の厚さは、前記第2低屈折率層の厚さの0.01%以上10%以下であり、
 少なくとも前記第2低屈折率層に青色顔料が含まれるようにすればよいことを見出した。以下、本実施形態に係る加熱調理器用トッププレートについて説明する。
 [結晶化ガラス基板]
 本実施形態の加熱調理器用トッププレートには、Li2O-Al23-SiO2を主成分とし、遷移元素を含む結晶化ガラス基板を用いる。前記基板を構成するガラスとして、例えばβ-石英、β-スポジュメン、チタン酸アルミニウム、コーディエライト等の低膨張結晶を1種以上含むものが好ましい。更には、β-石英固溶体またはβ-スポジュメン固溶体を主結晶とするものがより好ましい。前記結晶化ガラスは、負の膨張特性を示すβ-石英固溶体結晶と、正の膨張特性を示す残存するガラス層とが打ち消しあって、結晶化ガラス全体の熱膨張係数を低く抑えることができる。なお、低熱膨張性として、例えば熱膨張係数の絶対値が30×10-7/℃以下であることが挙げられる。
 結晶化ガラス基板の厚さは、例えば3mm~10mmとすることができる。前記結晶化ガラス基板の屈折率は、例えば約1.4~2.0である。
 本明細書において、前記「Li2O-Al23-SiO2を主成分とし」とは、
(a)ガラスの原料に占めるこれらの酸化物の割合、または、
(b)ガラス中のLi、Al、Siを各単独酸化物に換算して求められる合計酸化物量の、ガラスに占める割合
の少なくともいずれかが、50質量%以上であることをいう。
 [低屈折率積層]
 本実施形態の加熱調理器用トッププレートは、上記結晶化ガラス基板の下面、即ち、結晶化ガラス基板の調理面とは反対側の面に設けられ、屈折率がいずれも前記結晶化ガラス基板よりも小さい第1低屈折率層と第2低屈折率層を、前記結晶化ガラス基板側から順に少なくとも有する低屈折率積層を有する。
 前記低屈折率積層に含まれる第1低屈折率層と第2低屈折率層は、屈折率が前記結晶化ガラス基板の屈折率よりも小さい必要がある。これらの低屈折率層の屈折率は、結晶化ガラス基板の屈折率よりも0.1以上小さいことがより好ましく、結晶化ガラス基板の屈折率よりも0.3以上小さいことが更に好ましい。これらの低屈折率層の屈折率は、最も好ましくは空気層の屈折率と同じ1.0である。これらの低屈折率層の屈折率が好ましくは空気層の屈折率1.0に近くなるほど、結晶化ガラス基板内に入光して結晶化ガラス基板内で全反射して取り出し難い青色光を、結晶化ガラス基板の外へ取り出しやすくなり、結晶化ガラス基板内で全反射する青色光を低減できると考えられる。その結果、加熱調理器用トッププレートの明度をより向上できると共に、黄色味を抑えて白色度を高めることができると考えられる。なお第1低屈折率層と第2低屈折率層の屈折率は、後述する実施例に示す方法で求められる。
 前記低屈折率積層は、前記結晶化ガラス基板側から順に少なくとも第1低屈折率層と第2低屈折率層を有する。低屈折率積層における第1低屈折率層は、その一方の面が前記結晶化ガラス基板に直接接していてもよいし、または、前記結晶化ガラス基板、密着性向上層(例えば膜厚が第1低屈折率層と同等以下の薄膜状の密着性向上層)、第1低屈折率層の順に形成されていてもよい。低屈折率積層における第1低屈折率層の他方の面は、第2低屈折率層と直接接している。低屈折率積層における第2低屈折率層は、一方の面が第1低屈折率層と直接接しており、他方の面は、外気に晒されているか、低屈折率積層を構成する更なる層と直接接しているか、または、後述する反射層や遮光層等と直接接しうる。
 (第1低屈折率層の厚さ/第2低屈折率層の厚さの比率)
 本実施形態の加熱調理器用トッププレートは、前記第2低屈折率層の厚さに対する前記第1低屈折率層の厚さの比率、すなわち、(第1低屈折率層の厚さ/第2低屈折率層の厚さ)が、0.01%以上10%以下の範囲内にある。本実施形態では、第2低屈折率層の厚さに比べて十分薄い第1低屈折率層を、結晶化ガラス基板と第2低屈折率層の間に設けることによって、加熱調理器用トッププレートの明度を確実に高め得ることを見出した。その結果、ホウケイ酸ガラスに白色塗料を塗布した場合の色調に、従来よりも更に近づけることができ、より白色を認識することができる。また、低屈折率積層の下面に更に反射層等の他の層を設けた場合であっても、上記明度の低下を抑制できる。前記比率は、更に0.1%以上であってもよい。また、前記比率は、更に5%以下であってもよく、更に2%以下であってもよく、更には1%以下であってもよい。なお、第1低屈折率層の厚さ、第2低屈折率層の厚さは、加熱調理器用トッププレートにおける低屈折率積層の積層方向の厚さをいい、該厚さは、走査型電子顕微鏡(SEM)での断面写真から求めることができる。
 第1低屈折率層、第2低屈折率層の個々の厚さは限定されず、上記比率を満たせば良い。前記第1低屈折率層の厚さは、例えば1.0μm以下であることが挙げられる。前記第1低屈折率層の厚さは、更には0.8μm以下であり得、より更には0.5μm以下であり得る。前記第1低屈折率層の厚さは、例えば20nm以上であり得、更には50nm以上であり得、より更には0.1μm以上であり得る。また第2低屈折率層の厚さは、例えば10μm以上であることが挙げられる。第2低屈折率層の厚さは、更には20μm以上であり得る。第2低屈折率層の厚さは、例えば200μm以下であり得、更には100μm以下であり得る。
 前記低屈折率積層の全体の厚さも限定されない。明度向上効果を十分高める観点から、例えば10μm以上とすることが好ましく、10μm超であることがより好ましく、更に好ましくは20μm以上である。一方、低屈折率積層の剥離およびクラック等をより抑制する観点から、前記低屈折率積層の厚さを、例えば200μm以下とすることができる。
 本実施形態では、低屈折率積層を設けることによる明度向上効果を損なわない限り、上記第1低屈折率層と第2低屈折率層に加え、低屈折率積層を構成する更なる層が含まれていてもよい。なお低屈折率積層を構成する更なる層も、屈折率が結晶化ガラス基板の屈折率よりも小さい必要がある。
 (低屈折率層に含まれる空隙)
 結晶化ガラス基板よりも屈折率の小さい低屈折率層を実現する手段の一つとして、前記第1低屈折率層と第2低屈折率層の少なくともいずれかを、複数の空隙を有する層とすることが挙げられる。前記第1低屈折率層と第2低屈折率層の両方を複数の空隙を有する層とすることにより、両方の層の屈折率を結晶化ガラス基板の屈折率よりも容易に小さくできるため好ましい。
 第1低屈折率層と第2低屈折率層の少なくともいずれかに含まれる空隙は、例えば第1低屈折率層と第2低屈折率層の積層方向の断面を撮影した、走査電子顕微鏡(SEM)像で確認できる。各低屈折率層に占める空隙の割合は、結晶化ガラス基板よりも小さい屈折率を容易に実現する観点から、体積比率で10%以上であることが好ましく、前記体積比率で30%以上であることがより好ましく、50%以上であることが更に好ましい。一方、加熱調理器用トッププレートの強度を確保する観点からは、前記体積比率は、好ましくは90%以下であり、より好ましくは80%以下、更に好ましくは60%以下である。材料を体積比で配合する場合には、材料の配合比が上記体積比率を満たせばよい。なお、本明細書における「体積比率」は、加熱調理器用トッププレートの低屈折率積層の積層方向の断面写真において求められる面積比率と同じ値であるとみなす。
 前記低屈折率積層に含まれうる複数の空隙は、中空粒子、多孔質材料、および、粒子と粒子の間に空隙を有する構造よりなる群から選択される1以上で構成されうる。前記粒子と粒子の間に空隙を有する構造は、複数の中実粒子および/または複数の中空粒子が重なりあったときに形成される、粒子と粒子の間の空隙を有する構造である。詳細には、前記粒子と粒子の間に空隙を有する構造は、例えば中実粒子と結着材を用いて低屈折率層を形成する際に、中実粒子間を結着材で埋めることなく、中実粒子のほぼ接点のみを結着材で結着させることにより形成できる。該構造によれば、中空粒子を用いなくとも空隙を形成できる。あるいは、発泡体を用いて空隙を形成することも可能である。
 中空粒子と中実粒子の形状は問わず、球状体、筒状体、不定形体、多泡体等が挙げられる。前記中空粒子は密閉、非密閉を問わない。前記密閉である場合、中空粒子の空洞内の圧力は大気圧であってもよいし、真空に近くてもよい。
 結晶化ガラス基板よりも小さい屈折率を容易に達成し、明度向上を容易に実現する観点からは、前記第1低屈折率層と前記第2低屈折率層の少なくとも1つに中空粒子が含まれることが好ましい。更に好ましくは、前記第1低屈折率層と前記第2低屈折率層の両方に中空粒子が含まれることである。中空粒子が含まれることによって、中空粒子の空洞(中空部分)が熱膨張差を緩和し、耐熱性を高めることも可能である。
 より更に好ましくは、前記第1低屈折率層と前記第2低屈折率層の両方に中空粒子が含まれ、前記第1低屈折率層に含まれる中空粒子の平均粒子径が、前記第2低屈折率層に含まれる中空粒子の平均粒子径の0.01%以上50%以下を満たすことである。この第1低屈折率層と第2低屈折率層の中空粒子の平均粒子径の比率である、(第1低屈折率層に含まれる中空粒子の平均粒子径/第2低屈折率層に含まれる中空粒子の平均粒子径)は、10%以下であってもよく、更には5%以下であってもよい。本実施形態において、前述した第1低屈折率層と第2低屈折率層の膜厚の比率を満たすと共に、この第1低屈折率層と第2低屈折率層の中空粒子の平均粒子径の比率を満たすことが好ましい。
 前記第1低屈折率層と前記第2低屈折率層の少なくとも1つに中空粒子が含まれる場合、第1低屈折率層における中空粒子のサイズ、第2低屈折率層における中空粒子のサイズのそれぞれは限定されない。中空粒子のサイズは、第1低屈折率層、第2低屈折率層のそれぞれにおいて、例えばメジアン径(d50)で10nm~100μmの範囲内でありうる。第1低屈折率層に含まれる中空粒子の平均粒子径は、好ましくは10nm以上、より好ましくは20nm以上であって、好ましくは500nm以下、より好ましくは200nm以下、更に好ましくは100nm以下である。
 図1に、本実施形態に係る加熱調理器用トッププレートの一実施形態の模式断面図を示す。図1では、加熱調理器用トッププレートとして、
・Li2O-Al23-SiO2を主成分とし、遷移元素を含む結晶化ガラス基板1と、
・前記結晶化ガラス基板1の下面に設けられた低屈折率積層2として、屈折率がいずれも前記結晶化ガラス基板1よりも小さい第1低屈折率層3と第2低屈折率層5の積層
を有する。図1では、一実施形態として、第1低屈折率層3に空隙を設けるため、中空粒子4が含まれ、第2低屈折率層5にも空隙を設けるため、中空粒子6が含まれる態様を示す。図示していないが、第2低屈折率層5には青色顔料も含まれる。なお、図1では説明の便宜上、第1低屈折率層3の厚さと第1低屈折率層3に含まれる中空粒子4のサイズを、第2低屈折率層5の厚さと第2低屈折率層に含まれる中空粒子6のサイズに対して、規定よりも大きく表示している点で実際と異なる。後述する図2についても同じである。
 (低屈折率積層を構成する材料)
 低屈折率積層を構成する材料は、明度向上の観点から決定すると共に、低屈折率積層と接する結晶化ガラス基板の熱膨張性、低屈折率積層の結晶化ガラス基板と反対側に設置する層の熱膨張性に応じて決める必要がある。また、低屈折率積層に含まれる中空粒子等の含有物と、結着材との熱膨張係数や融点等にも考慮する必要がある。第1低屈折率層と第2低屈折率層を含む低屈折率積層を構成する材料の成分組成は、例えば、SiO2,A123,Li2O,TiO2,ZrO2,P25,ZnO、BaO,Na2O+K2O,SnO等の、バッチ原料における比率を変更して調整することが挙げられる。また後述の通り、低屈折率積層には必要に応じて、Coを含む青色顔料、シリコーン樹脂等の有機樹脂からなる結着材等が含まれうる。
 中空粒子として例えば、中空ガラス粒子、ガラスビーズ、中空アルミナ粒子、中空シリカ粒子等の中空セラミック粒子、中空ポリマー粒子等が挙げられる。前記中空ポリマー粒子として、耐熱性に優れた例えばシリコーン樹脂で形成されたものが挙げられる。中空粒子として、中空ガラス粒子が好ましい。また、前記中実粒子として、例えば中実ガラス粒子、中実セラミック粒子、中実シリカ粒子等が挙げられる。前記中空粒子と中実粒子の表面は、シランカップリング剤等により処理されていてもよい。
 前記中空ガラス粒子のより具体的な材質は特に限定されず、結晶化ガラス、ホウケイ酸ガラス、アルミナホウケイ酸ガラス、ソーダガラス等が挙げられる。前記中空ガラス粒子として、例えば市販品を用いることができる。該市販品として、3M社製グラスバブルズ、ポッターズ・バロティーニ株式会社製中空ガラスビーズ、太平洋セメント製セルスフィアーズ、日鉄鉱業株式会社製シリナックス(登録商標)等が挙げられる。
 前記空隙を多孔質材料で構成する場合、該多孔質材料として、多孔質ガラス粒子、多孔質セラミック粒子等の多孔質粒子が挙げられる。多孔質粒子を用いる代わりに、多孔質形成用のガラス材料、セラミック材料と、高温で発泡する例えばポリマー材料とを含む混合材料を、結晶化ガラス基板上に塗布し、例えば焼成により、上記ポリマー材料を発泡させて多孔質を形成してもよい。
 前記多孔質材料は、上記空洞を有する材料に限られず、例えばガラス、セラミック等の繊維が集合することで空隙が形成されたものであってもよい。ガラス繊維の集合体として、例えば綿状のガラスウールが挙げられる。
 低屈折率積層に、例えば、中空粒子、多孔質粒子、中実ガラス粒子などが多く含まれる場合、粒子間の接着のため、結着材として、粉末ガラスを含むガラスペースト、透明インキが含まれていてもよい。結着材の材料として、上記粒子の熱膨張性と近い熱膨張性を有する材料が挙げられる。上記結着材として、例えば、上述したSiO2等のガラス系材料の結着材を用いることが可能である。また、上記化合物の酸化数はこれに限られない。前記結着材の割合は、例えば各低屈折率層に占める体積比率で0.1%以上、90%以下の範囲内とすることができ、更には0.5%以上、50%以下の範囲内とすることができる。前記結着材として、例えば日本電気硝子株式会社製ガラスペースト、AGC株式会社製ガラスフリット、ガラスペースト、帝国インキ製造株式会社製耐熱性クリアインキ等が挙げられる。結着材は複数種類混合して用いることも可能である。
 (青色顔料)
 低屈折率積層のうち、少なくとも第2低屈折率層に青色顔料が含まれる。前述の通り、低屈折率積層が若干青色を呈するようにすることで、白く見えやすい。本実施形態によれば、第1低屈折率層と第2低屈折率層の屈折率を制御すると共に、低屈折率積層における第1低屈折率層の厚さと第2低屈折率層の厚さの比率を前述の範囲内とすることで、明度を高めることができ、それにより、含有させる青色顔料を低減でき、従来よりも(ホウケイ酸ガラス+白色インク)の色味により近い白色を実現することができる。
 第2低屈折率層に含まれる青色顔料の割合は、加熱調理器用トッププレートが白色を呈するようにすればよく、特に限定されない。第2低屈折率層に占める青色顔料の割合は、体積比率で、0%超であって、例えば5%以下とすることができる。
 第2低屈折率層には、顔料として、青色顔料のみが含まれる場合の他、青色顔料とともに、青色顔料以外の顔料、例えば白色顔料、色調調整のための赤色顔料等が含まれる場合がある。色調の調整方法として、青色顔料の種類の選択の他、青色顔料と白色顔料を含む混合顔料における各顔料の比率を制御すること等が挙げられる。
 前記青色顔料として、青色無機顔料が挙げられ、例えば、紺青(フェロシアン化第二鉄)、群青、コバルト系無機顔料(Co-Al系、Co-Al-Si系、Co-Zn-Si系)、V-Zr-Si系無機顔料(ターコイズブルー)、マンガン系無機顔料等の青色無機顔料が挙げられる。また前記白色顔料として、酸化チタン、酸化セリウム、酸化亜鉛、硫酸バリウム等の白色無機顔料が挙げられる。前記青色顔料、白色顔料の市販品として、例えば、三ツ星製ハイカラー、帝国インキ製造株式会社製XGL-HFスクリーンインキ、奥野製薬工業株式会社製装飾用ガラスカラーHZシリーズ、あるいはPLNシリーズ等が挙げられる。更には、色調調整のために、赤色顔料として、酸化鉄、水酸化鉄、チタン酸鉄等の赤色無機顔料を含んでいてもよい。着色用の顔料は、所望の色調を得るように任意の割合で混合することが可能である。なお、顔料は、ここに挙げたものに限定されない。
 第1低屈折率層の青色顔料の含有は任意である。第1低屈折率層には青色顔料が含まれていてもよいし、含まれていなくてもよい。低屈折率積層のうち、第2低屈折率層以外の青色顔料を含まない層は、例えば、白色顔料が含まれていてもよい。この場合、顔料として白色顔料のみが含まれていてもよいし、または、白色顔料とともに白色以外の顔料が含まれていてもよい。
 (フィラー)
 第1低屈折率層と第2低屈折率層の少なくとも1つに、必要に応じてフィラーが含まれていてもよい。前記フィラーは、例えば強度向上部材としての作用を発揮する。
 前記フィラーの材質、形状、サイズおよび含有量は特に問わない。例えば強度向上部材として用いる場合、所望の強度に応じて適宜決定することができる。前記フィラーは、
・アルミニウム、チタン等の金属、アルミナ、チタニア、ジルコニア、酸化亜鉛等の金属酸化物、上記アルミナ等を含むセラミック、炭酸カルシウム、硫酸バリウム等の金属塩、ガラス、シリカ、マイカ、タルク、クレー、ゼオライト、有機物材料、およびそれらの複合物、ならびに、
・それらの表面にカップリング材、活性基、反応基、有機物および金属酸化物の少なくとも1つが結合、吸着または蒸着した材料
よりなる群から選択される1以上で構成されていることが好ましい。
 フィラーの形状として、粒子状、球状、角状、棒状、枝状、針状、薄板状、鱗片状、繊維状、花弁状、テトラポット状、多孔質であることが挙げられる。強度を確保できる限りにおいて中空粒子であってもよい。フィラーのサイズは、特に限定されず、目標とする層の強度を勘案して適宜決定すればよい。フィラーのサイズは、例えば短手または長手の長さが1nm~100μmであることが挙げられる。短手または長手の長さは、更に100nm~50μmの範囲であってもよい。各低屈折率層に含まれるフィラーの割合は、体積比率で0~50%、さらに好ましくは0~30%の範囲とすることができる。前記フィラーは、強度確保の役割と光輝材および/または反射材としての役割とを兼用したものであってもよい。
 (低屈折率積層の形成方法)
 低屈折率積層の形成方法の一例として、例えばガラス組成物を含有するペースト等の無機塗料を、結晶化ガラス基板、または、既に形成した第1低屈折率層等の表面に、塗布し、乾燥させることが挙げられる。塗布の方法として、特に指定するものではないが、例えばドクターブレード、バーコート、スプレーコート、ディップコート、スピンコート、スリットコート、ロールコート、スクリーン印刷、インクジェット印刷、グラビア印刷などが挙げられる。
 前記乾燥後、550~900℃の温度、例えば更に600~800℃の温度で焼き付けることが挙げられる。なお、低屈折率積層の焼き付けは、低屈折率積層の最終形成層の形成時にのみ焼き付けを行ってもよい。よって、第1低屈折率層形成時の焼き付け、または3層以上の低屈折率積層の第1低屈折率層形成時と第2低屈折率層形成時の焼き付けを、省略することができる。
 前記低屈折率積層として空隙を有する層を形成する場合、例えば中空粒子と結着材を含むペーストを、上述した方法で塗布、例えばスクリーン印刷等により塗布し、乾燥させてから、使用する材料に応じた温度で焼き付けることが挙げられる。
 上記中空粒子を用いる以外に、前述の通り、例えば発泡材料を用い、空隙を有する低屈折率層として多孔質層を形成してもよい。その場合、高温で発泡する例えばポリマー材料を含む混合材料を、結晶化ガラス基板上にスクリーン印刷等により塗布し、乾燥させてから、使用する材料に応じた温度で焼き付けることにより、上記ポリマー材料を発泡させ、多孔質の低屈折率層を形成することができる。
 本実施形態に係る加熱調理器用トッププレートは、前記低屈折率積層の下面に、反射層、遮光層、および塗膜強度向上層等よりなる群から選択される1以上の層を有していてもよい。以下、反射層、遮光層、塗膜強度向上層のそれぞれについて説明する。なお下記に説明する、反射層、遮光層および塗膜強度向上層といった、低屈折率積層以外の層の屈折率は問わない。また低屈折率積層以外の層である、反射層、遮光層および塗膜強度向上層の膜厚は特に限定されず、適宜決定することができる。
 (反射層)
 反射層は、明度向上効果をより高めるために必要に応じて形成してもよい。該反射層として、例えばシリコーン樹脂等をベース材料とし、反射材と光輝材のうちの1以上が含まれるものが挙げられる。前記反射材と光輝材のうちの1以上は、マイカ、シリカ、金属酸化物、アルミニウムフレーク、ガラス粒子、ガラスフレーク、金属蒸着層を有するガラスフレーク、および金属酸化物層を有するマイカよりなる群から選択される1以上でありうる。前記ガラス粒子は、例えば自反射ガラスビーズであってもよい。また、金属酸化物層を有するマイカとして例えばパールマイカ等を加えることで、反射特性を高めつつ、色調調整を補助することも可能である。
 反射材と光輝材のうちの1以上の形状として、粒子状、球状、角状、棒状、枝状、針状、薄板状、鱗片状、繊維状、花弁状、テトラポット状、多孔質等であることが挙げられる。反射材と光輝材のうちの1以上のサイズは、特に限定されず、目標とする反射率を勘案して適宜決定すればよい。反射材と光輝材のうちの1以上のサイズとして、例えば平均粒子径が0.1μm~100μmであることが挙げられる。前記反射層に占める反射材と光輝材のうちの1以上の割合は、特に限定されず、目標とする反射率を勘案して適宜決定されうる。
 反射層の形成方法として、例えば、ベース材料であるシリコーン樹脂等と、溶剤と、上記反射材と光輝材のうちの少なくとも1つとを含むペーストを、スクリーン印刷等により例えば低屈折率積層等の表面に塗布し、乾燥させてから、例えば200~400℃で焼き付けることが挙げられる。
 図2に、本実施形態に係る加熱調理器用トッププレートの別の一実施形態の模式断面図を示す。図2では、加熱調理器用トッププレートとして、図1の加熱調理器用トッププレートの低屈折率積層2の下面に、反射層7を更に有する実施形態を例示している。反射層7には、反射材と光輝材のうちの1以上8が含まれる。
 (遮光層)
 前記遮光層は、例えば耐熱塗料を、低屈折率積層、あるいは反射層、あるいは塗膜強度向上層等の下面に塗布して形成されうる。耐熱塗料として、シリコーン樹脂、ポリアミド樹脂、フッ素樹脂もしくはこれらの複合体を含む耐熱樹脂に、着色用の無機顔料を加えて混合したものが用いられうる。または、低屈折率積層、あるいは反射層、あるいは塗膜強度向上層等の下面に、耐熱性を考慮して、結晶化ガラス基板に近い成分であるSiO2、Al23、Li2O等を主成分とするガラス質成分と、遮光のための顔料として黒色無機顔料(Fe23系、MnO2系、CuO系、Co23系等の金属酸化物顔料)とを含んだインクを塗布して得られた層を、必要に応じて設けてもよい。
 (塗膜強度向上層)
 塗膜強度向上層は、加熱調理器用トッププレートの強度、耐久性を高めるために有用である。塗膜強度向上層として例えば、低屈折率積層と、その下面に必要に応じて設ける反射層、遮光層等との間の密着性向上層、結晶化ガラス基板と低屈折率積層の間の密着性向上層が挙げられる。該塗膜強度向上層を設けることで、各層間等の密着性が高められ、例えば、加熱調理器用トッププレートが振動、外部からの衝撃を受けた場合、結晶化ガラス基板と低屈折率積層等の熱膨張係数の差がある場合であっても、各層が剥離し難く、結果として、加熱調理器用トッププレート全体としての強度、耐久性を高めることができる。
 前記塗膜強度向上層を構成する材料として、主成分がLi2O-Al23-SiO2等であるガラス材が挙げられる。または、低屈折率積層が、中空ガラス、ガラスビーズ、および多孔質材料などで形成されている場合、前記塗膜強度向上層を構成する材料として、低屈折率積層を構成する上記中空ガラス等の材料の熱膨張係数に近い材料を用いることができる。よって、低屈折率積層に含まれる中空ガラスが、例えばホウケイ酸ガラス系である場合、Li2O-Al23-SiO2よりも大きな熱膨張係数を示す材料を、塗膜強度向上層に使用してもよい。前記塗膜強度向上層に、前述したフィラーを含めてもよい。塗膜強度向上層には、シリコーン等の有機結着材などの添加物が含まれていてもよい。塗膜強度向上層の厚さは、低屈折率積層と同等かそれよりも薄いことが好ましい。
 塗膜強度向上層の形成方法として、上記ガラス材、有機結着材等を含むペーストを、例えば低屈折率積層の表面にスクリーン印刷等により塗布し、乾燥させ、塗膜強度向上層の表面に反射層等を更に形成時に、焼成することが挙げられる。また、必要に応じて更に行う工程で塗布する接着剤や溶剤等の浸み込みを抑制するため、バリア層やクリア層を設けてもよい。バリア層やクリア層は、各層の間や最外層に塗布することが可能である。バリア層やクリア層は樹脂成分がより多い層であり、浸み込みを抑制可能である。
 (第2ガラス基板)
 本実施形態の加熱調理器用トッププレートは、加熱調理器用トッププレートの最表面を構成する結晶化ガラス基板とは別に、第2ガラス基板として、強化ガラス基板または結晶化ガラス基板を、前記低屈折率積層の下面に必要に応じて更に有してもよい。
 以下、実施例を挙げて本開示をより具体的に説明する。本開示は以下の実施例によって制限を受けるものではなく、前述および後述する趣旨に合致し得る範囲で、適宜変更を加えて実施することも可能であり、それらはいずれも本開示の技術的範囲に包含される。
 〔試料の作製〕
 (実施例1)
 第一形成層の形成のために、
・粒子径約60nmの中空シリカ粒子(日揮触媒化成株式会社製スルーリア)を有機溶媒に分散させた分散液:6.2g(固形分濃度:約20質量%)、
・エチルシリケート:0.35g、
・0.3N硝酸:0.1g、および
・溶媒(エタノール)適量
を混合して、第一形成層の形成用液を得た。該液を、結晶化ガラス基板(日本電気硝子株式会社製ネオセラムN-0、厚さ4mm)の表面に滴下し、1000rpm×30秒の条件でスピンコートを行った。その後、160℃で10分間の乾燥を行って焼成前の第一形成層を得た。なお、実施例1~6および比較例1における「粒子径」とは、平均粒子径(メジアン径(d50)である。本実施例では中空粒子等のサイズを、原料粒子の粒子径で記載しているが、得られた製品(加熱調理器用トッププレート)の低屈折率層等の積層方向の、ある断面写真から計測した粒子径の平均でもよい。
 次いで、第二形成層の形成のために、
・粒子径約2μmの中空ガラス粒子:0.86g、
・粒子径約5μmの中実シリカ粒子:0.29g、
・結着材として、ガラス成分であるSiO2-B23-ZnOを主成分とし溶剤を含むペースト:0.5g、
・青色無機顔料を含むペースト:0.1g、および
・オイル適量
を混錬して、第二形成層の形成用ペーストを得た。該ペーストを用い、上記焼成前の第一形成層の表面にスクリーン印刷を行った。スクリーン印刷に用いたメッシュはメッシュ数が#80であった。スクリーン印刷後、160℃で15分間の乾燥を行い、次いで、600~680℃で10分間焼成して、第一形成層と第二形成層が積層した中間試料を得た。結晶化ガラス基板に第一形成層と第二形成層を積層させた中間試料を、後述するL***値の測定に用いた(以下、実施例2~6についても同じである)。
 第一形成層、第二形成層のそれぞれの厚さは、SEM断面観察から、約250nm、約40μmであった。すなわち、前記第1低屈折率層の膜厚は、前記第2低屈折率層の膜厚の0.83%であった。なお、下記の通り第三形成層の形成時に250~350℃で焼成を行うが、該焼成後も、上記膜厚と比率はほとんど変化しない。また、実施例2~6においても、実施例1と類似の工程を経て第一形成層、第二形成層の積層膜を形成しており、(第1低屈折率層の厚さ/第2低屈折率層の厚さ)は0.01%以上10%以下の範囲内にあると推測される。
 次いで、第三形成層の形成のために、シリコーン樹脂、溶剤、および酸化チタンを含むインクを混錬し、第三形成層の形成用ペーストを得た。該ペーストを用い、上記焼成後の第二形成層の表面にスクリーン印刷を行った。スクリーン印刷に用いたメッシュはメッシュ数が#325であった。スクリーン印刷後、160℃で15分間の乾燥を行い、次いで、250~350℃で1時間の焼成を行って、結晶化ガラス基板の表面に、第一形成層、第二形成層および第三形成層がこの順に積層した完成試料を得た。
 (実施例2)
 第一形成層の形成のために、
・粒子径約60nmの中空シリカ粒子(日揮触媒化成株式会社製スルーリア)を有機溶媒に分散させた分散液:3.4g(固形分濃度:約20質量%)、
・エチルシリケート:1.8g、
・0.3N硝酸:0.5g、および
・溶媒(エタノール)適量
を混合して、第一形成層の形成用液を得た。該液を、結晶化ガラス基板(日本電気硝子株式会社製ネオセラムN-0、厚さ4mm)の表面に滴下し、バーコートにてコーティングを行った。その後、160℃で10分間の乾燥を行って焼成前の第一形成層を得た。
 次いで、第二形成層の形成のために、
・粒子径約2μmの中空ガラス粒子:0.86g、
・粒子径約5μmの中実シリカ粒子:0.29g、
・結着材として、ガラス成分であるSiO2-B23-ZnOを主成分とし溶剤を含むペースト:0.5g、
・青色無機顔料を含むペースト:0.1g、および
・オイル適量
を混錬して、第二形成層の形成用ペーストを得た。該ペーストを用い、上記焼成前の第一形成層の表面にスクリーン印刷を行った。スクリーン印刷に用いたメッシュはメッシュ数が#80であった。スクリーン印刷後、160℃で15分間の乾燥を行い、次いで、600~680℃で10分間焼成して、第一形成層と第二形成層が積層した中間試料を得た。
 次いで、第三形成層の形成のために、シリコーン樹脂、溶剤、および酸化チタンを含むインクを混錬し、第三形成層の形成用ペーストを得た。該ペーストを用い、上記焼成後の第二形成層の表面にスクリーン印刷を行った。スクリーン印刷に用いたメッシュはメッシュ数が#325であった。スクリーン印刷後、160℃で15分間の乾燥を行い、次いで、250~350℃で1時間の焼成を行って、結晶化ガラス基板の表面に、第一形成層、第二形成層および第三形成層がこの順に積層した完成試料を得た。
 (実施例3)
 第一形成層の形成のために、
・粒子径約60nmの中空シリカ粒子(日揮触媒化成株式会社製スルーリア)を有機溶媒に分散させた分散液:4.8g(固形分濃度:約20質量%)、
・エチルシリケート:1.1g、
・0.3N硝酸:0.3g、および
・溶媒(エタノール)適量
を混合して、第一形成層の形成用液を得た。該液を、結晶化ガラス基板(日本電気硝子株式会社製ネオセラムN-0、厚さ4mm)の表面に滴下し、スプレーコートにてコーティングを行った。その後、160℃で10分間の乾燥を行って焼成前の第一形成層を得た。
 次いで、第二形成層の形成のために、
・粒子径約2μmの中空ガラス粒子:1.0g、
・粒子径約5μmの中実シリカ粒子:0.12g、
・結着材として、ガラス成分であるSiO2-B23-ZnOを主成分とし溶剤を含むペースト:0.5g、
・青色無機顔料を含むペースト:0.1g、および
・オイル適量
を混錬して、第二形成層の形成用ペーストを得た。該ペーストを用い、上記焼成前の第一形成層の表面にスクリーン印刷を行った。スクリーン印刷に用いたメッシュはメッシュ数が#80であった。スクリーン印刷後、160℃で15分間の乾燥を行い、次いで、600~680℃で10分間焼成して、第一形成層と第二形成層が積層した中間試料を得た。
 次いで、第三形成層の形成のために、シリコーン樹脂、溶剤、および酸化チタンを含むインクを混錬し、第三形成層の形成用ペーストを得た。該ペーストを用い、上記焼成後の第二形成層の表面にスクリーン印刷を行った。スクリーン印刷に用いたメッシュはメッシュ数が#250であった。スクリーン印刷後、160℃で15分間の乾燥を行い、次いで、250~350℃で1時間の焼成を行って、結晶化ガラス基板の表面に、第一形成層、第二形成層および第三形成層がこの順に積層した完成試料を得た。
 (実施例4)
 第一形成層の形成のために、
・粒子径約60nmの中空シリカ粒子(日揮触媒化成株式会社製スルーリア)を有機溶媒に分散させた分散液:4.8g(固形分濃度:約20質量%)、
・エチルシリケート:1.1g、
・0.3N硝酸:0.3g、および
・溶媒(エタノール)適量
を混合して、第一形成層の形成用液を得た。該液を、結晶化ガラス基板(日本電気硝子株式会社製ネオセラムN-0、厚さ4mm)の表面に滴下し、バーコートにてコーティングを行った。その後、160℃で10分間の乾燥を行って焼成前の第一形成層を得た。
 次いで、第二形成層の形成のために、
・粒子径約1μmの中空ガラス粒子をシランカップリング剤で表面改質した、表面改質中空ガラス粒子:1.1g、
・結着材として、ガラス成分であるSiO2-B23-ZnOを主成分とし溶剤を含むペースト:0.5g、
・青色無機顔料を含むペースト:0.1g、および
・オイル適宜
を混錬して、第二形成層の形成用ペーストを得た。該ペーストを用い、上記焼成前の第一形成層の表面にスクリーン印刷を行った。スクリーン印刷に用いたメッシュはメッシュ数が#80であった。スクリーン印刷後、160℃で15分間の乾燥を行い、次いで、600~680℃で10分間焼成して、第一形成層と第二形成層が積層した中間試料を得た。
 次いで、第三形成層の形成のために、シリコーン樹脂、溶剤、および酸化チタンを含むインクを混錬し、第三形成層の形成用ペーストを得た。該ペーストを用い、上記焼成後の第二形成層の表面にスクリーン印刷を行った。スクリーン印刷に用いたメッシュはメッシュ数が#250であった。スクリーン印刷後、160℃で15分間の乾燥を行い、次いで、250~350℃で1時間の焼成を行って、結晶化ガラス基板の表面に、第一形成層、第二形成層および第三形成層がこの順に積層した完成試料を得た。
 (実施例5)
 第一形成層の形成のために、
・粒子径約60nmの中空シリカ粒子(日揮触媒化成株式会社製スルーリア)を有機溶媒に分散させた分散液:4.8g(固形分濃度:約20質量%)、
・エチルシリケート:1.1g、
・0.3N硝酸:0.3g、および
・溶媒(エタノール)適量
を混合して、第一形成層の形成用液を得た。該液を、結晶化ガラス基板(日本電気硝子株式会社製ネオセラムN-0、厚さ4mm)の表面に滴下し、スプレーコートにてコーティングを行った。その後、160℃で10分間の乾燥を行って焼成前の第一形成層を得た。
 次いで、第二形成層の形成のために、
・粒子径約2μmの中空ガラス粒子:0.86g、
・粒子径約5μmの中実シリカ粒子:0.29g、
・結着材として、ガラス成分であるSiO2-B23-ZnOを主成分とし溶剤を含むペースト:0.5g、
・青色無機顔料を含むペースト:0.1g、および
・オイル適量
を混錬して、第二形成層の形成用ペーストを得た。該ペーストを用い、上記焼成前の第一形成層の表面にスクリーン印刷を行った。スクリーン印刷に用いたメッシュはメッシュ数が#80であった。スクリーン印刷後、160℃で15分間の乾燥を行い、次いで、600~680℃で10分間焼成して、第一形成層と第二形成層が積層した中間試料を得た。
 次いで、第三形成層の形成のために、シリコーン樹脂、溶剤、酸化チタン、および金属複合酸化物を含むインクを混錬し、第三形成層の形成用ペーストを得た。該ペーストを用い、上記焼成後の第二形成層の表面にスクリーン印刷を行った。スクリーン印刷に用いたメッシュはメッシュ数が#325であった。スクリーン印刷後、160℃で15分間の乾燥を行い、次いで、250~350℃で1時間の焼成を行って、結晶化ガラス基板の表面に、第一形成層、第二形成層および第三形成層がこの順に積層した完成試料を得た。
 (実施例6)
 第一形成層の形成のために、
・粒子径約60nmの中空シリカ粒子(日揮触媒化成株式会社製スルーリア)を有機溶媒に分散させた分散液:4.7g(固形分濃度:約20質量%)、
・結着材として、ガラス成分であるSiO2-B23-ZnOを主成分とし溶剤を含むペースト:0.5g、
・第1溶剤としてビヒクルを適量、および
・第2溶剤としてテルピネオールを適量
を混練して、第一形成層の形成用ペーストを得た。該ペーストを用い、結晶化ガラス基板(日本電気硝子株式会社製ネオセラムN-0、厚さ4mm)の表面にスクリーン印刷を行った。スクリーン印刷に用いたメッシュは#400であった。スクリーン印刷後、160℃で15分間の乾燥を行って焼成前の第一形成層を得た。
 次いで、第二形成層の形成のために、
・粒子径約2μmの中空ガラス粒子:0.86g、
・粒子径約5μmの中実シリカ粒子:0.29g、
・結着材として、ガラス成分であるSiO2-B23-ZnOを主成分とし溶剤を含むペースト:0.5g、
・青色無機顔料を含むペースト:0.1g、および
・オイル適量
を混錬して、第二形成層の形成用ペーストを得た。該ペーストを用い、上記焼成前の第一形成層の表面にスクリーン印刷を行った。スクリーン印刷に用いたメッシュはメッシュ数が#100であった。スクリーン印刷後、160℃で15分間の乾燥を行い、次いで、600~680℃で10分間焼成して、第一形成層と第二形成層が積層した中間試料を得た。
 次いで、第三形成層の形成のために、シリコーン樹脂、溶剤、および酸化チタンを含むインクを混錬し、第三形成層の形成用ペーストを得た。該ペーストを用い、上記焼成後の第二形成層の表面にスクリーン印刷を行った。スクリーン印刷に用いたメッシュはメッシュ数が#180であった。スクリーン印刷後、160℃で15分間の乾燥を行い、次いで、250~350℃で1時間の焼成を行って、結晶化ガラス基板の表面に、第一形成層、第二形成層および第三形成層がこの順に積層した完成試料を得た。
 (比較例1)
 第一形成層の形成のために、
・粒子径約2μmの中空ガラス粒子:0.86g、
・粒子径約5μmの中実シリカ粒子:0.29g、
・結着材として、ガラス成分であるSiO2-B23-ZnOを主成分とし溶剤を含むペースト:0.5g、
・青色無機顔料を含むペースト:0.1g、および
・オイル適宜
を混錬して、第一形成層の形成用ペーストを得た。該ペーストを用い、結晶化ガラス基板(日本電気硝子株式会社製ネオセラムN-0、厚さ4mm)の表面にスクリーン印刷を行った。スクリーン印刷に用いたメッシュはメッシュ数が#80であった。スクリーン印刷後、160℃で15分間の乾燥を行い、次いで、600~680℃で10分間焼成して、第一形成層を得た。比較例1では、結晶化ガラス基板に第一形成層を形成した中間試料を、後述するL***値の測定に用いた。第一形成層の厚さは、SEM断面観察から約40μmであった。
 次いで、第二形成層の形成のために、シリコーン樹脂、溶剤、および酸化チタンを含むインクを混練し、第二形成層の形成用ペーストを得た。該ペーストを用い、上記焼成後の第一形成層の表面にスクリーン印刷を行った。スクリーン印刷に用いたメッシュはメッシュ数が#325であった。スクリーン印刷後、160℃で15分間の乾燥を行い、次いで、250~350℃で1時間の焼成を行って、結晶化ガラス基板の表面に、第一形成層および第二形成層がこの順に積層した完成試料を得た。この比較例1における第一形成層は、本実施形態の低屈折率積層における第2低屈折率層に相当し、比較例1における第二形成層は、本実施形態における反射層に相当する。すなわち比較例1の完成試料は、本実施形態の低屈折率積層における第1低屈折率層を有しない態様である。
 なお、本実施例における「完成試料」とは、本実施例で完成した試料を意味するものであって、必ずしも加熱調理器用トッププレートとしての完成品を示すものではなく、加熱調理器用トッププレートは更なる塗膜等の層を有しうる。
 〔評価〕
 (各低屈折率層の屈折率)
 各低屈折率層の屈折率は以下のようにして求めた。
 (各低屈折率層の屈折率の求め方)
 低屈折率層を構成する固体部分の屈折率は、可能であればアッベ屈折計または分光エリプソメーターで測定して求め、該測定で求めることが困難である場合には、固体部分を構成する成分の屈折率の理論値または文献値を用いる。固体部分が複数の成分で構成されている場合、各成分の屈折率の理論値または文献値を用い、各成分の比率を考慮して、複数の成分で構成される固体部分の屈折率を求めればよい。または、主成分の屈折率を代表値として用いてもよく、例えば、主成分であるガラスの屈折率を代表値として用い、おおよその屈折率を算定することも可能である。
 低屈折率層が固体部分と空隙(空気)で構成されている場合、低屈折率層の屈折率は、固体部分と空気部分の割合から屈折率を計算する。すなわち、固体部分の屈折率をn1Aとし、低屈折率積層の積層方向の断面を電子顕微鏡で観察して求めた空隙率をφ1Aとしたとき、以下の式から、低屈折率層の屈折率n2Aを求めればよい。
 n2A=n1A×(1-φ1A
 低屈折率層が固体部分と空隙(空気)で構成されている具体例として、例えば、低屈折率層が複数の中空粒子で形成されている場合、または、固体部分と固体部分の間に空隙が形成される場合等がある。これらの場合、中空粒子を構成する材料(固体部分の材料)のバルク材料の屈折率をn1Bとし、低屈折率積層の積層方向の断面を電子顕微鏡で観察して求めた空隙率をφ1Bとしたとき、以下の式から、低屈折率層の屈折率n2Bを求めればよい。
 n2B=n1B×(1-φ1B
 低屈折率積層における第1低屈折率層、第2低屈折率層等のそれぞれの層の屈折率を求める。例えば第2低屈折率層が、ガラスバインダーと中空ガラスとマイカと空隙とからなる場合(固体部分が複数の成分から成る場合)、(ガラス+マイカ)のバルク体を作製して屈折率を測定し、該屈折率と、低屈折率積層の積層方向の断面の電子顕微鏡写真から求めた第2低屈折率層の空隙率を用い、第2低屈折率層の屈折率を算定することが挙げられる。
 本実施例では、実施例1及び比較例1の第1低屈折率層と第2低屈折率層の屈折率は、第1低屈折率層と第2低屈折率層の積層方向のSEM断面写真からそれぞれの空隙率を求め、固体部分であるガラスの屈折率を用いて、それぞれ算出した。その結果、実施例1の第1低屈折率層の屈折率は1.39、実施例1の第2低屈折率層の屈折率は1.24、比較例1の第2低屈折率層の屈折率は1.25であった。結晶化ガラス基板の屈折率は1.54であり、いずれの例も、第1低屈折率層と第2低屈折率層の屈折率は結晶化ガラス基板よりも小さかった。なお、実施例2~6の第1低屈折率層と第2低屈折率層は、それらの成分組成が実施例1の第1低屈折率層と第2低屈折率層の成分組成と似ていることから、これらの実施例の第1低屈折率層と第2低屈折率層の屈折率も、結晶化ガラス基板の屈折率よりも小さいと推測される。
 (L***値の測定)
 本実施形態では、第1低屈折率層と第2低屈折率層を含む低屈折率積層を設けることにより、明度向上を図る。本実施例では、反射層である第三形成層まで形成しているが、第1低屈折率層と第2低屈折率層を形成した状態で、明度向上効果が得られているかを確認するため、結晶化ガラス基板に第1低屈折率層と第2低屈折率層を積層させた中間試料を用い、結晶化ガラス基板を最表面として色測定を行った。次いで、第三形成層(反射層)を更に設けた完成試料を用い、結晶化ガラス基板を最表面として色測定を行った。なお比較例では、本実施形態の低屈折率積層の第2低屈折率層に該当する第一形成層のみを設けた中間試料を用い、結晶化ガラス基板を最表面として色測定を行い、次いで、反射層に相当する第二形成層を更に設けた完成試料を用い、結晶化ガラス基板を最表面として色測定を行った。色測定は、色彩色差計(コニカミノルタ製CR410)を用いて、色空間L***を測定した。その結果を表1に示す。なお、a、bのそれぞれは、-3.0以上3.0以下の範囲内にある場合を好ましいと判断した。
Figure JPOXMLDOC01-appb-T000001
 表1から次のことがわかる。実施例1~6は、中間試料の明度が高く、かつ第三形成層まで形成した場合であっても、明度の低下が抑えられ、完成試料の明度も高かった。それに対し、比較例1では、中間試料の明度が低く、低屈折率積層のうち第2低屈折率層のみ形成したのでは明度向上効果を発揮できなかった。更に、第三形成層まで形成したとき、明度が大きく低下し、完成試料の明度が低くなった。これらの結果から、本実施形態の通り第1低屈折率層と第2低屈折率層を、所定の厚さの比率となるように設けることによって、より高い明度を達成でき、結果として(ホウケイ酸ガラス+白色インク)の色味により近い白色を実現できることが分かった。
 本明細書の開示内容は、以下の態様を含み得る。
 (態様1)
 Li2O-Al23-SiO2を主成分とし、遷移元素を含む結晶化ガラス基板と、
 前記結晶化ガラス基板の下面に設けられ、屈折率がいずれも前記結晶化ガラス基板よりも小さい第1低屈折率層と第2低屈折率層を、前記結晶化ガラス基板側から順に少なくとも有する低屈折率積層とを有し、
 前記第1低屈折率層の厚さは、前記第2低屈折率層の厚さの0.01%以上10%以下であり、
 少なくとも前記第2低屈折率層に青色顔料が含まれる、加熱調理器用トッププレート。
 (態様2)
 前記第1低屈折率層の厚さは、1.0μm以下である態様1に記載の加熱調理器用トッププレート。
 (態様3)
 前記第1低屈折率層と前記第2低屈折率層はいずれも複数の空隙を有する、態様1または2に記載の加熱調理器用トッププレート。
 (態様4)
 前記第1低屈折率層と前記第2低屈折率層の少なくとも1つに中空粒子が含まれ、
 前記空隙には、前記中空粒子の空洞が含まれる、態様3に記載の加熱調理器用トッププレート。
 (態様5)
 前記第1低屈折率層と前記第2低屈折率層の両方に中空粒子が含まれ、
 前記第1低屈折率層に含まれる中空粒子の平均粒子径は、前記第2低屈折率層に含まれる中空粒子の平均粒子径の0.01%以上50%以下である、態様4に記載の加熱調理器用トッププレート。
 (態様6)
 前記第1低屈折率層に含まれる中空粒子の平均粒子径は、10nm以上500nm以下である、態様4または5に記載の加熱調理器用トッププレート。
 (態様7)
 前記第1低屈折率層と前記第2低屈折率層の少なくとも1つにフィラーが含まれる、態様1~6のいずれか1つに記載の加熱調理器用トッププレート。
 (態様8)
 前記フィラーは、
 金属、金属酸化物、セラミック、金属塩、ガラス、シリカ、マイカ、タルク、クレー、ゼオライト、有機物材料、およびそれらの複合物、ならびに、
 それらの表面にカップリング材、活性基、反応基、有機物および金属酸化物の少なくとも1つが結合、吸着または蒸着した材料
よりなる群から選択される1以上で構成されている、態様7に記載の加熱調理器用トッププレート。
 (態様9)
 前記低屈折率積層の下面に、反射層、遮光層、および塗膜強度向上層よりなる群から選択される1以上の層を有する、態様1~8のいずれか1つに記載の加熱調理器用トッププレート。
 (態様10)
 前記反射層に、反射材と光輝材のうちの1以上が含まれる、態様9に記載の加熱調理器用トッププレート。
 (態様11)
 前記反射材と光輝材のうちの1以上は、マイカ、シリカ、金属酸化物、アルミニウムフレーク、ガラス粒子、ガラスフレーク、金属蒸着層を有するガラスフレーク、および金属酸化物層を有するマイカよりなる群から選択される1以上である、態様10に記載の加熱調理器用トッププレート。
 本出願は、出願日が2022年12月1日の日本国特許出願である特願2022-193070号を基礎出願とする優先権主張を伴う。特願2022-193070号は参照することにより本明細書に取り込まれる。
 以上のように本実施形態に係る加熱調理器用トッププレートは、高強度かつ低熱膨張性を示す結晶化ガラスを基板に使用し、白色を呈する。よって、一般家庭の食卓、調理台等、または業務用の厨房等で使用される、卓上型、据え置き型または組込型の、白色を呈する加熱調理器を提供できる。
  1 結晶化ガラス基板
  2 低屈折率積層
  3 低屈折率積層における第1低屈折率層
  4 第1低屈折率層に含まれる中空粒子
  5 低屈折率積層における第2低屈折率層
  6 第2低屈折率層に含まれる中空粒子
  7 反射層
  8 反射材と光輝材のうちの1以上
  10A、10B 加熱調理器用トッププレート

Claims (11)

  1.  Li2O-Al23-SiO2を主成分とし、遷移元素を含む結晶化ガラス基板と、
     前記結晶化ガラス基板の下面に設けられ、屈折率がいずれも前記結晶化ガラス基板よりも小さい第1低屈折率層と第2低屈折率層を、前記結晶化ガラス基板側から順に少なくとも有する低屈折率積層とを有し、
     前記第1低屈折率層の厚さは、前記第2低屈折率層の厚さの0.01%以上10%以下であり、
     少なくとも前記第2低屈折率層に青色顔料が含まれる、加熱調理器用トッププレート。
  2.  前記第1低屈折率層の厚さは、1.0μm以下である請求項1に記載の加熱調理器用トッププレート。
  3.  前記第1低屈折率層と前記第2低屈折率層はいずれも複数の空隙を有する、請求項1または2に記載の加熱調理器用トッププレート。
  4.  前記第1低屈折率層と前記第2低屈折率層の少なくとも1つに中空粒子が含まれ、
     前記空隙には、前記中空粒子の空洞が含まれる、請求項3に記載の加熱調理器用トッププレート。
  5.  前記第1低屈折率層と前記第2低屈折率層の両方に中空粒子が含まれ、
     前記第1低屈折率層に含まれる中空粒子の平均粒子径は、前記第2低屈折率層に含まれる中空粒子の平均粒子径の0.01%以上50%以下である、請求項4に記載の加熱調理器用トッププレート。
  6.  前記第1低屈折率層に含まれる中空粒子の平均粒子径は、10nm以上500nm以下である、請求項5に記載の加熱調理器用トッププレート。
  7.  前記第1低屈折率層と前記第2低屈折率層の少なくとも1つにフィラーが含まれる、請求項1または2に記載の加熱調理器用トッププレート。
  8.  前記フィラーは、
     金属、金属酸化物、セラミック、金属塩、ガラス、シリカ、マイカ、タルク、クレー、ゼオライト、有機物材料、およびそれらの複合物、ならびに、
     それらの表面にカップリング材、活性基、反応基、有機物および金属酸化物の少なくとも1つが結合、吸着または蒸着した材料
    よりなる群から選択される1以上で構成されている、請求項7に記載の加熱調理器用トッププレート。
  9.  前記低屈折率積層の下面に、反射層、遮光層、および塗膜強度向上層よりなる群から選択される1以上の層を有する、請求項1または2に記載の加熱調理器用トッププレート。
  10.  前記反射層に、反射材と光輝材のうちの1以上が含まれる、請求項9に記載の加熱調理器用トッププレート。
  11.  前記反射材と光輝材のうちの1以上は、マイカ、シリカ、金属酸化物、アルミニウムフレーク、ガラス粒子、ガラスフレーク、金属蒸着層を有するガラスフレーク、および金属酸化物層を有するマイカよりなる群から選択される1以上である、請求項10に記載の加熱調理器用トッププレート。
PCT/JP2023/041661 2022-12-01 2023-11-20 加熱調理器用トッププレート WO2024116941A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-193070 2022-12-01
JP2022193070A JP2024080142A (ja) 2022-12-01 2022-12-01 加熱調理器用トッププレート

Publications (1)

Publication Number Publication Date
WO2024116941A1 true WO2024116941A1 (ja) 2024-06-06

Family

ID=91323840

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/041661 WO2024116941A1 (ja) 2022-12-01 2023-11-20 加熱調理器用トッププレート

Country Status (2)

Country Link
JP (1) JP2024080142A (ja)
WO (1) WO2024116941A1 (ja)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008215651A (ja) * 2007-02-28 2008-09-18 Narumi China Corp 調理器用ガラストッププレート
JP2008541392A (ja) * 2005-05-20 2008-11-20 ユーロケラ ソシエテ オン ノーム コレクティフ ガラスセラミック製プレートとその製造方法
JP2011208820A (ja) * 2010-03-29 2011-10-20 Nippon Electric Glass Co Ltd 調理器用トッププレート
WO2017068788A1 (ja) * 2015-10-21 2017-04-27 富士フイルム株式会社 反射防止フィルムおよびその製造方法
JP2021096025A (ja) * 2019-12-17 2021-06-24 日本電気硝子株式会社 調理器用トッププレートの製造方法
WO2021172129A1 (ja) * 2020-02-28 2021-09-02 パナソニックIpマネジメント株式会社 加熱調理器用トッププレート

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008541392A (ja) * 2005-05-20 2008-11-20 ユーロケラ ソシエテ オン ノーム コレクティフ ガラスセラミック製プレートとその製造方法
JP2008215651A (ja) * 2007-02-28 2008-09-18 Narumi China Corp 調理器用ガラストッププレート
JP2011208820A (ja) * 2010-03-29 2011-10-20 Nippon Electric Glass Co Ltd 調理器用トッププレート
WO2017068788A1 (ja) * 2015-10-21 2017-04-27 富士フイルム株式会社 反射防止フィルムおよびその製造方法
JP2021096025A (ja) * 2019-12-17 2021-06-24 日本電気硝子株式会社 調理器用トッププレートの製造方法
WO2021172129A1 (ja) * 2020-02-28 2021-09-02 パナソニックIpマネジメント株式会社 加熱調理器用トッププレート

Also Published As

Publication number Publication date
JP2024080142A (ja) 2024-06-13

Similar Documents

Publication Publication Date Title
JP6934628B2 (ja) 加熱調理器用トッププレート
US8329302B2 (en) Glass or glass-ceramic articles with decorative coating
JP6257586B2 (ja) 装飾コーティングを有する複合材料並びにその製造方法
JP6050321B2 (ja) 電磁調理器具
JP2008267633A (ja) 調理器用ガラストッププレート
CN1621375A (zh) 涂层玻璃/玻璃陶瓷板及其制备方法
WO2021172129A1 (ja) 加熱調理器用トッププレート
JPH09183631A (ja) 低膨張結晶化ガラス装飾用組成物および装飾低膨張結晶化ガラス板
JP3758445B2 (ja) パール調絵付ガラスセラミックス及びその製造方法
JP5135830B2 (ja) 調理器用ガラストッププレート
WO2024116941A1 (ja) 加熱調理器用トッププレート
JP7116332B2 (ja) 加熱調理器用トッププレート
JP3750464B2 (ja) パール調絵付ガラスセラミックス及びその製造方法
TW202432493A (zh) 加熱調理器用頂板
JP3744302B2 (ja) パール調絵付ガラスセラミックス及びその製造方法
WO2023032927A1 (ja) 加熱調理器用トッププレート
JP2010021111A (ja) 加熱調理器用ガラストッププレート
JP7318872B2 (ja) 無機材料製の遮熱材、これを製造するための材料セット、下地層用材料及び製造方法。
JP6205938B2 (ja) ガス調理器用ガラストッププレート
WO2023112951A1 (ja) 耐熱ガラス及び調理器用トッププレート
CN113165963A (zh) 玻璃陶瓷制品
JP2024144381A (ja) ガラス板の少なくとも1つの側の少なくとも1つの領域に施与されたコーティングを含むガラス板、それを含む複合材、並びにそのようなガラス板を製造するためのペースト
TW202404922A (zh) 汽車玻璃裝飾搪瓷及相關聯方法
CN113165962A (zh) 玻璃陶瓷制品

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23897589

Country of ref document: EP

Kind code of ref document: A1