WO2024116871A1 - 端末装置、基地局、及び通信システム - Google Patents

端末装置、基地局、及び通信システム Download PDF

Info

Publication number
WO2024116871A1
WO2024116871A1 PCT/JP2023/041280 JP2023041280W WO2024116871A1 WO 2024116871 A1 WO2024116871 A1 WO 2024116871A1 JP 2023041280 W JP2023041280 W JP 2023041280W WO 2024116871 A1 WO2024116871 A1 WO 2024116871A1
Authority
WO
WIPO (PCT)
Prior art keywords
terminal device
control information
terminal
sidelink
sidelink communication
Prior art date
Application number
PCT/JP2023/041280
Other languages
English (en)
French (fr)
Inventor
廉 菅井
寿之 示沢
博允 内山
Original Assignee
ソニーグループ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ソニーグループ株式会社 filed Critical ソニーグループ株式会社
Publication of WO2024116871A1 publication Critical patent/WO2024116871A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/25Control channels or signalling for resource management between terminals via a wireless link, e.g. sidelink
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/51Allocation or scheduling criteria for wireless resources based on terminal or device properties
    • H04W72/512Allocation or scheduling criteria for wireless resources based on terminal or device properties for low-latency requirements, e.g. URLLC
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W92/00Interfaces specially adapted for wireless communication networks
    • H04W92/16Interfaces between hierarchically similar devices
    • H04W92/18Interfaces between hierarchically similar devices between terminal devices

Definitions

  • This disclosure relates to a terminal device, a base station, and a communication system.
  • D2D device-to-device communication
  • terminal devices in which terminal devices communicate directly with each other, has been attracting attention in recent years as one form of sidelink communication.
  • this disclosure proposes a terminal device, a base station, and a communication system that can achieve sidelink communication with high communication performance.
  • FIG. 1 is a diagram illustrating an example of a frame configuration of a conventional side link.
  • FIG. 1 is a diagram illustrating an example of a conventional side link frame configuration.
  • FIG. 1 is a diagram showing an example of a frame configuration of a side link that is expected to be adopted in the future.
  • FIG. 1 is a diagram illustrating a configuration example of a communication system according to an embodiment of the present disclosure.
  • FIG. 2 is a diagram illustrating a configuration example of a management device according to an embodiment of the present disclosure.
  • FIG. 2 is a diagram illustrating a configuration example of a base station according to an embodiment of the present disclosure.
  • FIG. 2 is a diagram illustrating a configuration example of a terminal device according to an embodiment of the present disclosure.
  • FIG. 1 is a diagram illustrating an example of a frame configuration of a conventional side link.
  • FIG. 1 is a diagram illustrating an example of a conventional side link frame configuration.
  • FIG. 1 is a diagram showing an example of
  • FIG. 13 is a diagram showing a state in which second control information is arranged at a position different from the position of a conventional control signal.
  • FIG. 13 is a diagram showing a state in which second control information is arranged in the position of a conventional control signal.
  • multiple components having substantially the same functional configuration may be distinguished by adding different numbers after the same reference symbol.
  • multiple components having substantially the same functional configuration may be distinguished as necessary, such as terminal devices 40 1 , 40 2 , and 40 3.
  • terminal devices 40 1 , 40 2 , and 40 3 when there is no particular need to distinguish between multiple components having substantially the same functional configuration, only the same reference symbol is used.
  • terminal devices 40 1 , 40 2 , and 40 3 when there is no particular need to distinguish between terminal devices 40 1 , 40 2 , and 40 3 , they will simply be referred to as terminal device 40.
  • One or more of the embodiments (including examples and variations) described below can be implemented independently. However, at least a portion of the embodiments described below may be implemented in appropriate combination with at least a portion of another embodiment. These embodiments may include novel features that are different from one another. Thus, these embodiments may contribute to solving different purposes or problems and may provide different effects.
  • V2X communication is expected to be V2V (Vehicle-to-vehicle), V2I (Vehicle-to-infrastructure), V2P (Vehicle-to-pedestrian), and V2N (Vehicle-to-network).
  • platooning, advanced driving, extended sensors, and remote driving are being considered as specific use cases for V2X communication in 5G NR.
  • URLLC Ultra-Reliable and Low Latency Communications
  • Standards for URLLC are being developed to achieve latency of 10 milliseconds or less and reliability of 99.999%.
  • inter-vehicle communication has been considered as V2X communication.
  • intra-vehicle communication may also be envisioned as a technological extension of sidelink communication.
  • the control device basically controls the automobile based on data from sensors and cameras inside the vehicle. For this reason, the control device uses information obtained through inter-vehicle communication (i.e., previous V2X communication) as auxiliary information. For this reason, intra-vehicle communication will require even lower latency and higher reliability than inter-vehicle communication.
  • sidelink communication can be used not only for V2X communication but also for various other use cases.
  • factory automation is one use case where sidelink communication can be utilized.
  • many devices such as sensors and cameras are installed, and direct communication with each other is being considered.
  • URLLC URLLC for sidelink communication.
  • FIG. 1 and 2 are diagrams showing an example of a conventional sidelink frame configuration.
  • FIG. 1 shows a sidelink frame configuration in which the PSCCH (Physical Sidelink Control Channel) has a two-symbol configuration, the DMRS (Demodulation Reference Signal) has two symbols assigned, and there is no PSFCH (Physical Sidelink Feedback Channel).
  • FIG. 2 shows a sidelink frame configuration in which the PSCCH has a three-symbol configuration, the DMRS has three symbols assigned, and there is a PSFCH.
  • control is performed based on the frame configurations shown in FIG. 1 and FIG. 2.
  • the frame is configured with a slot as the minimum unit.
  • the time length of one slot is 1 millisecond when the subcarrier interval is 15 kHz.
  • the sidelink communications up to now have been mainly intended for V2X use cases, and the required condition for delay was 10 milliseconds. Therefore, there was no problem even if one slot was used as the minimum unit, but it cannot be used in future use cases that require ultra-low delay of less than 1 millisecond.
  • FIG 3 is a diagram showing an example of a sidelink frame configuration that is expected to be adopted in the future.
  • the Non-URLLC signal in Figure 3 is a conventional signal that complies with slot boundaries
  • the URLLC signal in Figure 3 is a signal that is expected in the future that is independent of slot boundaries.
  • the terminal device transmits a signal of a specific OFDM symbol length (the URLLC signal shown in Figure 3) from an OFDM symbol position that is independent of slot boundaries. At this time, the symbol length is set to a length that does not exceed slot boundaries, and the signal does not cross slot boundaries.
  • a URLLC terminal is a terminal device capable of communication based on a sidelink communication method in which signals from multiple terminal devices can exist in one radio resource in one slot.
  • signals from multiple terminal devices exist in one radio resource in one slot means that signals transmitted by multiple terminal devices exist within a radio resource unit used to transmit signals.
  • one radio resource may be, for example, a resource block. Note that this one radio resource does not include other resources for user multiplexing. For example, this one radio resource does not include resources of different frequency bands that are frequency division multiplexed in the same slot. The same applies to spatial resources for spatial multiplexing and non-orthogonal resources for non-orthogonal multiplexing.
  • a Non-URLLC terminal is a terminal device capable of communication based on a sidelink communication method in which a signal from one terminal device is present in one radio resource in one slot.
  • a signal from one terminal device is present in one radio resource in one slot means that a signal transmitted by one terminal device is present in a radio resource unit used to transmit a data signal.
  • one radio resource may be, for example, one resource block. Note that this one radio resource does not include other resources for user multiplexing. For example, this one radio resource does not include resources of different frequency bands that are frequency division multiplexed in the same slot. The same applies to spatial resources for spatial multiplexing and non-orthogonal resources for non-orthogonal multiplexing.
  • a slot is a fixed time interval when transmitting using time division multiplexing.
  • Multiple slots may form a larger or smaller time interval.
  • multiple slots may form a subframe.
  • multiple subframes may form a radio frame.
  • multiple subslots may form a slot.
  • Non-URLLC terminals transmit signals at timing that conforms to slot boundaries. Therefore, Non-URLLC terminals transmit control information related to signal transmission at a specified position (PSCCH) shown in the frame structure.
  • PSCCH specified position
  • URLLC terminals and Non-URLLC terminals monitor the position where the PSCCH is transmitted and acquire control information from other terminal devices.
  • Non-URLLC terminals since Non-URLLC terminals only acquire control information transmitted at a specified position within the slot, they cannot acquire control information from URLLC terminals, which transmit control information in a slot-independent manner. When this happens, sidelink communications cannot be properly coordinated between URLLC terminals and Non-URLLC terminals.
  • the communication system of this embodiment includes a first terminal device (e.g., a URLLC terminal) capable of communication based on a first sidelink communication method, and a second terminal device (e.g., a non-URLLC terminal) capable of communication based on a second sidelink communication method different from the first sidelink communication method.
  • the first sidelink communication method is, for example, a sidelink communication method in which signals from multiple terminal devices can exist in one radio resource of one slot.
  • the second sidelink communication method is, for example, a sidelink communication method in which a signal from one terminal device exists in one radio resource of one slot.
  • the first terminal device acquires first control information related to a signal transmitted based on a first sidelink communication method. For example, the first terminal device may acquire first control information transmitted by another first terminal device, or may acquire first control information that the first terminal device plans to transmit (or has already transmitted) from its own storage unit. The first terminal device then notifies a second terminal device (e.g., a non-URLLC terminal) of second control information related to the first control information. At this time, the first terminal device may notify the second control information through a channel that the second terminal device can receive based on the second sidelink communication method.
  • the content of the second control information may be the content of the first control information itself, or may be a single piece of information that is an integration of multiple pieces of first control information collected from multiple first terminal devices.
  • the second terminal device e.g., a non-URLLC terminal
  • the control information of the first terminal device e.g., a URLLC terminal
  • sidelink communication e.g., adjustment of radio resource usage
  • Example of communication system configuration> 4 is a diagram illustrating a configuration example of a communication system 1 according to an embodiment of the present disclosure.
  • the communication system 1 includes a management device 10, a base station 20, a terminal device 30, and a terminal device 40.
  • the terminal device 30 is a first terminal device (e.g., a URLLC terminal) capable of communication based on a first sidelink communication method.
  • the terminal device 40 is a second terminal device (e.g., a Non-URLLC terminal) that communicates based on a second sidelink communication method different from the first sidelink communication method.
  • the first sidelink communication method is, for example, a sidelink communication method in which signals from multiple terminal devices can exist in one radio resource of one slot.
  • the second sidelink communication method is, for example, a sidelink communication method in which a signal from one terminal device exists in one radio resource of one slot.
  • the first sidelink communication method and the second sidelink communication method are not limited to this example. Any sidelink communication method can be adopted as the first sidelink communication method and the second sidelink communication method as long as they are different sidelink communication methods.
  • the communication system 1 provides users with a wireless network that enables mobile communication by having each wireless communication device that constitutes the communication system 1 work in cooperation with one another.
  • the wireless network in this embodiment is composed of, for example, a wireless access network and a core network.
  • a wireless communication device is a device that has wireless communication capabilities, and in the example of FIG. 4, this corresponds to the base station 20, terminal device 30, and terminal device 40.
  • a wireless communication device may simply be referred to as a communication device.
  • the communication system 1 may include a plurality of management devices 10, base stations 20, terminal devices 30, and terminal devices 40.
  • the communication system 1 includes management devices 101 , 102 , etc. as the management devices 10, and includes base stations 201 , 202 , 203 , etc. as the base stations 20.
  • the communication system 1 also includes terminal devices 301 , 302 , 303 , etc. as the terminal devices 30, and includes terminal devices 401 , 402 , 403 , etc. as the terminal devices 40.
  • the devices in the diagram may be considered devices in a logical sense.
  • some of the devices in the diagram may be realized as virtual machines (VMs), containers, Dockers, etc., and these may be implemented on the same physical hardware.
  • VMs virtual machines
  • containers containers
  • Dockers etc.
  • the terminal device 30 may be compatible with radio access technologies (RATs) such as LTE (Long Term Evolution), NR (New Radio), Wi-Fi (registered trademark), and Bluetooth (registered trademark).
  • RATs radio access technologies
  • LTE Long Term Evolution
  • NR New Radio
  • Wi-Fi registered trademark
  • Bluetooth registered trademark
  • the terminal device 30 may be configured to be able to use different radio access technologies (wireless communication methods).
  • the terminal device 30 may be configured to be able to use NR and Wi-Fi.
  • the terminal device 30 may also be configured to be able to use different cellular communication technologies (e.g., LTE and NR).
  • LTE and NR are types of cellular communication technologies that enable mobile communication for terminal devices by arranging multiple areas covered by base stations in the form of cells.
  • the wireless access method used by the communication system 1 is not limited to LTE and NR, and may be other wireless access methods such as W-CDMA (Wideband Code Division Multiple Access) and cdma2000 (Code Division Multiple Access 2000).
  • LTE includes LTE-A (LTE-Advanced), LTE-A Pro (LTE-Advanced Pro), and EUTRA (Evolved Universal Terrestrial Radio Access).
  • NR includes NRAT (New Radio Access Technology) and FEUTRA (Further EUTRA).
  • a single base station may manage multiple cells.
  • a cell that supports LTE is referred to as an LTE cell
  • a cell that supports NR is referred to as an NR cell.
  • NR is the next generation (5th generation) radio access technology after LTE (4th generation communications including LTE-Advanced and LTE-Advanced Pro).
  • LTE 4th generation communications including LTE-Advanced and LTE-Advanced Pro.
  • NR is a radio access technology that can support various use cases including eMBB (Enhanced Mobile Broadband), mMTC (Massive Machine Type Communications), and URLLC (Ultra-Reliable and Low Latency Communications).
  • eMBB Enhanced Mobile Broadband
  • mMTC Massive Machine Type Communications
  • URLLC Ultra-Reliable and Low Latency Communications
  • the terminal device 30 may be able to connect to the network using a wireless access technology (wireless communication method) other than LTE, NR, Wi-Fi, and Bluetooth.
  • a wireless access technology wireless communication method
  • the terminal device 30 may be able to connect to the network using LPWA (Low Power Wide Area) communication.
  • the terminal device 30 may also be able to connect to the network using a proprietary wireless access technology.
  • LPWA communication refers to wireless communication that enables wide-range communication with low power.
  • LPWA wireless refers to IoT (Internet of Things) wireless communication that uses specific low-power radio (e.g., 920 MHz band) or ISM (Industry-Science-Medical) band.
  • the LPWA communication used by the terminal device 30 may be compliant with the LPWA standard.
  • LPWA standards include ELTRES, ZETA, SIGFOX, LoRaWAN, and NB-IoT.
  • the LPWA standard is not limited to these, and other LPWA standards may also be used.
  • one or more of the communication paths may include a virtual network.
  • the multiple communication paths to which the terminal device 30 can connect may include a virtual network such as a Virtual Local Area Network (VLAN) and a physical network such as an IP communication path.
  • the terminal device 30 may perform route control based on a route control protocol such as Open Shortest Path First (OSPF) or Border Gateway Protocol (BGP).
  • OSPF Open Shortest Path First
  • BGP Border Gateway Protocol
  • the multiple communication paths may include one or more overlay networks, or one or more network slicings.
  • the base stations or relay stations constituting the communication system 1 may be terrestrial stations or non-terrestrial stations.
  • the non-terrestrial stations may be satellite stations or aircraft stations. If the non-terrestrial stations are satellite stations, the communication system 1 may be a bent-pipe (transparent) type mobile satellite communication system.
  • a ground station also called a ground base station refers to a base station (including a relay station) installed on the ground.
  • ground has a broad definition of ground, including not only land but also underground, on water, and underwater.
  • ground station may be replaced with "gateway.”
  • LTE base stations are sometimes referred to as eNodeB (Evolved Node B) or eNB.
  • NR base stations are sometimes referred to as gNodeB or gNB.
  • terminal devices also called mobile stations or terminals
  • UE User Equipment
  • terminal devices are a type of communication device and are also called mobile stations or terminals.
  • the concept of a communication device includes not only portable mobile devices (terminal devices) such as mobile terminals, but also devices installed in structures and mobile objects.
  • the structures and mobile objects themselves may be considered as communication devices.
  • the concept of a communication device also includes not only terminal devices, but also base stations and relay stations.
  • a communication device is a type of processing device and information processing device.
  • a communication device can also be referred to as a transmitting device or a receiving device.
  • each device that constitutes communication system 1 will be specifically described below. Note that the configuration of each device shown below is merely an example. The configuration of each device may differ from the configuration shown below.
  • the management device 10 is an information processing device (computer) that manages a wireless network.
  • the management device 10 is an information processing device that manages communication of the base station 20.
  • the management device 10 may be, for example, a device having a function as an MME (Mobility Management Entity).
  • the management device 10 may be a device having a function as an AMF (Access and Mobility Management Function) and/or an SMF (Session Management Function).
  • the functions of the management device 10 are not limited to MME, AMF, and SMF.
  • the management device 10 may be a device having a function as an NSSF (Network Slice Selection Function), an AUSF (Authentication Server Function), a PCF (Policy Control Function), or a UDM (Unified Data Management).
  • the management device 10 may also be a device having a function as an HSS (Home Subscriber Server).
  • the management device 10 may also have a gateway function.
  • the management device 10 may have a function as an S-GW (Serving Gateway) or a P-GW (Packet Data Network Gateway).
  • the management device 10 may also have a UPF (User Plane Function) function. In this case, the management device 10 may have multiple UPFs.
  • the management device 10 may also have a LSCF (Localized Service Control Function) function.
  • the LSCF is a control function newly added in this embodiment to provide localized services.
  • the core network is composed of multiple network functions, and each network function may be consolidated into one physical device or distributed across multiple physical devices.
  • the management device 10 may be distributed across multiple devices. Furthermore, this distributed arrangement may be controlled so that it is executed dynamically.
  • the base station 20 and the management device 10 form a single network, and provide wireless communication services to the terminal device 30.
  • the management device 10 is connected to the Internet, and the terminal device 30 can use various services provided over the Internet via the base station 20.
  • the management device 10 does not necessarily have to be a device that constitutes a core network.
  • the core network may be a W-CDMA (Wideband Code Division Multiple Access) or cdma2000 (Code Division Multiple Access 2000) core network.
  • the management device 10 may be a device that functions as an RNC (Radio Network Controller).
  • FIG. 5 is a diagram showing an example of the configuration of a management device 10 according to an embodiment of the present disclosure.
  • the management device 10 includes a communication unit 11, a storage unit 12, and a control unit 13. Note that the configuration shown in FIG. 5 is a functional configuration, and the hardware configuration may be different. Furthermore, the functions of the management device 10 may be statically or dynamically distributed and implemented in multiple physically separated configurations. For example, the management device 10 may be composed of multiple server devices.
  • the communication unit 11 is a communication interface for communicating with other devices.
  • the communication unit 11 may be a network interface or a device connection interface.
  • the communication unit 11 may be a LAN (Local Area Network) interface such as a NIC (Network Interface Card), or a Universal Serial Bus (USB) interface configured with a USB host controller, a USB port, etc.
  • the communication unit 11 may be a wired interface or a wireless interface.
  • the communication unit 11 functions as a communication means for the management device 10.
  • the communication unit 11 communicates with the base station 20, etc., according to the control of the control unit 13.
  • the memory unit 12 may be a data readable/writable storage device such as a dynamic random access memory (DRAM), a static random access memory (SRAM), a flash memory, or a hard disk.
  • the memory unit 12 stores, for example, the connection status of the terminal device 30.
  • the memory unit 12 stores the status of the RRC (Radio Resource Control) of the terminal device 30, the ECM (EPS Connection Management), or the 5G System CM (Connection Management).
  • the memory unit 12 may function as a home memory that stores the location information of the terminal device 30.
  • the control unit 13 is a controller that controls each part of the management device 10.
  • the control unit 13 is realized by a processor such as a CPU (Central Processing Unit), MPU (Micro Processing Unit), or GPU (Graphics Processing Unit).
  • the control unit 13 is realized by the processor executing various programs stored in a storage device inside the management device 10 using a RAM (Random Access Memory) or the like as a working area.
  • the control unit 13 may also be realized by an integrated circuit such as an ASIC (Application Specific Integrated Circuit) or FPGA (Field Programmable Gate Array).
  • ASIC Application Specific Integrated Circuit
  • FPGA Field Programmable Gate Array
  • the base station 20 can be called a BS (Base Station) 20 in other words.
  • the base station 20 is a wireless communication device that wirelessly communicates with the terminal device 30.
  • the base station 20 may be configured to wirelessly communicate with the terminal device 30 via a relay station, or may be configured to wirelessly communicate directly with the terminal device 30.
  • the base station 20 is a type of communication device. More specifically, the base station 20 is a device equivalent to a wireless base station (Base Station, Node B, eNB, gNB, etc.) or a wireless access point (Access Point).
  • the base station 20 may be a wireless relay station.
  • the base station 20 may also be an optical extension device called an RRH (Remote Radio Head) or an RU (Radio Unit).
  • the base station 20 may also be a receiving station such as an FPU (Field Pickup Unit).
  • the base station 20 may also be an IAB (Integrated Access and Backhaul) donor node that provides wireless access lines and wireless backhaul lines by time division multiplexing, frequency division multiplexing, or space division multiplexing, or an IAB relay node.
  • IAB Integrated Access and Backhaul
  • the wireless access technology used by the base station 20 may be cellular communication technology or wireless LAN technology.
  • the wireless access technology used by the base station 20 is not limited to these, and may be other wireless access technology.
  • the wireless access technology used by the base station 20 may be LPWA (Low Power Wide Area) communication technology.
  • the wireless communication used by the base station 20 may be wireless communication using millimeter waves.
  • the wireless communication used by the base station 20 may be wireless communication using radio waves, or wireless communication using infrared or visible light (optical wireless).
  • the base station 20 may be capable of NOMA (Non-Orthogonal Multiple Access) communication with the terminal device 30.
  • NOMA communication refers to communication (transmission, reception, or both) using non-orthogonal resources.
  • the base station 20 may be capable of NOMA communication with other base stations 20.
  • the base stations 20 may be able to communicate with each other via a base station-core network interface (e.g., NG Interface, S1 Interface, etc.). This interface may be either wired or wireless.
  • the base stations may be able to communicate with each other via a base station-to-base station interface (e.g., Xn Interface, X2 Interface, S1 Interface, F1 Interface, etc.). This interface may be either wired or wireless.
  • a base station includes not only donor base stations but also relay base stations (also called relay stations).
  • a relay base station may be any one of an RF Repeater, a Smart Repeater, or an Intelligent Surface.
  • the concept of a base station also includes not only a structure with base station functions, but also equipment installed in the structure.
  • Structures include, for example, high-rise buildings, houses, steel towers, station facilities, airport facilities, port facilities, office buildings, school buildings, hospitals, factories, commercial facilities, stadiums, and other buildings.
  • the concept of a structure includes not only buildings, but also non-building structures such as tunnels, bridges, dams, fences, and steel pillars, as well as equipment such as cranes, gates, and windmills.
  • the concept of a structure also includes not only land (ground in the narrow sense) or underground structures, but also structures on water such as piers and megafloats, and underwater structures such as marine observation facilities.
  • a base station can be rephrased as an information processing device.
  • the base station 20 may be a donor station or a relay station (relay station).
  • the base station 20 may be a fixed station or a mobile station.
  • a mobile station is a wireless communication device (e.g., a base station) that is configured to be mobile.
  • the base station 20 may be a device installed on a mobile body, or may be the mobile body itself.
  • a relay station with mobility can be considered as the base station 20 as a mobile station.
  • UAVs Unmanned Aerial Vehicles
  • the moving body may be a mobile terminal such as a smartphone or a mobile phone.
  • the moving body may also be a moving body that moves on land (ground in the narrow sense) (for example, vehicles such as automobiles, bicycles, buses, trucks, motorcycles, trains, and linear motor cars) or a moving body that moves underground (for example, inside a tunnel) (for example, a subway).
  • the moving body may also be a moving body that moves on water (for example, ships such as passenger ships, cargo ships, and hovercraft) or a moving body that moves underwater (for example, submersible vessels such as submarines, submarines, and unmanned submersible vehicles).
  • the moving body may also be a moving body that moves within the atmosphere (for example, aircraft such as airplanes, airships, and drones).
  • the base station 20 may also be a terrestrial base station (ground station) installed on the ground.
  • the base station 20 may be a base station located on a structure on the ground, or a base station installed on a mobile object moving on the ground.
  • the base station 20 may be an antenna installed on a structure such as a building and a signal processing device connected to the antenna.
  • the base station 20 may be the structure or mobile object itself.
  • “Ground” refers not only to land (ground in the narrow sense) but also to ground, on water, and underwater in a broad sense.
  • the base station 20 is not limited to a terrestrial base station.
  • the base station 20 may be an aircraft station. From the perspective of the satellite station, an aircraft station located on the earth is a ground station.
  • the base station 20 is not limited to a terrestrial station.
  • the base station 20 may be a non-terrestrial base station (non-terrestrial station) that can float in the air or space.
  • the base station 20 may be an aircraft station or a satellite station.
  • the satellite station is a satellite station capable of floating outside the atmosphere.
  • the satellite station may be a device mounted on a space vehicle such as an artificial satellite, or may be the space vehicle itself.
  • a space vehicle is a vehicle that moves outside the atmosphere. Examples of space vehicles include artificial celestial bodies such as artificial satellites, spacecraft, space stations, and probes.
  • a satellite that serves as a satellite station may be any of a low earth orbit (LEO: Low Earth Orbiting) satellite, a medium earth orbit (MEO: Medium Earth Orbiting) satellite, a geostationary (GEO: Geostationary Earth Orbiting) satellite, and a highly elliptical orbit (HEO: Highly Elliptical Orbiting) satellite.
  • the satellite station may be a device mounted on a low earth orbit satellite, a medium earth orbit satellite, a geostationary satellite, or a highly elliptical orbit satellite.
  • An aircraft station is a wireless communication device capable of floating in the atmosphere, such as an aircraft.
  • An aircraft station may be a device mounted on an aircraft, or it may be the aircraft itself.
  • the concept of an aircraft includes not only heavier aircraft such as airplanes and gliders, but also lighter aircraft such as balloons and airships.
  • the concept of an aircraft includes not only heavier aircraft and lighter aircraft, but also rotorcraft such as helicopters and autogyros.
  • An aircraft station (or an aircraft on which an aircraft station is mounted) may be an unmanned aerial vehicle such as a drone.
  • unmanned aerial vehicles also includes unmanned aerial systems (UAS) and tethered UAS.
  • UAS unmanned aerial systems
  • LTA lighter than air UAS
  • HTA heavier than air UAS
  • HAPs high altitude UAS platforms
  • the size of the coverage of the base station 20 may be as large as a macrocell or as small as a picocell. Of course, the size of the coverage of the base station 20 may be extremely small, such as a femtocell.
  • the base station 20 may also have beamforming capabilities. In this case, the base station 20 may form a cell or service area for each beam.
  • FIG. 6 is a diagram showing an example of the configuration of a base station 20 according to an embodiment of the present disclosure.
  • the base station 20 includes a wireless communication unit 21, a storage unit 22, and a control unit 23. Note that the configuration shown in FIG. 6 is a functional configuration, and the hardware configuration may be different. In addition, the functions of the base station 20 may be distributed and implemented in multiple physically separated components.
  • the wireless communication unit 21 is a signal processing unit for wireless communication with other wireless communication devices (e.g., terminal device 30, terminal device 40, and other base stations 20).
  • the wireless communication unit 21 operates under the control of the control unit 23.
  • the wireless communication unit 21 supports one or more wireless access methods.
  • the wireless communication unit 21 supports both NR and LTE.
  • the wireless communication unit 21 may also support W-CDMA and cdma2000.
  • the wireless communication unit 21 may also support automatic retransmission technologies such as HARQ (Hybrid Automatic Repeat reQuest).
  • HARQ Hybrid Automatic Repeat reQuest
  • the wireless communication unit 21 includes a transmission processing unit 211, a reception processing unit 212, and an antenna 213.
  • the wireless communication unit 21 may include a plurality of transmission processing units 211, reception processing units 212, and antennas 213.
  • each unit of the wireless communication unit 21 may be configured separately for each wireless access method.
  • the transmission processing unit 211 and the reception processing unit 212 may be configured separately for LTE and NR.
  • the antenna 213 may be configured with a plurality of antenna elements (for example, a plurality of patch antennas).
  • the wireless communication unit 21 may be configured to be capable of beamforming.
  • the wireless communication unit 21 may be configured to be capable of polarized beamforming using vertical polarization (V polarization) and horizontal polarization (H polarization).
  • the transmission processing unit 211 performs transmission processing of the downlink control information and the downlink data.
  • the transmission processing unit 211 performs encoding of the downlink control information and the downlink data input from the control unit 23 using an encoding method such as block encoding, convolution encoding, turbo encoding, or the like.
  • the encoding may be performed using a polar code or a low density parity check code (LDPC code).
  • the transmission processing unit 211 modulates the encoded bits using a predetermined modulation method such as BPSK, QPSK, 16QAM, 64QAM, 256QAM, or the like. In this case, the signal points on the constellation do not necessarily have to be equidistant.
  • the constellation may be a non-uniform constellation (NUC: Non Uniform Constellation).
  • NUC Non Uniform Constellation
  • the transmission processing unit 211 multiplexes the modulation symbols of each channel and the downlink reference signal, and places them in a predetermined resource element. Then, the transmission processing unit 211 performs various signal processing on the multiplexed signal. For example, the transmission processing unit 211 performs processes such as conversion to the frequency domain using a fast Fourier transform, addition of a guard interval (cyclic prefix), generation of a baseband digital signal, conversion to an analog signal, quadrature modulation, up-conversion, removal of unnecessary frequency components, and power amplification.
  • the signal generated by the transmission processing unit 211 is transmitted from an antenna 213.
  • the reception processing unit 212 processes the uplink signal received via the antenna 213. For example, the reception processing unit 212 performs down-conversion, removal of unnecessary frequency components, control of amplification level, orthogonal demodulation, conversion to a digital signal, removal of guard intervals (cyclic prefixes), extraction of frequency domain signals by fast Fourier transform, etc., on the uplink signal. Then, the reception processing unit 212 separates uplink channels such as PUSCH (Physical Uplink Shared Channel) and PUCCH (Physical Uplink Control Channel) and uplink reference signals from the signal that has been subjected to these processes.
  • PUSCH Physical Uplink Shared Channel
  • PUCCH Physical Uplink Control Channel
  • the reception processing unit 212 demodulates the received signal using a modulation method such as BPSK (Binary Phase Shift Keying) and QPSK (Quadrature Phase Shift Keying) for the modulation symbols of the uplink channel.
  • the modulation method used for demodulation may be 16QAM (Quadrature Amplitude Modulation), 64QAM, or 256QAM.
  • the signal points on the constellation do not necessarily have to be equidistant.
  • the constellation may be a non-uniform constellation (NUC).
  • the reception processing unit 212 performs a decoding process on the coded bits of the demodulated uplink channel.
  • the decoded uplink data and uplink control information are output to the control unit 23.
  • the antenna 213 is an antenna device (antenna unit) that converts electric current and radio waves into each other.
  • the antenna 213 may be composed of one antenna element (for example, one patch antenna) or may be composed of multiple antenna elements (for example, multiple patch antennas).
  • the wireless communication unit 21 may be configured to be capable of beamforming.
  • the wireless communication unit 21 may be configured to generate a directional beam by controlling the directivity of a wireless signal using multiple antenna elements.
  • the antenna 213 may be a dual polarized antenna.
  • the wireless communication unit 21 may use vertical polarization (V polarization) and horizontal polarization (H polarization) when transmitting a wireless signal.
  • the wireless communication unit 21 may control the directivity of the wireless signal transmitted using the vertical polarization and the horizontal polarization.
  • the wireless communication unit 21 may also transmit and receive spatially multiplexed signals via multiple layers composed of multiple antenna elements.
  • the memory unit 22 is a storage device capable of reading and writing data, such as a DRAM, an SRAM, a flash memory, or a hard disk.
  • the memory unit 22 functions as a storage means for the base station 20.
  • the control unit 23 is a controller that controls each part of the base station 20.
  • the control unit 23 is realized by a processor such as a CPU or MPU.
  • the control unit 23 is realized by a processor executing various programs stored in a storage device inside the base station 20 using a RAM or the like as a working area.
  • the control unit 23 may be realized by an integrated circuit such as an ASIC or FPGA.
  • the CPU, MPU, ASIC, and FPGA can all be considered as controllers.
  • the control unit 23 may also be realized by a GPU in addition to or instead of the CPU.
  • the control unit 23 includes an acquisition unit 231 and a notification unit 232.
  • Each block (acquisition unit 231 to notification unit 232) constituting the control unit 23 is a functional block indicating a function of the control unit 23.
  • These functional blocks may be software blocks or hardware blocks.
  • each of the above-mentioned functional blocks may be a software module realized by software (including a microprogram), or may be a circuit block on a semiconductor chip (die).
  • each functional block may be a processor or an integrated circuit.
  • the control unit 23 may be configured with functional units different from the above-mentioned functional blocks. The method of configuring the functional blocks is arbitrary.
  • each block of the control unit 23 may be the same as the operation of each block of the control unit 33 of the terminal device 30. Furthermore, the operation of each block of the control unit 23 may be the same as the operation of each block of the control unit 43 of the terminal device 40.
  • the base station may be composed of a collection of multiple physical or logical devices.
  • the base station may be divided into multiple devices such as a BBU (Baseband Unit) and an RU (Radio Unit).
  • the base station may be interpreted as a collection of these multiple devices.
  • the base station may be either a BBU or an RU, or both.
  • the BBU and the RU may be connected by a specified interface (e.g., eCPRI (enhanced Common Public Radio Interface)).
  • the RU may be referred to as an RRU (Remote Radio Unit) or an RD (Radio DoT).
  • the RU may correspond to a gNB-DU (gNB Distributed Unit) described later.
  • gNB-DU gNB Distributed Unit
  • the BBU may correspond to a gNB-CU (gNB Central Unit) described later.
  • the RU may be a radio device connected to a gNB-DU described later.
  • the gNB-CU, gNB-DU, and RU connected to the gNB-DU may be configured to comply with O-RAN (Open Radio Access Network).
  • the RU may be a device formed integrally with the antenna.
  • the antenna of the base station e.g., an antenna formed integrally with the RU
  • MIMO e.g., FD (Full Dimension)-MIMO
  • the antenna of the base station may have, for example, 64 transmitting antenna ports and 64 receiving antenna ports.
  • the antenna mounted on the RU may be an antenna panel composed of one or more antenna elements, and the RU may be equipped with one or more antenna panels.
  • the RU may be equipped with two types of antenna panels, a horizontally polarized antenna panel and a vertically polarized antenna panel, or two types of antenna panels, a right-handed circularly polarized antenna panel and a left-handed circularly polarized antenna panel.
  • the RU may also form and control an independent beam for each antenna panel.
  • RAN Radio Access Network
  • the base station may simply be called a RAN, a RAN node, an AN (Access Network), or an AN node.
  • EUTRAN Enhanced Universal Terrestrial RAN
  • the RAN in NR is sometimes called NGRAN.
  • the RAN in W-CDMA (UMTS) is sometimes called UTRAN.
  • an LTE base station may be referred to as an eNodeB (Evolved Node B) or eNB.
  • the EUTRAN includes one or more eNodeBs (eNBs).
  • an NR base station may be referred to as a gNodeB or gNB.
  • the NGRAN includes one or more gNBs.
  • the EUTRAN may include a gNB (en-gNB) connected to a core network (EPC) in an LTE communication system (EPS).
  • the NGRAN may include an ng-eNB connected to a core network 5GC in a 5G communication system (5GS).
  • the base station When the base station is an eNB, gNB, etc., the base station may be referred to as a 3GPP access. When the base station is a wireless access point, the base station may be referred to as a non-3GPP access. Furthermore, the base station may be an optical extension device called an RRH (Remote Radio Head) or an RU (Radio Unit). When the base station is a gNB, the base station may be a combination of the gNB-CU and gNB-DU described above, or may be either a gNB-CU or a gNB-DU.
  • RRH Remote Radio Head
  • RU Radio Unit
  • the gNB-CU hosts multiple upper layers (e.g., RRC (Radio Resource Control), SDAP (Service Data Adaptation Protocol), PDCP (Packet Data Convergence Protocol)) in the access stratum for communication with the UE.
  • the gNB-DU hosts multiple lower layers (e.g., RLC (Radio Link Control), MAC (Medium Access Control), PHY (Physical Access Control)) in the access stratum. That is, among the messages/information described below, RRC signaling (semi-static notification) may be generated by the gNB-CU, while MAC CE and DCI (dynamic notification) may be generated by the gNB-DU.
  • some configurations such as IE:cellGroupConfig may be generated by the gNB-DU, and the remaining configurations may be generated by the gNB-CU. These configurations may be transmitted and received over the F1 interface described below.
  • a base station may be configured to be able to communicate with other base stations. For example, if multiple base stations are eNBs or a combination of eNBs and en-gNBs, the base stations may be connected to each other via an X2 interface. Also, if multiple base stations are gNBs or a combination of gn-eNBs and gNBs, the devices may be connected to each other via an Xn interface. Also, if multiple base stations are a combination of gNB-CUs and gNB-DUs, the devices may be connected to each other via the F1 interface described above. Messages/information described below (e.g., RRC signaling, MAC CE (MAC Control Element), or DCI) may be transmitted between multiple base stations, for example, via an X2 interface, an Xn interface, or an F1 interface.
  • RRC signaling MAC CE (MAC Control Element), or DCI
  • a cell provided by a base station may be called a serving cell.
  • the concept of a serving cell includes a PCell (Primary Cell) and an SCell (Secondary Cell).
  • the PCell and zero or more SCells provided by a MN may be called a Master Cell Group.
  • Examples of dual connectivity include EUTRA-EUTRA Dual Connectivity, EUTRA-NR Dual Connectivity (ENDC), EUTRA-NR Dual Connectivity with 5GC, NR-EUTRA Dual Connectivity (NEDC), and NR-NR Dual Connectivity.
  • the serving cell may include a PSCell (Primary Secondary Cell, or Primary SCG Cell).
  • PSCell Primary Secondary Cell, or Primary SCG Cell
  • the PSCell and zero or more SCells provided by the SN may be referred to as an SCG (Secondary Cell Group).
  • SCG Secondary Cell Group
  • PUCCH Physical uplink control channel
  • Radio link failures are also detected by the PCell and PSCell, but not by the SCell (do not need to be detected).
  • the PCell and PSCell have a special role among the serving cells, and are therefore also called SpCells (Special Cells).
  • One cell may be associated with one downlink component carrier and one uplink component carrier.
  • the system bandwidth corresponding to one cell may be divided into multiple BWPs (Bandwidth Parts).
  • one or multiple BWPs may be configured in the UE, and one BWP may be used by the UE as an active BWP.
  • the radio resources e.g., frequency band, numerology (subcarrier spacing), slot format (Slot configuration)
  • the terminal device 30 can use may differ for each cell, each component carrier, or each BWP.
  • the terminal device 30 can be called User Equipment (UE) 30.
  • UE User Equipment
  • the terminal device 30 is a first terminal device capable of communication based on a first sidelink communication method.
  • the terminal device 30 is a URLLC terminal.
  • a URLLC terminal is a terminal device capable of communication based on a sidelink communication method in which signals from multiple terminal devices can exist in one radio resource of one slot.
  • the terminal device 30 may also be able to use a second sidelink communication method in addition to the first sidelink communication method.
  • the terminal device 30 may be any type of computer.
  • the terminal device 30 may be, for example, a mobile terminal such as a mobile phone, a smart device (smartphone or tablet), a PDA (Personal Digital Assistant), or a notebook PC.
  • the terminal device 30 may also be an imaging device (for example, a camcorder) equipped with a communication function.
  • the terminal device 30 may also be a motorcycle or a mobile broadcast vehicle equipped with a communication device such as an FPU (Field Pickup Unit).
  • the terminal device 30 may also be an M2M (Machine to Machine) device or an IoT (Internet of Things) device.
  • the terminal device 30 may also be a wearable device such as a smart watch.
  • the terminal device 30 may be an xR device such as an AR (Augmented Reality) device, a VR (Virtual Reality) device, or an MR (Mixed Reality) device.
  • the xR device may be a glasses-type device such as AR glasses or MR glasses, or a head-mounted device such as a VR head-mounted display.
  • the terminal device 30 may be a standalone device consisting only of a part worn by the user (e.g., a glasses part).
  • the terminal device 30 may be a terminal-linked device consisting of a part worn by the user (e.g., a glasses part) and a terminal part linked to the part (e.g., a smart device).
  • the terminal device 30 may be configured to be connectable to multiple communication paths.
  • the terminal device 30 may be configured to be connectable to two communication paths, Wi-Fi (registered trademark) and a cellular network.
  • the terminal device 30 may be connectable to multiple cellular networks. In this case, each of the multiple cellular networks may be linked to a different SIM (Subscriber Identity Module).
  • SIM Subscriber Identity Module
  • the terminal device 30 may be configured to be able to switch between multiple SIM cards.
  • the terminal device 30 may be compatible with dual SIM or triple SIM.
  • the terminal device 30 may be configured to allow more than three SIM cards to be inserted.
  • the terminal device 30 may also be compatible with RSP (Remote SIM Provisioning).
  • the terminal device 30 may be compatible with eSIM (Embedded SIM).
  • An RSP-compatible terminal device can rewrite information related to wireless communication (hereinafter referred to as a profile) without replacing the SIM card.
  • the terminal device 30 may be capable of NOMA communication with the base station 20.
  • the terminal device 30 may be capable of using an automatic repeat technique such as HARQ when communicating with the base station 20.
  • the terminal device 30 may be capable of sidelink communication with other terminal devices 30.
  • the terminal device 30 may be capable of using an automatic repeat technique such as HARQ when performing sidelink communication.
  • the terminal device 30 may be capable of NOMA communication in communication (sidelink) with other terminal devices 30.
  • the terminal device 30 may be capable of LPWA communication with other communication devices (e.g., the base station 20 and other terminal devices 30).
  • the wireless communication used by the terminal device 30 may be wireless communication using millimeter waves.
  • the wireless communication used by the terminal device 30 (including sidelink communication) may be wireless communication using radio waves, or wireless communication using infrared rays or visible light (optical wireless).
  • the terminal device 30 may also be a mobile device.
  • the mobile device is a wireless communication device that can be moved.
  • the terminal device 30 may be a wireless communication device installed on the mobile device, or may be the mobile device itself.
  • the terminal device 30 may be a vehicle that moves on a road, such as an automobile, a bus, a truck, or a motorcycle, a vehicle that moves on rails installed on a track, such as a train, or a wireless communication device mounted on the vehicle.
  • the mobile device may be a mobile terminal, or may be a mobile device that moves on land (ground in the narrow sense), underground, on water, or underwater.
  • the mobile device may also be a mobile device that moves within the atmosphere, such as a drone or a helicopter, or a mobile device that moves outside the atmosphere, such as an artificial satellite.
  • the terminal device 30 may simultaneously connect to multiple base stations or multiple cells to communicate. For example, when one base station supports a communication area through multiple cells (e.g., pCell, sCell), it is possible to bundle the multiple cells and communicate between the base station 20 and the terminal device 30 using carrier aggregation (CA) technology, dual connectivity (DC) technology, or multi-connectivity (MC) technology. Alternatively, it is also possible for the terminal device 30 to communicate with the multiple base stations 20 via the cells of different base stations 20 using coordinated multi-point transmission and reception (CoMP) technology.
  • CA carrier aggregation
  • DC dual connectivity
  • MC multi-connectivity
  • CoMP coordinated multi-point transmission and reception
  • FIG. 7 is a diagram showing an example of the configuration of a terminal device 30 according to an embodiment of the present disclosure.
  • the terminal device 30 includes a wireless communication unit 31, a storage unit 32, and a control unit 33. Note that the configuration shown in FIG. 7 is a functional configuration, and the hardware configuration may be different. Furthermore, the functions of the terminal device 30 may be distributed and implemented in multiple physically separated components.
  • the wireless communication unit 31 is a signal processing unit for wireless communication with other wireless communication devices (e.g., the base station 20, the terminal device 40, and the other terminal device 30).
  • the wireless communication unit 31 operates under the control of the control unit 33.
  • the wireless communication unit 31 includes a transmission processing unit 311, a reception processing unit 312, and an antenna 313.
  • the configurations of the wireless communication unit 31, the transmission processing unit 311, the reception processing unit 312, and the antenna 313 may be similar to those of the wireless communication unit 21, the transmission processing unit 211, the reception processing unit 212, and the antenna 213 of the base station 20.
  • the wireless communication unit 31 may be configured to be capable of beamforming.
  • the wireless communication unit 31 may be configured to be capable of transmitting and receiving spatially multiplexed signals.
  • the memory unit 32 is a storage device capable of reading and writing data, such as a DRAM, an SRAM, a flash memory, or a hard disk.
  • the memory unit 32 functions as a storage means for the terminal device 30.
  • the control unit 33 is a controller that controls each part of the terminal device 30.
  • the control unit 33 is realized by a processor such as a CPU or MPU.
  • the control unit 33 is realized by a processor executing various programs stored in a storage device inside the terminal device 30 using a RAM or the like as a working area.
  • the control unit 33 may be realized by an integrated circuit such as an ASIC or FPGA.
  • the CPU, MPU, ASIC, and FPGA can all be considered as controllers.
  • the control unit 33 may also be realized by a GPU in addition to or instead of the CPU.
  • the control unit 33 includes an acquisition unit 331 and a notification unit 332.
  • Each block (acquisition unit 331 to notification unit 332) constituting the control unit 33 is a functional block indicating the function of the control unit 33.
  • These functional blocks may be software blocks or hardware blocks.
  • each of the above-mentioned functional blocks may be a software module realized by software (including a microprogram), or may be a circuit block on a semiconductor chip (die).
  • each functional block may be a processor or an integrated circuit.
  • the control unit 33 may be configured in functional units different from the above-mentioned functional blocks. The method of configuring the functional blocks is arbitrary.
  • each block of the control unit 33 may be the same as the operation of each block of the control unit 23 of the base station 20. Also, the operation of each block of the control unit 33 may be the same as the operation of each block of the control unit 43 of the terminal device 40.
  • the terminal device 40 can be called User Equipment (UE) 40 in other words.
  • UE User Equipment
  • the terminal device 40 is a second terminal device that communicates based on a second sidelink communication method different from the first sidelink communication method.
  • the terminal device 40 is a URLLC terminal.
  • a Non-URLLC terminal is a terminal device that is capable of communication based on a sidelink communication method in which a signal from one terminal device exists in one radio resource of one slot.
  • the rest of the configuration of the terminal device 40 is the same as that of the terminal device 30.
  • the terminal device 40 can be any type of computer, like the terminal device 30, such as a mobile terminal, an imaging device, an M2M device, an IoT device, a wearable device, or an xR device.
  • FIG. 8 is a diagram showing an example of the configuration of a terminal device 40 according to an embodiment of the present disclosure.
  • the terminal device 40 includes a wireless communication unit 41, a storage unit 42, and a control unit 43. Note that the configuration shown in FIG. 8 is a functional configuration, and the hardware configuration may be different. Furthermore, the functions of the terminal device 40 may be distributed and implemented in multiple physically separated components.
  • the wireless communication unit 41 is a signal processing unit for wireless communication with other wireless communication devices (e.g., the base station 20, the terminal device 30, and other terminal devices 40).
  • the wireless communication unit 41 operates under the control of the control unit 43.
  • the wireless communication unit 41 includes a transmission processing unit 411, a reception processing unit 412, and an antenna 413. These configurations may be similar to the wireless communication unit 31, the transmission processing unit 311, the reception processing unit 312, and the antenna 313 of the terminal device 30.
  • the memory unit 42 is a storage device capable of reading and writing data, such as a DRAM, an SRAM, a flash memory, or a hard disk.
  • the memory unit 42 functions as a storage means for the terminal device 40.
  • the control unit 43 is a controller that controls each part of the terminal device 40.
  • the configuration of the control unit 43 is the same as that of the control unit 33 of the terminal device 30.
  • the control unit 43 includes an acquisition unit 431 and a notification unit 432.
  • Each block (acquisition unit 431 to notification unit 432) that constitutes the control unit 43 is a functional block that indicates the function of the control unit 43.
  • These functional blocks may be software blocks or hardware blocks.
  • each of the above-mentioned functional blocks may be a software module realized by software (including a microprogram), or may be a circuit block on a semiconductor chip (die).
  • each functional block may be a processor or an integrated circuit.
  • the control unit 43 may be configured in functional units different from the above-mentioned functional blocks. The method of configuring the functional blocks is arbitrary.
  • each block of the control unit 43 may be the same as the operation of each block of the control unit 23 of the base station 20. Also, the operation of each block of the control unit 43 may be the same as the operation of each block of the control unit 33 of the terminal device 30. Other configurations of the terminal device 40 may be the same as those of the terminal device 30.
  • the UE may be the terminal device 30 or the terminal device 40.
  • the BS may be the base station 20.
  • FIG. 9 is a diagram showing an overview of sidelink communication. Use cases of sidelink communication are roughly divided into two. The first is a case where two or more UEs are present inside a cell C configured by a BS. The second is a case where at least one of the two or more UEs is present inside the cell C and the other UE is present outside the cell C. In this case, the UE present inside the cell C may communicate with the BS in addition to the sidelink communication. As a result, the UE present inside the cell C functions as a relay station that relays between the BS and the UE present outside the cell C.
  • a UE when a UE is inside cell C, it can be said that the UE is in a state where the quality of the downlink signal received from the BS is above a predetermined standard. In other words, when a UE is outside cell C, it can be said that the UE is in a state where the quality of the downlink signal received from the BS is below a predetermined standard. Also, when a UE is inside cell C, it can be said that the UE is in a state where it can decode a specified downlink channel received from the BS with a specified probability or higher. In other words, when a UE is outside cell C, it can be said that the UE is in a state where it cannot decode a specified downlink channel received from the BS with a specified probability or higher.
  • a UE that receives information about sidelink communication from a base station and transmits a sidelink control channel is sometimes referred to as a transmitting device, and other UEs are sometimes referred to as receiving devices.
  • Sidelink communication is a direct communication between a UE and another UE.
  • a resource pool is configured in the UE.
  • the resource pool is a candidate of time and frequency resources used for sidelink transmission and reception.
  • the UE selects resources for sidelink transmission and reception from the resource pool and performs sidelink communication. Since sidelink communication is performed using uplink resources (uplink subframe, uplink component carrier), the resource pool is also configured in the uplink subframe or uplink component carrier.
  • Sidelink physical channels include PSCCH (Physical Sidelink Control Channel), PSSCH (Physical Sidelink Shared Channel), PSFCH (Physical Sidelink Feedback Channel), etc.
  • the frame configuration used in the conventional sidelink communication method is, for example, the configuration shown in Figures 1 and 2.
  • Figure 1 shows the sidelink frame configuration when the PSCCH has a two-symbol configuration, the DMRS has two symbols assigned, and there is no PSFCH.
  • Figure 2 shows the sidelink frame configuration when the PSCCH has a three-symbol configuration, the DMRS has three symbols assigned, and there is a PSFCH.
  • the PSCCH is used to transmit sidelink control information (SCI).
  • SCI sidelink control information
  • the PSCCH consists of two or three symbols.
  • the mapping of information bits of the sidelink control information is defined as the SCI format.
  • the sidelink control information includes a sidelink grant.
  • the sidelink grant is used for scheduling the PSCCH.
  • the PSSCH is used to transmit sidelink data (SL-SCH: Sidelink Shared Channel).
  • SL-SCH Sidelink Shared Channel
  • the PSSCH may also be used to transmit higher layer control information.
  • the PSFCH is used to feed back the HARQ response (HARQ-ACK, ACK/NACK) to the decoding result of the PSSCH to the transmitting device.
  • the PSFCH is placed in the 13th symbol.
  • the PSFCH does not need to be allocated resources in all slots. In that case, the resources can also be used as the PSSCH.
  • the sidelink frame structure includes an AGC symbol.
  • the AGC symbol may be used for AGC (Automatic Gain Control) of the receiving terminal device.
  • the AGC symbol is placed at the first symbol of the transmission. Specifically, the AGC symbol is placed at the first symbol when transmitting the PSSCH, and at the 12th symbol when transmitting the PSFCH.
  • the AGC symbol is generated by copying the second symbol of the transmission. That is, in the sidelink transmission, the first and second symbols of the transmission are the same.
  • the sidelink frame structure includes a guard symbol. In the sidelink, switching between transmission and reception is performed at the guard symbol (guard time). The guard symbol is placed at the 14th symbol. Furthermore, in the slot in which the PSFCH is transmitted, the guard symbol is also placed at the 11th symbol.
  • the resource pool is configured from the BS to the UE by SIB or a dedicated RRC message. Alternatively, the resource pool is configured by information about the resource pool preconfigured in the UE.
  • the time resource pool is indicated by periodicity information, offset information, and subframe bitmap information.
  • the frequency resource pool is indicated by the resource block start position, resource block end position, and number of consecutive resource blocks.
  • FIG. 10 is a diagram showing a sidelink resource pool.
  • a resource pool (sidelink resource pool) is configured as resources used for transmitting the PSSCH and receiving the PSSCH.
  • the resource pool is configured with one or more consecutive subchannels.
  • the subchannel is configured with one or more consecutive PRBs (Physical Resource Blocks).
  • the number of subchannels and the size of the subchannels are configured by higher layer parameters.
  • Subchannels are used as the frequency resource allocation unit in the sidelink.
  • Subchannel assignments for sidelink transmissions are determined by the frequency resource assignments included in the SCI.
  • Subchannels are indexed in ascending order of frequency.
  • the slots to be configured as resource pools are indicated by a bitmap.
  • Each bit in the bitmap corresponds to a slot that can be configured as a sidelink resource pool. For example, if the value of a bit indicates 1, the corresponding slot is configured as a resource pool, and if the value of a bit indicates 0, the corresponding slot is not configured as a resource pool.
  • the length of the bitmap is set by higher layers.
  • S-SS Segment-Synchronization Signal
  • PSBCH Physical Sidelink Broadcast Channel
  • the device that sets the resource pool may be a device other than the BS.
  • An example of a device other than the BS is a representative UE (primary terminal device or master terminal device).
  • Sidelink resource allocation method> There are two types of resource allocation modes for the sidelink: resource allocation mode 1 and resource allocation mode 2.
  • resource allocation mode 1 the BS allocates resources for the UE to transmit data on the sidelink physical channel (PSCCH, PSSCH).
  • resource allocation mode 2 the UE itself performs sensing and selects resources for the UE to transmit data on the sidelink physical channel. These resource allocation modes will be described in detail below.
  • Resource Allocation Mode 1 In resource allocation mode 1, when a UE has a packet to transmit, the BS selects and allocates resources to be used for transmitting the packet from a resource pool.
  • resource allocation mode 1 the resources used for sidelink transmission are specified by a dynamic grant or RRC signaling sent from the BS. Specifically, in resource allocation mode 1, dynamic grant, configurable grant type 1, and configurable grant type 2 are supported for PSSCH and PSCCH transmissions.
  • sidelink dynamic grant PSSCH transmission is scheduled by DCI format 3_0.
  • sidelink configurable grant type 1 resources for PSSCH transmission are assigned by RRC signaling.
  • sidelink configurable grant type 2 the configurable grant is activated by DCI format 3_0. Then, PSSCH transmission is performed using the resources specified by RRC signaling.
  • resource allocation mode 1 the BS allocates resources each time a packet is transmitted, reducing the frequency of collisions during sidelink communications. On the other hand, this requires a lot of signaling overhead between the BS and the UE.
  • Resource Allocation Mode 2 In resource allocation mode 2, the resource pool is pre-allocated to the UE, or it is allocated by the BS/network.
  • the UE can select side link resources within the resource selection window and reserve future side link resources based on the measurement results of the interference pattern within the sensing window and the reservation status of side link resources within the sensing window. By using the results of the prediction, the UE can select and reserve side link resources that can be used to transmit the packet, i.e., side link resources that are predicted not to be used for transmitting other packets.
  • resource allocation mode 2 the signaling overhead between the BS and the UE is low, but packet collisions may occur.
  • Resource Allocation Mode 2 (a) Resource Allocation Mode 2(b) Resource Allocation Mode 2 (c) Resource Allocation Mode 2 (d)
  • Resource allocation mode 2(a) is a mode in which the UE autonomously selects transmission sidelink resources.
  • Resource allocation mode 2(b) is a mode in which the UE assists other transmitting terminals in selecting sidelink resources.
  • Resource allocation mode 2(c) is a mode in which sidelink transmission is performed by a configured grant.
  • Resource allocation mode 2(d) is a mode in which the terminal device schedules sidelink transmissions of other UEs.
  • Resource Allocation Mode 2(a) In resource allocation mode 2(a), when a packet is generated in a UE, the UE autonomously selects sidelink resources to be used for transmitting the packet from a resource pool. The UE that transmits the packet first performs sensing to find sidelink resources to be used for transmitting the packet from the resource pool. Next, the UE selects sidelink resources from the resource pool based on the result of the sensing. The UE then transmits the packet using the selected sidelink resources. At this time, the UE also reserves sidelink resources to be used for subsequent packet transmissions as necessary. Resource allocation mode 2(a) can be applied to both a quasi-persistent method in which resources are selected for multiple sidelink transmissions with different transport blocks, and a dynamic method in which resources are selected for each sidelink transmission of each transport.
  • Resource Allocation Mode 2(b) In resource allocation mode 2(b), the UE assists other transmitting terminals in the selection of sidelink resources.
  • a sidelink transmission pattern is configured in the UE.
  • the UE selects sidelink resources to be used for transmission according to the configured sidelink transmission pattern.
  • the sidelink transmission pattern is defined by the size and position of time and frequency resources and the number of resources. Multiple sidelink transmission patterns can be configured. If only one sidelink transmission pattern is configured, the UE does not perform sensing. On the other hand, if multiple sidelink transmission patterns are configured, the UE performs sensing and selects a sidelink transmission pattern based on the sensing result.
  • out-of-coverage operation one or more sidelink transmission patterns defined in each sidelink resource pool are preconfigured.
  • one or more sidelink transmission patterns defined in each sidelink resource pool are configured by the BS.
  • Resource allocation mode 2(d) is applied in group-based sidelink communication consisting of three or more UEs.
  • FIG. 11 is a diagram for explaining resource allocation mode 2(d).
  • a representative UE master terminal device or primary terminal device
  • the representative UE reports information on other UEs (slave terminal devices, secondary terminal devices, or member terminal devices) in the group to the BS.
  • the BS provides resource pool settings and resource settings for each UE in the group via the representative UE.
  • the signaling overhead of the Uu link (communication link between the BS and the UE) can be reduced.
  • the UE that can be the representative UE and the functions that can be provided are determined depending on the capabilities of the UE.
  • the representative UE can provide predetermined assist information to the member UE. Examples of assist information include resource pool settings, collision information, COT sharing information, CSI, and congestion information.
  • Sensing in sidelink communication In resource allocation mode 2, a sensing procedure is supported. Sensing in sidelink communication may involve decoding SCI from other UEs and/or measuring sidelink resources.
  • the UE In sensing by SCI decoding, the UE obtains information about the sidelink resources to be used that are included in the SCI transmitted from other UEs. Based on the SCI information, the UE determines the sidelink resources to be used for transmission, avoiding resources that are to be used by other UEs.
  • the UE In sensing by measuring sidelink resources, the UE performs L1 (Layer 1) sidelink RSRP (Reference Signal Received Power) measurement based on the sidelink DMRS (Demodulation RS). If the measured RSRP is higher than a predetermined threshold, the UE recognizes that the measured sidelink resource is being used for transmission by another UE, and determines the sidelink resource to be used for transmission while avoiding the measured sidelink resource.
  • L1 Layer 1
  • RSRP Reference Signal Received Power
  • DMRS Demodulation RS
  • the UE selects or reselects sidelink resources.
  • the sidelink communication as a conventional operation in this embodiment may be based on the radio access schemes of LTE V2X and NR V2X.
  • one sidelink transmission is understood as a collection of sidelink channels and/or signals transmitted by unicast, groupcast, or broadcast from a certain transmitting terminal (Tx UE) to a predetermined receiving terminal (Rx UE). That is, in the example of FIG. 1, AGC, PSCCH, PSSCH, DMRS, and GUARD transmitted in all symbols in one slot are one sidelink transmission as a conventional operation. Also, in the example of FIG.
  • AGC, PSCCH, PSSCH, DMRS, and GUARD transmitted in the first to eleventh symbols in one slot are one sidelink transmission
  • AGC, PSFCH, and GUARD transmitted in the twelfth to fourteenth symbols in one slot are one sidelink transmission. It is also possible for the same transmitting terminal (Tx UE) to perform multiple sidelink transmissions consecutively. In this case, the transmissions are treated as separate sidelink transmissions.
  • FIG. 12 is a diagram showing an example of a communication environment assumed in this embodiment.
  • the first terminal device terminal device 30
  • the second terminal device terminal device 40
  • the transmitting station and the receiving station of each of the URLLC terminal and the Non-URLLC terminal exist in one environment.
  • Each sidelink terminal performs sidelink communication while receiving assistance such as synchronization from the base station 20.
  • the transmitting station and receiving station of the URLLC terminal perform sidelink communication based on a sidelink communication method (e.g., a communication method that does not depend on slot boundaries) in which signals from multiple terminal devices can exist in one radio resource of one slot.
  • the transmitting station and receiving station of the non-URLLC terminal perform sidelink communication using a sidelink communication method (e.g., a communication method that complies with slot boundaries) in which a signal from one terminal device exists in one radio resource of one slot.
  • the transmitting station and receiving station refer to the communication devices that are transmitting or receiving at that timing. The transmitting station and receiving station may be switched depending on the observation timing.
  • the sidelink communication method used by the transmitting station and receiving station of a URLLC terminal (a sidelink communication method in which signals from multiple terminal devices can exist in one radio resource of one slot) is sometimes referred to as the first sidelink communication method, but the first sidelink communication method is not limited to this example.
  • the sidelink communication method used by the transmitting station and receiving station of a non-URLLC terminal (a sidelink communication method in which signals from multiple terminal devices exist in one radio resource of one slot) is sometimes referred to as the second sidelink communication method, but the second sidelink communication method is not limited to this example.
  • the URLLC terminal acquires control information (hereinafter also referred to as first control information) related to a signal transmitted based on the first sidelink communication method. For example, the URLLC terminal performs a sensing operation on the control information for URLLC (first control information). The URLLC terminal performs this sensing operation while not performing a transmission operation. Note that the URLLC terminal may be configured to perform a sensing operation even while performing a transmission operation.
  • the sensing operation refers to an operation in which a terminal device receives a control signal transmitted by another terminal device and acquires the control information contained therein. This operation allows the terminal device to know the usage status of the radio resources of the other terminal device.
  • the transmitting station of the URLLC terminal selects radio resources to be used for sidelink transmission based on the schedule information of other URLLC terminals that have been sensed.
  • the transmitting station of the URLLC terminal then generates first control information based on the information of the selected resource, and places the generated first control information in a specified radio resource position and transmits it.
  • the transmitting station of the URLLC terminal may transmit the first control information by including it in the radio resources for transmitting the URLLC traffic.
  • the transmitting station of the URLLC terminal may also transmit the first control information using radio resources different from the radio resources for transmitting the URLLC traffic.
  • the transmitting station of the URLLC terminal generates second control information related to the first control information.
  • the second control information may include, for example, information on resources selected by the transmitting station of the URLLC terminal for sidelink transmission of a URLLC signal (information on the first control information).
  • the second control information may also include information on the transmission timing of a signal transmitted by the URLLC terminal based on the first sidelink communication method.
  • the second control information may also include information on slots used by the URLLC terminal for communication based on the first sidelink communication method.
  • the second control information may also include information on the transmission of a signal by the URLLC terminal based on the first sidelink communication method converted into the amount of interference per slot.
  • the second control information may also include information on resources reserved by the URLLC terminal for communication based on the first sidelink communication method (for example, transmission of URLLC traffic).
  • the first control information is, for example, control information collected from other URLLC terminals and/or control information generated by the URLLC terminal itself for transmission to other URLLC terminals.
  • the transmitting station of the URLLC terminal may use the first control information itself as the second control information, or may use multiple pieces of first control information collected from multiple URLLC terminals integrated into one piece of information as the second control information.
  • the transmitting station of the URLLC terminal transmits second control information to the Non-URLLC terminal.
  • the transmitting station of the URLLC terminal notifies the second control information through a channel that the Non-URLLC terminal can receive based on the second sidelink communication method.
  • the channel that the second terminal device can receive may be a PSCCH (Physical Sidelink Control Channel) or a PSSCH (Physical Sidelink Shared Channel).
  • the communication device that transmits the second control information is not limited to a URLLC terminal, but may be, for example, a base station or a Non-URLLC terminal.
  • the transmission form of the second control information is classified into the following five forms (A1) to (A5) based on which communication device transmits the second control information.
  • the terminal device that transmits the second control information is a URLLC terminal (first terminal device) that can communicate with another URLLC terminal (first terminal device) based on a first sidelink communication method. More specifically, the terminal device that transmits the second control information is a transmitting station of a URLLC terminal that acquires the first control information from another URLLC terminal. The transmitting station of the URLLC terminal acquires first control information related to a signal that it transmits to another URLLC terminal based on the first sidelink communication method. Then, the transmitting station of the URLLC terminal notifies the non-URLLC terminal (second terminal device) of the second control information related to the first control information.
  • FIG. 13 is a sequence diagram when the transmitting station of the URLLC terminal transmits the second control information. Below, the operation of the first embodiment of the communication system 1 will be described in detail with reference to the sequence diagram of FIG. 13.
  • the transmitting station of the URLLC terminal selects a resource for transmitting a URLLC signal in the side link.
  • the transmitting station of the URLLC terminal that has selected the resource transmits control information (second control information) related to the URLLC signal to the Non-URLLC terminal.
  • the second control information may include, for example, information on the resource (information related to the first control information) selected by the transmitting station of the URLLC terminal for transmitting the URLLC signal in the side link.
  • the second control information may be the first control information as is.
  • the transmitting station of the URLLC terminal transmits this second control information in a communication method that complies with the second side link communication method. For example, the transmitting station of the URLLC terminal transmits the second control information at a position that complies with the slot boundary so that the Non-URLLC terminal can also obtain it.
  • the terminal device that transmits the second control information is one of the multiple URLL terminals (first terminal device).
  • the terminal device that transmits the second control information is a representative terminal selected from the multiple URLL terminals.
  • the representative terminal acquires the first control information of each of the multiple URLL terminals.
  • the representative terminal acquires its own first control information from its own storage unit, and also acquires the first control information of the other URLL terminals.
  • the representative terminal notifies the Non-URLLLC terminal (second terminal device) of the second control information generated based on the first control information of each of the multiple URLL terminals.
  • FIG. 14 is a sequence diagram when the transmitting station of the representative URLLC terminal transmits the second control information. Below, the operation of the second form of communication system 1 will be explained in detail with reference to the sequence diagram of FIG. 14.
  • a specific terminal among the URLLC terminals is selected as the representative terminal (e.g., master terminal device or primary terminal device).
  • the base station may determine the representative terminal, or multiple URLLC terminals may autonomously determine the representative terminal.
  • the operation of the communication system 1 when the representative terminal is determined by the base station 20 is, for example, as follows. For example, the base station 20 selects a representative terminal based on the location information of each of the multiple URLLC terminals. Then, the base station 20 transmits a signal to the selected terminal notifying it that it has been selected as the representative terminal.
  • the operation of the communication system 1 when the URLLC terminal is determined autonomously is, for example, as follows.
  • the URLLC terminal transmits a signal to the surrounding terminals to check whether a representative terminal that has already been determined exists. If a representative terminal already exists, the representative terminal that receives this signal transmits a signal notifying that a representative terminal exists. If no representative terminal exists, the URLLC terminal becomes the representative terminal itself.
  • the URLLC terminal determined to be the representative terminal senses the first control information transmitted by other surrounding URLLC terminals (e.g., slave terminal devices, secondary terminal devices, or member terminal devices).
  • the representative terminal then transmits second control information generated based on the collected first control information to the Non-URLLC terminal.
  • the second control information may be multiple pieces of first control information integrated into one piece of information.
  • the second control information may also be the first control information as is. In this case, if there are multiple pieces of first control information, there may also be multiple pieces of second control information.
  • the transmitting station of the URLLC terminal transmits this one or more pieces of second control information using a communication method that conforms to the second sidelink communication method. For example, the transmitting station of the URLLC terminal transmits the second control information at a position that conforms to a slot boundary so that it can also be obtained by non-URLLC terminals.
  • the terminal device that transmits the second control information is a URLLC terminal (first terminal device) that can communicate with other URLLC terminals. More specifically, the terminal device that transmits the second control information is a receiving station of a URLLC terminal that acquires the first control information from a transmitting station of the other URLLC terminal. The receiving station of the URLLC terminal acquires the first control information related to a signal that the other URLLC terminal transmits to the receiving station of the URLLC terminal based on the first sidelink communication method. The receiving station of the URLLC terminal notifies the Non-URLLC terminal (second terminal device) of the second control information related to the first control information.
  • FIG. 15 is a sequence diagram when the receiving station of the URLLC terminal transmits the second control information. Below, the operation of the communication system 1 of the third embodiment will be explained in detail with reference to the sequence diagram of FIG. 15.
  • the transmitting station of the URLLC terminal selects a resource for transmitting a URLLC signal on the side link.
  • the transmitting station of the URLLC terminal that has selected the resource transmits control information (first control information) related to the URLLC signal to the receiving station of the URLLC terminal.
  • the receiving station of the URLLC terminal Upon receiving the first control information, the receiving station of the URLLC terminal generates second control information based on the received first control information.
  • the second control information may include, for example, information on the resource selected by the transmitting station of the URLLC terminal for sidelink transmission of the URLLC signal (information on the first control information).
  • the second control information may be the first control information as is.
  • the receiving station of the URLLC terminal transmits second control information addressed to the Non-URLLC terminal.
  • the transmitting station of the URLLC terminal transmits the second control information using a communication method that complies with the second sidelink communication method. For example, the transmitting station of the URLLC terminal transmits the second control information at a position that complies with the slot boundary so that the Non-URLLC terminal can also receive it.
  • the base station 20 transmits the second control information to the Non-URLLC terminal, instead of the URLLC terminal.
  • the base station 20 performs processing related to the side link communication of the URLLC terminal.
  • the base station 20 acquires the first control information of one or more URLLC terminals (second terminal devices).
  • the representative terminal notifies the Non-URLLC terminal (second terminal device) of the second control information generated based on the first control information of the URLLC terminal.
  • FIG. 16 is a sequence diagram when the base station 20 transmits the second control information. Below, the operation of the communication system 1 of the fourth embodiment will be described in detail with reference to the sequence diagram of FIG. 16.
  • the transmitting station of the URLLC terminal selects a resource for transmitting the URLLC signal on the side link.
  • the transmitting station of the URLLC terminal that has selected the resource transmits control information (first control information) related to the URLLC signal to the base station 20.
  • the base station 20 Upon receiving the first control information, the base station 20 generates second control information based on the received first control information.
  • the second control information may include, for example, information on the resource selected by the transmitting station of the URLLC terminal for sidelink transmission of the URLLC signal (information on the first control information).
  • the second control information may be the first control information as is.
  • the base station 20 transmits second control information addressed to the Non-URLLC terminal.
  • the transmitting station of the URLLC terminal transmits the second control information using a communication method that complies with the second sidelink communication method.
  • the transmitting station of the URLLC terminal transmits the second control information at a position that complies with the slot boundary so that the Non-URLLC terminal can also receive the information.
  • the base station 20 When first control information is transmitted from the transmitting station of multiple URLLC terminals, the base station 20 generates second control information based on the first control information collected from the multiple URLLC terminals. The base station 20 then transmits the generated second control information to the Non-URLLC terminal.
  • the second control information may be a combination of multiple first control information into one piece of information.
  • the second control information may be the first control information as is. In this case, if there is multiple first control information, there may be multiple second control information.
  • the representative terminal may be configured to transmit first control information (or second control information) of multiple URLLC terminals. In this case, the base station 20 may transmit second control information generated based on the first control information (or second control information) received from the representative terminal to the Non-URLLC terminal.
  • the base station 20 already has first control information (control information related to URLLC signals) for multiple URLLC terminals.
  • the base station transmits second control information to the Non-URLLC terminal without acquiring the first control information from the transmitting station of the URLLC terminal.
  • the traffic of the URLLC terminal is periodic traffic.
  • the base station 20 may then periodically collect URLLC traffic information of the URLLC terminal.
  • the terminal device that transmits the second control information is a Non-URLLC terminal (second terminal device) that can receive the first control information transmitted by a URLLC terminal (first terminal device) based on a first sidelink communication method.
  • the Non-URLLC terminal acquires the first control information from the URLLC terminal. Then, the Non-URLLC terminal notifies other Non-URLLC terminals of second control information related to the first control information.
  • FIG. 17 is a sequence diagram of a case where a Non-URLLC terminal capable of receiving control information from a URLLC terminal transmits second control information.
  • the operation of the communication system 1 of the fifth embodiment will be described in detail below with reference to the sequence diagram of FIG. 17.
  • the transmitting station of the URLLC terminal selects a resource for transmitting a URLLC signal on the side link.
  • the transmitting station of the URLLC terminal that has selected the resource transmits control information (first control information) related to the URLLC signal to the receiving station of the URLLC terminal.
  • the Non-URLLC terminal receives first control information transmitted by the transmitting station of the URLLC terminal. Upon receiving the first control information, the Non-URLLC terminal generates second control information based on the received first control information.
  • the second control information may include, for example, information on the resource selected by the transmitting station of the URLLC terminal for sidelink transmission of the URLLC signal (information on the first control information).
  • the second control information may be the first control information as is.
  • the Non-URLLC terminal then transmits second control information addressed to the other Non-URLLC terminal.
  • the Non-URLLC terminal transmits the second control information using a communication method that complies with the second sidelink communication method. For example, the Non-URLLC terminal transmits the second control information at a position that complies with the slot boundary so that the other Non-URLLC terminals can also obtain the information.
  • the communication device (URLLC terminal, base station 20, or Non-URLLC terminal) that has acquired the first control information transmits the second control information by a communication method that complies with the second sidelink communication method. At this time, the communication device may transmit the second control information using an OFDM symbol different from the conventional control signal transmission position defined by the standard.
  • FIG. 18 is a diagram showing a state in which the second control information is allocated at a position different from the position of the conventional control signal. At this time, the communication device may transmit the second control information using the same OFDM symbol as the conventional control signal transmission position defined by the standard.
  • FIG. 19 is a diagram showing a state in which the second control information is allocated at the position of the conventional control signal.
  • the Non-URLLC terminal acquires interference information related to the URLLC terminal based on the second control information transmitted by the above-mentioned operation. This allows the Non-URLLC terminal to acquire control information related to the URLLC terminal, enabling more efficient sidelink communication.
  • the second control information may be transmitted to the Non-URLLC terminal before the transmission of the URLLC traffic is performed or simultaneously with the transmission of the URLLC traffic.
  • the communication device may transmit the second control information to the Non-URLLC terminal immediately after determining the radio resource for transmitting the URLLC traffic, at the timing when it becomes possible to transmit information to the Non-URLLC terminal.
  • the communication device may also repeatedly transmit the second control information to the Non-URLLC terminal. In this case, the communication device may transmit the second control information at a fixed period and at the timing when it becomes possible to transmit information to the Non-URLLC terminal.
  • the transmitting station or base station of the representative URLLC terminal is the communication device that transmits the second control information.
  • the communication device collects the first control information from the transmitting stations of the surrounding URLLC terminals at fixed periods. Then, the communication device transmits the second control information generated based on the first control information collected at fixed periods to the Non-URLLC terminal.
  • the second control information may be transmitted to the Non-URLLC terminal during transmission of URLLC traffic.
  • the communication device may transmit the second control information to the Non-URLLC terminal after a portion of the URLLC traffic has been transmitted.
  • the transmitting station of the URLLC terminal transmits control information for transmitting URLLC traffic to the other URLLC terminal to the other communication device using a predetermined symbol.
  • PSCCH first control information
  • the destination of the first control information may be a surrounding URLLC terminal or a terminal capable of receiving URLLC control information such as a base station. If the first control information is receivable, the destination of the first control information (other communication device) may be a Non-URLLC terminal.
  • the first control information transmitted by the transmitting station of the URLLC terminal may include at least one of the pieces of information shown in (B1) to (B3) below.
  • (B1) Information on the transmission timing of a signal storing URLLC traffic;
  • (B2) Information on the number of symbols used in URLLC traffic transmission;
  • the information in (B1) is information on the slot and symbol for transmitting the signal containing the URLLC traffic. This information stores slot and OFDM index information.
  • the information in (B2) is the number of OFDM symbols to be used for URLLC traffic within a slot.
  • the information in (B3) is information on the radio resources to be used when transmitting URLLC traffic, using resources in the same slot as the URLLC traffic, or resources in the next slot or later. This information may also store the number of times the radio resources to be used at equal intervals are repeated. In addition, if different OFDM symbol positions and subchannels are used when transmitting URLLC, information on these may also be stored.
  • a Non-URLLC terminal cannot receive the PSCCH of the URLLC traffic that may be transmitted from the middle of a slot. In other words, a Non-URLLC terminal cannot perform SL sensing (Sidelink Sensing) for the URLLC traffic.
  • SL sensing Sidelink Sensing
  • a communication device capable of transmitting or receiving the first information notifies the second control information related to the first control information through a channel (e.g., a PSCCH and/or a PSSCH) that the Non-URLLC terminal can receive, so that the Non-URLLC terminal can perform SL sensing (i.e., grasping the resource utilization status (Reservation status)).
  • a channel e.g., a PSCCH and/or a PSSCH
  • (C1) PSCCH That is, the communication device transmits the second control information as physical layer control information through a channel of the physical layer.
  • the communication device notifies the second control information on the PSCCH.
  • (C2) PSSCH That is, the communication device transmits control information as control information of the MAC or RRC layer through a channel of the MAC or RRC layer.
  • the communication device notifies the second control information through the PSSCH.
  • the communication device may transmit the second control information at a control information transmission timing conforming to the next slot.
  • the communication device may also transmit the second control information in a predetermined time/frequency resource after the next slot.
  • the resources for transmitting the second control information may be set by RRC signaling.
  • the communication device may be set with resources (such as subchannel numbers) of the PSCCH that can be transmitted.
  • the communication device transmitting the second control information may be a URLLC terminal or may be the base station 20.
  • the communication device transmitting the second control information may also be a Non-URLLC terminal capable of receiving the first information.
  • a terminal device transmits the second control information the following (D1) and (D2) are assumed as the communication device transmitting the second control information.
  • (D1) A specific URLLC terminal that is explicitly set by RRC signaling.
  • (D2) A specific terminal device that is implicitly determined based on specific conditions.
  • the terminal device of (D2) is assumed to be, for example, a URLLC terminal that transmitted using a specific subchannel in the previous slot. Also, the terminal device of (D2) is assumed to be, for example, all URLLC terminals that transmitted in the previous slot.
  • the second control information transmitted by the communication device may include at least one of the pieces of information shown in (E1) to (E5) below.
  • E1 Information on the transmission timing of a signal storing URLLC traffic.
  • E2 Information on the number of symbols used in URLLC traffic transmission.
  • E4 Information on the amount of interference in a slot transmitting a signal containing URLLC traffic.
  • E5 Information on the integration of multiple signals containing URLLC traffic.
  • the information (E1) to (E3) is the same as the information (B1) to (B3) described above.
  • the information (E3) may be reservation information for URLLC traffic transmission for resources in a slot prior to the slot in which the second control information is transmitted.
  • the information in (E4) is information that converts the interference of the signal storing the URLLC traffic into the amount of interference on a slot-by-slot basis.
  • the information in (E4) is information on the amount of interference per slot calculated based on the number of symbols that transmit the URLLC traffic.
  • the information (E5) is, for example, information that integrates multiple signals transmitted from a single terminal device. Also, the information (E5) is, for example, information that integrates multiple signals transmitted from multiple terminal devices.
  • the communication device may transmit the information (E5) as a single signal to a Non-URLLC terminal.
  • the communication device that transmits the information (E5) may be a base station, or may be a terminal device selected from multiple terminal devices.
  • the technology of this embodiment can be applied not only to sidelink communication using licensed bands, but also to sidelink communication using unlicensed bands.
  • the technology of this embodiment is not limited to sidelink communication, but can also be applied to other cellular communications such as uplink communication and downlink communication.
  • the description of "sidelink communication" that appears in the above embodiment may be replaced with "cellular communication”.
  • one of the first terminal device and the second terminal device may be a base station 20 (or a relay station). Both the first terminal device and the second terminal device may be a base station 20 (and/or a relay station).
  • the first sidelink communication method is a sidelink communication method in which signals from multiple terminal devices can exist in one radio resource of one slot.
  • the second sidelink communication method is a sidelink communication method in which signals from multiple terminal devices can exist in one radio resource of one slot.
  • the second sidelink communication method is not limited to this example.
  • the first sidelink communication method may be a sidelink communication method in which signals from multiple terminal devices can exist in one radio resource (resource block) determined by a first standard.
  • the second sidelink communication method may be a sidelink communication method in which signals from multiple terminal devices can exist in one radio resource (resource block) determined by a second standard different from the first standard.
  • the first standard and the second standard may be different cellular communication standards.
  • the first standard and the second standard may be standards defined in the LTE standard, standards defined in the 5G standard, or other standards (for example, standards defined in cellular communication standards after 5G).
  • the sidelink communication method may include a sidelink communication method other than the first sidelink communication method and the second sidelink communication method (e.g., a third sidelink communication method, a fourth sidelink communication method, ).
  • a sidelink communication method other than the first sidelink communication method and the second sidelink communication method e.g., a third sidelink communication method, a fourth sidelink communication method, .
  • the technology of this embodiment can also be applied.
  • the communication device acquires first control information transmitted by the first terminal device (or the communication device itself) based on the first sidelink communication method, and transmits second control information based on the first control information to the second terminal device.
  • the information that the communication device acquires/transmits is not limited to control information.
  • the communication device may acquire first information transmitted by the first terminal device (or the communication device itself) based on the first sidelink communication method, and transmit second information based on the first information to the second terminal device.
  • the first information and the second information may be information other than control information.
  • the first information and the second information may be user data.
  • the control device that controls the management device 10, base station 20, terminal device 30, and terminal device 40 in this embodiment may be realized by a dedicated computer system or a general-purpose computer system.
  • a communication program for executing the above-mentioned operations is stored on a computer-readable recording medium such as an optical disk, semiconductor memory, magnetic tape, or flexible disk and distributed. Then, for example, the program is installed on a computer and the above-mentioned processing is executed to configure a control device.
  • the control device may be a device external to the management device 10, base station 20, terminal device 30, or terminal device 40 (for example, a personal computer). Also, the control device may be a device internal to the management device 10, base station 20, terminal device 30, or terminal device 40 (for example, control unit 13, control unit 23, control unit 33, or control unit 43).
  • the above-mentioned communication program may also be stored on a disk device provided in a server device on a network such as the Internet, so that it can be downloaded to a computer.
  • the above-mentioned functions may also be realized by cooperation between an OS (Operating System) and application software.
  • OS Operating System
  • the parts other than the OS may be stored on a medium and distributed, or the parts other than the OS may be stored on a server device so that they can be downloaded to a computer.
  • each component of each device shown in the figure is a functional concept, and does not necessarily have to be physically configured as shown in the figure.
  • the specific form of distribution and integration of each device is not limited to that shown in the figure, and all or part of them can be functionally or physically distributed and integrated in any unit depending on various loads, usage conditions, etc. This distribution and integration configuration may also be performed dynamically.
  • this embodiment can be implemented as any configuration that constitutes an apparatus or system, such as a processor as a system LSI (Large Scale Integration), a module that uses multiple processors, a unit that uses multiple modules, a set in which a unit is further enhanced with other functions, etc. (i.e., a configuration that constitutes part of an apparatus).
  • a processor as a system LSI (Large Scale Integration)
  • module that uses multiple processors
  • a unit that uses multiple modules a set in which a unit is further enhanced with other functions, etc.
  • a system refers to a collection of multiple components (devices, modules (parts), etc.), regardless of whether all the components are in the same housing. Therefore, multiple devices housed in separate housings and connected via a network, and a single device in which multiple modules are housed in a single housing, are both systems.
  • this embodiment can be configured as a cloud computing system in which a single function is shared and processed collaboratively by multiple devices via a network.
  • the communication system 1 includes a terminal device 30 (e.g., a URLLC terminal) capable of communication based on a first sidelink communication scheme, and a terminal device 40 (e.g., a non-URLLC terminal) capable of communication based on a second sidelink communication scheme different from the first sidelink communication scheme.
  • the terminal device 30 acquires first control information related to a signal transmitted based on the first sidelink communication scheme.
  • the terminal device 30 notifies the terminal device 40 of second control information related to the first control information.
  • the terminal device 30 notifies the terminal device 40 of the second control information based on the second sidelink communication scheme through a channel receivable by the terminal device 40.
  • the terminal device 40 to recognize the control information of the terminal device 30, and allows the sidelink communication between the terminal device 30 and the terminal device 40 to be smoothly adjusted (e.g., the adjustment of the use of radio resources).
  • the communication system 1 can achieve sidelink communication with high communication performance.
  • the present technology can also be configured as follows.
  • a terminal device capable of communicating with a first terminal device capable of communication based on a first sidelink communication scheme, an acquisition unit that acquires first control information regarding a signal transmitted based on the first sidelink communication scheme; a notification unit configured to notify a second terminal device that performs communication based on a second sidelink communication scheme different from the first sidelink communication scheme of second control information related to the first control information;
  • a terminal device comprising: (2) the first sidelink communication scheme is a sidelink communication scheme in which signals from a plurality of terminal devices can be present in one radio resource of one slot;
  • the second sidelink communication scheme is a sidelink communication scheme in which a signal from one terminal device is present in one radio resource of one slot.
  • the notification unit notifies the second control information through a channel receivable by the second terminal device based on the second sidelink communication scheme.
  • the channels that the second terminal device can receive include a PSCCH (Physical Sidelink Control Channel).
  • the channels that the second terminal device can receive include a Physical Sidelink Shared Channel (PSSCH).
  • PSSCH Physical Sidelink Shared Channel
  • the first control information includes information on a transmission timing of a signal transmitted by the first terminal device based on the first sidelink communication scheme.
  • the first control information includes information on the number of symbols used by the first terminal device in communication based on the first sidelink communication scheme.
  • the second control information includes information regarding resources used by the first terminal device for communication based on the first sidelink communication method.
  • the second control information includes information on a transmission timing of a signal transmitted by the first terminal device based on the first sidelink communication scheme.
  • the second control information includes information of a slot used by the first terminal device in communication based on the first sidelink communication method.
  • the second control information includes information obtained by converting the transmission of a signal performed by the first terminal device based on the first sidelink communication method into an interference amount per slot.
  • the second control information includes information obtained by integrating a plurality of the first control information.
  • the second control information includes information on resources reserved by the first terminal device for communication based on the first sidelink communication scheme.
  • the terminal device is a first terminal device capable of communicating with another first terminal device,
  • the acquisition unit acquires first control information regarding a signal to be transmitted by the terminal device to the first terminal device based on the first sidelink communication scheme,
  • the notification unit notifies the second terminal device of second control information related to the first control information.
  • the terminal device is one of a plurality of the first terminal devices, The acquisition unit acquires the first control information of each of the first terminal devices, The notification unit notifies the second terminal device of the second control information generated based on the first control information of each of the plurality of first terminal devices.
  • the second control information includes information obtained by integrating the first control information of each of the plurality of first terminal devices.
  • the terminal device is a first terminal device capable of communicating with another first terminal device, The acquisition unit acquires the first control information regarding a signal transmitted by another of the first terminal devices to the terminal device based on the first sidelink communication scheme, The notification unit notifies the second terminal device of the second control information related to the first control information.
  • a terminal device is a second terminal device capable of receiving the first control information based on the first sidelink communication scheme,
  • the acquisition unit acquires the first control information from the first terminal device;
  • the notification unit notifies the second terminal device of the second control information related to the first control information.
  • a base station that performs processing related to sidelink communication of a first terminal device capable of communication based on a first sidelink communication method, an acquisition unit that acquires first control information regarding a signal transmitted based on the first sidelink communication scheme; a notification unit configured to notify a second terminal device that performs communication based on a second sidelink communication scheme different from the first sidelink communication scheme of second control information related to the first control information;
  • a base station comprising: (20) A communication system including: a first terminal device capable of communicating with a first terminal device based on a first sidelink communication scheme; and a base station that performs processing related to sidelink communication of the first terminal device, One of the terminal device and the base station an acquisition unit that acquires first control information regarding a signal transmitted based on the first sidelink communication scheme; a notification unit configured to notify a second terminal device that performs communication based on a second sidelink communication scheme different from the first sidelink communication scheme of second control information related to the first control information;
  • a communication system comprising:

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

端末装置は、第1のサイドリンク通信方式に基づく通信が可能な第1の端末装置と通信可能な端末装置であって、前記第1のサイドリンク通信方式に基づき送信される信号に関する第1の制御情報を取得する取得部と、前記第1のサイドリンク通信方式とは異なる第2のサイドリンク通信方式に基づく通信を行う第2の端末装置に対して前記第1の制御情報に関する第2の制御情報を通知する通知部と、を備える。

Description

端末装置、基地局、及び通信システム
 本開示は、端末装置、基地局、及び通信システムに関する。
 近年、サイドリンク通信が注目されている。例えば、近年では、サイドリンク通信の一形態として、端末装置間で直接通信を行うD2D(device-to-device)通信が注目されている。
TS22.186 V16.2.0, 3rd Generation Partnership Project; Technical Specification Group Services and System Aspects; Enhancement of 3GPP support for V2X scenarios; Stage 1 (Release 16)
 サイドリンク通信への要求が高まっている。この要求を満たすため、今後、サイドリンク通信では、要求に合わせた複数の通信方式が存在するようになることが想定される。1つの環境に複数の通信方式が混在する場合、通信方式が異なる端末装置間での調整がうまくいかず、高い通信パフォーマンス(例えば、安定した通信品質、高い通信品質、低遅延、高信頼、又は高スループット等)のサイドリンク通信が実現しない可能性がある。
 そこで、本開示では、高い通信パフォーマンスのサイドリンク通信を実現しうる端末装置、基地局、及び通信システムを提案する。
 なお、上記課題又は目的は、本明細書に開示される複数の実施形態が解決し得、又は達成し得る複数の課題又は目的の1つに過ぎない。
 上記の課題を解決するために、本開示に係る一形態の端末装置は、第1のサイドリンク通信方式に基づく通信が可能な第1の端末装置と通信可能な端末装置であって、前記第1のサイドリンク通信方式に基づき送信される信号に関する第1の制御情報を取得する取得部と、前記第1のサイドリンク通信方式とは異なる第2のサイドリンク通信方式に基づく通信を行う第2の端末装置に対して前記第1の制御情報に関する第2の制御情報を通知する通知部と、を備える。
従来のサイドリンクのフレーム構成の一例を示す図である。 従来のサイドリンクのフレーム構成の一例を示す図である。 今後採用されると想定されるサイドリンクのフレーム構成の一例を示す図である。 本開示の実施形態に係る通信システムの構成例を示す図である。 本開示の実施形態に係る管理装置の構成例を示す図である。 本開示の実施形態に係る基地局の構成例を示す図である。 本開示の実施形態に係る端末装置の構成例を示す図である。 本開示の実施形態に係る端末装置の構成例を示す図である。 サイドリンク通信の概要を示す図である。 サイドリンクのリソースプールを示す図である。 リソース割当モード2(d)を説明するための図である。 本実施形態で想定する通信環境の一例を示す図である。 URLLC端末の送信局が第2の制御情報を送信する場合のシーケンス図である。 代表のURLLC端末の送信局が第2の制御情報を送信する場合のシーケンス図である。 URLLC端末の受信局が第2の制御情報を送信する場合のシーケンス図である。 基地局が第2の制御情報を送信する場合のシーケンス図である。 URLLC端末の制御情報を受信可能なNon-URLLC端末が第2の制御情報を送信する場合のシーケンス図である。 従来の制御信号の位置とは異なる位置に第2の制御情報が配置された様子を示す図である。 従来の制御信号の位置に第2の制御情報が配置された様子を示す図である。
 以下に、本開示の実施形態について図面に基づいて詳細に説明する。なお、以下の各実施形態において、同一の部位には同一の符号を付することにより重複する説明を省略する。
 また、本明細書及び図面において、実質的に同一の機能構成を有する複数の構成要素を、同一の符号の後に異なる数字を付して区別する場合もある。例えば、実質的に同一の機能構成を有する複数の構成を、必要に応じて端末装置40、40、及び40のように区別する。ただし、実質的に同一の機能構成を有する複数の構成要素の各々を特に区別する必要がない場合、同一符号のみを付する。例えば、端末装置40、40、及び40を特に区別する必要が無い場合には、単に端末装置40と称する。
 以下に説明される1又は複数の実施形態(実施例、変形例を含む)は、各々が独立に実施されることが可能である。一方で、以下に説明される複数の実施形態は少なくとも一部が他の実施形態の少なくとも一部と適宜組み合わせて実施されてもよい。これら複数の実施形態は、互いに異なる新規な特徴を含み得る。したがって、これら複数の実施形態は、互いに異なる目的又は課題を解決することに寄与し得、互いに異なる効果を奏し得る。
 また、以下に示す項目順序に従って本開示を説明する。
  1.概要
  2.システム構成
   2-1.通信システムの構成例
   2-2.管理装置の構成例
   2-3.基地局の構成例
   2-4.第1の端末装置の構成
   2-5.第2の端末装置の構成
  3.サイドリンク通信について
   3-1.サイドリンク通信の概要
   3-2.サイドリンク通信の詳細
   3-3.サイドリンクのリソースプール
   3-4.サイドリンクリソース割り当て方式
   3-5.サイドリンク通信におけるセンシング
   3-6.本実施形態のサイドリンク通信について
  4.通信システムの動作
   4-1.通信システムの動作の概要
   4-2.第1の形態
   4-3.第2の形態
   4-4.第3の形態
   4-5.第4の形態
   4-6.第5の形態
   4-7.第2の制御情報の送信について
   4-8.制御情報の送信のまとめ
  5.変形例
  6.むすび
<<1.概要>>
 近年、サイドリンク通信が注目されている。3GPP(登録商標)では、サイドリンク通信として、端末装置間で直接通信を行うD2D(device-to-device)通信が規格化されている。
 サイドリンク通信は、V2X(Vehicle-to-everything)通信が主なユースケースの一つである。V2X通信としては、V2V(Vehicle-to-vehicle)、V2I(Vehicle-to-infrastructure)、V2P(Vehicle-to-pedestrian)、V2N(Vehicle-to-network)が想定されている。特に5G NRにおけるV2X通信の具体的なユースケースとして、隊列走行(Platooning)、アドバンスドドライビング(Advanced driving)、拡張センサー(Extended sensor)、リモートドライビング(Remote driving)が検討されている。これらの実現のために、V2X通信には、URLLC(Ultra-Reliable and Low Latency Communications)が求められる。URLLCに関しては、10ミリ秒以下の遅延および99.999%の信頼性を実現するように規格策定が行われている。
 これまでは、V2X通信として、車両間(Inter-vehicle)通信が検討されてきた。しかし、今後、サイドリンク通信の技術拡張として、車両内(Intra-vehicle)通信も想定されうる。ここで自動運転を考えると、制御装置は、基本的に自車内のセンサーやカメラからのデータを基に自動車を制御する。そのため、制御装置は、車両間通信(つまり、これまでのV2X通信)で得られる情報を補助情報として活用する。そのため、車両内通信は、車両間通信に比べて、さらに低遅延および高信頼が要求されることになる。
 さらに、サイドリンク通信は、V2X通信のみならず、様々なユースケースで活用することができる。たとえば、工場自動化(Factory automation)はサイドリンク通信が活用できるユースケースの1つである。そのような工場内では、多数のセンサーやカメラなどのデバイスが設置され、互いに直接通信することが検討されている。特に、製造するものに合わせて生産ラインを頻繁に変更するような場合において、サイドリンク通信へのURLLCに対する要求は高い。
 サイドリンク通信への要求の高まりに伴い、今後、サイドリンク通信では、要求に合わせた複数の通信方式が存在するようになることが想定される。例えば、今後、URLLCに対応するため、従来のフレーム構成とは異なるフレーム構成を使用するサイドリンク通信方式が存在するようになることが想定される。
 図1及び図2は、それぞれ、従来のサイドリンクのフレーム構成の一例を示す図である。図1は、PSCCH(Physical Sidelink Control Channel)が2シンボル構成、DMRS(Demodulation Reference Signal)が2シンボル割当、且つ、PSFCH(Physical Sidelink Feedback Channel)がない場合のサイドリンクのフレーム構成である。また、図2は、PSCCHが3シンボル構成、DMRSが3シンボル割当、且つ、PSFCHがある場合のサイドリンクのフレーム構成である。現在、3GPPにおいて規定されるサイドリンク通信では、図1及び図2に示すフレーム構成に基づいて制御が行われている。フレームはスロットを最小単位とした構成となる。ここで、1スロットの時間長は、サブキャリア間隔が15kHzの場合、1ミリ秒である。上述したように、これまでのサイドリンク通信は主にV2Xのユースケースを想定しており、遅延に対する要求条件は10ミリ秒であった。そのため、1スロットを最小単位としても問題はなかったが、今後の1ミリ秒未満の超低遅延が要求されるユースケースでは対応することができない。
 そこで、今後のサイドリンク通信では、URLLCトラヒックの収容を実現する方法の一つとして、スロット境界に依存せず信号を送信開始する動作が導入されることが想定される。図3は、今後採用されると想定されるサイドリンクのフレーム構成の一例を示す図である。図3のNon-URLLC信号がスロット境界に準拠した従来の信号であり、図3のURLLC信号がスロット境界に依存しない今後想定される信号である。この今後想定されるフレーム構成では、端末装置は、スロット境界に依存しないOFDMシンボル位置から特定のOFDMシンボル長の信号(図3に示すURLLC信号)を送信する。このとき、シンボル長の長さはスロット境界を越えない長さに設定され、信号がスロット境界を跨ぐことはない。
 このように、今後、サイドリンク通信では、要求に合わせた複数の通信方式が存在するようになることが想定される。1つの環境に複数のサイドリンク通信方式が混在する場合、通信方式が異なる端末装置間での調整がうまくいかず、高い通信パフォーマンス(例えば、安定した通信品質、高い通信品質、低遅延、高信頼、又は高スループット等)のサイドリンク通信が実現しない可能性がある。
 これをより具体的に説明する。
 本実施形態では低遅延及び高信頼性が要求されるトラヒック(以下、URLLCトラヒックという。)を伝送するサイドリンク端末(以下、URLLC端末という。)と、低遅延及び高信頼性が要求されないトラヒックを伝送するサイドリンク端末(以下、Non-URLLC端末という。)と、が混在する環境を想定する。
 ここで、URLLC端末とは、1つのスロットの1つの無線リソースに複数の端末装置による信号が存在することが可能なサイドリンク通信方式に基づく通信が可能な端末装置ある。ここで「1つのスロットの1つの無線リソースに複数の端末装置による信号が存在する」とは、信号を伝送するために利用される無線リソース単位内に複数の端末装置が送信した信号が存在することを意味する。ここで、1つの無線リソースは、例えば、リソースブロックであってもよい。なお、この1つの無線リソースには、ユーザ多重のための他のリソースを含まない。例えば、この1つの無線リソースには、同一のスロットに周波数分割多重された、異なる周波数帯のリソースは含まれない。空間多重の空間リソースや非直交多重の非直交リソースについても同様である。
 また、Non-URLLC端末とは、1つのスロットの1つの無線リソースに1つの端末装置による信号が存在するサイドリンク通信方式に基づく通信が可能な端末装置ある。ここで「1つのスロットの1つの無線リソースに1つの端末装置による信号が存在する」とは、データ信号を伝送するために利用される無線リソース単位内に1つの端末装置が送信した信号が存在することを意味する。ここで、1つの無線リソースは、例えば、1つのリソースブロックであってもよい。なお、この1つの無線リソースには、ユーザ多重のための他のリソースを含まない。例えば、この1つの無線リソースには、同一のスロットに周波数分割多重された、異なる周波数帯のリソースは含まれない。空間多重の空間リソースや非直交多重の非直交リソースについても同様である。
 なお、本実施形態において、スロットとは、時分割多重で伝送する場合の一定時間区間である。複数のスロットが更に大きな時間区間または小さな時間区間を構成してもよい。例えば、複数のスロットがサブフレーム(Subframe)を構成してもよい。また、複数のサブフレームが無線フレーム(Radio frame)を形成してもよい。同様に複数のサブスロット(Subslot)がスロットを構成してもよい。
 前述したように、今後のサイドリンク通信では、URLLCトラヒックの収容を実現する方法の一つとして、スロット境界に依存せず信号を送信開始する動作が導入されることが想定される。この動作が導入された場合、URLLC端末は、スケジュール情報をはじめとする制御情報もスロット境界に依存しないタイミングで伝送することが想定される。一方、Non-URLLC端末は、スロット境界に準拠したタイミングで信号を送信する。そのため、Non-URLLC端末は、信号の送信に関連する制御情報はフレーム構成で示した所定の位置(PSCCH)で伝送する。
 URLLC端末およびNon-URLLC端末はPSCCHが伝送される位置をモニターし、他の端末装置の制御情報を取得する。このとき、Non-URLLC端末はスロット内の所定の位置で伝送される制御情報のみを取得するため、スロット依存しない形で制御情報を伝送するURLLC端末の制御情報を取得できない。こうなると、URLLC端末とNon-URLLC端末との間でサイドリンク通信の調整がうまく行われなくなる。
 そこで、本実施形態では、以下の方法により上記問題を解決する。
 本実施形態の通信システムは、第1のサイドリンク通信方式に基づく通信が可能な第1の端末装置(例えば、URLLC端末)と、第1のサイドリンク通信方式とは異なる第2のサイドリンク通信方式に基づく通信が可能な第2の端末装置(例えば、Non-URLLC端末)と、を備える。ここで、第1のサイドリンク通信方式は、例えば、1つのスロットの1つの無線リソースに複数の端末装置による信号が存在することが可能なサイドリンク通信方式である。また、第2のサイドリンク通信方式は、例えば、1つのスロットの1つの無線リソースに1つの端末装置による信号が存在するサイドリンク通信方式である。
 第1の端末装置(例えば、URLLC端末)は、第1のサイドリンク通信方式に基づき送信される信号に関する第1の制御情報を取得する。例えば、第1の端末装置は、他の第1の端末装置が送信する第1の制御情報を取得してもよいし、自身が送信予定の(或いは送信済みの)第1の制御情報を自身の記憶部から取得してもよい。そして、第1の端末装置は、第2の端末装置(例えば、Non-URLLC端末)に対して第1の制御情報に関する第2の制御情報を通知する。このとき、第1の端末装置は、第2の制御情報を第2のサイドリンク通信方式に基づいて第2の端末装置が受信可能なチャネルを通じて通知してもよい。第2の制御情報の内容は第1の制御情報の内容そのものであってもよいし、複数の第1の端末装置から収集した複数の第1の制御情報を1つの情報に統合したものであってもよい。
 これにより、第2の端末装置(例えば、Non-URLLC端末)が第1の端末装置(例えば、URLLC端末)の制御情報を認識できるようになるので、第1の端末装置と第2の端末装置との間でサイドリンク通信の調整(例えば、無線リソースの利用の調整)がうまく行われるようになる。その結果、通信システムは、高い通信パフォーマンスのサイドリンク通信を実現できる。
 以上、本実施形態の概要を述べたが、以下、本実施形態に係る通信システムを詳細に説明する。
<<2.システム構成>>
 まず、図面を参照しながら通信システム1の構成を具体的に説明する。
<2-1.通信システムの構成例>
 図4は、本開示の実施形態に係る通信システム1の構成例を示す図である。通信システム1は、管理装置10と、基地局20と、端末装置30と、端末装置40と、を備える。ここで、端末装置30は、第1のサイドリンク通信方式に基づく通信が可能な第1の端末装置(例えば、URLLC端末)である。また、端末装置40は、第1のサイドリンク通信方式とは異なる第2のサイドリンク通信方式に基づく通信を行う第2の端末装置(例えば、Non-URLLC端末)である。
 ここで、第1のサイドリンク通信方式は、例えば、1つのスロットの1つの無線リソースに複数の端末装置による信号が存在することが可能なサイドリンク通信方式である。また、第2のサイドリンク通信方式は、例えば、1つのスロットの1つの無線リソースに1つの端末装置による信号が存在するサイドリンク通信方式である。勿論、第1のサイドリンク通信方式、及び第2のサイドリンク通信方式は、この例に限定されない。異なるサイドリンク通信方式なのであれば、第1のサイドリンク通信方式、及び第2のサイドリンク通信方式には、いかなるサイドリンク通信方式も採用可能である。
 通信システム1は、通信システム1を構成する各無線通信装置が連携して動作することで、ユーザに対し、移動通信が可能な無線ネットワークを提供する。本実施形態の無線ネットワークは、例えば、無線アクセスネットワークとコアネットワークとで構成される。なお、本実施形態において、無線通信装置は、無線通信の機能を有する装置のことであり、図4の例では、基地局20、端末装置30、及び端末装置40が該当する。以下の説明では、無線通信装置のことを単に通信装置ということがある。
 通信システム1は、管理装置10、基地局20、端末装置30、及び端末装置40をそれぞれ複数備えていてもよい。図1の例では、通信システム1は、管理装置10として管理装置10、10等を備えており、基地局20として基地局20、20、20等を備えている。また、通信システム1は、端末装置30として端末装置30、30、30等を備えており、端末装置40として端末装置40、40、40等を備えている。
 なお、図中の装置は、論理的な意味での装置と考えてもよい。つまり、同図の装置の一部が仮想マシン(VM:Virtual Machine)、コンテナ(Container)、ドッカー(Docker)などで実現され、それらが物理的に同一のハードウェア上で実装されてもよい。
 なお、端末装置30は、LTE(Long Term Evolution)、NR(New Radio)、Wi-Fi(登録商標)、Bluetooth(登録商標)等の無線アクセス技術(RAT:Radio Access Technology)に対応していてもよい。このとき、端末装置30は、異なる無線アクセス技術(無線通信方式)を使用可能に構成されていてもよい。例えば、端末装置30は、NRとWi-Fiを使用可能に構成されていてもよい。
 また、端末装置30は、異なるセルラー通信技術(例えば、LTEとNR)を使用可能に構成されていてもよい。LTE及びNRは、セルラー通信技術の一種であり、基地局がカバーするエリアをセル状に複数配置することで端末装置の移動通信を可能にする。なお、通信システム1が使用する無線アクセス方式は、LTE、NRに限定されず、W-CDMA(Wideband Code Division Multiple Access)、cdma2000(Code Division Multiple Access 2000)等の他の無線アクセス方式であってもよい。
 なお、以下の説明では、「LTE」には、LTE-A(LTE-Advanced)、LTE-A Pro(LTE-Advanced Pro)、及びEUTRA(Evolved Universal Terrestrial Radio Access)が含まれるものとする。また、NRには、NRAT(New Radio Access Technology)、及びFEUTRA(Further EUTRA)が含まれるものとする。なお、単一の基地局は複数のセルを管理してもよい。以下の説明において、LTEに対応するセルはLTEセルと称され、NRに対応するセルはNRセルと称される。
 NRは、LTE(LTE-Advanced、LTE-Advanced Proを含む第4世代通信)の次の世代(第5世代)の無線アクセス技術である。NRは、eMBB(Enhanced Mobile Broadband)、mMTC(Massive Machine Type Communications)及びURLLC(Ultra-Reliable and Low Latency Communications)を含む様々なユースケースに対応できる無線アクセス技術である。NRは、これらのユースケースにおける利用シナリオ、要求条件、及び配置シナリオなどに対応する技術フレームワークを目指して検討されている。
 なお、端末装置30は、LTE、NR、Wi-Fi、Bluetooth以外の無線アクセス技術(無線通信方式)を使ってネットワークに接続可能であってもよい。例えば、端末装置30は、LPWA(Low Power Wide Area)通信を使ってネットワークに接続可能であってもよい。また、端末装置30は、独自規格の無線アクセス技術を使ってネットワークに接続可能であってもよい。
 ここで、LPWA通信とは、小電力の広範囲通信を可能とする無線通信のことである。例えば、LPWA無線とは、特定小電力無線(例えば、920MHz帯)やISM(Industry-Science-Medical)バンドを使用したIoT(Internet of Things)無線通信のことである。なお、端末装置30が使用するLPWA通信はLPWA規格に準拠したものであってもよい。LPWA規格としては、例えば、ELTRES、ZETA、SIGFOX、LoRaWAN、NB-Iot等が挙げられる。勿論、LPWA規格はこれらに限定されず、他のLPWA規格であってもよい。
 なお、1又は複数の通信路には、仮想ネットワークが含まれていてもよい。例えば、端末装置30が接続可能な複数の通信路には、VLAN(Virtual Local Area Network)等の仮想ネットワークとIP通信路等の物理的ネットワークとが含まれていてもよい。この場合、端末装置30は、OSPF(Open Shortest Path First)、BGP(Border Gateway Protocol)等の経路制御プロトコルに基づいて経路制御を行ってもよい。
 その他、複数の通信路には、1又は複数のオーバーレイネットワークが複数含まれていてもよいし、1又は複数のネットワークスライシングが含まれていてもよい。
 通信システム1を構成する基地局又は中継局は、地上局であってもよいし、非地上局であってもよい。非地上局は、衛星局であってもよいし、航空機局であってもよい。非地上局が衛星局なのであれば、通信システム1は、Bent-pipe(Transparent)型の移動衛星通信システムであってもよい。
 なお、本実施形態において、地上局(地上基地局ともいう。)とは、地上に設置される基地局(中継局を含む。)のことをいう。ここで、「地上」は、陸上のみならず、地中、水上、水中も含む広義の地上である。なお、以下の説明において、「地上局」の記載は、「ゲートウェイ」に置き換えてもよい。
 なお、LTEの基地局は、eNodeB(Evolved Node B)又はeNBと称されることがある。また、NRの基地局は、gNodeB又はgNBと称されることがある。また、LTE及びNRでは、端末装置(移動局、又は端末ともいう。)はUE(User Equipment)と称されることがある。なお、端末装置は、通信装置の一種であり、移動局、又は端末とも称される。
 本実施形態において、通信装置という概念には、携帯端末等の持ち運び可能な移動体装置(端末装置)のみならず、構造物や移動体に設置される装置も含まれる。構造物や移動体そのものを通信装置とみなしてもよい。また、通信装置という概念には、端末装置のみならず、基地局及び中継局も含まれる。通信装置は、処理装置及び情報処理装置の一種である。また、通信装置は、送信装置又は受信装置と言い換えることが可能である。
 以下、通信システム1を構成する各装置の構成を具体的に説明する。なお、以下に示す各装置の構成はあくまで一例である。各装置の構成は、以下に示す構成とは異なっていてもよい。
<2-2.管理装置の構成例>
 次に、管理装置10の構成例を説明する。
 管理装置10は、無線ネットワークを管理する情報処理装置(コンピュータ)である。例えば、管理装置10は基地局20の通信を管理する情報処理装置である。管理装置10は、例えば、MME(Mobility Management Entity)としての機能を有する装置であっても良い。管理装置10は、AMF(Access and Mobility Management Function)及び/又はSMF(Session Management Function)としての機能を有する装置であっても良い。勿論、管理装置10が有する機能は、MME、AMF、及びSMFに限られない。管理装置10は、NSSF(Network Slice Selection Function)、AUSF(Authentication Server Function)、PCF(Policy Control Function)、UDM(Unified Data Management)としての機能を有する装置であってもよい。また、管理装置10は、HSS(Home Subscriber Server)としての機能を有する装置であってもよい。
 なお、管理装置10はゲートウェイの機能を有していてもよい。例えば、管理装置10は、S-GW(Serving Gateway)やP-GW(Packet Data Network Gateway)としての機能を有していてもよい。また、管理装置10は、UPF(User Plane Function)の機能を有していてもよい。このとき、管理装置10は、複数のUPFを有していてもよい。また、管理装置10は、LSCF(Localized Service Control Function)の機能を有していてもよい。LSCFは、ローカライズドサービスの提供のために、本実施形態で新たに追加されたコントロールファンクションである。
 コアネットワークは、複数のネットワーク機能(Network Function)から構成され、各ネットワーク機能は、1つの物理的な装置に集約されてもよいし、複数の物理的な装置に分散されてもよい。つまり、管理装置10は、複数の装置に分散配置され得る。さらに、この分散配置は動的に実行されるように制御されてもよい。基地局20、及び管理装置10は、1つネットワークを構成し、端末装置30に無線通信サービスを提供する。管理装置10はインターネットと接続され、端末装置30は、基地局20を介して、インターネット介して提供される各種サービスを利用することができる。
 なお、管理装置10は必ずしもコアネットワークを構成する装置でなくてもよい。例えば、コアネットワークがW-CDMA(Wideband Code Division Multiple Access)やcdma2000(Code Division Multiple Access 2000)のコアネットワークであるとする。このとき、管理装置10はRNC(Radio Network Controller)として機能する装置であってもよい。
 図5は、本開示の実施形態に係る管理装置10の構成例を示す図である。管理装置10は、通信部11と、記憶部12と、制御部13と、を備える。なお、図5に示した構成は機能的な構成であり、ハードウェア構成はこれとは異なっていてもよい。また、管理装置10の機能は、複数の物理的に分離された構成に静的、或いは、動的に分散して実装されてもよい。例えば、管理装置10は、複数のサーバ装置により構成されていてもよい。
 通信部11は、他の装置と通信するための通信インタフェースである。通信部11は、ネットワークインタフェースであってもよいし、機器接続インタフェースであってもよい。例えば、通信部11は、NIC(Network Interface Card)等のLAN(Local Area Network)インタフェースであってもよいし、USB(Universal Serial Bus)ホストコントローラ、USBポート等により構成されるUSBインタフェースであってもよい。また、通信部11は、有線インタフェースであってもよいし、無線インタフェースであってもよい。通信部11は、管理装置10の通信手段として機能する。通信部11は、制御部13の制御に従って基地局20等と通信する。
 記憶部12は、DRAM(Dynamic Random Access Memory)、SRAM(Static Random Access Memory)、フラッシュメモリ、ハードディスク等のデータ読み書き可能な記憶装置であってもよい。記憶部12は、例えば、端末装置30の接続状態を記憶する。例えば、記憶部12は、端末装置30のRRC(Radio Resource Control)の状態やECM(EPS Connection Management)、或いは、5G System CM(Connection Management)の状態を記憶する。記憶部12は、端末装置30の位置情報を記憶するホームメモリとして機能してもよい。
 制御部13は、管理装置10の各部を制御するコントローラ(controller)である。制御部13は、例えば、CPU(Central Processing Unit)、MPU(Micro Processing Unit)、GPU(Graphics Processing Unit)等のプロセッサにより実現される。例えば、制御部13は、管理装置10内部の記憶装置に記憶されている各種プログラムを、プロセッサがRAM(Random Access Memory)等を作業領域として実行することにより実現される。なお、制御部13は、ASIC(Application Specific Integrated Circuit)やFPGA(Field Programmable Gate Array)等の集積回路により実現されてもよい。CPU、MPU、GPU、ASIC、及びFPGAは何れもコントローラとみなすことができる。
<2-3.基地局の構成例>
 次に、基地局20の構成例を説明する。基地局20はBS(Base Station)20と言い換えることができる。
 基地局20は、端末装置30と無線通信する無線通信装置である。基地局20は、端末装置30と、中継局を介して無線通信するよう構成されていてもよいし、端末装置30と、直接、無線通信するよう構成されていてもよい。
 基地局20は通信装置の一種である。より具体的には、基地局20は、無線基地局(Base Station、Node B、eNB、gNB、など)或いは無線アクセスポイント(Access Point)に相当する装置である。基地局20は、無線リレー局であってもよい。また、基地局20は、RRH(Remote Radio Head)、或いはRU(Radio Unit)と呼ばれる光張り出し装置であってもよい。また、基地局20は、FPU(Field Pickup Unit)等の受信局であってもよい。また、基地局20は、無線アクセス回線と無線バックホール回線を時分割多重、周波数分割多重、或いは、空間分割多重で提供するIAB(Integrated Access and Backhaul)ドナーノード、或いは、IABリレーノードであってもよい。
 なお、基地局20が使用する無線アクセス技術は、セルラー通信技術であってもよいし、無線LAN技術であってもよい。勿論、基地局20が使用する無線アクセス技術は、これらに限定されず、他の無線アクセス技術であってもよい。例えば、基地局20が使用する無線アクセス技術は、LPWA(Low Power Wide Area)通信技術であってもよい。勿論、基地局20が使用する無線通信は、ミリ波を使った無線通信であってもよい。また、基地局20が使用する無線通信は、電波を使った無線通信であってもよいし、赤外線や可視光を使った無線通信(光無線)であってもよい。また、基地局20は、端末装置30とNOMA(Non-Orthogonal Multiple Access)通信が可能であってもよい。ここで、NOMA通信は、非直交リソースを使った通信(送信、受信、或いはその双方)のことである。なお、基地局20は、他の基地局20とNOMA通信可能であってもよい。
 なお、基地局20は、基地局-コアネットワーク間インタフェース(例えば、NG Interface 、S1 Interface等)を介してお互いに通信可能であってもよい。このインタフェースは、有線及び無線のいずれであってもよい。また、基地局は、基地局間インタフェース(例えば、Xn Interface、X2 Interface、S1 Interface、F1 Interface等)を介して互いに通信可能であってもよい。このインタフェースは、有線及び無線のいずれであってもよい。
 なお、基地局という概念には、ドナー基地局のみならず、リレー基地局(中継局ともいう。)も含まれる。例えば、リレー基地局は、RF Repeater、Smart Repeater、Intelligent Surfaceのうち、いずれか1つであってもよい。また、基地局という概念には、基地局の機能を備えた構造物(Structure)のみならず、構造物に設置される装置も含まれる。
 構造物は、例えば、高層ビル、家屋、鉄塔、駅施設、空港施設、港湾施設、オフィスビル、校舎、病院、工場、商業施設、スタジアム等の建物である。なお、構造物という概念には、建物のみならず、トンネル、橋梁、ダム、塀、鉄柱等の構築物(Non-building structure)や、クレーン、門、風車等の設備も含まれる。また、構造物という概念には、陸上(狭義の地上)又は地中の構造物のみならず、桟橋、メガフロート等の水上の構造物や、海洋観測設備等の水中の構造物も含まれる。基地局は、情報処理装置と言い換えることができる。
 基地局20は、ドナー局であってもよいし、リレー局(中継局)であってもよい。また、基地局20は、固定局であってもよいし、移動局であってもよい。移動局は、移動可能に構成された無線通信装置(例えば、基地局)である。このとき、基地局20は、移動体に設置される装置であってもよいし、移動体そのものであってもよい。例えば、移動能力(Mobility)をもつリレー局は、移動局としての基地局20とみなすことができる。また、車両、ドローンに代表されるUAV(Unmanned Aerial Vehicle)、スマートフォンなど、もともと移動能力がある装置であって、基地局の機能(少なくとも基地局の機能の一部)を搭載した装置も、移動局としての基地局20に該当する。
 ここで、移動体は、スマートフォンや携帯電話等のモバイル端末であってもよい。また、移動体は、陸上(狭義の地上)を移動する移動体(例えば、自動車、自転車、バス、トラック、自動二輪車、列車、リニアモーターカー等の車両)であってもよいし、地中(例えば、トンネル内)を移動する移動体(例えば、地下鉄)であってもよい。また、移動体は、水上を移動する移動体(例えば、旅客船、貨物船、ホバークラフト等の船舶)であってもよいし、水中を移動する移動体(例えば、潜水艇、潜水艦、無人潜水機等の潜水船)であってもよい。なお、移動体は、大気圏内を移動する移動体(例えば、飛行機、飛行船、ドローン等の航空機)であってもよい。
 また、基地局20は、地上に設置される地上基地局(地上局)であってもよい。例えば、基地局20は、地上の構造物に配置される基地局であってもよいし、地上を移動する移動体に設置される基地局であってもよい。より具体的には、基地局20は、ビル等の構造物に設置されたアンテナ及びそのアンテナに接続する信号処理装置であってもよい。勿論、基地局20は、構造物や移動体そのものであってもよい。「地上」は、陸上(狭義の地上)のみならず、地中、水上、水中も含む広義の地上である。なお、基地局20は、地上基地局に限られない。例えば、通信システム1を衛星通信システムとする場合、基地局20は、航空機局であってもよい。衛星局から見れば、地球に位置する航空機局は地上局である。
 なお、基地局20は、地上局に限られない。基地局20は、空中又は宇宙を浮遊可能な非地上基地局(非地上局)であってもよい。例えば、基地局20は、航空機局や衛星局であってもよい。
 衛星局は、大気圏外を浮遊可能な衛星局である。衛星局は、人工衛星等の宇宙移動体に搭載される装置であってもよいし、宇宙移動体そのものであってもよい。宇宙移動体は、大気圏外を移動する移動体である。宇宙移動体としては、人工衛星、宇宙船、宇宙ステーション、探査機等の人工天体が挙げられる。なお、衛星局となる衛星は、低軌道(LEO:Low Earth Orbiting)衛星、中軌道(MEO:Medium Earth Orbiting)衛星、静止(GEO:Geostationary Earth Orbiting)衛星、高楕円軌道(HEO:Highly Elliptical Orbiting)衛星の何れであってもよい。勿論、衛星局は、低軌道衛星、中軌道衛星、静止衛星、又は高楕円軌道衛星に搭載される装置であってもよい。
 航空機局は、航空機等、大気圏内を浮遊可能な無線通信装置である。航空機局は、航空機等に搭載される装置であってもよいし、航空機そのものであってもよい。なお、航空機という概念には、飛行機、グライダー等の重航空機のみならず、気球、飛行船等の軽航空機も含まれる。また、航空機という概念には、重航空機や軽航空機のみならず、ヘリコプターやオートジャイロ等の回転翼機も含まれる。なお、航空機局(又は、航空機局が搭載される航空機)は、ドローン等の無人航空機であってもよい。
 なお、無人航空機という概念には、無人航空システム(UAS:Unmanned Aircraft Systems)、つなぎ無人航空システム(tethered UAS)も含まれる。また、無人航空機という概念には、軽無人航空システム(LTA:Lighter than Air UAS)、重無人航空システム(HTA:Heavier than Air UAS)が含まれる。その他、無人航空機という概念には、高高度無人航空システムプラットフォーム(HAPs:High Altitude UAS Platforms)も含まれる。
 基地局20のカバレッジの大きさは、マクロセルのような大きなものから、ピコセルのような小さなものであってもよい。勿論、基地局20のカバレッジの大きさは、フェムトセルのような極めて小さなものであってもよい。また、基地局20はビームフォーミングの能力を有していてもよい。この場合、基地局20はビームごとにセルやサービスエリアが形成されてもよい。
 図6は、本開示の実施形態に係る基地局20の構成例を示す図である。基地局20は、無線通信部21と、記憶部22と、制御部23と、を備える。なお、図6に示した構成は機能的な構成であり、ハードウェア構成はこれとは異なっていてもよい。また、基地局20の機能は、複数の物理的に分離された構成に分散して実装されてもよい。
 無線通信部21は、他の無線通信装置(例えば、端末装置30、端末装置40、及び他の基地局20)と無線通信するための信号処理部である。無線通信部21は、制御部23の制御に従って動作する。無線通信部21は1又は複数の無線アクセス方式に対応する。例えば、無線通信部21は、NR及びLTEの双方に対応する。無線通信部21は、NRやLTEに加えて、W-CDMAやcdma2000に対応していてもよい。また、無線通信部21は、HARQ(Hybrid Automatic Repeat reQuest)等の自動再送技術に対応していてもよい。
 無線通信部21は、送信処理部211、受信処理部212、アンテナ213を備える。無線通信部21は、送信処理部211、受信処理部212、及びアンテナ213をそれぞれ複数備えていてもよい。なお、無線通信部21が複数の無線アクセス方式に対応する場合、無線通信部21の各部は、無線アクセス方式毎に個別に構成されうる。例えば、送信処理部211及び受信処理部212は、LTEとNRとで個別に構成されてもよい。また、アンテナ213は複数のアンテナ素子(例えば、複数のパッチアンテナ)で構成されていてもよい。この場合、無線通信部21は、ビームフォーミング可能に構成されていてもよい。無線通信部21は、垂直偏波(V偏波)と水平偏波(H偏波)とを使用した偏波ビームフォーミング可能に構成されていてもよい。
 送信処理部211は、下りリンク制御情報及び下りリンクデータの送信処理を行う。例えば、送信処理部211は、制御部23から入力された下りリンク制御情報及び下りリンクデータを、ブロック符号化、畳み込み符号化、ターボ符号化等の符号化方式を用いて符号化を行う。ここで、符号化は、ポーラ符号(Polar Code)による符号化、LDPC符号(Low Density Parity Check Code)による符号化を行ってもよい。そして、送信処理部211は、符号化ビットをBPSK、QPSK、16QAM、64QAM、256QAM等の所定の変調方式で変調する。この場合、コンステレーション上の信号点は必ずしも等距離である必要はない。コンステレーションは、不均一コンステレーション(NUC:Non Uniform Constellation)であってもよい。そして、送信処理部211は、各チャネルの変調シンボルと下りリンク参照信号とを多重化し、所定のリソースエレメントに配置する。そして、送信処理部211は、多重化した信号に対して、各種信号処理を行う。例えば、送信処理部211は、高速フーリエ変換による周波数領域への変換、ガードインターバル(サイクリックプレフィックス)の付加、ベースバンドのデジタル信号の生成、アナログ信号への変換、直交変調、アップコンバート、余分な周波数成分の除去、電力の増幅等の処理を行う。送信処理部211で生成された信号は、アンテナ213から送信される。
 受信処理部212は、アンテナ213を介して受信された上りリンク信号の処理を行う。例えば、受信処理部212は、上りリンク信号に対して、ダウンコンバート、不要な周波数成分の除去、増幅レベルの制御、直交復調、デジタル信号への変換、ガードインターバル(サイクリックプレフィックス)の除去、高速フーリエ変換による周波数領域信号の抽出等を行う。そして、受信処理部212は、これらの処理が行われた信号から、PUSCH(Physical Uplink Shared Channel)、PUCCH(Physical Uplink Control Channel)等の上りリンクチャネル及び上りリンク参照信号を分離する。また、受信処理部212は、上りリンクチャネルの変調シンボルに対して、BPSK(Binary Phase Shift Keying)、QPSK(Quadrature Phase Shift Keying)等の変調方式を使って受信信号の復調を行う。復調に使用される変調方式は、16QAM(Quadrature Amplitude Modulation)、64QAM、又は256QAMであってもよい。この場合、コンステレーション上の信号点は必ずしも等距離である必要はない。コンステレーションは、不均一コンステレーション(NUC)であってもよい。そして、受信処理部212は、復調された上りリンクチャネルの符号化ビットに対して、復号処理を行う。復号された上りリンクデータ及び上りリンク制御情報は制御部23へ出力される。
 アンテナ213は、電流と電波を相互に変換するアンテナ装置(アンテナ部)である。アンテナ213は、1つのアンテナ素子(例えば、1つのパッチアンテナ)で構成されていてもよいし、複数のアンテナ素子(例えば、複数のパッチアンテナ)で構成されていてもよい。アンテナ213が複数のアンテナ素子で構成される場合、無線通信部21は、ビームフォーミング可能に構成されていてもよい。例えば、無線通信部21は、複数のアンテナ素子を使って無線信号の指向性を制御することで、指向性ビームを生成するよう構成されていてもよい。なお、アンテナ213は、デュアル偏波アンテナであってもよい。アンテナ213がデュアル偏波アンテナの場合、無線通信部21は、無線信号の送信にあたり、垂直偏波(V偏波)と水平偏波(H偏波)とを使用してもよい。そして、無線通信部21は、垂直偏波と水平偏波とを使って送信される無線信号の指向性を制御してもよい。また、無線通信部21は、複数のアンテナ素子で構成される複数のレイヤを介して空間多重された信号を送受信してもよい。
 記憶部22は、DRAM、SRAM、フラッシュメモリ、ハードディスク等のデータ読み書き可能な記憶装置である。記憶部22は、基地局20の記憶手段として機能する。
 制御部23は、基地局20の各部を制御するコントローラである。制御部23は、例えば、CPU、MPU等のプロセッサにより実現される。例えば、制御部23は、基地局20内部の記憶装置に記憶されている各種プログラムを、プロセッサがRAM等を作業領域として実行することにより実現される。なお、制御部23は、ASICやFPGA等の集積回路により実現されてもよい。CPU、MPU、ASIC、及びFPGAは何れもコントローラとみなすことができる。また、制御部23は、CPUに加えて、或いは代えて、GPUにより実現されてもよい。
 制御部23は、図6に示すように、取得部231と、通知部232と、を備える。制御部23を構成する各ブロック(取得部231~通知部232)はそれぞれ制御部23の機能を示す機能ブロックである。これら機能ブロックはソフトウェアブロックであってもよいし、ハードウェアブロックであってもよい。例えば、上述の機能ブロックが、それぞれ、ソフトウェア(マイクロプログラムを含む。)で実現される1つのソフトウェアモジュールであってもよいし、半導体チップ(ダイ)上の1つの回路ブロックであってもよい。勿論、各機能ブロックがそれぞれ1つのプロセッサ又は1つの集積回路であってもよい。制御部23は上述の機能ブロックとは異なる機能単位で構成されていてもよい。機能ブロックの構成方法は任意である。制御部23の各ブロックの動作は、端末装置30の制御部33の各ブロックの動作と同じであってもよい。また、制御部23の各ブロックの動作は、端末装置40の制御部43の各ブロックの動作と同じであってもよい。
 本実施形態において、基地局は、複数の物理的又は論理的装置の集合で構成されていてもよい。例えば、本実施形態において基地局は、BBU(Baseband Unit)及びRU(Radio Unit)等の複数の装置に区別されてもよい。そして、基地局は、これら複数の装置の集合体として解釈されてもよい。また、基地局は、BBU及びRUのうちいずれかであってもよいし、両方であってもよい。BBUとRUは、所定のインタフェース(例えば、eCPRI(enhanced Common Public Radio Interface))で接続されていてもよい。なお、RUはRRU(Remote Radio Unit)又はRD(Radio DoT)と言い換えてもよい。また、RUは後述するgNB-DU(gNB Distributed Unit)に対応していてもよい。さらにBBUは、後述するgNB-CU(gNB Central Unit)に対応していてもよい。またはこれに代えて、RUは、後述するgNB-DUに接続された無線装置であってもよい。gNB-CU、gNB-DU、及びgNB-DUに接続されたRUはO-RAN(Open Radio Access Network)に準拠するよう構成されていてもよい。さらに、RUはアンテナと一体的に形成された装置であってもよい。基地局が有するアンテナ(例えば、RUと一体的に形成されたアンテナ)はAdvanced Antenna Systemを採用し、MIMO(例えば、FD(Full Dimension)-MIMO)やビームフォーミングをサポートしていてもよい。また、基地局が有するアンテナは、例えば、64個の送信用アンテナポート及び64個の受信用アンテナポートを備えていてもよい。
 また、RUに搭載されるアンテナは、1つ以上のアンテナ素子から構成されるアンテナパネルであってもよく、RUは、1つ以上のアンテナパネルを搭載してもよい。例えば、RUは、水平偏波のアンテナパネルと垂直偏波のアンテナパネルの2種類のアンテナパネル、或いは、右旋円偏波のアンテナパネルと左旋円偏波のアンテナパネルの2種類のアンテナパネルを搭載してもよい。また、RUは、アンテナパネル毎に独立したビームを形成し、制御してもよい。
 なお、基地局は、複数が互いに接続されていてもよい。1又は複数の基地局は無線アクセスネットワーク(RAN:Radio Access Network)に含まれていてもよい。この場合、基地局は単にRAN、RANノード、AN(Access Network)、ANノードと称されることがある。なお、LTEにおけるRANはEUTRAN(Enhanced Universal Terrestrial RAN)と呼ばれることがある。また、NRにおけるRANはNGRANと呼ばれることがある。また、W-CDMA(UMTS)におけるRANはUTRANと呼ばれることがある。
 なお、LTEの基地局は、eNodeB(Evolved Node B)又はeNBと称されることがある。このとき、EUTRANは1又は複数のeNodeB(eNB)を含む。また、NRの基地局は、gNodeB又はgNBと称されることがある。このとき、NGRANは1又は複数のgNBを含む。EUTRANは、LTEの通信システム(EPS)におけるコアネットワーク(EPC)に接続されたgNB(en-gNB)を含んでいてもよい。同様にNGRANは5G通信システム(5GS)におけるコアネットワーク5GCに接続されたng-eNBを含んでいてもよい。
 なお、基地局がeNB、gNBなどである場合、基地局は、3GPPアクセス(3GPP Access)と称されることがある。また、基地局が無線アクセスポイント(Access Point)である場合、基地局は、非3GPPアクセス(Non-3GPP Access)と称されることがある。さらに、基地局は、RRH(Remote Radio Head)、或いはRU(Radio Unit)と呼ばれる光張り出し装置であってもよい。また、基地局がgNBである場合、基地局は、前述したgNB-CUとgNB-DUとを組み合わせたものであってもよいし、gNB-CUとgNB-DUとのうちのいずれかであってもよい。
 ここで、gNB-CUは、UEとの通信のために、アクセス層(Access Stratum)のうち、複数の上位レイヤ(例えば、RRC(Radio Resource Control)、SDAP(Service Data Adaptation Protocol)、PDCP(Packet Data Convergence Protocol)をホストする。一方、gNB-DUは、アクセス層(Access Stratum)のうち、複数の下位レイヤ(例えば、RLC(Radio Link Control)、MAC(Medium Access Control)、PHY(Physical layer))をホストする。すなわち、後述されるメッセージ/情報のうち、RRCシグナリング(準静的な通知)はgNB-CUで生成され、一方でMAC CEやDCI(動的な通知)はgNB-DUで生成されてもよい。又は、RRCコンフィギュレーション(準静的な通知)のうち、例えばIE:cellGroupConfigなどの一部のコンフィギュレーション(configuration)についてはgNB-DUで生成され、残りのコンフィギュレーションはgNB-CUで生成されてもよい。これらのコンフィギュレーションは、後述されるF1インタフェースで送受信されてもよい。
 なお、基地局は、他の基地局と通信可能に構成されていてもよい。例えば、複数の基地局がeNB同士又はeNBとen-gNBの組み合わせである場合、当該基地局間はX2インタフェースで接続されてもよい。また、複数の基地局がgNB同士又はgn-eNBとgNBの組み合わせである場合、当該装置間はXnインタフェースで接続されてもよい。また、複数の基地局がgNB-CUとgNB-DUの組み合わせである場合、当該装置間は前述したF1インタフェースで接続されてもよい。後述されるメッセージ/情報(例えば、RRCシグナリング、MAC CE(MAC Control Element)、又はDCI)は、複数基地局間で、例えばX2インタフェース、Xnインタフェース、又はF1インタフェースを介して、送信されてもよい。
 基地局により提供されるセルはサービングセル(Serving Cell)と呼ばれることがある。サービングセルという概念には、PCell(Primary Cell)及びSCell(Secondary Cell)が含まれる。デュアルコネクティビティがUE(例えば、端末装置30)に設定される場合、MN(Master Node)によって提供されるPCell、及びゼロ又は1以上のSCellはマスターセルグループ(Master Cell Group)と呼ばれることがある。デュアルコネクティビティの例として、EUTRA-EUTRA Dual Connectivity、EUTRA-NR Dual Connectivity(ENDC)、EUTRA-NR Dual Connectivity with 5GC、NR-EUTRA Dual Connectivity(NEDC)、NR-NR Dual Connectivityが挙げられる。
 なお、サービングセルはPSCell(Primary Secondary Cell、又は、Primary SCG Cell)を含んでもよい。デュアルコネクティビティがUEに設定される場合、SN(Secondary Node)によって提供されるPSCell、及びゼロ又は1以上のSCellは、SCG(Secondary Cell Group)と呼ばれることがある。特別な設定(例えば、PUCCH on SCell)がされていない限り、物理上りリンク制御チャネル(PUCCH)はPCell及びPSCellで送信されるが、SCellでは送信されない。また、無線リンク障害(Radio Link Failure)もPCell及びPSCellでは検出されるが、SCellでは検出されない(検出しなくてよい)。このようにPCell及びPSCellは、サービングセルの中で特別な役割を持つため、SpCell(Special Cell)とも呼ばれる。
 1つのセルには、1つのダウンリンクコンポーネントキャリアと1つのアップリンクコンポーネントキャリアが対応付けられていてもよい。また、1つのセルに対応するシステム帯域幅は、複数のBWP(Bandwidth Part)に分割されてもよい。この場合、1又は複数のBWPがUEに設定され、1つのBWP分がアクティブBWP(Active BWP)として、UEに使用されてもよい。また、セル毎、コンポーネントキャリア毎又はBWP毎に、端末装置30が使用できる無線資源(例えば、周波数帯域、ヌメロロジー(サブキャリアスペーシング)、スロットフォーマット(Slot configuration)が異なっていてもよい。
<2-4.第1の端末装置の構成>
 次に、端末装置30(第1の端末装置)の構成を説明する。端末装置30はUE(User Equipment)30と言い換えることができる。
 上述したように、端末装置30は、第1のサイドリンク通信方式に基づく通信が可能な第1の端末装置である。例えば、端末装置30は、URLLC端末である。ここで、URLLC端末とは、1つのスロットの1つの無線リソースに複数の端末装置による信号が存在することが可能なサイドリンク通信方式に基づく通信が可能な端末装置ある。なお、端末装置30は、第1のサイドリンク通信方式に加えて、第2のサイドリンク通信方式も使用可能であってもよい。
 端末装置30には、あらゆる形態のコンピュータを採用可能である。端末装置30は、例えば、携帯電話、スマートデバイス(スマートフォン、又はタブレット)、PDA(Personal Digital Assistant)、ノートPC等のモバイル端末であってもよい。また、端末装置30は、通信機能を具備した撮像装置(例えば、カムコーダ)であってもよい。また、端末装置30は、FPU(Field Pickup Unit)等の通信機器が搭載されたバイクや移動中継車等であってもよい。また、端末装置30は、M2M(Machine to Machine)デバイス、又はIoT(Internet of Things)デバイスであってもよい。また、端末装置30は、スマートウォッチ等のウェアラブルデバイスであってもよい。
 なお、端末装置30は、AR(Augmented Reality)デバイス、VR(Virtual Reality)デバイス、MR(Mixed Reality)デバイス等のxRデバイスであってもよい。このとき、xRデバイスは、ARグラス、MRグラス等のメガネ型デバイスであってもよいし、VRヘッドマウントディスプレイ等のヘッドマウント型デバイスであってもよい。端末装置30をxRデバイスとする場合、端末装置30は、ユーザ装着部分(例えば、メガネ部分)のみで構成されるスタンドアローン型のデバイスであってもよい。また、端末装置30は、ユーザ装着部分(例えば、メガネ部分)と、当該部分と連動する端末部分(例えば、スマートデバイス)と、で構成される端末連動型デバイスであってもよい。
 なお、端末装置30は、複数の通信路に接続可能に構成されていてもよい。例えば、端末装置30は、端末装置は、Wi-Fi(登録商標)とセルラーネットワークの2つの通信路に接続可能に構成されていてもよい。端末装置30は、複数のセルラーネットワークに接続可能であってもよい。このとき、複数のセルラーネットワークは、それぞれ異なるSIM(Subscriber Identity Module)に紐づけられたものであってもよい。
 なお、端末装置30は、複数のSIMカードを切り替えて使用できるように構成されていてもよい。例えば、端末装置30は、デュアルSIM又はトリプルSIMに対応していてもよい。勿論、端末装置30は、3つより多くのSIMカードを挿入可能に構成されていてもよい。また、端末装置30は、RSP(Remote SIM Provisioning)に対していてもよい。例えば、端末装置30は、eSIM(Embedded SIM)に対応していてもよい。RSP対応の端末装置は、SIMカードを入れ替えなくても、無線通信に関する情報(以下、プロファイルという。)の書き換えが可能である。
 なお、端末装置30は、基地局20とNOMA通信が可能であってもよい。また、端末装置30は、基地局20と通信する際、HARQ等の自動再送技術を使用可能であってもよい。端末装置30は、他の端末装置30とサイドリンク通信が可能であってもよい。端末装置30は、サイドリンク通信を行う際も、HARQ等の自動再送技術を使用可能であってもよい。なお、端末装置30は、他の端末装置30との通信(サイドリンク)においてもNOMA通信が可能であってもよい。また、端末装置30は、他の通信装置(例えば、基地局20、及び他の端末装置30)とLPWA通信が可能であってもよい。また、端末装置30が使用する無線通信は、ミリ波を使った無線通信であってもよい。なお、端末装置30が使用する無線通信(サイドリンク通信を含む。)は、電波を使った無線通信であってもよいし、赤外線や可視光を使った無線通信(光無線)であってもよい。
 また、端末装置30は、移動体装置であってもよい。移動体装置は、移動可能な無線通信装置である。このとき、端末装置30は、移動体に設置される無線通信装置であってもよいし、移動体そのものであってもよい。例えば、端末装置30は、自動車、バス、トラック、自動二輪車等の道路上を移動する車両(Vehicle)、列車等の軌道に設置されたレール上を移動する車両、或いは、当該車両に搭載された無線通信装置であってもよい。なお、移動体は、モバイル端末であってもよいし、陸上(狭義の地上)、地中、水上、或いは、水中を移動する移動体であってもよい。また、移動体は、ドローン、ヘリコプター等の大気圏内を移動する移動体であってもよいし、人工衛星等の大気圏外を移動する移動体であってもよい。
 端末装置30は、同時に複数の基地局または複数のセルと接続して通信を実施してもよい。例えば、1つの基地局が複数のセル(例えば、pCell、sCell)を介して通信エリアをサポートしている場合に、キャリアアグリケーション(CA:Carrier Aggregation)技術やデュアルコネクティビティ(DC:Dual Connectivity)技術、マルチコネクティビティ(MC:Multi-Connectivity)技術によって、それら複数のセルを束ねて基地局20と端末装置30とで通信することが可能である。或いは、異なる基地局20のセルを介して、協調送受信(CoMP:Coordinated Multi-Point Transmission and Reception)技術によって、端末装置30とそれら複数の基地局20が通信することも可能である。
 図7は、本開示の実施形態に係る端末装置30の構成例を示す図である。端末装置30は、無線通信部31と、記憶部32と、制御部33と、を備える。なお、図7に示した構成は機能的な構成であり、ハードウェア構成はこれとは異なっていてもよい。また、端末装置30の機能は、複数の物理的に分離された構成に分散して実装されてもよい。
 無線通信部31は、他の無線通信装置(例えば、基地局20、端末装置40、及び他の端末装置30)と無線通信するための信号処理部である。無線通信部31は、制御部33の制御に従って動作する。無線通信部31は、送信処理部311と、受信処理部312と、アンテナ313とを備える。無線通信部31、送信処理部311、受信処理部312、及びアンテナ313の構成は、基地局20の無線通信部21、送信処理部211、受信処理部212及びアンテナ213と同様であってもよい。また、無線通信部31は、無線通信部21と同様に、ビームフォーミング可能に構成されていてもよい。さらに、無線通信部31は、無線通信部21と同様に、空間多重された信号を送受信可能に構成されていてもよい。
 記憶部32は、DRAM、SRAM、フラッシュメモリ、ハードディスク等のデータ読み書き可能な記憶装置である。記憶部32は、端末装置30の記憶手段として機能する。
 制御部33は、端末装置30の各部を制御するコントローラである。制御部33は、例えば、CPU、MPU等のプロセッサにより実現される。例えば、制御部33は、端末装置30内部の記憶装置に記憶されている各種プログラムを、プロセッサがRAM等を作業領域として実行することにより実現される。なお、制御部33は、ASICやFPGA等の集積回路により実現されてもよい。CPU、MPU、ASIC、及びFPGAは何れもコントローラとみなすことができる。また、制御部33は、CPUに加えて、或いは代えて、GPUにより実現されてもよい。
 制御部33は、図7に示すように、取得部331と、通知部332と、を備える。制御部33を構成する各ブロック(取得部331~通知部332)はそれぞれ制御部33の機能を示す機能ブロックである。これら機能ブロックはソフトウェアブロックであってもよいし、ハードウェアブロックであってもよい。例えば、上述の機能ブロックが、それぞれ、ソフトウェア(マイクロプログラムを含む。)で実現される1つのソフトウェアモジュールであってもよいし、半導体チップ(ダイ)上の1つの回路ブロックであってもよい。勿論、各機能ブロックがそれぞれ1つのプロセッサ又は1つの集積回路であってもよい。制御部33は上述の機能ブロックとは異なる機能単位で構成されていてもよい。機能ブロックの構成方法は任意である。制御部33の各ブロックの動作は、基地局20の制御部23の各ブロックの動作と同じであってもよい。また、制御部33の各ブロックの動作は、端末装置40の制御部43の各ブロックの動作と同じであってもよい。
<2-5.第2の端末装置の構成>
 次に、端末装置40(第2の端末装置)の構成を説明する。端末装置40はUE(User Equipment)40と言い換えることができる。
 上述したように、端末装置40は、第1のサイドリンク通信方式とは異なる第2のサイドリンク通信方式に基づく通信を行う第2の端末装置である。例えば、端末装置40は、URLLC端末である。ここで、Non-URLLC端末とは、1つのスロットの1つの無線リソースに1つの端末装置による信号が存在するサイドリンク通信方式に基づく通信が可能な端末装置ある。その他の端末装置40の構成は、端末装置30と同様である。例えば、端末装置40には、モバイル端末、撮像装置、M2Mデバイス、IoTデバイス、ウェアラブルデバイス、xRデバイス等、端末装置30と同様にあらゆる形態のコンピュータを採用可能である。
 図8は、本開示の実施形態に係る端末装置40の構成例を示す図である。端末装置40は、無線通信部41と、記憶部42と、制御部43と、を備える。なお、図8に示した構成は機能的な構成であり、ハードウェア構成はこれとは異なっていてもよい。また、端末装置40の機能は、複数の物理的に分離された構成に分散して実装されてもよい。
 無線通信部41は、他の無線通信装置(例えば、基地局20、端末装置30、及び他の端末装置40)と無線通信するための信号処理部である。無線通信部41は、制御部43の制御に従って動作する。無線通信部41は、送信処理部411と、受信処理部412と、アンテナ413とを備える。これらの構成は、端末装置30の無線通信部31、送信処理部311、受信処理部312及びアンテナ313と同様であってもよい。
 記憶部42は、DRAM、SRAM、フラッシュメモリ、ハードディスク等のデータ読み書き可能な記憶装置である。記憶部42は、端末装置40の記憶手段として機能する。
 制御部43は、端末装置40の各部を制御するコントローラである。制御部43の構成は、端末装置30の制御部33と同様である。制御部43は、図8に示すように、取得部431と、通知部432と、を備える。制御部43を構成する各ブロック(取得部431~通知部432)はそれぞれ制御部43の機能を示す機能ブロックである。これら機能ブロックはソフトウェアブロックであってもよいし、ハードウェアブロックであってもよい。例えば、上述の機能ブロックが、それぞれ、ソフトウェア(マイクロプログラムを含む。)で実現される1つのソフトウェアモジュールであってもよいし、半導体チップ(ダイ)上の1つの回路ブロックであってもよい。勿論、各機能ブロックがそれぞれ1つのプロセッサ又は1つの集積回路であってもよい。制御部43は上述の機能ブロックとは異なる機能単位で構成されていてもよい。機能ブロックの構成方法は任意である。
 制御部43の各ブロックの動作は、基地局20の制御部23の各ブロックの動作と同じであってもよい。また、制御部43の各ブロックの動作は、端末装置30の制御部33の各ブロックの動作と同じであってもよい。その他の端末装置40の構成は、端末装置30と同じであってもよい。
<<3.サイドリンク通信について>>
 以上、通信システム1の構成を説明したが、通信システム1の動作を説明する前に、サイドリンク通信について説明する。なお、以下の説明において、UEは、端末装置30であってもよいし、端末装置40であってもよい。また、BSは、基地局20であってもよい。
<3-1.サイドリンク通信の概要>
 図9は、サイドリンク通信の概要を示す図である。サイドリンク通信のユースケースは大きく2つに分けられる。1つ目は、2つ以上のUEが、BSが構成するセルCの内部に存在するケースである。2つ目は、2つ以上のUEのうち、少なくとも一方のUEがセルCの内部に存在し、他方のUEがセルCの外部に存在するケースである。このとき、セルCの内部に存在するUEは、サイドリンク通信に加えて、BSと通信を行ってもよい。これにより、セルCの内部に存在するUEは、BSと、セルCの外部に存在するUEと、を中継する中継局として機能する。
 なお、UEがセルCの内部に存在することは、そのUEは、BSから受信する下りリンク信号の品質が所定の基準以上となる状態にあると言える。言い換えると、UEがセルCの外部に存在することは、そのUEは、BSから受信する下りリンク信号の品質が所定の基準以下となる状態であると言える。また、UEがセルCの内部に存在することは、そのUEは、BSから受信する所定の下りリンクチャネルが所定の確率以上で復号できる状態にあるとも言える。言い換えると、UEがセルCの外部に存在することは、そのUEは、BSから受信する所定の下りリンクチャネルを所定の確率以上で復号可能では無い状態にあると言える。
 以下の説明では、基地局からサイドリンク通信に関する情報を受信し、サイドリンク制御チャネルを送信するUEを送信装置、それ以外のUEを受信装置ということがある。
<3-2.サイドリンク通信の詳細>
 サイドリンク通信とは、UEとそのUEとは異なるUEとの直接通信である。サイドリンク通信では、UEにリソースプールが設定される。リソースプールはサイドリンクの送受信に用いられる時間および周波数リソースの候補である。UEは、そのリソースプールの中からサイドリンクの送受信のためのリソースを選択し、サイドリンク通信を行う。サイドリンク通信は、上りリンクのリソース(上りリンクサブフレーム、上りリンクコンポーネントキャリア)を用いて行われるため、リソースプールも上りリンクサブフレームまたは上りリンクコンポーネントキャリアに設定される。
 サイドリンク物理チャネルは、PSCCH(Physical Sidelink Control Channel)、PSSCH(Physical Sidelink Shared Channel)、PSFCH(Physical Sidelink Feedback Channel)、などを含む。
 上述したように、従来のサイドリンク通信方式で使用されるフレーム構成は、例えば図1及び図2に示した構成となる。図1は、PSCCHが2シンボル構成、DMRSが2シンボル割当、且つ、PSFCHがない場合のサイドリンクのフレーム構成である。また、図2は、PSCCHが3シンボル構成、DMRSが3シンボル割当、且つ、PSFCHがある場合のサイドリンクのフレーム構成である。
 PSCCHは、サイドリンク制御情報(SCI:Sidelink Control Information)を送信するために用いられる。PSCCHは、2シンボルまたは3シンボルで構成される。サイドリンク制御情報の情報ビットのマッピングが、SCIフォーマットとして定義される。サイドリンク制御情報は、サイドリンクグラントを含む。サイドリンクグラントは、PSSCHのスケジューリングのために用いられる。
 PSSCHは、サイドリンクデータ(SL-SCH:Sidelink Shared Channel)を送信するために用いられる。なお、PSSCHは、上位層の制御情報を送信するためにも用いられてもよい。
 PSFCHは、PSSCHの復号結果に対するHARQ応答(HARQ-ACK、ACK/NACK)を送信装置に対してフィードバックするために用いられる。PSFCHは13番目のシンボルに配置される。PSFCHは、全てのスロットでリソースが割り当てられなくてもよい。その場合には、PSSCHとしてリソースを活用することもできる。
 サイドリンクのフレーム構成にはAGCシンボルが含まれる。AGCシンボルは、受信端末装置のAGC(Automatic Gain Control)のために使われてもよい。AGCシンボルは送信の1シンボル目に配置される。具体的には、AGCシンボルは、PSSCHを送信する場合には1番目のシンボルに、PSFCHを送信する場合には12番目のシンボルに、配置される。AGCシンボルは、送信の2シンボル目をコピーして生成される。すなわち、サイドリンクの送信において、送信の1シンボル目と2シンボル目は同じである。サイドリンクのフレーム構成にはガードシンボルが含まれる。サイドリンクでは、ガードシンボル(ガード時間)で、送信と受信の切り替えが行われる。ガードシンボルは、14番目のシンボルに配置される。更に、PSFCHが送信されるスロットでは、11番目のシンボルにも配置される。
 リソースプールは、SIBまたは専用RRCメッセージによってBSからUEに設定される。もしくは、リソースプールは、UEに予め設定されたリソースプールに関する情報によって設定される。時間のリソースプールは、周期の情報、オフセットの情報、および、サブフレームビットマップ情報によって指示される。周波数のリソースプールは、リソースブロックの開始位置、リソースブロックの終了位置、および連続するリソースブロック数によって指示される。
<3-3.サイドリンクのリソースプール>
 図10は、サイドリンクのリソースプールを示す図である。サイドリンクにおいて、PSSCHの送信、PSSCHの受信のために用いられるリソースとして、リソースプール(サイドリンクリソースプール)が設定される。周波数軸において、リソースプールは1つまたは複数の連続するサブチャネルで構成される。サブチャネルは1つまたは複数の連続するPRB(Physical Resource Block)で構成される。サブチャネルの数とサブチャネルのサイズは、上位層パラメータによって設定される。
 サブチャネルは、サイドリンクにおける周波数軸のリソース割当単位として用いられる。サイドリンク送信のサブチャネルアサインメントは、SCIに含まれる周波数リソースアサインメントによって決定される。サブチャネルは周波数の低い順番にインデックスが付けられる。
 リソースプールとして設定されるスロットは、ビットマップによって指示される。ビットマップの各ビットは、サイドリンクのリソースプールとして設定可能なスロットに対応する。例えば、ビットの値が1を示す場合、対応するスロットはリソースプールとして設定され、ビットの値が0を示す場合、対応するスロットはリソースプールとして設定されない。ビットマップの長さは上位層によって設定される。
 S-SS(Sidelink-Synchronization Signal)/PSBCH(Physical Sidelink Broadcast Channel)ブロックを含むスロットはリソースプールとして設定されない。また、所定個数の上りリンクシンボルを準静的に含まないスロットはリソースプールとして設定されない。また、予約スロットはリソースプールとして設定されない。
 なお、リソースプールを設定する装置は、BS以外の装置であってもよい。BS以外の装置としては、例えば、代表のUE(プライマリ端末装置、又は、マスター端末装置)が挙げられる。
<3-4.サイドリンクリソース割り当て方式>
 サイドリンクへのリソース割り当ての方式としては、リソース割当モード1(Sidelink Resource allocation mode 1)と、リソース割当モード2(Sidelink Resource allocation mode 2)と、がある。リソース割当モード1は、UEがサイドリンク物理チャネル(PSCCH、PSSCH)でデータを送信するためのリソースを、BSが割り当てる方式である。リソース割当モード2は、UEがサイドリンク物理チャネルでデータを送信するためのリソースを、UE自身がセンシングを行って選択する方式である。以下、これらリソース割当モードについて詳細に説明する。
 (1)リソース割当モード1
 リソース割当モード1では、UEに送信パケットが発生すると、当該パケットの送信に使用すべきリソースを、BSがリソースプールの中から選択して割り当てる。
 リソース割当モード1では、BSから送られる動的グラントまたはRRCシグナリングによって、サイドリンクの送信に用いられるリソースが指定される。具体的には、リソース割当モード1では、PSSCH送信およびPSCCH送信に対して、動的グラント、コンフィグアードグラントタイプ1、および、コンフィグアードグラントタイプ2がサポートされる。サイドリンク動的グラントにおいて、PSSCH送信は、DCIフォーマット3_0によってスケジュールされる。サイドリンクコンフィグアードグラントタイプ1において、PSSCH送信のリソースは、RRCシグナリングによって割り当てられる。サイドリンクコンフィグアードグラントタイプ2において、コンフィグアードグラントは、DCIフォーマット3_0によってアクティベートされる。そして、PSSCH送信は、RRCシグナリングによって指定されたリソースを用いて行われる。
 リソース割当モード1では、送信パケットが発生する度にBSによりリソース割り当てが行われるので、サイドリンク通信間の衝突頻度を低減させることができる。一方で、BSとUEとの間のシグナリングオーバーヘッドが多く要求される。
 (2)リソース割当モード2
 リソース割当モード2では、リソースプールがUEに予め割り当てられる。または、リソース割当モード2では、リソースプールがBS/ネットワークによって割り当てられる。
 リソース割当モード2において、UEは、センシングウィンドウ内における干渉パターンの測定結果や、当該センシングウィンドウ内におけるサイドリンクリソースの予約状況に基づき、リソース選択ウィンドウ内におけるサイドリンクリソースの選択や、将来のサイドリンクリソースの予約を行うことができる。UEは、当該予測の結果を利用することで、当該パケットの送信に利用可能なサイドリンクリソース、即ち、他のパケットの送信に利用されないことが予測されるサイドリンクリソースの選択や予約が可能となる。
 リソース割当モード2では、BSとUE間のシグナリングオーバーヘッドが少ない一方で、パケットの衝突が発生し得る。
 リソース割当モード2では、リソース割当モードが以下の4種類に分類される。
 ・リソース割当モード2(a)
 ・リソース割当モード2(b)
 ・リソース割当モード2(c)
 ・リソース割当モード2(d)
 リソース割当モード2(a)は、UEが送信サイドリンクリソースを自律的に選択するモードである。リソース割当モード2(b)は、UEが他の送信端末のサイドリンクリソース選択を補助するモードである。リソース割当モード2(c)は、コンフィグアードグラント(Configured grant)によりサイドリンク送信が行われるモードである。リソース割当モード2(d)は、端末装置が他のUEのサイドリンク送信をスケジュールするモードである。
 以下、上記4種類のリソース割当モードを詳細に説明する。
 ・リソース割当モード2(a)
 リソース割当モード2(a)では、UEでパケットが発生すると、当該パケットの送信に使用するサイドリンクリソースを、UEがリソースプールの中から自律的に選択する。パケットを送信するUEは、まず、当該パケットの送信に利用するサイドリンクリソースをリソースプール内から発見するためにセンシングを行う。次いで、UEは、当該センシングの結果に基づき、当該リソースプール内からのサイドリンクリソースの選択を行う。そして、UEは、選択したサイドリンクリソースを利用してパケットの送信を行う。また、このときUEは、必要に応じて、以降におけるパケットの送信に利用するサイドリンクリソースの予約を行う。リソース割当モード2(a)は、トランスポートブロックが異なる複数のサイドリンク送信に対してリソースが選択される準持続的方法と、各トランスポートのサイドリンク送信に対して都度リソースが選択される動的方法の、両方に適用することができる。
 ・リソース割当モード2(b)
 リソース割当モード2(b)では、UEが他の送信端末のサイドリンクリソースの選択を補助する。
 ・リソース割当モード2(c)
 リソース割当モード2(c)では、UEにサイドリンク送信パターンが設定される。UEは、設定されたサイドリンク送信パターンに従って、送信に用いられるサイドリンクリソースを選択する。サイドリンク送信パターンは時間および周波数のリソースのサイズおよびポジションとリソース数によって定義される。サイドリンク送信パターンは複数設定することができる。1つのサイドリンク送信パターンのみが設定された場合、UEはセンシングを行わない。一方で、複数のサイドリンク送信パターンが設定された場合、UEはセンシングを行い、センシング結果に基づいてサイドリンク送信パターンを選択する。カバレッジ外運用において、各々のサイドリンクリソースプールで定義された1つまたは複数のサイドリンク送信パターンが予め設定される。また、カバレッジ内運用において、各々のサイドリンクリソースプールで定義された1つまたは複数のサイドリンク送信パターンがBSから設定される。
 ・リソース割当モード2(d)
 リソース割当モード2(d)は、3つ以上のUEで構成されるグループベースサイドリンク通信において適用される。図11は、リソース割当モード2(d)を説明するための図である。グループ内では、代表のUE(マスター端末装置、又はプライマリ端末装置)が定義される。代表のUEは、グループ内の他のUE(スレーブ端末装置、セカンダリ端末装置、又はメンバー端末装置)の情報をBSに報告する。BSはグループ内の各UEのリソースプール設定やリソース設定を代表のUEを経由して提供する。リソース割当モード2(d)では、メンバーUEは、BSとの直接接続を必要としないため、Uuリンク(BSとUEとの間の通信リンク)のシグナリングオーバーヘッドを低減することができる。代表のUEとなり得るUEおよび提供可能な機能は、UEのケイパビリティに依存して決まる。代表のUEは、メンバーUEに対して、所定のアシスト情報を提供することができる。アシスト情報の一例として、リソースプール設定、衝突に関する情報、COT共有情報、CSI、混雑度に関する情報、などが挙げられる。
<3-5.サイドリンク通信におけるセンシング>
 リソース割当モード2において、センシングプロシージャがサポートされる。サイドリンク通信におけるセンシングとして、他のUEからのSCI復号、および/または、サイドリンクリソースの測定が用いられる。
 SCI復号によるセンシングでは、UEは、他のUEから送信されたSCIに含まれる使用予定のサイドリンクリソースの情報を取得する。SCIの情報に基づいて、UEは、他のUEが使用予定のリソースを避けて送信に用いるサイドリンクリソースを決定する。
 サイドリンクリソースの測定によるセンシングでは、UEは、サイドリンクDMRS(Demodulation RS)に基づいてL1(Layer 1)サイドリンクRSRP(Reference Signal Received Power)測定を行う。測定したRSRPが所定の閾値より高い場合、UEは、測定したサイドリンクリソースが他のUEによって送信に利用されていると認識し、該サイドリンクリソースを避けて送信に用いるサイドリンクリソースを決定する。
 このように、上記のセンシングプロシージャによる結果に基づいて、UEはサイドリンクリソースを選択または再選択を行う。
<3-6.本実施形態のサイドリンク通信について>
 本実施形態における従来動作としてのサイドリンク通信は、LTE V2XおよびNR V2Xの無線アクセス方式に基づいていてもよい。ここで、本実施形態では、1つのサイドリンク送信は、ある送信端末(Tx UE)から所定の受信端末(Rx UE)へユニキャスト、グループキャスト、またはブロードキャストで送信されるサイドリンクのチャネルおよび/または信号のまとまりとして把握される。すなわち、図1の例では、1スロット内の全てのシンボルで送信されるAGC、PSCCH、PSSCH、DMRS、及びGUARDが従来動作としての1つのサイドリンク送信となる。また、図2の例では、1スロット内の1番目から11番目のシンボルで送信されるAGC、PSCCH、PSSCH、DMRS、GUARDが1つのサイドリンク送信となり、1スロット内の12番目から14番目のシンボルで送信されるAGC、PSFCH、GUARDが1つのサイドリンク送信となる。なお、同じ送信端末(Tx UE)が連続して複数のサイドリンク送信をすることも可能である。この場合、それらの送信は別のサイドリンク送信とする。
<<4.通信システムの動作>>
 以上、サイドリンク通信について説明したが、次に、通信システム1の動作を説明する。
<4-1.通信システムの動作の概要>
 図12は、本実施形態で想定する通信環境の一例を示す図である。本実施形態では、一例として、第1の端末装置(端末装置30)はURLLC端末であり、第2の端末装置(端末装置40)はNon-URLLC端末であるものとする。そして、本実施形態では、URLLC端末およびNon-URLLC端末それぞれの送信局および受信局が1つの環境に存在することを想定する。
 各サイドリンク端末は、基地局20から同期といった補助を受けつつサイドリンク通信を実施する。URLLC端末の送信局及び受信局は、1つのスロットの1つの無線リソースに複数の端末装置による信号が存在することが可能なサイドリンク通信方式(例えば、スロット境界に依存しない通信方式)に基づきサイドリンク通信を行っている。また、Non-URLLC端末の送信局及び受信局は、1つのスロットの1つの無線リソースに1つの端末装置による信号が存在するサイドリンク通信方式(例えば、スロット境界に準拠した通信方式)でサイドリンク通信を行っている。なお、送信局及び受信局は、そのタイミングで送信或いは受信している通信装置のことである。送信局及び受信局は、観測タイミングによって入れ替わることがある。
 なお、以下の説明では、URLLC端末の送信局及び受信局が使用するサイドリンク通信方式(1つのスロットの1つの無線リソースに複数の端末装置による信号が存在することが可能なサイドリンク通信方式)のことを第1のサイドリンク通信方式ということがあるが、第1のサイドリンク通信方式はこの例に限定されない。また、Non-URLLC端末の送信局及び受信局が使用するサイドリンク通信方式(1つのスロットの1つの無線リソースに複数の端末装置による信号が存在するサイドリンク通信方式)のことを第2のサイドリンク通信方式ということがあるが、第2のサイドリンク通信方式はこの例に限定されない。
 まず、URLLC端末は、第1のサイドリンク通信方式に基づき送信される信号に関する制御情報(以下、第1の制御情報ともいう。)を取得する。例えば、URLLC端末は、URLLC用の制御情報(第1の制御情報)についてセンシング動作を行う。URLLC端末は、送信動作を行っていない間、このセンシング動作を行う。なお、URLLC端末は、送信動作を行っている間も、センシング動作を行うよう構成されていてもよい。ここでセンシング動作とは、端末装置が、他の端末装置が伝送する制御信号を受信し、その中の制御情報を取得する動作のことをいう。この動作により端末装置は他の端末装置の無線リソースの利用状況を知ることができる。
 URLLC端末の送信局は、トラヒックが発生した場合、これまでセンシングした他のURLLC端末のスケジュール情報を基にサイドリンク送信に使用する無線リソースを選択する。その後、URLLC端末の送信局は、選択したリソースの情報に基づいて第1の制御情報を生成し、生成した第1の制御情報を所定の無線リソース位置に配置して送信する。このとき、URLLC端末の送信局は、URLLCトラヒックを送信するための無線リソースに含ませる形で第1の制御情報を送信してもよい。また、URLLC端末の送信局は、URLLCトラヒックを送信するための無線リソースとは異なる無線リソースを使って第1の制御情報を送信してもよい。
 本実施形態では、URLLC端末の送信局は、第1の制御情報に関する第2の制御情報を生成する。第2の制御情報には、例えば、URLLC端末の送信局がURLLC信号をサイドリンク送信するために選択したリソースの情報(第1の制御情報に関する情報)が含まれていてもよい。また、第2の制御情報には、URLLC端末が第1のサイドリンク通信方式に基づき送信する信号の送信タイミングの情報が含まれていてもよい。また、第2の制御情報には、URLLC端末が第1のサイドリンク通信方式に基づく通信で使用するスロットの情報が含まれていてもよい。また、第2の制御情報には、URLLC端末が第1のサイドリンク通信方式に基づき行う信号の送信を1スロットあたりの干渉量に換算した情報が含まれていてもよい。また、第2の制御情報には、URLLC端末が第1のサイドリンク通信方式に基づく通信(例えば、URLLCトラヒックの送信)のために予約したリソースの情報が含まれていてもよい。
 なお、第1の制御情報は、例えば、他のURLLC端末から収集した制御情報、及び/又は、自身が他のURLLC端末に送信するために生成した制御情報である。URLLC端末の送信局は、第1の制御情報そのものを第2の制御情報としてもよいし、複数のURLLC端末から収集した複数の第1の制御情報を1つの情報に統合したものを第2の制御情報としてもよい。
 そして、URLLC端末の送信局は、Non-URLLC端末宛に第2の制御情報を送信する。このとき、URLLC端末の送信局は、第2の制御情報を前記第2のサイドリンク通信方式に基づいてNon-URLLC端末が受信可能なチャネルを通じて通知する。第2の端末装置が受信可能なチャネルは、PSCCH(Physical Sidelink Control Channel)であってもよいし、PSSCH(Physical Sidelink Shared Channel)であってもよい。
 なお、第2の制御情報を送信する通信装置は、URLLC端末に限られず、例えば、基地局又はNon-URLLC端末であってもよい。
 第2の制御情報の伝送形態は、どの通信装置が第2の制御情報を送信するかを基準に、以下の(A1)~(A5)の5つの形態に分類される。
 (A1)URLLC端末の送信局が送信する場合
 (A2)代表のURLLC端末の送信局が送信する場合
 (A3)URLLC端末の受信局が送信する場合
 (A4)基地局20が送信する場合
 (A5)URLLC端末の制御情報を受信可能なNon-URLLC端末が送信する場合
 以下、上記5つの形態をそれぞれ説明する。
<4-2.第1の形態>
 まず、URLLC端末の送信局がNon-URLLC端末に第2の制御情報を送信する場合(上述の(A1)の場合)について説明する。
 第1の形態では、第2の制御情報を送信する端末装置は、他のURLL端末(第1の端末装置)と第1のサイドリンク通信方式に基づいて通信可能なURLLC端末(第1の端末装置)である。より具体的には、第2の制御情報を送信する端末装置は、他のURLLC端末から第1の制御情報を取得するURLLC端末の送信局である。URLLC端末の送信局は、自身が第1のサイドリンク通信方式に基づき他のURLLC端末に送信する信号に関する第1の制御情報を取得する。そして、URLLC端末の送信局は、Non-URLLC端末(第2の端末装置)に対して第1の制御情報に関する第2の制御情報を通知する。
 図13は、URLLC端末の送信局が第2の制御情報を送信する場合のシーケンス図である。以下、図13のシーケンス図を参照しながら、第1の形態の通信システム1の動作を詳細に説明する。
 URLLC端末の送信局の内部でトラヒックが発生すると、URLLC端末の送信局は、URLLC信号をサイドリンク送信するためのリソースを選択する。リソースを選択したURLLC端末の送信局は、Non-URLLC端末宛にURLLC信号に関する制御情報(第2の制御情報)を送信する。第2の制御情報には、例えば、URLLC端末の送信局がURLLC信号をサイドリンク送信するために選択したリソースの情報(第1の制御情報に関する情報)が含まれていてもよい。第2の制御情報は第1の制御情報そのままであってもよい。URLLC端末の送信局は、この第2の制御情報を、第2のサイドリンク通信方式に準拠した通信方式で送信する。例えば、URLLC端末の送信局は、Non-URLLC端末にも取得できるように、スロット境界に準拠した位置で第2の制御情報を送信する。
<4-3.第2の形態>
 次に、代表のURLLC端末の送信局がNon-URLLC端末に第2の制御情報を送信する場合(上述の(A2)の場合)について説明する。
 第2の形態では、第2の制御情報を送信する端末装置は、複数のURLL端末(第1の端末装置)の1つである。例えば、第2の制御情報を送信する端末装置は、複数のURLL端末の中から選択された代表端末である。代表端末は、複数のURLL端末それぞれの第1の制御情報を取得する。例えば、代表端末は、自身の第1の制御情報を自身の記憶部から取得するとともに、他のURLL端末の第1の制御情報を取得する。代表端末は、Non-URLLC端末(第2の端末装置)に対して、複数のURLL端末それぞれの第1の制御情報に基づき生成された第2の制御情報を通知する。
 図14は、代表のURLLC端末の送信局が第2の制御情報を送信する場合のシーケンス図である。以下、図14のシーケンス図を参照しながら、第2の形態の通信システム1の動作を詳細に説明する。
 URLLC端末のうち特定の端末が代表端末(例えば、マスター端末装置、又はプライマリ端末装置)として選択される。基地局が代表端末を決定してもよいし、複数のURLLC端末が自律的に代表端末を決定してもよい。
 代表端末が基地局20により決定される場合の通信システム1の動作は、例えば、次のとおりである。例えば、基地局20は複数のURLLC端末それぞれの位置情報などに基づいて代表端末を選択する。そして、基地局20は、選択した端末に対して代表端末として選択されたことを通知する信号を送信する。
 また、URLLC端末が自律的に決定される場合の通信システム1の動作は、例えば、次のとおりである。例えば、URLLC端末は、周囲の端末に対して、すでに決定された代表端末が存在するかを確認する信号を送信する。代表端末がすでに存在する場合、この信号を受信した代表端末は代表端末が存在することを通知する信号を送信する。代表端末が存在しない場合、URLLC端末は自身が代表端末となる。
 代表端末に決定したURLLC端末は、周辺の他のURLLC端末(例えば、スレーブ端末装置、セカンダリ端末装置、又はメンバー端末装置)が送信する第1の制御情報をセンシングする。その後、代表端末は、収集した第1の制御情報に基づき生成した第2の制御情報をNon-URLLC端末宛に送信する。第2の制御情報は、複数の第1の制御情報を1つの情報に統合したものであってもよい。また、第2の制御情報は、第1の制御情報そのままであってもよい。この場合、第1の制御情報が複数あるのであれば、第2の制御情報は複数あってもよい。
 URLLC端末の送信局は、この一又は複数の第2の制御情報を、第2のサイドリンク通信方式に準拠した通信方式で送信する。例えば、URLLC端末の送信局は、Non-URLLC端末にも取得できるように、スロット境界に準拠した位置で第2の制御情報を送信する。
<4-4.第3の形態>
 次に、URLLC端末の受信局がNon-URLLC端末に第2の制御情報を送信する場合(上述の(A3)の場合)について説明する。
 第3の形態では、第2の制御情報を送信する端末装置は、他のURLLC端末と通信可能なURLLC端末(第1の端末装置)である。より具体的には、第2の制御情報を送信する端末装置は、他のURLLC端末の送信局から第1の制御情報を取得するURLLC端末の受信局である。URLLC端末の受信局は、他のURLLC端末が第1のサイドリンク通信方式に基づきURLLC端末の受信局に送信する信号に関する第1の制御情報を取得する。URLLC端末の受信局は、Non-URLLC端末(第2の端末装置)に対して第1の制御情報に関する第2の制御情報を通知する。
 図15は、URLLC端末の受信局が第2の制御情報を送信する場合のシーケンス図である。以下、図15のシーケンス図を参照しながら、第3の形態の通信システム1の動作を詳細に説明する。
 URLLC端末の送信局の内部でトラヒックが発生すると、URLLC端末の送信局は、URLLC信号をサイドリンク送信するためのリソースを選択する。リソースを選択したURLLC端末の送信局は、URLLC端末の受信局宛にURLLC信号に関する制御情報(第1の制御情報)を送信する。
 第1の制御情報を受信したら、URLLC端末の受信局は、受信した第1の制御情報に基づいて第2の制御情報を生成する。第2の制御情報には、例えば、URLLC端末の送信局がURLLC信号をサイドリンク送信するために選択したリソースの情報(第1の制御情報に関する情報)が含まれていてもよい。第2の制御情報は第1の制御情報そのままであってもよい。
 そして、URLLC端末の受信局は、Non-URLLC端末宛に第2の制御情報を送信する。URLLC端末の送信局は、第2の制御情報を、第2のサイドリンク通信方式に準拠した通信方式で送信する。例えば、URLLC端末の送信局は、Non-URLLC端末にも取得できるように、スロット境界に準拠した位置で第2の制御情報を送信する。
<4-5.第4の形態>
 次に、基地局20がNon-URLLC端末に第2の制御情報を送信する場合(上述の(A2)の場合)について説明する。
 第4の形態では、URLLC端末ではなく、基地局20がNon-URLLC端末に第2の制御情報を送信する。基地局20は、URLLC端末のサイドリンク通信に関する処理を行う。基地局20は、一又は複数のURLL端末(第2の端末装置)の第1の制御情報を取得する。代表端末は、Non-URLLC端末(第2の端末装置)に対して、URLL端末の第1の制御情報に基づき生成された第2の制御情報を通知する。
 図16は、基地局20が第2の制御情報を送信する場合のシーケンス図である。以下、図16のシーケンス図を参照しながら、第4の形態の通信システム1の動作を詳細に説明する。
 URLLC端末の送信局の内部でトラヒックが発生すると、URLLC端末の送信局は、URLLC信号をサイドリンク送信するためのリソースを選択する。リソースを選択したURLLC端末の送信局は、基地局20宛にURLLC信号に関する制御情報(第1の制御情報)を送信する。
 第1の制御情報を受信したら、基地局20は、受信した第1の制御情報に基づいて第2の制御情報を生成する。第2の制御情報には、例えば、URLLC端末の送信局がURLLC信号をサイドリンク送信するために選択したリソースの情報(第1の制御情報に関する情報)が含まれていてもよい。第2の制御情報は第1の制御情報そのままであってもよい。
 そして、基地局20は、Non-URLLC端末宛に第2の制御情報を送信する。URLLC端末の送信局は、第2の制御情報を、第2のサイドリンク通信方式に準拠した通信方式で送信する。例えば、URLLC端末の送信局は、Non-URLLC端末にも取得できるように、スロット境界に準拠した位置で第2の制御情報を送信する。
 複数のURLLC端末の送信局から第1の制御情報が送信された場合、基地局20は、それら複数のURLLC端末から収集した第1の制御情報に基づき第2の制御情報を生成する。そして、基地局20は、生成した第2の制御情報をNon-URLLC端末宛に送信する。第2の制御情報は、複数の第1の制御情報を1つの情報に統合したものであってもよい。また、第2の制御情報は、第1の制御情報そのままであってもよい。この場合、第1の制御情報が複数あるのであれば、第2の制御情報は複数あってもよい。なお、上述の<4-4.第3の形態>で説明したように、代表端末が複数のURLLC端末の第1の制御情報(或いは第2の制御情報)を送信するよう構成されていてもよい。この場合、基地局20は、代表端末から受信した第1の制御情報(或いは第2の制御情報)に基づいて生成された第2の制御情報をNon-URLLC端末宛に送信してもよい。
 なお、基地局20が予め複数のURLLC端末の第1の制御情報(URLLC信号に関する制御情報)を持っている場合もありうる。この場合、基地局は、URLLC端末の送信局から第1の制御情報を取得することなしに、Non-URLLC端末に対して第2の制御情報を送信する。基地局20がこの動作を実施する場合、URLLC端末のトラヒックは周期的なトラヒックであることが望ましい。そして、基地局20は、URLLC端末のURLLCトラヒック情報を定期的に収集してもよい。
<4-6.第5の形態>
 次に、URLLC端末の制御情報を受信可能なNon-URLLC端末が他のNon-URLLC端末に第2の制御情報を送信する場合(上述の(A5)の場合)について説明する。
 第5の形態では、第2の制御情報を送信する端末装置は、URLLC端末(第1の端末装置)が送信した第1の制御情報を第1のサイドリンク通信方式に基づき受信可能なNon-URLLC端末(第2の端末装置)である。Non-URLLC端末は、URLLC端末から前記第1の制御情報を取得する。そして、Non-URLLC端末は、他のNon-URLLC端末に対して第1の制御情報に関する第2の制御情報を通知する。
 図17は、URLLC端末の制御情報を受信可能なNon-URLLC端末が第2の制御情報を送信する場合のシーケンス図である。以下、図17のシーケンス図を参照しながら、第5の形態の通信システム1の動作を詳細に説明する。
 URLLC端末の送信局の内部でトラヒックが発生すると、URLLC端末の送信局は、URLLC信号をサイドリンク送信するためのリソースを選択する。リソースを選択したURLLC端末の送信局は、URLLC端末の受信局宛にURLLC信号に関する制御情報(第1の制御情報)を送信する。
 Non-URLLC端末は、URLLC端末の送信局が送信した第1の制御情報を受信する。第1の制御情報を受信したら、Non-URLLC端末は、受信した第1の制御情報に基づいて第2の制御情報を生成する。第2の制御情報には、例えば、URLLC端末の送信局がURLLC信号をサイドリンク送信するために選択したリソースの情報(第1の制御情報に関する情報)が含まれていてもよい。第2の制御情報は第1の制御情報そのままであってもよい。
 そして、Non-URLLC端末は、他のNon-URLLC端末宛に第2の制御情報を送信する。Non-URLLC端末は、第2の制御情報を、第2のサイドリンク通信方式に準拠した通信方式で送信する。例えば、Non-URLLC端末は、他のNon-URLLC端末にも取得できるように、スロット境界に準拠した位置で第2の制御情報を送信する。
<4-7.第2の制御情報の送信について>
 次に、Non-URLLC端末への第2の制御情報の送信について説明する。
 まず、第2の制御情報のリソースへの配置について説明する。第1~第5の形態で説明したように、第1の制御情報を取得した通信装置(URLLC端末、基地局20、又はNon-URLLC端末)は、第2の制御情報を、第2のサイドリンク通信方式に準拠した通信方式で送信する。このとき、通信装置は、規格で定義された従来の制御信号送信位置とは異なるOFDMシンボルを使って第2の制御情報を送信してもよい。図18は、従来の制御信号の位置とは異なる位置に第2の制御情報が配置された様子を示す図である。このとき、通信装置は、規格で定義された従来の制御信号送信位置と同じOFDMシンボルを使って第2の制御情報を送信してもよい。図19は、従来の制御信号の位置に第2の制御情報が配置された様子を示す図である。
 Non-URLLC端末は、上述した動作により送信された第2の制御情報に基づいてURLLC端末に関する干渉情報を取得する。これにより、Non-URLLC端末は、URLLC端末に関する制御情報を取得できるようになるので、より効率的なサイドリンク通信が可能となる。
 次に、Non-URLLC端末への第2の制御情報の送信タイミングについて説明する。Non-URLLC端末への第2の制御情報の送信は、URLLCトラヒックの伝送が実施される前またはURLLCトラヒックの伝送と同時に実施されてもよい。例えば、通信装置は、URLLCトラヒックを伝送するための無線リソースを決定した直後、Non-URLLC端末へ情報を送信可能になったタイミングで第2の制御情報を送信してもよい。また、通信装置は、Non-URLLC端末に対して第2の制御情報を繰り返し送信してもよい。この場合、通信装置は、一定周期、且つ、Non-URLLC端末へ情報を送信可能になったタイミングで第2の制御情報を送信してもよい。例えば、代表のURLLC端末の送信局や基地局が第2の制御情報を送信する通信装置であるとする。この場合、通信装置は一定周期毎に周囲のURLLC端末の送信局から第1の制御情報を収集する。そして、通信装置は、一定周期ごとに収集した第1の制御情報に基づき生成した第2の制御情報をNon-URLLC端末へ送信する。
 また、Non-URLLC端末への第2の制御情報の送信は、URLLCトラヒックの送信中に実施されてもよい。例えば、複数リソースを使用してURLLCトラヒックが送信される場合やURLLCトラヒックが繰り返し伝送されるような場合は、通信装置は、一部のURLLCトラヒックが送信された後に、Non-URLLC端末へ第2の制御情報を送信してもよい。
<4-8.制御情報の送信のまとめ>
 以下、本実施形態の制御情報の送信についてまとめる。
<4-8-1.第1の制御情報の送信について>
 URLLCトラヒックが発生した場合、URLLC端末の送信局は、所定のシンボルを使って、他のURLLC端末にURLLCトラヒックを送信するための制御情報を他の通信装置に送信する。このシンボルには、例えば、URLLC端末向けのPSCCH(第1の制御情報)が格納される。なお、第1の制御情報の宛先(他の通信装置)は、周辺のURLLC端末であってもよいし、基地局などのURLLC制御情報が受信可能な端末であってもよい。第1の制御情報が受信可能なのであれば、第1の制御情報の宛先(他の通信装置)は、Non-URLLC端末であってもよい。
 URLLC端末の送信局が送信する第1の制御情報には、以下の(B1)~(B3)に示す情報の少なくとも1つが含まれていてもよい。
 (B1)URLLCトラヒックを格納した信号の送信タイミングの情報
 (B2)URLLCトラヒック伝送で使用するシンボル数の情報
 (B3)URLLCトラヒック伝送用の予約情報(Reservation Information)
 ここで、(B1)の情報は、URLLCトラヒックを格納した信号を送信するスロット及びシンボルの情報である。この情報にはスロット及びOFDMのインデックス情報が格納される。
 (B2)の情報は、スロット内でのURLLCトラヒックに使用するOFDMシンボル数の情報である。
 (B3)の情報は、URLLCトラヒックと同じスロットのリソースで、又は次のスロット以降のリソースで、URLLCトラヒックを伝送する際に使用する無線リソースの情報である。この情報には、等間隔で使用する無線リソースの繰り返し回数が格納されてもよい。また、URLLCを伝送する際に異なるOFDMシンボル位置、サブチャネルが使用される場合には、それらの情報も格納されてもよい。
<4-8-2.第2の制御情報の送信について>
 Non-URLLC端末は、スロットの途中から送信されうるURLLCトラヒックのPSCCHを受信できない。換言すると、Non-URLLC端末は、URLLCトラヒックに対するSLセンシング(Sidelink Sensing)ができない。そのため、そのような場合でも、Non-URLLC端末が、SLセンシング(つまり、リソースの利用状況(Reservation状況)の把握)ができるように、第1の情報を送信又は受信可能な通信装置(例えば、URLLC端末、基地局20、又はNon-URLLC端末)は、Non-URLLC端末が受信可能なチャネル(例えば、PSCCH、及び/又は、PSSCH)を通じて、第1の制御情報に関する第2の制御情報を通知する。
 (1)第2の制御情報の送信に使用するチャネル
 第2の制御情報を送信するためのチャネルとしては、以下の(C1)及び(C2)が想定される。
 (C1)PSCCH
 つまり、通信装置は、物理レイヤのチャネルを通じて、物理レイヤの制御情報として第2の制御情報を送信する。通知するリソースの数が所定数より少ない場合、通信装置は、PSCCHで第2の制御情報を通知する。
 (C2)PSSCH
 つまり、通信装置は、MACまたはRRCレイヤのチャネルを通じて、MACまたはRRCレイヤの制御情報として制御情報を送信する。通知するリソースの数が所定数以上の場合、通信装置は、PSSCHで第2の制御情報を通知する。
 (2)第2の制御情報の送信に使用するリソース
 通信装置は、第2の制御情報を次のスロットに準拠した制御情報の送信タイミングで第2の制御情報を伝送してもよい。また、通信装置は、次のスロット以降の所定の時間・周波数リソースで第2の制御情報を送信してもよい。このとき、第2の制御情報を伝送するためのリソースは、RRCシグナリングにより設定されてもよい。このとき、通信装置には、送信されうるPSCCHのリソース(サブチャネル番号など)が設定されてもよい。
 (3)第2の制御情報を送信する端末装置
 第2の制御情報を送信する通信装置は、URLLC端末であってもよいし、基地局20であってもよい。また、第2の制御情報を送信する通信装置は、第1の情報を受信可能なNon-URLLC端末であってもよい。端末装置が第2の制御情報を送信する場合、第2の制御情報を送信する通信装置としては以下の(D1)及び(D2)が想定される。
 (D1)RRCシグナリングにより明示的に(explicitに)設定される、所定のURLLC端末
 (D2)所定の条件に基づいて暗黙的に(implicitに)決まる、所定の端末装置
 なお、(D2)の端末装置としては、例えば、前のスロット内の所定のサブチャネルを用いて送信したURLLC端末が想定される。また、(D2)の端末装置としては、例えば、前のスロットで送信した全てのURLLC端末が想定される。
 (4)第2の制御情報のコンテンツ
 通信装置が送信する第2の制御情報には、以下の(E1)~(E5)に示す情報の少なくとも1つが含まれていてもよい。
 (E1)URLLCトラヒックを格納した信号の送信タイミングの情報
 (E2)URLLCトラヒック伝送で使用するシンボル数の情報
 (E3)URLLCトラヒック伝送用の予約情報(Reservation Information)
 (E4)URLLCトラヒックを格納した信号を伝送するスロットの干渉量の情報
 (E5)URLLCトラヒックを格納した複数の信号を統合した情報
 ここで、(E1)~(E3)の情報は、上述の(B1)~(B3)の情報と同様である。なお、(E3)の情報は、第2の制御情報が送信されるスロットより前のスロットのリソースに対するURLLCトラヒック伝送用の予約情報であってもよい。
 (E4)の情報は、URLLCトラヒックを格納した信号の干渉をスロット単位での干渉量に変換した情報である。例えば、(E4)の情報は、URLLCトラヒックを伝送するシンボルのシンボル数に基づき算出される1スロットあたりの干渉量の情報である。
 (E5)の情報は、例えば、単一の端末装置から伝送された複数の信号を統合した情報である。また、(E5)の情報は、例えば、複数の端末装置から伝送された複数の信号を統合した情報である。通信装置は、(E5)の情報を一つの信号としてNon-URLLC端末に送信してもよい。(E5)の情報を送信する通信装置は、基地局であってもよいし、複数の端末装置の中から選ばれた端末装置であってもよい。
<<5.変形例>>
 上述の実施形態は一例を示したものであり、種々の変更及び応用が可能である。
 例えば、本実施形態の技術は、ライセンス帯を使用したサイドリンク通信のみならず、アンライセンス帯を使用したサイドリンク通信にも適用可能である。
 また、本実施形態の技術は、サイドリンク通信に限られず、アップリンク通信、ダウンリンク通信等、他のセルラー通信にも適用可能である。この場合、上述の実施形態で登場した「サイドリンク通信」の記載は「セルラー通信」に置き換えてもよい。この場合、第1の端末装置及び第2の端末装置の一方は、基地局20(又は中継局)であってもよい。第1の端末装置及び第2の端末装置の双方が、基地局20(及び/又は中継局)であってもよい。
 また、上述の実施形態では、第1のサイドリンク通信方式は、1つのスロットの1つの無線リソースに複数の端末装置による信号が存在することが可能なサイドリンク通信方式であるものとした。また、上述の実施形態では、第2のサイドリンク通信方式は、1つのスロットの1つの無線リソースに複数の端末装置による信号が存在するサイドリンク通信方式であるものとした。しかし、第2のサイドリンク通信方式はこの例に限定されない。
 例えば、第1のサイドリンク通信方式は、第1の基準で定まる1つの無線リソース(リソースブロック)に複数の端末装置による信号が存在することが可能なサイドリンク通信方式であってもよい。また、第2のサイドリンク通信方式は、第1の基準とは異なる第2の基準で定まる1つの無線リソース(リソースブロック)に複数の端末装置による信号が存在するサイドリンク通信方式であってもよい。第1の基準及び第2の基準は、異なるセルラー通信規格であってもよい。例えば、第1の基準及び第2の基準は、のLTE規格で規定された基準であってもよいし、5G規格で規定された基準であってもよいし、他の基準(例えば、5G以降のセルラー通信規格で規定される基準)であってもよい。
 また、サイドリンク通信方式には、第1のサイドリンク通信方式及び第2のサイドリンク通信方式以外のサイドリンク通信方式(例えば、第3のサイドリンク通信方式、第4のサイドリンク通信方式、・・・)があってもよい。この場合にも、本実施形態の技術が適用可能である。
 また、上述の実施形態では、通信装置は、第1の端末装置(或いは通信装置自身)が第1のサイドリンク通信方式に基づき送信する第1の制御情報を取得し、第1の制御情報に基づく第2の制御情報を第2の端末装置に送信した。通信装置が取得/送信対象とする情報は制御情報に限られない。例えば、通信装置は、第1の端末装置(或いは通信装置自身)が第1のサイドリンク通信方式に基づき送信する第1の情報を取得し、第1の情報に基づく第2の情報を第2の端末装置に送信してもよい。このとき、第1の情報及び第2の情報は、制御情報以外の情報であってもよい。例えば、第1の情報及び第2の情報は、ユーザデータであってもよい。
 本実施形態の管理装置10、基地局20、端末装置30、端末装置40、を制御する制御装置は、専用のコンピュータシステムにより実現してもよいし、汎用のコンピュータシステムによって実現してもよい。
 例えば、上述の動作を実行するための通信プログラムを、光ディスク、半導体メモリ、磁気テープ、フレキシブルディスク等のコンピュータ読み取り可能な記録媒体に格納して配布する。そして、例えば、該プログラムをコンピュータにインストールし、上述の処理を実行することによって制御装置を構成する。このとき、制御装置は、管理装置10、基地局20、端末装置30、端末装置40の外部の装置(例えば、パーソナルコンピュータ)であってもよい。また、制御装置は、管理装置10、基地局20、端末装置30、端末装置40の内部の装置(例えば、制御部13、制御部23、制御部33、制御部43)であってもよい。
 また、上記通信プログラムをインターネット等のネットワーク上のサーバ装置が備えるディスク装置に格納しておき、コンピュータにダウンロード等できるようにしてもよい。また、上述の機能を、OS(Operating System)とアプリケーションソフトとの協働により実現してもよい。この場合には、OS以外の部分を媒体に格納して配布してもよいし、OS以外の部分をサーバ装置に格納しておき、コンピュータにダウンロード等できるようにしてもよい。
 また、上記実施形態において説明した各処理のうち、自動的に行われるものとして説明した処理の全部又は一部を手動的に行うこともでき、あるいは、手動的に行われるものとして説明した処理の全部又は一部を公知の方法で自動的に行うこともできる。この他、上記文書中や図面中で示した処理手順、具体的名称、各種のデータやパラメータを含む情報については、特記する場合を除いて任意に変更することができる。例えば、各図に示した各種情報は、図示した情報に限られない。
 また、図示した各装置の各構成要素は機能概念的なものであり、必ずしも物理的に図示の如く構成されていることを要しない。すなわち、各装置の分散・統合の具体的形態は図示のものに限られず、その全部又は一部を、各種の負荷や使用状況などに応じて、任意の単位で機能的又は物理的に分散・統合して構成することができる。なお、この分散・統合による構成は動的に行われてもよい。
 また、上述の実施形態は、処理内容を矛盾させない領域で適宜組み合わせることが可能である。また、上述の実施形態のフローチャートに示された各ステップは、適宜順序を変更することが可能である。
 また、例えば、本実施形態は、装置またはシステムを構成するあらゆる構成、例えば、システムLSI(Large Scale Integration)等としてのプロセッサ、複数のプロセッサ等を用いるモジュール、複数のモジュール等を用いるユニット、ユニットにさらにその他の機能を付加したセット等(すなわち、装置の一部の構成)として実施することもできる。
 なお、本実施形態において、システムとは、複数の構成要素(装置、モジュール(部品)等)の集合を意味し、全ての構成要素が同一筐体中にあるか否かは問わない。従って、別個の筐体に収納され、ネットワークを介して接続されている複数の装置、及び、1つの筐体の中に複数のモジュールが収納されている1つの装置は、いずれも、システムである。
 また、例えば、本実施形態は、1つの機能を、ネットワークを介して複数の装置で分担、共同して処理するクラウドコンピューティングの構成をとることができる。
<<6.むすび>>
 以上説明したように、本開示の一実施形態によれば、通信システム1は、第1のサイドリンク通信方式に基づく通信が可能な端末装置30(例えば、URLLC端末)と、第1のサイドリンク通信方式とは異なる第2のサイドリンク通信方式に基づく通信が可能な端末装置40(例えば、Non-URLLC端末)と、を備える。端末装置30は、第1のサイドリンク通信方式に基づき送信される信号に関する第1の制御情報を取得する。そして、端末装置30は、端末装置40に対して第1の制御情報に関する第2の制御情報を通知する。例えば、端末装置30は、第2の制御情報を第2のサイドリンク通信方式に基づいて端末装置40が受信可能なチャネルを通じて通知する。
 これにより、端末装置40が端末装置30の制御情報を認識できるようになるので、端末装置30と端末装置40との間でサイドリンク通信の調整(例えば、無線リソースの利用の調整)がうまく行われるようになる。その結果、通信システム1は、高い通信パフォーマンスのサイドリンク通信を実現できる。
 以上、本開示の各実施形態について説明したが、本開示の技術的範囲は、上述の各実施形態そのままに限定されるものではなく、本開示の要旨を逸脱しない範囲において種々の変更が可能である。また、異なる実施形態及び変形例にわたる構成要素を適宜組み合わせてもよい。
 また、本明細書に記載された各実施形態における効果はあくまで例示であって限定されるものでは無く、他の効果があってもよい。
 なお、本技術は以下のような構成も取ることができる。
(1)
 第1のサイドリンク通信方式に基づく通信が可能な第1の端末装置と通信可能な端末装置であって、
 前記第1のサイドリンク通信方式に基づき送信される信号に関する第1の制御情報を取得する取得部と、
 前記第1のサイドリンク通信方式とは異なる第2のサイドリンク通信方式に基づく通信を行う第2の端末装置に対して前記第1の制御情報に関する第2の制御情報を通知する通知部と、
 を備える端末装置。
(2)
 前記第1のサイドリンク通信方式は、1つのスロットの1つの無線リソースに複数の端末装置による信号が存在することが可能なサイドリンク通信方式であり、
 前記第2のサイドリンク通信方式は、1つのスロットの1つの無線リソースに1つの端末装置による信号が存在するサイドリンク通信方式である、
 前記(1)に記載の端末装置。
(3)
 前記通知部は、前記第2の制御情報を前記第2のサイドリンク通信方式に基づいて前記第2の端末装置が受信可能なチャネルを通じて通知する、
 前記(2)に記載の端末装置。
(4)
 前記第2の端末装置が受信可能なチャネルには、PSCCH(Physical Sidelink Control Channel)が含まれる、
 前記(3)に記載の端末装置。
(5)
 前記第2の端末装置が受信可能なチャネルには、PSSCH(Physical Sidelink Shared Channel)が含まれる、
 前記(3)又は(4)に記載の端末装置。
(6)
 前記第1の制御情報には、前記第1の端末装置が前記第1のサイドリンク通信方式に基づき送信する信号の送信タイミングの情報が含まれる、
 前記(2)~(5)のいずれかに記載の端末装置。
(7)
 前記第1の制御情報には、前記第1の端末装置が前記第1のサイドリンク通信方式に基づく通信で使用するシンボル数の情報が含まれる、
 前記(2)~(6)のいずれかに記載の端末装置。
(8)
 前記第2の制御情報には、前記第1の端末装置が前記第1のサイドリンク通信方式に基づく通信に利用するリソースに関する情報が含まれる、
 前記(2)~(7)のいずれかに記載の端末装置。
(9)
 前記第2の制御情報には、前記第1の端末装置が前記第1のサイドリンク通信方式に基づき送信する信号の送信タイミングの情報が含まれる、
 前記(2)~(8)のいずれかに記載の端末装置。
(10)
 前記第2の制御情報には、前記第1の端末装置が前記第1のサイドリンク通信方式に基づく通信で使用するスロットの情報が含まれる、
 前記(2)~(9)のいずれかに記載の端末装置。
(11)
 前記第2の制御情報には、前記第1の端末装置が前記第1のサイドリンク通信方式に基づき行う信号の送信を1スロットあたりの干渉量に換算した情報が含まれる、
 前記(2)~(10)のいずれかに記載の端末装置。
(12)
 前記第2の制御情報には、複数の前記第1の制御情報を統合した情報が含まれる、
 前記(2)~(11)のいずれかに記載の端末装置。
(13)
 前記第2の制御情報には、前記第1の端末装置が前記第1のサイドリンク通信方式に基づく通信のために予約したリソースの情報が含まれる、
 前記(2)~(12)のいずれかに記載の端末装置。
(14)
 前記端末装置は、他の前記第1の端末装置と通信可能な第1の端末装置であり、
 前記取得部は、前記端末装置が前記第1のサイドリンク通信方式に基づき他の前記第1の端末装置に送信する信号に関する第1の制御情報を取得し、
 前記通知部は、前記第2の端末装置に対して前記第1の制御情報に関する第2の制御情報を通知する、
 前記(1)~(13)のいずれかに記載の端末装置。
(15)
 前記端末装置は、複数の前記第1の端末装置の1つであり、
 前記取得部は、複数の前記第1の端末装置それぞれの前記第1の制御情報を取得し、
 前記通知部は、前記第2の端末装置に対して、複数の前記第1の端末装置それぞれの前記第1の制御情報に基づき生成された前記第2の制御情報を通知する、
 前記(1)~(13)のいずれかに記載の端末装置。
(16)
 前記第2の制御情報には、複数の前記第1の端末装置それぞれの前記第1の制御情報を統合した情報が含まれる、
 前記(15)に記載の端末装置。
(17)
 前記端末装置は、他の前記第1の端末装置と通信可能な第1の端末装置であり、
 前記取得部は、他の前記第1の端末装置が前記第1のサイドリンク通信方式に基づき前記端末装置に送信する信号に関する前記第1の制御情報を取得し、
 前記通知部は、前記第2の端末装置に対して前記第1の制御情報に関する前記第2の制御情報を通知する、
 前記(1)~(13)のいずれかに記載の端末装置。
(18)
 前記端末装置は、前記第1のサイドリンク通信方式に基づき前記第1の制御情報を受信可能な第2の端末装置であり、
 前記取得部は、前記第1の端末装置から前記第1の制御情報を取得し、
 前記通知部は、他の前記第2の端末装置に対して前記第1の制御情報に関する前記第2の制御情報を通知する、
 前記(1)~(13)のいずれかに記載の端末装置。
(19)
 第1のサイドリンク通信方式に基づく通信が可能な第1の端末装置のサイドリンク通信に関する処理を行う基地局であって、
 前記第1のサイドリンク通信方式に基づき送信される信号に関する第1の制御情報を取得する取得部と、
 前記第1のサイドリンク通信方式とは異なる第2のサイドリンク通信方式に基づく通信を行う第2の端末装置に対して前記第1の制御情報に関する第2の制御情報を通知する通知部と、
 を備える基地局。
(20)
 第1のサイドリンク通信方式に基づく通信が可能な第1の端末装置と通信可能な端末装置と、前記第1の端末装置のサイドリンク通信に関する処理を行う基地局と、を備える通信システムであって、
 前記端末装置と前記基地局の一方は、
 前記第1のサイドリンク通信方式に基づき送信される信号に関する第1の制御情報を取得する取得部と、
 前記第1のサイドリンク通信方式とは異なる第2のサイドリンク通信方式に基づく通信を行う第2の端末装置に対して前記第1の制御情報に関する第2の制御情報を通知する通知部と、
 を備える通信システム。
 1 通信システム
 10 管理装置
 20 基地局
 30、40 端末装置
 11 通信部
 21、31、41 無線通信部
 12、22、32、42 記憶部
 13、23、33、43 制御部
 211、311、411 送信処理部
 212、312、412 受信処理部
 213、313、413 アンテナ
 231、331、431 取得部
 232、332、432 通知部

Claims (20)

  1.  第1のサイドリンク通信方式に基づく通信が可能な第1の端末装置と通信可能な端末装置であって、
     前記第1のサイドリンク通信方式に基づき送信される信号に関する第1の制御情報を取得する取得部と、
     前記第1のサイドリンク通信方式とは異なる第2のサイドリンク通信方式に基づく通信を行う第2の端末装置に対して前記第1の制御情報に関する第2の制御情報を通知する通知部と、
     を備える端末装置。
  2.  前記第1のサイドリンク通信方式は、1つのスロットの1つの無線リソースに複数の端末装置による信号が存在することが可能なサイドリンク通信方式であり、
     前記第2のサイドリンク通信方式は、1つのスロットの1つの無線リソースに1つの端末装置による信号が存在するサイドリンク通信方式である、
     請求項1に記載の端末装置。
  3.  前記通知部は、前記第2の制御情報を前記第2のサイドリンク通信方式に基づいて前記第2の端末装置が受信可能なチャネルを通じて通知する、
     請求項2に記載の端末装置。
  4.  前記第2の端末装置が受信可能なチャネルには、PSCCH(Physical Sidelink Control Channel)が含まれる、
     請求項3に記載の端末装置。
  5.  前記第2の端末装置が受信可能なチャネルには、PSSCH(Physical Sidelink Shared Channel)が含まれる、
     請求項3に記載の端末装置。
  6.  前記第1の制御情報には、前記第1の端末装置が前記第1のサイドリンク通信方式に基づき送信する信号の送信タイミングの情報が含まれる、
     請求項2に記載の端末装置。
  7.  前記第1の制御情報には、前記第1の端末装置が前記第1のサイドリンク通信方式に基づく通信で使用するシンボル数の情報が含まれる、
     請求項2に記載の端末装置。
  8.  前記第2の制御情報には、前記第1の端末装置が前記第1のサイドリンク通信方式に基づく通信に利用するリソースに関する情報が含まれる、
     請求項2に記載の端末装置。
  9.  前記第2の制御情報には、前記第1の端末装置が前記第1のサイドリンク通信方式に基づき送信する信号の送信タイミングの情報が含まれる、
     請求項2に記載の端末装置。
  10.  前記第2の制御情報には、前記第1の端末装置が前記第1のサイドリンク通信方式に基づく通信で使用するスロットの情報が含まれる、
     請求項2に記載の端末装置。
  11.  前記第2の制御情報には、前記第1の端末装置が前記第1のサイドリンク通信方式に基づき行う信号の送信を1スロットあたりの干渉量に換算した情報が含まれる、
     請求項2に記載の端末装置。
  12.  前記第2の制御情報には、複数の前記第1の制御情報を統合した情報が含まれる、
     請求項2に記載の端末装置。
  13.  前記第2の制御情報には、前記第1の端末装置が前記第1のサイドリンク通信方式に基づく通信のために予約したリソースの情報が含まれる、
     請求項2に記載の端末装置。
  14.  前記端末装置は、他の前記第1の端末装置と通信可能な第1の端末装置であり、
     前記取得部は、前記端末装置が前記第1のサイドリンク通信方式に基づき他の前記第1の端末装置に送信する信号に関する第1の制御情報を取得し、
     前記通知部は、前記第2の端末装置に対して前記第1の制御情報に関する第2の制御情報を通知する、
     請求項1に記載の端末装置。
  15.  前記端末装置は、複数の前記第1の端末装置の1つであり、
     前記取得部は、複数の前記第1の端末装置それぞれの前記第1の制御情報を取得し、
     前記通知部は、前記第2の端末装置に対して、複数の前記第1の端末装置それぞれの前記第1の制御情報に基づき生成された前記第2の制御情報を通知する、
     請求項1に記載の端末装置。
  16.  前記第2の制御情報には、複数の前記第1の端末装置それぞれの前記第1の制御情報を統合した情報が含まれる、
     請求項15に記載の端末装置。
  17.  前記端末装置は、他の前記第1の端末装置と通信可能な第1の端末装置であり、
     前記取得部は、他の前記第1の端末装置が前記第1のサイドリンク通信方式に基づき前記端末装置に送信する信号に関する前記第1の制御情報を取得し、
     前記通知部は、前記第2の端末装置に対して前記第1の制御情報に関する前記第2の制御情報を通知する、
     請求項1に記載の端末装置。
  18.  前記端末装置は、前記第1のサイドリンク通信方式に基づき前記第1の制御情報を受信可能な第2の端末装置であり、
     前記取得部は、前記第1の端末装置から前記第1の制御情報を取得し、
     前記通知部は、他の前記第2の端末装置に対して前記第1の制御情報に関する前記第2の制御情報を通知する、
     請求項1に記載の端末装置。
  19.  第1のサイドリンク通信方式に基づく通信が可能な第1の端末装置のサイドリンク通信に関する処理を行う基地局であって、
     前記第1のサイドリンク通信方式に基づき送信される信号に関する第1の制御情報を取得する取得部と、
     前記第1のサイドリンク通信方式とは異なる第2のサイドリンク通信方式に基づく通信を行う第2の端末装置に対して前記第1の制御情報に関する第2の制御情報を通知する通知部と、
     を備える基地局。
  20.  第1のサイドリンク通信方式に基づく通信が可能な第1の端末装置と通信可能な端末装置と、前記第1の端末装置のサイドリンク通信に関する処理を行う基地局と、を備える通信システムであって、
     前記端末装置と前記基地局の一方は、
     前記第1のサイドリンク通信方式に基づき送信される信号に関する第1の制御情報を取得する取得部と、
     前記第1のサイドリンク通信方式とは異なる第2のサイドリンク通信方式に基づく通信を行う第2の端末装置に対して前記第1の制御情報に関する第2の制御情報を通知する通知部と、
     を備える通信システム。
PCT/JP2023/041280 2022-11-28 2023-11-16 端末装置、基地局、及び通信システム WO2024116871A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-189275 2022-11-28
JP2022189275 2022-11-28

Publications (1)

Publication Number Publication Date
WO2024116871A1 true WO2024116871A1 (ja) 2024-06-06

Family

ID=91323665

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/041280 WO2024116871A1 (ja) 2022-11-28 2023-11-16 端末装置、基地局、及び通信システム

Country Status (1)

Country Link
WO (1) WO2024116871A1 (ja)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021090784A1 (ja) * 2019-11-07 2021-05-14 ソニー株式会社 無線通信装置および無線通信方法
US20220321191A1 (en) * 2019-07-03 2022-10-06 Electronics And Telecommunications Research Institute Method and apparatus for sidelink communication
WO2022240868A1 (en) * 2021-05-10 2022-11-17 Interdigital Patent Holdings, Inc. Methods and systems of nr sidelink resource allocation for power saving and bwp operations

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220321191A1 (en) * 2019-07-03 2022-10-06 Electronics And Telecommunications Research Institute Method and apparatus for sidelink communication
WO2021090784A1 (ja) * 2019-11-07 2021-05-14 ソニー株式会社 無線通信装置および無線通信方法
WO2022240868A1 (en) * 2021-05-10 2022-11-17 Interdigital Patent Holdings, Inc. Methods and systems of nr sidelink resource allocation for power saving and bwp operations

Similar Documents

Publication Publication Date Title
US20240022315A1 (en) Communication device, communication method, base station, and method performed by base station
WO2020235327A1 (ja) 通信装置及び通信方法
WO2021090596A1 (ja) 端末装置、基地局装置、端末装置の制御方法および基地局装置の制御方法
WO2020218183A1 (ja) 基地局装置、基地局装置の制御方法、端末装置、及び端末装置の制御方法
US20240048266A1 (en) Communication apparatus and communication method
CN112106417B (zh) 一种通信方法及装置
EP4152824A1 (en) Communication device, non-geostationary satellite, ground station, and communication method
CN115918182A (zh) 通信装置和通信方法
US20220256598A1 (en) Communication device, communication method, and communication program
WO2023146753A1 (en) Handling of collision with ssb for ntn
WO2024116871A1 (ja) 端末装置、基地局、及び通信システム
WO2021029159A1 (ja) 通信装置及び通信方法
WO2023085125A1 (ja) 通信装置、及び通信方法
WO2024203379A1 (ja) 基地局、端末装置、通信方法、及び通信システム
WO2023210484A1 (ja) 通信装置、及び通信方法
WO2024219407A1 (en) Relay device, communication device, and communication method
WO2024219408A1 (en) Relay device, communication device, and communication method
WO2024203517A1 (ja) 端末装置、制御装置、通信方法、及び情報処理方法
WO2023127173A1 (ja) 通信方法、通信装置、及び通信システム
WO2024203373A1 (ja) 基地局、端末装置、通信方法、及び通信システム
WO2022113808A1 (ja) 通信装置、通信方法、及び通信システム
EP4280498A1 (en) Communication device, communication method, and communication system
WO2023166969A1 (ja) 通信装置、及び通信方法
WO2021070631A1 (ja) 端末装置、基地局および通信制御方法
WO2022149412A1 (ja) 基地局装置、無線通信装置及び通信方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23897522

Country of ref document: EP

Kind code of ref document: A1