WO2024116862A1 - 飛行体及び飛行体用ガード - Google Patents

飛行体及び飛行体用ガード Download PDF

Info

Publication number
WO2024116862A1
WO2024116862A1 PCT/JP2023/041196 JP2023041196W WO2024116862A1 WO 2024116862 A1 WO2024116862 A1 WO 2024116862A1 JP 2023041196 W JP2023041196 W JP 2023041196W WO 2024116862 A1 WO2024116862 A1 WO 2024116862A1
Authority
WO
WIPO (PCT)
Prior art keywords
aircraft
guard
guard frame
shafts
flying object
Prior art date
Application number
PCT/JP2023/041196
Other languages
English (en)
French (fr)
Inventor
将馬 水谷
恭一 豊村
忠之 小川
Original Assignee
Dic株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dic株式会社 filed Critical Dic株式会社
Publication of WO2024116862A1 publication Critical patent/WO2024116862A1/ja

Links

Images

Definitions

  • the present invention relates to flying objects such as drones and guards for flying objects.
  • Patent Document 1 describes an aircraft with rotors (propellers) attached to multiple radially arranged arms. This aircraft is equipped with a guard frame that connects the multiple arms to prevent contact between the rotors (propellers) and obstacles.
  • an aircraft equipped with a guard frame collides with an obstacle such as a wall at the guard frame.
  • the guard frame is positioned below the aircraft's center of gravity, in other words, if the aircraft's center of gravity is positioned above the guard frame, the aircraft will rotate in a direction tilting forward relative to the obstacle due to the propulsive force in the flight direction.
  • This rotation direction is the same as the direction of lift produced by the propeller. For this reason, when the aircraft collides with an obstacle, the forward tilt angle becomes large, making it more likely to fall.
  • the present invention aims to provide an aircraft and a guard for the aircraft that can prevent it from falling during a collision.
  • guard frame may block the surrounding field of view, which may interfere with observation of the surroundings using the observation equipment.
  • the second objective of the present invention is to provide an aircraft and a guard for the aircraft that can prevent the aircraft from falling during a collision while ensuring visibility of the surroundings.
  • the flying body of the present invention is a flying body capable of flight, comprising an airframe having a propeller, a number of shafts (long, thin, linear members) connected to the airframe, and a guard frame connected to the number of shafts and positioned outside the airframe in a plan view of the flying body, the number of propellers being rotatably attached to a number of arm sections extending in different directions from the center of the flying body, respectively, and lower than the arm sections in the vertical direction of the flying body, and the guard frame being positioned only above the center of gravity of the flying body in the vertical direction of the flying body.
  • the guard frame is disposed on the outside of the aircraft when viewed from above, so that the flying object collides with an obstacle such as a wall at the guard frame. At this time, the flying object tries to rotate in a direction tilting forward relative to the obstacle due to the lift from the propeller.
  • the guard frame is disposed only above the flying object's center of gravity in the vertical direction, the flying object tries to rotate in a direction tilting backward relative to the obstacle due to the flying object's thrust. Since these rotations are in opposite directions, they act to cancel each other out. This makes it possible to keep the rotation when the flying object collides with an obstacle small, and thus to prevent the flying object from falling upon collision.
  • the guard frame is disposed only above the flying object's center of gravity in the vertical direction, it is possible to prevent the guard frame from blocking the surrounding field of view. This makes it possible to ensure the surrounding field of view.
  • the guard frame can also be made lighter, allowing for longer flight times.
  • the guard frame may be positioned higher than the propeller in the vertical direction of the flying object.
  • the flying object is configured to propel itself by tilting forward at an inclination angle
  • the guard frame may be positioned only vertically above the position of the center of gravity of the flying object when the flying object is tilted at the inclination angle.
  • the guard frame is positioned only vertically above the position of the center of gravity of the flying object when the flying object is tilted at the inclination angle, thereby further preventing the flying object from falling in the event of a collision while still ensuring visibility of the surroundings.
  • the guard frame may be positioned only vertically above the position of the center of gravity of the flying object when the flying object is tilted 3°. Flying objects often propel themselves while leaning forward in the direction of flight, and the angle of forward tilt of the flying object at this time is often within 3°. For this reason, by positioning the guard frame only vertically above the position of the center of gravity of the flying object when the flying object is tilted 3°, it is possible to further prevent the flying object from falling in the event of a collision while still ensuring visibility of the surroundings.
  • the guard frame may be formed in a ring shape that surrounds the aircraft when viewed from above.
  • the guard frame is formed in a ring shape that surrounds the aircraft when viewed from above, so that the aircraft can be prevented from colliding with an obstacle regardless of the orientation of the aircraft when it collides with the obstacle.
  • the guard frame may be formed in a circular ring shape.
  • the guard frame is formed in a circular ring shape, so that the impact load generated when the flying object collides with an obstacle can be dispersed throughout the guard frame. This makes it possible to suppress damage to the guard frame and reduce the impact load input to the aircraft from the guard frame and the multiple shafts.
  • the guard frame may be formed in a perfect circular ring shape.
  • the guard frame by forming the guard frame in a perfect circular ring shape, it is possible to control the direction in which the flying object bounces off an obstacle when it collides with the obstacle. For example, if the flying object collides with an obstacle in a perpendicular direction, it can be made to bounce off in a perpendicular direction to the obstacle. Also, if the flying object collides with an obstacle in a direction inclined at a predetermined angle, it can be made to bounce off in a direction inclined at a predetermined angle to the opposite side to the collision direction.
  • the guard frame has a first guard frame and a second guard frame arranged lower than the first guard frame in the vertical direction of the flying object, and the second guard frame may be arranged inside the first guard frame in a plan view of the flying object.
  • the rigidity of the guard frame and the multiple shafts can be increased.
  • the second guard frame which is arranged lower than the first guard frame in the vertical direction of the flying object, inside the first guard frame in a plan view of the flying object, it is possible to prevent the second guard frame from colliding with the obstacle before the first guard frame when the flying object collides with the obstacle. This makes it possible to prevent the second guard frame from hindering the rotation of the flying object during a collision, which would cause the attitude of the flying object to become unstable.
  • each of the multiple shafts may extend in a direction away from the center of the aircraft from its tip on the aircraft side to its tip on the guard frame side in a planar view of the aircraft.
  • each of the multiple shafts extends in a direction away from the center of the aircraft from its tip on the aircraft side to its tip on the guard frame side in a planar view of the aircraft.
  • each of the multiple shafts may be formed as a single line from the tip on the aircraft side to the tip on the guard frame side.
  • each of the multiple shafts is formed as a single line from the tip on the aircraft side to the tip on the guard frame side, which can promote elastic deformation of each of the multiple shafts during a collision compared to when each of the multiple shafts is branched into multiple shafts. This allows most of the collision energy to be consumed by the elastic deformation of each of the multiple shafts, making it possible to mitigate the impact during impact. As a result, the collision load input to the aircraft can be reduced, and the rebound speed from an obstacle during a collision can be reduced.
  • each of the multiple shafts may be formed in an arc.
  • this flying object by forming each of the multiple shafts in an arc, it is possible to promote elastic deformation of each of the multiple shafts during a collision while dispersing the impact load input to each of the multiple shafts over the entirety of each of the multiple shafts.
  • each of the multiple shafts may be formed to be bent.
  • each of the multiple shafts is formed to be bent, which promotes elastic deformation of each of the multiple shafts during a collision, while making it easy to position each of the multiple shafts in a position where they do not come into contact with the aircraft body.
  • the aircraft has a central portion and a number of arm portions extending from the central portion and to which the propellers are attached, and each of the multiple shafts may be connected to one of the multiple arm portions.
  • each of the multiple shafts can be made shorter and lighter.
  • two or more shafts may be connected to each of the multiple arm sections.
  • the number of shafts can be increased. This makes it possible to reduce the impact load input to one arm section during a collision, thereby increasing the overall rigidity.
  • the aircraft guard of this embodiment is an aircraft guard that is attached to an aircraft having a propeller, and includes a number of shafts connected to the aircraft, and a guard frame connected to the number of shafts, the propellers are rotatably attached to a number of arms extending in different directions from the center of the aircraft, and are attached lower in the vertical direction of the aircraft than the arms, and the guard frame is only positioned higher in the vertical direction of the aircraft guard than the aircraft-side tips of the shafts.
  • each of the multiple shafts may extend in a direction away from the center of the aircraft guard from the tip on the aircraft side to the tip on the guard frame side in a plan view of the aircraft guard.
  • each of the multiple shafts extends in a direction away from the center of the aircraft guard from the tip on the aircraft side to the tip on the guard frame side in a plan view of the aircraft guard. Therefore, compared to a case in which each of the multiple shafts has a portion that does not extend in a direction away from the center of the aircraft guard in a plan view of the aircraft guard and a portion that extends only in the vertical direction of the aircraft guard, it is possible to promote elastic deformation of each of the multiple shafts at the time of collision.
  • each of the multiple shafts may be formed as a single line from the tip on the aircraft side to the tip on the guard frame side.
  • each of the multiple shafts is formed as a single line from the tip on the aircraft side to the tip on the guard frame side, which can promote elastic deformation of each of the multiple shafts during a collision compared to when each of the multiple shafts is branched into multiple shafts. This allows most of the collision energy to be consumed by the elastic deformation of each of the multiple shafts, making it possible to mitigate the impact during a collision. As a result, the collision load input to the aircraft can be reduced, and the rebound speed from an obstacle during a collision can be reduced.
  • each of the multiple shafts may be formed in an arc.
  • each of the multiple shafts is formed in an arc, which promotes elastic deformation of each of the multiple shafts during a collision while dispersing the impact load input to each of the multiple shafts over the entirety of each of the multiple shafts.
  • each of the multiple shafts may be formed in a curved linear shape.
  • each of the multiple shafts is formed in a curved shape, which promotes elastic deformation of each of the multiple shafts during a collision, while making it easy to position each of the multiple shafts in a position that does not come into contact with the aircraft to which the aircraft guard is attached.
  • the guard frame has an annular first guard frame and an annular second guard frame arranged below the first guard frame, and the second guard frame may be arranged inside the first guard frame in a plan view of the aircraft guard.
  • the guard frame has a first guard frame and a second guard frame arranged above and below, thereby increasing the rigidity of the aircraft guard.
  • the second guard frame by arranging the second guard frame below the first guard frame inside the first guard frame in a plan view of the aircraft guard, it is possible to prevent the second guard frame from colliding with the obstacle before the first guard frame when the aircraft to which the aircraft guard is attached collides with an obstacle. This makes it possible to prevent the second guard frame from hindering the rotation of the aircraft during a collision, which would cause the attitude of the aircraft to become unstable.
  • the present invention makes it possible to prevent the vehicle from falling during a collision while still ensuring visibility of the surroundings.
  • FIG. 1 is a perspective view of an aircraft according to a first embodiment.
  • FIG. 2 is a front view of the aircraft according to the first embodiment.
  • FIG. 2 is a plan view of the aircraft according to the first embodiment.
  • FIG. 11 is a front view showing an example of a state in which the flying object has collided with an obstacle.
  • FIG. 2 is a front view showing a state in which the flying object is flying with a forward tilt.
  • FIG. 2 is a front view showing a state in which a flying object flying with a forward inclination collides with an obstacle.
  • FIG. 11 is a perspective view of an aircraft according to a second embodiment.
  • FIG. 11 is a front view of the aircraft according to the second embodiment.
  • FIG. 11 is a plan view of an aircraft according to a second embodiment.
  • FIG. 11 is a perspective view of an aircraft according to a third embodiment.
  • FIG. 11 is a front view of an aircraft according to a third embodiment.
  • FIG. 11 is a plan view of an aircraft according to a third embodiment.
  • FIG. 13 is a perspective view of an aircraft according to a fourth embodiment.
  • FIG. 13 is a front view of the aircraft according to the fourth embodiment.
  • FIG. 13 is a plan view of the aircraft according to the fourth embodiment.
  • FIG. 1 is a perspective view of the flying body 1 according to the first embodiment.
  • FIG. 2 is a front view of the flying body 1 according to the first embodiment.
  • FIG. 3 is a plan view of the flying body 1 according to the first embodiment.
  • the flying body 1 according to the first embodiment is a flying body capable of flying, for example, a drone.
  • the flying body 1 according to the first embodiment includes an aircraft body 2 and an aircraft guard 3.
  • the vertical direction D1 of the flying body 1 is the vertical direction of the flying body 1 placed on a horizontal surface, or the vertical direction of the flying body 1 during hovering.
  • the vertical direction of the aircraft body 2 and the aircraft guard 3 is the same as the vertical direction D1 of the flying body 1.
  • the upper side in the vertical direction D1 of the flying body 1 is the upper side in FIG. 2.
  • a line extending through the center of the flying body 1 in the vertical direction D1 of the flying body 1 is called a reference line L.
  • the airframe 2 is the part that forms the main body of the flying object 1.
  • the airframe 2 has a central section 4, multiple arm sections 5, and multiple propellers 6.
  • the airframe 2 also has, for example, a transceiver device (not shown) that transmits and receives wireless signals to and from an external device, a control device (not shown) for flying the flying object 1, a motor (not shown) for rotating the propellers 6, and a battery (not shown) for supplying power to the control device and motor, etc.
  • the airframe 2 further has legs.
  • the central section 4 is a section located in the center of the aircraft 1.
  • the central section 4 is equipped with, for example, a transmitter/receiver, a control device, a battery, etc.
  • An observation device 7 such as a camera for observing the surroundings of the aircraft 1 is removably attached to the central section 4.
  • the observation device 7 is, for example, a separate member from the aircraft 1, and is removably attached to the bottom surface of the central section 4. Note that the observation device 7 is not removably attached to the central section 4, but may be an internal part of the aircraft 1 mounted on the bottom of the central section 4.
  • the multiple arm portions 5 extend in different directions from the central portion 4.
  • the multiple arm portions 5 are arranged, for example, at equal angles around the reference line L.
  • Each of the multiple arm portions 5 is equipped with, for example, a motor.
  • the number of arm portions 5 is not particularly limited, but in this embodiment, as an example, there are four arm portions 5.
  • the multiple propellers 6 rotate to make the flying object 1 fly.
  • Each of the multiple propellers 6 is rotatably attached to each of the multiple arm sections 5, lower than the arm section 6 in the vertical direction of the flying object.
  • one propeller 6 is attached to one arm section 5 lower than the arm section in the vertical direction of the flying object.
  • the multiple propellers 6 may be arranged on the same circumference centered on the reference line L.
  • Each of the multiple propellers 6 is rotated by, for example, a motor mounted on each of the multiple propellers 6. For example, they may be attached in the order of arm, motor, propeller, downward from the arm section in the vertical direction of the flying object, or they may be attached in the order of arm, propeller, motor.
  • the aircraft guard 3 protects the aircraft 2.
  • the aircraft guard 3 is intended to prevent the aircraft 2, and in particular the propeller 6, from colliding with an obstacle such as a wall when the aircraft 1 collides with the obstacle.
  • the aircraft guard 3 includes multiple shafts 8 and a guard frame 9.
  • Each of the multiple shafts 8 is a portion that supports the guard frame 9 relative to the aircraft body 2.
  • Each of the multiple shafts 8 is connected to the aircraft body 2 and the guard frame 9.
  • Each of the multiple shafts 8 is, for example, detachably connected to the aircraft body 2.
  • the detachable connection of each of the multiple shafts 8 to the aircraft body 2 can be achieved, for example, by screwing, fitting, engaging, etc.
  • Each of the multiple shafts 8 may be non-detachably connected to the aircraft body 2.
  • Each of the multiple shafts 8 is, for example, non-detachably connected to the guard frame 9.
  • the non-detachable connection of each of the multiple shafts 8 to the guard frame 9 can be achieved, for example, by integral molding, adhesion, etc.
  • the guard frame 9 may be detachably connected to each of the multiple shafts 8.
  • Each of the multiple shafts 8 is connected to one of the multiple arm sections 5 in the aircraft body 2. More specifically, two or more shafts 8 are connected to each of the multiple arm sections 5.
  • the number of shafts 8 connected to one arm section 5 is not particularly limited, but in this embodiment, as an example, there are two shafts.
  • Each of the multiple shafts 8 extends in a direction away from the center of the aircraft 2 from its tip on the fuselage 2 side to its tip on the guard frame 9 side in a planar view of the aircraft 1.
  • each of the multiple shafts 8 does not have a portion that does not extend in a direction away from the center of the aircraft 2 in a planar view of the aircraft 1, and does not have a portion that extends only in the vertical direction D1 of the aircraft 1.
  • a planar view of the aircraft 1 refers to a view from a direction along the reference line L, that is, a direction along the vertical direction D1 of the aircraft 1.
  • a planar view of the aircraft guard 3 is the same as a planar view of the aircraft 1.
  • the center of the aircraft 2 is the center of the aircraft 1 and is on the reference line L.
  • Each of the multiple shafts 8 is formed as a single line from its tip on the aircraft body 2 side to its tip on the guard frame 9 side. In other words, each of the multiple shafts 8 extends from its tip on the aircraft body 2 side to its tip on the guard frame 9 side without branching into multiple shafts.
  • each of the multiple shafts 8 is formed by bending. Specifically, each of the multiple shafts 8 has a horizontal portion 8a and an inclined portion 8b.
  • the horizontal portion 8a is a portion that is connected to the arm portion 5 of the aircraft 2.
  • the horizontal portion 8a is disposed above the propeller 6 in the vertical direction D1 of the aircraft 1.
  • the horizontal portion 8a extends from the arm portion 5 toward the lateral direction of the aircraft 1 so as to move away from the center of the aircraft 2.
  • the lateral direction of the aircraft 1 is a direction perpendicular to the reference line L.
  • the inclined portion 8b is a portion that is connected to the guard frame 9.
  • the inclined portion 8b is bent and connected to the horizontal portion 8a, and is disposed to the side of the propeller 6.
  • the inclined portion 8b extends from the tip of the horizontal portion 8a in a direction inclined with respect to the reference line L so as to move away from the center of the aircraft 2.
  • the inclined portion 8b extends from the tip on the horizontal portion 8a side to the tip on the guard frame 9 side while being inclined in the lateral direction of the aircraft 1 and in the vertical direction D1 of the aircraft 1.
  • each of the multiple shafts 8 will have a curved shape that follows the propeller 6.
  • each of the multiple shafts 8 may have any curved shape as long as it does not come into contact with the aircraft body 2.
  • the guard frame 9 is a part that protects the aircraft body 2. In other words, when the aircraft 1 collides with an obstacle, the guard frame 9 prevents the aircraft body 2 from colliding with the obstacle by colliding with the obstacle before the aircraft body 2. In order to protect the aircraft body 2, the guard frame 9 is disposed outside the aircraft body 2 when the aircraft body 1 is viewed from above.
  • the guard frame 9 is formed in a ring shape that surrounds the airframe 2 in a plan view of the flying object 1.
  • the multiple propellers 6 are arranged on the same circumference centered on the reference line L, so the guard frame 9 is formed in a perfect ring shape.
  • the guard frame 9 may be formed in an elliptical ring shape that follows the multiple propellers 6.
  • the guard frame 9 is positioned only above the center of gravity G of the aircraft 1 in the vertical direction D1 of the aircraft 1.
  • the guard frame 9 is supported by the multiple shafts 8 so that it is positioned only above the center of gravity G of the aircraft 1 in the vertical direction D1 of the aircraft 1.
  • the guard frame 9 is also positioned only above the tips of the multiple shafts 8 on the fuselage 2 side in the vertical direction of the aircraft guard 3.
  • the guard frame 9 may also be positioned above the multiple propellers 6 in the vertical direction D1 of the aircraft 1.
  • the center of gravity G of the aircraft 1 is the center of gravity of the aircraft 1 including the airframe 2 and the aircraft guard 3.
  • the center of gravity G of the aircraft 1 is the center of gravity of the aircraft 1 excluding the observation equipment 7.
  • the center of gravity G of the aircraft 1 is the center of gravity of the aircraft 1 including the observation equipment 7.
  • the guard frame 9 is positioned only above the center of gravity G of the flying object 1 in the vertical direction of the flying object 1, the guard frame 9 is prevented from blocking the surrounding field of view (field of view of the observation equipment 7). This makes it possible to ensure the surrounding field of view (field of view of the observation equipment 7).
  • the guard frame 9 above the propeller 6 in the vertical direction D1 of the flying object 1, it is possible to further prevent the flying object from falling in the event of a collision while still ensuring visibility of the surroundings (visibility of the observation equipment 7).
  • FIG. 5 is a front view showing the flying body 1 in flight tilted forward.
  • the flying body 1 is often configured to propel itself by tilting forward at a predetermined tilt angle ⁇ . Therefore, in a flying body 1 configured to propel itself by tilting forward at a tilt angle ⁇ , the guard frame 9 may be positioned only above the vertical direction D4 of the center of gravity G of the flying body 1 when the flying body 1 is tilted at the tilt angle ⁇ , from the viewpoint of preventing the flying body 1 from falling in the event of a collision while ensuring visibility of the surroundings.
  • the flying object 1 regardless of whether the flying object 1 is configured to propel itself while leaning forward at an inclination angle ⁇ , the flying object 1 often propels itself while leaning forward in the direction of flight, and the inclination angle ⁇ in this case is generally within 3°, 10°, or 25°.
  • the guard frame 9 may be positioned only above the vertical direction D4 position of the center of gravity G of the flying object 1 when the flying object 1 is inclined by 3°, 10°, or 25°.
  • Figure 6 is a front view showing the state in which the flying body 1, which is propelled while tilting forward at a tilt angle ⁇ , collides with an obstacle W.
  • the lift force of the propeller 6 causes the flying body 1 to rotate in a direction D2 in which it tilts forward relative to the obstacle.
  • This direction D2 is the same direction as the forward tilt of the flying body 1, and is a direction that increases the forward tilt of the flying body 1.
  • the guard frame 9 is only positioned above the vertical direction D4 of the center of gravity G of the flying body 1 when the flying body 1 is tilted at the tilt angle ⁇ , the flying body 1, which was propelled while tilting forward at a tilt angle ⁇ , tries to rotate in a direction D3 in which it tilts backward relative to the obstacle W due to the propulsion force of the flying body 1.
  • These rotations are in opposite directions to each other, so they act to cancel each other out.
  • the rotation in direction D3 caused by the propulsive force of the flying object 1 is a rotation in the opposite direction to the forward tilt of the flying object 1, so it acts to return the forward-tilted flying object 1 to a horizontal state, that is, to return the up-down direction D1 of the forward-tilted flying object 1 to a vertical direction D4.
  • This makes it possible to keep the rotation small when the flying object collides with an obstacle, thereby preventing the flying object from falling upon collision.
  • the guard frame 9 is positioned only above the position of the center of gravity G of the aircraft 1 in the vertical direction D4 when the aircraft 1 is tilted at the tilt angle ⁇ , the guard frame 9 can be prevented from blocking the surrounding field of view (field of view of the observation equipment 7) even when the aircraft 1 is propelled forward at the tilt angle ⁇ . This ensures the surrounding field of view (field of view of the observation equipment 7) when the aircraft 1 is propelled forward at the tilt angle ⁇ .
  • guard frame 9 is positioned only above the center of gravity G of the aircraft 1 in the vertical direction D4 when the aircraft 1 is tilted by 3°, 10°, or 25°, thereby further preventing the aircraft from falling during a collision while still ensuring visibility of the surroundings.
  • guard frame 9 is formed in a ring shape that surrounds the aircraft 2 when the aircraft 1 is viewed from above, it is possible to prevent the aircraft 2 from colliding with the obstacle W, regardless of the orientation of the aircraft 1 when the aircraft 1 collides with the obstacle W.
  • the guard frame 9 is formed in a circular ring shape, the impact load that occurs when the aircraft 1 collides with an obstacle can be dispersed throughout the guard frame 9. This makes it possible to prevent damage to the guard frame 9 and reduce the impact load input from the aircraft guard 3 to the aircraft 2.
  • the guard frame 9 is formed in a perfect circular ring shape, the direction in which the flying object 1 bounces off the obstacle W when it collides with it can be controlled. For example, if the flying object 1 collides with the obstacle W in a direction perpendicular to the obstacle, the flying object 1 can be made to bounce off in a direction perpendicular to the obstacle W. In addition, if the flying object 1 collides with the obstacle W in a direction inclined at a predetermined angle, the flying object 1 can be made to bounce off in a direction inclined at a predetermined angle to the opposite side to the collision direction.
  • each of the multiple shafts 8 extends in a direction away from the center of the aircraft 2 from the tip on the aircraft body 2 side to the tip on the guard frame 9 side in a plan view of the aircraft 1. This makes it possible to promote elastic deformation of each of the multiple shafts 8 upon collision, compared to when each of the multiple shafts 8 has a portion that does not extend in a direction away from the center of the aircraft 2 in a plan view of the aircraft 1 and a portion that extends only in the vertical direction D1 of the aircraft 1. This allows much of the collision energy to be consumed by the elastic deformation of each of the multiple shafts 8, making it possible to mitigate the impact upon collision. As a result, the collision load input to the aircraft 2 can be reduced, and the rebound speed from the obstacle W upon collision can be reduced.
  • each of the multiple shafts 8 is formed as a single line from its tip on the aircraft body 2 side to its tip on the guard frame 9 side, the elastic deformation of each of the multiple shafts 8 during a collision can be promoted compared to when each of the multiple shafts is branched into multiple shafts. This allows most of the collision energy to be consumed by the elastic deformation of each of the multiple shafts 8, making it possible to mitigate the impact during a collision. As a result, the collision load input to the aircraft body 2 can be reduced, and the rebound speed from the obstacle W during a collision can be reduced.
  • each of the multiple shafts 8 in an arc shape, it is possible to promote elastic deformation of each of the multiple shafts 8 during a collision, while dispersing the impact load input to each of the multiple shafts 8 throughout the entirety of each of the multiple shafts 8.
  • each of the multiple shafts 8 is bent, it is possible to easily position each of the multiple shafts 8 in a position that does not come into contact with the airframe 2, particularly the propeller 6, while promoting elastic deformation of each of the multiple shafts 8 during a collision.
  • each of the multiple shafts 8 can be made shorter and lighter.
  • the flying object guard 3 is easily elastically deformed. On the other hand, if the flying object guard 3 deforms excessively, there is a possibility that the aircraft 2 will collide with the obstacle W when it collides with it.
  • the flexural modulus of the aircraft guard 3 may be 2.0 GPa or more.
  • the flexural modulus of the material of the aircraft guard 3 is preferably 5.0 GPa or more, and more preferably 8.0 GPa or more.
  • the flexural modulus of the aircraft guard 3 may be 250.0 GPa or less.
  • the flexural modulus of the aircraft guard 3 is preferably 60.0 GPa or less, and more preferably in the range of 20.0 GPa or less.
  • the flexural modulus of the aircraft guard 3 may be in the range of 2.0 GPa or more and 250.0 GPa or less.
  • the flexural modulus of the aircraft guard 3 is preferably in the range of 5.0 GPa to 60.0 GPa, and more preferably in the range of 8.0 GPa to 20.0 GPa.
  • This flexural modulus is the flexural modulus specified in ISO 178.
  • the bending strength of the aircraft guard 3 may be 50.0 MPa or more.
  • the bending strength of the aircraft guard 3 is preferably 100.0 MPa or more, and more preferably 250.0 MPa or more.
  • the bending strength of the aircraft guard 3 is not particularly limited, but is preferably, for example, 30.0 GPa or less. This bending strength is the bending strength specified in ISO178.
  • At least one of the flexural modulus and flexural strength may be obtained by the shape or structure of the aircraft guard 3, or by the physical properties of the material of the aircraft guard 3.
  • the material of the aircraft guard 3 may be, for example, one or more of thermoplastic resins such as polyethylene resin, polypropylene resin, polystyrene resin, ABS resin, polyvinyl chloride resin, methyl methacrylate resin, nylon resin, fluororesin, polycarbonate resin, polyester resin, polyether ether ketone resin, polyimide resin, polyphenylene sulfide resin, etc., or a thermoplastic resin composition containing these thermoplastic resins and additives such as a thermoplastic elastomer such as an olefin-based elastomer, a styrene-based elastomer, a polyester-based elastomer, a silicone-based elastomer, an acrylate-based e
  • thermoplastic resins such as polyethylene resin, polypropylene resin
  • the aircraft guard 3 may be made of metal materials such as pure titanium, titanium alloys, steel, aluminum alloys, magnesium alloys, maraging steel, stainless steel, soft iron, and other steels. These metal materials can be molded into specific shapes, and may also have a hollow structure or honeycomb structure to provide light weight and high strength.
  • the guard frame 9 is made of the above-mentioned resin material.
  • the multiple shafts 8 may also be made of the above-mentioned resin material.
  • the multiple shafts 8 may have a higher bending modulus than the guard frame 9.
  • the multiple shafts 8 may have a higher bending strength than the guard frame 9, in which case the above-mentioned metal material may also be used.
  • the flight guard 3 may be reinforced by providing diagonal braces.
  • the diagonal braces are reinforcing parts that increase the rigidity of the guard frame 9.
  • the diagonal braces are composed of multiple bars (linear or plate-shaped elongated members) whose ends are connected to the aircraft guard 3 (for example, at least one of the multiple shafts 8 and the guard frame 9). Examples of diagonal braces include cross braces and geodesic structures.
  • the cross brace has at least two bars (linear or plate-shaped elongated members) and an intersection between them. At the intersection, the bars may not be connected to each other, or may be connected to each other.
  • the bars When the bars are connected to each other at the intersection, they may be connected to each other so that they can rotate freely with a pin shaft or the like, or they may be connected to each other with a hub structure. When the intersection is not connected or when it is connected to each other so that they can rotate freely with a pin shaft or the like, both ends of each bar can be connected to the flight guard 3 for use. When the intersection is a hub structure, one end of each bar can be connected to the hub, and the other end can be connected to the flight guard 3 for use. When viewed from the front of the aircraft 1 (when viewed from the front of the aircraft guard 3), the cross braces may be formed so that each bar is straight or arc-shaped. In the case of an arc-shaped bar, the elastic deformation of each bar during a collision is promoted, while the impact load input to each bar can be distributed throughout each bar.
  • the braces can be made of at least three braces connected in a triangle (a so-called geodesic structure), with each vertex of the outer periphery connected to the flight guard 3.
  • the triangle can be a one-sided or two or more polyhedron, and a hemispherical (dome-shaped) structure can be used if the polyhedron has three or more sides.
  • Each of the braces that make up the braces is connected to the flight guard 3, preferably to the guard frame 9.
  • Each of the multiple braces is, for example, detachably connected to the flight guard 3.
  • the detachable connection of each of the multiple braces to the flight guard 3 can be achieved, for example, by screwing, fitting, engaging, etc. with the guard frame 9 or shaft 8.
  • each of the multiple braces may be non-detachably connected to the flight guard 3.
  • the non-detachable connection of each of the multiple braces to the flight guard 3 can be achieved, for example, by integral molding, adhesive, etc. with the guard frame 9 or shaft 8.
  • the same materials as those used for the aircraft guard 3 can be used for each of the braces that make up the braces.
  • the flight guard 3 can also be covered with a net or other net-like material to protect the aircraft 2 from collisions with obstacles from above. In this case, it is preferable to provide braces so that the net-like material can avoid interference with the propeller.
  • the flying object according to the second embodiment will be described with reference to Figures 7 to 9.
  • the flying object according to the second embodiment is basically the same as the flying object 1 according to the first embodiment, and differs from the flying object 1 according to the first embodiment only in the flying object guard. Therefore, only the differences from the flying object 1 according to the first embodiment will be described below, and descriptions of the same matters as the flying object 1 according to the first embodiment will be omitted.
  • FIG. 7 is a perspective view of the aircraft 1A according to the second embodiment.
  • FIG. 8 is a front view of the aircraft 1A according to the second embodiment.
  • FIG. 9 is a plan view of the aircraft 1A according to the second embodiment.
  • the aircraft 1A according to the second embodiment comprises an aircraft body 2 and an aircraft guard 3A.
  • the aircraft guard 3A is basically the same as the aircraft guard 3 of the first embodiment, and differs from the aircraft guard 3 of the first embodiment only in the shape of the multiple shafts.
  • the aircraft guard 3A includes multiple shafts 8A and a guard frame 9.
  • Each of the multiple shafts 8A extends in a direction away from the center of the aircraft 2 from its tip on the aircraft body 2 side to its tip on the guard frame 9 side in a plan view of the aircraft 1A (plan view of the aircraft guard 3A).
  • each of the multiple shafts 8A does not have a portion that does not extend in a direction away from the center of the aircraft body 2 in a plan view of the aircraft 1A, and does not have a portion that extends only in the up-down direction D1 of the aircraft 1A.
  • Each of the multiple shafts 8A is formed as a single line from the tip on the aircraft body 2 side to the tip on the guard frame 9 side, similar to each of the multiple shafts 8 in the first embodiment. In other words, each of the multiple shafts 8A extends from the tip on the aircraft body 2 side to the tip on the guard frame 9 side without branching into multiple shafts.
  • Each of the multiple shafts 8A is formed in an arc shape. Specifically, each of the multiple shafts 8A extends in an arc shape without having a bent portion like each of the multiple shafts 8 in the first embodiment.
  • the arc shape of each of the multiple shafts 8A is not particularly limited, but for example, if the propeller is attached not only below the arm but also above it, the shafts 8A can be shaped to extend continuously along the propeller 6, toward the top in the vertical direction D1 of the aircraft 1A, and away from the center of the fuselage 2 in a plan view of the aircraft 1A.
  • each of the multiple shafts 8A is formed in an arc shape, which promotes elastic deformation of each of the multiple shafts 8A during a collision, while dispersing the impact load input to each of the multiple shafts 8A throughout each of the multiple shafts 8A. This makes it possible to mitigate the impact during a collision and reduce the impact load input from the aircraft guard 3A to the aircraft 2.
  • the flying object according to the third embodiment will be described with reference to Figures 10 to 12.
  • the flying object according to the third embodiment is basically the same as the flying object 1 according to the first embodiment, and differs from the flying object 1 according to the first embodiment only in terms of the flying object guard. Therefore, only the differences from the flying object 1 according to the first embodiment will be described below, and descriptions of the same aspects as the flying object 1 according to the first embodiment will be omitted.
  • FIG. 10 is a perspective view of an aircraft 1B according to the third embodiment.
  • FIG. 11 is a front view of the aircraft 1B according to the third embodiment.
  • FIG. 12 is a plan view of the aircraft 1B according to the third embodiment.
  • the aircraft 1B according to the third embodiment comprises an aircraft body 2 and an aircraft guard 3B.
  • the aircraft guard 3B is basically the same as the aircraft guard 3 of the first embodiment, and differs from the aircraft guard 3 of the first embodiment only in the number and arrangement of the guard frames.
  • the aircraft guard 3B includes multiple shafts 8 and guard frames 9B.
  • the guard frame 9B has a first guard frame 9B1 and a second guard frame 9B2.
  • the second guard frame 9B2 is positioned lower than the first guard frame 9B1 in the vertical direction D1 of the aircraft 1.
  • the first guard frame 9B1 is connected to the tips (upper ends) of the multiple shafts 8
  • the second guard frame 9B2 is connected to the multiple shafts 8 at a position lower than the first guard frame 9B1 in the vertical direction D1 of the aircraft 1.
  • Both the first guard frame 9B1 and the second guard frame 9B2 are positioned outside the fuselage 2 in a plan view of the aircraft 1B (plan view of the aircraft guard 3B).
  • the second guard frame 9B2 is positioned inside the first guard frame 9B1 in a plan view of the aircraft 1B.
  • both the first guard frame 9B1 and the second guard frame 9B2 are formed in a ring shape surrounding the fuselage 2 in a plan view of the aircraft 1B, similar to the guard frame 9 in the first embodiment, but the second guard frame 9B2 has a smaller diameter than the first guard frame 9B1.
  • the first guard frame 9B1 and the second guard frame 9B2 are both positioned only above the center of gravity G of the aircraft 1B in the vertical direction D1, just like the guard frame 9 in the first embodiment.
  • the first guard frame 9B1 and the second guard frame 9B2 are both positioned only above the airframe 2-side tips of the multiple shafts 8 in the vertical direction of the aircraft guard 3B, just like the guard frame 9 in the first embodiment.
  • both the first guard frame 9B1 and the second guard frame 9B2 may be positioned only above the vertical direction D4 of the position of the center of gravity G of the aircraft 1B when the aircraft 1B is tilted at a tilt angle ⁇ , similar to the guard frame 9 of the first embodiment. Furthermore, in the case of an aircraft 1B that propels itself while tilting forward, regardless of whether the aircraft 1B is configured to fly while tilting forward at a tilt angle ⁇ , both the first guard frame 9B1 and the second guard frame 9B2 may be positioned only above the vertical direction D4 of the position of the center of gravity G of the aircraft 1B when the aircraft 1B is tilted 3°, 10°, or 25°.
  • the guard frame 9B has a first guard frame 9B1 and a second guard frame 9B2 arranged above and below, thereby increasing the rigidity of the aircraft guard 3B. Furthermore, the second guard frame 9B2, which is arranged lower in the vertical direction D1 of the aircraft 1B than the first guard frame 9B1, is arranged inside the first guard frame 9B1 in a plan view of the aircraft 1B, which makes it possible to prevent the second guard frame 9B2 from colliding with the obstacle W before the first guard frame 9B1 when the aircraft 1B collides with the obstacle W. This makes it possible to prevent the attitude of the aircraft 1B from becoming unstable due to the second guard frame 9B2 hindering the rotation of the aircraft 1B during a collision.
  • the aircraft according to the fourth embodiment is basically the same as the aircraft 1 according to the first embodiment, and differs from the aircraft 1 according to the first embodiment only in the aircraft guard. More specifically, the aircraft according to the fourth embodiment is an aircraft 1 according to the first embodiment, in which the multiple shafts are replaced with the multiple shafts 8A of the second embodiment, and the guard frame is replaced with the guard frame 9B of the third embodiment. For this reason, only the differences from the above embodiments will be described below, and descriptions of the same matters as the above embodiments will be omitted.
  • FIG. 13 is a perspective view of an aircraft 1C according to the fourth embodiment.
  • FIG. 14 is a front view of the aircraft 1C according to the fourth embodiment.
  • FIG. 15 is a plan view of the aircraft 1C according to the fourth embodiment.
  • the aircraft 1C according to the fourth embodiment comprises an aircraft body 2 and an aircraft guard 3C.
  • the aircraft guard 3C is basically the same as the aircraft guard 3 of the first embodiment, and differs from the aircraft guard 3 of the first embodiment only in the shape of the multiple shafts and the number and arrangement of the guard frames.
  • the aircraft guard 3C includes multiple shafts 8C and guard frames 9C.
  • Each of the multiple shafts 8C is similar to each of the multiple shafts 8A in the second embodiment. That is, each of the multiple shafts 8C is formed in a single line extending in a direction away from the center of the aircraft body 2 from its tip on the aircraft body 2 side to its tip on the guard frame 9 side. Each of the multiple shafts 8C is formed in an arc shape.
  • the guard frame 9C is similar to the guard frame 9C of the third embodiment. That is, the guard frame 9C has a first guard frame 9C1 similar to the first guard frame 9B1 of the third embodiment, and a second guard frame 9C2 similar to the second guard frame 9B2 of the third embodiment.
  • the arrangement, shape, etc. of the first guard frame 9C1 and the second guard frame 9C2 are similar to the first guard frame 9B1 and the second guard frame 9B2 of the third embodiment.
  • the guard frame does not have to be formed in a ring shape as long as it is positioned outside the aircraft when viewed from above.
  • the guard frame may also be formed in a ring shape other than a perfect circle or ellipse, or in a ring shape other than a circular ring.
  • the number of guard frames is not particularly limited as long as the guard frames are positioned only above the center of gravity of the aircraft in the vertical direction.
  • the aircraft may have three or more guard frames.
  • each of the multiple shafts is formed in an arc or bend, and specifically, each of the multiple shafts has been described as having a horizontal section and an inclined section, but it may have only a horizontal section. That is, in this case, like the horizontal section described above, it is a section that is connected to the arm section of the aircraft, but it may be connected to the guard frame at the tip end on the opposite side to the connection with the arm section, that is, the tip end that extends from the arm section in a lateral direction of the aircraft so as to move away from the center of the aircraft.
  • one propeller is attached to one arm section below the arm section in the vertical direction of the aircraft
  • at least one propeller is attached to one arm section below the arm section in the vertical direction of the aircraft.
  • two or more propellers may be attached to one arm section below the arm section in the vertical direction of the aircraft, or one may be attached below and one above.
  • two propellers are attached to one arm section, it is preferable to use a structure in which the propellers are rotated in opposite directions (counter-rotating structure) in order to achieve high propulsion force, improved fuel efficiency, and reduced vibration.
  • the arm section is connected to each of a plurality of shafts, and that the propellers are rotatably attached to a plurality of arm sections extending in different directions from the center of the aircraft, and are attached lower in the vertical direction of the aircraft than the arm sections.
  • the propellers are rotatably attached to a plurality of arm sections extending in different directions from the center of the aircraft, and are attached lower in the vertical direction of the aircraft than the arm sections.
  • there may be a plurality of arm sections to which no propellers are attached which extend in different directions from the center of the aircraft and are connected to each of the plurality of shafts. This allows for greater freedom in design, and makes it possible, for example, to lower the center of gravity of the propellers and motor, which is desirable from the perspective of stabilizing the attitude of the aircraft during flight and collisions.
  • the legs on the aircraft 2 can be attached from the propeller or motor attached to the arm, downward in the vertical direction of the aircraft from the arm. They can also be attached directly to the center of the aircraft, but in this case the shape and attachment position of the legs can be appropriately designed so that they do not come into contact with the rotating propeller.
  • each of the multiple shafts may be connected to a portion other than the arms.

Landscapes

  • Toys (AREA)

Abstract

周囲の視界を確保しつつ衝突時の落下を抑制することができる飛行体及び飛行体用ガードを提供する。より詳しくは、飛行体は、飛行可能な飛行体である。飛行体は、プロペラを有する機体と、機体に接続された複数のシャフトと、複数のシャフトに接続されて飛行体の平面視において機体の外側に配置されるガードフレームと、を備える。前記複数のプロペラが、飛行体の中央部から互いに異なる方向に延びている複数のアーム部に、それぞれ、回転可能に、かつ、該アーム部よりも飛行体の上下方向における下方に取り付けられている。ガードフレームは、飛行体の重心位置Gよりも飛行体の上下方向における上方にのみ配置される。

Description

飛行体及び飛行体用ガード
 本発明は、ドローン等の飛行体及び飛行体用ガードに関する。
 特許文献1には、放射状に配設された複数のアームにロータ(プロペラ)が配設された飛行体が記載されている。この飛行体は、ロータ(プロペラ)と障害物との接触を防止するために、複数のアームを連結するガードフレームを備えている。
特開2011-046355号公報
 ところで、特許文献1に記載された飛行体のようにガードフレームを備えた飛行体は、ガードフレームにおいて壁等の障害物に衝突する。このとき、ガードフレームが飛行体の重心位置よりも下方に配置されると、つまり、飛行体の重心位置がガードフレームよりも上方に配置されると、飛行体は、飛行方向に向かう推進力により、障害物に対して前傾する方向に回転する。この回転方向は、プロペラによる揚力方向と同じである。このため、飛行体は、障害物に衝突すると、前傾角度が大きくなって落下しやすくなる。
 また、飛行体は屋外で飛行させることがあるため、風が吹くと飛行体の姿勢が乱れやすくなり、障害物に衝突した際に、前傾角度がさらに大きくなって落下しやすくなることがある。
 そこで、本発明は、衝突時の落下を抑制することができる飛行体及び飛行体用ガードを提供することを課題とする。
 また、飛行体は、カメラ等の観測機器を取り付けて、飛行体の周囲を観測する用途に用いられることが多い。このため、ガードフレームが飛行体の重心位置よりも下方に配置されると、周囲の視界がガードフレームにより遮られて、観測機器による周囲の観測に支障をきたす可能性がある。
 そこで、本発明の第二の課題は、周囲の視界を確保しつつ衝突時の落下を抑制することができる飛行体及び飛行体用ガードを提供することを課題とする。
 本発明に係る飛行体は、飛行可能な飛行体であって、プロペラを有する機体と、機体に接続された複数のシャフト(細長い線状の部材)と、複数のシャフトに接続されて飛行体の平面視において機体の外側に配置されるガードフレームと、を備え、前記複数のプロペラが、飛行体の中央部から互いに異なる方向に延びている複数のアーム部に、それぞれ、回転可能に、かつ、該アーム部よりも飛行体の上下方向における下方に取り付けられていること、ガードフレームは、飛行体の重心位置よりも飛行体の上下方向における上方にのみ配置されていることを特徴とする。
 この飛行体では、ガードフレームが飛行体の平面視において機体の外側に配置されるため、飛行体は、ガードフレームにおいて壁等の障害物に衝突する。このとき、飛行体は、プロペラによる揚力により、障害物に対して前傾する方向に回転しようとする。一方、ガードフレームが飛行体の重心位置よりも飛行体の上下方向における上方にのみ配置されるため、飛行体は、飛行体の推進力により、障害物に対して後傾する方向に回転しようとする。これらの回転は、互いに反対方向の回転であるため、互いに相殺するように作用する。これにより、障害物に衝突した際の回転を小さく抑えることができるため、衝突時の落下を抑制することができる。しかも、ガードフレームが飛行体の重心位置よりも飛行体の上下方向における上方にのみ配置されるため、周囲の視界がガードフレームにより遮られるのを抑制することができる。これにより、周囲の視界を確保することができる。また、ガードフレームの軽量化を図ることもでき、飛行時間を長くすることができる。
 上記の飛行体において、ガードフレームは、プロペラよりも飛行体の上下方向における上方に配置されてもよい。この飛行体では、ガードフレームがプロペラよりも飛行体の上下方向における上方に配置されることで、周囲の視界を更に確保しつつ衝突時の落下を更に抑制することができる。
 上記の飛行体において、飛行体は、傾斜角度で前傾して推進するように構成されており、ガードフレームは、飛行体が傾斜角度に傾斜した際の飛行体の重心位置よりも鉛直方向における上方にのみ配置されてもよい。この飛行体では、傾斜角度で前傾して推進するように構成されている場合に、ガードフレームが、飛行体が傾斜角度に傾斜した際の飛行体の重心位置よりも鉛直方向における上方にのみ配置されることで、周囲の視界を更に確保しつつ衝突時の落下を更に抑制することができる。
 上記の飛行体において、ガードフレームは、飛行体が3°傾斜した際の飛行体の重心位置よりも鉛直方向における上方にのみ配置されてもよい。飛行体は、飛行方向に前傾しながら推進することが多く、このときの飛行体の前傾の角度は3°以内となることが多い。このため、ガードフレームが、飛行体が3°傾斜した際の飛行体の重心位置よりも鉛直方向における上方にのみ配置されることで、周囲の視界を更に確保しつつ衝突時の落下を更に抑制することができる。
 上記の飛行体において、ガードフレームは、飛行体の平面視において機体を包囲する環状に形成されていてもよい。この飛行体では、ガードフレームが飛行体の平面視において機体を包囲する環状に形成されていることで、飛行体が障害物に衝突した際の飛行体の向きに関わらず、機体が障害物に衝突するのを抑制することができる。
 上記の飛行体において、ガードフレームは、円環状に形成されていてもよい。この飛行体では、ガードフレームが円環状に形成されていることで、飛行体が障害物に衝突した際に生じる衝撃荷重を、ガードフレームの全体に分散させることができる。これにより、ガードフレームの破損を抑制することができるともに、ガードフレーム及び複数のシャフトから機体に入力される衝撃荷重を小さくすることができる。
 上記の飛行体において、ガードフレームは、真円の円環状に形成されていてもよい。この飛行体では、ガードフレームが真円の円環状に形成されていることで、飛行体が障害物に衝突した際の、障害物からの跳ね返り方向をコントロールすることができる。例えば、飛行体が障害物に対して垂直な方向から衝突した場合、障害物に対して垂直な方向に飛行体を跳ね返らすことができる。また、飛行体が障害物に対して所定角度傾斜した方向から衝突して場合、障害物に対して衝突方向とは反対側に所定角度傾斜した方向に飛行体を跳ね返らすことができる。
 上記の飛行体において、ガードフレームは、第一ガードフレームと、第一ガードフレームよりも飛行体の上下方向における下方に配置される第二ガードフレームと、を有し、第二ガードフレームは、飛行体の平面視において第一ガードフレームの内側に配置されてもよい。この飛行体では、ガードフレームが上下に配置される第一ガードフレーム及び第二ガードフレームを有することで、ガードフレーム及び複数のシャフトの剛性を高めることができる。しかも、第一ガードフレームよりも飛行体の上下方向における下方に配置される第二ガードフレームが、飛行体の平面視において第一ガードフレームの内側に配置されることで、飛行体が障害物に衝突した際に、第一ガードフレームよりも先に第二ガードフレームが障害物に衝突するのを抑制することができる。これにより、衝突時の飛行体の回転が第二ガードフレームにより阻害されることにより飛行体の姿勢が不安定になることを抑制することができる。
 上記の飛行体において、複数のシャフトのそれぞれは、飛行体の平面視において、機体側の先端からガードフレーム側の先端まで、機体の中心から離れる方向に延びていてもよい。この飛行体では、複数のシャフトのそれぞれが、飛行体の平面視において機体側の先端からガードフレーム側の先端まで機体の中心から離れる方向に延びている。このため、複数のシャフトのそれぞれが、飛行体の平面視において機体の中心から離れる方向に延びていない部分及び飛行体の上下方向にのみ延びている部位を有する場合に比べて、衝突時の複数のシャフトのそれぞれの弾性変形を促進することができる。これにより、衝突エネルギーの多くを複数のシャフトのそれぞれの弾性変形により消費することができるため、衝突時の衝撃を緩和することができる。その結果、機体に入力される衝突荷重を小さくすることができるとともに、衝突時の障害物からの跳ね返り速度を低下させることができる。
 上記の飛行体において、複数のシャフトのそれぞれは、機体側の先端からガードフレーム側の先端まで、一本の線状に形成されていてもよい。この飛行体では、複数のシャフトのそれぞれが、機体側の先端からガードフレーム側の先端まで一本の線状に形成されていることで、複数のシャフトのそれぞれが複数に分岐している場合に比べて、衝突時の複数のシャフトのそれぞれの弾性変形を促進することができる。これにより、衝突エネルギーの多くを複数のシャフトのそれぞれの弾性変形により消費することができるため、衝衝突時の衝撃を緩和することができる。その結果、機体に入力される衝突荷重を小さくすることができるとともに、衝突時の障害物からの跳ね返り速度を低下させることができる。
 上記の飛行体において、複数のシャフトのそれぞれは、弧状に形成されていてもよい。この飛行体では、複数のシャフトのそれぞれが弧状に形成されていることで、衝突時の複数のシャフトのそれぞれの弾性変形を促進しつつ、複数のシャフトのそれぞれに入力される衝撃荷重を複数のシャフトのそれぞれの全体に分散させることができる。
 上記の飛行体において、複数のシャフトのそれぞれは、屈曲して形成されていてもよい。この飛行体では、複数のシャフトのそれぞれが屈曲して形成されていることで、衝突時の複数のシャフトのそれぞれの弾性変形を促進しつつ、複数のシャフトのそれぞれを機体に当接しない位置に容易に配置することができる。
 上記の飛行体において、機体は、中央部と、中央部から延びてプロペラが取り付けられる複数のアーム部と、を有し、複数のシャフトのそれぞれは、複数のアーム部の何れかに接続されていてもよい。この飛行体では、複数のシャフトのそれぞれが複数のアーム部の何れかに接続されていることで、複数のシャフトのそれぞれを短くして軽量化することができる。
 上記の飛行体において、複数のアーム部のそれぞれに、二本以上のシャフトが接続されていてもよい。この飛行体では、複数のアーム部のそれぞれに二本以上のシャフトが接続されていることで、シャフトの本数を増やすことができる。これにより、衝突時に一本のアーム部に入力される衝撃荷重を小さくすることができるため、全体としての剛性を高めることができる。
 本実施形態に係る飛行体用ガードは、プロペラを有する機体に取り付けられる飛行体用ガードであって、機体に接続される複数のシャフトと、複数のシャフトに接続されたガードフレームと、を備え、前記複数のプロペラが、飛行体の中央部から互いに異なる方向に延びている複数のアーム部に、それぞれ、回転可能に、かつ、該アーム部よりも飛行体の上下方向における下方に取り付けられていること、ガードフレームは、複数のシャフトの機体側の先端よりも飛行体用ガードの上下方向における上方にのみ配置される。
 この飛行体用ガードが機体に取り付けられた飛行体は、ガードフレームにおいて壁等の障害物に衝突すると、プロペラによる揚力により、障害物に対して前傾する方向に回転しようとする。一方、ガードフレームが複数のシャフトの機体側の先端よりも飛行体用ガードの上下方向における上方にのみ配置されるため、飛行体は、飛行体の推進力により、障害物に対して後傾する方向に回転しようとする。これらの回転は、互いに反対方向の回転であるため、互いに相殺するように作用する。これにより、障害物に衝突した際の回転を小さく抑えることができるため、衝突時の落下を抑制することができる。しかも、ガードフレームが複数のシャフトの機体側の先端よりも飛行体用ガードの上下方向における上方にのみ配置されるため、飛行体用ガードが取り付けられた飛行体において、周囲の視界がガードフレームにより遮られるのを抑制することができる。これにより、周囲の視界を確保することができる。
 上記の飛行体用ガードにおいて、複数のシャフトのそれぞれは、飛行体用ガードの平面視において、機体側の先端からガードフレーム側の先端まで、飛行体用ガードの中心から離れる方向に延びていてもよい。この飛行体用ガードでは、複数のシャフトのそれぞれが、飛行体用ガードの平面視において機体側の先端からガードフレーム側の先端まで飛行体用ガードの中心から離れる方向に延びている。このため、複数のシャフトのそれぞれが、飛行体用ガードの平面視において飛行体用ガードの中心から離れる方向に延びていない部分及び飛行体用ガードの上下方向にのみ延びている部位を有する場合に比べて、衝突時の複数のシャフトのそれぞれの弾性変形を促進することができる。これにより、衝突エネルギーの多くを複数のシャフトのそれぞれの弾性変形により消費することができる。その結果、機体に入力される衝突荷重を小さくすることができるため、衝突時の衝撃を緩和することができるとともに、衝突時の障害物からの跳ね返り速度を低下させることができる。
 上記の飛行体用ガードにおいて、複数のシャフトのそれぞれは、機体側の先端からガードフレーム側の先端まで、一本の線状に形成されていてもよい。この飛行体用ガードでは、複数のシャフトのそれぞれが、機体側の先端からガードフレーム側の先端まで一本の線状に形成されていることで、複数のシャフトのそれぞれが複数に分岐している場合に比べて、衝突時の複数のシャフトのそれぞれの弾性変形を促進することができる。これにより、衝突エネルギーの多くを複数のシャフトのそれぞれの弾性変形により消費することができるため、衝突時の衝撃を緩和することができる。その結果、機体に入力される衝突荷重を小さくすることができるとともに、衝突時の障害物からの跳ね返り速度を低下させることができる。
 上記の飛行体用ガードにおいて、複数のシャフトのそれぞれは、弧状に形成されていてもよい。この飛行体用ガードでは、複数のシャフトのそれぞれが弧状に形成されていることで、衝突時の複数のシャフトのそれぞれの弾性変形を促進しつつ、複数のシャフトのそれぞれに入力される衝撃荷重を複数のシャフトのそれぞれの全体に分散させることができる。
 上記の飛行体用ガードにおいて、複数のシャフトのそれぞれは、屈曲した線状に形成されていてもよい。この飛行体用ガードでは、複数のシャフトのそれぞれが屈曲して形成されていることで、衝突時の複数のシャフトのそれぞれの弾性変形を促進しつつ、複数のシャフトのそれぞれを飛行体用ガードが取り付けられる飛行体に当接しない位置に容易に配置することができる。
 上記の飛行体用ガードにおいて、ガードフレームは、環状の第一ガードフレームと、第一ガードフレームよりも下方に配置される環状の第二ガードフレームと、を有し、第二ガードフレームは、飛行体用ガードの平面視において、第一ガードフレームの内側に配置されてもよい。この飛行体用ガードでは、ガードフレームが上下に配置される第一ガードフレーム及び第二ガードフレームを有することで、飛行体用ガードの剛性を高めることができる。しかも、第一ガードフレームよりも下方に配置される第二ガードフレームが、飛行体用ガードの平面視において第一ガードフレームの内側に配置されることで、飛行体用ガードが取り付けられた飛行体が障害物に衝突した際に、第一ガードフレームよりも先に第二ガードフレームが障害物に衝突するのを抑制することができる。これにより、衝突時の飛行体の回転が第二ガードフレームにより阻害されることにより飛行体の姿勢が不安定になることを抑制することができる。
 本発明によれば、周囲の視界を確保しつつ衝突時の落下を抑制することができる。
第一実施形態に係る飛行体の斜視図である。 第一実施形態に係る飛行体の正面図である。 第一実施形態に係る飛行体の平面図である。 飛行体が障害物に衝突した状態の例を示す正面図である。 飛行体が前傾して飛行している状態を示す正面図である。 前傾して飛行している飛行体が障害物に衝突した状態を示す正面図である。 第二実施形態に係る飛行体の斜視図である。 第二実施形態に係る飛行体の正面図である。 第二実施形態に係る飛行体の平面図である。 第三実施形態に係る飛行体の斜視図である。 第三実施形態に係る飛行体の正面図である。 第三実施形態に係る飛行体の平面図である。 第四実施形態に係る飛行体の斜視図である。 第四実施形態に係る飛行体の正面図である。 第四実施形態に係る飛行体の平面図である。
 以下、本発明の実施形態について、図面を参照して詳細に説明する。なお、以下の説明において同一又は相当要素には同一符号を付し、重複する説明を省略する。
[第一実施形態]
 図1~図3を参照して、第一実施形態に係る飛行体について説明する。図1は、第一実施形態に係る飛行体1の斜視図である。図2は、第一実施形態に係る飛行体1の正面図である。図3は、第一実施形態に係る飛行体1の平面図である。図1~図3に示すように、第一実施形態に係る飛行体1は、飛行可能な飛行体であり、例えば、ドローンである。第一実施形態に係る飛行体1は、機体2と、飛行体用ガード3と、を備える。なお、飛行体1の上下方向D1は、水平面に載置された飛行体1の上下方向、又は、ホバリング中の飛行体1の上下方向である。機体2及び飛行体用ガード3の上下方向は、飛行体1の上下方向D1と同じである。飛行体1の上下方向D1における上方は、図2における上方である。飛行体1の中心を通って飛行体1の上下方向D1に延びる線を、基準線Lという。
 機体2は、飛行体1の本体を成す部分である。機体2は、中央部4と、複数のアーム部5と、複数のプロペラ6と、を有する。機体2は、その他にも、例えば、外部装置との間で無線信号を送受信する送受信装置(不図示)、飛行体1を飛行させるための制御装置(不図示)、プロペラ6を回転させるためのモータ(不図示)、制御装置及びモータ等に電源供給するための電池(不図示)等を備える。さらに、機体2は、脚部を備える。
 中央部4は、飛行体1の中央部に位置する部分である。中央部4には、例えば、送受信装置、制御装置、電池等が搭載されている。中央部4には、例えば、飛行体1の周囲を観測するためのカメラ等の観測機器7が着脱可能に取り付けられる。観測機器7は、例えば、飛行体1とは別部材であり、中央部4の底面に着脱可能に取り付けられる。なお、観測機器7は、中央部4に着脱可能に取り付けられるものではなく、中央部4の底部に搭載される飛行体1の内蔵部品であってもよい。
 複数のアーム部5は、中央部4から互いに異なる方向に延びている。複数のアーム部5は、例えば、基準線L周りに等角度で配置されている。複数のアーム部5のそれぞれには、例えば、モータが搭載されている。アーム部5の本数は、特に限定されないが、本実施形態では、一例として4本である。
 複数のプロペラ6は、回転することにより飛行体1を飛行させる。複数のプロペラ6のそれぞれは、回転可能に複数のアーム部5のそれぞれに、該アーム部6よりも飛行体の上下方向における下方に取り付けられている。つまり、一つのアーム部5に一つのプロペラ6が該アーム部よりも飛行体の上下方向における下方に取り付けられている。複数のプロペラ6は、基準線Lを中心とした同一円周上に配置されていてよい。複数のプロペラ6のそれぞれは、例えば、複数のプロペラ6のそれぞれに搭載されたモータにより回転駆動される。例えば、該アーム部よりも飛行体の上下方向における下方に向かって、アーム、モータ、プロペラの順で取り付けられていてもよく、また、アーム、プロペラ、モータの順で取り付けられていてもよい。
 飛行体用ガード3は、機体2を保護するものである。つまり、飛行体用ガード3は、飛行体1が壁等の障害物に衝突した際に、機体2、特にプロペラ6が障害物に衝突するのを防止するためのものである。飛行体用ガード3は、複数のシャフト8と、ガードフレーム9と、を備える。
 複数のシャフト8のそれぞれは、機体2に対してガードフレーム9を支持する部分である。複数のシャフト8のそれぞれは、機体2とガードフレーム9とに接続されている。複数のシャフト8のそれぞれは、例えば、機体2に対して着脱可能に接続されている。機体2に対する複数のシャフト8のそれぞれの着脱可能な接続は、例えば、螺合、嵌合、係合等により行うことができる。なお、複数のシャフト8のそれぞれは、機体2に対して着脱不能に接続されていてもよい。複数のシャフト8のそれぞれは、例えば、ガードフレーム9に対して着脱不能に接続されている。ガードフレーム9に対する複数のシャフト8のそれぞれの着脱不能な接続は、例えば、一体成形、接着等により行うことができる。なお、ガードフレーム9は、複数のシャフト8のそれぞれに対して着脱可能に接続されていてもよい。
 複数のシャフト8のそれぞれは、機体2における、複数のアーム部5の何れかに接続されている。より具体的には、複数のアーム部5のそれぞれに、二本以上のシャフト8が接続されている。一つのアーム部5に接続されているシャフト8の数は、特に限定されないが、本実施形態では、一例として二本である。
 複数のシャフト8のそれぞれは、飛行体1の平面視において、機体2側の先端からガードフレーム9側の先端まで、機体2の中心から離れる方向に延びている。つまり、複数のシャフト8のそれぞれは、飛行体1の平面視において機体2の中心から離れる方向に延びていない部分及び飛行体1の上下方向D1にのみ延びている部位を有さない。飛行体1の平面視とは、基準線Lに沿う方向、つまり、飛行体1の上下方向D1に沿う方向から見ることをいう。飛行体用ガード3の平面視は、飛行体1の平面視と同じである。機体2の中心は、飛行体1の中心であり、基準線L上にある。
 複数のシャフト8のそれぞれは、機体2側の先端からガードフレーム9側の先端まで、一本の線状に形成されている。つまり、複数のシャフト8のそれぞれは、機体2側の先端からガードフレーム9側の先端まで、複数に分岐せずに延びている。
 複数のシャフト8のそれぞれは、屈曲して形成されている、具体的には、複数のシャフト8のそれぞれは、水平部8aと、傾斜部8bと、を有する。水平部8aは、機体2のアーム部5に接続される部分である。水平部8aは、飛行体1の上下方向D1におけるプロペラ6の上方に配置されている。水平部8aは、機体2の中心から離れるように、アーム部5から飛行体1の横方向に向けて延びている。飛行体1の横方向とは、基準線Lと直交する方向である。傾斜部8bは、ガードフレーム9に接続される部分である。傾斜部8bは、水平部8aに対して屈曲して接続されて、プロペラ6の側方に配置されている。そして、傾斜部8bは、水平部8aの先端から、機体2の中心から離れるように、基準線Lに対して傾斜した方向に延びている。つまり、傾斜部8bは、水平部8a側の先端からガードフレーム9側の先端まで、飛行体1の横方向かつ飛行体1の上下方向D1に傾斜しながら延びている。プロペラがアームに対して下方だけでなく、さらに上方にも取り付けられている場合には、これにより、複数のシャフト8のそれぞれは、プロペラ6に沿う屈曲形状となっている。但し、複数のシャフト8のそれぞれは、機体2に接触しなければ、どのような屈曲形成であってもよい。
 ガードフレーム9は、機体2を保護する部分である。つまり、ガードフレーム9は、飛行体1が障害物に衝突した際に、機体2より先に障害物に衝突することで、機体2が障害物に衝突するのを防止する部分である。ガードフレーム9は、機体2を保護するために、飛行体1の平面視において機体2の外側に配置される。
 ガードフレーム9は、飛行体1の平面視において機体2を包囲する環状に形成されている。本実施形態では、複数のプロペラ6が基準線Lを中心とした同一円周上に配置されていることから、ガードフレーム9は、真円の円環状に形成されている。但し、複数のプロペラ6が楕円状に配置されている場合、機体2が何れかの方向に長く延びている場合等は、ガードフレーム9は、複数のプロペラ6に沿った楕円の円環状に形成されていてもよい。
 ガードフレーム9は、飛行体1の重心位置Gよりも飛行体1の上下方向D1における上方にのみ配置される。つまり、ガードフレーム9は、飛行体1の重心位置Gよりも飛行体1の上下方向D1における上方にのみ配置されるように、複数のシャフト8により支持されている。また、ガードフレーム9は、複数のシャフト8の機体2側の先端よりも飛行体用ガード3の上下方向における上方にのみ配置される。なお、ガードフレーム9は、複数のプロペラ6よりも飛行体1の上下方向D1における上方に配置されてもよい。
 飛行体1の重心位置Gは、機体2及び飛行体用ガード3を備える飛行体1の重心位置である。例えば、観測機器7が飛行体1とは別部材であり、別部材である飛行体1が機体2に着脱可能に取り付けられる場合は、飛行体1の重心位置Gは、観測機器7を除いた飛行体1の重心位置となる。また、観測機器7が飛行体1の内蔵部品で、観測機器7が予め機体2に搭載されている場合は、飛行体1の重心位置Gは、観測機器7を含んだ飛行体1の重心位置となる。
 図4は、飛行体1が障害物Wに衝突した状態の例を示す正面図である。図4に示すように、飛行体1では、ガードフレーム9が飛行体1の平面視において機体2の外側に配置されるため、飛行体1は、ガードフレーム9において壁等の障害物Wに衝突する。このとき、飛行体1は、プロペラ6による揚力により、障害物に対して前傾する方向D2に回転しようとする。一方、ガードフレーム9が飛行体1の重心位置Gよりも飛行体1の上下方向D1における上方にのみ配置されるため、飛行体1は、飛行体1の推進力により、障害物Wに対して後傾する方向D3に回転しようとする。これらの回転は、互いに反対方向の回転であるため、互いに相殺するように作用する。これにより、障害物に衝突した際の回転を小さく抑えることができるため、衝突時の落下を抑制することができる。
 しかも、ガードフレーム9が飛行体1の重心位置Gよりも飛行体1の上下方向における上方にのみ配置されるため、周囲の視界(観測機器7の視界)がガードフレーム9により遮られるのを抑制することができる。これにより、周囲の視界(観測機器7の視界)を確保することができる。
 また、ガードフレーム9がプロペラ6よりも飛行体1の上下方向D1における上方に配置されることで、周囲の視界(観測機器7の視界)を更に確保しつつ衝突時の落下を更に抑制することができる。
 図5は、飛行体1が前傾して飛行している状態を示す正面図である。図5に示すように、飛行体1は、所定の傾斜角度θで前傾して推進するように構成されていることが多い。そこで、傾斜角度θで前傾して推進するように構成されている飛行体1においては、周囲の視界を確保しつつ衝突時の落下を抑制する観点から、ガードフレーム9は、飛行体1が傾斜角度θに傾斜した際の飛行体1の重心位置Gよりも鉛直方向D4における上方にのみ配置されてもよい。
 また、飛行体1が傾斜角度θで前傾して推進するように構成されているか否かに関わらず、飛行体1は、飛行方向に前傾しながら推進することが多く、このときの傾斜角度θは、一般的に、3°以内、10°以内、又は25°以内である。このため、前傾しながら推進する飛行体1の場合は、周囲の視界を確保しつつ衝突時の落下を抑制する観点から、ガードフレーム9は、飛行体1が、3°、10°、又は25°傾斜した際の飛行体1の重心位置Gよりも鉛直方向D4における上方にのみ配置されてもよい。
 図6は、傾斜角度θで前傾して推進している飛行体1が障害物Wに衝突した状態を示す正面図である。図6に示すように、前傾して推進している飛行体1が障害物Wに衝突すると、飛行体1は、プロペラ6による揚力により、障害物に対して前傾する方向D2に回転しようとする。この方向D2は、飛行体1の前傾と同じ方向であり、飛行体1の前傾を増大する方向である。一方、ガードフレーム9が、飛行体1が傾斜角度θに傾斜した際の飛行体1の重心位置Gよりも鉛直方向D4における上方にのみ配置されるため、傾斜角度θで前傾して推進していた飛行体1は、飛行体1の推進力により、障害物Wに対して後傾する方向D3に回転しようとする。これらの回転は、互いに反対方向の回転であるため、互いに相殺するように作用する。しかも、飛行体1の推進力による方向D3の回転は、飛行体1の前傾とは反対方向の回転であるため、前傾している飛行体1を水平状態に戻すように、つまり、前傾している飛行体1の上下方向D1を鉛直方向D4に戻すように作用する。これにより、障害物に衝突した際の回転を小さく抑えることができるため、衝突時の落下を抑制することができる。
 しかも、ガードフレーム9が、飛行体1が傾斜角度θに傾斜した際の飛行体1の重心位置Gよりも鉛直方向D4における上方にのみ配置されるため、飛行体1が傾斜角度θで前傾して推進している場合も、周囲の視界(観測機器7の視界)がガードフレーム9により遮られるのを抑制することができる。これにより、飛行体1が傾斜角度θで前傾して推進している場合の周囲の視界(観測機器7の視界)を確保することができる。
 また、ガードフレーム9が、飛行体1が、3°、10°、又は25°傾斜した際の飛行体1の重心位置Gよりも鉛直方向D4における上方にのみ配置されることで、周囲の視界を更に確保しつつ衝突時の落下を更に抑制することができる。
 また、ガードフレーム9が飛行体1の平面視において機体2を包囲する環状に形成されていることで、飛行体1が障害物Wに衝突した際の飛行体1の向きに関わらず、機体2が障害物Wに衝突するのを抑制することができる。
 また、ガードフレーム9が円環状に形成されていることで、飛行体1が障害物に衝突した際に生じる衝撃荷重を、ガードフレーム9の全体に分散させることができる。これにより、ガードフレーム9の破損を抑制することができるともに、飛行体用ガード3から機体2に入力される衝撃荷重を小さくすることができる。
 また、ガードフレーム9が真円の円環状に形成されていることで、飛行体1が障害物Wに衝突した際の、障害物Wからの跳ね返り方向をコントロールすることができる。例えば、飛行体1が障害物Wに対して垂直な方向から衝突した場合、障害物Wに対して垂直な方向に飛行体1を跳ね返らすことができる。また、飛行体1が障害物Wに対して所定角度傾斜した方向から衝突して場合、障害物に対して衝突方向とは反対側に所定角度傾斜した方向に飛行体1を跳ね返らすことができる。
 また、複数のシャフト8のそれぞれが、飛行体1の平面視において機体2側の先端からガードフレーム9側の先端まで機体2の中心から離れる方向に延びている。このため、複数のシャフト8のそれぞれが、飛行体1の平面視において機体2の中心から離れる方向に延びていない部分及び飛行体1の上下方向D1にのみ延びている部位を有する場合に比べて、衝突時の複数のシャフト8のそれぞれの弾性変形を促進することができる。これにより、衝突エネルギーの多くを複数のシャフト8のそれぞれの弾性変形により消費することができるため、衝突時の衝撃を緩和することができる。その結果、機体2に入力される衝突荷重を小さくすることができるとともに、衝突時の障害物Wからの跳ね返り速度を低下させることができる。
 また、複数のシャフト8のそれぞれが、機体2側の先端からガードフレーム9側の先端まで一本の線状に形成されていることで、複数のシャフトのそれぞれが複数に分岐している場合に比べて、衝突時の複数のシャフト8のそれぞれの弾性変形を促進することができる。これにより、衝突エネルギーの多くを複数のシャフト8のそれぞれの弾性変形により消費することができるため、衝突時の衝撃を緩和することができる。その結果、機体2に入力される衝突荷重を小さくすることができるとともに、衝突時の障害物Wからの跳ね返り速度を低下させることができる。
 また、複数のシャフト8のそれぞれが弧状に形成されていることで、衝突時の複数のシャフト8のそれぞれの弾性変形を促進しつつ、複数のシャフト8のそれぞれに入力される衝撃荷重を複数のシャフト8のそれぞれの全体に分散させることができる。
 また、複数のシャフト8のそれぞれが屈曲して形成されていることで、衝突時の複数のシャフト8のそれぞれの弾性変形を促進しつつ、複数のシャフト8のそれぞれを機体2、特にプロペラ6に当接しない位置に容易に配置することができる。
 また、複数のシャフト8のそれぞれが複数のアーム部5の何れかに接続されていることで、複数のシャフト8のそれぞれを短くして軽量化することができる。
 また、複数のアーム部5のそれぞれに二本以上のシャフト8が接続されていることで、シャフトの本数を増やすことができる。これにより、衝突時に一本のアーム部に入力される衝撃荷重を小さくすることができるため、全体としての剛性を高めることができる。
 ところで、飛行体1は、障害物Wに衝突する際は、飛行体用ガード3において障害物Wに衝突する。このため、飛行体用ガード3の衝撃吸収能力が高いほど、衝突時の衝撃を緩和することができ、機体2に入力される衝突荷重を小さくすることができるとともに、衝突時の障害物Wからの跳ね返り速度を低下させることができる。このため、飛行体用ガード3は、衝撃吸収性が高くなる観点から、弾性変形しやすい方が好ましい。一方、飛行体用ガード3が過変形すると、障害物Wに衝突した際に機体2が障害物Wに衝突する可能性がある。
 そこで、飛行体用ガード3の衝撃吸収性を高める観点から、飛行体用ガード3の曲げ弾性率は、2.0GPa以上であってもよい。この場合、飛行体用ガード3の素材の曲げ弾性率は、5.0GPa以上であることが好ましく、8.0GPa以上であることがより好ましい。また、飛行体用ガード3の過変形により機体2が障害物Wに衝突するのを抑制する観点から、飛行体用ガード3の曲げ弾性率は、250.0GPa以下であってもよい。この場合、飛行体用ガード3の曲げ弾性率は、60.0GPa以下であることが好ましく、20.0GPa以下の範囲であることがより好ましい。また、飛行体用ガード3の衝撃吸収性を高めつつ、飛行体用ガード3の過変形により機体2が障害物Wに衝突するのを抑制する観点から、飛行体用ガード3の曲げ弾性率は、2.0GPa以上250.0GPa以下の範囲であってもよい。この場合、飛行体用ガード3の曲げ弾性率は、5.0GPa以上60.0GPa以下の範囲であることが好ましく、8.0GPa以上20.0GPa以下の範囲であることがより好ましい。この曲げ弾性率は、ISO178に規定される曲げ弾性率である。
 また、飛行体用ガード3の衝撃吸収性を高めつつ、飛行体用ガード3の過変形により機体2が障害物Wに衝突するのを抑制する観点から、飛行体用ガード3の曲げ強度は、50.0MPa以上であってもよい。この場合、飛行体用ガード3の曲げ強度は、100.0MPa以上であることが好ましく、250.0MPa以上であることがより好ましい。一方、飛行体用ガード3の曲げ強度は、特に限定されないが、例えば、30.0GPa以下であることが好ましい。この曲げ強度は、ISO178に規定される曲げ強度である。
 このような曲げ弾性率及び曲げ強度の少なくとも一方は、飛行体用ガード3の形状又は構造等により得てもよく、飛行体用ガード3の素材の物性により得てもよい。このような曲げ弾性率及び曲げ強度の少なくとも一方を得るために、飛行体用ガード3の素材として、例えば、ポリエチレン樹脂、ポリプロピレン樹脂、ポリスチレン樹脂、ABS樹脂、塩化ビニル樹脂、メタクリル酸メチル樹脂、ナイロン樹脂、フッ素樹脂、ポリカーボネート樹脂、ポリエステル樹脂、ポリエーテルエーテルケトン樹脂、ポリイミド樹脂、ポリフェニレンスルファイド樹脂等の熱可塑性樹脂の1又は2以上や、これらの熱可塑性樹脂と、オレフィン系エラストマー、スチレン系エラストマー、ポリエステル系エラストマー、シリコーン系エラストマー、アクリレート系エラストマー、ウレタン系エラストマー等の熱可塑性エラストマーなどの添加剤と、を含む熱可塑性樹脂組成物や、これらの熱可塑性樹脂と、エポキシ樹脂、フェノール樹脂等の硬化性樹脂と、を含む硬化性樹脂組成物や、それらを繊維材料で強化した繊維強化材料、といった樹脂材料を用いてもよい。該繊維材料としては、ガラス繊維、炭素繊維、アラミド繊維等の1又は2以上を用いることができる。これら樹脂材料を素材として特定の形状に成形して用いることができる。
 また、飛行体用ガード3の素材として、上記樹脂材料だけでなく、例えば、純チタン、チタン合金、鋼、アルミニウム合金、マグネシウム合金や、マレージング鋼、ステンレス鋼及び軟鉄等の鋼といった金属材料を用いてもよい。これら金属材料を素材として特定の形状に成形して用いることができるが、更に、軽量且つ高強度を持たせるため、中空構造やハニカム構造等を有していてもよい。
 飛行体用ガード3の衝撃吸収性を高める観点から、ガードフレーム9は、上記の樹脂材料を素材として用いることが好ましい。同様の観点から、複数のシャフト8は、上記の樹脂材料を素材として用いることもできる。但し、過変形を抑制する観点から、複数のシャフト8は、ガードフレーム9よりも高い曲げ弾性率を有してもよい。また、過変形を抑制する観点から、複数のシャフト8は、ガードフレーム9よりも高い曲げ強度を有してもよく、その場合には、上記の金属材料を用いることもできる。
 飛行用ガード3には筋交を設けて補強してもよい。筋交は、ガードフレーム9の剛性を高める補強部である。筋交は、先端が飛行体用ガード3(例えば、複数のシャフト8及びガードフレーム9の少なくとも一つ)に接続された複数の筋(線状ないしプレート状の細長い部材)を含んで構成される。筋交としては、例えば、交差ブレース、ジオデシック構造物が挙げられる。交差ブレースは、少なくとも2本の筋(線状ないしプレート状の細長い部材)と、その交差部を有する。該交差部では、それぞれの筋同士を連結しなくてもよいし、それぞれの筋同士を連結してもよい。該交差部でそれぞれの筋同士を連結する場合、ピン軸等で回動自在に連結してもよいし、ハブ構造で連結してもよい。交差部を連結しない場合やピン軸等で回動自在に連結する場合、それぞれの筋の両端を飛行用ガード3に接続して使用することができる。また、交差部をハブ構造とする場合、それぞれの筋の一端をハブに連結し、他端を飛行用ガード3に接続して使用することができる。交差ブレースは、飛行体1の正面視(飛行体用ガード3の正面視)において、それぞれの筋が直線状に形成されても、弧状に形成されていてもよい。弧状の場合、衝突時の複数の筋のそれぞれの弾性変形を促進しつつ、複数の筋のそれぞれに入力される衝撃荷重を複数の筋のそれぞれの全体に分散させることができる。
 また、筋交として、少なくとも3本の筋を三角形に繋ぎ合わせた構造(いわゆるジオデシック構造物)とし、外周部の各頂点を飛行用ガード3に接続して使用することもできる。三角形は1面または2以上の多面体としてもよく、さらに、3面以上の多面体であれば半球状(ドーム状)の構造とすることもできる。
 筋交を構成するそれぞれの筋は、飛行用ガード3、好ましくはガードフレーム9に接続されている。複数の筋のそれぞれは、例えば、飛行用ガード3に対して着脱可能に接続されている。飛行用ガード3に対する複数の筋のそれぞれの着脱可能な接続は、例えば、ガードフレーム9ないしシャフト8に対して螺合、嵌合、係合等により行うことができる。なお、複数の筋のそれぞれは、飛行用ガード3に対して着脱不能に接続されていてもよい。飛行用ガード3に対する複数の筋のそれぞれの着脱不能な接続は、例えば、ガードフレーム9ないしシャフト8に対して一体成形、接着等により行うことができる。筋交を構成するそれぞれの筋は、飛行体用ガード3に用いられた上記素材と同様のものを用いることができる。
 飛行用ガード3には、さらに、上面からの障害物との衝突に対して機体2を保護することができるため、ネットや網といったネット状物を被せてもよい。その際、筋交が設けられているとネット状物がプロペラとの干渉を回避することもできるため好ましい。
[第二実施形態]
 図7~図9を参照して、第二実施形態に係る飛行体について説明する。第二実施形態に係る飛行体は、基本的に第一実施形態に係る飛行体1と同様であり、飛行体用ガードのみ第一実施形態に係る飛行体1と相違する。このため、以下では、第一実施形態に係る飛行体1と相違する事項のみを説明し、第一実施形態に係る飛行体1と同様の事項の説明を省略する。
 図7は、第二実施形態に係る飛行体1Aの斜視図である。図8は、第二実施形態に係る飛行体1Aの正面図である。図9は、第二実施形態に係る飛行体1Aの平面図である。図7~図9に示すように、第二実施形態に係る飛行体1Aは、機体2と、飛行体用ガード3Aと、を備える。
 飛行体用ガード3Aは、基本的に第一実施形態の飛行体用ガード3と同様であり、複数のシャフトの形状のみ第一実施形態の飛行体用ガード3と相違する。飛行体用ガード3Aは、複数のシャフト8Aと、ガードフレーム9と、を備える。
 複数のシャフト8Aのそれぞれは、第一実施形態の複数のシャフト8のそれぞれと同様に、飛行体1Aの平面視(飛行体用ガード3Aの平面視)において、機体2側の先端からガードフレーム9側の先端まで、機体2の中心から離れる方向に延びている。つまり、複数のシャフト8Aのそれぞれは、飛行体1Aの平面視において機体2の中心から離れる方向に延びていない部分及び飛行体1Aの上下方向D1にのみ延びている部位を有さない。
 複数のシャフト8Aのそれぞれは、第一実施形態の複数のシャフト8のそれぞれと同様に、機体2側の先端からガードフレーム9側の先端まで、一本の線状に形成されている。つまり、複数のシャフト8Aのそれぞれは、機体2側の先端からガードフレーム9側の先端まで、複数に分岐せずに延びている。
 複数のシャフト8Aのそれぞれは、弧状に形成されている。具体的には、複数のシャフト8Aのそれぞれは、第一実施形態の複数のシャフト8のそれぞれのような屈曲部分を有さずに、弧状に延びている。複数のシャフト8Aのそれぞれの弧形状としては、特に限定されないが、例えば、プロペラがアームに対して下方だけでなく、さらに上方にも取り付けられている場合には、プロペラ6に沿うように、連続的に、飛行体1Aの上下方向D1における上方に向かいながら、飛行体1Aの平面視において機体2の中心から離れる方向に延びる形状とすることができる。
 このように、本実施形態では、複数のシャフト8Aのそれぞれが弧状に形成されていることで、衝突時の複数のシャフト8Aのそれぞれの弾性変形を促進しつつ、複数のシャフト8Aのそれぞれに入力される衝撃荷重を複数のシャフト8Aのそれぞれの全体に分散させることができる。これにより、衝突時の衝撃を緩和することができるとともに、飛行体用ガード3Aから機体2に入力される衝撃荷重を小さくすることができる。
[第三実施形態]
 図10~図12を参照して、第三実施形態に係る飛行体について説明する。第三実施形態に係る飛行体は、基本的に第一実施形態に係る飛行体1と同様であり、飛行体用ガードのみ第一実施形態に係る飛行体1と相違する。このため、以下では、第一実施形態に係る飛行体1と相違する事項のみを説明し、第一実施形態に係る飛行体1と同様の事項の説明を省略する。
 図10は、第三実施形態に係る飛行体1Bの斜視図である。図11は、第三実施形態に係る飛行体1Bの正面図である。図12は、第三実施形態に係る飛行体1Bの平面図である。図10~図12に示すように、第三実施形態に係る飛行体1Bは、機体2と、飛行体用ガード3Bと、を備える。
 飛行体用ガード3Bは、基本的に第一実施形態の飛行体用ガード3と同様であり、ガードフレームの数及び配置のみ第一実施形態の飛行体用ガード3と相違する。飛行体用ガード3Bは、複数のシャフト8と、ガードフレーム9Bと、を備える。
 ガードフレーム9Bは、第一ガードフレーム9B1と、第二ガードフレーム9B2と、を有する。第二ガードフレーム9B2は、第一ガードフレーム9B1よりも飛行体1の上下方向D1における下方に配置される。つまり、第一ガードフレーム9B1は、複数のシャフト8の先端(上端)に接続されており、第二ガードフレーム9B2は、第一ガードフレーム9B1よりも飛行体1の上下方向D1における下方となる位置で複数のシャフト8に接続されている。
 第一ガードフレーム9B1及び第二ガードフレーム9B2の双方は、飛行体1Bの平面視(飛行体用ガード3Bの平面視)において機体2の外側に配置される。そして、第二ガードフレーム9B2は、飛行体1Bの平面視において第一ガードフレーム9B1の内側に配置される。つまり、第一ガードフレーム9B1及び第二ガードフレーム9B2の双方は、第一実施形態のガードフレーム9と同様に、飛行体1Bの平面視において機体2を包囲する環状に形成されているが、第二ガードフレーム9B2は、第一ガードフレーム9B1よりも小径となっている。
 そして、第一ガードフレーム9B1及び第二ガードフレーム9B2の双方は、第一実施形態のガードフレーム9と同様に、飛行体1Bの重心位置Gよりも飛行体1Bの上下方向D1における上方にのみ配置される。また、第一ガードフレーム9B1及び第二ガードフレーム9B2の双方は、第一実施形態のガードフレーム9と同様に、複数のシャフト8の機体2側の先端よりも飛行体用ガード3Bの上下方向における上方にのみ配置される。
 傾斜角度θで前傾して推進するように構成されている飛行体1Bにおいては、第一ガードフレーム9B1及び第二ガードフレーム9B2の双方は、第一実施形態のガードフレーム9と同様に、飛行体1Bが傾斜角度θに傾斜した際の飛行体1Bの重心位置Gよりも鉛直方向D4における上方にのみ配置されてもよい。また、飛行体1Bが傾斜角度θで前傾して飛行するように構成されているか否かに関わらず、前傾しながら推進する飛行体1Bの場合は、第一ガードフレーム9B1及び第二ガードフレーム9B2の双方は、飛行体1Bが、3°、10°、又は25°傾斜した際の飛行体1Bの重心位置Gよりも鉛直方向D4における上方にのみ配置されてもよい。
 このように、本実施形態では、ガードフレーム9Bが上下に配置される第一ガードフレーム9B1及び第二ガードフレーム9B2を有することで、飛行体用ガード3Bの剛性を高めることができる。しかも、第一ガードフレーム9B1よりも飛行体1Bの上下方向D1における下方に配置される第二ガードフレーム9B2が、飛行体1Bの平面視において第一ガードフレーム9B1の内側に配置されることで、飛行体1Bが障害物Wに衝突した際に、第一ガードフレーム9B1よりも先に第二ガードフレーム9B2が障害物Wに衝突するのを抑制することができる。これにより、衝突時の飛行体1Bの回転が第二ガードフレーム9B2により阻害されることにより飛行体1Bの姿勢が不安定になることを抑制することができる。
[第四実施形態]
 図13~図15を参照して、第四実施形態に係る飛行体について説明する。第四実施形態に係る飛行体は、基本的に第一実施形態に係る飛行体1と同様であり、飛行体用ガードのみ第一実施形態に係る飛行体1と相違する。より具体的には、第四実施形態に係る飛行体は、第一実施形態に係る飛行体1において、複数のシャフトを第二実施形態の複数のシャフト8Aに置き換え、ガードフレームを第三実施形態のガードフレーム9Bに置き換えたものである。このため、以下では、上記実施形態と相違する事項のみを説明し、上記実施形態と同様の事項の説明を省略する。
 図13は、第四実施形態に係る飛行体1Cの斜視図である。図14は、第四実施形態に係る飛行体1Cの正面図である。図15は、第四実施形態に係る飛行体1Cの平面図である。図13~図15に示すように、第四実施形態に係る飛行体1Cは、機体2と、飛行体用ガード3Cと、を備える。
 飛行体用ガード3Cは、基本的に第一実施形態の飛行体用ガード3と同様であり、複数のシャフトの形状とガードフレームの数及び配置とのみ、第一実施形態の飛行体用ガード3と相違する。飛行体用ガード3Cは、複数のシャフト8Cと、ガードフレーム9Cと、を備える。
 複数のシャフト8Cのそれぞれは、第二実施形態の複数のシャフト8Aのそれぞれと同様である。つまり、複数のシャフト8Cのそれぞれは、機体2側の先端からガードフレーム9側の先端まで、機体2の中心から離れる方向に延びて、一本の線状に形成されている。そして、複数のシャフト8Cのそれぞれは、弧状に形成されている。
 ガードフレーム9Cは、第三実施形態のガードフレーム9Cと同様である。つまり、ガードフレーム9Cは、第三実施形態の第一ガードフレーム9B1と同様の第一ガードフレーム9C1と、第三実施形態の第二ガードフレーム9B2と同様の第二ガードフレーム9C2と、を有する。第一ガードフレーム9C1及び第二ガードフレーム9C2の配置、形状等は、第三実施形態の第一ガードフレーム9B1及び第二ガードフレーム9B2と同様である。
 以上、本発明の実施形態について説明したが、本発明は、上記実施形態に限られるものではなく、各請求項に記載した要旨を変更しない範囲で変形し、又は他のものに適用してもよい。
 例えば、ガードフレームは、飛行体の平面視において飛行体の外側に配置されていれば、環状に形成されていなくてもい。また、ガードフレームは、真円及び楕円以外の円環状に形成されていてもよく、円環状以外の環状に形成されていてもよい。
 また、ガードフレームが、飛行体の重心位置よりも前記飛行体の上下方向における上方にのみ配置されていれば、ガードフレームの数は特に限定されない。例えば、ガードフレームを3本以上備えるものであってもよい。
 また、複数のシャフトのそれぞれは、弧状ないし屈曲して形成されて、具体的には、複数のシャフトのそれぞれは、水平部と、傾斜部と、を有するものとして説明したが、水平部のみを有するものであってもよい。すなわち、この場合、上述した水平部と同様に、機体のアーム部に接続される部分であるが、アーム部との接続部の反対側の先端部、すなわち、機体の中心から離れるように、アーム部から飛行体の横方向に向けて延びている先端部においてガードフレームと接続されていてもよい。
 また、一つのアーム部に一つのプロペラが該アーム部よりも飛行体の上下方向における下方に取り付けられていることを説明したが、一つのアーム部に少なくとも一つのプロペラが該アーム部よりも飛行体の上下方向における下方に取り付けられていればよく、例えば、一つのアーム部に2つ以上のプロペラが該アーム部よりも飛行体の上下方向における下方に取り付けられていてもよく、また、下方と上方に1つずつ取り付けられていてもよい。なお、一つのアーム部に少なくとも一つのプロペラが該アーム部よりも飛行体の上下方向における下方にのみ取り付けられていることが、アームによる風切音を回避して静音性を向上させることができる観点から好ましい。また一つのアーム部に2つのプロペラを取り付ける場合であって、さらに互いのプロペラを反転させる構造(二重反転構造)とすることで高い推進力、燃費の向上、振動を低減させることができる観点から好ましい。
 また、前記アーム部は複数のシャフトのそれぞれが接続されるとともに前記複数のプロペラが、飛行体の中央部から互いに異なる方向に延びている複数のアーム部に、それぞれ、回転可能に、かつ、該アーム部よりも飛行体の上下方向における下方に取り付けられていているものとして説明した。しかしながら、前記複数のプロペラが取り付けられるアーム部とは別に、プロペラが取り付けられていない複数のアーム部を有し、それらが飛行体の中央部から互いに異なる方向に延びており、複数のシャフトのそれぞれと接続されていてもよい。これにより、設計の自由度が高くなり、例えば、プロペラおよびモータの重心を下げることができるようになり、飛行時や衝突時の飛行体の姿勢安定化の観点で望ましい。
 また、機体2に備えられた脚部は、アーム部に取り付けたプロペラないしモータから、該アーム部よりも飛行体の上下方向における下方に向けて、取り付けることができる。また、飛行体の中央部に、直接、取り付けることもできるが、この場合、脚部の形状や取付位置を、回転するプロペラに接触しないように、適宜、工夫すればよい。
 また、機体は、中央部から複数のアーム部が延びた形状であるものとして説明したが、このようなアーム部を有しないものであってもよい。また、複数のシャフトのそれぞれは、アーム部以外の部分に接続されていてもよい。
 1…飛行体、1A…飛行体、1B…飛行体、1C…飛行体、2…機体、3…飛行体用ガード、3A…飛行体用ガード、3B…飛行体用ガード、3C…飛行体用ガード、4…中央部、5…アーム部、6…プロペラ、7…観測機器、8…シャフト、8a…水平部、8b…傾斜部、8A…シャフト、8C…シャフト、9…ガードフレーム、9B…ガードフレーム、9C…ガードフレーム、9B1…第一ガードフレーム、9B2…第二ガードフレーム、10…脚、D1…上下方向、D4…鉛直方向、G…重心位置、W…障害物、θ…傾斜角度。

Claims (20)

  1.  飛行可能な飛行体であって、
     複数のプロペラを有する機体と、
     前記機体に接続された複数のシャフトと、
     前記複数のシャフトに接続されて前記飛行体の平面視において前記機体の外側に配置されるガードフレームと、を備え、
     前記複数のプロペラが、飛行体の中央部から互いに異なる方向に延びている複数のアーム部に、それぞれ、回転可能に、かつ、該アーム部よりも飛行体の上下方向における下方に取り付けられていること、
     前記ガードフレームは、前記飛行体の重心位置よりも前記飛行体の上下方向における上方にのみ配置されること、を特徴とする飛行体。
  2.  前記ガードフレームは、前記プロペラよりも前記飛行体の上下方向における上方に配置される、
    請求項1に記載の飛行体。
  3.  前記飛行体は、傾斜角度で前傾して推進するように構成されており、
     前記ガードフレームは、前記飛行体が前記傾斜角度に傾斜した際の前記飛行体の重心位置よりも鉛直方向における上方にのみ配置される、
    請求項1又は2に記載の飛行体。
  4.  前記ガードフレームは、前記飛行体が3°傾斜した際の前記飛行体の重心位置よりも鉛直方向における上方にのみ配置される、
    請求項1又は2の何れか一項に記載の飛行体。
  5.  前記ガードフレームは、前記飛行体の平面視において前記機体を包囲する環状に形成されている、
    請求項1又は2に記載の飛行体。
  6.  前記ガードフレームは、円環状に形成されている、
    請求項5に記載の飛行体。
  7.  前記ガードフレームは、真円の円環状に形成されている、
    請求項5又は6に記載の飛行体。
  8.  前記ガードフレームは、
      第一ガードフレームと、
      前記第一ガードフレームよりも前記飛行体の上下方向における下方に配置される第二ガードフレームと、を有し、
     前記第二ガードフレームは、前記飛行体の平面視において前記第一ガードフレームの内側に配置される、
    請求項1又は2に記載の飛行体。
  9.  前記複数のシャフトのそれぞれは、前記飛行体の平面視において、前記機体側の先端から前記ガードフレーム側の先端まで、前記機体の中心から離れる方向に延びている、
    請求項1又は2に記載の飛行体。
  10.  前記複数のシャフトのそれぞれは、前記機体側の先端から前記ガードフレーム側の先端まで、一本の線状に形成されている、
    請求項1又は2に記載の飛行体。
  11.  前記複数のシャフトのそれぞれは、弧状に形成されている、
    請求項9又は10に記載の飛行体。
  12.  前記複数のシャフトのそれぞれは、屈曲して形成されている、
    請求項9又は10に記載の飛行体。
  13.  前記機体は、中央部と、前記中央部から延びて前記プロペラが取り付けられる複数のアーム部と、を有し、
     前記複数のシャフトのそれぞれは、前記複数のアーム部の何れかに接続されている、
    請求項1又は2に記載の飛行体。
  14.  前記複数のアーム部のそれぞれに、二本以上の前記シャフトが接続されている、
    請求項13に記載の飛行体。
  15.  プロペラを有する機体に取り付けられる飛行体用ガードであって、
     前記機体に接続される複数のシャフトと、
     前記複数のシャフトに接続されたガードフレームと、を備え、
    前記複数のプロペラが、飛行体の中央部から互いに異なる方向に延びている複数のアーム部に、それぞれ、回転可能に、かつ、該アーム部よりも飛行体の上下方向における下方に取り付けられていること、
     前記ガードフレームは、前記複数のシャフトの前記機体側の先端よりも前記飛行体用ガードの上下方向における上方にのみ配置されること、を特徴とする飛行体用ガード。
  16.  前記複数のシャフトのそれぞれは、前記飛行体用ガードの平面視において、前記機体側の先端から前記ガードフレーム側の先端まで、前記飛行体用ガードの中心から離れる方向に延びている、
    請求項15に記載の飛行体用ガード。
  17.  前記複数のシャフトのそれぞれは、前記機体側の先端から前記ガードフレーム側の先端まで、一本の線状に形成されている、
    請求項15又は16に記載の飛行体用ガード。
  18.  前記複数のシャフトのそれぞれは、弧状に形成されている、
    請求項15又は16に記載の飛行体用ガード。
  19.  前記複数のシャフトのそれぞれは、屈曲した線状に形成されている、
    請求項15又は16の何れか一項に記載の飛行体用ガード。
  20.  前記ガードフレームは、
      環状の第一ガードフレームと、
      前記第一ガードフレームよりも前記飛行体の上下方向における下方に配置される環状の第二ガードフレームと、を有し、
     前記第二ガードフレームは、前記飛行体用ガードの平面視において、前記第一ガードフレームの内側に配置される、
    請求項15又は16に記載の飛行体用ガード。
PCT/JP2023/041196 2022-12-01 2023-11-16 飛行体及び飛行体用ガード WO2024116862A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022192794 2022-12-01
JP2022-192794 2022-12-01

Publications (1)

Publication Number Publication Date
WO2024116862A1 true WO2024116862A1 (ja) 2024-06-06

Family

ID=91323567

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/041196 WO2024116862A1 (ja) 2022-12-01 2023-11-16 飛行体及び飛行体用ガード

Country Status (1)

Country Link
WO (1) WO2024116862A1 (ja)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020019471A (ja) * 2018-08-03 2020-02-06 楽天株式会社 保護部材及び飛行装置
EP3741670A2 (en) * 2019-05-03 2020-11-25 The Boeing Company Multi-rotor rotorcraft
JP2021046207A (ja) * 2020-12-25 2021-03-25 楽天株式会社 無人飛行装置
JP2022014869A (ja) * 2020-07-07 2022-01-20 株式会社エアロネクスト 飛行体及び動力装置
JP2022521272A (ja) * 2019-02-20 2022-04-06 フライアビリティ・エスエイ 衝突耐性のある推進力およびコントローラを備えた無人航空機
JP2022058014A (ja) * 2020-09-30 2022-04-11 日本電信電話株式会社 プロペラガード
JP7076725B1 (ja) * 2021-08-16 2022-05-30 株式会社Acsl 無人航空機

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020019471A (ja) * 2018-08-03 2020-02-06 楽天株式会社 保護部材及び飛行装置
JP2022521272A (ja) * 2019-02-20 2022-04-06 フライアビリティ・エスエイ 衝突耐性のある推進力およびコントローラを備えた無人航空機
EP3741670A2 (en) * 2019-05-03 2020-11-25 The Boeing Company Multi-rotor rotorcraft
JP2022014869A (ja) * 2020-07-07 2022-01-20 株式会社エアロネクスト 飛行体及び動力装置
JP2022058014A (ja) * 2020-09-30 2022-04-11 日本電信電話株式会社 プロペラガード
JP2021046207A (ja) * 2020-12-25 2021-03-25 楽天株式会社 無人飛行装置
JP7076725B1 (ja) * 2021-08-16 2022-05-30 株式会社Acsl 無人航空機

Similar Documents

Publication Publication Date Title
JP2011046355A (ja) 飛行体
US20170113800A1 (en) Unmanned aerial vehicle protective frame configuration
EP1841644B1 (en) Assembly for providing flexure to blade system
US10561956B2 (en) Moveable member bearing aerial vehicles and methods of use
CA2749118C (en) Stiff-in-plane rotor configuration
EP2285460B1 (en) Directionally controllable flying vehicle and a propeller mechanism for accomplishing the same
EP2653384B1 (en) Blade attachment for a bearingless rotor of a helicopter
KR102169485B1 (ko) 보호 기능을 갖는 드론
EP2653383B1 (en) An airfoil blade of a bearingless rotor of a helicopter
US8147289B1 (en) Toy helicopter having guards for preventing contact of the vertical lift rotors
US9169011B2 (en) Rotor with blades including outer blade shell and inner structural member
JP4586640B2 (ja) ゴルフクラブヘッドおよびゴルフクラブ
JP6878555B2 (ja) 旋回する回転翼及び収容される回転翼羽根を有する空気力学的に効率の良い軽量の垂直離着陸航空機
EP2818407A1 (en) Rotor system of a helicopter
WO2024116862A1 (ja) 飛行体及び飛行体用ガード
JP7460022B2 (ja) 飛行体及び飛行体用ガード
WO2024116882A1 (ja) 飛行体及び飛行体用ガード
WO2017010019A1 (ja) 無人航空機
JP2019217932A (ja) 保護フレーム付乗物
WO2024116874A1 (ja) 飛行体及び飛行体用ガード
JP6180055B1 (ja) 飛行体
KR20170030881A (ko) 드론
JP2019093749A (ja) 飛行体の保護装置
CN106956767B (zh) 飞行器
JP2007091187A (ja) 円盤状飛行機1号