WO2024116746A1 - イオン注入装置およびイオン注入方法 - Google Patents

イオン注入装置およびイオン注入方法 Download PDF

Info

Publication number
WO2024116746A1
WO2024116746A1 PCT/JP2023/040051 JP2023040051W WO2024116746A1 WO 2024116746 A1 WO2024116746 A1 WO 2024116746A1 JP 2023040051 W JP2023040051 W JP 2023040051W WO 2024116746 A1 WO2024116746 A1 WO 2024116746A1
Authority
WO
WIPO (PCT)
Prior art keywords
workpiece
holding device
ion
ion implantation
injection
Prior art date
Application number
PCT/JP2023/040051
Other languages
English (en)
French (fr)
Inventor
泰成 二口
Original Assignee
住友重機械イオンテクノロジー株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友重機械イオンテクノロジー株式会社 filed Critical 住友重機械イオンテクノロジー株式会社
Publication of WO2024116746A1 publication Critical patent/WO2024116746A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/02Details
    • H01J37/20Means for supporting or positioning the object or the material; Means for adjusting diaphragms or lenses associated with the support
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/30Electron-beam or ion-beam tubes for localised treatment of objects
    • H01J37/317Electron-beam or ion-beam tubes for localised treatment of objects for changing properties of the objects or for applying thin layers thereon, e.g. for ion implantation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/26Bombardment with radiation
    • H01L21/263Bombardment with radiation with high-energy radiation
    • H01L21/265Bombardment with radiation with high-energy radiation producing ion implantation

Definitions

  • This disclosure relates to an ion implantation device and an ion implantation method.
  • a process of implanting ions into a semiconductor wafer (also called an ion implantation process) is standard for the purpose of changing the conductivity of the semiconductor, changing the crystal structure of the semiconductor, etc.
  • an ion implantation apparatus is known that is configured to scan an ion beam in the horizontal direction and move the wafer back and forth in the vertical direction (see, for example, Patent Document 1).
  • One exemplary objective of an embodiment of the present disclosure is to provide a technique for improving the productivity of an ion implantation process.
  • An ion implantation apparatus includes an ion source that generates ions, an extraction unit that extracts ions from the ion source to generate an ion beam, a beam scanning unit configured to generate a scan beam by scanning the ion beam back and forth in a scan direction different from the horizontal direction, and a holding device configured to be capable of holding an object to be processed, the holding device configured to move the object to be processed held by the holding device back and forth in a direction crossing the scan beam.
  • the method includes generating ions using an ion source, extracting ions from the ion source to generate an ion beam, scanning the ion beam back and forth in a scan direction different from the horizontal direction to generate a scan beam, and moving a workpiece back and forth in a direction intersecting the scan beam.
  • a non-limiting exemplary embodiment of the present invention provides a technique for improving the productivity of an ion implantation process.
  • FIG. 1 is a top view showing a schematic configuration of an ion implantation apparatus according to an embodiment
  • 1 is a side view showing a schematic configuration of an ion implantation apparatus according to an embodiment
  • FIG. 2 is a front view showing a schematic configuration of a first holding device and a second holding device.
  • 4(a) and (b) are top views that typically show the horizontal orientation of the first workpiece held by the first holding device.
  • 5(a) to 5(c) are side views that diagrammatically show the vertical orientation of the first workpiece held by the first holding device.
  • 11A and 11B are front views showing an example of the operation of the first holding device and the second holding device.
  • 11A and 11B are front views showing an example of the operation of the first holding device and the second holding device.
  • 11A and 11B are front views showing an example of the operation of the first holding device and the second holding device. 11A and 11B are front views showing an example of the operation of the first holding device and the second holding device. 2 is a flowchart showing a flow of an ion implantation method according to the embodiment. 10 is a flowchart showing a flow of an ion implantation method according to a modified example.
  • FIG. 1 is a top view showing a schematic configuration of an ion implantation device 10 according to an embodiment.
  • FIG. 2 is a side view showing a schematic configuration of an ion implantation device 10 according to an embodiment.
  • the ion implantation device 10 is configured to perform an ion implantation process on the surfaces of workpieces W1 and W2.
  • Workpieces W1 and W2 are, for example, substrates, such as semiconductor wafers.
  • the workpieces may be referred to as "substrates” or "wafers" in this specification, but this is not intended to limit the target of the implantation process to a specific object.
  • the workpieces may be large substrates (e.g., glass substrates or resin substrates) used in the manufacture of flat panel displays (FPDs).
  • FPDs flat panel displays
  • the ion implantation device 10 is configured to irradiate the entire surface of the workpieces W1, W2 with a spot-shaped ion beam by scanning the ion beam back and forth in a predetermined scanning direction and reciprocating the workpieces W1, W2 in a direction intersecting the scanning direction.
  • the ion implantation device 10 includes a beam generating device 12, an implantation processing chamber 14, a transport device 16, and a control device 18.
  • the beam generating device 12 is configured to generate an ion beam and transport the ion beam to the implantation processing chamber 14.
  • the implantation processing chamber 14 contains the workpieces W1, W2 to be implanted. In the implantation processing chamber 14, the workpieces W1, W2 are irradiated with the ion beam provided by the beam generating device 12.
  • the transport device 16 is configured to transport the workpieces W1, W2 before implantation processing into the implantation processing chamber 14 and transport the workpieces W1, W2 after implantation processing out of the implantation processing chamber 14.
  • the control device 18 is configured to control the overall operation of the various devices that make up the ion implantation device 10.
  • the ion implantation device 10 is equipped with a vacuum exhaust system (not shown) for providing the desired vacuum environment to the beam generating device 12, the implantation processing chamber 14, and the transport device 16.
  • the beam generating device 12 comprises, in order from the upstream side of the beamline A, an ion source 20, an extraction section 22, a mass analysis section 24, a beam shaping section 26, a beam scanning section 28, a beam collimation section 30, an acceleration/deceleration section 32, and an energy analysis section 34.
  • beamline A is used for convenience of explanation, and is synonymous with the ideal beam trajectory designed when the ion beam is not scanned by the beam scanning section 28.
  • the upstream side of the beamline A refers to the side closer to the ion source 20, and the downstream side of the beamline A refers to the side closer to the implantation processing chamber 14 (or the beam stopper 38).
  • the beam generating device 12 is configured so that the beamline A is bent midway.
  • the traveling direction of the beamline A changes in the mass analysis section 24 and the energy analysis section 34.
  • the beamline A is configured to extend in a horizontal plane perpendicular to the vertical direction.
  • the traveling direction of the ion beam traveling along the beamline A is the z direction
  • the vertical direction is the y direction
  • the direction perpendicular to the y direction and the z direction is the x direction.
  • the traveling direction of the beamline A from the ion source 20 to the mass analysis section 24 is the z1 direction
  • the direction perpendicular to the y direction and the z1 direction is the x1 direction.
  • the traveling direction of the beamline A from the mass analysis section 24 to the energy analysis section 34 is the z2 direction, and the direction perpendicular to the y direction and the z2 direction is the x2 direction. Furthermore, the traveling direction of the beamline A downstream of the energy analysis section 34 is the z3 direction, and the direction perpendicular to the y direction and the z3 direction is the x3 direction.
  • the ion source 20 is configured to generate ions that constitute an ion beam.
  • the ion source 20 includes an arc chamber 20a.
  • the arc chamber 20a has an internal space 20b in which plasma is generated.
  • the arc chamber 20a has a roughly rectangular box shape that defines the internal space 20b.
  • the arc chamber 20a has a front slit 20c for extracting ions from the plasma generated in the internal space 20b.
  • the front slit 20c has a slit shape with a long opening width in the horizontal direction (x1 direction) and a short opening width in the vertical direction (y direction). In other words, the horizontal opening width of the front slit 20c is larger than the vertical opening width of the front slit 20c.
  • the ion source 20 includes a source magnet device 20d.
  • the source magnet device 20d is configured to apply a horizontal (x1 direction) magnetic field B1 to the internal space 20b of the arc chamber 20a. By applying the magnetic field B1, the source magnet device 20d increases the generation efficiency of the plasma generated in the internal space 20b of the arc chamber 20a.
  • the direction in which the source magnet device 20d applies the magnetic field B1 corresponds to the longitudinal direction of the front slit 20c.
  • the extraction unit 22 is provided downstream of the ion source 20.
  • the extraction unit 22 extracts ions from the ion source 20 to generate an ion beam.
  • the extraction unit 22 is configured to extract ions from plasma generated in the internal space 20b of the arc chamber 20a.
  • the extraction unit 22 includes a first extraction electrode 22a and a second extraction electrode 22b.
  • the first extraction electrode 22a is provided downstream of the arc chamber 20a, and the second extraction electrode 22b is provided downstream of the first extraction electrode 22a.
  • a negative suppression voltage is applied to the first extraction electrode 22a.
  • a ground voltage is applied to the second extraction electrode 22b.
  • a positive extraction voltage is applied to the arc chamber 20a.
  • the first extraction electrode 22a has a first extraction opening 22c through which the ion beam passes.
  • the first extraction opening 22c has a slit shape with a long opening width in the horizontal direction (x1 direction) and a short opening width in the vertical direction (y direction), similar to the front slit 20c. In other words, the horizontal opening width of the first extraction opening 22c is larger than the vertical opening width of the first extraction opening 22c.
  • the second extraction electrode 22b has a second extraction opening 22d through which the ion beam passes.
  • the second extraction opening 22d has a slit shape with a long opening width in the horizontal direction (x1 direction) and a short opening width in the vertical direction (y direction), similar to the front slit 20c. In other words, the horizontal opening width of the second extraction opening 22d is larger than the vertical opening width of the second extraction opening 22d.
  • the ion beam extracted by the extraction unit 22 may be a ribbon-shaped beam that spreads in the horizontal direction (x1 direction).
  • the horizontal size of the ribbon-shaped beam can be increased. As a result, it becomes easier to increase the beam current of the ion beam extracted from the ion source 20.
  • the mass analysis section 24 is provided downstream of the extraction section 22.
  • the mass analysis section 24 is configured to select the required ion species from the ion beam extracted by the extraction section 22 by mass analysis.
  • the mass analysis section 24 includes a mass analysis magnet device 24a, a mass analysis slit 24b, and an injector Faraday cup 24c.
  • the mass analysis magnet device 24a applies a magnetic field B2 in the vertical direction (-y direction) and deflects the ion beam in the horizontal direction (x1 direction).
  • the strength of the magnetic field B2 applied by the mass analysis magnet device 24a is adjusted so that ion species having the desired mass-to-charge ratio M pass through the mass analysis slit 24b.
  • the ion beam passing through the mass analysis slit 24b is deflected, for example, by 90 degrees by the mass analysis magnet device 24a.
  • the mass analysis slit 24b is provided downstream of the mass analysis magnet device 24a.
  • the mass analysis slit 24b has a slit shape with a short opening width in the horizontal direction (x2 direction) and a long opening width in the vertical direction (y direction). In other words, the vertical opening width of the mass analysis slit 24b is larger than the horizontal opening width of the mass analysis slit 24b.
  • the mass analysis slit 24b may be configured so that the opening width (i.e., slit width) in the horizontal direction (x2 direction) is variable in order to adjust the mass resolution.
  • the mass analysis slit 24b may be configured so that it is made up of two beam shields that can be moved in the slit width direction, and the slit width can be adjusted by changing the distance between the two beam shields.
  • the mass analysis slit 24b may be configured so that the slit width can be changed by switching to one of multiple slits with different slit widths.
  • the injector Faraday cup 24c is provided downstream of the mass analysis slit 24b.
  • the injector Faraday cup 24c measures the beam current of the mass-analyzed ion beam passing through the mass analysis slit 24b.
  • the injector Faraday cup 24c can measure the mass analysis spectrum of the ion beam by measuring the beam current while changing the magnetic field strength of the mass analysis magnet device 24a. The measured mass analysis spectrum can be used to calculate the mass resolution of the mass analysis unit 24.
  • the injector Faraday cup 24c is configured so that it can be inserted into and removed from the beamline A by the operation of the injector driver 24d.
  • the injector driver 24d moves the injector Faraday cup 24c in a direction (e.g., the x2 direction) perpendicular to the z2 direction in which the beamline A extends.
  • a direction e.g., the x2 direction
  • the injector Faraday cup 24c is placed in the beamline A as shown by the dashed line in FIG. 1, it blocks the ion beam traveling downstream.
  • the injector Faraday cup 24c is retracted from the beamline A as shown by the solid line in FIG. 1, the blockage of the ion beam traveling downstream is released.
  • a magnetic shield 23 may be provided between the extraction section 22 and the mass analysis section 24.
  • the magnetic shield 23 is configured to suppress magnetic field interference between the magnetic field B1 applied to the ion source 20 and the magnetic field B2 applied to the mass analysis section 24.
  • the magnetic shield 23 is made of a magnetic material such as an electromagnetic steel plate.
  • the magnetic shield 23 has a passage opening 23a that passes the ion beam traveling from the extraction section 22 toward the mass analysis section 24.
  • the passage opening 23a may have a slit shape with a long opening width in the horizontal direction (x1 direction) and a short opening width in the vertical direction (y direction), similar to the front slit 20c. In other words, the horizontal opening width of the passage opening 23a may be larger than the vertical opening width of the passage opening 23a.
  • the beam shaping unit 26 is provided downstream of the mass analysis unit 24.
  • the beam shaping unit 26 is configured to shape the ion beam that has passed through the mass analysis unit 24 into a desired cross-sectional shape and convergence/divergence angle.
  • the beam shaping unit 26 includes a lens device that adjusts at least one of the cross-sectional shape and convergence/divergence angle of the ion beam.
  • the beam shaping unit 26 is configured, for example, to focus a ribbon-shaped ion beam that spreads in the horizontal direction and shape it into a spot-shaped ion beam.
  • the beam shaping unit 26 includes multiple lens devices, for example, three lens devices 26a, 26b, and 26c.
  • the three lens devices 26a to 26c are configured, for example, as electric field type triple-stage quadrupole lenses (also called triplet Q lenses).
  • the beam shaping unit 26 can independently adjust the convergence or divergence of the ion beam in each of the horizontal direction (x2 direction) and vertical direction (y direction).
  • the beam shaping unit 26 may include a magnetic field type lens device.
  • the beam shaping unit 26 may include a lens device that uses both an electric field and a magnetic field to shape the ion beam.
  • the beam scanning unit 28 is provided downstream of the beam shaping unit 26.
  • the beam scanning unit 28 is configured to generate a scan beam SB by scanning the ion beam back and forth in a predetermined scan direction.
  • the beam scanning unit 28 can also be said to be a beam deflection device that deflects the ion beam shaped by the beam shaping unit 26 in the predetermined scan direction.
  • the beam scanning unit 28 is configured so that the scan direction is a direction different from the horizontal direction, for example, so that the scan direction is the vertical direction (y direction).
  • the beam scanning unit 28 includes a pair of scanning electrodes 28a and 28b that face each other in the vertical direction (y direction).
  • the pair of scanning electrodes 28a and 28b are connected to a variable voltage power supply (not shown).
  • the electric field generated between the pair of scanning electrodes 28a and 28b is changed to deflect the ion beam at various angles.
  • the ion beam is scanned over the entire scanning range in the vertical direction (y direction).
  • the arrow Y illustrates the scanning direction and scanning range of the ion beam, and the multiple trajectories of the ion beam in the scanning range are indicated by dashed lines.
  • the beam scanning unit 28 may be of a magnetic field type instead of an electric field type.
  • the beam scanning unit 28 may include a magnet device for deflecting the ion beam.
  • the beam parallelizing unit 30 is provided downstream of the beam scanning unit 28.
  • the beam parallelizing unit 30 is configured to make the traveling direction of the ion beam scanned back and forth by the beam scanning unit 28 parallel to the direction of the beam line A.
  • the beam parallelizing unit 30 has a plurality of arc-shaped parallelizing lens electrodes 30a, 30b with a passage slit for the ion beam provided in the center in the horizontal direction (x2 direction).
  • the parallelizing lens electrodes 30a, 30b are connected to a high-voltage power supply (not shown), and an electric field generated by applying a voltage acts on the ion beam to parallelize the traveling direction of the ion beam.
  • the beam parallelizing unit 30 may be of a magnetic field type instead of an electric field type.
  • the beam parallelizing unit 30 may be equipped with a magnet device for deflecting the ion beam.
  • the acceleration/deceleration unit 32 is provided downstream of the beam parallelization unit 30.
  • the acceleration/deceleration unit 32 is configured to accelerate or decelerate the scan beam parallelized by the beam parallelization unit 30.
  • the acceleration/deceleration unit 32 is an electrostatic acceleration/deceleration device, and accelerates or decelerates the ion beam by utilizing the potential difference between a first potential applied to the upstream side of the acceleration/deceleration unit 32 and a second potential applied to the downstream side of the acceleration/deceleration unit 32.
  • the energy analysis unit 34 is provided downstream of the acceleration/deceleration unit 32.
  • the energy analysis unit 34 is configured to analyze the energy of the ion beam and pass ions having the desired energy toward the implantation processing chamber 14.
  • the energy analysis unit 34 is an angular energy filter (AEF) that deflects the ion beam horizontally and selects the desired energy by the deflection angle ⁇ .
  • the deflection angle ⁇ is, for example, 10 degrees or more and 20 degrees or less, and is approximately 15 degrees.
  • the energy analysis unit 34 includes an AEF electrode pair 34a, 34b and an energy analysis slit 34c.
  • the AEF electrode pair 34a, 34b are arranged to face each other in a direction perpendicular to the scan direction.
  • the AEF electrode pair 34a, 34b are arranged to face each other in the horizontal direction (x2 direction or x3 direction).
  • the AEF electrode pair 34a, 34b are connected to a high-voltage power supply (not shown) and apply an electric field to the ion beam to deflect it.
  • the AEF electrode pair 34a, 34b is a deflection device that deflects the scan beam in the horizontal direction.
  • the energy analysis slit 34c is provided downstream of the AEF electrode pair 34a, 34b.
  • the energy analysis slit 34c has a slit shape with a long opening width in the vertical direction (y direction) and a short opening width in the horizontal direction (x3 direction). In other words, the vertical opening width of the energy analysis slit 34c is larger than the horizontal opening width of the energy analysis slit 34c.
  • the energy analysis slit 34c passes ion beams of a desired energy value or energy range toward the workpieces W1 and W2 and blocks other ion beams.
  • the energy analysis unit 34 may be of a magnetic field type instead of an electric field type.
  • the energy analysis unit 34 may be equipped with a magnet device for magnetic field deflection.
  • the energy analysis unit 34 may use both an electric field and a magnetic field, and may be equipped with an AEF electrode pair for electric field deflection and a magnet device for magnetic field deflection.
  • the beam generating device 12 supplies the ion beam to be irradiated onto the workpieces W1 and W2 to the implantation processing chamber 14.
  • the beam generating device 12 may also be called a beamline device.
  • the beam generating device 12 is configured to generate an ion beam to achieve the desired implantation conditions by adjusting the operating parameters of the various devices that make up the beam generating device 12.
  • the implantation processing chamber 14 is equipped with a plasma shower device 36, a beam stopper 38, a first holding device 40, and a second holding device 42.
  • the plasma shower device 36 is located downstream of the energy analysis section 34.
  • the plasma shower device 36 supplies low-energy electrons to the ion beam and the surfaces (processed surfaces) of the workpieces W1 and W2 according to the beam current of the ion beam, suppressing charge-up caused by accumulation of positive charges on the processed surfaces due to ion implantation.
  • the plasma shower device 36 includes, for example, a shower tube 36a through which the ion beam passes, and a plasma generating section 36b that supplies electrons into the shower tube 36a.
  • the shower tube 36a has a shape in which the opening width in the vertical direction (y direction) is long and the opening width in the horizontal direction (x3 direction) is short.
  • Beam stopper 38 is provided at the most downstream position of beamline A, and is attached, for example, to the side wall of implantation processing chamber 14. When no workpieces W1, W2 are present in beamline A, the ion beam is incident on beam stopper 38. Beam stopper 38 is provided with multiple tuning cups 38a, 38b, 38c, 38d. Multiple tuning cups 38a to 38d are Faraday cups configured to measure the beam current of the ion beam incident on beam stopper 38. Multiple tuning cups 38a to 38d are arranged, for example, at intervals in the vertical direction (y direction).
  • the first holding device 40 is configured to be capable of holding the first workpiece W1 to be subjected to the injection process.
  • the first holding device 40 is configured to move the first workpiece W1 held by the first holding device 40 back and forth in a direction crossing the scan beam.
  • the first holding device 40 is configured to move the first workpiece W1 back and forth in the horizontal direction (x3 direction).
  • the first holding device 40 is capable of moving along a guide rail 44 extending in the horizontal direction (x3 direction).
  • the first holding device 40 includes a first chuck mechanism 50, a first twist mechanism 52, a first vertical angle adjustment mechanism 54, a first horizontal angle adjustment mechanism 56, and a first reciprocating mechanism 58.
  • the first chuck mechanism 50 is configured to contact the back surface of the first workpiece W1 and hold the first workpiece W1.
  • the first chuck mechanism 50 includes, for example, an electrostatic chuck for holding the first workpiece W1.
  • the first chuck mechanism 50 may include a temperature adjustment mechanism for cooling or heating the first workpiece W1.
  • the first chuck mechanism 50 includes a first lift mechanism for lifting the first workpiece W1 so as to separate the first workpiece W1 from the first chuck mechanism 50.
  • the first twist mechanism 52 rotatably supports the first chuck mechanism 50.
  • the first twist mechanism 52 rotates the first chuck mechanism 50 around a rotation axis (also called the twist axis) that extends in the normal direction of the processing surface of the first workpiece W1 held by the first chuck mechanism 50, and adjusts the twist angle ⁇ a1 of the first workpiece W1.
  • the first twist mechanism 52 adjusts, for example, the twist angle ⁇ a1 between an alignment mark provided on the outer periphery of the first workpiece W1 and a reference position.
  • the alignment mark of the first workpiece W1 refers to, for example, a notch or orientation flat provided on the outer periphery of the wafer, and refers to a mark that serves as a reference for the crystal axis direction and angular position in the circumferential direction of the wafer.
  • the first vertical angle adjustment mechanism 54 rotatably supports the first twist mechanism 52.
  • the first vertical angle adjustment mechanism 54 rotates the first twist mechanism 52 around a horizontally extending rotation axis (also called the transport tilt axis) to adjust the vertical orientation of the first workpiece W1.
  • the vertical orientation of the first workpiece W1 can be defined by the vertical rotation angle ⁇ b1 around the horizontal rotation axis.
  • the first horizontal angle adjustment mechanism 56 rotatably supports the first vertical angle adjustment mechanism 54.
  • the first horizontal angle adjustment mechanism 56 rotates the first vertical angle adjustment mechanism 54 around a rotation axis (also called the injection tilt axis) that extends vertically, and adjusts the horizontal orientation of the first workpiece W1.
  • the horizontal orientation of the first workpiece W1 can be defined by the horizontal rotation angle ⁇ c1 around the vertical rotation axis.
  • the first reciprocating motion mechanism 58 is configured to move the first horizontal angle adjustment mechanism 56 in the horizontal direction (x3 direction).
  • the first reciprocating motion mechanism 58 moves the first horizontal angle adjustment mechanism 56 along the guide rail 44.
  • the first reciprocating motion mechanism 58 includes, for example, a first ball screw 58a that extends in the horizontal direction (x3 direction) along the guide rail 44.
  • the first reciprocating motion mechanism 58 moves the first horizontal angle adjustment mechanism 56 linearly in the horizontal direction by rotating the first ball screw 58a.
  • the second holding device 42 is configured to be capable of holding the second workpiece W2 to be subjected to the injection process.
  • the second holding device 42 is configured to move the second workpiece W2 held by the second holding device 42 back and forth in a direction crossing the scan beam.
  • the second holding device 42 is configured to move the second workpiece W2 back and forth in the horizontal direction (x3 direction).
  • the second holding device 42 is capable of moving along a guide rail 44 extending in the horizontal direction (x3 direction).
  • the second holding device 42 can be configured similarly to the first holding device 40.
  • the second holding device 42 can move in the same direction as the first holding device 40.
  • the second holding device 42 can move along a guide rail 44 shared with the first holding device 40.
  • the second holding device 42 may be configured to be movable along a guide rail different from that of the first holding device 40.
  • the injection processing chamber 14 may be provided with a first guide rail along which the first holding device 40 moves, and a second guide rail along which the second holding device 42 moves.
  • the second holding device 42 can move simultaneously with the first holding device 40.
  • the second holding device 42 can move independently of the first holding device 40.
  • the second holding device 42 includes a second chuck mechanism 60, a second twist mechanism 62, a second vertical angle adjustment mechanism 64, a second horizontal angle adjustment mechanism 66, and a second reciprocating mechanism 68.
  • the second chuck mechanism 60 is configured to contact the back surface of the second workpiece W2 to hold the second workpiece W2.
  • the second chuck mechanism 60 includes, for example, an electrostatic chuck for holding the second workpiece W2.
  • the second chuck mechanism 60 may include a temperature adjustment mechanism for cooling or heating the second workpiece W2.
  • the second chuck mechanism 60 includes a second lift mechanism for lifting the second workpiece W2 so as to separate the second workpiece W2 from the second chuck mechanism 60.
  • the second twist mechanism 62 rotatably supports the second chuck mechanism 60.
  • the second twist mechanism 62 rotates the second chuck mechanism 60 around a rotation axis (also called the twist axis) that extends in the normal direction of the processing surface of the second workpiece W2 held by the second chuck mechanism 60, and adjusts the twist angle ⁇ a2 of the second workpiece W2.
  • the second twist mechanism 62 adjusts, for example, the twist angle ⁇ a2 between an alignment mark provided on the outer periphery of the second workpiece W2 and a reference position.
  • the second vertical angle adjustment mechanism 64 rotatably supports the second twist mechanism 62.
  • the second vertical angle adjustment mechanism 64 rotates the second twist mechanism 62 around a horizontally extending rotation axis (also called the transport tilt axis) to adjust the vertical orientation of the second workpiece W2.
  • the vertical orientation of the second workpiece W2 can be defined by the vertical rotation angle ⁇ b2 around the horizontal rotation axis.
  • the second horizontal angle adjustment mechanism 66 rotatably supports the second vertical angle adjustment mechanism 64.
  • the second horizontal angle adjustment mechanism 66 rotates the second vertical angle adjustment mechanism 64 around a rotation axis (also called the injection tilt axis) that extends vertically, and adjusts the horizontal orientation of the second workpiece W2.
  • the horizontal orientation of the second workpiece W2 can be defined by the horizontal rotation angle ⁇ c2 around the vertical rotation axis.
  • the second reciprocating motion mechanism 68 is configured to move the second horizontal angle adjustment mechanism 66 in the horizontal direction (x3 direction).
  • the second reciprocating motion mechanism 68 moves the second horizontal angle adjustment mechanism 66 along the guide rail 44.
  • the second reciprocating motion mechanism 68 for example, includes a second ball screw 68a that extends in the horizontal direction (x3 direction) along the guide rail 44, and moves the second horizontal angle adjustment mechanism 66 linearly in the horizontal direction by rotating the second ball screw 68a.
  • the transport device 16 includes a first transport device 70 and a second transport device 72.
  • the first transport device 70 and the second transport device 72 are arranged away from the beamline A in the horizontal direction (x3 direction).
  • the first transport device 70 is arranged away from the beamline A in the -x3 direction
  • the second transport device 72 is arranged away from the beamline A in the +x3 direction.
  • the first transport device 70 and the second transport device 72 are arranged, for example, such that the beam stopper 38 is located between the first transport device 70 and the second transport device 72.
  • the first transport device 70 is configured to transport the first workpiece W1 before injection processing into the injection processing chamber 14 and transport the first workpiece W1 after injection processing out of the injection processing chamber 14.
  • the first transport device 70 transports the first workpiece W1 into the first holding device 40 and transports the first workpiece W1 out of the first holding device 40.
  • the first transport device 70 includes, for example, a first transport robot (not shown) for transporting the first workpiece W1.
  • the first transport device 70 transports the first workpiece W1 through a first transport port 74 provided in the side wall of the injection processing chamber 14.
  • the second transport device 72 is configured to transport the second workpiece W2 before injection processing into the injection processing chamber 14 and transport the second workpiece W2 after injection processing out of the injection processing chamber 14.
  • the second transport device 72 transports the second workpiece W2 into the second holding device 42 and transports the second workpiece W2 out of the second holding device 42.
  • the second transport device 72 includes, for example, a second transport robot (not shown) for transporting the second workpiece W2.
  • the second transport device 72 transports the second workpiece W2 through a second transport port 76 provided in the side wall of the injection processing chamber 14.
  • the control device 18 controls the overall operation of the ion implantation device 10.
  • the control device 18 is realized by elements and mechanical devices such as a computer's CPU and memory, and in terms of software, it is realized by a computer program, etc.
  • the various functions provided by the control device 18 can be realized by the cooperation of hardware and software.
  • the control device 18 includes a processor 18a such as a CPU (Central Processing Unit) and a memory 18b such as a ROM (Read Only Memory) or a RAM (Random Access Memory).
  • the control device 18 controls the overall operation of the ion implantation device 10 according to a program stored in the memory 18b, for example, by the processor 18a executing the program.
  • the processor 18a may execute a program stored in an arbitrary storage device other than the memory 18b, may execute a program obtained from an arbitrary recording medium by a reading device, or may execute a program obtained via a network.
  • the memory 18b in which the program is stored may be a volatile memory such as a DRAM (Dynamic Random Access Memory), or may be a non-volatile memory such as an EEPROM (Electrically Erasable Programmable Read-Only Memory), a flash memory, a magnetoresistive memory, a resistance change memory, or a ferroelectric memory.
  • EEPROM Electrical Erasable Programmable Read-Only Memory
  • Non-volatile memory, magnetic recording media such as magnetic tapes and magnetic disks, and optical recording media such as optical disks are examples of non-transitory, tangible, computer-readable storage media.
  • control device 18 may be realized by a single device having a processor 18a and memory 18b, or may be realized by the cooperation of multiple devices each having a processor 18a and memory 18b.
  • FIG. 3 is a front view showing the schematic configuration of the first holding device 40 and the second holding device 42, and shows the configuration when viewed in the beam traveling direction (z3 direction) in the implantation processing chamber 14.
  • the first holding device 40 is arranged at a first transport position 80
  • the second holding device 42 is arranged at a second transport position 82.
  • the first transport position 80 is a position for transporting the first workpiece W1 into the first holding device 40 or transporting it out of the first holding device 40 through the first transport port 74.
  • the first transport position 80 corresponds to the position of the first transport port 74.
  • the second transport position 82 is a position for transporting the second workpiece W2 into the second holding device 42 or transporting it out of the second holding device 42 through the second transport port 76.
  • the second transport position 82 corresponds to the position of the second transport port 76.
  • the first transfer position 80 and the second transfer position 82 are separated horizontally (in the x3 direction) from the implantation position 84 for irradiating the workpieces W1 and W2 with the ion beam.
  • the injection position 84 is located at the center of the injection processing chamber 14 in the horizontal direction (x3 direction).
  • the injection position 84 is located between the first transport position 80 and the second transport position 82.
  • the injection position 84 includes an injection center position 84C, an injection left end position 84L, and an injection right end position 84R.
  • the workpieces WC, WL, and WR located at the injection center position 84C, the injection left end position 84L, and the injection right end position 84R are indicated by two-dot chain lines.
  • the injection center position 84C corresponds to the position where the scan beam SB generated by the beam generating device 12 is irradiated.
  • the injection left end position 84L is a position shifted to the left (+x3 direction in FIG.
  • the right end position 84R is a position shifted to the right (-x3 direction in FIG. 3) from the central position 84C, and is set so that the entire surface of the workpiece WR placed at the right end position 84R does not overlap with the scan beam SB.
  • the size hB of the irradiation range of the scan beam SB in the vertical direction (y direction) is larger than the size hW of the processing surface of the workpieces W1 and W2 in the vertical direction (y direction).
  • the size hB of the scan beam SB in the vertical direction is, for example, 1.1 to 3 times, and preferably 1.2 to 2 times, the size hW of the processing surface of the workpieces W1 and W2 in the vertical direction.
  • the first holding device 40 irradiates the entire surface of the first workpiece W1 to be treated with the scan beam SB by reciprocating in the horizontal direction (x3 direction) at the injection position 84.
  • the first holding device 40 irradiates the entire surface of the first workpiece W1 to be treated with the scan beam SB by reciprocating in a movement range C from the injection left end position 84L to the injection right end position 84R.
  • the first holding device 40 makes the first workpiece W1 capable of being loaded or unloaded by moving to the first transport position 80.
  • the first holding device 40 is movable between the injection position 84 and the first transport position 80.
  • the first holding device 40 is movable over a first movable range E1 from the first transport position 80 to the injection left end position 84L.
  • the first holding device 40 cannot move to the second transport position 82.
  • the second holding device 42 irradiates the entire surface of the second workpiece W2 to be treated with the scan beam SB by reciprocating in the horizontal direction (x3 direction) at the injection position 84.
  • the second holding device 42 irradiates the entire surface of the second workpiece W2 to be treated with the scan beam SB by reciprocating in a movement range C from the injection left end position 84L to the injection right end position 84R.
  • the second holding device 42 makes the second workpiece W2 capable of being loaded or unloaded by moving to the second transport position 82.
  • the second holding device 42 is movable between the injection position 84 and the second transport position 82.
  • the second holding device 42 is movable over a second movable range E2 from the second transport position 82 to the injection right end position 84R.
  • the second holding device 42 cannot move to the first transport position 80.
  • the first injection position for irradiating the first workpiece W1 held by the first holding device 40 with an ion beam is common to the second injection position for irradiating the second workpiece W2 held by the second holding device 42 with an ion beam. That is, the first injection position and the second injection position coincide with the common injection position 84. Also, the first movement range in which the first holding device 40 reciprocates the first workpiece W1 at the first injection position is common to the second movement range in which the second holding device 42 reciprocates the second workpiece W2 at the second injection position. That is, the first movement range and the second movement range coincide with the common movement range C. The first movement range and the second movement range overlap when viewed in the beam traveling direction.
  • the vertical position of the first workpiece W1 held by the first holding device 40 at the first injection position is common to the vertical position of the second workpiece W2 held by the second holding device 42 at the second injection position.
  • the position in the beam travel direction of the first workpiece W1 held by the first holding device 40 at the first injection position is the same as the position in the beam travel direction of the second workpiece W2 held by the second holding device 42 at the second injection position. Therefore, the first holding device 40 and the second holding device 42 are configured to be able to move the first workpiece W1 and the second workpiece W2 back and forth in the same manner relative to the scan beam SB. Therefore, the first workpiece W1 and the second workpiece W2 are irradiated with the scan beam SB in a common injection environment.
  • Figures 4(a) and (b) are top views that show a schematic representation of the horizontal orientation of the first workpiece W1 held by the first holding device 40.
  • Figures 4(a) and (b) show the change in the horizontal orientation of the first workpiece W1 caused by the first horizontal angle adjustment mechanism 56. The same is true for the horizontal orientation of the second workpiece W2 held by the second holding device 42.
  • Figures 4(a) and (b) show the orientation of the first workpiece W1 in the injection process in which the first workpiece W1 is irradiated with the scan beam SB.
  • Figure 4(a) shows the case where the surface of the first workpiece W1 is perpendicular to the direction of travel of the scan beam SB (z3 direction).
  • Figure 4(b) shows the case where the surface of the first workpiece W1 is diagonally intersecting the direction of travel of the scan beam SB (z3 direction).
  • the surface of the first workpiece W1 has a horizontal tilt angle ⁇ 1 with respect to the direction of travel of the scan beam SB (z3 direction).
  • the horizontal tilt angle ⁇ 1 indicates the horizontal inclination of the incident direction of the scan beam SB with respect to the normal to the surface of the first workpiece W1.
  • the first holding device 40 can adjust the horizontal tilt angle ⁇ 1 of the first workpiece W1 by driving the first horizontal angle adjustment mechanism 56 to adjust the horizontal rotation angle ⁇ c1.
  • the first holding device 40 is configured to adjust the horizontal tilt angle ⁇ 1 during ion implantation, for example, within a range of ⁇ 30 degrees or within a range of ⁇ 60 degrees.
  • FIGS. 5(a)-(c) are side views that show a schematic representation of the vertical orientation of the first workpiece W1 held by the first holding device 40.
  • FIGS. 5(a)-(c) show the change in the vertical orientation of the first workpiece W1 caused by the first vertical angle adjustment mechanism 54. The same is true for the vertical orientation of the second workpiece W2 held by the second holding device 42.
  • FIG. 5(a) shows an example of the orientation of the first workpiece W1 in the injection process in which the scan beam SB is irradiated onto the first workpiece W1.
  • the first holding device 40 holds the first workpiece W1 so that the surface to be processed of the first workpiece W1 is oriented perpendicular to the traveling direction (z3 direction) of the scan beam SB.
  • the first holding device 40 holds the first workpiece W1 so that the surface to be processed of the first workpiece W1 is oriented not along the horizontal direction.
  • the first holding device 40 holds the first workpiece W1 so that the surface to be processed of the first workpiece W1 is oriented along the vertical direction.
  • FIG. 5(b) shows another example of the orientation of the first workpiece W1 in the injection process in which the first workpiece W1 is irradiated with the scan beam SB.
  • the first holding device 40 holds the first workpiece W1 in such a way that the surface of the first workpiece W1 is inclined relative to the vertical direction.
  • the first holding device 40 holds the first workpiece W1 in such a way that the surface of the first workpiece W1 is not aligned with the horizontal direction.
  • the surface of the first workpiece W1 has a vertical tilt angle ⁇ 1 with respect to the traveling direction (z3 direction) of the scan beam SB.
  • the vertical tilt angle ⁇ 1 indicates the inclination in the vertical direction of the incident direction of the scan beam SB with respect to the normal to the surface of the first workpiece W1.
  • the first holding device 40 can adjust the vertical tilt angle ⁇ 1 by driving the first vertical angle adjustment mechanism 54 to adjust the vertical rotation angle ⁇ b1.
  • the first holding device 40 is configured to be able to adjust the vertical tilt angle ⁇ 1 during ion implantation, for example, within a range of ⁇ 30 degrees or within a range of ⁇ 60 degrees.
  • FIG. 5(c) shows the orientation of the first workpiece W1 in the transport process in which the first workpiece W1 is transported into or out of the first holding device 40.
  • the first holding device 40 holds the first workpiece W1 with the surface to be processed of the first workpiece W1 oriented horizontally.
  • the first holding device 40 lifts the first workpiece W1 using the first lift mechanism 50a so that the first workpiece W1 moves away from the first chuck mechanism 50. This allows the arm of the first transport robot for transporting the first workpiece W1 into or out of the gap 50b between the first chuck mechanism 50 and the first workpiece W1.
  • the arm of the first transport robot be inserted into the gap 50b between the first chuck mechanism 50 and the first workpiece W1.
  • the arm of the first transport robot may be configured to support the outer periphery of the first workpiece W1 instead of the back surface of the first workpiece W1.
  • the gap 50b may be very small.
  • FIG. 6 shows a situation in which the first injection process is being carried out on the first workpiece W1.
  • the first holding device 40 is disposed at the injection position 84
  • the second holding device 42 is disposed at the second transport position 82.
  • the first holding device 40 reciprocates horizontally at the injection position 84 as indicated by the arrow X for the injection process on the first workpiece W1.
  • the second holding device 42 lifts up the second workpiece W2 using the second lift mechanism 60a at the second transport position 82 in order to transport the second workpiece W2 after the injection process through the second transport port 76.
  • the second holding device 42 receives the second workpiece W2 using the second lift mechanism 60a at the second transport position 82 in order to transport the second workpiece W2 before the injection process through the second transport port 76.
  • the first holding device 40 holds the first workpiece W1 so that the scanning beam SB is irradiated onto the processing surface of the first workpiece W1.
  • the first holding device 40 holds the first workpiece W1 in an orientation in which the horizontal tilt angle ⁇ 1 is 0, for example, as shown in FIG. 4(a).
  • the first holding device 40 holds the first workpiece W1 in an orientation in which the vertical tilt angle ⁇ 1 is 0, for example, as shown in FIG. 5(a).
  • the first holding device 40 may hold the first workpiece W1 in an orientation in which the horizontal tilt angle ⁇ 1 is not 0, as shown in FIG. 4(b).
  • the first holding device 40 may hold the first workpiece W1 in an orientation in which the vertical tilt angle ⁇ 1 is not 0, as shown in FIG. 5(b).
  • the first holding device 40 may hold the first workpiece W1 in an orientation in which neither the horizontal tilt angle ⁇ 1 nor the vertical tilt angle ⁇ 1 is 0.
  • the second holding device 42 holds the second workpiece W2 so that it is oriented so that the second workpiece W2 can be loaded or unloaded through the second transport port 76.
  • the second holding device 42 holds the second workpiece W2 so that the processing surface of the second workpiece W2 is oriented horizontally.
  • the second holding device 42 lifts up the second workpiece W2 using the second lift mechanism 60a, forming a gap 60b between the second chuck mechanism 60 and the second workpiece W2.
  • the second transport device 72 inserts the arm of the second transport robot into the gap 60b between the second chuck mechanism 60 and the second workpiece W2 to transport the second workpiece W2 after the injection process.
  • the second holding device 42 When the second workpiece W2 before injection processing is placed on the second lift mechanism 60a by the arm of the second transport robot, the second holding device 42 releases the lift-up of the second workpiece W2 and holds the second workpiece W2 in the second chuck mechanism 60. After holding the second workpiece W2 before injection processing, the second holding device 42 drives the second vertical angle adjustment mechanism 64 to change the vertical rotation angle ⁇ b2 and holds the second workpiece W2 with the processing surface of the second workpiece W2 oriented not along the horizontal direction.
  • FIG. 7 shows a situation in which the first injection process into the first workpiece W1 is switched to the second injection process into the second workpiece W2. That is, the first injection process into the first workpiece W1 is completed, and the second injection process into the second workpiece W2 is started.
  • the first holding device 40 moves from the injection position 84 toward the first transport position 80 as shown by the arrow F1
  • the second holding device 42 moves from the second transport position 82 toward the injection position 84 as shown by the arrow F2.
  • the time required to switch from the first injection process to the second injection process can be shortened.
  • the first holding device 40 and the second holding device 42 can be moved so that the relative distance d between the first workpiece W1 held by the first holding device 40 and the second workpiece W2 held by the second holding device 42 is maintained.
  • the relative distance d can be maintained constant by making the moving speeds of the first holding device 40 and the second holding device 42 the same.
  • the first holding device 40 and the second holding device 42 may be moved so that the relative distance d is maintained within a range from a predetermined upper limit value to a predetermined lower limit value by adjusting the moving speeds of the first holding device 40 and the second holding device 42.
  • the moving speed of the first holding device 40 may be faster or slower than the moving speed of the second holding device 42.
  • the relative distance d is as small as possible. In the case of ion implantation with a non-uniform dose distribution in the horizontal direction for the workpiece, it is preferable that the relative distance d is larger than the size of the scan beam SB in the horizontal direction (x3 direction).
  • the moving speed of the first holding device 40 holding the first workpiece W1 at which the injection process is completed may be the maximum speed that the first holding device 40 can assume. By moving the first holding device 40 at the maximum speed, the time required from the completion of the first injection process into the first workpiece W1 to the removal of the first workpiece W1 can be shortened, and productivity can be improved.
  • the moving speed of the second holding device 42 holding the second workpiece W2 at which the injection process starts may be determined according to the injection conditions of the second workpiece W2. By moving the second holding device 42 at a moving speed according to the injection conditions, the second injection process into the second workpiece W2 can be started at the same moving speed after the second workpiece W2 moves to the injection position 84. This allows the start of the second injection process to be accelerated, and productivity can be improved.
  • FIG. 8 shows a situation in which the second injection process is being carried out on the second workpiece W2.
  • the second holding device 42 is disposed at the injection position 84
  • the first holding device 40 is disposed at the first transport position 80.
  • the second holding device 42 reciprocates horizontally at the injection position 84 as indicated by the arrow X for the injection process on the second workpiece W2.
  • the first holding device 40 lifts up the first workpiece W1 using the first lift mechanism 50a at the first transport position 80 in order to transport the first workpiece W1 after the injection process through the first transport port 74.
  • the first holding device 40 receives the first workpiece W1 using the first lift mechanism 50a at the first transport position 80 in order to transport the first workpiece W1 before the injection process through the first transport port 74.
  • the second holding device 42 holds the second workpiece W2 so that the scanning beam SB is irradiated onto the processing surface of the second workpiece W2.
  • the second holding device 42 holds the second workpiece W2 in an orientation in which the horizontal tilt angle ⁇ 2 is 0, for example, as in FIG. 4(a).
  • the second holding device 42 holds the second workpiece W2 in an orientation in which the vertical tilt angle ⁇ 2 is 0, for example, as in FIG. 5(a).
  • the second holding device 42 may hold the second workpiece W2 in an orientation in which the horizontal tilt angle ⁇ 2 is not 0, as in FIG. 4(b).
  • the second holding device 42 may hold the second workpiece W2 in an orientation in which the vertical tilt angle ⁇ 2 is not 0, as in FIG. 5(b).
  • the second holding device 42 may hold the second workpiece W2 in an orientation in which neither the horizontal tilt angle ⁇ 2 nor the vertical tilt angle ⁇ 2 is 0.
  • the first holding device 40 holds the first workpiece W1 so that it is oriented so that the first workpiece W1 can be loaded or unloaded through the first transport port 74.
  • the first holding device 40 holds the first workpiece W1 so that the processing surface of the first workpiece W1 is oriented horizontally.
  • the first holding device 40 lifts up the first workpiece W1 using the first lift mechanism 50a, forming a gap 50b between the first chuck mechanism 50 and the first workpiece W1.
  • the first transport device 70 inserts the arm of the first transport robot into the gap 50b between the first chuck mechanism 50 and the first workpiece W1 to transport the first workpiece W1 after the injection process.
  • the first holding device 40 When the first workpiece W1 before injection processing is placed on the first lift mechanism 50a by the arm of the first transport robot, the first holding device 40 releases the lift-up of the first workpiece W1 and holds the first workpiece W1 in the first chuck mechanism 50. After holding the first workpiece W1 before injection processing, the first holding device 40 drives the first vertical angle adjustment mechanism 54 to change the vertical rotation angle ⁇ b1 and holds the first workpiece W1 with the processing surface of the first workpiece W1 oriented not along the horizontal direction.
  • FIG. 9 shows a situation in which the second injection process into the second workpiece W2 is switched to the first injection process into the first workpiece W1. That is, the second injection process into the second workpiece W2 is completed, and the first injection process into the first workpiece W1 is started.
  • the first holding device 40 moves from the first transport position 80 toward the injection position 84 as shown by the arrow F3
  • the second holding device 42 moves from the injection position 84 toward the second transport position 82 as shown by the arrow F4.
  • the time required to switch from the second injection process to the first injection process can be shortened.
  • the first holding device 40 and the second holding device 42 can be moved so that the relative distance d between the first workpiece W1 held by the first holding device 40 and the second workpiece W2 held by the second holding device 42 is maintained.
  • the relative distance d can be maintained constant by making the movement speeds of the first holding device 40 and the second holding device 42 the same.
  • the first holding device 40 and the second holding device 42 may be moved so that the relative distance d is maintained within a range from a predetermined upper limit value to a lower limit value by adjusting the movement speeds of the first holding device 40 and the second holding device 42. In this case, the movement speed of the first holding device 40 may be faster or slower than the movement speed of the second holding device 42. It is preferable that the relative distance d is larger than the size of the scan beam SB in the horizontal direction (x3 direction).
  • the moving speed of the second holding device 42 holding the second workpiece W2 at the end of the injection process may be the maximum speed that the second holding device 42 can assume.
  • the moving speed of the first holding device 40 holding the first workpiece W1 at the start of the injection process may be determined according to the injection conditions of the first workpiece W1.
  • the first injection process into the first workpiece W1 can be started at the same moving speed after the first workpiece W1 has moved to the injection position 84. This allows the start of the first injection process to be accelerated, and productivity can be improved.
  • FIG. 10 is a flow chart showing the flow of the ion implantation method according to the embodiment.
  • the first workpiece W1 before the implantation process is carried into the first holding device 40 (S10).
  • the first workpiece W1 after the implantation process held by the first holding device 40 may be carried out, and then the first workpiece W1 before the implantation process may be carried into the first holding device 40.
  • the second holding device 42 is moved to the second transfer position 82 (S12), and the first holding device 40 is moved to the first implantation position (e.g., implantation position 84) (S14).
  • S12 and S14 can be performed simultaneously, and can be performed so that the respective execution periods of S12 and S14 at least partially overlap.
  • the first holding device 40 is moved back and forth at the first implantation position, and the first workpiece W1 moving back and forth is irradiated with an ion beam (S16).
  • the second workpiece W2 before the injection process is carried into the second holding device 42 (S18).
  • the second workpiece W2 after the injection process held in the second holding device 42 may be carried out, and then the second workpiece W2 before the injection process may be carried into the second holding device 42.
  • the first holding device 40 is moved to the first transfer position 80 (S20), and the second holding device 42 is moved to the second injection position (e.g., injection position 84) (S22).
  • S20 and S22 can be performed simultaneously, and can be performed so that the respective execution periods of S20 and S22 at least partially overlap.
  • the second holding device 42 is moved back and forth at the second injection position, and the reciprocating second workpiece W2 is irradiated with an ion beam (S24).
  • the flow shown in FIG. 10 can be executed repeatedly.
  • the process of S10 after the repetition can be executed before, during, or after the execution of S24.
  • the first workpiece W1 held in the first holding device 40 that has been injected can be removed, and the first workpiece W1 before the injection can be brought into the first holding device 40.
  • the first injection process into the first workpiece W1 held in the first holding device 40 and the second injection process into the second workpiece W2 held in the second holding device 42 can be executed alternately and repeatedly.
  • the flow shown in FIG. 10 can be executed repeatedly until the injection process for the multiple workpieces to be processed consecutively is completed.
  • the injection process and the transport process of the workpiece can be performed in parallel.
  • the transport process of the second workpiece W2 can be performed by the second holding device 42 at the same time as the first injection process into the first workpiece W1 held by the first holding device 40.
  • the transport process of the first workpiece W1 can be performed by the first holding device 40 at the same time as the second injection process into the second workpiece W2 held by the second holding device 42.
  • the configuration of the implantation processing chamber 14 and the transport device 16 can be made less complicated than in a configuration in which multiple holding devices reciprocate vertically.
  • the vertical size of the implantation processing chamber 14 and the transport device 16 can be reduced. As a result, it is possible to provide an ion implantation device 10 having an external size that falls within the height limit of the floor of a typical semiconductor process factory.
  • the reciprocating movements of the multiple holding devices at the injection position can be standardized.
  • the ion beam is scanned back and forth in the vertical direction, and the workpiece is moved back and forth in the horizontal direction, so that the entire surface of the workpiece can be efficiently irradiated with the scan beam.
  • a beamline A that travels along a horizontal plane can be formed, and the vertical size of the beam generation device 12 can be reduced.
  • the front slit 20c of the ion source 20 a slit shape that is long in the horizontal direction, an ion beam that spreads in the horizontal direction can be generated through the extraction section 22.
  • the vertical size of the ion beam extracted from the ion source 20 is small, the gap between the opposing magnetic poles of the mass analysis magnet device 24a through which the ion beam passes can be made small. As a result, the size of the mass analysis magnet device 24a can be reduced.
  • an ion beam with a larger beam current can be generated while reducing the size of the mass analysis magnet device 24a.
  • the ion beam that spreads in the horizontal direction is shaped into a spot shape by the beam shaping unit 26, thereby forming a spot beam suitable for vertical beam scanning by the beam scanning unit 28.
  • the beam scanning unit 28 By scanning the spot beam in the vertical direction by the beam scanning unit 28, it becomes possible to implant ions into a workpiece that is large in size in the vertical direction.
  • a scan beam with a larger beam current can be irradiated onto a workpiece that is large in size in the vertical direction, thereby improving the productivity of the implantation process.
  • the direction of application of the magnetic field B1 in the ion source 20 and the direction of application of the magnetic field B2 in the mass analysis unit 24 are perpendicular to each other, so there is a high possibility that the two will interfere with each other, adversely affecting beam quality and magnetic field control.
  • the direction of application of the magnetic field in the ion source is vertical
  • the direction of application of the magnetic field in the ion source and the direction of application of the magnetic field in the mass analysis unit are parallel, so even if the two magnetic fields interfere with each other to some extent, it does not cause a major problem.
  • This embodiment can be applied to ion implantation processing of a workpiece having a large vertical size.
  • a workpiece having a large vertical size is a large substrate used in the manufacture of flat panel displays (FPDs).
  • the vertical and horizontal dimensions of such a large substrate are, for example, 1 m x 2 m or more. It is not realistic to move such a large workpiece back and forth in the vertical direction.
  • the workpiece is moved back and forth in the horizontal direction, so that the large substrate can be moved back and forth more easily than when the workpiece is moved back and forth in the vertical direction.
  • Ion implantation processing can be performed on the large substrate by irradiating the large substrate, which moves back and forth in the horizontal direction, with a scan beam that is scanned in the vertical direction.
  • the ion implantation device 10 may not include at least one of the beam collimator 30, the acceleration/deceleration device 32, and the energy analyzer 34.
  • the implantation chamber 14 may move the workpiece horizontally to load the workpiece into the implantation chamber 14 and unload the workpiece from the implantation chamber 14.
  • the large substrate before implantation may be loaded from the right (or left) side of the implantation chamber 14, the large substrate may be moved leftward (or rightward) in the implantation chamber 14 to perform ion implantation, and the large substrate after implantation may be unloaded from the left (or right) side of the implantation chamber 14. In this way, the ion implantation device 10 may continuously process large substrates in-line.
  • FIG. 11 is a flow chart showing the flow of an ion implantation method according to a modified example. In the flow of FIG. 11, a first implantation process for a first workpiece W1 and a second implantation process for a second workpiece W2 are performed in parallel.
  • the first workpiece W1 before injection is carried into the first holding device 40 (S30).
  • the first workpiece W1 after injection held in the first holding device 40 may be carried out, and then the first workpiece W1 before injection may be carried into the first holding device 40.
  • the second workpiece W2 before injection is carried into the second holding device 42 (S32).
  • the second workpiece W2 after injection held in the second holding device 42 may be carried out, and then the second workpiece W2 before injection may be carried into the second holding device 42.
  • the order of steps S30 and S32 does not matter, and S32 may be started after the start of S30, or S30 may be started after the start of S32. Steps S30 and S32 may be performed simultaneously.
  • the first holding device 40 is moved to a first injection position (e.g., injection position 84) (S34).
  • the first holding device 40 is moved back and forth at the first injection position, so that the first workpiece W1 that moves back and forth is irradiated with an ion beam (S36).
  • the number of times the first workpiece W1 moves back and forth in S36 is not particularly limited, but may be, for example, only one round trip.
  • the first holding device 40 is retreated from the first injection position (S38), and the second holding device 42 is moved to a second injection position (e.g., injection position 84) (S40).
  • the first retreat position to which the first holding device 40 is retreated is, for example, located between the first transport position 80 and the first injection position.
  • the first retreat position to which the first holding device 40 is retreated may be the same as the first transport position 80.
  • the second holding device 42 is moved back and forth at the second injection position, and the second workpiece W2 that is moving back and forth is irradiated with an ion beam (S42).
  • the number of times the second workpiece W2 moves back and forth in S42 is not particularly limited, but may be, for example, only one round trip.
  • the second holding device 42 is retreated from the second injection position (S44).
  • the second retreat position to which the second holding device 42 is retreated is, for example, located between the second transport position 82 and the second injection position.
  • the second retreat position to which the second holding device 42 is retreated may be the same as the second transport position 82.
  • steps S34 to S44 are repeated until the injection process is completed. For example, if the number of reciprocating movements required to complete the injection process for the first workpiece W1 and the second workpiece W2 is three (i.e., three round trips), steps S34 to S44 are repeated three times. In this case, the process of irradiating the ion beam by making one round trip of the first workpiece W1 and the second workpiece W2 and irradiating the ion beam by making one round trip of the second workpiece W2 are alternately performed three times each.
  • S38 and S40 can be performed simultaneously by making the relative distance d between the first workpiece W1 and the second workpiece W2 as small as possible
  • S44 and S34 can be performed simultaneously by making the relative distance d between the first workpiece W1 and the second workpiece W2 as small as possible.
  • the first workpiece W1 and the second workpiece W2 can be moved back and forth in the same direction in a synchronized manner while maintaining the relative distance d between them as small as possible. This can improve the efficiency of ion beam utilization.
  • step S48 may be started after S48 starts, or S48 may be started after S50 starts. Steps S48 and S50 may be executed simultaneously. Also, if the first evacuation position is the first transfer position 80, the first holding device 40 is already positioned at the first transfer position 80 in step S38, so step S48 may be omitted. Similarly, if the second evacuation position is the second transfer position 82, the second holding device 42 is already positioned at the second transfer position 82 in step S44, so step S50 may be omitted.
  • the flow shown in FIG. 11 is preferably applied when the injection time during which the workpiece is irradiated with the ion beam is sufficiently short (e.g., less than half) compared to the transport time required for loading and unloading the workpiece.
  • the flow shown in FIG. 11 is preferably applied when the injection time during which the workpiece is irradiated with the ion beam is sufficiently short (e.g., less than half) compared to the transport time required for loading and unloading the workpiece.
  • the injection time during which the workpiece is irradiated with the ion beam is sufficiently long (e.g., more than twice) compared to the transport time required for loading and unloading the workpiece.
  • the flow shown in FIG. 11 can also be applied when the injection time during which the workpiece is irradiated with the ion beam is approximately the same as the transport time required for loading and unloading the workpiece, but in this case, the flow shown in FIG. 10 may be more productive.
  • the beam generating device 12 generates a scan beam using the beam scanning unit 28 and the beam collimating unit 30.
  • the beam generating device may generate a ribbon beam.
  • the beam generating device may include a ribbon beam generating unit instead of the beam scanning unit 28.
  • the ribbon beam generating unit generates a ribbon beam by diverging a spot-shaped ion beam in the vertical direction.
  • the ribbon beam generating unit may be configured with an electric field type or a magnetic field type beam diverging device.
  • the ion beam extracted from the ion source 20 is a ribbon-shaped beam that spreads in the horizontal direction.
  • the ion beam extracted from the ion source may be a ribbon beam that spreads in the vertical direction.
  • the front slit of the ion source has a slit shape with a long vertical opening width and a short horizontal opening width.
  • the extraction electrode of the extraction section has a slit shape with a long vertical opening width and a short horizontal opening width.
  • the mass analysis section is configured to deflect the ribbon beam that spreads in the vertical direction in the horizontal direction.
  • the beam generating device does not need to include the beam scanning section 28 and the beam collimating section 30.
  • the ion source and the extraction section can be said to be a ribbon beam generating section for generating a ribbon beam that spreads in the vertical direction.
  • the size of the vertical irradiation range of the ribbon beam that spreads in the vertical direction is larger than the vertical size of the workpiece. Therefore, the beam generating device that generates the ribbon beam is configured to irradiate the ion beam over an irradiation range whose size in the vertical direction is larger than the size of the workpiece surface. Note that in the embodiment described above, the beam generating device 12 that generates the scan beam is configured to irradiate the ion beam over an irradiation range whose size in the vertical direction is larger than the size of the workpiece surface.
  • multiple holding devices 40, 42 are provided in the injection processing chamber 14.
  • only a single holding device may be provided in the injection processing chamber 14.
  • the single holding device may be configured similarly to either the first holding device 40 or the second holding device 42 described above.
  • the scanning direction of the scan beam SB is the vertical direction.
  • the scanning direction of the scan beam SB may be configured to be inclined with respect to the vertical direction.
  • the beam scanning unit 28, the beam collimating unit 30, the acceleration/deceleration unit 32, and the energy analysis unit 34 are arranged at a position rotated (i.e., in an inclined orientation) around the beam line A extending in the z2 direction (for example, at a position downstream of the mass analysis unit 24 and upstream of the beam scanning unit 28) as the rotation axis.
  • the arrangement so that only the beam scanning unit 28 and the beam collimating unit 30 are rotated, and at least one of the acceleration/deceleration unit 32 and the energy analysis unit 34 is not rotated.
  • the scanning direction of the scan beam SB is within 45 degrees from the vertical direction.
  • the first holding device 40 and the second holding device 42 move in the horizontal direction.
  • the movement direction of the first holding device 40 and the second holding device 42 does not have to be horizontal, and may be inclined relative to the horizontal direction.
  • the movement direction of the first holding device 40 and the second holding device 42 may be a direction other than the horizontal direction and may be any direction that crosses the scan beam.
  • An ion source for generating ions for generating ions; an extraction unit that extracts the ions from the ion source to generate an ion beam; a beam scanning unit configured to generate a scan beam by scanning the ion beam back and forth in a scan direction different from a horizontal direction;
  • An ion implantation apparatus comprising: a holding device configured to be able to hold a workpiece, the holding device being configured to reciprocate the workpiece held by the holding device in a direction crossing the scan beam.
  • the ion implantation apparatus according to item 1 wherein the holding device is configured to reciprocate the workpiece held by the holding device in the horizontal direction.
  • the ion source includes a front slit through which the ions extracted by the extraction unit pass, 5.
  • the ion source comprises: an arc chamber having an internal space and a front slit for extracting the ions from a plasma generated in the internal space; 6.
  • the ion implantation apparatus further comprising: a magnet device that applies the horizontal magnetic field to the internal space.
  • the extraction section includes an extraction electrode having an extraction opening through which the ion beam passes, 7.
  • the ion implantation apparatus according to any one of items 1 to 7, further comprising a mass analysis unit provided between the extraction unit and the beam scanning unit, for deflecting the ion beam in the horizontal direction.
  • the ion implantation apparatus according to any one of items 1 to 11, further comprising a beam collimating unit provided downstream of the beam scanning unit and collimating the scan beam.
  • the deflection device includes a pair of electrodes facing each other across the scan beam, and a power supply that applies a DC voltage to the pair of electrodes.
  • (Item 15) The ion implantation apparatus according to item 14, wherein the electrode pair of the deflection device is arranged to face each other in the horizontal direction.
  • (Item 16) The ion implantation apparatus according to item 14, wherein the electrode pair of the deflection device is arranged to face each other in a direction perpendicular to the scanning direction.
  • (Item 17) Producing ions using an ion source; extracting the ions from the ion source to generate an ion beam; generating a scan beam by scanning the ion beam back and forth in a scan direction different from a horizontal direction; and moving the workpiece back and forth in a direction crossing the scan beam.
  • a beam generating device configured to generate an ion beam to be irradiated onto a workpiece, and to irradiate the ion beam over an irradiation range having a size in a vertical direction larger than the size of a surface of the workpiece;
  • a first holding device configured to be able to hold a first workpiece, the first holding device configured to horizontally reciprocate the first workpiece held by the first holding device so that the first workpiece crosses the irradiation range;
  • An ion implantation apparatus comprising: a second holding device configured to hold a second workpiece, the second holding device configured to move the second workpiece held by the second holding device back and forth in the horizontal direction so that the second workpiece crosses the irradiation range.
  • the first holding device is configured to be movable between a first implantation position for irradiating the first workpiece with the ion beam and a first transport position for carrying the first workpiece into the first holding device or carrying it out of the first holding device;
  • Item 19 The ion implantation apparatus described in Item 18, wherein the second holding device is configured to be movable between a second implantation position for irradiating the second workpiece with the ion beam and a second transport position for loading or unloading the second workpiece into or from the second holding device.
  • the first holding device is configured to be unable to move to the second conveying position, 25.
  • the first holding device includes a first vertical angle adjustment mechanism for adjusting the vertical orientation of the first workpiece, and a first horizontal angle adjustment mechanism for adjusting the horizontal orientation of the first workpiece, 29.
  • the ion implantation apparatus according to any one of items 18 to 28, wherein the second holding device is provided with a second vertical angle adjustment mechanism for adjusting the vertical orientation of the second workpiece, and a second horizontal angle adjustment mechanism for adjusting the horizontal orientation of the second workpiece.
  • the first holding device includes a first vertical angle adjustment mechanism that rotates around the horizontal rotation axis to adjust the orientation of the first workpiece, and a first horizontal angle adjustment mechanism that rotates around the vertical rotation axis to adjust the orientation of the first workpiece, 29.
  • the ion implantation apparatus according to any one of items 18 to 28, wherein the second holding device is provided with a second vertical angle adjustment mechanism that rotates around the horizontal rotation axis to adjust the orientation of the second workpiece, and a second horizontal angle adjustment mechanism that rotates around the vertical rotation axis to adjust the orientation of the second workpiece.
  • the first holding device includes a first vertical angle adjustment mechanism that adjusts the orientation of the first workpiece, and the first vertical angle adjustment mechanism is configured to adjust the orientation of the processing surface of the first workpiece to be along the horizontal direction when the first workpiece is loaded or unloaded, and to adjust the orientation of the processing surface of the first workpiece to be not along the horizontal direction when the first workpiece is irradiated with the ion beam, 29.
  • the ion implantation apparatus according to any one of items 18 to 28, wherein the second holding device is provided with a second vertical angle adjustment mechanism for adjusting the orientation of the second workpiece, and the second vertical angle adjustment mechanism is configured to adjust the orientation of the processing surface of the second workpiece to be along the horizontal direction when the second workpiece is loaded or unloaded, and to adjust the orientation of the processing surface of the second workpiece to be not along the horizontal direction when the ion beam is irradiated to the second workpiece.
  • the first holding device includes a first horizontal angle adjustment mechanism that adjusts the horizontal orientation of the first workpiece, and a first twist mechanism that adjusts the twist angle of the first workpiece, Item 32.
  • the ion implantation apparatus according to any one of items 18 to 31, wherein the second holding device comprises a second horizontal angle adjustment mechanism for adjusting the horizontal orientation of the second workpiece, and a second twist mechanism for adjusting the twist angle of the second workpiece.
  • the beam generating device is provided with a beam scanning unit that scans the ion beam back and forth across the irradiation range.
  • the beam generating device is equipped with a ribbon beam generating unit that generates a ribbon beam having a beam size corresponding to the size of the irradiation range.
  • (Item 35) Generating an ion beam to be irradiated onto a workpiece; Irradiating the ion beam over an irradiation range having a size in a vertical direction larger than a size of a surface to be processed of the workpiece; Holding the first workpiece in a first holding device; using the first holding device to reciprocate the first workpiece in a horizontal direction so that the first workpiece crosses the irradiation range; holding the second workpiece in a second holding device; and using the second holding device, reciprocating the second workpiece in the horizontal direction so that the second workpiece crosses the irradiation range.
  • Embodiments of the present disclosure may take the form of a computer program comprising one or more computer readable sequences describing the methods of the present disclosure, or a non-transitory tangible recording medium (e.g., a non-volatile memory, a magnetic tape, a magnetic disk, or an optical disk) on which such a computer program is stored.
  • a processor may execute such a computer program to implement the methods of the present disclosure.
  • a non-limiting exemplary embodiment of the present invention provides a technique for improving the productivity of an ion implantation process.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Analytical Chemistry (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

イオン注入装置10は、イオンを生成するイオン源20と、イオン源20からイオンを引き出してイオンビームを生成する引出部22と、イオンビームを水平方向とは異なるスキャン方向に往復スキャンさせてスキャンビームSBを生成するよう構成されるビーム走査部28と、被処理物W1,W2を保持可能に構成される保持装置40,42であって、保持装置40,42に保持される被処理物W1,W2をスキャンビームSBを横切る方向に往復移動させるよう構成される保持装置40,42と、を備える。

Description

イオン注入装置およびイオン注入方法
 本開示は、イオン注入装置およびイオン注入方法に関する。
 半導体デバイス製造工程では、半導体の導電性を変化させる目的、半導体の結晶構造を変化させる目的などのため、半導体ウェハにイオンを注入する工程(イオン注入工程ともいう)が標準的に実施されている。被処理物であるウェハの全面にイオンを注入するため、イオンビームを水平方向にスキャンし、ウェハを鉛直方向に往復運動させるよう構成されるイオン注入装置が知られている(例えば、特許文献1参照)。
特開2021-18904号公報
 イオン注入装置を用いるイオン注入工程の生産性をさらに向上させることが好ましい。
 本開示のある態様の例示的な目的のひとつは、イオン注入工程の生産性を向上させるための技術を提供することにある。
 本開示のある態様のイオン注入装置は、イオンを生成するイオン源と、イオン源からイオンを引き出してイオンビームを生成する引出部と、イオンビームを水平方向とは異なるスキャン方向に往復スキャンさせてスキャンビームを生成するよう構成されるビーム走査部と、被処理物を保持可能に構成される保持装置であって、保持装置に保持される被処理物をスキャンビームを横切る方向に往復移動させるよう構成される保持装置と、を備える。
 本開示の別の態様は、イオン注入方法である。この方法は、イオン源を用いてイオンを生成することと、イオン源からイオンを引き出してイオンビームを生成することと、イオンビームを水平方向とは異なるスキャン方向に往復スキャンさせてスキャンビームを生成することと、スキャンビームを横切る方向に被処理物を往復移動させることと、を備える。
 なお、以上の構成要素の任意の組み合わせや本開示の構成要素や表現を、方法、装置、システムなどの間で相互に置換したものもまた、本開示の態様として有効である。
 本発明の限定的ではない例示的な実施の形態によれば、イオン注入工程の生産性を向上させるための技術を提供できる。
実施の形態に係るイオン注入装置の概略構成を示す上面図である。 実施の形態に係るイオン注入装置の概略構成を示す側面図である。 第1保持装置および第2保持装置の概略構成を示す正面図である。 図4(a),(b)は、第1保持装置に保持される第1被処理物の水平方向の向きを模式的に示す上面図である。 図5(a)~(c)は、第1保持装置に保持される第1被処理物の鉛直方向の向きを模式的に示す側面図である。 第1保持装置および第2保持装置の動作の一例を示す正面図である。 第1保持装置および第2保持装置の動作の一例を示す正面図である。 第1保持装置および第2保持装置の動作の一例を示す正面図である。 第1保持装置および第2保持装置の動作の一例を示す正面図である。 実施の形態に係るイオン注入方法の流れを示すフローチャートである。 変形例に係るイオン注入方法の流れを示すフローチャートである。
 以下、図面を参照しながら、本開示に係るイオン注入装置およびイオン注入方法を実施するための形態について詳細に説明する。なお、図面の説明において同一の要素には同一の符号を付し、重複する説明を適宜省略する。また、以下に述べる構成は例示であり、本発明の範囲を何ら限定するものではない。
 図1は、実施の形態に係るイオン注入装置10の概略構成を示す上面図である。図2は、実施の形態に係るイオン注入装置10の概略構成を示す側面図である。イオン注入装置10は、被処理物W1,W2の表面にイオン注入処理を施すよう構成される。被処理物W1,W2は、例えば基板であり、例えば半導体ウェハである。説明の便宜のため、本明細書において被処理物を「基板」または「ウェハ」と呼ぶことがあるが、これは注入処理の対象を特定の物体に限定することを意図しない。被処理物は、フラットパネルディスプレイ(FPD)の製造に用いられる大型基板(例えばガラス基板または樹脂基板)であってもよい。
 イオン注入装置10は、イオンビームを所定のスキャン方向に往復走査させ、被処理物W1,W2をスキャン方向と交差する方向に往復運動させることにより、被処理物W1,W2の被処理面全体にわたってスポット状のイオンビームを照射するよう構成される。イオン注入装置10は、ビーム生成装置12と、注入処理室14と、搬送装置16と、制御装置18とを備える。
 ビーム生成装置12は、イオンビームを生成し、イオンビームを注入処理室14へ輸送するよう構成される。注入処理室14は、注入処理の対象となる被処理物W1,W2を収容する。注入処理室14において、ビーム生成装置12から与えられるイオンビームが被処理物W1,W2に照射される。搬送装置16は、注入処理前の被処理物W1,W2を注入処理室14に搬入し、注入処理後の被処理物W1,W2を注入処理室14から搬出するよう構成される。制御装置18は、イオン注入装置10を構成する各種装置の動作全般を制御するよう構成される。イオン注入装置10は、ビーム生成装置12、注入処理室14および搬送装置16に所望の真空環境を提供するための真空排気系(図示せず)を備える。
 ビーム生成装置12は、ビームラインAの上流側から順に、イオン源20、引出部22、質量分析部24、ビーム成形部26、ビーム走査部28、ビーム平行化部30、加速減速部32、エネルギー分析部34を備える。ここで、ビームラインAは説明の便宜上使用されるものであり、ビーム走査部28によってイオンビームをスキャンしない場合における設計上の理想的なビーム軌道と同義である。また、ビームラインAの上流とは、イオン源20に近い側のことをいい、ビームラインAの下流とは注入処理室14(またはビームストッパ38)に近い側のことをいう。
 ビーム生成装置12は、ビームラインAが途中で屈曲するように構成される。ビームラインAの進行方向は、質量分析部24およびエネルギー分析部34において変化する。ビームラインAは、鉛直方向に直交する水平面内において延びるように構成される。本書では説明の便宜上、ビームラインAに沿って進むイオンビームの進行方向をz方向とし、鉛直方向をy方向とし、y方向およびz方向に直交する方向をx方向とする。特に、イオン源20から質量分析部24までのビームラインAの進行方向をz1方向とし、y方向およびz1方向に直交する方向をx1方向とする。また、質量分析部24からエネルギー分析部34までのビームラインAの進行方向をz2方向とし、y方向とz2方向に直交する方向をx2方向とする。さらに、エネルギー分析部34よりも下流におけるビームラインAの進行方向をz3方向とし、y方向とz3方向に直交する方向をx3方向とする。
 イオン源20は、イオンビームを構成するイオンを生成するよう構成される。イオン源20は、アークチャンバ20aを備える。アークチャンバ20aは、プラズマが生成される内部空間20bを有する。アークチャンバ20aは、内部空間20bを区画する略直方体の箱形状を有する。アークチャンバ20aは、内部空間20bにて生成されるプラズマからイオンを引き出すためのフロントスリット20cを有する。フロントスリット20cは、水平方向(x1方向)の開口幅が長く、鉛直方向(y方向)の開口幅が短いスリット形状を有する。つまり、フロントスリット20cの水平方向の開口幅は、フロントスリット20cの鉛直方向の開口幅よりも大きい。
 イオン源20は、ソース磁石装置20dを備える。ソース磁石装置20dは、アークチャンバ20aの内部空間20bに水平方向(x1方向)の磁場B1を印加するよう構成される。ソース磁石装置20dは、磁場B1を印加することにより、アークチャンバ20aの内部空間20bで生成されるプラズマの生成効率を高める。ソース磁石装置20dによる磁場B1の印加方向は、フロントスリット20cの長手方向に対応する。
 引出部22は、イオン源20の下流に設けられる。引出部22は、イオン源20からイオンを引き出してイオンビームを生成する。引出部22は、アークチャンバ20aの内部空間20bにて生成されるプラズマからイオンを引き出すよう構成される。引出部22は、第1引出電極22aと、第2引出電極22bとを備える。第1引出電極22aは、アークチャンバ20aの下流側に設けられ、第2引出電極22bは、第1引出電極22aの下流側に設けられる。第1引出電極22aには、負のサプレッション電圧が印加される。第2引出電極22bには、グランド電圧が印加される。なお、アークチャンバ20aには、正の引出電圧が印加されている。
 第1引出電極22aは、イオンビームが通過する第1引出開口22cを有する。第1引出開口22cは、フロントスリット20cと同様、水平方向(x1方向)の開口幅が長く、鉛直方向(y方向)の開口幅が短いスリット形状を有する。つまり、第1引出開口22cの水平方向の開口幅は、第1引出開口22cの鉛直方向の開口幅よりも大きい。第2引出電極22bは、イオンビームが通過する第2引出開口22dを有する。第2引出開口22dは、フロントスリット20cと同様、水平方向(x1方向)の開口幅が長く、鉛直方向(y方向)の開口幅が短いスリット形状を有する。つまり、第2引出開口22dの水平方向の開口幅は、第2引出開口22dの鉛直方向の開口幅よりも大きい。
 引出部22によって引き出されるイオンビームは、水平方向(x1方向)に拡がったリボン状ビームであってもよい。フロントスリット20c、第1引出開口22cおよび第2引出開口22dの水平方向の開口幅を大きくすることにより、リボン状ビームの水平方向のサイズを大きくすることができる。その結果、イオン源20から引き出されるイオンビームのビーム電流を大きくすることが容易となる。
 質量分析部24は、引出部22の下流に設けられる。質量分析部24は、引出部22によって引き出されたイオンビームから必要なイオン種を質量分析により選択するよう構成される。質量分析部24は、質量分析磁石装置24aと、質量分析スリット24bと、インジェクタファラデーカップ24cとを備える。
 質量分析磁石装置24aは、イオンビームに磁場B2を印加し、イオンの質量電荷比M=m/q(mは質量、qは電荷)の値に応じて異なる経路でイオンビームを偏向させる。質量分析磁石装置24aは、鉛直方向(-y方向)の磁場B2を印加し、イオンビームを水平方向(x1方向)に偏向させる。質量分析磁石装置24aによる磁場B2の印加強度は、所望の質量電荷比Mを有するイオン種が質量分析スリット24bを通過するように調整される。質量分析スリット24bを通過するイオンビームは、例えば、質量分析磁石装置24aによって90度偏向する。
 質量分析スリット24bは、質量分析磁石装置24aの下流に設けられる。質量分析スリット24bは、水平方向(x2方向)の開口幅が短く、鉛直方向(y方向)の開口幅が長いスリット形状を有する。つまり、質量分析スリット24bの鉛直方向の開口幅は、質量分析スリット24bの水平方向の開口幅よりも大きい。
 質量分析スリット24bは、質量分解能の調整のために水平方向(x2方向)の開口幅(つまり、スリット幅)が可変となるように構成されてもよい。質量分析スリット24bは、スリット幅方向に移動可能な二枚のビーム遮蔽体により構成され、二枚のビーム遮蔽体の間隔を変化させることによりスリット幅が調整可能となるように構成されてもよい。質量分析スリット24bは、スリット幅の異なる複数のスリットのいずれか一つに切り替えることによりスリット幅が可変となるよう構成されてもよい。
 インジェクタファラデーカップ24cは、質量分析スリット24bの下流に設けられる。インジェクタファラデーカップ24cは、質量分析スリット24bを通過する質量分析されたイオンビームのビーム電流を計測する。インジェクタファラデーカップ24cは、質量分析磁石装置24aの磁場強度を変化させながらビーム電流を測定することにより、イオンビームの質量分析スペクトラムを計測できる。計測した質量分析スペクトラムは、質量分析部24の質量分解能の算出に用いることができる。
 インジェクタファラデーカップ24cは、インジェクタ駆動部24dの動作によりビームラインAに出し入れ可能となるよう構成される。インジェクタ駆動部24dは、インジェクタファラデーカップ24cをビームラインAが延びるz2方向と直交する方向(例えばx2方向)に移動させる。インジェクタファラデーカップ24cは、図1の破線で示すようにビームラインAに配置された場合、下流側に向かうイオンビームを遮断する。一方、図1の実線で示すように、インジェクタファラデーカップ24cがビームラインAから退避された場合、下流側に向かうイオンビームの遮断が解除される。
 引出部22と質量分析部24の間には、磁気シールド23が設けられてもよい。磁気シールド23は、イオン源20に印加される磁場B1と質量分析部24に印加される磁場B2の間の磁場干渉を抑制するよう構成される。磁気シールド23は、電磁鋼板などの磁性材料で構成される。磁気シールド23は、引出部22から質量分析部24に向かうイオンビームを通過させる通過開口23aを備える。通過開口23aは、フロントスリット20cと同様、水平方向(x1方向)の開口幅が長く、鉛直方向(y方向)の開口幅が短いスリット形状を有してもよい。つまり、通過開口23aの水平方向の開口幅は、通過開口23aの鉛直方向の開口幅よりも大きくてもよい。
 ビーム成形部26は、質量分析部24の下流に設けられる。ビーム成形部26は、質量分析部24を通過したイオンビームを所望の断面形状および収束発散角に成形するよう構成されている。ビーム成形部26は、イオンビームの断面形状および収束発散角の少なくとも一方を調整するレンズ装置を備える。ビーム成形部26は、例えば、水平方向に拡がったリボン状のイオンビームを集束させ、スポット状のイオンビームに成形するよう構成される。
 ビーム成形部26は、複数のレンズ装置を備え、例えば、三つのレンズ装置26a,26b,26cを備える。三つのレンズ装置26a~26cは、例えば、電場式の三段四重極レンズ(トリプレットQレンズともいう)として構成される。ビーム成形部26は、複数のレンズ装置を組み合わせて用いることにより、イオンビームの収束または発散を水平方向(x2方向)および鉛直方向(y方向)のそれぞれについて独立に調整できる。ビーム成形部26は、磁場式のレンズ装置を備えてもよい。ビーム成形部26は、電場と磁場の双方を利用してイオンビームを成形するレンズ装置を備えてもよい。
 ビーム走査部28は、ビーム成形部26の下流に設けられる。ビーム走査部28は、イオンビームを所定のスキャン方向に往復スキャンさせてスキャンビームSBを生成するよう構成される。ビーム走査部28は、ビーム成形部26によって成形されたイオンビームを所定のスキャン方向に偏向させるビーム偏向装置ともいえる。ビーム走査部28は、スキャン方向が水平方向とは異なる方向となるように構成され、例えば、スキャン方向が鉛直方向(y方向)となるように構成される。
 ビーム走査部28は、鉛直方向(y方向)に対向する走査電極対28a,28bを備える。走査電極対28a,28bは可変電圧電源(図示せず)に接続される。走査電極対28a,28bの間に印加される電圧を周期的に変化させることにより、走査電極対28a,28bの間に生じる電界を変化させてイオンビームをさまざまな角度に偏向させる。その結果、イオンビームが鉛直方向(y方向)の走査範囲全体にわたって走査される。図2において、矢印Yによりイオンビームのスキャン方向及び走査範囲を例示し、走査範囲におけるイオンビームの複数の軌跡を破線で示している。なお、ビーム走査部28は、電場式ではなく、磁場式であってもよい。ビーム走査部28は、イオンビームを偏向させるための磁石装置を備えてもよい。
 ビーム平行化部30は、ビーム走査部28の下流に設けられる。ビーム平行化部30は、ビーム走査部28によって往復走査されたイオンビームの進行方向をビームラインAの方向と平行にするよう構成される。ビーム平行化部30は、水平方向(x2方向)の中央部にイオンビームの通過スリットが設けられた円弧形状の複数の平行化レンズ電極30a,30bを有する。平行化レンズ電極30a,30bは、高圧電源(図示せず)に接続されており、電圧印加により生じる電界をイオンビームに作用させて、イオンビームの進行方向を平行化する。なお、ビーム平行化部30は、電場式ではなく、磁場式であってもよい。ビーム平行化部30は、イオンビームを偏向させるための磁石装置を備えてもよい。
 加速減速部32は、ビーム平行化部30の下流に設けられる。加速減速部32は、ビーム平行化部30によって平行化されたスキャンビームを加速または減速させるよう構成される。加速減速部32は、静電式の加減速装置であり、加速減速部32の上流側に印加される第1電位と、加速減速部32の下流側に印加される第2電位との間の電位差を利用してイオンビームを加速または減速させる。
 エネルギー分析部34は、加速減速部32の下流に設けられる。エネルギー分析部34は、イオンビームのエネルギーを分析し、所望のエネルギーを有するイオンを注入処理室14に向けて通過させるよう構成される。エネルギー分析部34は、イオンビームを水平方向に偏向させ、その偏向角θによって所望のエネルギーを選択する角度エネルギーフィルタ(AEF)である。偏向角θは、例えば、10度以上20度以下であり、15度程度である。エネルギー分析部34は、AEF電極対34a,34bと、エネルギー分析スリット34cとを備える。
 AEF電極対34a,34bは、スキャン方向と直交する方向に対向するように配置される。AEF電極対34a,34bは、水平方向(x2方向またはx3方向)に対向するように配置される。AEF電極対34a,34bは、高圧電源(図示せず)に接続され、イオンビームに電場を作用させて偏向させる。AEF電極対34a,34bは、スキャンビームを水平方向に偏向させる偏向装置である。エネルギー分析スリット34cは、AEF電極対34a,34bの下流側に設けられる。
 エネルギー分析スリット34cは、鉛直方向(y方向)の開口幅が長く、水平方向(x3方向)の開口幅が短いスリット形状を有する。つまり、エネルギー分析スリット34cの鉛直方向の開口幅は、エネルギー分析スリット34cの水平方向の開口幅よりも大きい。エネルギー分析スリット34cは、所望のエネルギー値またはエネルギー範囲のイオンビームを被処理物W1,W2に向けて通過させ、それ以外のイオンビームを遮蔽する。
 エネルギー分析部34は、電場式ではなく、磁場式であってもよい。エネルギー分析部34は、磁場偏向用の磁石装置を備えてもよい。エネルギー分析部34は、電場と磁場の双方を利用してもよく、電界偏向用のAEF電極対と磁場偏向用の磁石装置とを備えてもよい。
 このようにして、ビーム生成装置12は、被処理物W1,W2に照射されるべきイオンビームを注入処理室14に供給する。ビーム生成装置12は、ビームライン装置と呼ばれてもよい。ビーム生成装置12は、ビーム生成装置12を構成する各種機器の動作パラメータを調整することにより、所望の注入条件を実現するためのイオンビームを生成するよう構成される。
 注入処理室14は、プラズマシャワー装置36と、ビームストッパ38と、第1保持装置40と、第2保持装置42とを備える。
 プラズマシャワー装置36は、エネルギー分析部34の下流に位置する。プラズマシャワー装置36は、イオンビームのビーム電流量に応じてイオンビームおよび被処理物W1,W2の表面(被処理面)に低エネルギー電子を供給し、イオン注入で生じる被処理面における正電荷の蓄積に起因するチャージアップを抑制する。プラズマシャワー装置36は、例えば、イオンビームが通過するシャワーチューブ36aと、シャワーチューブ36a内に電子を供給するプラズマ発生部36bとを備える。シャワーチューブ36aは、鉛直方向(y方向)の開口幅が長く、水平方向(x3方向)の開口幅が短い形状を有する。
 ビームストッパ38は、ビームラインAの最下流に設けられ、例えば、注入処理室14の側壁に取り付けられる。ビームラインAに被処理物W1,W2が存在しない場合、イオンビームはビームストッパ38に入射する。ビームストッパ38には、複数のチューニングカップ38a,38b,38c,38dが設けられる。複数のチューニングカップ38a~38dは、ビームストッパ38に入射するイオンビームのビーム電流を測定するよう構成されるファラデーカップである。複数のチューニングカップ38a~38dは、例えば、鉛直方向(y方向)に間隔をあけて配置される。
 第1保持装置40は、注入処理の対象となる第1被処理物W1を保持可能に構成される。第1保持装置40は、第1保持装置40に保持される第1被処理物W1をスキャンビームを横切る方向に往復移動させるよう構成される。第1保持装置40は、第1被処理物W1を水平方向(x3方向)に往復移動させるよう構成される。第1保持装置40は、水平方向(x3方向)に延びるガイドレール44に沿って移動可能である。
 第1保持装置40は、第1チャック機構50と、第1ツイスト機構52と、第1鉛直角度調整機構54と、第1水平角度調整機構56と、第1往復運動機構58とを備える。
 第1チャック機構50は、第1被処理物W1の裏面と接触して第1被処理物W1を保持するよう構成される。第1チャック機構50は、例えば、第1被処理物W1を保持するための静電チャック等を含む。第1チャック機構50は、第1被処理物W1を冷却または加熱するための温度調整機構を備えてもよい。第1チャック機構50は、第1チャック機構50から第1被処理物W1が離れるように第1被処理物W1を持ち上げるための第1リフト機構を備える。
 第1ツイスト機構52は、第1チャック機構50を回動可能に支持する。第1ツイスト機構52は、第1チャック機構50に保持される第1被処理物W1の被処理面の法線方向に延びる回転軸(ツイスト軸ともいう)まわりに第1チャック機構50を回転させ、第1被処理物W1のツイスト角φa1を調整する。第1ツイスト機構52は、例えば、第1被処理物W1の外周部に設けられるアライメントマークと基準位置との間のツイスト角φa1を調整する。ここで、第1被処理物W1のアライメントマークとは、例えば、ウェハの外周部に設けられるノッチやオリフラのことをいい、ウェハの結晶軸方向や周方向の角度位置の基準となるマークをいう。
 第1鉛直角度調整機構54は、第1ツイスト機構52を回動可能に支持する。第1鉛直角度調整機構54は、水平方向に延びる回転軸(搬送チルト軸ともいう)まわりに第1ツイスト機構52を回転させ、第1被処理物W1の鉛直方向の向きを調整する。第1被処理物W1の鉛直方向の向きは、水平方向の回転軸まわりの鉛直回動角φb1によって定義することができる。
 第1水平角度調整機構56は、第1鉛直角度調整機構54を回動可能に支持する。第1水平角度調整機構56は、鉛直方向に延びる回転軸(注入チルト軸ともいう)まわりに第1鉛直角度調整機構54を回転させ、第1被処理物W1の水平方向の向きを調整する。第1被処理物W1の水平方向の向きは、鉛直方向の回転軸まわりの水平回動角φc1によって定義することができる。
 第1往復運動機構58は、第1水平角度調整機構56を水平方向(x3方向)に移動させるよう構成される。第1往復運動機構58は、第1水平角度調整機構56をガイドレール44に沿って移動させる。第1往復運動機構58は、例えば、ガイドレール44に沿って水平方向(x3方向)に延びる第1ボールねじ58aを備える。第1往復運動機構58は、第1ボールねじ58aを回転させることにより、第1水平角度調整機構56を水平方向に直線移動させる。
 第2保持装置42は、注入処理の対象となる第2被処理物W2を保持可能に構成される。第2保持装置42は、第2保持装置42に保持される第2被処理物W2をスキャンビームを横切る方向に往復移動させるよう構成される。第2保持装置42は、第2被処理物W2を水平方向(x3方向)に往復移動させるよう構成される。第2保持装置42は、水平方向(x3方向)に延びるガイドレール44に沿って移動可能である。
 第2保持装置42は、第1保持装置40と同様に構成されることができる。第2保持装置42は、第1保持装置40と同じ方向に移動可能である。第2保持装置42は、第1保持装置40と共通のガイドレール44に沿って移動可能である。なお、第2保持装置42は、第1保持装置40とは異なるガイドレールに沿って移動可能となるよう構成されてもよい。つまり、注入処理室14には、第1保持装置40が移動するための第1ガイドレールと、第2保持装置42が移動するための第2ガイドレールとが設けられてもよい。第2保持装置42は、第1保持装置40と同時に移動可能である。第2保持装置42は、第1保持装置40とは独立して移動可能である。
 第2保持装置42は、第2チャック機構60と、第2ツイスト機構62と、第2鉛直角度調整機構64と、第2水平角度調整機構66と、第2往復運動機構68とを備える。
 第2チャック機構60は、第2被処理物W2の裏面と接触して第2被処理物W2を保持するよう構成される。第2チャック機構60は、例えば、第2被処理物W2を保持するための静電チャック等を含む。第2チャック機構60は、第2被処理物W2を冷却または加熱するための温度調整機構を備えてもよい。第2チャック機構60は、第2チャック機構60から第2被処理物W2が離れるように第2被処理物W2を持ち上げるための第2リフト機構を備える。
 第2ツイスト機構62は、第2チャック機構60を回動可能に支持する。第2ツイスト機構62は、第2チャック機構60に保持される第2被処理物W2の被処理面の法線方向に延びる回転軸(ツイスト軸ともいう)まわりに第2チャック機構60を回転させ、第2被処理物W2のツイスト角φa2を調整する。第2ツイスト機構62は、例えば、第2被処理物W2の外周部に設けられるアライメントマークと基準位置との間のツイスト角φa2を調整する。
 第2鉛直角度調整機構64は、第2ツイスト機構62を回動可能に支持する。第2鉛直角度調整機構64は、水平方向に延びる回転軸(搬送チルト軸ともいう)まわりに第2ツイスト機構62を回転させ、第2被処理物W2の鉛直方向の向きを調整する。第2被処理物W2の鉛直方向の向きは、水平方向の回転軸まわりの鉛直回動角φb2によって定義することができる。
 第2水平角度調整機構66は、第2鉛直角度調整機構64を回動可能に支持する。第2水平角度調整機構66は、鉛直方向に延びる回転軸(注入チルト軸ともいう)まわりに第2鉛直角度調整機構64を回転させ、第2被処理物W2の水平方向の向きを調整する。第2被処理物W2の水平方向の向きは、鉛直方向の回転軸まわりの水平回動角φc2によって定義することができる。
 第2往復運動機構68は、第2水平角度調整機構66を水平方向(x3方向)に移動させるよう構成される。第2往復運動機構68は、第2水平角度調整機構66をガイドレール44に沿って移動させる。第2往復運動機構68は、例えば、ガイドレール44に沿って水平方向(x3方向)に延びる第2ボールねじ68aを備え、第2ボールねじ68aを回転させることにより、第2水平角度調整機構66を水平方向に直線移動させる。
 搬送装置16は、第1搬送装置70と、第2搬送装置72とを備える。第1搬送装置70および第2搬送装置72は、ビームラインAから水平方向(x3方向)に離れて配置される。図1の例において、第1搬送装置70は、ビームラインAから-x3方向に離れて配置され、第2搬送装置72は、ビームラインAから+x3方向に離れて配置される。第1搬送装置70および第2搬送装置72は、例えば、第1搬送装置70と第2搬送装置72の間にビームストッパ38が位置するように配置される。
 第1搬送装置70は、注入処理前の第1被処理物W1を注入処理室14に搬入し、注入処理後の第1被処理物W1を注入処理室14から搬出するよう構成される。第1搬送装置70は、第1保持装置40に第1被処理物W1を搬入し、第1保持装置40から第1被処理物W1を搬出する。第1搬送装置70は、例えば、第1被処理物W1を搬送するための第1搬送ロボット(図示せず)を備える。第1搬送装置70は、注入処理室14の側壁に設けられる第1搬送口74を通じて第1被処理物W1を搬送する。
 第2搬送装置72は、注入処理前の第2被処理物W2を注入処理室14に搬入し、注入処理後の第2被処理物W2を注入処理室14から搬出するよう構成される。第2搬送装置72は、第2保持装置42に第2被処理物W2を搬入し、第2保持装置42から第2被処理物W2を搬出する。第2搬送装置72は、例えば、第2被処理物W2を搬送するための第2搬送ロボット(図示せず)を備える。第2搬送装置72は、注入処理室14の側壁に設けられる第2搬送口76を通じて第2被処理物W2を搬送する。
 制御装置18は、イオン注入装置10の動作全般を制御する。制御装置18は、ハードウェア的には、コンピュータのCPUやメモリをはじめとする素子や機械装置で実現され、ソフトウェア的にはコンピュータプログラム等によって実現される。制御装置18により提供される各種機能は、ハードウェアおよびソフトウェアの連携によって実現されうる。
 制御装置18は、CPU(Central Processing Unit)などのプロセッサ18aと、ROM(Read Only Memory)やRAM(Random Access Memory)などのメモリ18bとを備える。制御装置18は、例えば、メモリ18bに格納されたプログラムをプロセッサ18aが実行することにより、プログラムにしたがってイオン注入装置10の動作全般を制御する。プロセッサ18aは、メモリ18bとは異なる任意の記憶装置に記憶されるプログラムを実行してもよいし、読取装置により任意の記録媒体から取得されるプログラムを実行してもよいし、ネットワークを介して取得されるプログラムを実行してもよい。プログラムが格納されるメモリ18bは、DRAM(Dynamic Random Access Memory)などの揮発性メモリであってもよいし、EEPROM(Electrically Erasable Programmable Read-Only Memory)、フラッシュメモリ、磁気抵抗メモリ、抵抗変化型メモリ、強誘電体メモリなどの不揮発性メモリであってもよい。不揮発性メモリ、磁気テープおよび磁気ディスクなどの磁気記録媒体ならびに光学ディスクなどの光学記録媒体は、非一時的(non-transitory)かつ有形(tangible)なコンピュータ読み取り可能(computer readable)である記録媒体(storage medium)の一例である。
 制御装置18が提供する各種機能は、プロセッサ18aおよびメモリ18bを備える単一の装置によって実現されてもよいし、それぞれがプロセッサ18aおよびメモリ18bを備える複数の装置の連携によって実現されてもよい。
 図3は、第1保持装置40および第2保持装置42の概略構成を示す正面図であり、注入処理室14におけるビーム進行方向(z3方向)に見たときの構成を示す。図3において、第1保持装置40は第1搬送位置80に配置され、第2保持装置42は第2搬送位置82に配置されている。第1搬送位置80は、第1搬送口74を通じて第1被処理物W1を第1保持装置40に搬入または第1保持装置40から搬出するための位置である。第1搬送位置80は、第1搬送口74の位置に対応する。第2搬送位置82は、第2搬送口76を通じて第2被処理物W2を第2保持装置42に搬入または第2保持装置42から搬出するための位置である。第2搬送位置82は、第2搬送口76の位置に対応する。第1搬送位置80および第2搬送位置82は、被処理物W1,W2にイオンビームを照射するための注入位置84から水平方向(x3方向)に離れている。
 注入位置84は、水平方向(x3方向)において注入処理室14の中央部に位置する。注入位置84は、第1搬送位置80と第2搬送位置82の間に位置する。注入位置84は、注入中央位置84Cと、注入左端位置84Lと、注入右端位置84Rとを含む。図3において、注入中央位置84C、注入左端位置84Lおよび注入右端位置84Rのそれぞれに位置する被処理物WC,WL,WRを二点鎖線で示している。注入中央位置84Cは、ビーム生成装置12によって生成されるスキャンビームSBが照射される位置に対応する。注入左端位置84Lは、注入中央位置84Cから左側(図3の+x3方向)にずれた位置であり、注入左端位置84Lに配置される被処理物WLの被処理面全体がスキャンビームSBと重ならないように設定される。注入右端位置84Rは、注入中央位置84Cから右側(図3の-x3方向)にずれた位置であり、注入右端位置84Rに配置される被処理物WRの被処理面全体がスキャンビームSBと重ならないように設定される。
 スキャンビームSBの鉛直方向(y方向)の照射範囲のサイズhは、被処理物W1,W2の被処理面の鉛直方向(y方向)のサイズhよりも大きい。スキャンビームSBの鉛直方向のサイズhは、例えば、被処理物W1,W2の被処理面の鉛直方向のサイズhの1.1倍以上3倍以下であり、好ましくは1.2倍以上2倍以下である。
 第1保持装置40は、注入位置84において水平方向(x3方向)に往復運動することにより、第1被処理物W1の被処理面の全体にスキャンビームSBを照射させる。第1保持装置40は、注入左端位置84Lから注入右端位置84Rまでの移動範囲Cにおいて往復運動することにより、第1被処理物W1の被処理面の全体にスキャンビームSBを照射させる。第1保持装置40は、第1搬送位置80に移動することにより、第1被処理物W1を搬入可能または搬出可能にする。第1保持装置40は、注入位置84と第1搬送位置80の間で移動可能である。第1保持装置40は、第1搬送位置80から注入左端位置84Lまでの第1可動範囲E1にわたって移動可能である。第1保持装置40は、第2搬送位置82には移動不可である。
 第2保持装置42は、注入位置84において水平方向(x3方向)に往復運動することにより、第2被処理物W2の被処理面の全体にスキャンビームSBを照射させる。第2保持装置42は、注入左端位置84Lから注入右端位置84Rまでの移動範囲Cにおいて往復運動することにより、第2被処理物W2の被処理面の全体にスキャンビームSBを照射させる。第2保持装置42は、第2搬送位置82に移動することにより、第2被処理物W2を搬入可能または搬出可能にする。第2保持装置42は、注入位置84と第2搬送位置82の間で移動可能である。第2保持装置42は、第2搬送位置82から注入右端位置84Rまでの第2可動範囲E2にわたって移動可能である。第2保持装置42は、第1搬送位置80には移動不可である。
 第1保持装置40に保持される第1被処理物W1にイオンビームを照射するための第1注入位置は、第2保持装置42に保持される第2被処理物W2にイオンビームを照射するための第2注入位置と共通である。つまり、第1注入位置および第2注入位置は、共通の注入位置84に一致する。また、第1注入位置にて第1保持装置40が第1被処理物W1を往復移動させる第1移動範囲は、第2注入位置にて第2保持装置42が第2被処理物W2を往復移動させる第2移動範囲と共通である。つまり、第1移動範囲および第2移動範囲は、共通の移動範囲Cに一致する。第1移動範囲および第2移動範囲は、ビーム進行方向に見て重なっている。第1注入位置にて第1保持装置40によって保持される第1被処理物W1の鉛直方向の位置は、第2注入位置にて第2保持装置42によって保持される第2被処理物W2の鉛直方向の位置と共通である。第1注入位置にて第1保持装置40によって保持される第1被処理物W1のビーム進行方向の位置は、第2注入位置にて第2保持装置42によって保持される第2被処理物W2のビーム進行方向の位置と共通である。したがって、第1保持装置40および第2保持装置42は、第1被処理物W1および第2被処理物W2をスキャンビームSBに対して同じように往復移動できるよう構成される。したがって、第1被処理物W1および第2被処理物W2は、共通する注入環境においてスキャンビームSBが照射される。
 図4(a),(b)は、第1保持装置40に保持される第1被処理物W1の水平方向の向きを模式的に示す上面図である。図4(a),(b)は、第1水平角度調整機構56による第1被処理物W1の水平方向の向きの変化を示す。なお、第2保持装置42に保持される第2被処理物W2の水平方向の向きについても同様である。
 図4(a),(b)は、第1被処理物W1にスキャンビームSBが照射される注入工程における第1被処理物W1の向きを示す。図4(a)は、第1被処理物W1の被処理面がスキャンビームSBの進行方向(z3方向)と直交する場合を示す。図4(b)は、第1被処理物W1の被処理面がスキャンビームSBの進行方向(z3方向)と斜めに交差する場合を示す。図4(b)において、第1被処理物W1の被処理面は、スキャンビームSBの進行方向(z3方向)に対して水平チルト角α1を有する。水平チルト角α1は、第1被処理物W1の被処理面の法線に対するスキャンビームSBの入射方向の水平方向における傾きを示す。第1保持装置40は、第1水平角度調整機構56を駆動して水平回動角φc1を調整することにより、第1被処理物W1の水平チルト角α1を調整できる。第1保持装置40は、イオン注入時において、例えば±30度の範囲内、または±60度の範囲内で水平チルト角α1を調整できるよう構成される。
 図5(a)~(c)は、第1保持装置40に保持される第1被処理物W1の鉛直方向の向きを模式的に示す側面図である。図5(a)~(c)は、第1鉛直角度調整機構54による第1被処理物W1の鉛直方向の向きの変化を示す。なお、第2保持装置42に保持される第2被処理物W2の鉛直方向の向きについても同様である。
 図5(a)は、第1被処理物W1にスキャンビームSBが照射される注入工程における第1被処理物W1の向きの一例を示す。図5(a)において、第1保持装置40は、第1被処理物W1の被処理面がスキャンビームSBの進行方向(z3方向)と直交する向きとなるように第1被処理物W1を保持する。つまり、第1保持装置40は、第1被処理物W1の被処理面が水平方向に沿わない向きで第1被処理物W1を保持する。図5(a)の例において、第1保持装置40は、第1被処理物W1の被処理面が鉛直方向に沿う向きで第1被処理物W1を保持する。
 図5(b)は、第1被処理物W1にスキャンビームSBが照射される注入工程における第1被処理物W1の向きの別の例を示す。図5(b)において、第1保持装置40は、第1被処理物W1の被処理面が鉛直方向に対して傾斜する向きで第1被処理物W1を保持する。図5(b)において、第1保持装置40は、第1被処理物W1の被処理面が水平方向に沿わない向きで第1被処理物W1を保持する。図5(b)において、第1被処理物W1の被処理面は、スキャンビームSBの進行方向(z3方向)に対して鉛直チルト角β1を有する。鉛直チルト角β1は、第1被処理物W1の被処理面の法線に対するスキャンビームSBの入射方向の鉛直方向における傾きを示す。第1保持装置40は、第1鉛直角度調整機構54を駆動して鉛直回動角φb1を調整することにより、鉛直チルト角β1を調整できる。第1保持装置40は、イオン注入時において、例えば±30度の範囲内、または±60度の範囲内で鉛直チルト角β1を調整できるように構成される。
 図5(c)は、第1被処理物W1を第1保持装置40に搬入または第1保持装置40から搬出する搬送工程における第1被処理物W1の向きを示す。図5(c)において、第1保持装置40は、第1被処理物W1の被処理面が水平方向に沿う向きで第1被処理物W1を保持する。図5(c)において、第1保持装置40は、第1被処理物W1が第1チャック機構50から離れるように、第1リフト機構50aを用いて第1被処理物W1を持ち上げる。これにより、第1被処理物W1を搬入または搬出するための第1搬送ロボットのアームが第1チャック機構50と第1被処理物W1の間の隙間50bに挿入できるようにする。なお、第1搬送ロボットのアームが第1チャック機構50と第1被処理物W1の間の隙間50bに挿入されることは必須ではない。第1搬送ロボットのアームは、第1被処理物W1の裏面ではなく、第1被処理物W1の外周部を支持するように構成されてもよい。この場合、隙間50bはごく僅かであってもよい。
 図6~図9は、第1保持装置40および第2保持装置42の動作の一例を示す正面図である。図6は、第1被処理物W1への第1注入工程が実施されている状況を示す。図6において、第1保持装置40は、注入位置84に配置され、第2保持装置42は、第2搬送位置82に配置されている。第1保持装置40は、第1被処理物W1への注入処理のために、注入位置84において矢印Xで示されるように水平方向に往復運動する。第2保持装置42は、第2搬送口76を通じて注入処理後の第2被処理物W2を搬出するために、第2搬送位置82において第2リフト機構60aを用いて第2被処理物W2をリフトアップする。第2保持装置42は、第2搬送口76を通じて注入処理前の第2被処理物W2を搬入するために、第2搬送位置82において第2リフト機構60aを用いて第2被処理物W2を受け取る。
 図6において、第1保持装置40は、第1被処理物W1の被処理面にスキャンビームSBが照射される向きとなるように第1被処理物W1を保持する。第1保持装置40は、例えば、図4(a)に示されるように、水平チルト角α1が0となる向きで第1被処理物W1を保持する。第1保持装置40は、例えば、図5(a)に示されるように、鉛直チルト角β1が0となる向きで第1被処理物W1を保持する。第1保持装置40は、図4(b)に示されるように、水平チルト角α1が0ではない向きで第1被処理物W1を保持してもよい。第1保持装置40は、図5(b)に示されるように、鉛直チルト角β1が0ではない向きで第1被処理物W1を保持してもよい。第1保持装置40は、水平チルト角α1および鉛直チルト角β1のいずれも0ではない向きで第1被処理物W1を保持してもよい。
 図6において、第2保持装置42は、第2搬送口76を通じた第2被処理物W2の搬入または搬出が可能となる向きとなるように第2被処理物W2を保持する。第2保持装置42は、図5(c)と同様に、第2被処理物W2の被処理面が水平方向に沿う向きで第2被処理物W2を保持する。第2保持装置42は、第2リフト機構60aを用いて第2被処理物W2をリフトアップし、第2チャック機構60と第2被処理物W2の間に隙間60bを形成する。第2搬送装置72は、第2チャック機構60と第2被処理物W2の間の隙間60bに第2搬送ロボットのアームを挿入することにより、注入処理後の第2被処理物W2を搬出する。第2保持装置42は、第2搬送ロボットのアームによって第2リフト機構60aに注入処理前の第2被処理物W2が載置された場合、第2被処理物W2のリフトアップを解除し、第2チャック機構60に第2被処理物W2を保持する。第2保持装置42は、注入処理前の第2被処理物W2を保持した後、第2鉛直角度調整機構64を駆動して鉛直回動角φb2を変化させ、第2被処理物W2の被処理面が水平方向に沿わない向きで第2被処理物W2を保持する。
 図7は、第1被処理物W1への第1注入工程から第2被処理物W2への第2注入工程に切り替える状況を示す。つまり、第1被処理物W1への第1注入工程が終了し、第2被処理物W2への第2注入工程が開始する状況を示す。図7において、第1保持装置40は、矢印F1で示されるように注入位置84から第1搬送位置80に向けて移動し、第2保持装置42は、矢印F2で示されるように、第2搬送位置82から注入位置84に向けて移動している。図7に示されるように、第1保持装置40および第2保持装置42を同時に同じ方向に移動させることにより、第1注入工程から第2注入工程への切り替えにかかる時間を短縮できる。
 図7において、第1保持装置40に保持される第1被処理物W1と第2保持装置42に保持される第2被処理物W2の間の相対距離dが維持されるように第1保持装置40および第2保持装置42を移動させることができる。例えば、第1保持装置40および第2保持装置42の移動速度を同じとすることにより相対距離dを一定に維持できる。なお、第1保持装置40および第2保持装置42の移動速度を調整することにより、相対距離dが所定の上限値から下限値までの範囲内に維持されるように第1保持装置40および第2保持装置42を移動させてもよい。この場合、第1保持装置40の移動速度を第2保持装置42の移動速度より速くしてもよいし、遅くしてもよい。被処理物に対して水平方向に均一なドーズ分布とするイオン注入の場合、相対距離dはできるだけ小さいことが好ましい。被処理物に対して水平方向に不均一なドーズ分布とするイオン注入の場合、相対距離dは、スキャンビームSBの水平方向(x3方向)のサイズより大きいことが好ましい。
 図7において、注入工程が終了する第1被処理物W1を保持する第1保持装置40の移動速度は、第1保持装置40が取り得る最大速度であってもよい。第1保持装置40を最大速度で移動させることにより、第1被処理物W1への第1注入工程の完了から第1被処理物W1の搬出までにかかる時間を短縮でき、生産性を向上できる。一方、注入工程が開始する第2被処理物W2を保持する第2保持装置42の移動速度は、第2被処理物W2の注入条件に応じて定められてもよい。第2保持装置42を注入条件に応じた移動速度で移動させることにより、第2被処理物W2が注入位置84に移動した後にそのままの移動速度で第2被処理物W2への第2注入工程を開始できる。これにより、第2注入工程の開始を早めることができ、生産性を向上できる。
 図8は、第2被処理物W2への第2注入工程が実施されている状況を示す。図8において、第2保持装置42は、注入位置84に配置され、第1保持装置40は、第1搬送位置80に配置されている。第2保持装置42は、第2被処理物W2への注入処理のために、注入位置84において矢印Xで示されるように水平方向に往復運動する。第1保持装置40は、第1搬送口74を通じて注入処理後の第1被処理物W1を搬出するために、第1搬送位置80において第1リフト機構50aを用いて第1被処理物W1をリフトアップする。第1保持装置40は、第1搬送口74を通じて注入処理前の第1被処理物W1を搬入するために、第1搬送位置80において第1リフト機構50aを用いて第1被処理物W1を受け取る。
 図8において、第2保持装置42は、第2被処理物W2の被処理面にスキャンビームSBが照射される向きとなるように第2被処理物W2を保持する。第2保持装置42は、例えば、図4(a)と同様に、水平チルト角α2が0となる向きで第2被処理物W2を保持する。第2保持装置42は、例えば、図5(a)と同様に、鉛直チルト角β2が0となる向きで第2被処理物W2を保持する。第2保持装置42は、図4(b)と同様に、水平チルト角α2が0ではない向きで第2被処理物W2を保持してもよい。第2保持装置42は、図5(b)と同様に、鉛直チルト角β2が0ではない向きで第2被処理物W2を保持してもよい。第2保持装置42は、水平チルト角α2および鉛直チルト角β2のいずれも0ではない向きで第2被処理物W2を保持してもよい。
 図8において、第1保持装置40は、第1搬送口74を通じた第1被処理物W1の搬入または搬出が可能となる向きとなるように第1被処理物W1を保持する。第1保持装置40は、図5(c)に示されるように、第1被処理物W1の被処理面が水平方向に沿う向きとなるように第1被処理物W1を保持する。第1保持装置40は、第1リフト機構50aを用いて第1被処理物W1をリフトアップし、第1チャック機構50と第1被処理物W1の間に隙間50bを形成する。第1搬送装置70は、第1チャック機構50と第1被処理物W1の間の隙間50bに第1搬送ロボットのアームを挿入することにより、注入処理後の第1被処理物W1を搬出する。第1保持装置40は、第1搬送ロボットのアームによって第1リフト機構50aに注入処理前の第1被処理物W1が載置された場合、第1被処理物W1のリフトアップを解除し、第1チャック機構50に第1被処理物W1を保持する。第1保持装置40は、注入処理前の第1被処理物W1を保持した後、第1鉛直角度調整機構54を駆動して鉛直回動角φb1を変化させ、第1被処理物W1の被処理面が水平方向に沿わない向きで第1被処理物W1を保持する。
 図9は、第2被処理物W2への第2注入工程から第1被処理物W1への第1注入工程に切り替える状況を示す。つまり、第2被処理物W2への第2注入工程が終了し、第1被処理物W1への第1注入工程が開始する状況を示す。図9において、第1保持装置40は、矢印F3で示されるように第1搬送位置80から注入位置84に向けて移動し、第2保持装置42は、矢印F4で示されるように、注入位置84から第2搬送位置82に向けて移動している。図9に示されるように、第1保持装置40および第2保持装置42を同時に同じ方向に移動させることにより、第2注入工程から第1注入工程への切り替えにかかる時間を短縮できる。
 図9において、第1保持装置40に保持される第1被処理物W1と第2保持装置42に保持される第2被処理物W2の間の相対距離dが維持されるように第1保持装置40および第2保持装置42を移動させることができる。例えば、第1保持装置40および第2保持装置42の移動速度を同じとすることにより相対距離dを一定に維持できる。なお、第1保持装置40および第2保持装置42の移動速度を調整することにより、相対距離dが所定の上限値から下限値までの範囲内に維持されるように第1保持装置40および第2保持装置42を移動させてもよい。この場合、第1保持装置40の移動速度を第2保持装置42の移動速度より速くしてもよいし、遅くしてもよい。相対距離dは、スキャンビームSBの水平方向(x3方向)のサイズより大きいことが好ましい。
 図9において、注入工程が終了する第2被処理物W2を保持する第2保持装置42の移動速度は、第2保持装置42が取り得る最大速度であってもよい。第2保持装置42を最大速度で移動させることにより、第2被処理物W2への第2注入工程の完了から第2被処理物W2の搬出までにかかる時間を短縮でき、生産性を向上できる。一方、注入工程が開始する第1被処理物W1を保持する第1保持装置40の移動速度は、第1被処理物W1の注入条件に応じて定められてもよい。第1保持装置40を注入条件に応じた移動速度で移動させることにより、第1被処理物W1が注入位置84に移動した後にそのままの移動速度で第1被処理物W1への第1注入工程を開始できる。これにより、第1注入工程の開始を早めることができ、生産性を向上できる。
 図10は、実施の形態に係るイオン注入方法の流れを示すフローチャートである。まず、第1保持装置40に注入処理前の第1被処理物W1を搬入する(S10)。S10において、第1保持装置40に保持される注入処理済の第1被処理物W1を搬出した後に、第1保持装置40に注入処理前の第1被処理物W1を搬入してもよい。次に、第2保持装置42を第2搬送位置82に移動させ(S12)、第1保持装置40を第1注入位置(例えば注入位置84)に移動させる(S14)。S12とS14は、同時に実行することができ、S12およびS14のそれぞれの実行期間が少なくとも部分的に重なるように実行できる。つづいて、第1注入位置にて第1保持装置40を往復移動させることにより、往復移動する第1被処理物W1にイオンビームを照射する(S16)。
 S16の実行前、実行中または実行後において、第2保持装置42に注入処理前の第2被処理物W2を搬入する(S18)。S18において、第2保持装置42に保持される注入処理済の第2被処理物W2を搬出した後に、第2保持装置42に注入処理前の第2被処理物W2を搬入してもよい。次に、第1保持装置40を第1搬送位置80に移動させ(S20)、第2保持装置42を第2注入位置(例えば注入位置84)に移動させる(S22)。S20とS22は、同時に実行することができ、S20およびS22のそれぞれの実行期間が少なくとも部分的に重なるように実行できる。つづいて、第2注入位置にて第2保持装置42を往復移動させることにより、往復移動する第2被処理物W2にイオンビームを照射する(S24)。
 図10に示すフローは、繰り返し実行することができる。例えば、繰り返し後のS10の処理は、S24の実行前、実行中または実行後において実行することができる。S24の実行前、実行中または実行後において、第1保持装置40に保持される注入処理済の第1被処理物W1を搬出し、第1保持装置40に注入処理前の第1被処理物W1を搬入することができる。図10に示すフローを繰り返すことにより、第1保持装置40に保持される第1被処理物W1への第1注入工程と、第2保持装置42に保持される第2被処理物W2への第2注入工程とを交互に繰り返し実行できる。図10に示すフローは、連続的に処理すべき複数の被処理物に対する注入工程が完了するまで、繰り返し実行できる。
 本実施の形態によれば、注入処理室14に複数の保持装置を設けることにより、被処理物の注入工程と搬送工程を並行して実行できる。例えば、第1保持装置40に保持される第1被処理物W1への第1注入工程と同時に、第2保持装置42にて第2被処理物W2の搬送工程を実行できる。また、第2保持装置42に保持される第2被処理物W2への第2注入工程と同時に、第1保持装置40にて第1被処理物W1の搬送工程を実行できる。その結果、単一の保持装置を用いて注入工程と搬送工程を交互に実行する場合に比べて、複数の被処理物の連続処理にかかる時間を短縮でき、生産性を向上できる。
 本実施の形態によれば、複数の保持装置を水平方向に往復移動させる構成とすることにより、複数の保持装置を鉛直方向に往復移動させる構成に比べて、注入処理室14および搬送装置16の構成の複雑化を抑制できる。また、複数の保持装置を水平方向に往復移動させる構成とすることにより、注入処理室14および搬送装置16の鉛直方向のサイズを抑制できる。その結果、一般的な半導体プロセス工場のフロアにおける高さ制限の範囲内となる外形サイズを有するイオン注入装置10を提供できる。
 本実施の形態によれば、複数の保持装置が共通のガイドレール44に沿って移動する構成とすることにより、注入位置における複数の保持装置のそれぞれの往復移動を共通化できる。その結果、複数の保持装置を用いることによって注入環境に差異が生じることを防ぐことができる。その結果、複数の被処理物に対する注入処理のばらつきを抑制しつつ、複数の被処理物に対する注入処理の生産性を向上できる。
 本実施の形態によれば、イオンビームを鉛直方向に往復走査し、被処理物を水平方向に往復移動させることにより、被処理物の被処理面全体にスキャンビームを効率的に照射できる。また、質量分析部24およびエネルギー分析部34においてイオンビームを水平方向に偏向させることにより、水平面内に沿って進行するビームラインAを構成することができ、ビーム生成装置12の鉛直方向のサイズを抑制できる。
 本実施の形態によれば、イオン源20のフロントスリット20cを水平方向に長いスリット形状とすることにより、引出部22を通じて水平方向に拡がったイオンビームを生成できる。その結果、イオン源20からスポット状のイオンビームを引き出す場合に比べて、ビーム電流のより大きなイオンビームの生成が容易となる。また、イオン源20から引き出されるイオンビームの鉛直方向のサイズが小さいため、イオンビームが通過するための質量分析磁石装置24aの対向磁極間の間隔を小さくできる。その結果、質量分析磁石装置24aのサイズを抑制できる。例えば、イオン源のフロントスリットを水平方向に狭くし、鉛直方向に長いスリット形状とする比較例に比べて、質量分析磁石装置24aのサイズを抑制しつつ、ビーム電流のより大きなイオンビームを生成できる。
 本実施の形態によれば、水平方向に拡がったイオンビームをビーム成形部26にてスポット状に成形することにより、ビーム走査部28による鉛直方向のビームスキャンに適したスポットビームを形成できる。ビーム走査部28によってスポットビームを鉛直方向にスキャンすることにより、鉛直方向のサイズが大きな被処理物へのイオン注入が可能となる。本実施の形態によれば、鉛直方向のサイズが大きな被処理物に対してビーム電流のより大きなスキャンビームを照射できるため、注入処理の生産性を向上できる。
 本実施の形態では、イオン源20における磁場B1の印加方向と質量分析部24における磁場B2の印加方向が直交するため、両者が干渉することによってビーム品質や磁場制御に悪影響を与える可能性が高くなる。一方、イオン源における磁場の印加方向が鉛直方向となる比較例の場合、イオン源における磁場の印加方向と質量分析部における磁場の印加方向が平行であるため、両者の磁場が多少干渉しても大きな問題とはならない。本実施の形態によれば、引出部22と質量分析部24の間に磁気シールド23を設けることにより、イオン源20に印加される水平方向の磁場B1と質量分析部24に印加される鉛直方向の磁場B2の間の磁場干渉を抑制できる。これにより、イオン源20におけるプラズマ生成効率と質量分析部24の質量分析精度を両立させることができる。
 本実施の形態は、鉛直方向のサイズが大きな被処理物へのイオン注入処理に適用できる。鉛直方向のサイズが大きな被処理物の一例は、フラットパネルディスプレイ(FPD)の製造に用いられる大型基板である。このような大型基板の鉛直方向および水平方向のサイズは、例えば1m×2m以上である。このような大型の被処理物を鉛直方向に往復移動させることは現実的ではない。本実施の形態によれば、被処理物を水平方向に往復移動させるため、被処理物を鉛直方向に往復移動させる場合に比べて、大型基板の往復移動が容易である。水平方向に往復移動する大型基板に対し、鉛直方向にスキャンされるスキャンビームを照射することにより、大型基板に対するイオン注入処理を実行できる。
 イオン注入装置10は、被処理物がFPD用の大型基板の場合、ビーム平行化部30、加速減速部32およびエネルギー分析部34の少なくとも一つを備えなくてもよい。注入処理室14は、被処理物がFPD用の大型基板の場合、被処理物を水平方向に移動させることにより、被処理物を注入処理室14に搬入し、被処理物を注入処理室14から搬出してもよい。例えば、注入処理前の大型基板を注入処理室14の右側(または左側)から搬入し、大型基板を注入処理室14にて左方向(または右方向)に移動させてイオン注入処理を実行し、注入処理後の大型基板を注入処理室14の左側(または右側)から搬出してもよい。これにより、イオン注入装置10は、大型基板をインラインで連続的に処理してもよい。
 図11は、変形例に係るイオン注入方法の流れを示すフローチャートである。図11のフローでは、第1被処理物W1に対する第1注入工程と第2被処理物W2に対する第2注入工程を並行して実行する。
 まず、第1保持装置40に注入処理前の第1被処理物W1を搬入する(S30)。S30において、第1保持装置40に保持される注入処理済の第1被処理物W1を搬出した後に、第1保持装置40に注入処理前の第1被処理物W1を搬入してもよい。また、第2保持装置42に注入処理前の第2被処理物W2を搬入する(S32)。S32において、第2保持装置42に保持される注入処理済の第2被処理物W2を搬出した後に、第2保持装置42に注入処理前の第2被処理物W2を搬入してもよい。S30とS32の工程の順序は問わず、S30の開始後にS32を開始してもよいし、S32の開始後にS30を開始してもよい。S30およびS32の工程は同時に実行されてもよい。
 つづいて、第1保持装置40を第1注入位置(例えば注入位置84)に移動させる(S34)。第1注入位置にて第1保持装置40を往復移動させることにより、往復移動する第1被処理物W1にイオンビームを照射する(S36)。S36における第1被処理物W1の往復移動の回数は特に限られないが、例えば、1往復のみでもよい。その後、第1保持装置40を第1注入位置から退避させ(S38)、第2保持装置42を第2注入位置(例えば注入位置84)に移動させる(S40)。第1保持装置40を退避させる第1退避位置は、例えば、第1搬送位置80と第1注入位置の間に位置する。第1保持装置40を退避させる第1退避位置は、第1搬送位置80と同じであってもよい。
 つづいて、第2注入位置にて第2保持装置42を往復移動させることにより、往復移動する第2被処理物W2にイオンビームを照射する(S42)。S42における第2被処理物W2の往復移動の回数は特に限られないが、例えば、1往復のみでもよい。その後、第2保持装置42を第2注入位置から退避させる(S44)。第2保持装置42を退避させる第2退避位置は、例えば、第2搬送位置82と第2注入位置の間に位置する。第2保持装置42を退避させる第2退避位置は、第2搬送位置82と同じであってもよい。
 第1被処理物W1および第2被処理物W2に対する注入処理が完了していなければ(S46のN)、注入処理が完了するまで、S34~S44の工程を繰り返す。例えば、第1被処理物W1および第2被処理物W2の注入処理の完了に必要な往復移動の回数が3回(つまり、3往復)であれば、S34~S44の工程が3回繰り返される。この場合、第1被処理物W1が1往復してイオンビームが照射される工程と、第2被処理物W2が1往復してイオンビームが照射される工程とが交互に3回ずつ実行される。この場合、第1被処理物W1と第2被処理物W2の間の相対距離dをできるだけ小さくしてS38とS40を同時に実行することができ、また、第1被処理物W1と第2被処理物W2の間の相対距離dをできるだけ小さくしてS44とS34を同時に実行できる。つまり、第1被処理物W1と第2被処理物W2の間の相対距離dをできるだけ小さくした状態を維持して、第1被処理物W1および第2被処理物W2を同一方向に同期させて往復移動させることができる。これにより、イオンビームの利用効率を向上させることができる。
 S46にて注入処理が完了していれば(S46のY)、第1保持装置40を第1搬送位置80に移動させ(S48)、第2保持装置42を第2搬送位置82に移動させる(S50)。S48とS50の工程の順序は問わず、S48の開始後にS50を開始してもよいし、S50の開始後にS48を開始してもよい。S48およびS50の工程は同時に実行されてもよい。また、第1退避位置が第1搬送位置80である場合、S38の工程において第1保持装置40が第1搬送位置80にすでに配置されているため、S48の工程が省略されてもよい。同様に、第2退避位置が第2搬送位置82である場合、S44の工程において第2保持装置42が第2搬送位置82にすでに配置されているため、S50の工程が省略されてもよい。
 図11に示すフローは、連続的に処理すべき複数の被処理物に対する注入工程が完了するまで、繰り返し実行できる。図11のフローによれば、第1保持装置40にて第1被処理物W1を搬入および搬出する第1搬送工程と、第2保持装置42にて第2被処理物W2を搬入および搬出する第2搬送工程とを同時に実行できるため、生産性を向上できる。図11に示すフローは、被処理物の搬出および搬入にかかる搬送時間に比べて、被処理物にイオンビームが照射される注入時間が十分に短い(例えば半分以下である)場合に適用されることが好ましい。また、図11に示すフローは、被処理物の搬出および搬入にかかる搬送時間に比べて、被処理物にイオンビームが照射される注入時間が十分に長い(例えば2倍以上である)場合に適用されることも好ましい。図11に示すフローは、被処理物にイオンビームが照射される注入時間が被処理物の搬出および搬入にかかる搬送時間と同程度の場合にも適用できるが、この場合、図10に示すフローの方が生産性が高いかもしれない。
 上述の実施の形態では、ビーム走査部28およびビーム平行化部30を用いて、ビーム生成装置12がスキャンビームを生成する場合について示した。別の実施の形態では、ビーム生成装置がリボンビームを生成してもよい。ビーム生成装置は、ビーム走査部28の代わりにリボンビーム生成部を備えてもよい。リボンビーム生成部は、スポット状のイオンビームを鉛直方向に発散させることによってリボンビームを生成する。リボンビーム生成部は、電場式または磁場式のビーム発散装置によって構成されてもよい。
 上述の実施の形態では、イオン源20から引き出されるイオンビームが水平方向に拡がったリボン状ビームである場合について示した。別の実施の形態では、イオン源から引き出されるイオンビームが鉛直方向に拡がったリボンビームであってもよい。この場合、イオン源のフロントスリットは、鉛直方向の開口幅が長く、水平方向の開口幅が短いスリット形状を有する。同様に、引出部の引出電極は、鉛直方向の開口幅が長く、水平方向の開口幅が短いスリット形状を有する。この場合、質量分析部は、鉛直方向に拡がったリボンビームを水平方向に偏向させるよう構成される。この場合、ビーム生成装置は、ビーム走査部28およびビーム平行化部30を備えなくてもよい。この場合、イオン源および引出部は、鉛直方向に拡がったリボンビームを生成するためのリボンビーム生成部ということができる。
 上述の別の実施の形態において、鉛直方向に拡がったリボンビームの鉛直方向における照射範囲のサイズは、被処理物の鉛直方向のサイズよりも大きい。したがって、リボンビームを生成するビーム生成装置は、鉛直方向における照射範囲のサイズが被処理物の被処理面のサイズよりも大きい照射範囲にわたってイオンビームを照射するよう構成される。なお、上述の実施の形態において、スキャンビームを生成するビーム生成装置12は、鉛直方向における照射範囲のサイズが被処理物の被処理面のサイズよりも大きい照射範囲にわたってイオンビームを照射するよう構成される。
 上述の実施の形態では、注入処理室14に複数の保持装置40,42を設ける場合について示した。別の実施の形態では、注入処理室14に単一の保持装置のみが設けられてもよい。単一の保持装置は、上述の第1保持装置40または第2保持装置42のいずれかと同様に構成されてもよい。
 上述の実施の形態では、スキャンビームSBのスキャン方向が鉛直方向である場合について示した。別の実施の形態では、スキャンビームSBのスキャン方向が鉛直方向に対して傾斜するように構成されてもよい。この場合、ビーム走査部28、ビーム平行化部30、加速減速部32およびエネルギー分析部34は、(例えば、質量分析部24より下流であってビーム走査部28より上流の位置において)z2方向に延びるビームラインAを回転軸として回転させた位置に(つまり、傾斜した向きで)配置される。なお、ビーム走査部28およびビーム平行化部30のみを回転させ、加速減速部32およびエネルギー分析部34の少なくとも一方については回転させない配置としてもよい。この場合、スキャンビームSBのスキャン方向は、鉛直方向から45度以内であることが好ましい。
 上述の実施の形態では、第1保持装置40および第2保持装置42が水平方向に移動する場合について示した。別の実施の形態では、第1保持装置40および第2保持装置42の移動方向が水平方向でなくてもよく、水平方向に対して傾斜してもよい。第1保持装置40および第2保持装置42の移動方向は、水平方向とは異なる方向であって、スキャンビームを横切る任意の方向であってもよい。
 本開示のある態様は以下の通りである。
(項1)イオンを生成するイオン源と、
 前記イオン源から前記イオンを引き出してイオンビームを生成する引出部と、
 前記イオンビームを水平方向とは異なるスキャン方向に往復スキャンさせてスキャンビームを生成するよう構成されるビーム走査部と、
 被処理物を保持可能に構成される保持装置であって、前記保持装置に保持される前記被処理物を前記スキャンビームを横切る方向に往復移動させるよう構成される保持装置と、を備えるイオン注入装置。
(項2)前記保持装置は、前記保持装置に保持される前記被処理物を前記水平方向に往復移動させるよう構成される、項1に記載のイオン注入装置。
(項3)前記スキャン方向は、鉛直方向から45度以内となる方向である、項1または項2に記載のイオン注入装置。
(項4)前記スキャン方向は、鉛直方向である、項1または項2に記載のイオン注入装置。
(項5)前記イオン源は、前記引出部によって引き出される前記イオンが通過するフロントスリットを備え、
 前記フロントスリットの前記水平方向の開口幅は、前記フロントスリットの鉛直方向の開口幅よりも大きい、項1から項4のいずれか一つに記載のイオン注入装置。
(項6)前記イオン源は、
 内部空間を有し、前記内部空間にて生成されるプラズマから前記イオンを引き出すための前記フロントスリットを有するアークチャンバと、
 前記内部空間に前記水平方向の磁場を印加する磁石装置と、を備える項5に記載のイオン注入装置。
(項7)前記引出部は、前記イオンビームが通過する引出開口を有する引出電極を備え、
 前記引出開口の前記水平方向の開口幅は、前記引出開口の前記鉛直方向の開口幅よりも大きい、項5または項6に記載のイオン注入装置。
(項8)前記引出部と前記ビーム走査部の間に設けられ、前記イオンビームを前記水平方向に偏向させる質量分析部をさらに備える、項1から項7のいずれか一つに記載のイオン注入装置。
(項9)前記質量分析部は、前記イオンビームに鉛直方向の磁場を印加する磁石装置を備える、項8に記載のイオン注入装置。
(項10)前記引出部と前記質量分析部の間に設けられ、前記イオンビームが通過する通過開口を有する磁気シールドをさらに備える、項8または項9に記載のイオン注入装置。
(項11)前記質量分析部と前記ビーム走査部の間に設けられ、前記イオンビームの断面形状および収束発散角の少なくとも一方を調整するための少なくとも一つのレンズ装置を備えるビーム成形部をさらに備える、項8から項10のいずれか一つに記載のイオン注入装置。
(項12)前記ビーム走査部の下流側に設けられ、前記スキャンビームを平行化するビーム平行化部をさらに備える、項1から項11のいずれか一つに記載のイオン注入装置。
(項13)前記スキャンビームを前記水平方向に偏向させる偏向装置と、前記偏向装置の下流側に設けられるエネルギー分析スリットとを備えるエネルギー分析部をさらに備える、項1から項12のいずれか一つに記載のイオン注入装置。
(項14)前記偏向装置は、前記スキャンビームを挟んで対向する電極対と、前記電極対に直流電圧を印加する電源とを備える、項13に記載のイオン注入装置。
(項15)前記偏向装置の前記電極対は、前記水平方向に対向するように配置される、項14に記載のイオン注入装置。
(項16)前記偏向装置の前記電極対は、前記スキャン方向と直交する方向に対向するように配置される、項14に記載のイオン注入装置。
(項17)イオン源を用いてイオンを生成することと、
 前記イオン源から前記イオンを引き出してイオンビームを生成することと、
 前記イオンビームを水平方向とは異なるスキャン方向に往復スキャンさせてスキャンビームを生成することと、
 前記スキャンビームを横切る方向に被処理物を往復移動させることと、を備えるイオン注入方法。
 本開示のある態様は以下の通りである。
(項18)被処理物に照射されるイオンビームを生成し、鉛直方向における照射範囲のサイズが前記被処理物の被処理面のサイズよりも大きい前記照射範囲にわたって前記イオンビームを照射するよう構成されるビーム生成装置と、
 第1被処理物を保持可能に構成される第1保持装置であって、前記第1保持装置に保持される前記第1被処理物が前記照射範囲を横切るように前記第1被処理物を水平方向に往復移動させるよう構成される第1保持装置と、
 第2被処理物を保持可能に構成される第2保持装置であって、前記第2保持装置に保持される前記第2被処理物が前記照射範囲を横切るように前記第2被処理物を前記水平方向に往復移動させるよう構成される第2保持装置と、を備えるイオン注入装置。
(項19)前記第1保持装置は、前記第1被処理物に前記イオンビームを照射するための第1注入位置と、前記第1被処理物を前記第1保持装置に搬入または前記第1保持装置から搬出するための第1搬送位置との間で移動可能となるよう構成され、
 前記第2保持装置は、前記第2被処理物に前記イオンビームを照射するための第2注入位置と、前記第2被処理物を前記第2保持装置に搬入または前記第2保持装置から搬出するための第2搬送位置との間で移動可能となるよう構成される、項18に記載のイオン注入装置。
(項20)前記第1注入位置および前記第2注入位置は、前記第1搬送位置と前記第2搬送位置の間に位置する、項19に記載のイオン注入装置。
(項21)前記第1注入位置にて前記第1保持装置が前記第1被処理物を往復移動させる第1移動範囲は、前記第2注入位置にて前記第2保持装置が前記第2被処理物を往復移動させる第2移動範囲とビーム進行方向に見て重なる、項19または項20に記載のイオン注入装置。
(項22)前記第1移動範囲は、前記第2移動範囲と共通である、項21に記載のイオン注入装置。
(項23)前記第1注入位置にて前記第1保持装置によって保持される前記第1被処理物の前記鉛直方向の位置は、前記第2注入位置にて前記第2保持装置によって保持される前記第2被処理物の前記鉛直方向の位置と共通である、項19から項22のいずれか一つに記載のイオン注入装置。
(項24)前記第1注入位置にて前記第1保持装置によって保持される前記第1被処理物のビーム進行方向の位置は、前記第2注入位置にて前記第2保持装置によって保持される前記第2被処理物の前記ビーム進行方向の位置と共通である、項19から項23のいずれか一つに記載のイオン注入装置。
(項25)前記第1保持装置は、前記第2搬送位置に移動不可となるよう構成され、
 前記第2保持装置は、前記第1搬送位置に移動不可となるよう構成される、項19から項24のいずれか一つに記載のイオン注入装置。
(項26)前記第1保持装置および前記第2保持装置は、同じ方向に移動可能である、項18から項25のいずれか一つに記載のイオン注入装置。
(項27)前記第1保持装置および前記第2保持装置は、前記第1保持装置によって保持される前記第1被処理物と前記第2保持装置によって保持される前記第2被処理物の間の相対距離を維持したまま、同じ方向に同時に移動可能である、項18から項26のいずれか一つに記載のイオン注入装置。
(項28)前記第1保持装置および前記第2保持装置は、共通のガイドレールに沿って移動可能である、項18から項27のいずれか一つに記載のイオン注入装置。
(項29)前記第1保持装置は、前記第1被処理物の前記鉛直方向の向きを調整する第1鉛直角度調整機構と、前記第1被処理物の前記水平方向の向きを調整する第1水平角度調整機構とを備え、
 前記第2保持装置は、前記第2被処理物の前記鉛直方向の向きを調整する第2鉛直角度調整機構と、前記第2被処理物の前記水平方向の向きを調整する第2水平角度調整機構とを備える、項18から項28のいずれか一つに記載のイオン注入装置。
(項30)前記第1保持装置は、前記水平方向の回転軸まわりに回動して前記第1被処理物の向きを調整する第1鉛直角度調整機構と、前記鉛直方向の回転軸まわりに回動して前記第1被処理物の向きを調整する第1水平角度調整機構とを備え、
 前記第2保持装置は、前記水平方向の回転軸まわりに回動して前記第2被処理物の向きを調整する第2鉛直角度調整機構と、前記鉛直方向の回転軸まわりに回動して前記第2被処理物の向きを調整する第2水平角度調整機構とを備える、項18から項28のいずれか一つに記載のイオン注入装置。
(項31)前記第1保持装置は、前記第1被処理物の向きを調整する第1鉛直角度調整機構を備え、前記第1鉛直角度調整機構は、前記第1被処理物の搬入または搬出時に前記第1被処理物の被処理面が前記水平方向に沿う向きに調整し、前記第1被処理物への前記イオンビームの照射時に前記第1被処理物の前記被処理面が前記水平方向に沿わない向きに調整するように構成され、
 前記第2保持装置は、前記第2被処理物の向きを調整する第2鉛直角度調整機構を備え、前記第2鉛直角度調整機構は、前記第2被処理物の搬入または搬出時に前記第2被処理物の被処理面が前記水平方向に沿う向きに調整し、前記第2被処理物への前記イオンビームの照射時に前記第2被処理物の前記被処理面が前記水平方向に沿わない向きに調整するように構成される、項18から項28のいずれか一つに記載のイオン注入装置。
(項32)前記第1保持装置は、前記第1被処理物の前記水平方向の向きを調整する第1水平角度調整機構と、前記第1被処理物のツイスト角度を調整する第1ツイスト機構とを備え、
 前記第2保持装置は、前記第2被処理物の前記水平方向の向きを調整する第2水平角度調整機構と、前記第2被処理物のツイスト角度を調整する第2ツイスト機構とを備える、項18から項31のいずれか一つに記載のイオン注入装置。
(項33)前記ビーム生成装置は、前記照射範囲にわたって前記イオンビームを往復スキャンさせるビーム走査部を備える、項18から項32のいずれか一つに記載のイオン注入装置。
(項34)前記ビーム生成装置は、前記照射範囲のサイズに対応したビームサイズを有するリボンビームを生成するリボンビーム生成部を備える、項18から項32のいずれか一つに記載のイオン注入装置。
(項35)被処理物に照射されるイオンビームを生成することと、
 鉛直方向における照射範囲のサイズが前記被処理物の被処理面のサイズよりも大きい前記照射範囲にわたって前記イオンビームを照射することと、
 第1被処理物を第1保持装置に保持させることと、
 前記第1保持装置を用いて、前記第1被処理物が前記照射範囲を横切るように前記第1被処理物を水平方向に往復移動させることと、
 第2被処理物を第2保持装置に保持させることと、
 前記第2保持装置を用いて、前記第2被処理物が前記照射範囲を横切るように前記第2被処理物を前記水平方向に往復移動させることと、を備えるイオン注入方法。
 以上、本開示を上述の各実施の形態を参照して説明したが、本開示は上述の各実施の形態に限定されるものではなく、各実施の形態の構成を適宜組み合わせてもよいし、置換してもよい。また、当業者の知識に基づいて各実施の形態における組み合わせや処理の順番を適宜組み替えることや各種の設計変更等の変形を実施の形態に対して加えることも可能であり、そのような組み替えや変形が加えられた実施の形態も本開示に係るイオン注入装置およびイオン注入方法の範囲に含まれ得る。
 本開示に係る実施の形態は、本開示に係る方法を記述するコンピュータ読み取り可能な一以上のシーケンスを含むコンピュータプログラムの形態を取ってもよいし、このようなコンピュータプログラムが格納される非一時的かつ有形な記録媒体(例えば、不揮発性メモリ、磁気テープ、磁気ディスクまたは光学ディスク)の形態を取ってもよい。プロセッサは、このようなコンピュータプログラムを実行することにより、本開示に係る方法を実現してもよい。
 本発明の限定的ではない例示的な実施の形態によれば、イオン注入工程の生産性を向上させるための技術を提供できる。
 10…イオン注入装置、12…ビーム生成装置、14…注入処理室、16…搬送装置、18…制御装置、20…イオン源、20a…アークチャンバ、20b…内部空間、20c…フロントスリット、22…引出部、22a…第1引出電極、22b…第2引出電極、22c…第1引出開口、22d…第2引出開口、23…磁気シールド、24…質量分析部、24a…質量分析磁石装置、24b…質量分析スリット、26…ビーム成形部、26a…レンズ装置、28…ビーム走査部、28a,28b…走査電極対、30…ビーム平行化部、30a,30b…平行化レンズ電極、34…エネルギー分析部、34a,34b…AEF電極対、34c…エネルギー分析スリット、40…第1保持装置、42…第2保持装置、44…ガイドレール、50…第1チャック機構、50a…第1リフト機構、52…第1ツイスト機構、54…第1鉛直角度調整機構、56…第1水平角度調整機構、58…第1往復運動機構、60…第2チャック機構、60a…第2リフト機構、62…第2ツイスト機構、64…第2鉛直角度調整機構、66…第2水平角度調整機構、68…第2往復運動機構、70…第1搬送装置、72…第2搬送装置、74…第1搬送口、76…第2搬送口、80…第1搬送位置、82…第2搬送位置、84…注入位置、A…ビームライン、SB…スキャンビーム、W1…第1被処理物、W2…第2被処理物、C…移動範囲、E1…第1可動範囲、E2…第2可動範囲。

Claims (17)

  1.  イオンを生成するイオン源と、
     前記イオン源から前記イオンを引き出してイオンビームを生成する引出部と、
     前記イオンビームを水平方向とは異なるスキャン方向に往復スキャンさせてスキャンビームを生成するよう構成されるビーム走査部と、
     被処理物を保持可能に構成される保持装置であって、前記保持装置に保持される前記被処理物を前記スキャンビームを横切る方向に往復移動させるよう構成される保持装置と、を備えるイオン注入装置。
  2.  前記保持装置は、前記保持装置に保持される前記被処理物を前記水平方向に往復移動させるよう構成される、請求項1に記載のイオン注入装置。
  3.  前記スキャン方向は、鉛直方向から45度以内となる方向である、請求項1に記載のイオン注入装置。
  4.  前記スキャン方向は、鉛直方向である、請求項1に記載のイオン注入装置。
  5.  前記イオン源は、前記引出部によって引き出される前記イオンが通過するフロントスリットを備え、
     前記フロントスリットの前記水平方向の開口幅は、前記フロントスリットの鉛直方向の開口幅よりも大きい、請求項1に記載のイオン注入装置。
  6.  前記イオン源は、
     内部空間を有し、前記内部空間にて生成されるプラズマから前記イオンを引き出すための前記フロントスリットを有するアークチャンバと、
     前記内部空間に前記水平方向の磁場を印加する磁石装置と、を備える請求項5に記載のイオン注入装置。
  7.  前記引出部は、前記イオンビームが通過する引出開口を有する引出電極を備え、
     前記引出開口の前記水平方向の開口幅は、前記引出開口の前記鉛直方向の開口幅よりも大きい、請求項5または6に記載のイオン注入装置。
  8.  前記引出部と前記ビーム走査部の間に設けられ、前記イオンビームを前記水平方向に偏向させる質量分析部をさらに備える、請求項1に記載のイオン注入装置。
  9.  前記質量分析部は、前記イオンビームに鉛直方向の磁場を印加する磁石装置を備える、請求項8に記載のイオン注入装置。
  10.  前記引出部と前記質量分析部の間に設けられ、前記イオンビームが通過する通過開口を有する磁気シールドをさらに備える、請求項8または9に記載のイオン注入装置。
  11.  前記質量分析部と前記ビーム走査部の間に設けられ、前記イオンビームの断面形状および収束発散角の少なくとも一方を調整するための少なくとも一つのレンズ装置を備えるビーム成形部をさらに備える、請求項8または9に記載のイオン注入装置。
  12.  前記ビーム走査部の下流側に設けられ、前記スキャンビームを平行化するビーム平行化部をさらに備える、請求項1に記載のイオン注入装置。
  13.  前記スキャンビームを前記水平方向に偏向させる偏向装置と、前記偏向装置の下流側に設けられるエネルギー分析スリットとを備えるエネルギー分析部をさらに備える、請求項1に記載のイオン注入装置。
  14.  前記偏向装置は、前記スキャンビームを挟んで対向する電極対と、前記電極対に直流電圧を印加する電源とを備える、請求項13に記載のイオン注入装置。
  15.  前記偏向装置の前記電極対は、前記水平方向に対向するように配置される、請求項14に記載のイオン注入装置。
  16.  前記偏向装置の前記電極対は、前記スキャン方向と直交する方向に対向するように配置される、請求項14に記載のイオン注入装置。
  17.  イオン源を用いてイオンを生成することと、
     前記イオン源から前記イオンを引き出してイオンビームを生成することと、
     前記イオンビームを水平方向とは異なるスキャン方向に往復スキャンさせてスキャンビームを生成することと、
     前記スキャンビームを横切る方向に被処理物を往復移動させることと、を備えるイオン注入方法。
PCT/JP2023/040051 2022-12-02 2023-11-07 イオン注入装置およびイオン注入方法 WO2024116746A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-193557 2022-12-02
JP2022193557 2022-12-02

Publications (1)

Publication Number Publication Date
WO2024116746A1 true WO2024116746A1 (ja) 2024-06-06

Family

ID=91323783

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/040051 WO2024116746A1 (ja) 2022-12-02 2023-11-07 イオン注入装置およびイオン注入方法

Country Status (2)

Country Link
TW (1) TW202425044A (ja)
WO (1) WO2024116746A1 (ja)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11126576A (ja) * 1997-10-22 1999-05-11 Nissin Electric Co Ltd イオン注入装置
US6414328B1 (en) * 1999-11-05 2002-07-02 Kair Nussupov Method and apparatus for the conveying and positioning of ion implantation targets
JP2005174870A (ja) * 2003-12-15 2005-06-30 Mitsui Eng & Shipbuild Co Ltd イオン注入方法及びイオン注入装置
JP2006156246A (ja) * 2004-11-30 2006-06-15 Sumitomo Eaton Noba Kk ビーム照射装置
JP2008262756A (ja) * 2007-04-10 2008-10-30 Sen Corp An Shi & Axcelis Company イオン注入装置及びイオン注入方法
JP2014099293A (ja) * 2012-11-13 2014-05-29 Sen Corp イオン注入装置及びイオン注入方法
JP2016018707A (ja) * 2014-07-09 2016-02-01 住友重機械イオンテクノロジー株式会社 イオン注入装置及びイオン注入装置の制御方法
JP2016081753A (ja) * 2014-10-17 2016-05-16 住友重機械イオンテクノロジー株式会社 ビーム引出スリット構造及びイオン源

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11126576A (ja) * 1997-10-22 1999-05-11 Nissin Electric Co Ltd イオン注入装置
US6414328B1 (en) * 1999-11-05 2002-07-02 Kair Nussupov Method and apparatus for the conveying and positioning of ion implantation targets
JP2005174870A (ja) * 2003-12-15 2005-06-30 Mitsui Eng & Shipbuild Co Ltd イオン注入方法及びイオン注入装置
JP2006156246A (ja) * 2004-11-30 2006-06-15 Sumitomo Eaton Noba Kk ビーム照射装置
JP2008262756A (ja) * 2007-04-10 2008-10-30 Sen Corp An Shi & Axcelis Company イオン注入装置及びイオン注入方法
JP2014099293A (ja) * 2012-11-13 2014-05-29 Sen Corp イオン注入装置及びイオン注入方法
JP2016018707A (ja) * 2014-07-09 2016-02-01 住友重機械イオンテクノロジー株式会社 イオン注入装置及びイオン注入装置の制御方法
JP2016081753A (ja) * 2014-10-17 2016-05-16 住友重機械イオンテクノロジー株式会社 ビーム引出スリット構造及びイオン源

Also Published As

Publication number Publication date
TW202425044A (zh) 2024-06-16

Similar Documents

Publication Publication Date Title
JP5323705B2 (ja) イオン注入器のための改良型新規ビームラインアーキテクチャ
US9218941B2 (en) Ion implantation system and method with variable energy control
US7675050B2 (en) Apparatus and method for ion beam implantation using ribbon and spot beams
KR20080106956A (ko) 이온 주입 장치
TWI786261B (zh) 離子植入裝置及離子植入方法
US9236222B2 (en) Ion implantation apparatus and ion implantation method
JP5068928B2 (ja) 低エネルギービーム増大化方法及びビーム照射装置
JP2015225707A (ja) イオン注入装置
US8354654B2 (en) Apparatus and method for ion beam implantation using scanning and spot beams with improved high dose beam quality
JP7154236B2 (ja) イオン注入システムにおける注入角度を補正するための方法、およびイオン注入システム
JP2016009551A (ja) イオン注入装置
JP2015225708A (ja) イオン注入装置
JP4414988B2 (ja) イオンビーム注入装置および方法
WO2024116746A1 (ja) イオン注入装置およびイオン注入方法
WO2024116747A1 (ja) イオン注入装置およびイオン注入方法
US20060145095A1 (en) Methods and apparatus for ion implantation with control of incidence angle by beam deflection
JP4468336B2 (ja) イオンビーム注入装置および方法
KR20240043765A (ko) 연속적 체인형 에너지 이온 주입 방법 및 장치
TWI714074B (zh) 離子植入系統及具有可變能量控制的方法
TWI682420B (zh) 離子植入系統及具有可變能量控制的方法
US20220285126A1 (en) Ion implanter and ion implantation method
US20230260741A1 (en) Ion implanter and ion implantation method
JP2023008929A (ja) イオン注入システムにおけるリボンビーム角度調整
JP2024529934A (ja) 連続連鎖エネルギーイオン注入のための方法および装置
JPH10312769A (ja) イオン注入装置および方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23897400

Country of ref document: EP

Kind code of ref document: A1

DPE2 Request for preliminary examination filed before expiration of 19th month from priority date (pct application filed from 20040101)