WO2024116516A1 - Circuit board and semi-fabricated product of same - Google Patents

Circuit board and semi-fabricated product of same Download PDF

Info

Publication number
WO2024116516A1
WO2024116516A1 PCT/JP2023/031777 JP2023031777W WO2024116516A1 WO 2024116516 A1 WO2024116516 A1 WO 2024116516A1 JP 2023031777 W JP2023031777 W JP 2023031777W WO 2024116516 A1 WO2024116516 A1 WO 2024116516A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat dissipation
circuit board
dissipation frame
frame
thermal resistance
Prior art date
Application number
PCT/JP2023/031777
Other languages
French (fr)
Japanese (ja)
Inventor
怜 田中
雄一郎 山内
知典 渡辺
Original Assignee
日本発條株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本発條株式会社 filed Critical 日本発條株式会社
Publication of WO2024116516A1 publication Critical patent/WO2024116516A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/12Mountings, e.g. non-detachable insulating substrates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/36Selection of materials, or shaping, to facilitate cooling or heating, e.g. heatsinks
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details

Definitions

  • This invention relates to a circuit board with improved heat dissipation properties and its semi-finished products.
  • circuit board An example of a conventional circuit board is that described in Patent Document 1.
  • a circuit pattern is formed on a base via an insulating material, and an overlay circuit pattern is formed on the circuit pattern by cold spraying.
  • the built-up circuit pattern is formed by cold spraying, there are voids in the internal structure that reduce thermal conductivity, limiting heat dissipation.
  • the present invention provides a circuit board comprising a circuit pattern provided on an insulating substrate, an electronic component bonded onto the circuit pattern, and a heat dissipation frame bonded onto the circuit pattern and disposed adjacent to the electronic component.
  • a circuit board comprising a circuit pattern provided on an insulating substrate, an electronic component bonded onto the circuit pattern, and a heat dissipation frame bonded onto the circuit pattern and disposed adjacent to the electronic component.
  • the present invention also provides a semi-finished circuit board comprising a circuit pattern provided on an insulating substrate via an insulating material, and a heat dissipation frame disposed adjacent to an arrangement area of an electronic component to be bonded onto the circuit pattern.
  • a semi-finished circuit board when the clearance from the arrangement area at the bottom of the heat dissipation frame is C [mm], the area of the lower surface of the heat dissipation frame is A [mm2], and the thickness of the heat dissipation frame from the circuit pattern is T [mm], the relationship 15.0 ⁇ A0.5 ⁇ C-1.2 ⁇ T0.2 ⁇ 600 is satisfied.
  • the present invention can further improve the heat dissipation properties of circuit boards and their semi-finished products.
  • FIG. 1A is a cross-sectional view of a circuit board having a heat dissipation frame according to a first embodiment of the present invention
  • FIG. 1B is a cross-sectional view of a circuit board having no heat dissipation frame according to a comparative example
  • FIG. 2 is a graph showing the rate of change in thermal resistance versus the area A [mm 2 ], clearance C [mm], and thickness T [mm] of the lower surface of the heat dissipation frame of the circuit board in FIG.
  • FIG. 3 is a table showing the relationship between the area A [mm2], clearance C [mm], and thickness T [mm] of the circuit board in FIG.
  • FIG. 4 is a graph showing the relationship between the heat dissipation effect dimension parameter and the thermal resistance reduction rate of the circuit board of FIG. 1A together with a comparative example.
  • 5(A) is a cross-sectional view of a circuit board for a comparative example having no heat dissipation frame of FIG. 1(B), and a table showing analysis results of dimensions, thermal conductivity, and thermal resistance
  • FIG. 5(B) is a planar image showing the temperature distribution on the circuit board of FIG. 5(A).
  • 6(A) is a diagram showing a cross-sectional view of the circuit board according to Example 1 of Example 1 in FIG.
  • FIG. 6(B) is a planar image showing the temperature distribution of the circuit board in FIG. 6(A).
  • FIG. 7(A) is a graph showing the analysis results of the thermal resistance of a circuit board according to Example 2 of Example 1 of FIG. 3, and FIG. 7(B) is a planar image showing the temperature distribution of the circuit board of FIG. 7(A).
  • FIG. 8(A) is a graph showing the analysis results of the thermal resistance of the circuit board according to Example 3 of Example 1 of FIG. 3, and FIG. 8(B) is a planar image showing the temperature distribution of the circuit board of FIG. 8(A).
  • FIG. 7(A) is a graph showing the analysis results of the thermal resistance of a circuit board according to Example 2 of Example 1 of FIG. 3
  • FIG. 7(B) is a planar image showing the temperature distribution of the circuit board of FIG. 7(A).
  • FIG. 8(A) is a graph showing the analysis results of the thermal resistance of the circuit board according to Example 3 of Example 1 of FIG. 3
  • FIG. 9(A) is a graph showing the analysis results of the thermal resistance of a circuit board according to Example 4 of Example 1 of FIG. 3, and FIG. 9(B) is a planar image showing the temperature distribution of the circuit board of FIG. 9(A).
  • FIG. 10A is a graph showing the analysis results of the thermal resistance of a circuit board according to Example 5 of Example 1 of FIG. 3, and FIG. 10B is a planar image showing the temperature distribution of the circuit board of FIG. 10A.
  • 11A is a graph showing the analysis results of the thermal resistance of the circuit board according to Comparative Example 2 of FIG. 3, and FIG. 11B is a planar image showing the temperature distribution of the circuit board of FIG. 11A.
  • FIG. 12A is a graph showing the analysis results of the thermal resistance of the circuit board according to Comparative Example 3 of FIG. 3, and FIG. 12B is a planar image showing the temperature distribution of the circuit board of FIG. 12A.
  • 13A is a graph showing the analysis results of the thermal resistance of the circuit board according to Comparative Example 4 of FIG. 3, and FIG. 13B is a planar image showing the temperature distribution of the circuit board of FIG. 13A.
  • 14(A) is a diagram showing the cross-sectional view, dimensions, and analysis results of thermal resistance when heat dissipation conditions are changed for the circuit board of Comparative Example 1 of FIG. 1(B), and FIG. 14(B) is a planar image showing the temperature distribution of the circuit board of FIG. 14(A).
  • FIG. 14(A) is a diagram showing the cross-sectional view, dimensions, and analysis results of thermal resistance when heat dissipation conditions are changed for the circuit board of Comparative Example 1 of FIG. 1(B), and FIG. 14(B) is a
  • FIG. 15(A) is a diagram showing the cross-sectional view, dimensions, and analysis results of thermal resistance when heat dissipation conditions are changed for the circuit board of Example 1 of Example 1 of FIGS. 1(A) and 3, and FIG. 15(B) is a planar image showing the temperature distribution of the circuit board of FIG. 15(A).
  • FIG. 16(A) is a graph showing the analysis results of thermal resistance when heat dissipation conditions are changed in a circuit board according to Example 2 of Example 1 of FIG. 3, and FIG. 16(B) is a planar image showing the temperature distribution in the circuit board of FIG. 16(A).
  • FIG. 16(A) is a graph showing the analysis results of thermal resistance when heat dissipation conditions are changed in a circuit board according to Example 2 of Example 1 of FIG. 3
  • FIG. 16(B) is a planar image showing the temperature distribution in the circuit board of FIG. 16(A).
  • FIG. 17(A) is a graph showing the analysis results of thermal resistance when heat dissipation conditions are changed in a circuit board according to Example 3 of Example 1 of FIG. 3, and FIG. 17(B) is a planar image showing the temperature distribution in the circuit board of FIG. 17(A).
  • FIG. 18(A) is a graph showing the analysis results of thermal resistance when heat dissipation conditions are changed in a circuit board according to Example 4 of Example 1 of FIG. 3, and FIG. 18(B) is a planar image showing the temperature distribution in the circuit board of FIG. 18(A).
  • FIG. 19(A) is a graph showing the analysis results of thermal resistance when heat dissipation conditions are changed in a circuit board according to Example 5 of Example 1 of FIG. 3, and FIG.
  • 19(B) is a planar image showing the temperature distribution in the circuit board of FIG. 19(A).
  • 20(A) is a graph showing the analysis results of thermal resistance when the heat dissipation conditions are changed in the circuit board of Comparative Example 2 of FIG. 3, and
  • FIG. 20(B) is a planar image showing the temperature distribution in the circuit board of FIG. 20(A).
  • 21(A) is a graph showing the analysis results of thermal resistance when the heat dissipation conditions are changed in the circuit board of Comparative Example 3 of FIG. 3, and
  • FIG. 21(B) is a planar image showing the temperature distribution in the circuit board of FIG. 21(A).
  • FIG. 22(A) is a graph showing the analysis results of thermal resistance when the heat dissipation conditions are changed in the circuit board of Comparative Example 4 of FIG. 3, and FIG. 22(B) is a planar image showing the temperature distribution in the circuit board of FIG. 22(A).
  • FIG. 23 is a plan view showing the relationship between a semiconductor chip and a heat dissipation frame of a circuit board according to a modification of the first embodiment of FIG.
  • FIG. 24 is a plan view showing the relationship between a semiconductor chip and a heat dissipation frame of a circuit board according to a modification of the first embodiment of FIG. FIG.
  • FIG. 25 is a plan view showing the relationship between a semiconductor chip and a heat dissipation frame of a circuit board according to a modification of the first embodiment of FIG.
  • FIG. 26 is a plan view showing the relationship between a semiconductor chip and a heat dissipation frame of a circuit board according to a modification of the first embodiment of FIG.
  • FIG. 27 is a cross-sectional view showing a circuit board according to a modified example of the first embodiment of FIG.
  • FIG. 28 is a graph showing the relationship between the heat dissipation effect dimension parameter and the thermal resistance reduction rate of the circuit board according to the second embodiment, together with the approximation lines of the comparative example and the first embodiment.
  • FIG. 26 is a plan view showing the relationship between a semiconductor chip and a heat dissipation frame of a circuit board according to a modification of the first embodiment of FIG.
  • FIG. 27 is a cross-sectional view showing a circuit board according to a modified example of the first embodiment of FIG.
  • FIG. 29(A) is a diagram showing a cross-sectional view of the circuit board of Example 2, and analysis results of dimensions, thermal conductivity, and thermal resistance
  • FIG. 29(B) is a planar image showing the temperature distribution of the circuit board of FIG. 29(A).
  • FIG. 30A is a graph showing the analysis results of the thermal resistance of the circuit board in Example 2
  • FIG. 30B is a planar image showing the temperature distribution of the circuit board in FIG. 30A.
  • FIG. 31(A) is a graph showing the analysis results of the thermal resistance of a circuit board according to a comparative example of Example 2
  • FIG. 31(B) is a planar image showing the temperature distribution of the circuit board of FIG. 31(A).
  • FIG. 32(A) is a diagram showing the cross-sectional view, dimensions, thermal conductivity, and thermal resistance analysis results of a circuit board with different heat dissipation conditions according to Example 2, and FIG. 32(B) is a planar image showing the temperature distribution of the circuit board in FIG. 32(A).
  • FIG. 33(A) is a graph showing the analysis results of the thermal resistance of the circuit board of Example 2 in which the heat dissipation conditions are changed
  • FIG. 33(B) is a planar image showing the temperature distribution of the circuit board of FIG. 33(A).
  • FIG. 34(A) is a graph showing the analysis results of the thermal resistance of a circuit board for a comparative example of Example 2 in which the heat dissipation conditions were changed
  • FIG. 34(B) is a planar image showing the temperature distribution of the circuit board in FIG. 34(A).
  • the goal of improving heat dissipation was achieved by providing a heat dissipation frame that surrounds the electronic components on the circuit pattern.
  • the circuit board 1 comprises a circuit pattern 3, electronic components 5, and a heat dissipation frame 7.
  • the circuit pattern 3 is provided on an insulating substrate 8.
  • the electronic components 5 are bonded onto the circuit pattern 3.
  • the heat dissipation frame 7 is bonded onto the circuit pattern 3 and is provided adjacent to the electronic components 5.
  • the heat dissipation frame 7 satisfies 15.0 ⁇ A0.5 ⁇ C-1.2 ⁇ T0.2 ⁇ 600, where the clearance from the electronic components 5 at the bottom is C [mm], the area of the bottom surface 7a is A [mm2], and the thickness from the circuit pattern 3 is T [mm].
  • the heat sink frame 7 can be made of various conductive materials such as copper or aluminum.
  • the heat sink frame 7 may face the solder 13 in the surface direction of the circuit pattern 3.
  • the heat dissipation frame 7 may also be a positioning frame for the electronic component 5.
  • the heat dissipation frame 7 can have various frame shapes.
  • the heat dissipation frame 7 has a frame shape in which the center of the electronic component 5 in a plan view is offset from the center of the external shape of the heat dissipation frame 7.
  • the heat dissipation frame 7 has a frame shape that contains multiple electronic components 5.
  • the heat dissipation frame 7 has a frame shape in which the clearance C is non-uniform in the circumferential direction.
  • the heat dissipation frame 7 may have an annular frame shape. The thickness of the heat dissipation frame 7 may also vary in the circumferential direction.
  • the semi-finished circuit board 1 includes the circuit pattern 3 and heat dissipation frame 7, and is before the electronic components 5 are mounted.
  • FIG. 1(A) is a cross-sectional view of a circuit board having a heat dissipation frame according to a first embodiment of the present invention
  • FIG. 1(B) is a cross-sectional view of a circuit board having no heat dissipation frame according to a comparative example.
  • the circuit board 1 of this embodiment includes a circuit pattern 3, a semiconductor chip 5, and a heat dissipation frame 7.
  • the circuit pattern 3 is provided on an insulating substrate 8.
  • the insulating substrate 8 may be any insulating substrate capable of forming the circuit pattern 3, such as a metal-based substrate or a ceramic substrate.
  • the insulating substrate 8 has an insulating material 11 provided on a base 9.
  • the base 9 is a metal base, and is a plate-like member made of, for example, copper.
  • the insulating material 11 is a plate-like insulating member bonded onto the base 9.
  • the material of the insulating material 11 is not particularly limited, but may be made of epoxy resin, cyanate resin, or the like.
  • the insulating material 11 may contain an inorganic filler.
  • the circuit pattern 3 is a plate- or foil-like member made of a conductive material, for example copper. It is also possible to use a plate- or foil-like member other than copper for the circuit pattern 3, so long as it is made of a conductive material.
  • the circuit pattern 3 has an appropriate pattern according to the circuit configuration, and includes a placement area R for the semiconductor chip 5, which is an electronic component.
  • the placement area R is an area that is the same size as or larger than the semiconductor chip 5 in plan view, and within which the semiconductor chip 5 is placed.
  • the semiconductor chip 5 is bonded onto the placement area R of the circuit pattern 3.
  • the semiconductor chip 5 is bonded using solder 13, but it can also be bonded using a conductive paste such as silver paste or other conductive adhesives.
  • This semiconductor chip 5 has a square plate shape when viewed from above. However, various shapes of the semiconductor chip 5 can be adopted.
  • the heat dissipation frame 7 is a component that is bonded onto the circuit pattern 3 and is disposed adjacent to the semiconductor chip 5.
  • the heat dissipation frame 7 is a frame-shaped component that surrounds the semiconductor chip 5.
  • the heat dissipation frame 7 does not need to surround the semiconductor chip 5, and may be partially open and surround the semiconductor chip 5, or may be disposed adjacent to only a portion of the outer periphery of the semiconductor chip 5.
  • the heat dissipation frame 7 is formed into a frame shape from a plate material.
  • the material of the heat dissipation frame 7 is copper, the same as the circuit pattern 3 and the base 9.
  • the material of the heat dissipation frame 7 is not limited to copper, and other metals and other materials may be used.
  • the heat dissipation frame 7 in this embodiment has a frame shape with an inner periphery and an outer periphery that are similar square shapes to match the semiconductor chip 5. Note that the inner periphery and the outer periphery of the heat dissipation frame 7 are not limited to being similar shapes, and may be different shapes.
  • the heat dissipation frame 7 is joined to the circuit pattern 3 by ultrasonic bonding, which is a localized and instantaneous bond with relatively low heat input. This makes it possible to suppress warping of the circuit board 1 after bonding. Furthermore, tool marks from ultrasonic bonding remain on the top surface 7b of the heat dissipation frame 7, and no tool marks remain on the circuit pattern 3 on which the semiconductor chip 5 is mounted. This means that the molten solder 13 does not accumulate in the tool marks when bonding with the solder 13, making it possible to suppress the inhibition of heat dissipation caused by the solder 13.
  • This heat dissipation frame 7 is set with a clearance C [mm] from the semiconductor chip 5 (placement area R) in a plan view.
  • the inner periphery of the heat dissipation frame 7 is similar to the outer periphery of the semiconductor chip 5, and the clearance C is set uniformly around the inner periphery of the heat dissipation frame 7 and the entire periphery of the semiconductor chip 5.
  • clearance C is the clearance between the lower part of heat dissipation frame 7 and semiconductor chip 5.
  • the lower part of heat dissipation frame 7 is the lower part of heat dissipation frame 7 that faces semiconductor chip 5 in the surface direction, and is, for example, the lower region that is bonded onto circuit pattern 3.
  • Such a heat dissipation frame 7 can also function as a positioning frame that positions the semiconductor chip 5 with a clearance C.
  • the clearance C does not need to be uniform around the entire circumference of the semiconductor chip 5, and the heat dissipation frame 7 may be set offset relative to the semiconductor chip 5. A portion of the heat dissipation frame 7 may be in contact with the semiconductor chip 5.
  • the cross-sectional shape of the heat dissipation frame 7 is rectangular, but may vary from the upper surface 7b to the lower surface 7a. Examples of such cross-sectional shapes include a curved upper surface 7b and a shape in which the width varies from the upper surface 7b to the lower surface 7a.
  • the lower surface 7a of the heat dissipation frame 7 is a flat surface defined by the inner and outer peripheries of the heat dissipation frame 7 in cross section.
  • the area A [mm2] of the lower surface 7a is the area of the heat dissipation frame 7 in a planar view.
  • the underside 7a of the heat dissipation frame 7 is other than flat, for example if it is curved or uneven in cross section, the area of the underside 7a may be the area in a plan view.
  • the width in cross section of the heat dissipation frame 7 is defined as the plate width W, which is the difference between the outer diameter and the inner diameter, with the two-sided width of the inner circumference of the rectangle of the heat dissipation frame 7 being considered as the inner diameter and the two-sided width of the outer circumference of the same rectangle being considered as the outer diameter.
  • the heat dissipation frame 7 is annular, it will be the original outer diameter and inner diameter.
  • the thickness T [mm] of the heat dissipation frame 7 is set so that the upper surface 7b of the heat dissipation frame 7 protrudes beyond the surface 5a of the semiconductor chip 5.
  • the thickness T is the dimension from the surface 3a of the circuit pattern 3 of the heat dissipation frame 7.
  • the heat dissipation frame 7 faces the solder 13 in the surface direction of the circuit pattern 3. Therefore, the heat dissipation frame 7 has the effect of preventing solder flow when the semiconductor chip 5 is soldered.
  • the surface direction refers to the direction along the surface of the circuit pattern 3.
  • the thermal resistance related to heat dissipation in response to heat generated by the semiconductor chip 5 in the circuit board 1 of FIG. 1(A) and the comparative circuit board 1 of FIG. 1(B) shows the trend shown in FIG. 2.
  • Figure 2 is a graph showing the rate of change in thermal resistance versus area A, clearance C, and thickness T of the heat sink frame 7 of the circuit board 1 in Figure 1(A).
  • the thermal resistance is shown in Figure 5 between a point at the center of the front surface of the semiconductor chip 5 and a corresponding point on the rear surface of the base 9.
  • FIG 2 three graphs are displayed, one on the left, one in the center, and one on the right, showing the rate of change in thermal resistance.
  • the left graph in Figure 2 is for changes in area A (plate width W) shown on the horizontal axis
  • the center graph in Figure 2 is for changes in clearance C
  • the right graph in Figure 2 is for changes in thickness T.
  • the dashed line level marked "without Cu frame” refers to the circuit board 1 without a heat dissipation frame in the comparative example in FIG. 1(B).
  • the materials and dimensions of each part in the comparative example in FIG. 1(B) are the same as those in Example 1 in FIG. 1(A).
  • Fig. 3 is a chart showing the relationship between the area A, clearance C, and thickness T of the circuit board 1 in Fig. 1(A) and the thermal resistance reduction rate and heat dissipation effect dimensional parameters, along with comparative examples.
  • Fig. 4 is a graph showing the relationship between the heat dissipation effect dimensional parameters and the thermal resistance reduction rate of the circuit board in Fig. 1(A) along with comparative examples.
  • Comparative example 1 in Figure 3 is for a circuit board 1 that does not have the heat dissipation frame of Figure 1 (B).
  • Example 1 and comparative examples 2 to 4 in Figure 3 are for a circuit board 1 that has a heat dissipation frame 7.
  • Figure 3 shows the results when the area, clearance, and thickness of the heat dissipation frame 7 are changed.
  • the thermal resistance reduction rate is -1.8% or less. If the thermal resistance reduction rate is less than 2%, the thermal resistance reduction effect is low. Therefore, if the range excluding less than 2%, where the thermal resistance reduction effect is low, including Comparative Examples 2 to 4, is specified, the heat dissipation effect dimension parameter will be as shown in the following formula (1).
  • the three data from the left in Figure 4 are the thermal resistance reduction rates versus the heat dissipation effect size parameters for Comparative Examples 2 to 4 in Figure 3.
  • the data in Figure 4 excluding Comparative Examples 2 to 4 are the thermal resistance reduction rates versus the heat dissipation effect size parameters for Examples 1-1 to 1-5.
  • the approximate line based on the data from Comparative Examples 2 to 4 is L1
  • the approximate line based on the data from Example 1 is L2.
  • There is a clear critical point between the approximate lines L1 and L2 at the heat dissipation effect dimension parameter A0.5 x C-1.2 x T0.2 15.
  • FIG. 3 shows the heat dissipation effect dimension parameters for Comparative Example 5, where area A is 64 mm2, clearance C is 0.5 mm, and thickness T is 0.08 mm.
  • This heat dissipation effect dimension parameter was 11.1.
  • the thermal resistance reduction rate for this heat dissipation effect dimension parameter can be obtained along the approximation line L1.
  • Figure 3 shows the heat dissipation effect dimensional parameters for Example 1-6, where area A is 873 mm2, clearance C is 0.1 mm, and thickness T is 3 mm.
  • This heat dissipation effect dimensional parameter can be obtained along approximation line L2, and was 583.37, which is close to the upper limit.
  • the circuit pattern 3 is formed on the insulating substrate 8.
  • the heat sink frame 7 is ultrasonically bonded to the portion of the circuit pattern 3 surrounding the placement area R, completing the semi-finished circuit board 1.
  • the size of the heat dissipation frame 7 is area A and thickness T so that the clearance for the semiconductor chip 5 is C, and the relationship between C, A, and T regarding the heat dissipation properties of this heat dissipation frame 7 is given by formula (2).
  • the conductor chip 5 is bonded onto the circuit pattern 3, using the heat dissipation frame 7 as a positioning frame.
  • the semiconductor chip 5 is bonded onto the circuit pattern 3 with solder 13, and at this time the heat dissipation frame 7 prevents the solder from flowing outside the frame.
  • the semiconductor chip 5 is then fixed onto the circuit pattern 3 by the hardened solder 13.
  • the circuit board 1 of this embodiment manufactured in this manner has improved heat dissipation properties due to the heat dissipation frame 7.
  • the heat dissipation properties of the heat dissipation frame 7 can be further improved by setting the clearance C, area A, and thickness T with respect to the semiconductor chip 5 according to formula (2).
  • Figures 5 to 10 show the analysis results of the heat dissipation properties for the comparative example and examples 1-1 to 1-5.
  • Figures 5(A) and 6(A) are diagrams showing cross-sectional views of the circuit boards for the comparative example and examples 1-1 to 1-5, respectively, along with the analysis results of the dimensions, thermal conductivity, and thermal resistance of each part, and
  • Figures 5(B) and 6(B) are planar images showing the temperature distribution of the circuit boards for the comparative example and examples 1-1 to 1-5, respectively.
  • Fig. 7(A), Fig. 8(A), Fig. 9(A), and Fig. 10(A) are diagrams showing the analysis results of the thermal resistance of the circuit boards according to Comparative Examples 2 to 4, respectively, and Fig. 7(B), Fig. 8(B), Fig. 9(B), and Fig. 10(B) are planar images showing the temperature distribution of the circuit boards according to the Comparative Example and Examples 1-1 to 1-5, respectively.
  • the specifications of the circuit board 1 of Comparative Example 1 in FIG. 5(A), such as dimensions, are as follows:
  • the specifications of the chip are thickness: 0.1 mm, plane size: 5 ⁇ 5 mm, and thermal conductivity: 85 W/mK.
  • the specifications of the solder (solder 13) are thickness: 0.2 mm, and thermal conductivity: 49 W/mK.
  • the specifications of the copper circuit (circuit pattern 3) are material: C1020, thickness: 0.5 mm, size: 20 ⁇ 20 mm, and thermal conductivity: 390 W/mK.
  • the specifications of the insulating material are material: resin (liquid crystal polymer) filled with alumina and boron nitride powder, thickness: 0.12 mm, and thermal conductivity: 7.5 W/mK.
  • the specifications of the copper base (base 9) are material: C1921, thickness: 2 mm, and thermal conductivity: 364 W/mK.
  • the analysis results of the thermal resistance are Tmax: 150.7°C at the center point on the front surface of the semiconductor chip 5, T copper base chip bottom : fixed at 20.0°C at the point on the back surface of the base 9 corresponding to this point, and thermal resistance R: 0.654 kW.
  • the analysis of the thermal resistance was performed with a heat amount of 200 W.
  • the temperature distribution at this time is shown in FIG. 5(B).
  • This Comparative Example 1 is compared with Examples 1 to 5 of the Example 1. In FIG. 5(B), the center is the hottest and the temperature decreases toward the outside.
  • Example 1 in FIG. 6A relates to Example 1-1 in FIG. 3.
  • the specifications of this circuit board 1, such as dimensions, are the same as those of the comparative example without a heat sink frame, except for the copper plate (heat sink frame 7).
  • the specifications of the copper plate (heat sink frame 7) are: material: C1020 (same as circuit pattern 3), thickness: 1.0 mm, size: 10 ⁇ 10 mm (hole 6 ⁇ 6 mm), thermal conductivity: 390 W/mK.
  • the size of the hole indicates the size of the inner circumference of the heat sink frame 7.
  • the heat sink frame 7 has an area A of 64 mm2, a clearance C of 0.5 mm, and a thickness T of 1 mm, and the heat sink effect dimension parameter: 18.4 satisfies formula (2).
  • the thermal resistance analysis was performed under the same conditions as the comparative example, with a heat quantity of 200 W and a fixed temperature of the bottom of the board (T copper base chip under) : 20.0°C.
  • the analysis results were Tmax: 146.4°C at the center point of the surface of the semiconductor chip 5, T copper base chip under : 20.0°C at the point on the back of the base 9 corresponding to this point, and thermal resistance R: 0.632 KW.
  • the rate of change of thermal resistance was ⁇ R: 0.022 K/W, and the thermal resistance was reduced by 3.3% compared to the comparative example 1.
  • the temperature distribution at this time is as shown in FIG. 6(B).
  • Example 1-1 the heat dissipation performance is improved by setting the heat dissipation frame 7 to satisfy formula (2).
  • FIG. 7 The thermal resistance analysis results in Figure 7 (A) relate to Example 1-2 in Figure 3.
  • the size of the copper plate (heat dissipation frame 7) is 10 x 10 mm (holes 5.4 x 5.4 mm), and the clearance is reduced compared to Example 1-1 in Figure 6.
  • the area A of the heat dissipation frame 7 has been increased by 71 mm2.
  • Example 1-2 The analysis results of Example 1-2 are Tmax: 144.2°C, T copper base chip bottom : fixed at 20.0°C, thermal resistance R: 0.621KW. The rate of change of thermal resistance is ⁇ R: 0.033K/W, and the thermal resistance is reduced by 5.0% compared to Comparative Example 1. The temperature distribution at this time is as shown in FIG. 7B.
  • Example 1-2 the setting of the heat dissipation frame 7 satisfies formula (2), and the heat dissipation performance is further improved by reducing the clearance.
  • Example 1-3 The analysis results of Example 1-3 are Tmax: 146.0°C, T copper base chip bottom : fixed at 20.0°C, thermal resistance R: 0.630KW. The rate of change of thermal resistance is ⁇ R: 0.023K/W, and the thermal resistance is reduced by 3.6% compared to Comparative Example 1. The temperature distribution at this time is as shown in FIG. 8(B).
  • Example 1-3 the setting of the heat dissipation frame 7 satisfies formula (2), and the heat dissipation performance is further improved by increasing the thickness.
  • Example 1-4 The analysis results of this Example 1-4 are Tmax: 144.3°C, T copper base chip : 20.0°C, and thermal resistance R: 0.622KW.
  • the rate of change of thermal resistance is ⁇ R: 0.032K/W, and the thermal resistance is reduced by 4.9% compared to the comparative example.
  • the temperature distribution at this time is as shown in FIG. 9(B).
  • Example 1-4 the setting of the heat dissipation frame 7 satisfies formula (2), and the heat dissipation performance is further improved by increasing the area toward the outer diameter.
  • FIG. 10 (A) The thermal resistance analysis results in Figure 10 (A) are for Example 1-5 in Figure 3.
  • the size of the copper plate (heat dissipation frame 7) is 20 x 20 mm (hole 5.4 x 5.4 mm), and the outer diameter of the heat dissipation frame 7 is enlarged while the inner diameter is reduced, increasing the area A to 371 mm2.
  • the clearance C is reduced to 0.2 mm, and the thickness T is increased to 2 mm.
  • the heat dissipation effect dimension parameter: 152.6 resulting from changes in the area A, clearance C, and thickness T of this heat dissipation frame 7 satisfies formula (2).
  • Example 1-5 The analysis results of Example 1-5 are Tmax: 140.1°C, T copper base chip bottom : fixed at 20.0°C, thermal resistance R: 0.601K/W.
  • the rate of change of thermal resistance is ⁇ R: -0.031K/W, and the thermal resistance is reduced by 8.1% compared to the comparative example.
  • the temperature distribution at this time is as shown in Figure 10(B).
  • Comparative Example 1 (Comparison between Comparative Example 1 and Comparative Examples 2 to 4) Next, Comparative Example 1 will be compared with Comparative Examples 2 to 4.
  • Figures 11 to 13 show the analysis results of the heat dissipation properties for Comparative Examples 2 to 4.
  • Figures 11(A), 12(A), and 13(A) are graphs showing the analysis results of the thermal resistance of the circuit boards for Comparative Examples 2 to 4, respectively, and
  • Figures 11(B), 12(B), and 13(B) show the temperature distributions for Comparative Examples 2 to 4, respectively.
  • FIG 11 (A) The analysis results of thermal resistance in Figure 11 (A) are for Comparative Example 2 in Figure 3.
  • the size of the copper plate (heat dissipation frame 7) is 8 x 8 mm (holes 6 x 6 mm), and the outer diameter of the heat dissipation frame 7 is reduced to area A: 28 mm2.
  • the heat dissipation effect dimension parameter: 12.2 due to the change in size of this heat dissipation frame 7 does not satisfy formula (2).
  • the analysis results of thermal resistance in Figure 12 (A) are for Comparative Example 3 in Figure 3.
  • the size of the copper plate (heat dissipation frame 7) is 10 x 10 mm (hole 7 x 7 mm), and the inner diameter of the heat dissipation frame 7 is enlarged, decreasing the area A to 51 mm2. Clearance C is enlarged to 1 mm.
  • the heat dissipation effect dimension parameter: 7.1 due to this change in the size of the heat dissipation frame 7 does not satisfy formula (2).
  • the analysis results of thermal resistance in Figure 13 (A) relate to Comparative Example 4 in Figure 3.
  • the size of the copper plate (heat dissipation frame 7) is 8 x 8 mm (holes 6 x 6 mm) compared to Example 1-1 in Figure 6, and the outer diameter of the heat dissipation frame 7 is reduced to reduce the area A to 28 mm2.
  • the thickness T is reduced to 0.5 mm.
  • the heat dissipation effect dimension parameter: 10.6 resulting from this change in the size of the heat dissipation frame 7 does not satisfy formula (2).
  • FIG. 14(A) is a diagram showing the analysis results of thermal resistance when the cross-sectional view, dimensions, and heat dissipation conditions of the circuit board according to Comparative Example 1 in Fig. 1(B) are changed, and Fig. 14(B) is a planar image showing the temperature distribution of the circuit board in Fig. 14(A).
  • Fig. 15(A) is a diagram showing the analysis results of thermal resistance when the cross-sectional view, dimensions, thermal conductivity, and heat dissipation conditions of the circuit board according to Example 1-1 in Fig. 3 are changed, and Fig. 15(B) is a planar image showing the temperature distribution of the circuit board in Fig. 15(A).
  • Figs. 16 to 19 show the analysis results when the heat dissipation conditions are changed for the circuit boards of Examples 1-2 to 1-5 in Fig. 3.
  • Figs. 16(A), 17(A), 18(A), and 19(A) are charts showing the analysis results of the thermal resistance of the circuit boards of Examples 1-2 to 1-5, respectively, and
  • Figs. 16(B), 17(B), 18(B), and 19(B) are planar images showing the temperature distribution of the circuit boards of Examples 1-2 to 1-5, respectively.
  • the analysis results of the thermal resistance in Comparative Example 1 are Tmax: 175.2°C at the center point on the front surface of the semiconductor chip 5, T copper base chip under the point on the back surface of the metal substrate 9 corresponding to this point: 53.7°C, and thermal resistance R: 0.607 K/W.
  • the temperature distribution at this time is shown in FIG.
  • Comparative Example 1 and Examples 1 to 5 of Example 1 are compared when the heat dissipation conditions are changed as described above.
  • Example 1-1 in Fig. 15(A) the heat dissipation conditions were changed for the circuit board 1 having the shape and dimensions of Example 1-1 in Fig. 3.
  • the analysis results of the thermal resistance are Tmax: 169.6°C at the center point on the front surface of the semiconductor chip 5, T copper base chip under : 51.9°C at the point on the back surface of the metal substrate 9 corresponding to this point, and thermal resistance R: 0.588 K/W.
  • the rate of change of thermal resistance is ⁇ R: -0.019 K/W, and the thermal resistance has decreased compared to Comparative Example 1, as in the case where the temperature of the bottom surface of the substrate is fixed at 20.0°C under the copper base chip .
  • the temperature distribution at this time is shown in Figure 15 (B).
  • FIG. 16A shows the above-mentioned change in heat dissipation conditions for the circuit board 1 having the shape and dimensions of Example 1-2 in FIG. 3.
  • the analysis results of the thermal resistance are Tmax: 167.0°C at the center point on the front surface of the semiconductor chip 5, T copper base chip under : 51.3°C at the point on the back surface of the metal substrate 9 corresponding to this point, and thermal resistance R: 0.578 K/W.
  • the rate of change of thermal resistance is ⁇ R: -0.010 K/W, and the thermal resistance has decreased compared to Comparative Example 1, as in the case where the temperature of the bottom surface of the substrate is fixed at 20.0°C under the copper base chip .
  • the temperature distribution at this time is shown in FIG. 16(B).
  • Example 1-2 the heat dissipation effect dimension parameter: 58.1 due to the setting of the heat dissipation frame 7 satisfies formula (2), and by reducing the clearance C and increasing the area A, the heat dissipation performance was improved even when the heat dissipation conditions were changed.
  • Figure 17 (A) shows the analysis results when the heat dissipation conditions were changed as described above for the circuit board 1 with the shape and dimensions of Example 3-3 in Figure 3.
  • the analysis results of the thermal resistance are Tmax: 169.1°C at the center point on the front surface of the semiconductor chip 5, T copper base chip under : 51.8°C at the point on the back surface of the metal substrate 9 corresponding to this point, and thermal resistance R: 0.587 K/W.
  • the rate of change of thermal resistance is ⁇ R: -0.002 K/W, and the thermal resistance has decreased compared to Comparative Example 1, as in the case where the temperature of the bottom surface of the substrate is fixed at 20.0°C.
  • the temperature distribution at this time is shown in Figure 17 (B).
  • Example 1-3 the heat dissipation effect dimension parameter: 21.1 due to the setting of the heat dissipation frame 7 satisfies formula (2), and by increasing the thickness T, the heat dissipation performance improved even when the heat dissipation conditions were changed.
  • Figure 18 (A) shows the analysis results when the heat dissipation conditions were changed as described above for the circuit board 1 with the shape and dimensions of Example 1-4 in Figure 3.
  • the analysis results of the thermal resistance are Tmax: 166.0°C at the center point on the front surface of the semiconductor chip 5, T copper base chip under : 50.2°C at the point on the back surface of the metal substrate 9 corresponding to this point, and thermal resistance R: 0.579 K/W.
  • the rate of change of thermal resistance is ⁇ R: -0.009 K/W, and the thermal resistance has decreased compared to Comparative Example 1, as in the case where the temperature of the bottom surface of the substrate is fixed at 20.0°C under the copper base chip .
  • the temperature distribution at this time is shown in FIG. 18(B).
  • Example 1-4 the heat dissipation effect dimension parameter: 43.8 due to the setting of the heat dissipation frame 7 satisfies formula (2), and by increasing the area A, the heat dissipation performance was improved even when the heat dissipation conditions were changed.
  • Figure 19 (A) shows the analysis results when the heat dissipation conditions were changed as described above for the circuit board 1 with the shape and dimensions of Example 1-5 in Figure 3.
  • the analysis results of the thermal resistance are Tmax: 166.0°C at the center point on the front surface of the semiconductor chip 5, T copper base chip under : 50.2°C at the point on the back surface of the metal substrate 9 corresponding to this point, and thermal resistance R: 0.579 K/W.
  • the rate of change of thermal resistance is ⁇ R: -0.027 K/W, and the thermal resistance has decreased compared to Comparative Example 1, as in the case where the temperature of the bottom surface of the substrate is fixed at 20.0°C under the copper base chip .
  • the temperature distribution at this time is shown in Figure 19 (B).
  • Example 1-5 the heat dissipation effect dimension parameter: 152.6 due to the setting of the heat dissipation frame 7 satisfies formula (2), and by increasing the area A and thickness T and decreasing the clearance C, the heat dissipation performance improved even when the heat dissipation conditions were changed.
  • FIG. 14B of Comparative Example 1 in which the heat dissipation conditions were changed as described above is compared with Comparative Examples 2 to 4 in which the heat dissipation conditions were changed as described above.
  • Figs. 20 to 22 show the analysis results when the heat dissipation conditions are changed for the circuit boards of Comparative Examples 2 to 4 in Fig. 3.
  • Figs. 20(A), 21(A), and 22(A) are charts showing the analysis results of the thermal resistance of the circuit boards of Comparative Examples 2 to 4, respectively, and
  • Figs. 20(B), 21(B), and 22(B) are planar images showing the temperature distribution of the circuit boards of Comparative Examples 2 to 4, respectively.
  • Fig. 20(A) shows the analysis results when the heat dissipation conditions were changed as described above for the circuit board 1 having the shape and dimensions of Comparative Example 2 in Fig. 3.
  • the heat dissipation effect dimension parameter: 12.2 due to the change in the size of the heat dissipation frame 7 from Example 1-1 does not satisfy formula (2), similarly to the case where the temperature T of the bottom surface of the board ( below the copper base chip ): is fixed at 20.0°C.
  • Fig. 21(A) shows the analysis results when the heat dissipation conditions were changed as described above for the circuit board 1 having the shape and dimensions of Comparative Example 3 in Fig. 3.
  • Fig. 22(A) shows the analysis results when the heat dissipation conditions were changed as described above for the circuit board 1 having the shape and dimensions of Comparative Example 4 in Fig. 3.
  • the heat dissipation effect dimension parameter: 10.6 resulting from the change in the size of the heat dissipation frame 7 from Example 1-1 does not satisfy formula (2), similarly to the case where the temperature T of the bottom surface of the board ( below the copper base chip ): is fixed at 20.0°C.
  • [Modification] 23 to 26 are plan views showing the relationship between the semiconductor chip and the heat dissipation frame of the circuit board according to the modification of the first embodiment of FIG. 1A.
  • Fig. 27 is a cross-sectional view of the circuit board showing a modification of the thickness of the heat dissipation frame according to the modification of the first embodiment of FIG.
  • the center of the semiconductor chip 5 is shifted from the center of the external shape of the heat dissipation frame 7 in a plan view, creating a frame shape.
  • the widths of each side of the heat dissipation frame 7 are B1/2, B2/2, B3/2, and B4/2.
  • the area A of this heat dissipation frame 7 is the area of a square with one side B, simplified based on the widths B1, B2, B3, and B4, and this area A satisfies formula (2) in relation to the thickness T and clearance C.
  • the heat dissipation frame 7 has a frame shape that encloses multiple semiconductor chips 5, for example two adjacent semiconductor chips 5.
  • the widths of each side of the heat dissipation frame 7 are B1/2, B2/2, B3/2, B4/2, B5/2, B6/2, B7/2, and B8/2.
  • the area A of the heat dissipation frame 7 is the area of a square with one side B, simplified based on the widths B1, B2, B3, B4, B5, B6, B7, and B8, and satisfies formula (2) in relation to the thickness T and the clearance C.
  • the clearance is non-uniform in the circumferential direction.
  • the clearance between each side of the heat dissipation frame 7 and each side of the semiconductor chip 5 is set to have the relationship C4 ⁇ C1 ⁇ C2 ⁇ C3.
  • the size of the clearances C1 to C4 can be set arbitrarily, and C1 and C4 may be set to the same, and C2 and C3 may be set to the same.
  • the heat dissipation frame 7 is annular in shape for the semiconductor chip 5 which is rectangular in plan view.
  • the thickness of the rectangular heat dissipation frame 7 is made to vary in the circumferential direction, for example, the thickness of one opposing side is set to T1>T2.
  • the thickness of the other opposing side can be set to T1 or T2.
  • the thickness of the other opposing side can also be formed in an inclined or stepped shape to connect T1 and T2.
  • the thickness T of the heat dissipation frame 7 is set to be greater than the thickness of the semiconductor chip 5, but the thickness T can be freely set as long as the heat dissipation effect dimension parameter satisfies formula (2).
  • the circuit pattern 3, heat dissipation frame 7, and base 9 are all made of copper, but they can be replaced with aluminum, aluminum alloy, stainless steel, etc., as long as the heat dissipation effect dimensional parameters satisfy formula (2) and the heat dissipation performance can be improved compared to Comparative Example 1, as in Example 1. In this case, it is not necessary to construct everything from the same material, and the material of one of the circuit pattern 3, heat dissipation frame 7, and base 9 can be changed relative to the others.
  • Figure 28 is a graph showing the relationship between the heat dissipation effect dimensional parameters and the thermal resistance reduction rate when the material of the heat dissipation frame of the circuit board in Figure 1 is replaced with aluminum in Example 2, along with the approximation lines for the comparative example and Example 1.
  • the circuit board 1 of this second embodiment is the same as that of the first embodiment, except that the material of the heat sink frame 7 is changed to pure aluminum (A1050), and Figure 28 shows the result.
  • FIG. 28 corresponds to FIG. 4 of Example 1.
  • FIG. 28 shows the data and approximation lines L3 and L4 of Example 2.
  • L3 is an approximation line of a comparative example related to Example 2
  • L4 is an approximation line of Example 2.
  • the approximation lines L3 and L4 of Example 2 showed the same tendency as the approximation lines L1 and L2 of Example 1.
  • Figure 29(A) is a diagram showing the cross-sectional view, dimensions, thermal conductivity, and thermal resistance analysis results of the circuit board of Example 2-1
  • Figure 29(B) is a planar image showing the temperature distribution of the circuit board of Figure 29(A).
  • the thermal resistance analysis results in Figure 29 (A) relate to the data on the left side of the approximation line L4 in Figure 28.
  • the dimensions of the circuit board 1 in Example 2 are the same as those in Example 1.
  • the pure aluminum plate (heat dissipation frame 7) is made of pure aluminum A1050 (different from the circuit pattern 3) and has a thermal conductivity of 220 W/mK.
  • the heat dissipation effect parameter determined by the thickness and size settings of this heat dissipation frame 7 is 18.4, which satisfies formula (2).
  • the thermal resistance analysis was performed under the conditions of a heat quantity of 200 W and a fixed temperature T of the bottom surface of the board under the copper base chip : 20.0°C.
  • the analysis results were Tmax at the center point of the front surface of the semiconductor chip 5: 147.7°C, T at the corresponding point on the back surface of the base 9 under the copper base chip : 20.0°C, and thermal resistance R: 0.638 kW.
  • the thermal resistance was reduced by 2.4% compared to Comparative Example 1.
  • the temperature distribution at this time is shown in FIG. 29(B).
  • Fig. 30(A) is a diagram showing the analysis results of the thermal resistance of the circuit board in Example 2-2
  • Fig. 30(B) is a planar image showing the temperature distribution of the circuit board in Fig. 30(A).
  • the thermal resistance analysis results in Figure 30 (A) relate to the data on the right side of the approximation line L4 in Figure 28.
  • the size of the pure aluminum plate (heat dissipation frame 7) is 20 x 20 mm (hole 5.4 x 5.4 mm) and the thickness is 2.0 mm, and the clearance has been reduced compared to the example in Figure 29, while the area of the heat dissipation frame 7 has been increased toward the outer diameter and the thickness has been increased.
  • the heat dissipation effect parameter resulting from the changes in clearance C, area A, and thickness T of this heat dissipation frame 7 is 152.6, which satisfies formula (2).
  • Example 2-2 The analysis results of Example 2-2 are Tmax: 143.0°C, T copper base chip bottom : 20.0°C (fixed), and thermal resistance R: 0.615KW.
  • the rate of change of thermal resistance is ⁇ R: 0.023K/W, and the thermal resistance is reduced by 5.9% compared to Comparative Example 1.
  • the temperature distribution at this time is shown in FIG. 30(B).
  • Example 2-2 even when the material of the heat dissipation frame 7 was changed to pure aluminum, formula (2) was satisfied, and the heat dissipation performance was further improved by reducing the clearance and increasing the area toward the outer diameter.
  • FIG. 31(A) is a graph showing the analysis results of the thermal resistance of the circuit board related to Comparative Example 2-1 of Example 2
  • FIG. 31(B) is a planar image showing the temperature distribution of the circuit board in FIG. 31(A).
  • the thermal resistance analysis results in Figure 31 (A) relate to the data of the comparative example on the approximation line L3 in Figure 28.
  • the size of the pure aluminum plate (heat dissipation frame 7) is 10 x 10 mm (holes 7 x 7 mm) and the thickness is 1.0 mm, and the clearance has been enlarged and the area of the heat dissipation frame 7 has been reduced compared to the example in Figure 29.
  • the heat dissipation effect parameter due to the changes in the clearance and area of this heat dissipation frame 7 is 7.1, which does not satisfy formula (2).
  • Figs. 32 to 34 correspond to Figs. 29 to 31, respectively, and show Examples 2-3, 2-4, and Comparative Example 2-2.
  • Example 2 the improvement in heat dissipation of Example 2 was obtained whether the bottom surface of the circuit board was fixed at 20°C or left in 20°C.
  • Example 2 In addition, the same effects as those of Example 1 can be obtained in this Example 2.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)

Abstract

Provided is a circuit board which makes it possible to improve heat dissipation. This circuit board 1 comprises: a circuit pattern 3 provided on a base 9 with an insulating material 11 interposed therebetween; a semiconductor chip 5 joined through a solder 13 onto the circuit pattern 3; and a heat dissipating frame 7 joined and fixed onto the circuit pattern 3 and disposed adjacent to the semiconductor chip 5, wherein when C [mm] is the clearance of the semiconductor chip 5 below the heat dissipating frame 7, A [mm2] is the surface area of the heat dissipating frame 7, and T [mm] is the thickness, the following equation is satisfied: 15.0 ≤ A0.5 × C -1.2× T0.2 ≤ 600

Description

回路基板及びその半製品Circuit boards and semi-finished products
 この発明は、放熱性を向上させた回路基板及びその半製品に関する。 This invention relates to a circuit board with improved heat dissipation properties and its semi-finished products.
 従来の回路基板としては、例えば、特許文献1に記載されたものがある。この回路基板では、ベース上に絶縁材を介して回路パターンが形成され、回路パターン上にコールドスプレーにより上積み回路パターンが形成されている。 An example of a conventional circuit board is that described in Patent Document 1. In this circuit board, a circuit pattern is formed on a base via an insulating material, and an overlay circuit pattern is formed on the circuit pattern by cold spraying.
 この従来の回路基板は、上積み回路パターン上にパワー半導体等の電子部品を搭載すれば、上積み回路パターンで熱を拡散できるので熱抵抗を減らすことができ、放熱性に優れたものとすることができるとされている。  It is said that if electronic components such as power semiconductors are mounted on the built-up circuit pattern of this conventional circuit board, the heat can be diffused by the built-up circuit pattern, reducing thermal resistance and resulting in excellent heat dissipation properties.
 しかし、上積み回路パターンは、コールドスプレーによって形成されるため、内部構造に含まれるボイドによって熱伝導性が低下するので、放熱性に限界がある。 However, because the built-up circuit pattern is formed by cold spraying, there are voids in the internal structure that reduce thermal conductivity, limiting heat dissipation.
特開2006-319146号公報JP 2006-319146 A
 解決しようとする問題点は、放熱性に限界があった点である。 The problem we were trying to solve was the limited heat dissipation capacity.
 本発明は、絶縁基板上に備えた回路パターンと、前記回路パターン上に接合された電子部品と、前記回路パターン上に接合され前記電子部品に隣接して配置された放熱枠とを備えた回路基板を提供する。この回路基板では、前記放熱枠の下部における前記電子部品に対するクリアランスをC[mm]、前記放熱枠の下面の面積をA[mm2]、及び前記放熱枠の前記回路パターンに対する厚みをT[mm]とした場合に、15.0≦A0.5×C-1.2×T0.2≦600を満たす。 The present invention provides a circuit board comprising a circuit pattern provided on an insulating substrate, an electronic component bonded onto the circuit pattern, and a heat dissipation frame bonded onto the circuit pattern and disposed adjacent to the electronic component. In this circuit board, when the clearance from the electronic component at the bottom of the heat dissipation frame is C [mm], the area of the bottom surface of the heat dissipation frame is A [mm2], and the thickness of the heat dissipation frame from the circuit pattern is T [mm], the following relationship is satisfied: 15.0≦A0.5×C-1.2×T0.2≦600.
 また、本発明は、絶縁基板上に絶縁材を介して備えた回路パターンと、前記回路パターン上に接合されるべき電子部品の配置領域に隣接して配置された放熱枠とを備えた回路基板の半製品を提供する。この回路基板の半製品では、前記放熱枠の下部における前記配置領域に対するクリアランスをC[mm]、前記放熱枠の下面の面積をA[mm2]、及び前記放熱枠の前記回路パターンに対する厚みをT[mm]とした場合に、15.0≦A0.5×C-1.2×T0.2≦600を満たす。 The present invention also provides a semi-finished circuit board comprising a circuit pattern provided on an insulating substrate via an insulating material, and a heat dissipation frame disposed adjacent to an arrangement area of an electronic component to be bonded onto the circuit pattern. In this semi-finished circuit board, when the clearance from the arrangement area at the bottom of the heat dissipation frame is C [mm], the area of the lower surface of the heat dissipation frame is A [mm2], and the thickness of the heat dissipation frame from the circuit pattern is T [mm], the relationship 15.0≦A0.5×C-1.2×T0.2≦600 is satisfied.
 本発明では、回路基板及びその半製品の放熱性をより向上させることができる。 The present invention can further improve the heat dissipation properties of circuit boards and their semi-finished products.
図1(A)は、本発明の実施例1に係る放熱枠を有した回路基板の断面図、図1(B)は、比較例に係る放熱枠を有さない回路基板の断面図である。FIG. 1A is a cross-sectional view of a circuit board having a heat dissipation frame according to a first embodiment of the present invention, and FIG. 1B is a cross-sectional view of a circuit board having no heat dissipation frame according to a comparative example. 図2は、図1(A)の回路基板の放熱枠の下面の面積A[mm2]、クリアランスC[mm]、及び厚みT[mm]に対する熱抵抗の変化率を示すグラフである。FIG. 2 is a graph showing the rate of change in thermal resistance versus the area A [mm 2 ], clearance C [mm], and thickness T [mm] of the lower surface of the heat dissipation frame of the circuit board in FIG. 図3は、図1(A)の回路基板の面積A[mm2]、クリアランスC[mm]、及び厚みT[mm]と放熱効果寸法パラメーターと熱抵抗低減率との関係を比較例と共に示す図表である。FIG. 3 is a table showing the relationship between the area A [mm2], clearance C [mm], and thickness T [mm] of the circuit board in FIG. 1A, and the heat dissipation effect dimensional parameters and the thermal resistance reduction rate, together with comparative examples. 図4は、図1(A)の回路基板の放熱効果寸法パラメーターと熱抵抗低減率との関係を比較例と共に示すグラフである。FIG. 4 is a graph showing the relationship between the heat dissipation effect dimension parameter and the thermal resistance reduction rate of the circuit board of FIG. 1A together with a comparative example. 図5(A)は、図1(B)の放熱枠のない比較例に係る回路基板の断面図、寸法、熱伝導率、及び熱抵抗の解析結果を示す図表、図5(B)は、図5(A)の回路基板の温度分布を示す平面画像である。5(A) is a cross-sectional view of a circuit board for a comparative example having no heat dissipation frame of FIG. 1(B), and a table showing analysis results of dimensions, thermal conductivity, and thermal resistance, and FIG. 5(B) is a planar image showing the temperature distribution on the circuit board of FIG. 5(A). 図6(A)は、図3の実施例1の例1に係る回路基板の断面図、寸法、熱伝導率、及び熱抵抗の解析結果を示す図表、図6(B)は、図6(A)の回路基板の温度分布を示す平面画像である。6(A) is a diagram showing a cross-sectional view of the circuit board according to Example 1 of Example 1 in FIG. 3, and an analysis result of the dimensions, thermal conductivity, and thermal resistance, and FIG. 6(B) is a planar image showing the temperature distribution of the circuit board in FIG. 6(A). 図7(A)は、図3の実施例1の例2に係る回路基板の熱抵抗の解析結果を示す図表、図7(B)は、図7(A)の回路基板の温度分布を示す平面画像である。FIG. 7(A) is a graph showing the analysis results of the thermal resistance of a circuit board according to Example 2 of Example 1 of FIG. 3, and FIG. 7(B) is a planar image showing the temperature distribution of the circuit board of FIG. 7(A). 図8(A)は、図3の実施例1の例3に係る回路基板の熱抵抗の解析結果を示す図表、図8(B)は、図8(A)の回路基板の温度分布を示す平面画像である。FIG. 8(A) is a graph showing the analysis results of the thermal resistance of the circuit board according to Example 3 of Example 1 of FIG. 3, and FIG. 8(B) is a planar image showing the temperature distribution of the circuit board of FIG. 8(A). 図9(A)は、図3の実施例1の例4に係る回路基板の熱抵抗の解析結果を示す図表、図9(B)は、図9(A)の回路基板の温度分布を示す平面画像である。FIG. 9(A) is a graph showing the analysis results of the thermal resistance of a circuit board according to Example 4 of Example 1 of FIG. 3, and FIG. 9(B) is a planar image showing the temperature distribution of the circuit board of FIG. 9(A). 図10(A)は、図3の実施例1の例5に係る回路基板の熱抵抗の解析結果を示す図表、図10(B)は、図10(A)の回路基板の温度分布を示す平面画像である。FIG. 10A is a graph showing the analysis results of the thermal resistance of a circuit board according to Example 5 of Example 1 of FIG. 3, and FIG. 10B is a planar image showing the temperature distribution of the circuit board of FIG. 10A. 図11(A)は、図3の比較例2に係る回路基板の熱抵抗の解析結果を示す図表、図11(B)は、図11(A)の回路基板の温度分布を示す平面画像である。11A is a graph showing the analysis results of the thermal resistance of the circuit board according to Comparative Example 2 of FIG. 3, and FIG. 11B is a planar image showing the temperature distribution of the circuit board of FIG. 11A. 図12(A)は、図3の比較例3に係る回路基板の熱抵抗の解析結果を示す図表、図12(B)は、図12(A)の回路基板の温度分布を示す平面画像である。12A is a graph showing the analysis results of the thermal resistance of the circuit board according to Comparative Example 3 of FIG. 3, and FIG. 12B is a planar image showing the temperature distribution of the circuit board of FIG. 12A. 図13(A)は、図3の比較例4に係る回路基板の熱抵抗の解析結果を示す図表、図13(B)は、図13(A)の回路基板の温度分布を示す平面画像である。13A is a graph showing the analysis results of the thermal resistance of the circuit board according to Comparative Example 4 of FIG. 3, and FIG. 13B is a planar image showing the temperature distribution of the circuit board of FIG. 13A. 図14(A)は、図1(B)の比較例1に係る回路基板の断面図、寸法、及び放熱条件を変えた場合の熱抵抗の解析結果を示す図表、図14(B)は、図14(A)の回路基板の温度分布を示す平面画像である。14(A) is a diagram showing the cross-sectional view, dimensions, and analysis results of thermal resistance when heat dissipation conditions are changed for the circuit board of Comparative Example 1 of FIG. 1(B), and FIG. 14(B) is a planar image showing the temperature distribution of the circuit board of FIG. 14(A). 図15(A)は、図1(A)、図3の実施例1の例1に係る回路基板の断面図、寸法、及び放熱条件を変えた場合の熱抵抗の解析結果を示す図表、図15(B)は、図15(A)の回路基板の温度分布を示す平面画像である。FIG. 15(A) is a diagram showing the cross-sectional view, dimensions, and analysis results of thermal resistance when heat dissipation conditions are changed for the circuit board of Example 1 of Example 1 of FIGS. 1(A) and 3, and FIG. 15(B) is a planar image showing the temperature distribution of the circuit board of FIG. 15(A). 図16(A)は、図3の実施例1の例2に係る回路基板において、放熱条件を変えた場合の熱抵抗の解析結果を示す図表、図16(B)は、図16(A)の回路基板の温度分布を示す平面画像である。FIG. 16(A) is a graph showing the analysis results of thermal resistance when heat dissipation conditions are changed in a circuit board according to Example 2 of Example 1 of FIG. 3, and FIG. 16(B) is a planar image showing the temperature distribution in the circuit board of FIG. 16(A). 図17(A)は、図3の実施例1の例3に係る回路基板において、放熱条件を変えた場合の熱抵抗の解析結果を示す図表、図17(B)は、図17(A)の回路基板の温度分布を示す平面画像である。FIG. 17(A) is a graph showing the analysis results of thermal resistance when heat dissipation conditions are changed in a circuit board according to Example 3 of Example 1 of FIG. 3, and FIG. 17(B) is a planar image showing the temperature distribution in the circuit board of FIG. 17(A). 図18(A)は、図3の実施例1の例4に係る回路基板において、放熱条件を変えた場合の熱抵抗の解析結果を示す図表、図18(B)は、図18(A)の回路基板の温度分布を示す平面画像である。FIG. 18(A) is a graph showing the analysis results of thermal resistance when heat dissipation conditions are changed in a circuit board according to Example 4 of Example 1 of FIG. 3, and FIG. 18(B) is a planar image showing the temperature distribution in the circuit board of FIG. 18(A). 図19(A)は、図3の実施例1の例5に係る回路基板において、放熱条件を変えた場合の熱抵抗の解析結果を示す図表、図19(B)は、図19(A)の回路基板の温度分布を示す平面画像である。FIG. 19(A) is a graph showing the analysis results of thermal resistance when heat dissipation conditions are changed in a circuit board according to Example 5 of Example 1 of FIG. 3, and FIG. 19(B) is a planar image showing the temperature distribution in the circuit board of FIG. 19(A). 図20(A)は、図3の比較例2に係る回路基板において、放熱条件を変えた場合の熱抵抗の解析結果を示す図表、図20(B)は、図20(A)の回路基板の温度分布を示す平面画像である。20(A) is a graph showing the analysis results of thermal resistance when the heat dissipation conditions are changed in the circuit board of Comparative Example 2 of FIG. 3, and FIG. 20(B) is a planar image showing the temperature distribution in the circuit board of FIG. 20(A). 図21(A)は、図3の比較例3に係る回路基板において、放熱条件を変えた場合の熱抵抗の解析結果を示す図表、図21(B)は、図21(A)の回路基板の温度分布を示す平面画像である。21(A) is a graph showing the analysis results of thermal resistance when the heat dissipation conditions are changed in the circuit board of Comparative Example 3 of FIG. 3, and FIG. 21(B) is a planar image showing the temperature distribution in the circuit board of FIG. 21(A). 図22(A)は、図3の比較例4に係る回路基板において、放熱条件を変えた場合の熱抵抗の解析結果を示す図表、図22(B)は、図22(A)の回路基板の温度分布を示す平面画像である。22(A) is a graph showing the analysis results of thermal resistance when the heat dissipation conditions are changed in the circuit board of Comparative Example 4 of FIG. 3, and FIG. 22(B) is a planar image showing the temperature distribution in the circuit board of FIG. 22(A). 図23は、図1(A)の実施例1の変形例に係る回路基板の半導体チップと放熱枠との関係を示す平面図である。FIG. 23 is a plan view showing the relationship between a semiconductor chip and a heat dissipation frame of a circuit board according to a modification of the first embodiment of FIG. 図24は、図1(A)の実施例1の変形例に係る回路基板の半導体チップと放熱枠との関係を示す平面図である。FIG. 24 is a plan view showing the relationship between a semiconductor chip and a heat dissipation frame of a circuit board according to a modification of the first embodiment of FIG. 図25は、図1(A)の実施例1の変形例に係る回路基板の半導体チップと放熱枠との関係を示す平面図である。FIG. 25 is a plan view showing the relationship between a semiconductor chip and a heat dissipation frame of a circuit board according to a modification of the first embodiment of FIG. 図26は、図1(A)の実施例1の変形例に係る回路基板の半導体チップと放熱枠との関係を示す平面図である。FIG. 26 is a plan view showing the relationship between a semiconductor chip and a heat dissipation frame of a circuit board according to a modification of the first embodiment of FIG. 図27は、図1(A)の実施例1の変形例に係る回路基板を示す断面図である。FIG. 27 is a cross-sectional view showing a circuit board according to a modified example of the first embodiment of FIG. 図28は、実施例2に係る回路基板の放熱効果寸法パラメーターと熱抵抗低減率との関係を比較例及び実施例1の近似線と共に示すグラフである。FIG. 28 is a graph showing the relationship between the heat dissipation effect dimension parameter and the thermal resistance reduction rate of the circuit board according to the second embodiment, together with the approximation lines of the comparative example and the first embodiment. 図29(A)は、実施例2の回路基板の断面図、寸法、熱伝導率、及び熱抵抗の解析結果を示す図表、図29(B)は、図29(A)の回路基板の温度分布を示す平面画像である。FIG. 29(A) is a diagram showing a cross-sectional view of the circuit board of Example 2, and analysis results of dimensions, thermal conductivity, and thermal resistance, and FIG. 29(B) is a planar image showing the temperature distribution of the circuit board of FIG. 29(A). 図30(A)は、実施例2に係る回路基板の熱抵抗の解析結果を示す図表、図30(B)は、図30(A)の回路基板の温度分布を示す平面画像である。FIG. 30A is a graph showing the analysis results of the thermal resistance of the circuit board in Example 2, and FIG. 30B is a planar image showing the temperature distribution of the circuit board in FIG. 30A. 図31(A)は、実施例2の比較例に係る回路基板の熱抵抗の解析結果を示す図表、図31(B)は、図31(A)の回路基板の温度分布を示す平面画像である。FIG. 31(A) is a graph showing the analysis results of the thermal resistance of a circuit board according to a comparative example of Example 2, and FIG. 31(B) is a planar image showing the temperature distribution of the circuit board of FIG. 31(A). 図32(A)は、実施例2に係り、放熱条件を変えた回路基板の断面図、寸法、熱伝導率、及び熱抵抗の解析結果を示す図表、図32(B)は、図32(A)の回路基板の温度分布を示す平面画像である。FIG. 32(A) is a diagram showing the cross-sectional view, dimensions, thermal conductivity, and thermal resistance analysis results of a circuit board with different heat dissipation conditions according to Example 2, and FIG. 32(B) is a planar image showing the temperature distribution of the circuit board in FIG. 32(A). 図33(A)は、放熱条件を変えた実施例2に係る回路基板の熱抵抗の解析結果を示す図表、図33(B)は、図33(A)の回路基板の温度分布を示す平面画像である。FIG. 33(A) is a graph showing the analysis results of the thermal resistance of the circuit board of Example 2 in which the heat dissipation conditions are changed, and FIG. 33(B) is a planar image showing the temperature distribution of the circuit board of FIG. 33(A). 図34(A)は、放熱条件を変えた実施例2の比較例に係る回路基板の熱抵抗の解析結果を示す図表、図34(B)は、図34(A)の回路基板の温度分布を示す平面画像である。FIG. 34(A) is a graph showing the analysis results of the thermal resistance of a circuit board for a comparative example of Example 2 in which the heat dissipation conditions were changed, and FIG. 34(B) is a planar image showing the temperature distribution of the circuit board in FIG. 34(A).
 放熱性をより向上させることを可能にするという目的を、回路パターン上に電子部品を囲む放熱枠を設けることによって実現した。 The goal of improving heat dissipation was achieved by providing a heat dissipation frame that surrounds the electronic components on the circuit pattern.
 図のように、回路基板1は、回路パターン3と、電子部品5と、放熱枠7とを備える。回路パターン3は、絶縁基板8上に備えられている。電子部品5は、回路パターン3上に接合されている。放熱枠7は、回路パターン3上に接合され電子部品5に隣接して設けられている。 As shown in the figure, the circuit board 1 comprises a circuit pattern 3, electronic components 5, and a heat dissipation frame 7. The circuit pattern 3 is provided on an insulating substrate 8. The electronic components 5 are bonded onto the circuit pattern 3. The heat dissipation frame 7 is bonded onto the circuit pattern 3 and is provided adjacent to the electronic components 5.
 かかる放熱枠7は、下部における電子部品5に対するクリアランスをC[mm]、下面7aの面積をA[mm2]、及び回路パターン3に対する厚みをT[mm]とした場合に、15.0≦A0.5×C-1.2×T0.2≦600を満たす。 The heat dissipation frame 7 satisfies 15.0≦A0.5×C-1.2×T0.2≦600, where the clearance from the electronic components 5 at the bottom is C [mm], the area of the bottom surface 7a is A [mm2], and the thickness from the circuit pattern 3 is T [mm].
 放熱枠7の材質は、銅又はアルミニウム等の各種の導電材料とすることが可能である。 The heat sink frame 7 can be made of various conductive materials such as copper or aluminum.
 放熱枠7は、回路パターン3の面方向ではんだ13に対向してもよい。 The heat sink frame 7 may face the solder 13 in the surface direction of the circuit pattern 3.
 放熱枠7は、電子部品5の位置決め枠であってもよい。 The heat dissipation frame 7 may also be a positioning frame for the electronic component 5.
 放熱枠7は、各種の枠形状を採用可能である。一実施形態において、放熱枠7は、平面視における電子部品5の中心を放熱枠7の外形の中心に対してずらした枠形状とする。他の実施形態において、放熱枠7は、電子部品5を複数内包する枠形状とする。更に他の実施形態において、放熱枠7は、クリアランスCを周方向において不均一の枠形状とする。更に他の実施形態において、放熱枠7は、環状の枠形状としてもよい。また、放熱枠7は、厚みを周方向で異ならせてもよい。 The heat dissipation frame 7 can have various frame shapes. In one embodiment, the heat dissipation frame 7 has a frame shape in which the center of the electronic component 5 in a plan view is offset from the center of the external shape of the heat dissipation frame 7. In another embodiment, the heat dissipation frame 7 has a frame shape that contains multiple electronic components 5. In yet another embodiment, the heat dissipation frame 7 has a frame shape in which the clearance C is non-uniform in the circumferential direction. In yet another embodiment, the heat dissipation frame 7 may have an annular frame shape. The thickness of the heat dissipation frame 7 may also vary in the circumferential direction.
 回路基板1の半製品は、上記回路パターン3及び放熱枠7を備え、電子部品5の搭載前のものである。 The semi-finished circuit board 1 includes the circuit pattern 3 and heat dissipation frame 7, and is before the electronic components 5 are mounted.
 図1(A)は、本発明の実施例1に係る放熱枠を有した回路基板の断面図、図1(B)は、比較例に係り放熱枠を有さない回路基板の断面図である。 FIG. 1(A) is a cross-sectional view of a circuit board having a heat dissipation frame according to a first embodiment of the present invention, and FIG. 1(B) is a cross-sectional view of a circuit board having no heat dissipation frame according to a comparative example.
 本実施例の回路基板1は、回路パターン3と、半導体チップ5と、放熱枠7とを備えている。 The circuit board 1 of this embodiment includes a circuit pattern 3, a semiconductor chip 5, and a heat dissipation frame 7.
 回路パターン3は、絶縁基板8上に備えられている。絶縁基板8は、金属ベース基板やセラミック基板等の回路パターン3を形成可能な絶縁基板であればよい。本実施例の絶縁基板8は、ベース9上に絶縁材11が設けられている。 The circuit pattern 3 is provided on an insulating substrate 8. The insulating substrate 8 may be any insulating substrate capable of forming the circuit pattern 3, such as a metal-based substrate or a ceramic substrate. In the present embodiment, the insulating substrate 8 has an insulating material 11 provided on a base 9.
 ベース9は、金属ベースであり、例えば銅で形成された板状の部材である。絶縁材11は、ベース9上に接合された板状の絶縁性部材である。絶縁材11の材質は、特に限定されないが、エポキシ樹脂、シアネート樹脂等によって構成することができる。絶縁材11は、無機充填材を含有してもよい。 The base 9 is a metal base, and is a plate-like member made of, for example, copper. The insulating material 11 is a plate-like insulating member bonded onto the base 9. The material of the insulating material 11 is not particularly limited, but may be made of epoxy resin, cyanate resin, or the like. The insulating material 11 may contain an inorganic filler.
 回路パターン3は、導電性材料、例えば銅で形成された板状又は箔状の部材である。なお、回路パターン3は、導電性材料であれば、銅以外の板状又は箔状の部材を用いることも可能である。回路パターン3は、回路構成に応じた適宜のパターンを有し、電子部品である半導体チップ5の配置領域Rを含む。配置領域Rとは、半導体チップ5と平面形状が同一か大きいサイズで、その範囲内に半導体チップ5が配置される領域をいう。 The circuit pattern 3 is a plate- or foil-like member made of a conductive material, for example copper. It is also possible to use a plate- or foil-like member other than copper for the circuit pattern 3, so long as it is made of a conductive material. The circuit pattern 3 has an appropriate pattern according to the circuit configuration, and includes a placement area R for the semiconductor chip 5, which is an electronic component. The placement area R is an area that is the same size as or larger than the semiconductor chip 5 in plan view, and within which the semiconductor chip 5 is placed.
 半導体チップ5は、回路パターン3の配置領域R上に接合されている。半導体チップ5の接合は、はんだ13によって行われているが、銀ペースト等の導電性ペースト、その他の導電性接着剤によって行うことも可能である。この半導体チップ5は、平面視形状が正方形の板状を呈している。ただし、半導体チップ5の形状は、各種のものを採用可能である。 The semiconductor chip 5 is bonded onto the placement area R of the circuit pattern 3. The semiconductor chip 5 is bonded using solder 13, but it can also be bonded using a conductive paste such as silver paste or other conductive adhesives. This semiconductor chip 5 has a square plate shape when viewed from above. However, various shapes of the semiconductor chip 5 can be adopted.
 放熱枠7は、回路パターン3上に接合され、半導体チップ5に隣接して配置された部材である。本実施例の放熱枠7は、半導体チップ5を囲む枠状の部材となっている。ただし、放熱枠7は、半導体チップ5を囲む必要はなく、部分的に開放されて半導体チップ5を囲む形状や半導体チップ5の外周の一部にのみ隣接して配置された形状であってもよい。 The heat dissipation frame 7 is a component that is bonded onto the circuit pattern 3 and is disposed adjacent to the semiconductor chip 5. In this embodiment, the heat dissipation frame 7 is a frame-shaped component that surrounds the semiconductor chip 5. However, the heat dissipation frame 7 does not need to surround the semiconductor chip 5, and may be partially open and surround the semiconductor chip 5, or may be disposed adjacent to only a portion of the outer periphery of the semiconductor chip 5.
 この放熱枠7は、板材から枠状に形成されている。放熱枠7の材質は、回路パターン3及びベース9と同じく銅となっている。ただし、放熱枠7の材質は、銅に限られるものではなく、他の金属、その他の材質とすることが可能である。 The heat dissipation frame 7 is formed into a frame shape from a plate material. The material of the heat dissipation frame 7 is copper, the same as the circuit pattern 3 and the base 9. However, the material of the heat dissipation frame 7 is not limited to copper, and other metals and other materials may be used.
 本実施例の放熱枠7は、半導体チップ5に応じて内周形状及び外周形状が相似形の正方形である枠形状となっている。なお、放熱枠7の内周形状及び外周形状は、相似形に限られるものではなく、相互に異なる形状であってもよい。 The heat dissipation frame 7 in this embodiment has a frame shape with an inner periphery and an outer periphery that are similar square shapes to match the semiconductor chip 5. Note that the inner periphery and the outer periphery of the heat dissipation frame 7 are not limited to being similar shapes, and may be different shapes.
 回路パターン3に対する放熱枠7の接合は、超音波接合で行われており、局所的且つ瞬間的な比較的低入熱での接合である。このため、接合後の回路基板1の反りを抑制できる。また、超音波接合のツール痕が残るのは放熱枠7の上面7bであり、半導体チップ5を実装する回路パターン3上にはツール痕が残らない。このため、はんだ13での接合時に溶融したはんだ13がツール痕に溜まり込むことがなく、はんだ13による放熱性の阻害を抑制できる。 The heat dissipation frame 7 is joined to the circuit pattern 3 by ultrasonic bonding, which is a localized and instantaneous bond with relatively low heat input. This makes it possible to suppress warping of the circuit board 1 after bonding. Furthermore, tool marks from ultrasonic bonding remain on the top surface 7b of the heat dissipation frame 7, and no tool marks remain on the circuit pattern 3 on which the semiconductor chip 5 is mounted. This means that the molten solder 13 does not accumulate in the tool marks when bonding with the solder 13, making it possible to suppress the inhibition of heat dissipation caused by the solder 13.
 この放熱枠7は、平面視において半導体チップ5(配置領域R)に対するクリアランスC[mm]が設定されている。本実施例において、放熱枠7は、内周形状が半導体チップ5の外周形状と相似形であり、クリアランスCは、放熱枠7の内周と半導体チップ5の全周において均一に設定されている。 This heat dissipation frame 7 is set with a clearance C [mm] from the semiconductor chip 5 (placement area R) in a plan view. In this embodiment, the inner periphery of the heat dissipation frame 7 is similar to the outer periphery of the semiconductor chip 5, and the clearance C is set uniformly around the inner periphery of the heat dissipation frame 7 and the entire periphery of the semiconductor chip 5.
 なお、クリアランスCは、放熱枠7の下部と半導体チップ5との間のクリアランスである。放熱枠7の下部は、半導体チップ5と面方向において対向する放熱枠7の下部であり、例えば回路パターン3上に接合される下部領域である。 Note that clearance C is the clearance between the lower part of heat dissipation frame 7 and semiconductor chip 5. The lower part of heat dissipation frame 7 is the lower part of heat dissipation frame 7 that faces semiconductor chip 5 in the surface direction, and is, for example, the lower region that is bonded onto circuit pattern 3.
 かかる放熱枠7は、クリアランスCをもって半導体チップ5を位置決める位置決め枠としても機能させることができる。ただし、後述のようにクリアランスCは、半導体チップ5の全周で均等である必要はなく、放熱枠7が半導体チップ5に対して片寄って設定されてもよい。放熱枠7の一部が半導体チップ5に接していてもよい。 Such a heat dissipation frame 7 can also function as a positioning frame that positions the semiconductor chip 5 with a clearance C. However, as described below, the clearance C does not need to be uniform around the entire circumference of the semiconductor chip 5, and the heat dissipation frame 7 may be set offset relative to the semiconductor chip 5. A portion of the heat dissipation frame 7 may be in contact with the semiconductor chip 5.
 この放熱枠7の断面形状は、矩形であるが、上面7bから下面7aにわたって変動するものであってもよい。こうした断面形状としては、上面7bが曲面となるものや上面7bから下面7aに向けて幅が変化するもの等がある。本実施例の放熱枠7の下面7aは、断面において放熱枠7の内周及び外周によって区画される平面となっている。この下面7aの面積A[mm2]が、放熱枠7の平面視における面積である。 The cross-sectional shape of the heat dissipation frame 7 is rectangular, but may vary from the upper surface 7b to the lower surface 7a. Examples of such cross-sectional shapes include a curved upper surface 7b and a shape in which the width varies from the upper surface 7b to the lower surface 7a. In this embodiment, the lower surface 7a of the heat dissipation frame 7 is a flat surface defined by the inner and outer peripheries of the heat dissipation frame 7 in cross section. The area A [mm2] of the lower surface 7a is the area of the heat dissipation frame 7 in a planar view.
 なお、放熱枠7の下面7aが平面以外の場合、例えば断面において曲面となる場合や凹凸がある場合等も、下面7aの面積は平面視における面積とすればよい。放熱枠7の断面における幅は、放熱枠7の矩形の内周の二面幅を内径、同矩形の外周の二面幅を同外径と観念し、外径及び内径の差の板幅Wとした。なお、放熱枠7が環状であれば本来の外径及び内径となる。 In addition, if the underside 7a of the heat dissipation frame 7 is other than flat, for example if it is curved or uneven in cross section, the area of the underside 7a may be the area in a plan view. The width in cross section of the heat dissipation frame 7 is defined as the plate width W, which is the difference between the outer diameter and the inner diameter, with the two-sided width of the inner circumference of the rectangle of the heat dissipation frame 7 being considered as the inner diameter and the two-sided width of the outer circumference of the same rectangle being considered as the outer diameter. In addition, if the heat dissipation frame 7 is annular, it will be the original outer diameter and inner diameter.
 放熱枠7の厚みT[mm]は、半導体チップ5の表面5aよりも放熱枠7の上面7bが突出するように設定されている。厚みTは、放熱枠7の回路パターン3の表面3aからの寸法である。 The thickness T [mm] of the heat dissipation frame 7 is set so that the upper surface 7b of the heat dissipation frame 7 protrudes beyond the surface 5a of the semiconductor chip 5. The thickness T is the dimension from the surface 3a of the circuit pattern 3 of the heat dissipation frame 7.
 放熱枠7は、回路パターン3の面方向ではんだ13に対向している。従って、放熱枠7は、半導体チップ5のはんだ付けの際のはんだ流れ防止効果を備える。なお、面方向とは、回路パターン3の表面に沿った方向をいう。 The heat dissipation frame 7 faces the solder 13 in the surface direction of the circuit pattern 3. Therefore, the heat dissipation frame 7 has the effect of preventing solder flow when the semiconductor chip 5 is soldered. Note that the surface direction refers to the direction along the surface of the circuit pattern 3.
 かかる構成の図1(A)の回路基板1並びに図1(B)の比較例の回路基板1における半導体チップ5の発熱に対する放熱に関する熱抵抗は、図2のような傾向を示す。 The thermal resistance related to heat dissipation in response to heat generated by the semiconductor chip 5 in the circuit board 1 of FIG. 1(A) and the comparative circuit board 1 of FIG. 1(B) shows the trend shown in FIG. 2.
 図2は、図1(A)の回路基板1の放熱枠7の面積A、クリアランスC、及び厚みTに対する熱抵抗の変化率を示すグラフである。熱抵抗は、図5で表示するが半導体チップ5の表面中央の点とこの点に対応するベース9の裏面の点との間におけるものである。 Figure 2 is a graph showing the rate of change in thermal resistance versus area A, clearance C, and thickness T of the heat sink frame 7 of the circuit board 1 in Figure 1(A). The thermal resistance is shown in Figure 5 between a point at the center of the front surface of the semiconductor chip 5 and a corresponding point on the rear surface of the base 9.
 図2では、左、中央、右の三つの熱抵抗の変化率を示すグラフを表示している。図2の左のグラフは横軸で示す面積A(板幅W)の変化に対するもの、図2の中央は同クリアランスCの変化に対するもの、図2の右は厚みTの変化に対するものである。 In Figure 2, three graphs are displayed, one on the left, one in the center, and one on the right, showing the rate of change in thermal resistance. The left graph in Figure 2 is for changes in area A (plate width W) shown on the horizontal axis, the center graph in Figure 2 is for changes in clearance C, and the right graph in Figure 2 is for changes in thickness T.
 「Cu枠なし」と示した破線のレベルは、図1(B)の比較例に係る放熱枠を有さない回路基板1に関するものである。図1(B)の比較例において各部の材質、寸法は図1(A)の実施例1と同一である。 The dashed line level marked "without Cu frame" refers to the circuit board 1 without a heat dissipation frame in the comparative example in FIG. 1(B). The materials and dimensions of each part in the comparative example in FIG. 1(B) are the same as those in Example 1 in FIG. 1(A).
 図2のように「Cu枠なし」(放熱枠7なし)に対し、本実施例の回路基板1では、放熱枠7を備えクリアランスC=0.5mm、厚みT=1.0mmとしたとき板幅W=2mm~14mm程度に対する面積Aの変化により、「Cu枠なし」に対して-4.9%までの熱抵抗変化を示した。 As shown in Figure 2, in comparison with "without Cu frame" (without heat dissipation frame 7), the circuit board 1 of this embodiment, equipped with a heat dissipation frame 7, had a clearance C = 0.5 mm, and a thickness T = 1.0 mm, and showed a thermal resistance change of up to -4.9% compared to "without Cu frame" due to the change in area A for board widths W = 2 mm to 14 mm.
 板幅W=4.0mm、厚みT=1.0mmとしたときクリアランスC=1mm~0.2mm程度の変化で-5.0%までの熱抵抗変化を示した。板幅W=4.0mm、クリアランスC=0.5mmとしたとき厚みTの1mm~2mm程度の変化で-3.6%までの熱抵抗変化を示した。 When the plate width W = 4.0 mm and thickness T = 1.0 mm, a change in clearance C of 1 mm to 0.2 mm showed a thermal resistance change of up to -5.0%. When the plate width W = 4.0 mm and clearance C = 0.5 mm, a change in thickness T of 1 mm to 2 mm showed a thermal resistance change of up to -3.6%.
 そこで、面積A、クリアランスC、及び厚みTと熱抵抗低減効果との関係について着目し、図3、図4の結果を得た。 Therefore, we focused on the relationship between the area A, clearance C, and thickness T and the thermal resistance reduction effect, and obtained the results shown in Figures 3 and 4.
 図3は、図1(A)の回路基板1の面積A、クリアランスC、及び厚みTと熱抵抗低減率と放熱効果寸法パラメーターとの関係を比較例と共に示す図表である。図4は、図1(A)の回路基板の放熱効果寸法パラメーターと熱抵抗低減率との関係を比較例と共に示すグラフである。 Fig. 3 is a chart showing the relationship between the area A, clearance C, and thickness T of the circuit board 1 in Fig. 1(A) and the thermal resistance reduction rate and heat dissipation effect dimensional parameters, along with comparative examples. Fig. 4 is a graph showing the relationship between the heat dissipation effect dimensional parameters and the thermal resistance reduction rate of the circuit board in Fig. 1(A) along with comparative examples.
 図3の比較例1は、図1(B)の放熱枠を有さない回路基板1のものである。図3の実施例1及び比較例2~4は、放熱枠7を有する回路基板1のものである。図3では、それぞれ放熱枠7の面積、クリアランス、厚みを変化させた結果である。 Comparative example 1 in Figure 3 is for a circuit board 1 that does not have the heat dissipation frame of Figure 1 (B). Example 1 and comparative examples 2 to 4 in Figure 3 are for a circuit board 1 that has a heat dissipation frame 7. Figure 3 shows the results when the area, clearance, and thickness of the heat dissipation frame 7 are changed.
 図3のように、比較例2~4では、熱抵抗低減率が-1.8[%]以下である。熱抵抗低減率は、2%未満では熱抵抗の低減効果が低い。このため、比較例2~4を含む熱抵抗の低減効果が低い2%未満を除く範囲を特定すると、以下の式(1)の放熱効果寸法パラメーターのようになる。 As shown in Figure 3, in Comparative Examples 2 to 4, the thermal resistance reduction rate is -1.8% or less. If the thermal resistance reduction rate is less than 2%, the thermal resistance reduction effect is low. Therefore, if the range excluding less than 2%, where the thermal resistance reduction effect is low, including Comparative Examples 2 to 4, is specified, the heat dissipation effect dimension parameter will be as shown in the following formula (1).
 A0.5×C-1.2×T0.2          ・・・式(1) A0.5 x C-1.2 x T0.2 ... formula (1)
 図3の比較例2~4について、放熱効果寸法パラメーターを見ると、何れもA0.5×C-1.2×T0.2<15となる。 Looking at the heat dissipation effect dimension parameters for Comparative Examples 2 to 4 in Figure 3, A0.5 x C-1.2 x T0.2 < 15 for all.
 一方、図3の実施例1の例1~6(以下、実施例1-1~1-6)は、放熱効果寸法パラメーターがいずれも下記の式(2)を満たすものとなる。なお、放熱効果寸法パラメーターは、600が実用上可能な上限となっている。 On the other hand, in Examples 1 to 6 of Example 1 in FIG. 3 (hereinafter, Examples 1-1 to 1-6), the heat dissipation effect dimension parameters all satisfy the following formula (2). Note that the heat dissipation effect dimension parameter has a practical upper limit of 600.
 15.0≦A0.5×C-1.2×T0.2≦600  ・・・式(2) 15.0≦A0.5×C-1.2×T0.2≦600...Formula (2)
 これら図3の結果をグラフにプロットすると図4のようになる。 If we plot the results of Figure 3 on a graph, we get Figure 4.
 図4の左から三つのデータが図3の比較例2~4についての放熱効果寸法パラメーターに対する熱抵抗低減率である。図4において比較例2~4のデータを除いたものが実施例1-1~1-5についての放熱効果寸法パラメーターに対する熱抵抗低減率である。 The three data from the left in Figure 4 are the thermal resistance reduction rates versus the heat dissipation effect size parameters for Comparative Examples 2 to 4 in Figure 3. The data in Figure 4 excluding Comparative Examples 2 to 4 are the thermal resistance reduction rates versus the heat dissipation effect size parameters for Examples 1-1 to 1-5.
 比較例2~4のデータによる近似線はL1、実施例1のデータによる近似線はL2となる。近似線L1及びL2は、放熱効果寸法パラメーターA0.5×C-1.2×T0.2=15において両者間に明らかな臨界点が存在する。 The approximate line based on the data from Comparative Examples 2 to 4 is L1, and the approximate line based on the data from Example 1 is L2. There is a clear critical point between the approximate lines L1 and L2 at the heat dissipation effect dimension parameter A0.5 x C-1.2 x T0.2 = 15.
 さらに図3の最下段に比較例5として面積A:64mm2、クリアランスC:0.5mm、厚みT:0.08mmでの放熱効果寸法パラメーターを示した。この放熱効果寸法パラメーターは11.1であった。この放熱効果寸法パラメーターに対する熱抵抗低減率は近似線L1に沿って得ることができる。 Furthermore, the bottom row of Figure 3 shows the heat dissipation effect dimension parameters for Comparative Example 5, where area A is 64 mm2, clearance C is 0.5 mm, and thickness T is 0.08 mm. This heat dissipation effect dimension parameter was 11.1. The thermal resistance reduction rate for this heat dissipation effect dimension parameter can be obtained along the approximation line L1.
 また、図3の実施例1-6として面積A:873mm2、クリアランスC:0.1mm、厚みT:3mmでの放熱効果寸法パラメーターを示した。この放熱効果寸法パラメーターは、近似線L2に沿って得ることができ、上限値に近い583.37であった。 Also, Figure 3 shows the heat dissipation effect dimensional parameters for Example 1-6, where area A is 873 mm2, clearance C is 0.1 mm, and thickness T is 3 mm. This heat dissipation effect dimensional parameter can be obtained along approximation line L2, and was 583.37, which is close to the upper limit.
 回路基板1の製造に際しては、絶縁基板8上に回路パターン3を形成する。この回路パターン3上の配置領域Rを囲む部分に放熱枠7を超音波接合により接合し、回路基板1の半製品とする。 When manufacturing the circuit board 1, the circuit pattern 3 is formed on the insulating substrate 8. The heat sink frame 7 is ultrasonically bonded to the portion of the circuit pattern 3 surrounding the placement area R, completing the semi-finished circuit board 1.
 放熱枠7のサイズは、半導体チップ5に対するクリアランスをCとするために面積A及び厚みTとし、この放熱枠7によりC、A、Tの放熱性に関する関係は、式(2)とする。 The size of the heat dissipation frame 7 is area A and thickness T so that the clearance for the semiconductor chip 5 is C, and the relationship between C, A, and T regarding the heat dissipation properties of this heat dissipation frame 7 is given by formula (2).
 かかる回路基板1の半製品に対して、放熱枠7を位置決め枠として利用しつつ導体チップ5を回路パターン3上に接合する。本実施例では、半導体チップ5をはんだ13によって回路パターン3上に接合するが、このときに放熱枠7が枠外へのはんだ流れを抑制する。そして、硬化したはんだ13により、半導体チップ5が回路パターン3上に固定される。 For this semi-finished circuit board 1, the conductor chip 5 is bonded onto the circuit pattern 3, using the heat dissipation frame 7 as a positioning frame. In this embodiment, the semiconductor chip 5 is bonded onto the circuit pattern 3 with solder 13, and at this time the heat dissipation frame 7 prevents the solder from flowing outside the frame. The semiconductor chip 5 is then fixed onto the circuit pattern 3 by the hardened solder 13.
 このように製造された本実施例の回路基板1は、放熱枠7により放熱性が向上する。特に放熱枠7は、半導体チップ5に対するクリアランスC、面積A、及び厚みTとを、式(2)により設定することで、放熱性をより向上させることができる。 The circuit board 1 of this embodiment manufactured in this manner has improved heat dissipation properties due to the heat dissipation frame 7. In particular, the heat dissipation properties of the heat dissipation frame 7 can be further improved by setting the clearance C, area A, and thickness T with respect to the semiconductor chip 5 according to formula (2).
 図5~図10に、比較例及び実施例1-1~1-5に係る放熱性の解析結果を示す。図5(A)及び図6(A)は、それぞれ比較例及び実施例1-1~1-5に係る回路基板の断面図を、各部の寸法、熱伝導率、及び熱抵抗の解析結果と共に示す図表、図5(B)及び図6(B)は、それぞれ比較例及び実施例1-1~1-5に係る回路基板の温度分布を示す平面画像である。 Figures 5 to 10 show the analysis results of the heat dissipation properties for the comparative example and examples 1-1 to 1-5. Figures 5(A) and 6(A) are diagrams showing cross-sectional views of the circuit boards for the comparative example and examples 1-1 to 1-5, respectively, along with the analysis results of the dimensions, thermal conductivity, and thermal resistance of each part, and Figures 5(B) and 6(B) are planar images showing the temperature distribution of the circuit boards for the comparative example and examples 1-1 to 1-5, respectively.
 図7(A)、図8(A)、図9(A)、及び図10(A)は、それぞれ比較例2~4に係る回路基板の熱抵抗の解析結果を示す図表、図7(B)、図8(B)、図9(B)、及び図10(B)は、それぞれ比較例及び実施例1-1~1-5に係る回路基板の温度分布を示す平面画像である。 Fig. 7(A), Fig. 8(A), Fig. 9(A), and Fig. 10(A) are diagrams showing the analysis results of the thermal resistance of the circuit boards according to Comparative Examples 2 to 4, respectively, and Fig. 7(B), Fig. 8(B), Fig. 9(B), and Fig. 10(B) are planar images showing the temperature distribution of the circuit boards according to the Comparative Example and Examples 1-1 to 1-5, respectively.
 図5(A)の比較例1の回路基板1の寸法等の仕様は次のとおりである。チップ(半導体チップ5)の仕様は、厚み:0.1mm、平面サイズ:5×5mm、熱伝導率:85W/mKである。はんだ(はんだ13)の仕様は、厚み:0.2mm、熱伝導率:49W/mKである。銅回路(回路パターン3)の仕様は、材質:C1020、厚み:0.5mm、サイズ:20×20mm、熱伝導率:390W/mKである。絶縁材(絶縁材11)の仕様は、材質:樹脂(液晶ポリマー)にアルミナと窒化ホウ素の粉末を充填したもの、厚み:0.12mm、熱伝導率:7.5W/mKである。銅ベース(ベース9)の仕様は、材質:C1921、厚み:2mm、熱伝導率:364W/mKである。 The specifications of the circuit board 1 of Comparative Example 1 in FIG. 5(A), such as dimensions, are as follows: The specifications of the chip (semiconductor chip 5) are thickness: 0.1 mm, plane size: 5×5 mm, and thermal conductivity: 85 W/mK. The specifications of the solder (solder 13) are thickness: 0.2 mm, and thermal conductivity: 49 W/mK. The specifications of the copper circuit (circuit pattern 3) are material: C1020, thickness: 0.5 mm, size: 20×20 mm, and thermal conductivity: 390 W/mK. The specifications of the insulating material (insulating material 11) are material: resin (liquid crystal polymer) filled with alumina and boron nitride powder, thickness: 0.12 mm, and thermal conductivity: 7.5 W/mK. The specifications of the copper base (base 9) are material: C1921, thickness: 2 mm, and thermal conductivity: 364 W/mK.
 熱抵抗の解析結果は、半導体チップ5の表面中央の点におけるTmax:150.7℃、この点に対応するベース9の裏面の点におけるT銅ベースチップ下:20.0℃固定、熱抵抗R:0.654KWである。なお、熱抵抗の解析は、熱量200Wで行った。このときの温度分布を図5(B)に示す。この比較例1に対し実施例1の例1~5を対比する。なお、図5(B)において、中心部が最も高温で、外に向かった温度が低くなっている。 The analysis results of the thermal resistance are Tmax: 150.7°C at the center point on the front surface of the semiconductor chip 5, T copper base chip bottom : fixed at 20.0°C at the point on the back surface of the base 9 corresponding to this point, and thermal resistance R: 0.654 kW. The analysis of the thermal resistance was performed with a heat amount of 200 W. The temperature distribution at this time is shown in FIG. 5(B). This Comparative Example 1 is compared with Examples 1 to 5 of the Example 1. In FIG. 5(B), the center is the hottest and the temperature decreases toward the outside.
 (実施例1と比較例1との対比)
 図6(A)の実施例1は、図3の実施例1-1に関するものである。この回路基板1の寸法等の仕様は、銅板(放熱枠7)以外が放熱枠のない比較例と同一である。銅板(放熱枠7)の仕様は、材質:C1020(回路パターン3と同一)、厚み:1.0mm、サイズ:10×10mm(孔6×6mm)、熱伝導率:390W/mKである。孔のサイズは、放熱枠7の内周のサイズを示す。この放熱枠7の面積A:64mm2、クリアランスC:0.5mm、厚さT:1mmの設定による放熱効果寸法パラメーター:18.4は、式(2)を満たす。
(Comparison between Example 1 and Comparative Example 1)
Example 1 in FIG. 6A relates to Example 1-1 in FIG. 3. The specifications of this circuit board 1, such as dimensions, are the same as those of the comparative example without a heat sink frame, except for the copper plate (heat sink frame 7). The specifications of the copper plate (heat sink frame 7) are: material: C1020 (same as circuit pattern 3), thickness: 1.0 mm, size: 10×10 mm (hole 6×6 mm), thermal conductivity: 390 W/mK. The size of the hole indicates the size of the inner circumference of the heat sink frame 7. The heat sink frame 7 has an area A of 64 mm2, a clearance C of 0.5 mm, and a thickness T of 1 mm, and the heat sink effect dimension parameter: 18.4 satisfies formula (2).
 熱抵抗の解析は、比較例と同様、熱量200W、基板底面の温度T銅ベースチップ下:20.0℃固定の条件下で行った。解析結果は、半導体チップ5の表面中央の点におけるTmax:146.4℃、この点に対応するベース9の裏面の点におけるT銅ベースチップ下:20.0℃となり、熱抵抗R:0.632KWである。熱抵抗の変化率は、ΔR:0.022K/Wであり、熱抵抗は比較例1に対し3.3%減少した。このときの温度分布は、図6(B)のとおりである。 The thermal resistance analysis was performed under the same conditions as the comparative example, with a heat quantity of 200 W and a fixed temperature of the bottom of the board (T copper base chip under) : 20.0°C. The analysis results were Tmax: 146.4°C at the center point of the surface of the semiconductor chip 5, T copper base chip under : 20.0°C at the point on the back of the base 9 corresponding to this point, and thermal resistance R: 0.632 KW. The rate of change of thermal resistance was ΔR: 0.022 K/W, and the thermal resistance was reduced by 3.3% compared to the comparative example 1. The temperature distribution at this time is as shown in FIG. 6(B).
 図5(A)及び(B)、図6(A)及び(B)より明らかなように、実施例1-1は、放熱枠7の設定が式(2)を満たすことで放熱性が向上している。 As is clear from Figures 5(A) and (B) and Figures 6(A) and (B), in Example 1-1, the heat dissipation performance is improved by setting the heat dissipation frame 7 to satisfy formula (2).
 図7(A)の熱抵抗の解析結果は、図3の実施例1-2に関するものである。この回路基板1では、銅板(放熱枠7)のサイズ:10×10mm(孔5.4×5.4mm)とし、図6の実施例1-1に対しクリアランスを縮小した。放熱枠7の面積Aを71mm2増大した。この放熱枠7のクリアランスC及び面積Aの変更による放熱効果寸法パラメーター:58.1は、式(2)を満たす。 The thermal resistance analysis results in Figure 7 (A) relate to Example 1-2 in Figure 3. In this circuit board 1, the size of the copper plate (heat dissipation frame 7) is 10 x 10 mm (holes 5.4 x 5.4 mm), and the clearance is reduced compared to Example 1-1 in Figure 6. The area A of the heat dissipation frame 7 has been increased by 71 mm2. The heat dissipation effect dimension parameter: 58.1 resulting from the change in clearance C and area A of this heat dissipation frame 7 satisfies formula (2).
 この実施例1-2の解析結果は、Tmax:144.2℃、T銅ベースチップ下:20.0℃固定、熱抵抗R:0.621KWである。熱抵抗の変化率は、ΔR:0.033K/Wであり、熱抵抗は比較例1に対し5.0%減少した。このときの温度分布は、図7(B)のとおりである。 The analysis results of Example 1-2 are Tmax: 144.2°C, T copper base chip bottom : fixed at 20.0°C, thermal resistance R: 0.621KW. The rate of change of thermal resistance is ΔR: 0.033K/W, and the thermal resistance is reduced by 5.0% compared to Comparative Example 1. The temperature distribution at this time is as shown in FIG. 7B.
 図5(A)及び(B)、図7(A)及び(B)より明らかなように、実施例1-2は、放熱枠7の設定が式(2)を満たし、クリアランスを小さくすることで放熱性がさらに向上した。 As is clear from Figures 5(A) and (B) and Figures 7(A) and (B), in Example 1-2, the setting of the heat dissipation frame 7 satisfies formula (2), and the heat dissipation performance is further improved by reducing the clearance.
 図8(A)の熱抵抗の解析結果は、図3の実施例1-3に関するものである。この回路基板1では、図6の実施例1-1に対し銅板(放熱枠7)の厚みTを2.0mmに増大変更した。この放熱枠7の厚みTの変更による放熱効果寸法パラメーター:21.1は、式(2)を満たす。 The thermal resistance analysis results in Figure 8 (A) are for Example 1-3 in Figure 3. In this circuit board 1, the thickness T of the copper plate (heat dissipation frame 7) has been increased to 2.0 mm compared to Example 1-1 in Figure 6. The heat dissipation effect dimension parameter: 21.1 due to the change in thickness T of the heat dissipation frame 7 satisfies formula (2).
 この実施例1-3の解析結果は、Tmax:146.0℃、T銅ベースチップ下:20.0℃固定、熱抵抗R:0.630KWである。熱抵抗の変化率は、ΔR:0.023K/Wであり、熱抵抗は比較例1に対し3.6%減少した。このときの温度分布は、図8(B)のとおりである。 The analysis results of Example 1-3 are Tmax: 146.0°C, T copper base chip bottom : fixed at 20.0°C, thermal resistance R: 0.630KW. The rate of change of thermal resistance is ΔR: 0.023K/W, and the thermal resistance is reduced by 3.6% compared to Comparative Example 1. The temperature distribution at this time is as shown in FIG. 8(B).
 図5(A)及び(B)、図8(A)及び(B)より明らかなように、実施例1-3は、放熱枠7の設定が式(2)を満たし、厚みを増すことで放熱性がさらに向上した。 As is clear from Figures 5(A) and (B) and Figures 8(A) and (B), in Example 1-3, the setting of the heat dissipation frame 7 satisfies formula (2), and the heat dissipation performance is further improved by increasing the thickness.
 図9(A)の熱抵抗の解析結果は、図3の実施例1-4に関するものである。この回路基板1では、図6の実施例1-1に対し銅板(放熱枠7)のサイズを20×20mm(孔6×6mm)とし、放熱枠7の外径を拡大し面積を増大した。この放熱枠7の面積Aの変更による放熱効果寸法パラメーター:43.8は、式(2)を満たす。 The analysis results of thermal resistance in Figure 9 (A) are for Example 1-4 in Figure 3. In this circuit board 1, the size of the copper plate (heat dissipation frame 7) is 20 x 20 mm (holes 6 x 6 mm) compared to Example 1-1 in Figure 6, and the outer diameter of the heat dissipation frame 7 is enlarged to increase the area. The heat dissipation effect dimension parameter: 43.8 due to the change in area A of this heat dissipation frame 7 satisfies formula (2).
 この実施例1-4の解析結果は、Tmax:144.3℃、T銅ベースチップ下:20.0℃となり、熱抵抗R:0.622KWである。熱抵抗の変化率は、ΔR:0.032K/Wであり、熱抵抗は比較例に対し4.9%減少した。このときの温度分布は、図9(B)のとおりである。 The analysis results of this Example 1-4 are Tmax: 144.3°C, T copper base chip : 20.0°C, and thermal resistance R: 0.622KW. The rate of change of thermal resistance is ΔR: 0.032K/W, and the thermal resistance is reduced by 4.9% compared to the comparative example. The temperature distribution at this time is as shown in FIG. 9(B).
 図5(A)及び(B)、図9(A)及び(B)より明らかなように、実施例1-4は、放熱枠7の設定が式(2)を満たし、面積を外径側へ大きくすることで放熱性がさらに向上した。 As is clear from Figures 5(A) and (B) and Figures 9(A) and (B), in Example 1-4, the setting of the heat dissipation frame 7 satisfies formula (2), and the heat dissipation performance is further improved by increasing the area toward the outer diameter.
 図10(A)の熱抵抗の解析結果は、図3の実施例1-5に関するものである。この回路基板1では、図6の実施例1-1に対し銅板(放熱枠7)のサイズを20×20mm(孔5.4×5.4mm)とし、放熱枠7の外径を拡大すると共に内径を縮小して面積Aを371mm2へ増大した。また、実施例1-5では、クリアランスCを0.2mmへと縮小し、厚さTを2mmへと増大した。この放熱枠7の面積A、クリアランスC、及び厚さTの変更による放熱効果寸法パラメーター:152.6は、式(2)を満たす。 The thermal resistance analysis results in Figure 10 (A) are for Example 1-5 in Figure 3. In this circuit board 1, compared to Example 1-1 in Figure 6, the size of the copper plate (heat dissipation frame 7) is 20 x 20 mm (hole 5.4 x 5.4 mm), and the outer diameter of the heat dissipation frame 7 is enlarged while the inner diameter is reduced, increasing the area A to 371 mm2. Also, in Example 1-5, the clearance C is reduced to 0.2 mm, and the thickness T is increased to 2 mm. The heat dissipation effect dimension parameter: 152.6 resulting from changes in the area A, clearance C, and thickness T of this heat dissipation frame 7 satisfies formula (2).
 この実施例1-5の解析結果は、Tmax:140.1℃、T銅ベースチップ下:20.0℃固定、熱抵抗R:0.601K/Wである。熱抵抗の変化率は、ΔR:-0.031K/Wであり、熱抵抗は比較例に対し8.1%減少した。このときの温度分布は、図10(B)のとおりである。 The analysis results of Example 1-5 are Tmax: 140.1°C, T copper base chip bottom : fixed at 20.0°C, thermal resistance R: 0.601K/W. The rate of change of thermal resistance is ΔR: -0.031K/W, and the thermal resistance is reduced by 8.1% compared to the comparative example. The temperature distribution at this time is as shown in Figure 10(B).
 図5(A)及び(B)、図10(A)及び(B)より明らかなように、放熱枠7の設定による放熱効果寸法パラメーター:152.6が式(2)を満たし、面積A、厚さTの増大、クリアランスCの減少により放熱性がさらに向上した。 As is clear from Figures 5(A) and (B) and Figures 10(A) and (B), the heat dissipation effect dimension parameter: 152.6 due to the setting of the heat dissipation frame 7 satisfies formula (2), and the heat dissipation performance is further improved by increasing the area A and thickness T and decreasing the clearance C.
 (比較例1と比較例2~4との対比)
 次に、比較例1に対し比較例2~4を対比する。
(Comparison between Comparative Example 1 and Comparative Examples 2 to 4)
Next, Comparative Example 1 will be compared with Comparative Examples 2 to 4.
 図11~図13に、比較例2~4に係る放熱性の解析結果を示す。図11(A)、図12(A)、及び図13(A)は、それぞれ比較例2~4に係る回路基板の熱抵抗の解析結果を示す図表、図11(B)、図12(B)、及び図13(B)は、それぞれ比較例2~4に係る温度分布を示す。 Figures 11 to 13 show the analysis results of the heat dissipation properties for Comparative Examples 2 to 4. Figures 11(A), 12(A), and 13(A) are graphs showing the analysis results of the thermal resistance of the circuit boards for Comparative Examples 2 to 4, respectively, and Figures 11(B), 12(B), and 13(B) show the temperature distributions for Comparative Examples 2 to 4, respectively.
 図11(A)の熱抵抗の解析結果は、図3の比較例2に関するものである。この回路基板1では、図6の例1に対し銅板(放熱枠7)のサイズ:8×8mm(孔6×6mm)とし、放熱枠7の外径を縮小して面積A:28mm2に減少した。この放熱枠7のサイズの変更による放熱効果寸法パラメーター:12.2は、式(2)を満たさない。 The analysis results of thermal resistance in Figure 11 (A) are for Comparative Example 2 in Figure 3. In this circuit board 1, compared to Example 1 in Figure 6, the size of the copper plate (heat dissipation frame 7) is 8 x 8 mm (holes 6 x 6 mm), and the outer diameter of the heat dissipation frame 7 is reduced to area A: 28 mm2. The heat dissipation effect dimension parameter: 12.2 due to the change in size of this heat dissipation frame 7 does not satisfy formula (2).
 この比較例2では、Tmax:148.4℃、T銅ベースチップ下:20.0℃固定、熱抵抗R:0.642K/Wである。熱抵抗の変化率は、ΔR:0.010K/Wであり、熱抵抗は比較例1に対し近似線L1上のように1.8%の減少に過ぎなかった。このときの温度分布を図11(B)に示す。 In this comparative example 2, Tmax: 148.4°C, T copper base chip bottom : fixed at 20.0°C, thermal resistance R: 0.642 K/W. The rate of change in thermal resistance was ΔR: 0.010 K/W, and the thermal resistance was only reduced by 1.8% as shown on the approximation line L1 compared to comparative example 1. The temperature distribution at this time is shown in Figure 11 (B).
 図5(A)及び(B)、図11(A)及び(B)より明らかなように、比較例2では、放熱枠7の設定による放熱効果寸法パラメーター:12.2が式(2)を満たさず放熱性の向上はなかった。 As is clear from Figures 5(A) and (B) and Figures 11(A) and (B), in Comparative Example 2, the heat dissipation effect dimension parameter: 12.2 due to the setting of the heat dissipation frame 7 did not satisfy formula (2), and there was no improvement in heat dissipation.
 図12(A)の熱抵抗の解析結果は、図3の比較例3に関するものである。この回路基板1では、図6の例1に対し銅板(放熱枠7)のサイズ:10×10mm(孔7×7mm)とし、放熱枠7の内径を拡大して面積A:51mm2に減少した。クリアランスC:1mmに拡大した。この放熱枠7のサイズの変更による放熱効果寸法パラメーター:7.1は、式(2)を満たさない。 The analysis results of thermal resistance in Figure 12 (A) are for Comparative Example 3 in Figure 3. In this circuit board 1, compared to Example 1 in Figure 6, the size of the copper plate (heat dissipation frame 7) is 10 x 10 mm (hole 7 x 7 mm), and the inner diameter of the heat dissipation frame 7 is enlarged, decreasing the area A to 51 mm2. Clearance C is enlarged to 1 mm. The heat dissipation effect dimension parameter: 7.1 due to this change in the size of the heat dissipation frame 7 does not satisfy formula (2).
 この比較例3では、Tmax:148.7℃、T銅ベースチップ下:20.0℃固定、熱抵抗R:0.643K/Wである。熱抵抗の変化率は、ΔR:0.011K/Wであり、熱抵抗は比較例1に対し近似線L1上のように1.6%の減少に過ぎなかった。このときの温度分布を図12(B)に示す。 In this comparative example 3, Tmax: 148.7°C, T copper base chip bottom : fixed at 20.0°C, thermal resistance R: 0.643 K/W. The rate of change in thermal resistance was ΔR: 0.011 K/W, and the thermal resistance was only reduced by 1.6% as shown on the approximation line L1 compared to comparative example 1. The temperature distribution at this time is shown in Figure 12 (B).
 図5(A)及び(B)、図12(A)及び(B)より明らかなように、比較例3では、放熱枠7の設定による放熱効果寸法パラメーター:7.1が式(2)を満たさず放熱性の向上はなかった。 As is clear from Figures 5(A) and (B) and Figures 12(A) and (B), in Comparative Example 3, the heat dissipation effect dimension parameter: 7.1 due to the setting of the heat dissipation frame 7 did not satisfy formula (2), and there was no improvement in heat dissipation.
 図13(A)の熱抵抗の解析結果は、図3の比較例4に関するものである。この回路基板1では、図6の実施例1-1に対し銅板(放熱枠7)のサイズを8×8mm(孔6×6mm)とし、放熱枠7の外径を縮小して面積Aを28mm2に減少した。また、比較例3では、厚さTを0.5mmに減少した。この放熱枠7のサイズの変更による放熱効果寸法パラメーター:10.6は、式(2)を満たさない。 The analysis results of thermal resistance in Figure 13 (A) relate to Comparative Example 4 in Figure 3. In this circuit board 1, the size of the copper plate (heat dissipation frame 7) is 8 x 8 mm (holes 6 x 6 mm) compared to Example 1-1 in Figure 6, and the outer diameter of the heat dissipation frame 7 is reduced to reduce the area A to 28 mm2. Also, in Comparative Example 3, the thickness T is reduced to 0.5 mm. The heat dissipation effect dimension parameter: 10.6 resulting from this change in the size of the heat dissipation frame 7 does not satisfy formula (2).
 この比較例4の解析結果は、Tmax:148.7℃、T銅ベースチップ下:20.0℃固定、熱抵抗R:0.644K/Wである。熱抵抗の変化率は、ΔR:0.012K/Wであり、熱抵抗は比較例1に対し近似線L1上のように1.5%の減少に過ぎなかった。このときの温度分布を図13(B)に示す。 The analysis results of this Comparative Example 4 are Tmax: 148.7°C, T copper base chip bottom : fixed at 20.0°C, thermal resistance R: 0.644 K/W. The rate of change in thermal resistance is ΔR: 0.012 K/W, and the thermal resistance was only reduced by 1.5% as shown on the approximation line L1 compared to Comparative Example 1. The temperature distribution at this time is shown in Figure 13 (B).
 図5(A)及び(B)、図13(A)及び(B)より明らかなように、比較例4では、放熱枠7の設定による放熱効果寸法パラメーター:10.6が式(2)を満たさず放熱性の向上はなかった。 As is clear from Figures 5(A) and (B) and Figures 13(A) and (B), in Comparative Example 4, the heat dissipation effect dimension parameter: 10.6 due to the setting of the heat dissipation frame 7 did not satisfy formula (2), and there was no improvement in heat dissipation.
 (放熱条件を変えた解析結果の比較)
 図14(A)は、図1(B)の比較例1に係る回路基板の断面図、寸法、及び放熱条件を変えた場合の熱抵抗の解析結果を示す図表、図14(B)は、図14(A)の回路基板の温度分布を示す平面画像である。図15(A)は、図3の実施例1-1に係る回路基板の断面図、寸法、熱伝導率、及び放熱条件を変えた場合の熱抵抗の解析結果を示す図表、図15(B)は、図15(A)の回路基板の温度分布を示す平面画像である。
(Comparison of analysis results with different heat dissipation conditions)
Fig. 14(A) is a diagram showing the analysis results of thermal resistance when the cross-sectional view, dimensions, and heat dissipation conditions of the circuit board according to Comparative Example 1 in Fig. 1(B) are changed, and Fig. 14(B) is a planar image showing the temperature distribution of the circuit board in Fig. 14(A). Fig. 15(A) is a diagram showing the analysis results of thermal resistance when the cross-sectional view, dimensions, thermal conductivity, and heat dissipation conditions of the circuit board according to Example 1-1 in Fig. 3 are changed, and Fig. 15(B) is a planar image showing the temperature distribution of the circuit board in Fig. 15(A).
 図16~図19は、図3の実施例1-2~1-5に係る回路基板において、放熱条件を変えた場合の解析結果を示す。図16(A)、図17(A)、図18(A)、及び図19(A)は、それぞれ実施例1-2~1-5に係る回路基板の熱抵抗の解析結果を示す図表、図16(B)、図17(B)、図18(B)、及び図19(B)は、それぞれ実施例1-2~1-5に係る回路基板の温度分布を示す平面画像である。 Figs. 16 to 19 show the analysis results when the heat dissipation conditions are changed for the circuit boards of Examples 1-2 to 1-5 in Fig. 3. Figs. 16(A), 17(A), 18(A), and 19(A) are charts showing the analysis results of the thermal resistance of the circuit boards of Examples 1-2 to 1-5, respectively, and Figs. 16(B), 17(B), 18(B), and 19(B) are planar images showing the temperature distribution of the circuit boards of Examples 1-2 to 1-5, respectively.
 図14~図19での熱抵抗解析は熱量200Wで行われ、放熱条件は基板底面の熱伝達率がh=30000W/m2・Kで20℃中へ放熱したものである。 The thermal resistance analysis in Figures 14 to 19 was performed with a heat quantity of 200 W, and the heat dissipation conditions were that the heat transfer coefficient of the bottom surface of the board was h = 30,000 W/m2·K, and the heat was dissipated into a 20°C environment.
 比較例1における熱抵抗の解析結果は、半導体チップ5の表面中央の点におけるTmax:175.2℃、この点に対応する金属基板9の裏面の点におけるT銅ベースチップ下:53.7℃となり、熱抵抗R:0.607K/Wである。このときの温度分布を図14(B)に示す。 The analysis results of the thermal resistance in Comparative Example 1 are Tmax: 175.2°C at the center point on the front surface of the semiconductor chip 5, T copper base chip under the point on the back surface of the metal substrate 9 corresponding to this point: 53.7°C, and thermal resistance R: 0.607 K/W. The temperature distribution at this time is shown in FIG.
 この放熱条件を上記のように変更した場合の比較例1と実施例1の例1~5を対比する。 Comparative Example 1 and Examples 1 to 5 of Example 1 are compared when the heat dissipation conditions are changed as described above.
 図15(A)の実施例1-1は、図3の実施例1-1の形状、寸法の回路基板1に対し放熱条件を変更した。この放熱枠7の厚さ、サイズの設定による放熱効果寸法パラメーター:18.4は、基板底面の温度T銅ベースチップ下:20.0℃固定の場合と同様に式(2)を満たす。 In Example 1-1 in Fig. 15(A), the heat dissipation conditions were changed for the circuit board 1 having the shape and dimensions of Example 1-1 in Fig. 3. The heat dissipation effect dimension parameter: 18.4 due to the thickness and size settings of the heat dissipation frame 7 satisfies formula (2) in the same way as when the temperature T of the bottom surface of the board ( below the copper base chip ): is fixed at 20.0°C.
 熱抵抗の解析結果は、半導体チップ5の表面中央の点におけるTmax:169.6℃、この点に対応する金属基板9の裏面の点におけるT銅ベースチップ下:51.9℃となり、熱抵抗R:0.588K/Wである。熱抵抗の変化率は、ΔR:-0.019K/Wであり、基板底面の温度T銅ベースチップ下:20.0℃固定の場合と同様に熱抵抗は比較例1に対し減少した。このときの温度分布を図15(B)に示す。 The analysis results of the thermal resistance are Tmax: 169.6°C at the center point on the front surface of the semiconductor chip 5, T copper base chip under : 51.9°C at the point on the back surface of the metal substrate 9 corresponding to this point, and thermal resistance R: 0.588 K/W. The rate of change of thermal resistance is ΔR: -0.019 K/W, and the thermal resistance has decreased compared to Comparative Example 1, as in the case where the temperature of the bottom surface of the substrate is fixed at 20.0°C under the copper base chip . The temperature distribution at this time is shown in Figure 15 (B).
 図14(A)及び(B)、図15(A)及び(B)より明らかなように、実施例1-1では、放熱枠7の設定による放熱効果寸法パラメーター:18.4が式(2)を満たすことで放熱条件を変えても放熱性が向上した。 As is clear from Figures 14(A) and (B) and Figures 15(A) and (B), in Example 1-1, the heat dissipation effect dimension parameter: 18.4 due to the setting of the heat dissipation frame 7 satisfied formula (2), and thus the heat dissipation performance improved even when the heat dissipation conditions were changed.
 図16(A)は、図3の実施例1-2の形状、寸法の回路基板1に対し放熱条件を上記のように変更した。この放熱枠7のクリアランスC及び面積Aの実施例1-1に対する変更による放熱効果寸法パラメーター:58.1は、基板底面の温度T銅ベースチップ下:20.0℃固定の場合と同様に式(2)を満たす。 16A shows the above-mentioned change in heat dissipation conditions for the circuit board 1 having the shape and dimensions of Example 1-2 in FIG. 3. The heat dissipation effect dimension parameter: 58.1 due to the change in the clearance C and area A of the heat dissipation frame 7 from Example 1-1 satisfies formula (2) in the same way as when the temperature T of the bottom surface of the board ( below the copper base chip ): is fixed at 20.0°C.
 熱抵抗の解析結果は、半導体チップ5の表面中央の点におけるTmax:167.0℃、この点に対応する金属基板9の裏面の点におけるT銅ベースチップ下:51.3℃となり、熱抵抗R:0.578K/Wである。熱抵抗の変化率は、ΔR:-0.010K/Wであり、基板底面の温度T銅ベースチップ下:20.0℃固定の場合と同様に熱抵抗は比較例1に対し減少した。このときの温度分布を図16(B)に示す。 The analysis results of the thermal resistance are Tmax: 167.0°C at the center point on the front surface of the semiconductor chip 5, T copper base chip under : 51.3°C at the point on the back surface of the metal substrate 9 corresponding to this point, and thermal resistance R: 0.578 K/W. The rate of change of thermal resistance is ΔR: -0.010 K/W, and the thermal resistance has decreased compared to Comparative Example 1, as in the case where the temperature of the bottom surface of the substrate is fixed at 20.0°C under the copper base chip . The temperature distribution at this time is shown in FIG. 16(B).
 図14(A)及び(B)、図16(A)及び(B)より明らかなように、実施例1-2では、放熱枠7の設定による放熱効果寸法パラメーター:58.1が式(2)を満たし、クリアランスCを小さくすると共に面積Aを増大することで放熱条件を変えても放熱性が向上した。 As is clear from Figures 14(A) and (B) and Figures 16(A) and (B), in Example 1-2, the heat dissipation effect dimension parameter: 58.1 due to the setting of the heat dissipation frame 7 satisfies formula (2), and by reducing the clearance C and increasing the area A, the heat dissipation performance was improved even when the heat dissipation conditions were changed.
 図17(A)は、図3の実施例3-3の形状、寸法の回路基板1に対し放熱条件を上記のように変えた解析結果である。この放熱枠7の厚さの実施例1-1に対する変更による放熱効果寸法パラメーター:21.1は、式(2)を満たす。 Figure 17 (A) shows the analysis results when the heat dissipation conditions were changed as described above for the circuit board 1 with the shape and dimensions of Example 3-3 in Figure 3. The heat dissipation effect dimension parameter: 21.1 due to the change in the thickness of this heat dissipation frame 7 compared to Example 1-1 satisfies formula (2).
 熱抵抗の解析結果は、半導体チップ5の表面中央の点におけるTmax:169.1℃、この点に対応する金属基板9の裏面の点におけるT銅ベースチップ下:51.8℃となり、熱抵抗R:0.587K/Wである。熱抵抗の変化率は、ΔR:-0.002K/Wであり、基板底面の温度T銅ベースチップ下:20.0℃固定の場合と同様に熱抵抗は比較例1に対し減少した。このときの温度分布を図17(B)に示す。 The analysis results of the thermal resistance are Tmax: 169.1°C at the center point on the front surface of the semiconductor chip 5, T copper base chip under : 51.8°C at the point on the back surface of the metal substrate 9 corresponding to this point, and thermal resistance R: 0.587 K/W. The rate of change of thermal resistance is ΔR: -0.002 K/W, and the thermal resistance has decreased compared to Comparative Example 1, as in the case where the temperature of the bottom surface of the substrate is fixed at 20.0°C. The temperature distribution at this time is shown in Figure 17 (B).
 図14(A)及び(B)、図17(A)及び(B)より明らかなように、実施例1-3では、放熱枠7の設定による放熱効果寸法パラメーター:21.1が式(2)を満たし、厚さTを増大することで放熱条件を変えても放熱性が向上した。 As is clear from Figures 14(A) and (B) and Figures 17(A) and (B), in Example 1-3, the heat dissipation effect dimension parameter: 21.1 due to the setting of the heat dissipation frame 7 satisfies formula (2), and by increasing the thickness T, the heat dissipation performance improved even when the heat dissipation conditions were changed.
 図18(A)は、図3の実施例1-4の形状、寸法の回路基板1に対し放熱条件を上記のように変えた解析結果である。この放熱枠7の面積Aの実施例1-1に対する変更による放熱効果寸法パラメーター:43.8は、式(2)を満たす。 Figure 18 (A) shows the analysis results when the heat dissipation conditions were changed as described above for the circuit board 1 with the shape and dimensions of Example 1-4 in Figure 3. The heat dissipation effect dimension parameter: 43.8 resulting from the change in area A of the heat dissipation frame 7 compared to Example 1-1 satisfies formula (2).
 熱抵抗の解析結果は、半導体チップ5の表面中央の点におけるTmax:166.0℃、この点に対応する金属基板9の裏面の点におけるT銅ベースチップ下:50.2℃となり、熱抵抗R:0.579K/Wである。熱抵抗の変化率は、ΔR:-0.009K/Wであり、基板底面の温度T銅ベースチップ下:20.0℃固定の場合と同様に熱抵抗は比較例1に対し減少した。このときの温度分布を図18(B)に示す。 The analysis results of the thermal resistance are Tmax: 166.0°C at the center point on the front surface of the semiconductor chip 5, T copper base chip under : 50.2°C at the point on the back surface of the metal substrate 9 corresponding to this point, and thermal resistance R: 0.579 K/W. The rate of change of thermal resistance is ΔR: -0.009 K/W, and the thermal resistance has decreased compared to Comparative Example 1, as in the case where the temperature of the bottom surface of the substrate is fixed at 20.0°C under the copper base chip . The temperature distribution at this time is shown in FIG. 18(B).
 図14(A)及び(B)、図18(A)及び(B)より明らかなように、実施例1-4では、放熱枠7の設定による放熱効果寸法パラメーター:43.8が式(2)を満たし、面積Aを増大することで放熱条件を変えても放熱性が向上した。 As is clear from Figures 14(A) and (B) and Figures 18(A) and (B), in Example 1-4, the heat dissipation effect dimension parameter: 43.8 due to the setting of the heat dissipation frame 7 satisfies formula (2), and by increasing the area A, the heat dissipation performance was improved even when the heat dissipation conditions were changed.
 図19(A)は、図3の実施例1-5の形状、寸法の回路基板1に対し放熱条件を上記のように変えた解析結果である。この放熱枠7の面積A、クリアランスC、厚さTの実施例1-1に対する変更による放熱効果寸法パラメーター:152.6は、式(2)を満たす。 Figure 19 (A) shows the analysis results when the heat dissipation conditions were changed as described above for the circuit board 1 with the shape and dimensions of Example 1-5 in Figure 3. The heat dissipation effect dimension parameter: 152.6 due to the changes in area A, clearance C, and thickness T of this heat dissipation frame 7 compared to Example 1-1 satisfies formula (2).
 熱抵抗の解析結果は、半導体チップ5の表面中央の点におけるTmax:166.0℃、この点に対応する金属基板9の裏面の点におけるT銅ベースチップ下:50.2℃となり、熱抵抗R:0.579K/Wである。熱抵抗の変化率は、ΔR:-0.027K/Wであり、基板底面の温度T銅ベースチップ下:20.0℃固定の場合と同様に熱抵抗は比較例1に対し減少した。このときの温度分布を図19(B)に示す。 The analysis results of the thermal resistance are Tmax: 166.0°C at the center point on the front surface of the semiconductor chip 5, T copper base chip under : 50.2°C at the point on the back surface of the metal substrate 9 corresponding to this point, and thermal resistance R: 0.579 K/W. The rate of change of thermal resistance is ΔR: -0.027 K/W, and the thermal resistance has decreased compared to Comparative Example 1, as in the case where the temperature of the bottom surface of the substrate is fixed at 20.0°C under the copper base chip . The temperature distribution at this time is shown in Figure 19 (B).
 図14(A)及び(B)、図19(A)及び(B)より明らかなように、実施例1-5では、放熱枠7の設定による放熱効果寸法パラメーター:152.6が式(2)を満たし、面積A及び厚さTを増大すると共にクリアランスCを減少することで放熱条件を変えても放熱性が向上した。 As is clear from Figures 14(A) and (B) and Figures 19(A) and (B), in Example 1-5, the heat dissipation effect dimension parameter: 152.6 due to the setting of the heat dissipation frame 7 satisfies formula (2), and by increasing the area A and thickness T and decreasing the clearance C, the heat dissipation performance improved even when the heat dissipation conditions were changed.
 (比較例2~4と比較例1との放熱条件を変えた対比)
 放熱条件を上記のように変えた比較例1の図14(B)に対し放熱条件を上記のように変えた比較例2~4を対比する。
(Comparison of Comparative Examples 2 to 4 and Comparative Example 1 with different heat dissipation conditions)
FIG. 14B of Comparative Example 1 in which the heat dissipation conditions were changed as described above is compared with Comparative Examples 2 to 4 in which the heat dissipation conditions were changed as described above.
 図20~図22は、図3の比較例2~4に係る回路基板において、放熱条件を変えた場合お解析結果を示す。図20(A)、図21(A)、及び図22(A)は、それぞれ比較例2~4に係る回路基板の熱抵抗の解析結果を示す図表、図20(B)、図21(B)、及び図22(B)は、それぞれ比較例2~4に係る回路基板の温度分布を示す平面画像である。 Figs. 20 to 22 show the analysis results when the heat dissipation conditions are changed for the circuit boards of Comparative Examples 2 to 4 in Fig. 3. Figs. 20(A), 21(A), and 22(A) are charts showing the analysis results of the thermal resistance of the circuit boards of Comparative Examples 2 to 4, respectively, and Figs. 20(B), 21(B), and 22(B) are planar images showing the temperature distribution of the circuit boards of Comparative Examples 2 to 4, respectively.
 図20(A)は、図3の比較例2の形状、寸法の回路基板1に対し放熱条件を上記のように変えた解析結果である。この放熱枠7のサイズの実施例1-1に対する変更による放熱効果寸法パラメーター:12.2は、基板底面の温度T銅ベースチップ下:20.0℃固定の場合と同様に式(2)を満たさない。 Fig. 20(A) shows the analysis results when the heat dissipation conditions were changed as described above for the circuit board 1 having the shape and dimensions of Comparative Example 2 in Fig. 3. The heat dissipation effect dimension parameter: 12.2 due to the change in the size of the heat dissipation frame 7 from Example 1-1 does not satisfy formula (2), similarly to the case where the temperature T of the bottom surface of the board ( below the copper base chip ): is fixed at 20.0°C.
 この比較例2の放熱条件を上記のように変えた例の解析結果は、Tmax:172.3℃、T銅ベースチップ下:52.9℃となり、熱抵抗R:0.597K/Wである。熱抵抗の変化率は、ΔR:0.009K/Wであり、熱抵抗は比較例1の放熱条件を前記のように変えた図14の例に対し減少が見られなかった。このときの温度分布を図20(B)に示す。 The analysis results of the example in which the heat dissipation conditions of Comparative Example 2 were changed as described above were Tmax: 172.3°C, T copper base chip under : 52.9°C, and thermal resistance R: 0.597 K/W. The rate of change in thermal resistance was ΔR: 0.009 K/W, and no reduction in thermal resistance was observed compared to the example in Fig. 14 in which the heat dissipation conditions of Comparative Example 1 were changed as described above. The temperature distribution at this time is shown in Fig. 20(B).
 図14(A)及び(B)、図20(A)及び(B)より明らかなように、比較例2では、放熱枠7の設定による放熱効果寸法パラメーター:12.2が式(2)を満たさず放熱条件を変えても放熱性の向上はなかった。 As is clear from Figures 14(A) and (B) and Figures 20(A) and (B), in Comparative Example 2, the heat dissipation effect dimension parameter: 12.2 due to the setting of the heat dissipation frame 7 did not satisfy formula (2), and there was no improvement in heat dissipation even when the heat dissipation conditions were changed.
 図21(A)は、図3の比較例3の形状、寸法の回路基板1に対し放熱条件を前記のように変えた解析結果である。この放熱枠7のサイズの実施例1-1に対する変更による放熱効果寸法パラメーター:7.1は、基板底面の温度T銅ベースチップ下:20.0℃固定の場合と同様に、式(2)を満たさない。 Fig. 21(A) shows the analysis results when the heat dissipation conditions were changed as described above for the circuit board 1 having the shape and dimensions of Comparative Example 3 in Fig. 3. The heat dissipation effect dimension parameter: 7.1 due to the change in size of the heat dissipation frame 7 from Example 1-1 does not satisfy formula (2), as in the case where the temperature T of the bottom surface of the board ( below the copper base chip) : is fixed at 20.0°C.
 この比較例3の放熱条件を上記のように変えた例の解析結果は、Tmax:172.4℃、T銅ベースチップ下:52.7℃となり、熱抵抗R:0.598K/Wである。熱抵抗の変化率は、ΔR:0.010K/Wであり、熱抵抗は比較例1の放熱条件を前記のように変えた例に対し減少が見られなかった。このときの温度分布を図21(B)に示す。 The analysis results of the example where the heat dissipation conditions of Comparative Example 3 were changed as described above were Tmax: 172.4°C, T copper base chip bottom : 52.7°C, and thermal resistance R: 0.598 K/W. The rate of change in thermal resistance was ΔR: 0.010 K/W, and no decrease in thermal resistance was observed compared to the example where the heat dissipation conditions of Comparative Example 1 were changed as described above. The temperature distribution at this time is shown in Figure 21 (B).
 図14(A)及び(B)、図21(A)及び(B)より明らかなように、比較例3では、放熱枠7の設定による放熱効果寸法パラメーター:7.1が式(2)を満たさず放熱条件を変えても放熱性の向上はなかった。 As is clear from Figures 14(A) and (B) and Figures 21(A) and (B), in Comparative Example 3, the heat dissipation effect dimension parameter: 7.1 due to the setting of the heat dissipation frame 7 did not satisfy formula (2), and there was no improvement in heat dissipation even when the heat dissipation conditions were changed.
 図22(A)は、図3の比較例4の形状、寸法の回路基板1に対し放熱条件を上記のように変えた解析結果である。この放熱枠7のサイズの実施例1-1に対する変更による放熱効果寸法パラメーター:10.6は、基板底面の温度T銅ベースチップ下:20.0℃固定の場合と同様に式(2)を満たさない。 Fig. 22(A) shows the analysis results when the heat dissipation conditions were changed as described above for the circuit board 1 having the shape and dimensions of Comparative Example 4 in Fig. 3. The heat dissipation effect dimension parameter: 10.6 resulting from the change in the size of the heat dissipation frame 7 from Example 1-1 does not satisfy formula (2), similarly to the case where the temperature T of the bottom surface of the board ( below the copper base chip ): is fixed at 20.0°C.
 この比較例4の放熱条件を前記のように変えた例の解析結果は、Tmax:172.7℃、T銅ベースチップ下:53.0℃となり、熱抵抗R:0.598K/Wである。熱抵抗の変化率は、ΔR:0.010K/Wであり、熱抵抗は比較例1の放熱条件を上記のように変えた例に対し減少が見られなかった。このときの温度分布を図22(B)に示す。 The analysis results of the example in which the heat dissipation conditions of Comparative Example 4 were changed as described above were Tmax: 172.7°C, T copper base chip bottom : 53.0°C, and thermal resistance R: 0.598 K/W. The rate of change in thermal resistance was ΔR: 0.010 K/W, and no decrease in thermal resistance was observed compared to the example in which the heat dissipation conditions of Comparative Example 1 were changed as described above. The temperature distribution at this time is shown in Figure 22 (B).
 図14(A)及び(B)、図22(A)及び(B)より明らかなように、比較例4では、放熱枠7の設定による放熱効果寸法パラメーター:10.6が式(2)を満たさず放熱条件を変えても放熱性の向上はなかった。 As is clear from Figures 14 (A) and (B) and Figures 22 (A) and (B), in Comparative Example 4, the heat dissipation effect dimension parameter: 10.6 due to the setting of the heat dissipation frame 7 did not satisfy formula (2), and there was no improvement in heat dissipation even when the heat dissipation conditions were changed.
 [変形例]
 図23~図26は、図1(A)の実施例1の変形例に係る回路基板の半導体チップと放熱枠との関係を示す平面図である。図27は、図1(A)の実施例1の変形例に係り放熱枠の厚みの変形例を示す回路基板の断面図である。
[Modification]
23 to 26 are plan views showing the relationship between the semiconductor chip and the heat dissipation frame of the circuit board according to the modification of the first embodiment of FIG. 1A. Fig. 27 is a cross-sectional view of the circuit board showing a modification of the thickness of the heat dissipation frame according to the modification of the first embodiment of FIG.
 図23の変形例では、平面視において半導体チップ5の中心を放熱枠7の外形の中心に対してずらした枠形状とした。放熱枠7の各辺の幅は、B1/2、B2/2、B3/2、B4/2となっている。この放熱枠7の面積Aは、幅B1、B2、B3、B4に基づき単純化した1辺がBの正方形の面積であり、この面積Aは、厚さT及びクリアランスCとの関係で式(2)を満たす。 In the modified example of FIG. 23, the center of the semiconductor chip 5 is shifted from the center of the external shape of the heat dissipation frame 7 in a plan view, creating a frame shape. The widths of each side of the heat dissipation frame 7 are B1/2, B2/2, B3/2, and B4/2. The area A of this heat dissipation frame 7 is the area of a square with one side B, simplified based on the widths B1, B2, B3, and B4, and this area A satisfies formula (2) in relation to the thickness T and clearance C.
 図24の変形例では、放熱枠7が複数例えば2個の隣り合う半導体チップ5を内包する枠形状を有する。放熱枠7の各辺の幅を、B1/2、B2/2、B3/2、B4/2、B5/2、B6/2、B7/2、B8/2としている。放熱枠7の面積Aは、かかる幅B1、B2、B3、B4、B5、B6、B7、B8とに基づき単純化した1辺がBの正方形の面積であり、厚さT及びクリアランスCとの関係で式(2)を満たす。 In the modified example of FIG. 24, the heat dissipation frame 7 has a frame shape that encloses multiple semiconductor chips 5, for example two adjacent semiconductor chips 5. The widths of each side of the heat dissipation frame 7 are B1/2, B2/2, B3/2, B4/2, B5/2, B6/2, B7/2, and B8/2. The area A of the heat dissipation frame 7 is the area of a square with one side B, simplified based on the widths B1, B2, B3, B4, B5, B6, B7, and B8, and satisfies formula (2) in relation to the thickness T and the clearance C.
 図25の変形例では、クリアランスを周方向で不均一としたものである。例えば、放熱枠7の各辺と半導体チップ5の各辺とのクリアランスは、C4<C1<C2<C3の関係に設定される。なお、クリアランスC1~C4の大きさは任意に設定可能であり、C1、C4を同一にし、C2、C3を同一にしてもよい。式(2)を満たすクリアランスCは、平均値C=Cave{C1、C2、・・・}である。 In the modified example of FIG. 25, the clearance is non-uniform in the circumferential direction. For example, the clearance between each side of the heat dissipation frame 7 and each side of the semiconductor chip 5 is set to have the relationship C4<C1<C2<C3. The size of the clearances C1 to C4 can be set arbitrarily, and C1 and C4 may be set to the same, and C2 and C3 may be set to the same. The clearance C that satisfies formula (2) is the average value C = Cave {C1, C2, ...}.
 図26の変形例では、平面視矩形形状の半導体チップ5に対し放熱枠7を環状の枠形状とした。式(2)を満たすクリアランスCは、半導体チップ5の各辺と放熱枠7内周とのクリアランスの平均値C=Caveである。 In the modified example shown in FIG. 26, the heat dissipation frame 7 is annular in shape for the semiconductor chip 5 which is rectangular in plan view. The clearance C that satisfies formula (2) is the average value C=Cave of the clearance between each side of the semiconductor chip 5 and the inner periphery of the heat dissipation frame 7.
 図27の変形例では、矩形状の放熱枠7の厚みを周方向で異ならせ、例えば一方の対向辺の厚みをT1>T2とした。他方の対向辺の厚みはT1或はT2に設定することができる。また他方の対向辺の厚みはT1、T2を接続するように傾斜し或は階段状に形成することもできる。 In the modified example of FIG. 27, the thickness of the rectangular heat dissipation frame 7 is made to vary in the circumferential direction, for example, the thickness of one opposing side is set to T1>T2. The thickness of the other opposing side can be set to T1 or T2. The thickness of the other opposing side can also be formed in an inclined or stepped shape to connect T1 and T2.
 何れにしても、式(2)を満たす厚みTは、平均値T=Tave{T1、T2、・・・}である。 In any case, the thickness T that satisfies formula (2) is the average value T = Tave{T1, T2, ...}.
 なお、実施例1において放熱枠7の厚みTは、半導体チップ5の厚みよりも大きく設定されているが、放熱効果寸法パラメーターが式(2)を満たす限り厚みTの設定は自由である。 In the first embodiment, the thickness T of the heat dissipation frame 7 is set to be greater than the thickness of the semiconductor chip 5, but the thickness T can be freely set as long as the heat dissipation effect dimension parameter satisfies formula (2).
 回路パターン3、放熱枠7、及びベース9の材質は、全て銅としたが、放熱効果寸法パラメーターが式(2)を満たし放熱性が実施例1と同様に比較例1に対して向上できるものであればアルミニウム、アルミニウム合金、又はステンレス等に代えることもできる。この場合、全てを同じ材質で構成する必要もなく、回路パターン3、放熱枠7、及びベース9の何れかを他に対して材質変更することもできる。  The circuit pattern 3, heat dissipation frame 7, and base 9 are all made of copper, but they can be replaced with aluminum, aluminum alloy, stainless steel, etc., as long as the heat dissipation effect dimensional parameters satisfy formula (2) and the heat dissipation performance can be improved compared to Comparative Example 1, as in Example 1. In this case, it is not necessary to construct everything from the same material, and the material of one of the circuit pattern 3, heat dissipation frame 7, and base 9 can be changed relative to the others.
 図28は、実施例2に係り図1の回路基板の放熱枠の材質をアルミニウムに代えた場合の放熱効果寸法パラメーターと熱抵抗低減率との関係を比較例及び実施例1の近似線と共に示すグラフである。 Figure 28 is a graph showing the relationship between the heat dissipation effect dimensional parameters and the thermal resistance reduction rate when the material of the heat dissipation frame of the circuit board in Figure 1 is replaced with aluminum in Example 2, along with the approximation lines for the comparative example and Example 1.
 なお、本実施例2においても基本的な構成は実施例1と同様であり、実施例1と同一又は対応する構成部分には同符号を付し、重複した説明は省略する。 The basic configuration of this second embodiment is the same as that of the first embodiment, and components that are the same as or correspond to those of the first embodiment are given the same reference numerals, and duplicated explanations will be omitted.
 本実施例2の回路基板1は、実施例1の放熱枠7の材質を純アルミニウム(A1050)に代えたものであり、図28はその結果である。 The circuit board 1 of this second embodiment is the same as that of the first embodiment, except that the material of the heat sink frame 7 is changed to pure aluminum (A1050), and Figure 28 shows the result.
 図28は、実施例1の図4と対応している。図28では、実施例1のデータ及び近似線L1、L2に加え実施例2のデータ及び近似線L3、L4を示した。L3は、実施例2に関する比較例の近似線であり、L4は、実施例2の近似線である。実施例2の近似線L3、L4は、実施例1の近似線L1、L2と同様な傾向を示した。  FIG. 28 corresponds to FIG. 4 of Example 1. In addition to the data and approximation lines L1 and L2 of Example 1, FIG. 28 shows the data and approximation lines L3 and L4 of Example 2. L3 is an approximation line of a comparative example related to Example 2, and L4 is an approximation line of Example 2. The approximation lines L3 and L4 of Example 2 showed the same tendency as the approximation lines L1 and L2 of Example 1.
 図29(A)は、実施例2-1の回路基板の断面図、寸法、熱伝導率、及び熱抵抗の解析結果を示す図表、図29(B)は、図29(A)の回路基板の温度分布を示す平面画像である。 Figure 29(A) is a diagram showing the cross-sectional view, dimensions, thermal conductivity, and thermal resistance analysis results of the circuit board of Example 2-1, and Figure 29(B) is a planar image showing the temperature distribution of the circuit board of Figure 29(A).
 図29(A)の熱抵抗の解析結果は、図28の近似線L4上の左側のデータに関するものである。図29(A)のように、実施例2の回路基板1の寸法等は、実施例1と同一である。一方、純アルミ板(放熱枠7)は、材質がA1050(回路パターン3とは異なる)の純アルミニウム、熱伝導率が220W/mKである。この放熱枠7の厚み、サイズの設定のよる放熱効果パラメーターは18.4であり、式(2)を満たす。 The thermal resistance analysis results in Figure 29 (A) relate to the data on the left side of the approximation line L4 in Figure 28. As shown in Figure 29 (A), the dimensions of the circuit board 1 in Example 2 are the same as those in Example 1. On the other hand, the pure aluminum plate (heat dissipation frame 7) is made of pure aluminum A1050 (different from the circuit pattern 3) and has a thermal conductivity of 220 W/mK. The heat dissipation effect parameter determined by the thickness and size settings of this heat dissipation frame 7 is 18.4, which satisfies formula (2).
 熱抵抗の解析は、熱量200W、基板底面の温度T銅ベースチップ下:20.0℃固定の条件下で行った。解析結果は、半導体チップ5の表面中央の点におけるTmax:147.7℃、この点に対応するベース9の裏面の点におけるT銅ベースチップ下:20.0℃となり、熱抵抗R:0.638KWである。熱抵抗は比較例1に対し2.4%減少した。このときの温度分布は、図29(B)に示す。 The thermal resistance analysis was performed under the conditions of a heat quantity of 200 W and a fixed temperature T of the bottom surface of the board under the copper base chip : 20.0°C. The analysis results were Tmax at the center point of the front surface of the semiconductor chip 5: 147.7°C, T at the corresponding point on the back surface of the base 9 under the copper base chip : 20.0°C, and thermal resistance R: 0.638 kW. The thermal resistance was reduced by 2.4% compared to Comparative Example 1. The temperature distribution at this time is shown in FIG. 29(B).
 図5(A)及び(B)、図29(A)及び(B)より明らかなように、放熱枠7の材質を純アルミニウムに代えた場合でも式(2)を満たすことで放熱性が向上した。 As is clear from Figures 5(A) and (B) and Figures 29(A) and (B), even when the material of the heat dissipation frame 7 was changed to pure aluminum, the heat dissipation performance was improved by satisfying formula (2).
 図30(A)は、実施例2-2に係る回路基板の熱抵抗の解析結果を示す図表、図30(B)は、図30(A)の回路基板の温度分布を示す平面画像である。 Fig. 30(A) is a diagram showing the analysis results of the thermal resistance of the circuit board in Example 2-2, and Fig. 30(B) is a planar image showing the temperature distribution of the circuit board in Fig. 30(A).
 図30(A)の熱抵抗の解析結果は、図28の近似線L4上の右側のデータに関するものである。この回路基板1では、純アルミ板(放熱枠7)のサイズを20×20mm(孔5.4×5.4mm)、厚みを2.0mmとし、図29の例に対しクリアランスを縮小変更すると共に放熱枠7の面積を外径側に増大させ且つ厚みを増した。この放熱枠7のクリアランスC、面積A、及び厚みTの変更による放熱効果パラメーターは152.6であり、式(2)を満たす。 The thermal resistance analysis results in Figure 30 (A) relate to the data on the right side of the approximation line L4 in Figure 28. In this circuit board 1, the size of the pure aluminum plate (heat dissipation frame 7) is 20 x 20 mm (hole 5.4 x 5.4 mm) and the thickness is 2.0 mm, and the clearance has been reduced compared to the example in Figure 29, while the area of the heat dissipation frame 7 has been increased toward the outer diameter and the thickness has been increased. The heat dissipation effect parameter resulting from the changes in clearance C, area A, and thickness T of this heat dissipation frame 7 is 152.6, which satisfies formula (2).
 この実施例2-2の解析結果は、Tmax:143.0℃、T銅ベースチップ下:20.0℃(固定)となり、熱抵抗R:0.615KWである。熱抵抗の変化率は、ΔR:0.023K/Wであり、熱抵抗は比較例1に対し5.9%減少した。このときの温度分布は、図30(B)に示す。 The analysis results of Example 2-2 are Tmax: 143.0°C, T copper base chip bottom : 20.0°C (fixed), and thermal resistance R: 0.615KW. The rate of change of thermal resistance is ΔR: 0.023K/W, and the thermal resistance is reduced by 5.9% compared to Comparative Example 1. The temperature distribution at this time is shown in FIG. 30(B).
 図5(A)及び(B)、図30(A)及び(B)より明らかなように、実施例2-2では、放熱枠7の材質を純アルミニウムに代えた場合でも式(2)を満たし、クリアランスを小さくし面積を外径側へ大きくすることで放熱性がさらに向上した。 As is clear from Figures 5(A) and (B) and Figures 30(A) and (B), in Example 2-2, even when the material of the heat dissipation frame 7 was changed to pure aluminum, formula (2) was satisfied, and the heat dissipation performance was further improved by reducing the clearance and increasing the area toward the outer diameter.
 図31(A)は、実施例2の比較例2-1に係る回路基板の熱抵抗の解析結果を示す図表、図31(B)は、図31(A)の回路基板の温度分布を示す平面画像である。 FIG. 31(A) is a graph showing the analysis results of the thermal resistance of the circuit board related to Comparative Example 2-1 of Example 2, and FIG. 31(B) is a planar image showing the temperature distribution of the circuit board in FIG. 31(A).
 図31(A)の熱抵抗の解析結果は、図28の近似線L3上の比較例のデータに関するものである。この回路基板1では、純アルミ板(放熱枠7)のサイズを10×10mm(孔7×7mm)、厚みを1.0mmとし、図29の例に対しクリアランスを拡大変更すると共に放熱枠7の面積を減少させた。この放熱枠7のクリアランス及び面積の変更による放熱効果パラメーターは7.1であり、式(2)は満たさない。 The thermal resistance analysis results in Figure 31 (A) relate to the data of the comparative example on the approximation line L3 in Figure 28. In this circuit board 1, the size of the pure aluminum plate (heat dissipation frame 7) is 10 x 10 mm (holes 7 x 7 mm) and the thickness is 1.0 mm, and the clearance has been enlarged and the area of the heat dissipation frame 7 has been reduced compared to the example in Figure 29. The heat dissipation effect parameter due to the changes in the clearance and area of this heat dissipation frame 7 is 7.1, which does not satisfy formula (2).
 この比較例の解析結果は、Tmax:149.3℃、T銅ベースチップ下:20.0℃(固定)となり、熱抵抗R:0.647KWである。熱抵抗の変化率は、ΔR:0.008K/Wであり、熱抵抗は比較例1に対し1.0%の減少に過ぎなかった。このときの温度分布は、図31(B)に示す。 The analysis results for this comparative example were Tmax: 149.3°C, T copper base chip bottom : 20.0°C (fixed), and thermal resistance R: 0.647KW. The rate of change in thermal resistance was ΔR: 0.008K/W, and the thermal resistance was only reduced by 1.0% compared to Comparative Example 1. The temperature distribution at this time is shown in FIG. 31(B).
 図5(A)及び(B)、図31(A)及び(B)より明らかなように、放熱枠7の材質を純アルミニウムに代えた場合でも、クリアランスを大きくし面積を減少させると、式(2)を満たさず、放熱性の向上は見られなかった。 As is clear from Figures 5(A) and (B) and Figures 31(A) and (B), even when the material of the heat dissipation frame 7 was changed to pure aluminum, increasing the clearance and decreasing the area did not satisfy formula (2), and no improvement in heat dissipation was observed.
 このように、放熱枠7の材質を変更しても同等の効果が得られ、また放熱枠7の材質を回路パターン3と異なるものとしても同等の効果が得られた。 In this way, the same effect was obtained even if the material of the heat dissipation frame 7 was changed, and the same effect was obtained even if the material of the heat dissipation frame 7 was different from that of the circuit pattern 3.
 図32~図34は、図29~図31にそれぞれ対応し、実施例2-3、2-4、及び比較例2-2を示している。図32~図34の解析においては、回路基板のその他の形状、構造、材質(放熱枠7の純アルミニウム)等に変更はない。放熱条件は、基板底面の熱伝達率がh=30000W/m2・Kで20℃中へ放置されたものである。 Figs. 32 to 34 correspond to Figs. 29 to 31, respectively, and show Examples 2-3, 2-4, and Comparative Example 2-2. In the analysis of Figs. 32 to 34, there are no changes to the other shapes, structures, materials (pure aluminum for heat sink frame 7), etc. of the circuit board. The heat dissipation conditions are that the heat transfer coefficient of the bottom surface of the board is h = 30,000 W/m2·K, and the board is left in a temperature of 20°C.
 図29(B)と図32(B)、図30(B)と図33(B)、図31(B)と図34(B)をそれぞれ比較すると、図34の比較例に対する図32及び図33の放熱結果が、図31の比較例に対する図29及び図30の放熱結果に対応したものとなった。 Comparing Fig. 29(B) with Fig. 32(B), Fig. 30(B) with Fig. 33(B), and Fig. 31(B) with Fig. 34(B), the heat dissipation results in Fig. 32 and Fig. 33 for the comparative example in Fig. 34 correspond to the heat dissipation results in Fig. 29 and Fig. 30 for the comparative example in Fig. 31.
 つまり、回路基板の基板底面を20℃に固定したもの、20℃中へ放置したものの何れにおいても、実施例2の放熱性の向上が得られた。 In other words, the improvement in heat dissipation of Example 2 was obtained whether the bottom surface of the circuit board was fixed at 20°C or left in 20°C.
 その他、本実施例2においても実施例1と同様の作用効果を得ることができる。 In addition, the same effects as those of Example 1 can be obtained in this Example 2.
1 回路基板
3 回路パターン
5 半導体チップ
7 放熱枠
9 金属基板
11 絶縁材
13 はんだ
A 面積
C クリアランス
T 厚み 

 
REFERENCE SIGNS LIST 1 Circuit board 3 Circuit pattern 5 Semiconductor chip 7 Heat sink frame 9 Metal board 11 Insulating material 13 Solder A Area C Clearance T Thickness

Claims (10)

  1.  絶縁基板上に備えた回路パターンと、
     前記回路パターン上に接合された電子部品と、
     前記回路パターン上に接合され前記電子部品に隣接して配置された放熱枠とを備え、
     前記放熱枠の下部における前記電子部品に対するクリアランスをC[mm]、前記放熱枠の下面の面積をA[mm]、及び前記放熱枠の前記回路パターンに対する厚みをT[mm]とした場合に、
     15.0≦A0.5×C-1.2×T0.2≦600
     を満たす、
     回路基板。
    A circuit pattern provided on an insulating substrate;
    an electronic component bonded onto the circuit pattern;
    a heat dissipation frame bonded onto the circuit pattern and disposed adjacent to the electronic component;
    When the clearance between the lower part of the heat dissipation frame and the electronic component is C [mm], the area of the lower surface of the heat dissipation frame is A [mm 2 ], and the thickness of the heat dissipation frame with respect to the circuit pattern is T [mm],
    15.0≦A 0.5 × C −1.2 × T 0.2 ≦600
    Fulfilling
    Circuit board.
  2.  請求項1の回路基板であって、
     前記放熱枠の材質は、銅又はアルミニウムである、
     回路基板。
    2. The circuit board of claim 1,
    The material of the heat sink frame is copper or aluminum.
    Circuit board.
  3.  請求項1又は2の回路基板であって、
     前記電子部品は、前記回路パターンに対してはんだにより接合され、
     前記放熱枠は、前記回路パターンの面方向で前記はんだに対向する、
     回路基板。
    3. The circuit board according to claim 1 or 2,
    the electronic component is joined to the circuit pattern by soldering;
    the heat dissipation frame faces the solder in a surface direction of the circuit pattern;
    Circuit board.
  4.  請求項1又は2の回路基板であって、
     前記放熱枠は、前記電子部品の位置決め枠である、
     回路基板。
    3. The circuit board according to claim 1 or 2,
    The heat dissipation frame is a positioning frame for the electronic component.
    Circuit board.
  5.  請求項1又は2の回路基板であって、
     前記放熱枠は、平面視における前記電子部品の中心を前記放熱枠の外形の中心に対してずらした枠形状とした、
     回路基板。
    3. The circuit board according to claim 1 or 2,
    The heat dissipation frame has a frame shape in which the center of the electronic component in a plan view is shifted from the center of the outer shape of the heat dissipation frame.
    Circuit board.
  6.  請求項1又は2の回路基板であって、
     前記放熱枠は、前記電子部品を複数内包する枠形状とした、
     回路基板。
    3. The circuit board according to claim 1 or 2,
    The heat dissipation frame has a frame shape that contains a plurality of the electronic components.
    Circuit board.
  7.  請求項1又は2の回路基板であって、
     前記放熱枠は、前記クリアランスを周方向において不均一の枠形状とした、
     回路基板。
    3. The circuit board according to claim 1 or 2,
    The heat dissipation frame has a frame shape in which the clearance is non-uniform in the circumferential direction.
    Circuit board.
  8.  請求項1又は2の回路基板であって、
     前記放熱枠は、環状の枠形状とした、
     回路基板。
    3. The circuit board according to claim 1 or 2,
    The heat dissipation frame has an annular frame shape.
    Circuit board.
  9.  請求項1又は2の回路基板であって、
     前記放熱枠は、厚みを周方向で異ならせた、
     回路基板。
    3. The circuit board according to claim 1 or 2,
    The heat dissipation frame has a thickness that varies in the circumferential direction.
    Circuit board.
  10.  請求項1又は2の回路基板の半製品であって、
     絶縁基板上に絶縁材を介して備えた回路パターンと、
     前記回路パターン上に接合されるべき電子部品の配置領域に隣接して配置された放熱枠とを備え、
     前記放熱枠の下部における前記配置領域に対するクリアランスをC[mm]、前記放熱枠の下面の面積をA[mm]、及び前記放熱枠の前記回路パターンに対する厚みをT[mm]とした場合に、
     15.0≦A0.5×C-1.2×T0.2≦600
     を満たす、
     回路基板の半製品。
     

     
    A semi-finished circuit board according to claim 1 or 2,
    A circuit pattern provided on an insulating substrate via an insulating material;
    a heat dissipation frame disposed adjacent to an area in which an electronic component to be bonded on the circuit pattern is to be disposed;
    If the clearance between the lower portion of the heat dissipation frame and the arrangement region is C [mm], the area of the lower surface of the heat dissipation frame is A [mm 2 ], and the thickness of the heat dissipation frame with respect to the circuit pattern is T [mm],
    15.0≦A 0.5 × C −1.2 × T 0.2 ≦600
    Fulfilling
    Semi-finished circuit board.


PCT/JP2023/031777 2022-11-29 2023-08-31 Circuit board and semi-fabricated product of same WO2024116516A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-190597 2022-11-29
JP2022190597 2022-11-29

Publications (1)

Publication Number Publication Date
WO2024116516A1 true WO2024116516A1 (en) 2024-06-06

Family

ID=91323334

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/031777 WO2024116516A1 (en) 2022-11-29 2023-08-31 Circuit board and semi-fabricated product of same

Country Status (1)

Country Link
WO (1) WO2024116516A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06177320A (en) * 1992-12-02 1994-06-24 Fujitsu Ltd Semiconductor device
JP2005277381A (en) * 2004-02-23 2005-10-06 Kyocera Corp Package for storing electronic component and electronic device
JP2011238648A (en) * 2010-05-06 2011-11-24 Toshiba Corp High power semiconductor package and manufacturing method thereof
JP2021125545A (en) * 2020-02-05 2021-08-30 富士電機株式会社 Semiconductor module and method for manufacturing semiconductor module

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06177320A (en) * 1992-12-02 1994-06-24 Fujitsu Ltd Semiconductor device
JP2005277381A (en) * 2004-02-23 2005-10-06 Kyocera Corp Package for storing electronic component and electronic device
JP2011238648A (en) * 2010-05-06 2011-11-24 Toshiba Corp High power semiconductor package and manufacturing method thereof
JP2021125545A (en) * 2020-02-05 2021-08-30 富士電機株式会社 Semiconductor module and method for manufacturing semiconductor module

Similar Documents

Publication Publication Date Title
TWI620289B (en) Power module substrate having heatsink, power module substrate having cooler, and power module
US20080296756A1 (en) Heat spreader compositions and materials, integrated circuitry, methods of production and uses thereof
US9269644B2 (en) Method for producing semiconductor device
US8637777B2 (en) Power module substrate having heatsink, method for manufacturing the same, power module having heatsink, and power module substrate
US7813135B2 (en) Semiconductor device
KR101188150B1 (en) Cooling device
WO2015033724A1 (en) Power semiconductor module
US20070000643A1 (en) Heat sink
US20030178181A1 (en) Heat sink with fins
JP2007335663A (en) Semiconductor module
EP3358615B1 (en) Silicon nitride circuit board and semiconductor module using same
JP2001110956A (en) Cooling equipment for electronic component
US8076771B2 (en) Semiconductor device having metal cap divided by slit
JP2020088074A (en) Power semiconductor device
WO2016042903A1 (en) Semiconductor module
JP2004022973A (en) Ceramic circuit board and semiconductor module
WO2024116516A1 (en) Circuit board and semi-fabricated product of same
JP2002289750A (en) Multi-chip module and its radiation structure
US11195776B2 (en) Power module substrate and power module
JP2008124187A (en) Base for power module
EP1601012A2 (en) Microelectronic assembly having variable thickness solder joint
JP2010206090A (en) Semiconductor device
TW202423206A (en) Circuit substrates and semi-finished products
JP4876612B2 (en) Insulated heat transfer structure and power module substrate
WO2023171019A1 (en) Insulated circuit board with integrated heat sink, and electronic device