WO2024114550A1 - 一种位置确定方法及装置 - Google Patents

一种位置确定方法及装置 Download PDF

Info

Publication number
WO2024114550A1
WO2024114550A1 PCT/CN2023/134181 CN2023134181W WO2024114550A1 WO 2024114550 A1 WO2024114550 A1 WO 2024114550A1 CN 2023134181 W CN2023134181 W CN 2023134181W WO 2024114550 A1 WO2024114550 A1 WO 2024114550A1
Authority
WO
WIPO (PCT)
Prior art keywords
network device
network
network devices
delay
pilot signal
Prior art date
Application number
PCT/CN2023/134181
Other languages
English (en)
French (fr)
Inventor
成卫东
尤览
沈宇祥
付方洋
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2024114550A1 publication Critical patent/WO2024114550A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W64/00Locating users or terminals or network equipment for network management purposes, e.g. mobility management
    • H04W64/003Locating users or terminals or network equipment for network management purposes, e.g. mobility management locating network equipment
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L43/00Arrangements for monitoring or testing data switching networks
    • H04L43/08Monitoring or testing based on specific metrics, e.g. QoS, energy consumption or environmental parameters
    • H04L43/0852Delays
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/02Services making use of location information
    • H04W4/029Location-based management or tracking services
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W64/00Locating users or terminals or network equipment for network management purposes, e.g. mobility management

Definitions

  • the present application relates to the field of communications, and in particular to a method and device for determining a position.
  • the operation and maintenance personnel can find the control node of the control room base station based on the information recorded by the construction team during the installation process, and then find the location of the indoor base station from the interface of the control node.
  • an embodiment of the present application provides a location determination method, which can be applied to a first network device (for example, a device or chip of the first network device).
  • the first network device sends first information and second information to each second network device among multiple second network devices, the first information is used to instruct the second network device to determine the first delay of the pilot signal through the sending channel and the receiving channel of the second network device, and the second information is used to instruct the second network device to send a pilot signal to one or more third network devices, and receive a pilot signal from one or more third network devices.
  • the first network device receives the first delay of each second network device, and one or more second delays, and each second delay of each second network device is the delay of the pilot signal from the sending channel of each third network device to the receiving channel of the second network device.
  • the first network device determines the location information of each second network device based on the air interface delay between each second network device.
  • the third network device is a network device other than the second network device among the plurality of second network devices, and the air interface delay between the second network devices is determined based on the first delay of each second network device and one or more second delays.
  • a first network device sends first information and second information to each second network device in one or more second network devices, so that the first network device can obtain a first delay determined by each second network device according to a pilot signal, and one or more second delays determined by receiving the pilot signal, and then the first network device can determine the location information of each second network device according to the air interface delay between each second network device, and the air interface delay between each second network device is determined based on the first delay and one or more second delays of each second network device.
  • the first network device can determine the location information of each second network device among the plurality of second network devices through the first delay and one or more second delays fed back by each second network device. Compared with the method of determining the location information of each second network device through manual measurement, this method can improve the efficiency of determining the location information of the plurality of second network devices and improve the accuracy of the location information of each second network device.
  • the second information is specifically used to instruct the second network device to use different first beams in multiple first time slots to send pilot signals to each third network device in one or more third network devices, and to use different second beams in multiple second time slots to receive pilot signals from each third network device.
  • This method is conducive to each second network device sending a pilot signal to each third network device in one or more third network devices, using different first beams in multiple first time slots to send the pilot signal to the third network device; and is conducive to each second network device receiving a pilot signal from each third network device, using different second beams in multiple second time slots to receive the pilot signal from the third network device.
  • This is conducive to improving the beam gain of each second network device sending and receiving pilot signals, that is, improving the air interface quality of the wireless link between each second network device, and further conducive to improving the accuracy of the location information of each second network device.
  • the second information is specifically used to instruct the second network device to use different first time slots respectively.
  • a beam sends a pilot signal to each third network device in one or more third network devices, and different second beams are used to receive the pilot signal from each third network device in multiple second time slots
  • the second delays of each second network device are specifically the delays corresponding to the optimal beam pair
  • the optimal beam pair is the beam pair with the largest receiving signal-to-noise ratio among the multiple first beams and the multiple second beams.
  • the first network device may also receive beam information of one or more optimal beam pairs of each second network device. This method is beneficial for the first network device to determine the location information of each second network device by combining the beam information of one or more optimal beam pairs of each second network device, thereby improving the accuracy of the location information of each second network device.
  • the first network device determines the location information of each second network device according to the air interface delay between each second network device, including: determining the distance between each two second network devices according to the air interface delay between each second network device; determining the location information of each second network device according to the distance between each two second network devices and the location information of one or more fourth network devices.
  • the fourth network device is a network device with known location information among the multiple second network devices.
  • the first network device determines the distance between each two second network devices based on the air interface delay between the second network devices, it can determine the location information of each remaining second network device based on the known location information of a small number of second network devices, thereby improving the efficiency of determining the location information of multiple second network devices.
  • the first network device determines the location information of each second network device based on the distance between each two second network devices and the location information of one or more fourth network devices, including: determining the spatial topological structure between multiple second network devices based on the distance between each two second network devices and the beam information of the optimal beam pair of each second network device; determining the location information of each second network device based on the distance between each two second network devices, the spatial topological structure, and the location information of one or more fourth network devices.
  • the first network device may also compensate for the delay of a receiving channel between each two second network devices among the multiple second network devices based on the first delay and the second delay of the multiple second network devices; and determine the air interface delay between each second network device based on the compensated delay of the receiving channel between each two second network devices.
  • the first network device may also determine the second network device corresponding to each of the multiple logical ports according to the multiple logical ports of the fifth network device, and the fifth network device is a network device that controls the multiple second network devices. This method is conducive to improving the efficiency of finding faulty second network devices during the subsequent operation and maintenance of the multiple second network devices.
  • the present application also provides a location determination method, which corresponds to the location determination method described in the first aspect, and is described from the second network device side (applicable to the device or chip of the second network device).
  • the second network device receives first information and second information, the first information is used to indicate that the second network device determines the first delay of the pilot signal through the sending channel and the receiving channel of the second network device, and the second information is used to indicate that the second network device sends a pilot signal to one or more third network devices, and receives a pilot signal from one or more third network devices.
  • the second network device determines the first delay based on the pilot signal.
  • the second network device sends a pilot signal to one or more third network devices.
  • the second network device receives the pilot signal from one or more third network devices and determines one or more second delays.
  • the second network device sends the first delay, and one or more second delays.
  • the third network device is a network device other than the second network device among the multiple second network devices, and each second delay in the one or more second delays is a delay of the pilot signal from the sending channel of each third network device to the receiving channel of the second network device.
  • the second network device receives the first information and the second information, determines the first delay according to the pilot signal, and determines one or more second delays by receiving the pilot signal, and then feeds back the first delay and one or more second delays to the first network device.
  • This is conducive to the second network device determining the location information of each second network device according to the air interface delay between the second network devices, and the air interface delay between the second network devices is determined according to the first delay and one or more second delays of each second network device, which is conducive to improving the efficiency of determining the location information of multiple second network devices.
  • the second information is specifically used to instruct the second network device to use different first beams in multiple first time slots to send pilot signals to each third network device in one or more third network devices, and to use different second beams in multiple second time slots to receive pilot signals from each third network device.
  • the second network device sends a pilot signal to one or more third network devices, including: using different first beams in multiple first time slots to send a pilot signal to each of the one or more third network devices.
  • the second network device receives a pilot signal from one or more third network devices, including: using different second beams in multiple second time slots to receive a pilot signal from each third network device.
  • each second delay of the second network device is specifically a delay corresponding to an optimal beam pair
  • the optimal beam pair is a beam pair with the largest received signal-to-noise ratio among the multiple first beams and the multiple second beams. This method is conducive to improving the accuracy of one or more second delays. This helps to improve the accuracy of the location information of each second network device.
  • the second network device may also send beam information of one or more optimal beam pairs. This method is beneficial for the first network device to determine the location information of each second network device by combining the beam information of one or more optimal beam pairs of the second network device, thereby improving the accuracy of the location information of each second network device.
  • the present application also provides a communication device.
  • the communication device has the function of implementing some or all of the functions of the first network device described in the first aspect above, or implementing some or all of the functions of the second network device described in the second aspect above.
  • the functions of the communication device may have the functions of some or all of the embodiments of the first network device described in the first aspect of the present application, or may have the functions of implementing any one of the embodiments of the present application separately.
  • the functions may be implemented by hardware, or may be implemented by hardware executing corresponding software.
  • the hardware or software includes one or more units or modules corresponding to the above functions.
  • the structure of the communication device may include a processing unit and a communication unit, and the processing unit is configured to support the communication device to perform the corresponding functions in the above method.
  • the communication unit is used to support communication between the communication device and other communication devices.
  • the communication device may also include a storage unit, which is used to couple with the processing unit and the communication unit, and store the necessary program instructions and data of the communication device.
  • the communication device includes: a processing unit and a communication unit;
  • the communication unit is used to send the first information and the second information to each second network device in the plurality of second network devices;
  • the first information is used to instruct the second network device to determine a first delay of a pilot signal passing through a sending channel and a receiving channel of the second network device;
  • the second information is used to instruct the second network device to send the pilot signal to one or more third network devices, and receive the pilot signal from the one or more third network devices;
  • the third network device is a network device other than the second network device among the plurality of second network devices;
  • the communication unit is further configured to receive a first delay of each second network device and one or more second delays; each second delay of each second network device is a delay of the pilot signal from a sending channel of each third network device to a receiving channel of the second network device;
  • the processing unit is used to determine the location information of each second network device according to the air interface delay between the second network devices; the air interface delay between the second network devices is determined based on the first delay of each second network device and the one or more second delays.
  • the communication device includes: a processing unit and a communication unit;
  • the communication unit is used to receive first information and second information; the first information is used to instruct the second network device to determine a first delay of a pilot signal passing through a sending channel and a receiving channel of the second network device; the second information is used to instruct the second network device to send the pilot signal to one or more third network devices, and receive the pilot signal from the one or more third network devices; the third network device is a network device other than the second network device among the plurality of second network devices;
  • the processing unit is configured to determine the first time delay according to the pilot signal
  • the communication unit is further configured to send the pilot signal to the one or more third network devices;
  • the processing unit is further configured to receive the pilot signal from the one or more third network devices and determine one or more second delays; each second delay in the one or more second delays is a delay of the pilot signal from a sending channel of each third network device to a receiving channel of the second network device;
  • the communication unit is further configured to send the first time delay and the one or more second time delays.
  • the communication unit may be a transceiver or a communication interface
  • the storage unit may be a memory
  • the processing unit may be a processor
  • the communication device includes: a processor and a transceiver
  • the transceiver is used to send the first information and the second information to each second network device in the plurality of second network devices;
  • the first information is used to instruct the second network device to determine a first delay of a pilot signal passing through a sending channel and a receiving channel of the second network device;
  • the second information is used to instruct the second network device to send the pilot signal to one or more third network devices, and receive the pilot signal from the one or more third network devices;
  • the third network device is a network device other than the second network device among the plurality of second network devices;
  • the transceiver is further configured to receive a first delay of each second network device and one or more second delays; each second delay of each second network device is a delay of the pilot signal from a sending channel of each third network device to a receiving channel of the second network device;
  • the processor is used to determine the location information of each second network device according to the air interface delay between the second network devices;
  • the air interface delay between the second network devices is determined based on the first delay of each second network device and the one or more second delays.
  • the communication device includes: a processor and a transceiver
  • the transceiver is used to receive first information and second information; the first information is used to instruct the second network device to determine a first delay of a pilot signal passing through a sending channel and a receiving channel of the second network device; the second information is used to instruct the second network device to send the pilot signal to one or more third network devices, and receive the pilot signal from the one or more third network devices; the third network device is a network device other than the second network device among the plurality of second network devices;
  • the processor is configured to determine the first time delay according to the pilot signal
  • the transceiver is further configured to send the pilot signal to the one or more third network devices;
  • the processor is further configured to receive the pilot signal from the one or more third network devices and determine one or more second delays; each second delay in the one or more second delays is a delay of the pilot signal from a sending channel of each third network device to a receiving channel of the second network device;
  • the transceiver is further configured to send the first time delay and the one or more second time delays.
  • the communication device is a chip or a chip system.
  • the processing unit may also be embodied as a processing circuit or a logic circuit; the communication unit may be an input/output interface, an interface circuit, an output circuit, an input circuit, a pin or a related circuit on the chip or the chip system.
  • the processor can be used to perform, for example, but not limited to, baseband related processing
  • the transceiver can be used to perform, for example, but not limited to, radio frequency transceiver.
  • the above-mentioned devices can be respectively arranged on chips independent of each other, or at least partially or completely arranged on the same chip.
  • the processor can be further divided into an analog baseband processor and a digital baseband processor.
  • the analog baseband processor can be integrated with the transceiver on the same chip, and the digital baseband processor can be arranged on an independent chip. With the continuous development of integrated circuit technology, more and more devices can be integrated on the same chip.
  • a digital baseband processor can be integrated with a variety of application processors (such as but not limited to a graphics processor, a multimedia processor, etc.) on the same chip.
  • application processors such as but not limited to a graphics processor, a multimedia processor, etc.
  • SoC system on a chip
  • the embodiment of the present application does not limit the implementation form of the above-mentioned devices.
  • the present application also provides a processor for executing the above-mentioned various methods.
  • the process of sending the above-mentioned information and receiving the above-mentioned information in the above-mentioned methods can be understood as the process of the processor outputting the above-mentioned information and the process of the processor receiving the above-mentioned information input.
  • the processor When outputting the above-mentioned information, the processor outputs the above-mentioned information to the transceiver so that it can be transmitted by the transceiver. After being output by the processor, the above-mentioned information may also need to be processed in other ways before it reaches the transceiver.
  • the transceiver receives the above-mentioned information and inputs it into the processor. Furthermore, after the transceiver receives the above-mentioned information, the above-mentioned information may need to be processed in other ways before it is input into the processor.
  • the processor may be a processor specifically used to execute these methods, or may be a processor that executes computer instructions in a memory to execute these methods, such as a general-purpose processor.
  • the memory may be a non-transitory memory, such as a read-only memory (ROM), which may be integrated with the processor on the same chip or may be separately arranged on different chips.
  • ROM read-only memory
  • the present application further provides a communication system, which includes a network device and a terminal device.
  • the system may also include other devices that interact with the network device and the terminal device.
  • the first network device in the embodiment of the present application is a network device in the communication system, and the second network device is an indoor base station.
  • the present application provides a computer-readable storage medium for storing instructions, which, when executed by a computer, implements the method described in the first or second aspect above.
  • the present application also provides a computer program product comprising instructions, which, when executed on a computer, implements the method described in the first or second aspect above.
  • the present application provides a chip system, the chip system comprising a processor and an interface, the interface being used to obtain a program or instruction, the processor being used to call the program or instruction to implement or support a first network device to implement the function involved in the first aspect, or to implement or support a second network device to implement the function involved in the second aspect.
  • the chip system further includes a memory, and the memory is used to store program instructions and data necessary for the first network device.
  • the chip system can be composed of a chip, or can include a chip and other discrete devices.
  • the present application provides a communication device, comprising a processor for executing a computer program or executable instructions stored in a memory, so that when the computer program or executable instructions are executed, the device executes a method in each possible implementation of the first aspect or the second aspect.
  • the processor and the memory are integrated together;
  • the memory is located outside the communication device.
  • the beneficial effects of the third to ninth aspects can refer to the beneficial effects of the first to second aspects, and will not be repeated here.
  • FIG1 is a schematic diagram of a system structure of a communication system provided in an embodiment of the present application.
  • FIG2 is a schematic diagram of measuring signal strength at N points near a pRRU to be measured provided by an embodiment of the present application;
  • FIG3a is a schematic diagram of a connection between a pre-planned RHUB and a pRRU provided in an embodiment of the present application;
  • FIG3b is a schematic diagram of an actual physical connection between a RHUB and a pRRU provided in an embodiment of the present application;
  • FIG4 is an interactive diagram of a method for determining location information provided by an embodiment of the present application.
  • FIG5 is a schematic diagram of interaction between a first network device and a pRRU provided in an embodiment of the present application
  • FIG6 is a schematic diagram of another interaction between a first network device and a pRRU provided in an embodiment of the present application.
  • FIG7 is a schematic diagram of a spatial topology structure between multiple pRRUs provided in an embodiment of the present application.
  • FIG8 is a schematic diagram of determining pRRU-1 corresponding to logical port 1 provided in an embodiment of the present application
  • FIG9 is a schematic diagram of another system architecture provided in an embodiment of the present application.
  • FIG. 10 is a schematic diagram of an interaction between a first network device and a plurality of pRRUs provided in an embodiment of the present application;
  • FIG11 is a schematic diagram of the structure of a communication device provided in an embodiment of the present application.
  • FIG. 12 is a schematic diagram of the structure of another communication device provided in an embodiment of the present application.
  • a wireless communication system may include one or more network devices and one or more terminal devices.
  • a wireless communication system may also perform point-to-point communication, such as communication between multiple terminal devices.
  • the wireless communication systems mentioned in the embodiments of the present application include but are not limited to: narrowband Internet of Things (NB-IoT) system, long LTE system, three major application scenarios of 5G/6G mobile communication systems: enhanced mobile broadband (eMBB), ultra-reliable low latency communication (URLLC) and massive machine type communication (mMTC), wireless fidelity (WiFi) system, etc.
  • NB-IoT narrowband Internet of Things
  • eMBB enhanced mobile broadband
  • URLLC ultra-reliable low latency communication
  • mMTC massive machine type communication
  • WiFi wireless fidelity
  • the network device is a device with wireless transceiver functions, which is used to communicate with a terminal device. It can be an evolved base station (evolved Node B, eNB or eNodeB) in LTE, or a base station in a 5G/6G network or a base station in a future evolved public land mobile network (public land mobile network, PLMN), a broadband network service gateway (broadband network gateway, BNG), an aggregation switch or a non-third generation partnership project (3rd generation partnership project, 3GPP) access device, etc.
  • eNB evolved Node B
  • eNodeB evolved public land mobile network
  • BNG broadband network gateway
  • 3GPP non-third generation partnership project
  • the network device in the embodiment of the present application may include various forms of base stations, such as: macro base stations, micro base stations (also called small stations), relay stations, access points, devices that realize base station functions in the future, access points (AP) in WiFi systems, transmission and receiving points (TRP), transmitting points (TP), mobile switching centers, and devices to devices (D2D), vehicle-to-everything (V2X), and machine-to-machine (M2M) communications that assume base station functions, devices that realize base station functions in communication systems that evolve after 5G, integrated access and backhaul (IAB), and may also include centralized units (CU) and distributed units (DU) in cloud access networks (C-RAN) systems, and network devices in non-terrestrial networks (NTN) communication systems, that is, they can be deployed on high-altitude platforms or satellites, and may also be various types of devices that constitute access nodes, such as active antenna processing units (active antenna processing units). unit, AAU), baseband unit (baseband unit, BBU), etc., this application implements
  • Network devices can communicate and interact with core network devices to provide communication services to terminal devices.
  • Core network devices are, for example, devices in the 5G network core network (CN).
  • CN 5G network core network
  • the core network provides an interface to the data network, provides communication connection, authentication, management, policy control, and data service bearing for the terminal.
  • the terminal devices involved in the embodiments of the present application may include various handheld devices with wireless communication functions, vehicle-mounted devices, wearable devices, computing devices or other processing devices connected to a wireless modem.
  • the terminal device may also be referred to as a terminal.
  • the terminal device may also refer to user equipment (UE), access terminal, subscriber unit, user agent, cellular phone, smart phone, wireless data card, personal digital assistant (PDA) computer, tablet computer, wireless modem, handheld device (handset), laptop computer, smart point of sale (POS) machine, customer-premises equipment (CPE), machine type communication (MTC) terminal, communication equipment carried on high-altitude aircraft , wearable devices, drones, robots, terminals in D2D, terminals in vehicle to everything (V2X), virtual reality (VR) terminal equipment, augmented reality (AR) terminal equipment, wireless terminals in industrial control, wireless terminals in self driving, wireless terminals in remote medical, wireless terminals in smart grid, wireless terminals in transportation safety, wireless terminals in smart city, wireless terminals in smart home or terminal
  • the embodiment of the present application is applicable to a communication scenario including a first network device and multiple second network devices.
  • the first network device may be a network device in the above-mentioned wireless communication system, and the first network device may be regarded as a base station control unit, which may implement base station control instruction sending and signal processing.
  • the second network device is an indoor base station, such as a pico remote radio unit (pRRU), which is used for the radio remote unit of the indoor base station to implement the radio frequency signal processing function.
  • pRRU pico remote radio unit
  • the embodiments of the present application can also be applied to the scenario of calculating the deployment positions of multiple radars in a radar networking system.
  • RHUB Remote Radio Unit Hub
  • the operation and maintenance personnel can also carry the test equipment along the pre-designed test route to measure the signal strength at multiple points near the pRRU to be tested to determine the location information of the pRRU to be tested.
  • Figure 2 is a schematic diagram of measuring the signal strength at N points near the pRRU to be tested. Based on the strength of the received signal tested and the empirical model of the spatial path loss, the operation and maintenance personnel calculate the distance information between different test points and the pRRU to be tested, and then determine the location information of the pRRU to be tested through a multi-point distance positioning method based on the position coordinates of the test points recorded by the test equipment. The process of determining the location information of the pRRU to be tested depends on the empirical model of the spatial path loss. If the air interface channel environment near the pRRU to be tested has a large matching error with the empirical model of the spatial path loss, a large error will be generated in the location of the pRRU to be tested.
  • Operation and maintenance personnel can also use ranging instruments to measure the distance from each pRRU to be tested to the reference origin (a reference point in the environment) or reference surface (a reference surface in the environment) to complete the calibration of the pRRU position coordinates.
  • This measurement method is time-consuming, costly, inefficient, and prone to human operation errors, making it impossible to achieve site automation operation and maintenance.
  • FIG3a is a schematic diagram of the pre-planned connection between the RHUB and the pRRU.
  • FIG3a in the pre-planned connection relationship between the RHUB and the pRRU, the logical port 1 of the RHUB is connected to the pRRU-1 in the logical cell-1, the logical port 2 of the RHUB is connected to the pRRU-2 in the logical cell-1, the logical port 3 of the RHUB is connected to the pRRU-3 in the logical cell-2, and the logical port 4 of the RHUB is connected to the pRRU-4 in the logical cell-2.
  • FIG3b is a schematic diagram of the actual physical connection between the RHUB and the pRRU.
  • the logical port 1 of the RHUB is connected to the pRRU-1 in the logical cell-1
  • the logical port 2 of the RHUB is connected to the pRRU-3 in the logical cell-1
  • the logical port 3 of the RHUB is connected to the pRRU-2 in the logical cell-2
  • the logical port 4 of the RHUB is connected to the pRRU-4 in the logical cell-2.
  • the embodiment of the present application provides a method for determining location information.
  • a second network device sends first information and second information to each second network device in a plurality of second network devices, wherein the first information is used to instruct the second network device to determine that a pilot signal passes through the second network device.
  • the first delay of the sending channel and the receiving channel of the second network device, and the second information is used to instruct the second network device to send a pilot signal to one or more third network devices, and receive a pilot signal from one or more third network devices.
  • Each second network device in the multiple second network devices receives the first information and the second information.
  • Each second network device determines the first delay according to the pilot signal, and determines one or more second delays by receiving the pilot signal.
  • Each second network device feeds back the first delay of the second network device, and one or more second delays to the first network device.
  • the first network device determines the location information of each second network device according to the air interface delay between each second network device, and the air interface delay between each second network device is determined according to the first delay and one or more second delays of each second network device.
  • the first network device can determine the location information of each second network device among the plurality of second network devices through the first delay and one or more second delays fed back by each second network device. Compared with the method of determining the location information of each second network device through manual measurement, this method can improve the efficiency of determining the location information of the plurality of second network devices and improve the accuracy of the location information of each second network device.
  • FIG4 is an interactive schematic diagram of the method for determining location information.
  • the method for determining location information is described from the perspective of the interaction between a first network device and a plurality of second network devices.
  • the method for determining location information includes but is not limited to the following steps:
  • a first network device sends first information and second information to each of a plurality of second network devices, wherein the first information is used to instruct the second network device to determine a first delay of a pilot signal passing through a sending channel and a receiving channel of the second network device, and the second information is used to instruct the second network device to send a pilot signal to one or more third network devices, and receive a pilot signal from one or more third network devices. Accordingly, each of the plurality of second network devices receives the first information and the second information.
  • the third network device is a network device other than the second network device among the plurality of second network devices.
  • Each of the plurality of second network devices includes a sending channel and a receiving channel, the sending channel is used to send signals, and the receiving channel is used to receive signals.
  • the first delay is the delay of the pilot signal passing through the sending channel and the receiving channel of the second network device, that is, the first delay is the delay of the second network device sending the pilot signal to its receiving channel through its own sending channel.
  • FIG5 is a schematic diagram of the interaction between the plurality of second network devices including pRRU-1 and pRRU-2, the first network device including a control module, and the control module of the first network device and pRRU-1 and pRRU-2.
  • the first network device sends the first information and the second information to pRRU-1 and pRRU-2 through the control module.
  • the transmission channel delays of pRRU-1 and pRRU-2 are T 1 and T 2 , respectively
  • the reception channel delays of pRRU-1 and pRRU-2 are R 1 and R 2 , respectively
  • the self-loopback air interface delays of pRRU-1 and pRRU-2 are C 1 and C 2 , respectively.
  • the self-loopback air interface delay of pRRU-1 refers to the delay when the pilot signal circulates inside pRRU-1
  • the self-loopback air interface delay of pRRU-2 refers to the delay when the pilot signal circulates inside pRRU-2.
  • the first delay is the delay of the pilot signal passing through the sending channel and receiving channel of the second network device, which can also be understood as the delay of the pilot signal passing through the sending channel, self-loopback air interface and receiving channel of the second network device, and the self-loopback air interface is the air interface where the pilot signal flows inside the second network device.
  • the delay of the pilot signal passing through the sending channel, self-loopback air interface and receiving channel of pRRU-1 is T1 + C1 + R1 ;
  • the delay of the pilot signal passing through the sending channel, self-loopback air interface and receiving channel of pRRU-2 is T2 + C2 + R2 .
  • the first network device sends the first information to each second network device, which helps each second network device determine the first delay based on the pilot signal, and further helps the first network device obtain the first delay of each second network device required to determine the location information of each second network device.
  • the second information sent by the first network device to each second network device is used to instruct the second network device to send a pilot signal to one or more third network devices, and to receive a pilot signal from one or more third network devices. It can be understood that the second information of each second network device is used to instruct the second network device to send a pilot signal to a network device other than the second network device among multiple second network devices, and to receive a pilot signal from a network device other than the second network device among multiple second network devices.
  • This method allows the first network device to control each second network device among multiple second network devices to send a pilot signal to each other, thereby facilitating each second network device to determine the second delay by receiving a pilot signal from other network devices, and further facilitating the first network device to obtain one or more second delays of each second network device required for determining the location information of each second network device.
  • the plurality of second network devices include pRRU-1, pRRU-2, and pRRU-3.
  • the second information sent by the first network device to pRRU-1 is used to instruct pRRU-1 to send a pilot signal to pRRU-2 and pRRU-3, and to receive a pilot signal from pRRU-2 and pRRU-3;
  • the second information sent by the first network device to pRRU-2 is used to instruct pRRU-2 to send a pilot signal to pRRU-1 and pRRU-3, and to receive a pilot signal from pRRU-1 and pRRU-3;
  • the second information sent by the first network device to pRRU-3 is used to instruct pRRU-3 to send a pilot signal to pRRU-1 and pRRU-2, and to receive a pilot signal from pRRU-1 and pRRU-2.
  • each of the plurality of second network devices is pre-configured with a plurality of directional beams
  • the multiple directional beams of the second network devices include multiple first beams and multiple second beams.
  • each second network device can send and receive signals through multiple directional beams, which can improve the beam gain of each second network device for transmitting and receiving signals, that is, improve the air interface quality of the wireless link between each second network device.
  • the second information is specifically used to instruct the second network device to use different first beams in a plurality of first time slots to send a pilot signal to each of the one or more third network devices, and to use different second beams in a plurality of second time slots to receive a pilot signal from each third network device.
  • the first network device controls each second network device through the second information to send a pilot signal to each of the one or more third network devices, and uses different first beams to send the pilot signal to the third network device in multiple first time slots; and when receiving the pilot signal from each third network device, uses different second beams to receive the pilot signal from the third network device in multiple second time slots.
  • FIG6 is a schematic diagram of a first network device including a control module, and the first network device sends the second information to pRRU-1 through the control module.
  • the pRRU-1 is configured with directional beams in four directions, directional beam 1, directional beam 2, directional beam 3, and directional beam 4.
  • the first network device can send the second information to pRRU-1 through the control module to control pRRU-1 to use different directional beams to send pilot signals and receive pilot signals in different time slots.
  • the second information is used to instruct pRRU-1 to use directional beam 1, directional beam 2, directional beam 3, and directional beam 4 to send pilot signals to pRRU-2 in different time slots, and to use directional beam 1, directional beam 2, directional beam 3, and directional beam 4 to receive pilot signals from pRRU-2 in different time slots.
  • the plurality of second network devices include pRRU-1, pRRU-2, and pRRU-3.
  • the third network devices are pRRU-2 and pRRU-3, and the first network device indicates to pRRU-1 through the second information that beam 1 and beam 2 are used to send pilot signals to pRRU-2 in time slot 1 and time slot 2, respectively, and beam 3 and beam 4 are used to receive pilot signals from pRRU-2 in time slot 3 and time slot 4, respectively; and beam 1 and beam 2 are used to send pilot signals to pRRU-3 in time slot 5 and time slot 6, respectively, and beam 3 and beam 4 are used to receive pilot signals from pRRU-3 in time slot 7 and time slot 8, respectively.
  • the first network device controls each second network device through the second information to use different first beams in multiple first time slots to send pilot signals to the third network device, and to use different second beams in multiple second time slots to receive pilot signals from the third network device.
  • This allows each second network device to determine one or more second time delays based on the principle of maximizing the received signal-to-noise ratio, which is beneficial to improving the calculation accuracy of the distance between the second network devices, and further beneficial to improving the accuracy of the location information of each second network device.
  • first information and the second information may be different control information or the same control information, which is not limited in the present embodiment.
  • the first information and the second information may be understood as control signaling sent by the first network device to each second network device.
  • the second network device determines a first delay according to the pilot signal.
  • the second network device is any one of a plurality of second network devices.
  • the first information of each second network device is used to instruct the second network device to determine the first delay of the pilot signal passing through the sending channel and the receiving channel of the second network device, so that each second network device in the multiple second network devices determines the first delay according to the pilot signal.
  • the second network device determines the first delay according to the pilot signal, including: allowing the pilot signal to pass through a sending channel and a receiving channel of the second network device, and determining the first delay according to the time when the pilot signal is sent from the sending channel of the second network device and the time when the pilot signal is received through the receiving channel.
  • the first delay can also be understood as the time length of the pilot signal from the transmission channel of the second network device to the receiving channel of the second network device.
  • each second network device determines the time length of the pilot signal from the transmission channel of the second network device to the receiving channel of the second network device as the first delay of the second network device.
  • the second network device sends a pilot signal to one or more third network devices.
  • each second network device sends a pilot signal to network devices other than the second network device among the plurality of second network devices, so that each second network device receives pilot signals from other network devices among the plurality of second network devices.
  • the multiple second network devices include pRRU-1, pRRU-2 and pRRU-3, pRRU-1 sends a pilot signal to pRRU-2 and pRRU-3, pRRU-2 sends a pilot signal to pRRU-1 and pRRU-3, and pRRU-3 sends a pilot signal to pRRU-1 and pRRU-2.
  • the second network device sends a pilot signal to one or more third network devices, including: using different first beams in multiple first time slots to send the pilot signal to each of the one or more third network devices. That is, the second network device uses different first beams in different time slots to send the pilot signal to each third network device.
  • the plurality of second network devices include pRRU-1, pRRU-2, and pRRU-3.
  • the third network devices are pRRU-2 and pRRU-3, pRRU-1 uses beam 1 and beam 2 to send pilot signals to pRRU-2 in time slot 1 and time slot 2, respectively, and The pilot signal is sent to pRRU-3 using beam 1 and beam 2 in time slots 5 and 6 respectively.
  • the second network device receives a pilot signal from one or more third network devices, and determines one or more second delays, wherein each second delay in the one or more second delays is a delay of the pilot signal from a sending channel of each third network device to a receiving channel of the second network device.
  • Each second network device sends a pilot signal to network devices other than the second network device among the multiple second network devices, so that each second network device can receive a pilot signal from a network device other than the second network device among the multiple second network devices, that is, each second network device can receive a pilot signal from one or more third network devices.
  • Each second delay of each second network device is the delay of the pilot signal from the transmission channel of the third network device to the receiving channel of the second network device, which can be understood as: each second delay is the time length of the pilot signal from the transmission channel of each third network device to the reception of the second network device.
  • each second network device can determine the second delay of receiving the pilot signal from the third network device by the time when each third network device sends the pilot signal to the second network device and the time when the pilot signal is received from the third network device.
  • Each second network device can receive the pilot signal from one or more third network devices, so each second network can determine one or more second delays.
  • the plurality of second network devices include pRRU-1, pRRU-2, and pRRU-3.
  • pRRU-1 may determine the second delay #1 according to the time when pRRU-2 sends a pilot signal to pRRU-1, and the time when the pilot signal is received from pRRU-2.
  • pRRU-1 may also determine the second delay #2 according to the time when pRRU-3 sends a pilot signal to pRRU-1, and the time when the pilot signal is received from pRRU-3.
  • pRRU-2 and pRRU-3 may each determine two second delays.
  • the second network device receives a pilot signal from one or more third network devices, including: using a second beam to receive a pilot signal from each of the one or more third network devices in a plurality of second time slots. That is, the second network device may use different second beams in different time slots to receive a pilot signal from each third network device.
  • the plurality of second network devices include pRRU-1, pRRU-2, and pRRU-3.
  • the third network devices are pRRU-2 and pRRU-3, and pRRU-1 uses beam 3 and beam 4 to receive the pilot signal from pRRU-2 at time slot 3 and time slot 4, respectively, and uses beam 3 and beam 4 to receive the pilot signal from pRRU-3 at time slot 7 and time slot 8, respectively.
  • each second network uses different first beams at different time slots to send pilot signals to each third network device, and uses different second beams at different time slots to receive pilot signals from each third network device
  • the multiple first beams used by each second network device to send pilot signals to each third network device and the multiple beams used by each third network device to receive pilot signals from the second network device can be regarded as a group of beam pairs.
  • the plurality of second network devices include pRRU-1, pRRU-2 and pRRU-3.
  • the third network devices are pRRU-2 and pRRU-3.
  • pRRU-1 uses beam 1 to send a pilot signal to pRRU-2 in time slot 1.
  • pRRU-2 uses beam 1′ to receive the pilot signal from pRRU-1 in time slot 1.
  • Beam 1 and beam 1′ may form beam pair 1;
  • pRRU-1 uses beam 2 to send a pilot signal to pRRU-2 in time slot 2.
  • pRRU-2 uses beam 2′ to receive the pilot signal from pRRU-1 in time slot 2.
  • Beam 2 and beam 2′ may form beam pair 2.
  • pRRU-1 uses beam 3 to send a pilot signal to pRRU-3 in time slot 3.
  • pRRU-3 uses beam 3′ to receive the pilot signal from pRRU-3 in time slot 3.
  • Beam 3 and beam 3′ can form beam pair 3;
  • pRRU-1 uses beam 4 to send a pilot signal to pRRU-3 in time slot 4.
  • pRRU-3 uses beam 4′ to receive the pilot signal from pRRU-1 in time slot 4.
  • Beam 4 and beam 4′ can form beam pair 4.
  • each second delay of each second network device is specifically a delay corresponding to an optimal beam pair, and the optimal beam pair is a beam pair with the largest receiving signal-to-noise ratio among multiple first beams and multiple second beams. That is to say, when each second network uses different first beams in different time slots to send pilot signals to each third network device, and uses different second beams in different time slots to receive pilot signals from each third network device, each second delay of each second network device is a delay when the second network device uses the optimal beam pair to receive the pilot signal from the third network device, and when the second network device uses the optimal beam pair to receive the pilot signal from the third network device, its receiving signal-to-noise ratio is compared with the signal-to-noise ratio when other beam pairs are used to receive the pilot signal from the third network device, and the signal-to-noise ratio of the pilot signal received by the second network device using the optimal beam pair from the third network device is the largest.
  • the plurality of second network devices include pRRU-1 and pRRU-2.
  • the third network device is pRRU-2.
  • pRRU-1 uses beam 1 to send a pilot signal to pRRU-2 in time slot 1, and accordingly, pRRU-2 uses beam 1′ to receive a pilot signal from pRRU-1 in time slot 1;
  • pRRU-1 uses beam 2 to send a pilot signal to pRRU-2 in time slot 2, and accordingly, pRRU-2 uses beam 2′ to receive a pilot signal from pRRU-1 in time slot 2.
  • the signal-to-noise ratio when pRRU-2 uses beam 2′ to receive a pilot signal from pRRU-1 in time slot 2 is greater than the signal-to-noise ratio when pRRU-2 uses beam 1′ to receive a pilot signal from pRRU-1 in time slot 1.
  • the second delay when pRRU-2 receives the pilot signal from pRRU-1 is the delay corresponding to the beam pair consisting of beam 2 and beam 2′, which can also be understood as: pRRU-1 uses beam 2 to send a pilot signal to pRRU-2 in time slot 2, and pRRU-2 uses beam 2′ to receive the pilot signal from pRRU-1 in time slot 2.
  • the time delay of the pilot signal is the delay corresponding to the beam pair consisting of beam 2 and beam 2′, which can also be understood as: pRRU-1 uses beam 2 to send a pilot signal to pRRU-2 in time slot 2, and pRRU-2 uses beam 2′ to receive the pilot signal from pRRU-1 in time slot 2.
  • This implementation can improve the accuracy of each of the one or more second time delays, thereby facilitating improving the accuracy of the location information of each second network device determined by the first network device based on the one or more second time delays of each second network device.
  • S102 can be executed before S103 and S104, or after S103 and S104.
  • S103 can be executed before S102 and S104, or after S102 and S104;
  • S104 can be executed before S102 and S103, or after S102 and S103.
  • the second network device sends the first delay and one or more second delays.
  • the first network device receives the first delay and one or more second delays from each second network device.
  • each of the multiple second network devices sends the first delay of the second network device and one or more second delays to the first network device, so that the first network device obtains the delay information required to determine the location information of each second network device.
  • each second network device may also record one or more optimal beam pairs, that is, record the beam pointing and angle information of the optimal beam pair corresponding to the maximum received signal-to-noise ratio when receiving the pilot signal from each third network device.
  • each second network device may also send one or more optimal beam pairs of the second network device to the first network device.
  • the first network device may also receive one or more optimal beam pairs from each second network device. This method is beneficial for the first network device to refer to the beam pointing and angle information of each optimal beam pair in the one or more optimal beam pairs of each second network device when determining the location information of each second network device, thereby facilitating improving the accuracy of the location information of each second network device.
  • the first network device determines the location information of each second network device according to the air interface delay between the second network devices, where the air interface delay between the second network devices is determined based on the first delay of each second network device and one or more second delays.
  • the first network device may also compensate for the delay of a receiving channel between each two second network devices among the multiple second network devices based on the first delay and one or more second delays of the multiple second network devices, and then determine the air interface delay between each second network device based on the compensated delay of the receiving channel between each two second network devices.
  • the first network device compensates for the delay of the receiving channel between every two second network devices among the multiple second network devices based on the first delay and one or more second delays of the multiple second network devices. It can also be understood as: according to the first delay and one or more second delays of every two second network devices among the multiple second network devices, the delay of the receiving channel between the two second network devices is aligned; it can also be understood as: when the delay of the receiving channel of every two second network devices is equal, the delay of the receiving channel of one of the two second network devices is compensated.
  • the plurality of second network devices include pRRU-1 and pRRU-2.
  • H 12 represents the air interface delay of pRRU-1 sending and pRRU-2 receiving
  • H 21 represents the air interface delay of pRRU-2 sending and pRRU-1 receiving.
  • t 11 T 1 +C 1 +R 1 (1)
  • t 21 T 2 +H 21 +R 1 (2)
  • t 22 T 2 +C 2 +R 2 (3)
  • t 12 T 1 +H 12 +R 2 (4)
  • the first network device can determine the difference between the receiving channel of pRRU-1 and the receiving channel of pRRU-2 according to the first delay t11 and the second delay t21 of pRRU-1, and the first delay t22 and the second delay t12 of pRRU-2.
  • the first network device can make the delay R1 of the receiving channel of pRRU-1 equal to the delay R2 of the receiving channel of pRRU-2, and align the delay of the receiving channel between pRRU-1 and pRRU-1.
  • the first network device when the first network device makes the delay R1 of the receiving channel of pRRU-1 equal to the delay R2 of the receiving channel of pRRU-2, it compensates for the delay of the receiving channel of pRRU-1 or pRRU-1. For example, the first network device increases the delay R 1 of the receiving channel of pRRU- 1 by R 1 ⁇ R 2 , or decreases the delay R 2 of the receiving channel of pRRU- 1 by R 1 ⁇ R 2 .
  • the air interface delay between pRRU-1 and pRRU-2 can be calculated based on the above formulas (1) to (4).
  • the first network device can determine the distance between pRRU-1 and pRRU-2 according to the air interface delay between pRRU-1 and pRRU-2, and further determine the distance between pRRU-1 and pRRU-2 according to the distance between pRRU-1 and pRRU-2. For example, if the location information of pRRU-1 is preset, the first network device may determine the location information of pRRU-2 according to the distance between pRRU-1 and pRRU-2 and the known location information of pRRU-1.
  • the first network device can compensate the delay of the receiving channel between each two second network devices in the plurality of second network devices according to the first delay and one or more second delays of the plurality of second network devices, and then determine the air interface delay between each second network device according to the compensated delay of the receiving channel between each two second network devices. Furthermore, the first network device can determine the location information of each second network device according to the air interface delay between each second network device.
  • the first network device determines the location information of each second network device according to the air interface delay between each second network device, including: determining the distance between each two second network devices according to the air interface delay between each second network device; determining the location information of each second network device according to the distance between each two second network devices and the location information of one or more fourth network devices.
  • the fourth network device is a network device of which the location information is known among the plurality of second network devices.
  • the first network device determines the distance between each two second network devices according to the air interface delay between each second network device, and then determines the location information of the remaining network devices in the multiple second network devices based on the distance between each two second network devices and the known location information of a small number of second network devices.
  • the first network device determines the location information of each second network device based on the distance between each two second network devices and the location information of one or more fourth network devices, including: determining the spatial topological structure between multiple second network devices based on the distance between each two second network devices and the beam information of one or more optimal beam pairs of each second network device; determining the location information of each second network device based on the distance between each two second network devices, the spatial topological structure, and the location information of one or more fourth network devices.
  • the first network device determines the spatial topological structure between multiple second network devices, that is, the relative position structural relationship between each second network device, using multi-dimensional scaling technology based on the distance between each two network devices and the beam information of one or more optimal beam pairs of each second network device.
  • the multiple second network devices include pRRU-1, pRRU-2, pRRU-3 and pRRU-4.
  • the first network device determines the spatial topology structure between the four pRRUs based on the distance between each two pRRUs and the beam information of one or more optimal beam pairs of each pRRU using multi-dimensional scaling technology as shown in Figure 7, that is, Figure 7 is a schematic diagram of the spatial topology structure between the four pRRUs.
  • the first network device then performs rigid body transformation operations such as translation, mirroring and rotation on the spatial topological structure diagram between the multiple second network devices based on the distance between every two second network devices, the spatial topological structure between the multiple second network devices, and the location information of a small number of second network devices pre-planned among the multiple second network devices, to determine the location information of each second network device.
  • rigid body transformation operations such as translation, mirroring and rotation
  • the implementation method of the first network device determining the location information of each second network device can improve the efficiency of determining the location information of each second network device, and can improve the accuracy of the location information of each second network device, compared with the method of determining the location information of each second network device by manual measurement.
  • the first network device may also determine the second network device corresponding to each of the multiple logical ports according to the multiple logical ports of the fifth network device, that is, determine the connection relationship between each logical port and the second network device.
  • the fifth network device is a network device that controls multiple second network devices, for example, the fifth network device is a RHUB.
  • the first network device specifies a specific second network device to send a pilot signal according to the logical port of the fifth network device.
  • the first network device obtains the distance from the second network device to other network devices by measuring the received signal and air interface delay through multiple second network devices other than the second network device.
  • the first network device determines the position of the second network device in the spatial topology structure in combination with the spatial topology structure between the multiple second network devices, and then determines the second network device corresponding to the specified logical port, that is, determines the second network device connected to the logical port.
  • FIG8 is a schematic diagram of the first network device determining the pRRU-1 corresponding to the logical port 1.
  • the first network device controls the pRRU connected to the logical port 1 to send a pilot signal to other pRRUs through the control module, and can determine the distance between the pRRU-1 connected to the logical port 1 and the remaining pRRUs, and then determine that the pRRU-1 connected to the logical port 1 is at the position shown in FIG8 based on the spatial topology between pRRU-1 to pRRU-4.
  • the first network device can determine the connection relationship between the logical port of the RHUB and each pRRU by itself, without the need for manual on-site testing one by one, which can improve the efficiency of finding and identifying faulty pRRUs in subsequent operation and maintenance processes.
  • a second network device sends first information and second information to each second network device in a plurality of second network devices, wherein the first information is used to instruct the second network device to determine a first delay of a pilot signal passing through a sending channel and a receiving channel of the second network device, and the second information is used to instruct the second network device to send a pilot signal to one or more third network devices, and to receive a pilot signal from one or more third network devices.
  • Each second network device in the plurality of second network devices receives the first information and the second information.
  • Each second network device determines a first delay based on the pilot signal, and determines one or more second delays by receiving the pilot signal.
  • Each second network device The first delay of the second network device and one or more second delays are fed back to the first network device.
  • the first network device determines the location information of each second network device according to the air interface delay between each second network device, and the air interface delay between each second network device is determined according to the first delay and one or more second delays of each second network device.
  • the first network device can determine the location information of each second network device among the plurality of second network devices through the first delay and one or more second delays fed back by each second network device. Compared with the method of determining the location information of each second network device through manual measurement, this method can improve the efficiency of determining the location information of the plurality of second network devices and improve the accuracy of the location information of each second network device.
  • Figure 9 is a schematic diagram of the system architecture, taking multiple second network devices including pRRU-1, pRRU-2, pRRU-3 and pRRU-4, and the fifth network device being RHUB as an example.
  • the first network device includes a control module and a data processing module, the control module and the data processing module of the first network device are connected to the RHUB, and the four logical ports of the RHUB are connected to pRRU-1, pRRU-2, pRRU-3 and pRRU-4 respectively.
  • Each of pRRU-1, pRRU-2, pRRU-3 and pRRU-4 includes a channel correction module, a sending channel and a receiving channel.
  • the control module of the first network device is used to schedule each pRRU to send or receive a pilot signal in a specified time slot, that is, the first network device sends the first information and the second information to each pRRU through the control module.
  • the control module of the first network device is also used for the switching selection and scheduling of the directional beam of each pRRU.
  • the data processing module of the first network device is used to collect the measurement results of each pRRU, and to construct a spatial topology architecture between multiple pRRUs and determine the location information of each pRRU based on the measurement results of multiple pRRUs.
  • the data processing module of the first network device is used to receive the first delay and one or more second delays of each pRRU, and to construct a spatial topology architecture between multiple pRRUs based on the first delay and one or more second delays of multiple pRRUs, and to determine the location information of each pRRU.
  • the channel correction module of each pRRU is used to correct the delay of the receiving channel, that is, to compensate for the delay of the receiving channel between other pRRUs.
  • the sending channel of each pRRU is used to send signals, and the receiving channel is used to receive signals.
  • pRRU-1 can use directional beam 1, directional beam 2, directional beam 3 and directional beam 4 to send signals to the remaining pRRUs.
  • pRRU-1 uses directional beam 1, directional beam 2, directional beam 3 and directional beam 4 to send pilot signals to pRRU-2.
  • pRRU-1 can also use directional beam 1, directional beam 2, directional beam 3 and directional beam 4 to send signals to pRRU-3 and pRRU-4.
  • FIG10 is a schematic diagram of the interaction between the data processing module, the control module and each pRRU, taking the multiple second network devices including pRRU-1, pRRU-2, and pRRU-3, and the first network device including a data processing module and a control module as an example.
  • the interaction between the data processing module, the control module and each pRRU includes but is not limited to the following steps:
  • the first network device sends first information to each pRRU through a control module, the first information is used to instruct the pRRU to determine a first delay of the pilot signal passing through the sending channel and the receiving channel of the pRRU.
  • each pRRU receives the first information and starts the channel correction module of the pRRU, so that the pilot signal is looped back at the internal air interface of the pRRU and the first delay is determined.
  • the first network device sends second information to each pRRU through the control module, where the second information is used to instruct the pRRU to send and receive pilot signals in a specific time slot.
  • each pRRU receives the second information.
  • each pRRU sends a pilot signal to other pRRUs, receives a pilot signal from other pRRUs, completes delay estimation, and determines one or more second delays.
  • each pRRU feeds back the first delay and one or more second delays to the first network device.
  • the first network device receives the first delay and one or more second delays of each pRRU through the data processing module.
  • the data processing module of the first network device processes the first delay and one or more second delays of each pRRU to obtain the delay difference of the receiving channel between each pRRU. That is, the first network device compensates the delay of the receiving channel between every two pRRUs according to the first delay and one or more second delays of each pRRU.
  • the data processing module of the first network device determines the air interface delay between every two pRRUs according to the compensated delay of the receiving channel between every two pRRUs, and determines the distance between every two pRRUs according to the air interface delay between every two pRRUs.
  • the data processing module of the first network device determines a spatial topological relationship between the multiple pRRUs according to the distance between every two pRRUs.
  • the data processing module of the first network device determines the location information of each pRRU according to the distance between every two pRRUs and the spatial topological relationship between the multiple pRRUs.
  • the first network device can control each pRRU in the multiple pRRUs to send and receive pilot signals to each other through the control module, so that each pRRU determines the first delay and one or more second delays, and feeds back the first delay and one or more second delays of the pRRU to the first network device. Furthermore, the first network device can determine the location information of each pRRU based on the first delay and one or more second delays of the multiple pRRUs, without relying on on-site measurements by operation and maintenance personnel to obtain the location information of each pRRU, which can improve the efficiency and accuracy of determining the location information of multiple pRRUs.
  • the first network device and the second network device may include a hardware structure and/or a software module, and implement the above functions in the form of a hardware structure, a software module, or a hardware structure plus a software module. Whether one of the above functions is executed in the form of a hardware structure, a software module, or a hardware structure plus a software module depends on the specific application and design constraints of the technical solution.
  • an embodiment of the present application provides a communication device 1100.
  • the communication device 1100 may be a component of a first network device (e.g., an integrated circuit, a chip, etc.), or a component of a second network device (e.g., an integrated circuit, a chip, etc.).
  • the communication device 1100 may also be other communication units for implementing the method in the method embodiment of the present application.
  • the communication device 1100 may include: a communication unit 1101 and a processing unit 1102.
  • a storage unit 1103 may also be included.
  • one or more units in FIG. 11 may be implemented by one or more processors, or by one or more processors and memories; or by one or more processors and transceivers; or by one or more processors, memories, and transceivers, which are not limited in the embodiments of the present application.
  • the processors, memories, and transceivers may be provided separately or integrated.
  • the communication device 1100 has the function of implementing the first network device or the second network device described in the embodiment of the present application.
  • the communication device 1100 includes a module or unit or means corresponding to the steps involved in the first network device described in the embodiment of the present application by the first network device.
  • the function or unit or means can be implemented by software, or by hardware, or by hardware executing the corresponding software implementation, or by a combination of software and hardware.
  • a communication device 1100 may include: a processing unit 1102 and a communication unit 1101;
  • the communication unit 1101 is configured to send the first information and the second information to each second network device among the plurality of second network devices;
  • the first information is used to instruct the second network device to determine a first delay of the pilot signal passing through a sending channel and a receiving channel of the second network device;
  • the second information is used to instruct the second network device to send the pilot signal to one or more third network devices, and receive the pilot signal from the one or more third network devices;
  • the third network device is a network device other than the second network device among the plurality of second network devices;
  • the communication unit 1101 is further configured to receive the first delay and one or more second delays of each second network device;
  • the second delays of each second network device are respectively the delays of the pilot signal from the sending channel of each third network device to the receiving channel of the second network device;
  • the processing unit 1102 is used to determine the location information of each second network device according to the air interface delay between the second network devices; the air interface delay between the second network devices is determined based on the first delay of each second network device and one or more second delays.
  • the second information is specifically used to instruct the second network device to use different first beams in multiple first time slots to send the pilot signal to each third network device in the one or more third network devices, and to use different second beams in multiple second time slots to receive the pilot signal from each third network device.
  • each second delay of each second network device is specifically a delay corresponding to an optimal beam pair; the optimal beam pair is a beam pair with the largest receiving signal-to-noise ratio among the multiple first beams and the multiple second beams.
  • the communication unit 1101 is further used to receive beam information of one or more optimal beam pairs of each second network device.
  • the processing unit 1102 determines the location information of each second network device based on the air interface delay between the second network devices, and is specifically used to: determine the distance between each two second network devices based on the air interface delay between the second network devices; determine the location information of each second network device based on the distance between each two second network devices and the location information of one or more fourth network devices; the fourth network device is a network device with known location information among the multiple second network devices.
  • the processing unit 1102 determines the location information of each second network device based on the distance between each two second network devices and the location information of one or more fourth network devices, and is specifically used to: determine the spatial topological structure between the multiple second network devices based on the distance between each two second network devices and the beam information of one or more optimal beam pairs of each second network device; determine the location information of each second network device based on the distance between each two second network devices, the spatial topological structure, and the location information of one or more fourth network devices.
  • the processing unit 1102 is further configured to: One or more of the second delays compensate for the delay of the receiving channel between every two second network devices among the multiple second network devices; and determine the air interface delay between the second network devices based on the compensated delay of the receiving channel between every two second network devices.
  • the processing unit 1102 is further used to: determine the second network device corresponding to each logical port in the multiple logical ports according to the multiple logical ports of the fifth network device; the fifth network device is a network device that controls the multiple second network devices.
  • the processing unit 1102 may include a data processing module and a control module of the first network device in FIG. 9 .
  • a communication device 1100 may include: a processing unit 1102 and a communication unit 1101.
  • a communication unit 1101 is configured to receive first information and second information; wherein the first information is used to instruct the second network device to determine a first delay of a pilot signal passing through a sending channel and a receiving channel of the second network device;
  • the second information is used to instruct the second network device to send the pilot signal to one or more third network devices, and receive the pilot signal from the one or more third network devices;
  • the third network device is a network device other than the second network device among the plurality of second network devices;
  • the processing unit 1102 is configured to determine the first time delay according to the pilot signal
  • the communication unit 1101 is further configured to send the pilot signal to the one or more third network devices;
  • the communication unit 1101 is further configured to receive the pilot signal from the one or more third network devices, and determine one or more second delays; each second delay in the one or more second delays is a delay of the pilot signal from a sending channel of each third network device to a receiving channel of the second network device;
  • the communication unit 1101 is further configured to send the first time delay and the one or more second time delays.
  • the second information is specifically used to instruct the second network device to use different first beams in multiple first time slots to send the pilot signal to each third network device in the one or more third network devices, and to use different second beams in multiple second time slots to receive the pilot signal from each third network device;
  • the communication unit 1101 sends the pilot signal to the one or more third network devices, specifically configured to:
  • the communication unit 1101 receives the pilot signal from the one or more third network devices, specifically configured to:
  • Different second beams are respectively used in the multiple second time slots to receive the pilot signal from each third network device.
  • each second delay of the second network device is specifically a delay corresponding to an optimal beam pair; the optimal beam pair is a beam pair with the largest received signal-to-noise ratio among the multiple first beams and the multiple second beams.
  • the communication unit 1101 is further configured to send beam information of one or more of the optimal beam pairs.
  • the embodiment of the present application also provides a communication device 1200, and FIG12 is a schematic diagram of the structure of the communication device 1200.
  • the communication device 1200 can be a first network device, or a chip, a chip system, or a processor that supports the first network device to implement the above method; or, it can be a second network device, or a chip, a chip system, or a processor that supports the second network device to implement the above method.
  • the device can be used to implement the method described in the above method embodiment, and the details can be referred to the description in the above method embodiment.
  • the communication device 1200 may include one or more processors 1201.
  • the processor 1201 may be a general-purpose processor or a dedicated processor, etc.
  • it may be a baseband processor, a digital signal processor, an application-specific integrated circuit, a field programmable gate array or other programmable logic device, a discrete gate or transistor logic device, a discrete hardware component or a central processing unit (CPU).
  • the baseband processor may be used to process the communication protocol and communication data
  • the central processing unit may be used to control the communication device (such as a base station, a baseband chip, a terminal, a terminal chip, a DU or a CU, etc.), execute a software program, and process the data of the software program.
  • the communication device 1200 may include one or more memories 1202, on which instructions 1204 may be stored, and the instructions may be executed on the processor 1201, so that the communication device 1200 performs the method described in the above method embodiment.
  • data may also be stored in the memory 1202.
  • the processor 1201 and the memory 1202 may be provided separately or integrated together.
  • the memory 1202 may include, but is not limited to, a non-volatile memory such as a hard disk drive (HDD) or a solid-state drive (SSD), a random access memory (RAM), an erasable programmable ROM (EPROM), a ROM, or a portable read-only memory (CD-ROM). etc.
  • a non-volatile memory such as a hard disk drive (HDD) or a solid-state drive (SSD), a random access memory (RAM), an erasable programmable ROM (EPROM), a ROM, or a portable read-only memory (CD-ROM). etc.
  • the communication device 1200 may further include a transceiver 1205 and an antenna 1206.
  • the transceiver 1205 may be referred to as a transceiver unit, a transceiver, or a transceiver circuit, etc., for implementing a transceiver function.
  • the transceiver 1205 may include a receiver and a transmitter, the receiver may be referred to as a receiver or a receiving circuit, etc., for implementing a receiving function; the transmitter may be referred to as a transmitter or a transmitting circuit, etc., for implementing a transmitting function.
  • the communication device 1200 is a first network device: the transceiver 1205 is used to execute S101 and S105 in the above-mentioned location determination method, and the processor 1201 is used to execute S106 in the above-mentioned location determination method.
  • the communication device 1200 is a second network device: the transceiver 1205 is used to execute S101, S103 and S105 in the above-mentioned location determination method, and the processor 1201 is used to execute S102 and S104 in the above-mentioned location determination method.
  • the processor 1201 may include a transceiver for implementing the receiving and sending functions.
  • the transceiver may be a transceiver circuit, or an interface, or an interface circuit.
  • the transceiver circuit, interface, or interface circuit for implementing the receiving and sending functions may be separate or integrated.
  • the above-mentioned transceiver circuit, interface, or interface circuit may be used for reading and writing code/data, or the above-mentioned transceiver circuit, interface, or interface circuit may be used for transmitting or delivering signals.
  • the processor 1201 may store an instruction 1203, and the instruction 1203 runs on the processor 1201, so that the communication device 1200 can execute the method described in the above method embodiment.
  • the instruction 1203 may be solidified in the processor 1201, in which case the processor 1201 may be implemented by hardware.
  • the communication device 1200 may include a circuit that can implement the functions of sending or receiving or communicating in the aforementioned method embodiments.
  • the processor and transceiver described in the embodiments of the present application can be implemented in an integrated circuit (IC), an analog IC, a radio frequency integrated circuit (RFIC), a mixed signal IC, an application specific integrated circuit (ASIC), a printed circuit board (PCB), an electronic device, etc.
  • IC integrated circuit
  • RFIC radio frequency integrated circuit
  • ASIC application specific integrated circuit
  • PCB printed circuit board
  • the processor and transceiver can also be manufactured using various IC process technologies, such as complementary metal oxide semiconductor (CMOS), N-type metal oxide semiconductor (nMetal-oxide-semiconductor, NMOS), P-type metal oxide semiconductor (positive channel metal oxide semiconductor, PMOS), bipolar junction transistor (Bipolar Junction Transistor, BJT), bipolar CMOS (BiCMOS), silicon germanium (SiGe), gallium arsenide (GaAs), etc.
  • CMOS complementary metal oxide semiconductor
  • N-type metal oxide semiconductor nMetal-oxide-semiconductor
  • PMOS positive channel metal oxide semiconductor
  • BJT bipolar junction transistor
  • BiCMOS bipolar CMOS
  • SiGe silicon germanium
  • GaAs gallium arsenide
  • the scope of the communication device described in the embodiments of the present application is not limited thereto, and the structure of the communication device may not be limited by FIG. 12.
  • the communication device may be an independent device or may be part of a larger device.
  • the communication device may be:
  • the IC set may also include a storage component for storing data and instructions;
  • ASIC such as a modem
  • the communication device and chip can also execute the implementation method described in the above-mentioned communication device 1100.
  • the various illustrative logical blocks and steps listed in the embodiments of the present application can be implemented by electronic hardware, computer software, or a combination of the two. Whether such functions are implemented by hardware or software depends on the specific application and the design requirements of the entire system. Those skilled in the art can use various methods to implement the described functions for each specific application, but such implementation should not be understood as exceeding the scope of protection of the embodiments of the present application.
  • the present application also provides a computer-readable storage medium for storing computer software instructions, which, when executed by a communication device, implement the functions of any of the above method embodiments.
  • the present application also provides a computer program product for storing computer software instructions, which, when executed by a communication device, implement the functions of any of the above method embodiments.
  • the present application also provides a computer program, which, when executed on a computer, implements the functions of any of the above method embodiments.
  • the present application also provides a communication system, which includes one or more network devices and one or more terminal devices.
  • the system may also include other devices that interact with the network devices and terminal devices in the solution provided by the present application.
  • all or part of the embodiments can be implemented by software, hardware, firmware or any combination thereof.
  • all or part of the embodiments can be implemented in the form of a computer program product.
  • the computer program product includes one or more computer instructions. When the computer instructions are loaded and executed on a computer, the process or function described in the embodiment of the present application is generated in whole or in part.
  • the computer can be a general-purpose computer, a special-purpose computer, a computer network, or other programmable device.
  • the computer instructions can be stored in a computer-readable storage medium or transmitted from one computer-readable storage medium to another computer-readable storage medium.
  • the computer instructions can be transmitted from a website, a computer, a server or a data center via a wired (e.g., coaxial cable, optical fiber, digital subscriber line (digital subscriber line)
  • the computer readable storage medium may be any available medium that can be accessed by a computer or a data storage device such as a server or a data center that includes one or more available media integrated therein.
  • the available medium may be a magnetic medium (e.g., a floppy disk, a hard disk, a magnetic tape), an optical medium (e.g., a high-density digital video disc (DVD)), or a semiconductor medium (e.g., an SSD), etc.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Environmental & Geological Engineering (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请提供了一种位置确定方法及装置。该方法可应用于第一网络设备,方法包括:向多个第二网络设备中每个第二网络设备发送第一信息和第二信息,第一信息用于指示第二网络设备确定导频信号通过该第二网络设备的发送通道和接收通道的第一时延,第二信息用于指示第二网络设备向一个或多个第三网络设备发送导频信号,以及接收来自一个或多个第三网络设备的导频信号;接收每个第二网络设备的第一时延,以及一个或多个第二时延;根据各第二网络设备之间的空口时延,确定每个第二网络设备的位置信息,各第二网络设备之间的空口时延是基于每个第二网络设备的第一时延,以及一个或多个第二时延确定的。该方式可提高确定多个第二网络设备的位置信息的效率。

Description

一种位置确定方法及装置
本申请要求在2022年12月1日提交中国国家知识产权局、申请号为202211531315.X的中国专利申请的优先权,发明名称为“一种位置确定方法及装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及通信领域,尤其涉及一种位置确定方法及装置。
背景技术
实际工程部署室内基站的过程中,由于存在人工安装位置错误、规划位置点位不可安装等原因,会造成预先规划的站点位置与实际安装位置不一致等情况。从而,运维人员无法通过安装设计图纸获取区域内全部室内基站的实际安装位置,不利于室内基站的后续运维,并会对站点设备信息资产的自动化、数字化管理产生影响。
目前,运维或排障时,运维人员可根据施工队安装过程中记录的信息,查找控制室内基站的控制节点,再从控制节点的接口去查找室内基站的位置。
然而,该查找方式效率较低,且一旦施工队发生更换,所记录的安装信息极易丢失,查找室内基站的位置就更为困难。
发明内容
本申请实施例提供了一种位置确定方法及装置,可提高确定多个室内基站的位置信息的效率。
第一方面,本申请实施例提供一种位置确定方法,可应用于第一网络设备(例如第一网络设备的设备或芯片上)。该方法中,第一网络设备向多个第二网络设备中每个第二网络设备发送第一信息和第二信息,第一信息用于指示第二网络设备确定导频信号通过该第二网络设备的发送通道和接收通道的第一时延,第二信息用于指示第二网络设备向一个或多个第三网络设备发送导频信号,以及接收来自一个或多个第三网络设备的导频信号。第一网络设备接收每个第二网络设备的第一时延,以及一个或多个第二时延,每个第二网络设备的各第二时延是分别导频信号从各第三网络设备的发送通道到该第二网络设备的接收通道的时延。第一网络设备根据各第二网络设备之间的空口时延,确定每个第二网络设备的位置信息。
其中,第三网络设备是多个第二网络设备中除该第二网络设备之外的网络设备,各第二网络设备之间的空口时延是基于每个第二网络设备的第一时延,以及一个或多个第二时延确定的。
本申请实施例中,第一网络设备向一个或多个第二网络设备中的每个第二网络设备发送第一信息和第二信息,从而第一网络设备可获得每个第二网络设备根据导频信号确定的第一时延,以及通过接收导频信号确定的一个或多个第二时延,进而第一网络设备可根据各第二网络设备之间的空口时延,确定每个第二网络设备的位置信息,各第二网络设备之间的空口时延是基于每个第二网络设备的第一时延和一个或多个第二时延确定的。
可见,第一网络设备可通过每个第二网络设备反馈的第一时延和一个或多个第二时延确定多个第二网络设备中每个第二网络设备的位置信息。该方式与通过人工测量确定每个第二网络设备的位置信息的方式相比,可提高确定多个第二网络设备的位置信息的效率,以及提高每个第二网络设备的位置信息的精确度。
一种可选的实施方式中,第二信息具体用于指示该第二网络设备在多个第一时隙上分别采用不同的第一波束向一个或多个第三网络设备中的每个第三网络设备发送导频信号,以及在多个第二时隙上分别采用不同的第二波束接收来自每个第三网络设备的导频信号。
该方式有利于每个第二网络设备向一个或多个第三网络设备中的每个第三网络设备发送导频信号时,在多个第一时隙上分别采用不同的第一波束向该第三网络设备发送导频信号;以及有利于每个第二网络设备接收来自每个第三网络设备的导频信号时,在多个第二时隙上分别采用不同的第二波束接收来自该第三网络设备的导频信号。从而有利于提高每个第二网络设备发送导频信号和接收导频信号的波束增益,即提升各第二网络设备之间的无线链路空口质量,进而有利于提高每个第二网络设备的位置信息的精度。
一种可选的实施方式中,第二信息具体用于指示该第二网络设备在多个第一时隙上分别采用不同的第 一波束向一个或多个第三网络设备中的每个第三网络设备发送导频信号,以及在多个第二时隙上分别采用不同的第二波束接收来自每个第三网络设备的导频信号时,每个第二网络设备的各第二时延具体是最优波束对所对应的时延,最优波束对是多个第一波束和多个第二波束中接收信噪比最大的波束对。
一种可选的实施方式中,第一网络设备还可接收每个第二网络设备的一个或多个最优波束对的波束信息。该方式有利于第一网络设备确定每个第二网络设备的位置信息时,可结合每个第二网络设备的一个或多个最优波束对的波束信息,从而可提高每个第二网络设备的位置信息的精确度。
一种可选的实施方式中,第一网络设备根据各第二网络设备之间的空口时延,确定每个第二网络设备的位置信息,包括:根据各第二网络设备之间的空口时延,确定每两个第二网络设备之间的距离;根据每两个第二网络设备之间的距离,以及一个或多个第四网络设备的位置信息,确定每个第二网络设备的位置信息。其中,第四网络设备是多个第二网络设备中已知位置信息的网络设备。
可见,第一网络设备根据各第二网络设备之间的空口时延,确定每两个第二网络设备之间的距离后,可根据已知的少量第二网络设备的位置信息,确定其余每个第二网络设备的位置信息,从而可提高确定多个第二网络设备的位置信息的效率。
一种可选的实施方式中,第一网络设备根据每两个第二网络设备之间的距离,以及一个或多个第四网络设备的位置信息,确定每个第二网络设备的位置信息,包括:根据每两个第二网络设备之间的距离,以及每个第二网络设备的最优波束对的波束信息,确定多个第二网络设备之间的空间拓扑结构;根据每两个第二网络设备之间的距离、空间拓扑结构,以及一个或多个第四网络设备的位置信息,确定每个第二网络设备的位置信息。
一种可选的实施方式中,第一网络设备还可根据多个第二网络设备的第一时延和第二时延,补偿多个第二网络设备中每两个第二网络设备之间的接收通道的时延;根据补偿后的每两个第二网络设备之间的接收通道的时延,确定各第二网络设备之间的空口时延。
一种可选的实施方式中,第一网络设备还可根据第五网络设备的多个逻辑端口,确定多个逻辑端口中每个逻辑端口对应的第二网络设备,第五网络设备是控制多个第二网络设备的网络设备。该方式有利于后续对多个第二网络设备的运维过程中,提升查找故障第二网络设备的效率。
第二方面,本申请还提供一种位置确定方法,该方面的位置确定方法与第一方面所述的位置确定方法相对应,该方面的位置确定方法是从第二网络设备侧进行阐述的(可应用于第二网络设备的设备或芯片上)。该方法中,第二网络设备接收第一信息和第二信息,第一信息用于指示第二网络设备确定导频信号通过该第二网络设备的发送通道和接收通道的第一时延,第二信息用于指示第二网络设备向一个或多个第三网络设备发送导频信号,以及接收来自一个或多个第三网络设备的导频信号。第二网络设备根据导频信号确定第一时延。第二网络设备向一个或多个第三网络设备发送导频信号。第二网络设备接收来自一个或多个第三网络设备的导频信号,并确定一个或多个第二时延。第二网络设备发送第一时延,以及一个或多个第二时延。
其中,第三网络设备是多个第二网络设备中除该第二网络设备之外的网络设备,一个或多个第二时延中的各第二时延分别是导频信号从各第三网络设备的发送通道到该第二网络设备的接收通道的时延。
本申请实施例中,第二网络设备接收第一信息和第二信息,并根据导频信号确定第一时延,以及通过接收导频信号确定一个或多个第二时延,再向第一网络设备反馈第一时延和一个或多个第二时延。从而有利于第二网络设备根据各第二网络设备之间的空口时延,确定每个第二网络设备的位置信息,各第二网络设备之间的空口时延是根据每个第二网络设备第一时延和一个或多个第二时延确定的,进而有利于提高确定多个第二网络设备的位置信息的效率。
一种可选的实施方式中,第二信息具体用于指示该第二网络设备在多个第一时隙上分别采用不同的第一波束向一个或多个第三网络设备中的每个第三网络设备发送导频信号,以及在多个第二时隙上分别采用不同的第二波束接收来自每个第三网络设备的导频信号。
那么,第二网络设备向一个或多个第三网络设备发送导频信号,包括:在多个第一时隙上分别采用不同的第一波束,向一个或多个第三网络设备中的每个第三网络设备发送导频信号。第二网络设备接收来自一个或多个第三网络设备的导频信号,包括:在多个第二时隙上分别采用不同的第二波束,接收来自每个第三网络设备的导频信号。该方式有利于提高每个第二网络设备发送导频信号和接收导频信号的波束增益,即提升各第二网络设备之间的无线链路空口质量,进而有利于提高每个第二网络设备的位置信息的精度。
一种可选的实施方式中,第二网络设备的各第二时延具体是最优波束对所对应的时延,最优波束对是多个第一波束和多个第二波束中接收信噪比最大的波束对。该方式有利于提高一个或多个第二时延的精确 度,进而有利于提高每个第二网络设备的位置信息的精确度。
一种可选的实施方式中,第二网络设备还可发送一个或多个最优波束对的波束信息。该方式有利于第一网络设备确定每个第二网络设备的位置信息时,结合该第二网络设备的一个或多个最优波束对的波束信息,从而可提高每个第二网络设备的位置信息的精度。
第三方面,本申请还提供一种通信装置。该通信装置具有实现上述第一方面所述的第一网络设备的部分或全部功能,或者,实现上述第二方面所述的第二网络设备的部分或全部功能。比如,该通信装置的功能可具备本申请中第一方面所述的第一网络设备的部分或全部实施例中的功能,也可以具备单独实施本申请中的任一个实施例的功能。所述功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。所述硬件或软件包括一个或多个与上述功能相对应的单元或模块。
在一种可能的设计中,该通信装置的结构中可包括处理单元和通信单元,所述处理单元被配置为支持通信装置执行上述方法中相应的功能。所述通信单元用于支持该通信装置与其他通信装置之间的通信。所述通信装置还可以包括存储单元,所述存储单元用于与处理单元和通信单元耦合,其保存通信装置必要的程序指令和数据。
一种实施方式中,所述通信装置包括:处理单元和通信单元;
所述通信单元,用于向多个第二网络设备中每个第二网络设备发送第一信息和第二信息;
所述第一信息用于指示所述第二网络设备确定导频信号通过该第二网络设备的发送通道和接收通道的第一时延;所述第二信息用于指示所述第二网络设备向一个或多个第三网络设备发送所述导频信号,以及接收来自所述一个或多个第三网络设备的所述导频信号;所述第三网络设备是所述多个第二网络设备中除该第二网络设备之外的网络设备;
所述通信单元,还用于接收所述每个第二网络设备的第一时延,以及一个或多个第二时延;所述每个第二网络设备的各第二时延分别是所述导频信号从各第三网络设备的发送通道到该第二网络设备的接收通道的时延;
所述处理单元,用于根据各第二网络设备之间的空口时延,确定所述每个第二网络设备的位置信息;所述各第二网络设备之间的空口时延是基于所述每个第二网络设备的所述第一时延,以及所述一个或多个第二时延确定的。
另外,该方面中,通信装置其他可选的实施方式可参见上述第一方面的相关内容,此处不再详述。
另一种实施方式中,所述通信装置包括:处理单元和通信单元;
所述通信单元,用于接收第一信息和第二信息;所述第一信息用于指示第二网络设备确定导频信号通过该第二网络设备的发送通道和接收通道的第一时延;所述第二信息用于指示所述第二网络设备向一个或多个第三网络设备发送所述导频信号,以及接收来自所述一个或多个第三网络设备的所述导频信号;所述第三网络设备是所述多个第二网络设备中除该第二网络设备之外的网络设备;
所述处理单元,用于根据所述导频信号确定所述第一时延;
所述通信单元,还用于向所述一个或多个第三网络设备发送所述导频信号;
所述处理单元,还用于接收来自所述一个或多个第三网络设备的所述导频信号,并确定一个或多个第二时延;所述一个或多个第二时延中各第二时延分别是所述导频信号从各第三网络设备的发送通道到该第二网络设备的接收通道的时延;
所述通信单元,还用于发送所述第一时延,以及所述一个或多个第二时延。
另外,该方面中,通信装置其他可选的实施方式可参见上述第二方面的相关内容,此处不再详述。
作为示例,通信单元可以为收发器或通信接口,存储单元可以为存储器,处理单元可以为处理器。
一种实施方式中,所述通信装置包括:处理器和收发器;
所述收发器,用于向多个第二网络设备中每个第二网络设备发送第一信息和第二信息;
所述第一信息用于指示所述第二网络设备确定导频信号通过该第二网络设备的发送通道和接收通道的第一时延;所述第二信息用于指示所述第二网络设备向一个或多个第三网络设备发送所述导频信号,以及接收来自所述一个或多个第三网络设备的所述导频信号;所述第三网络设备是所述多个第二网络设备中除该第二网络设备之外的网络设备;
所述收发器,还用于接收所述每个第二网络设备的第一时延,以及一个或多个第二时延;所述每个第二网络设备的各第二时延是所述导频信号从各第三网络设备的发送通道到该第二网络设备的接收通道的时延;
所述处理器,用于根据各第二网络设备之间的空口时延,确定所述每个第二网络设备的位置信息;所 述各第二网络设备之间的空口时延是基于所述每个第二网络设备的所述第一时延,以及所述一个或多个第二时延确定的。
另外,该方面中,通信装置其他可选的实施方式可参见上述第一方面的相关内容,此处不再详述。
另一种实施方式中,所述通信装置包括:处理器和收发器;
所述收发器,用于接收第一信息和第二信息;所述第一信息用于指示第二网络设备确定导频信号通过该第二网络设备的发送通道和接收通道的第一时延;所述第二信息用于指示所述第二网络设备向一个或多个第三网络设备发送所述导频信号,以及接收来自所述一个或多个第三网络设备的所述导频信号;所述第三网络设备是所述多个第二网络设备中除该第二网络设备之外的网络设备;
所述处理器,用于根据所述导频信号确定所述第一时延;
所述收发器,还用于向所述一个或多个第三网络设备发送所述导频信号;
所述处理器,还用于接收来自所述一个或多个第三网络设备的所述导频信号,并确定一个或多个第二时延;所述一个或多个第二时延中的各第二时延分别是所述导频信号从各第三网络设备的发送通道到该第二网络设备的接收通道的时延;
所述收发器,还用于发送所述第一时延,以及所述一个或多个第二时延。
另外,该方面中,通信装置其他可选的实施方式可参见上述第二方面的相关内容,此处不再详述。
另一种实施方式中,该通信装置为芯片或芯片系统。所述处理单元也可以体现为处理电路或逻辑电路;所述通信单元可以是该芯片或芯片系统上的输入/输出接口、接口电路、输出电路、输入电路、管脚或相关电路等。
在实现过程中,处理器可用于进行,例如但不限于,基带相关处理,收发器可用于进行,例如但不限于,射频收发。上述器件可以分别设置在彼此独立的芯片上,也可以至少部分的或者全部的设置在同一块芯片上。例如,处理器可以进一步划分为模拟基带处理器和数字基带处理器。其中,模拟基带处理器可以与收发器集成在同一块芯片上,数字基带处理器可以设置在独立的芯片上。随着集成电路技术的不断发展,可以在同一块芯片上集成的器件越来越多。例如,数字基带处理器可以与多种应用处理器(例如但不限于图形处理器,多媒体处理器等)集成在同一块芯片之上。这样的芯片可以称为系统芯片(system on a chip,SoC)。将各个器件独立设置在不同的芯片上,还是整合设置在一个或者多个芯片上,往往取决于产品设计的需要。本申请实施例对上述器件的实现形式不做限定。
第四方面,本申请还提供一种处理器,用于执行上述各种方法。在执行这些方法的过程中,上述方法中有关发送上述信息和接收上述信息的过程,可以理解为由处理器输出上述信息的过程,以及处理器接收输入的上述信息的过程。在输出上述信息时,处理器将该上述信息输出给收发器,以便由收发器进行发射。该上述信息在由处理器输出之后,还可能需要进行其他的处理,然后才到达收发器。类似的,处理器接收输入的上述信息时,收发器接收该上述信息,并将其输入处理器。更进一步的,在收发器收到该上述信息之后,该上述信息可能需要进行其他的处理,然后才输入处理器。
对于处理器所涉及的发送和接收等操作,如果没有特殊说明,或者,如果未与其在相关描述中的实际作用或者内在逻辑相抵触,则均可以更加一般性的理解为处理器输出和接收、输入等操作,而不是直接由射频电路和天线所进行的发送和接收操作。
在实现过程中,上述处理器可以是专门用于执行这些方法的处理器,也可以是执行存储器中的计算机指令来执行这些方法的处理器,例如通用处理器。上述存储器可以为非瞬时性(non-transitory)存储器,例如只读存储器(read only memory,ROM),其可以与处理器集成在同一块芯片上,也可以分别设置在不同的芯片上,本申请实施例对存储器的类型以及存储器与处理器的设置方式不做限定。
第五方面,本申请还提供了一种通信系统,该系统包括网络设备和终端设备。在另一种可能的设计中,该系统还可以包括与网络设备、终端设备进行交互的其他设备。本申请实施例中的第一网络设备为该通信系统中的网络设备,第二网络设备为室内基站。
第六方面,本申请提供了一种计算机可读存储介质,用于储存指令,当所述指令被计算机运行时,实现上述第一方面或第二方面所述的方法。
第七方面,本申请还提供了一种包括指令的计算机程序产品,当其在计算机上运行时,实现上述第一方面或第二方面所述的方法。
第八方面,本申请提供了一种芯片系统,该芯片系统包括处理器和接口,所述接口用于获取程序或指令,所述处理器用于调用所述程序或指令以实现或者支持第一网络设备实现第一方面所涉及的功能,或者实现或者支持第二网络设备实现第二方面所涉及的功能。例如,确定或处理上述方法中所涉及的数据和信 息中的至少一种。在一种可能的设计中,所述芯片系统还包括存储器,所述存储器,用于保存第一网络设备必要的程序指令和数据。该芯片系统,可以由芯片构成,也可以包括芯片和其他分立器件。
第九方面,本申请提供一种通信装置,包括处理器,用于执行存储器中存储的计算机程序或可执行指令,当计算机程序或可执行指令被执行时,使得该装置执行如第一方面或第二方面各个可能的实现中的方法。
在一种可能的实现中,处理器和存储器集成在一起;
在另一种可能的实现中,上述存储器位于该通信装置之外。
第三方面到第九方面的有益效果可以参考第一方面到第二方面的有益效果,此处不再赘述。
附图说明
图1是本申请实施例提供的一种通信系统的系统结构示意图;
图2是本申请实施例提供的一种对待测pRRU附近的N个点位进行信号强度测量的示意图;
图3a是本申请实施例提供的一种预先规划的RHUB与pRRU之间的连接示意图;
图3b是本申请实施例提供的一种RHUB与pRRU之间的实际物理连接示意图;
图4是本申请实施例提供的一种位置信息确定方法的交互意图;
图5是本申请实施例提供的一种第一网络设备与pRRU的交互示意图;
图6是本申请实施例提供的又一种第一网络设备与pRRU的交互示意图;
图7是本申请实施例提供的一种多个pRRU之间的空间拓扑结构示意图;
图8是本申请实施例提供的一种确定逻辑端口1所对应的pRRU-1的示意图;
图9是本申请实施例提供的又一种系统架构示意图;
图10是本申请实施例提供的一种第一网络设备与多个pRRU的交互示意图;
图11是本申请实施例提供的一种通信装置的结构示意图;
图12是本申请实施例提供的另一种通信装置的结构示意图。
具体实施方式
下面结合本申请实施例中的附图对本申请实施例中的技术方案进行清楚、完整的描述。
为了更好的理解本申请实施例公开的位置确定方法,对本申请实施例适用的通信系统进行描述。
本申请实施例可应用于长期演进(long term evolution,LTE)系统、第五代(5th generation,5G)移动通信系统、第六代(6th generation,6G)移动通信系统等5G之后演进的系统等、卫星通信及短距等无线通信系统中,系统架构如图1所示。无线通信系统可以包括一个或多个网络设备,以及一个或多个终端设备。无线通信系统也可以进行点对点通信,如多个终端设备之间互相通信。
可理解的,本申请实施例提及的无线通信系统包括但不限于:窄带物联网(narrow band-internet of things,NB-IoT)系统、长LTE系统,5G/6G移动通信系统的三大应用场景:增强移动宽带(enhanced mobile broadband,eMBB)、超可靠低时延通信(ultra reliable low latency communication,URLLC)和海量机器类通信(massive machine type of communication,mMTC),无线保真(wireless fidelity,WiFi)系统等。
本申请实施例中,网络设备是具有无线收发功能的设备,用于与终端设备进行通信,可以是LTE中的演进型基站(evolved Node B,eNB或eNodeB),或者是5G/6G网络中的基站或者未来演进的公共陆地移动网络(public land mobile network,PLMN)中的基站、宽带网络业务网关(broadband network gateway,BNG)、汇聚交换机或者非第三代合作伙伴项目(3rd generation partnership project,3GPP)接入设备等。可选的,本申请实施例中的网络设备可以包括各种形式的基站,例如:宏基站、微基站(也称为小站)、中继站、接入点、未来实现基站功能的设备、WiFi系统中的接入点(access point,AP)、传输接收点(transmitting and receiving point,TRP)、发射点(transmitting point,TP)、移动交换中心以及设备到设备(device-to-device,D2D)、车辆外联(vehicle-to-everything,V2X)、机器到机器(machine-to-machine,M2M)通信中承担基站功能的设备、5G之后演进的通信系统中实现基站功能的设备、接入回传一体化(integrated access and backhaul,IAB),还可以包括云接入网(cloud radio access network,C-RAN)系统中的集中式单元(centralized unit,CU)和分布式单元(distributed unit,DU)、非陆地通信网络(non-terrestrial network,NTN)通信系统中的网络设备,即可以部署于高空平台或者卫星,还可以是构成接入节点的各类设备,如有源天线处理单元(active antenna unit,AAU)、基带单元(baseband unit,BBU)等,本申请实 施例对此不作具体限定。
网络设备可以和核心网设备进行通信交互,向终端设备提供通信服务。核心网设备例如为5G网络核心网(core network,CN)中的设备。核心网作为承载网络提供到数据网络的接口,为终端提供通信连接、认证、管理、策略控制以及对数据业务完成承载等。
本申请实施例所涉及到的终端设备可以包括各种具有无线通信功能的手持设备、车载设备、可穿戴设备、计算设备或连接到无线调制解调器的其它处理设备。终端设备也可称为终端。终端设备也可以指用户设备(user equipment,UE)、接入终端、用户单元(subscriber unit)、用户代理、蜂窝电话(cellular phone)、智能手机(smart phone)、无线数据卡、个人数字助理(personal digital assistant,PDA)电脑、平板型电脑、无线调制解调器(modem)、手持设备(handset)、膝上型电脑(laptop computer)、智能销售点(point of sale,POS)机、客户终端设备(customer-premises equipment,CPE)、机器类型通信(machine type communication,MTC)终端、高空飞机上搭载的通信设备、可穿戴设备、无人机、机器人、D2D中的终端、车到一切(vehicle to everything,V2X)中的终端、虚拟现实(virtual reality,VR)终端设备、增强现实(augmented reality,AR)终端设备、工业控制(industrial control)中的无线终端、无人驾驶(self driving)中的无线终端、远程医疗(remote medical)中的无线终端、智能电网(smart grid)中的无线终端、运输安全(transportation safety)中的无线终端、智慧城市(smart city)中的无线终端、智慧家庭(smart home)中的无线终端或者未来通信网络中的终端设备等,本申请不作限制。
本申请实施例适用于包括第一网络设备和多个第二网络设备的通信场景。其中,第一网络设备可为上述无线通信系统中的网络设备,第一网络设备可以看作是基站控制单元,可实现基站控制指令发送和信号处理。第二网络设备为室内基站,比如为皮基站射频拉远单元(pico remote radio unit,pRRU),pRRU用于室内基站的射频拉远单元,实现射频信号处理功能。
本申请实施例也可应用到雷达组网系统中计算多部雷达的部署位置的场景中。
本申请公开的实施例将围绕包括多个设备、组件、模块等的系统来呈现本申请的各个方面、实施例或特征。应当理解和明白的是,各个系统可以包括另外的设备、组件、模块等,并且/或者可以并不包括结合附图讨论的所有设备、组件、模块等。此外,还可以使用这些方案的组合。
当前,对室内基站的日常运维和故障排查时,运维人员可根据施工队安装过程中记录的信息,查找控制室内基站的控制节点(比如射频拉远单元汇聚节点(Remote Radio Unit Hub,RHUB)),再从控制节点的接口去查找相应室内基站的位置,但该查找方式效率较低。其中,RHUB是用于进行数据的汇聚和转发,以便配置多个pRRU进行室内多个楼层或区域的无线覆盖。因此,RHUB是控制多个pRRU的控制节点。
运维人员还可携带测试设备沿预先设计的测试路线,在待测pRRU附近的多个点位进行信号强度测量,以确定待测pRRU的位置信息。图2为对待测pRRU附近的N个点位进行信号强度测量的示意图。运维人员基于测试出的接收信号的强度,以及空间路径损耗的经验模型,计算出不同测试点位与待测pRRU之间的距离信息,再根据测试设备记录的测试点位的位置坐标,通过多点距离定位方式确定待测pRRU的位置信息。该待测pRRU的位置信息确定过程依赖空间路径损耗经验模型,如果待测pRRU附近的空口信道环境与空间路径损耗经验模型匹配误差较大,会对待测pRRU的位置产生较大误差。
运维人员还可使用测距仪器测量每个待测pRRU到参考原点(环境中某个基准点)或参考面(环境中某个基准面)的距离,完成pRRU位置坐标的标定。该测量方式耗时长、成本高、效率低,且容易引入人为操作误差,无法实现站点自动化运维。
此外,RHUB与pRRU之间的连接依靠人工连线,容易发生RHUB端口与pRRU连线错误等情况。例如,图3a为预先规划的RHUB与pRRU之间的连接示意图。如图3a所示,在预先规划的RHUB与pRRU之间的连接关系中,RHUB的逻辑端口1与逻辑小区-1中的pRRU-1连接,RHUB的逻辑端口2与逻辑小区-1中的pRRU-2连接,RHUB的逻辑端口3与逻辑小区-2中的pRRU-3连接,RHUB的逻辑端口4与逻辑小区-2中的pRRU-4连接。图3b为RHUB与pRRU之间的实际物理连接示意图。如图3b所示,RHUB与pRRU之间的实际物理连接中,RHUB的逻辑端口1与逻辑小区-1中的pRRU-1连接,RHUB的逻辑端口2与逻辑小区-1中的pRRU-3连接,RHUB的逻辑端口3与逻辑小区-2中的pRRU-2连接,RHUB的逻辑端口4与逻辑小区-2中的pRRU-4连接。RHUB与pRRU之间的物理连接与预先规划的连接拓扑不一致会使得pRRU查找识别困难,也会导致网络干扰加剧,造成网络性能指标下降和用户体验恶化。
本申请实施例提供一种位置信息确定方法。该位置信息确定方法中,第二网络设备向多个第二网络设备中每个第二网络设备发送第一信息和第二信息,第一信息用于指示第二网络设备确定导频信号通过该第 二网络设备的发送通道和接收通道的第一时延,第二信息用于指示第二网络设备向一个或多个第三网络设备发送导频信号,以及接收来自一个或多个第三网络设备的导频信号。多个第二网络设备中的每个第二网络设备接收第一信息和第二信息。每个第二网络设备根据导频信号确定第一时延,以及通过接收导频信号确定一个或多个第二时延。每个第二网络设备将该第二网络设备的第一时延,以及一个或多个第二时延反馈给第一网络设备。从而第一网络设备根据各第二网络设备之间的空口时延,确定每个第二网络设备的位置信息,各第二网络设备之间的空口时延是根据每个第二网络设备的第一时延和一个或多个第二时延确定的。
可见,第一网络设备可通过每个第二网络设备反馈的第一时延和一个或多个第二时延确定多个第二网络设备中每个第二网络设备的位置信息。该方式与通过人工测量确定每个第二网络设备的位置信息的方式相比,可提高确定多个第二网络设备的位置信息的效率,以及提高每个第二网络设备的位置信息的精确度。
本申请实施例提出一种位置信息确定方法,图4是该位置信息确定方法的交互示意图。该位置信息确定方法从第一网络设备和多个第二网络设备的交互角度进行阐述。该位置信息确定方法包括但不限于以下步骤:
S101.第一网络设备向多个第二网络设备中每个第二网络设备发送第一信息和第二信息,第一信息用于指示第二网络设备确定导频信号通过该第二网络设备的发送通道和接收通道的第一时延,第二信息用于指示第二网络设备向一个或多个第三网络设备发送导频信号,以及接收来自一个或多个第三网络设备的导频信号。相应的,多个第二网络设备中的每个第二网络设备接收第一信息和第二信息。
其中,第三网络设备是多个第二网络设备中除该第二网络设备之外的网络设备。
多个第二网络设备中的每个第二网络设备均包括发送通道和接收通道,发送通道用于发送信号,接收通道用于接收信号。对于每个第二网络设备而言,第一时延是导频信号通过该第二网络设备的发送通道和接收通道的时延,即第一时延是该第二网络设备通过自身发送通道向自身接收通道发送导频信号的时延。
示例性的,图5是多个第二网络设备包括pRRU-1和pRRU-2,第一网络设备包括控制模块,第一网络设备的控制模块与pRRU-1和pRRU-2的交互示意图。如图5所示,第一网络设备通过控制模块向pRRU-1和pRRU-2发送第一信息和第二信息。pRRU-1和pRRU-2的发送通道时延分别为T1和T2,pRRU-1和pRRU-2的接收通道时延分别为R1和R2,pRRU-1和pRRU-2的自环回空口时延分别为C1和C2。pRRU-1的自环回空口时延是指导频信号在pRRU-1内部流转时的时延,pRRU-2的自环回空口时延是指导频信号在pRRU-2内部流转时的时延。
第一时延是导频信号通过第二网络设备的发送通道和接收通道的时延,也可理解为是导频信号通过该第二网络设备的发送通道、自环回空口和接收通道的时延,该自环回空口是导频信号在该第二网络设备的内部流转的空口。那么,对于图5而言,导频信号通过pRRU-1的发送通道、自环回空口和接收通道的时延,即pRRU-1的第一时延t11为T1+C1+R1;导频信号通过pRRU-2的发送通道、自环回空口和接收通道的时延,即pRRU-2的第一时延t22为T2+C2+R2
第一网络设备向每个第二网络设备发送第一信息,有利于每个第二网络设备根据导频信号确定第一时延,进而有利于第一网络设备获得用于确定每个第二网络设备的位置信息所需的每个第二网络设备的第一时延。
第一网络设备向每个第二网络设备发送的第二信息用于指示该第二网络设备向一个或多个第三网络设备发送导频信号,以及接收来自一个或多个第三网络设备的导频信号,可理解为:每个第二网络设备的第二信息用于指示该第二网络设备向多个第二网络设备中除该第二网络设备之外的网络设备发送导频信号,以及接收来自多个第二网络设备中除该第二网络设备之外的网络设备的导频信号。该方式可使得第一网络设备控制多个第二网络设备中的每个第二网络设备之间互相发送导频信号,从而有利于每个第二网络设备通过接收来自其他网络设备的导频信号确定第二时延,进而有利于第一网络设备获得用于确定每个第二网络设备的位置信息所需的每个第二网络设备的一个或多个第二时延。
示例性的,多个第二网络设备包括pRRU-1、pRRU-2和pRRU-3。第一网络设备向pRRU-1发送的第二信息用于指示pRRU-1向pRRU-2和pRRU-3发送导频信号,以及接收来自pRRU-2和pRRU-3的导频信号;第一网络设备向pRRU-2发送的第二信息用于指示pRRU-2向pRRU-1和pRRU-3发送导频信号,以及接收来自pRRU-1和pRRU-3的导频信号;第一网络设备向pRRU-3发送的第二信息用于指示pRRU-3向pRRU-1和pRRU-2发送导频信号,以及接收来自pRRU-1和pRRU-2的导频信号。
一种可选的实施方式中,多个第二网络设备中的每个第二网络设备被预先配置多个定向波束,每个第 二网络设备的多个定向波束包括多个第一波束和多个第二波束。从而每个第二网络设备可通过多个定向波束发送信号和接收信号,可提升每个第二网络设备发射信号和接收信号的波束增益,即提升各第二网络设备之间的无线链路空口质量。
一种可选的实施方式中,多个第二网络设备中的每个第二网络设备被预先配置多个定向波束时,第二信息具体用于指示第二网络设备在多个第一时隙上分别采用不同的第一波束向一个或多个第三网络设备中的每个第三网络设备发送导频信号,以及在多个第二时隙上分别采用不同的第二波束接收来自每个第三网络设备的导频信号。
也就是说,多个第二网络设备中的每个第二网络设备被预先配置多个定向波束时,第一网络设备通过第二信息,控制每个第二网络设备向一个或多个第三网络设备中的每个第三网络设备发送导频信号时,在多个第一时隙上分别采用不同的第一波束向该第三网络设备发送导频信号;以及接收来自每个第三网络设备的导频信号时,在多个第二时隙上分别采用不同的第二波束接收来自该第三网络设备的导频信号。
示例性的,图6是第一网络设备包括控制模块,第一网络设备通过控制模块向pRRU-1发送第二信息的示意图。如图6所示,该pRRU-1被配置了四个方向的定向波束,定向波束1、定向波束2、定向波束3和定向波束4。从而第一网络设备可通过控制模块向pRRU-1发送第二信息,以控制pRRU-1在不同的时隙上采用不同的定向波束发送导频信号,以及接收导频信号。例如,第二信息用于指示pRRU-1在不同的时隙上分别采用定向波束1、定向波束2、定向波束3和定向波束4向pRRU-2发送导频信号,以及在不同时隙上分别采用定向波束1、定向波束2、定向波束3和定向波束4接收来自pRRU-2的导频信号。
示例性的,多个第二网络设备包括pRRU-1、pRRU-2和pRRU-3。针对pRRU-1,第三网络设备为pRRU-2和pRRU-3,第一网络设备通过第二信息向pRRU-1指示在时隙1和时隙2上分别采用波束1和波束2向pRRU-2发送导频信号,在时隙3和时隙4上分别采用波束3和波束4接收来自pRRU-2的导频信号;以及在时隙5和时隙6上分别采用波束1和波束2向pRRU-3发送导频信号,在时隙7和时隙8上分别采用波束3和波束4接收来自pRRU-3的导频信号。
第一网络设备通过第二信息,控制每个第二网络设备在多个第一时隙上分别采用不同的第一波束向该第三网络设备发送导频信号,以及在多个第二时隙上分别采用不同的第二波束接收来自该第三网络设备的导频信号,可使得每个第二网络设备根据接收信噪比最大原则,确定一个或多个第二时延,从而有利于提高各第二网络设备之间距离的计算精度,进而有利于提高各第二网络设备的位置信息的精度。
可理解的,第一信息和第二信息可以是不同的控制信息,也可以是同一个控制信息,本申请实施例对此不做限定。第一信息和第二信息均可理解为是第一网络设备向每个第二网络设备下发的控制信令。
S102.第二网络设备根据导频信号确定第一时延。
其中,该第二网络设备是多个第二网络设备中的任意一个网络设备。
可理解的,每个第二网络设备的第一信息用于指示该第二网络设备确定导频信号通过该第二网络设备的发送通道和接收通道的第一时延,从而多个第二网络设备中的每个第二网络设备根据导频信号确定第一时延。
第二网络设备根据导频信号确定第一时延,包括:使导频信号通过第二网络设备的发送通道和接收通道,根据导频信号从第二网络设备的发送通道发送的时间,以及通过接收通道接收到该导频信号的时间,确定第一时延。
第一时延也可理解为是导频信号从该第二网络设备的发送通道到该第二网络设备的接收通道的时长。从而,每个第二网络设备将导频信号从该第二网络设备的发送通道到该第二网络设备的接收通道的时长,确定为该第二网络设备的第一时延。
S103.第二网络设备向一个或多个第三网络设备发送导频信号。
可理解的,每个第二网络设备向多个第二网络设备中除该第二网络设备之外的网络设备发送导频信号,以使得每个第二网络设备均接收来自多个第二网络设备中其他网络设备的导频信号。
示例性的,多个第二网络设备包括pRRU-1、pRRU-2和pRRU-3,pRRU-1向pRRU-2和pRRU-3发送导频信号,pRRU-2向pRRU-1和pRRU-3发送导频信号,pRRU-3向pRRU-1和pRRU-2发送导频信号。
一种可选的实施方式中,第二网络设备向一个或多个第三网络设备发送导频信号,包括:在多个第一时隙上采用不同的第一波束向一个或多个第三网络设备中的每个第三网络设备发送导频信号。也就是说,第二网络设备在不同时隙上分别采用不同的第一波束向每个第三网络设备发送导频信号。
示例性的,多个第二网络设备包括pRRU-1、pRRU-2和pRRU-3。针对pRRU-1,第三网络设备为pRRU-2和pRRU-3,pRRU-1在时隙1和时隙2上分别采用波束1和波束2向pRRU-2发送导频信号,以及在时隙 5和时隙6上分别采用波束1和波束2向pRRU-3发送导频信号。
S104.第二网络设备接收来自一个或多个第三网络设备的导频信号,并确定一个或多个第二时延,一个或多个第二时延中各第二时延分别是导频信号从各第三网络设备的发送通道到该第二网络设备的接收通道的时延。
每个第二网络设备均向多个第二网络设备中除该第二网络设备之外的网络设备发送导频信号,从而每个第二网络设备可接收来自多个第二网络设备中除该第二网络设备之外的网络设备的导频信号,即每个第二网络设备可接收来自一个或多个第三网络设备的导频信号。
每个第二网络设备的各第二时延分别是导频信号从第三网络设备的发送通道到该第二网络设备的接收通道的时延,可理解为:各第二时延分别是导频信号从各第三网络设备的发送通道到该第二网络设备的接收通常的时长。从而每个第二网络设备可通过各第三网络设备向该第二网络设备发送导频信号的时间,与接收来自该第三网络设备的导频信号的时间,确定接收来自该第三网络设备的导频信号的第二时延。每个第二网络设备可接收来自一个或多个第三网络设备的导频信号,从而每个第二网络可确定一个或多个第二时延。
示例性的,多个第二网络设备包括pRRU-1、pRRU-2和pRRU-3。对于pRRU-1而言,pRRU-1可根据pRRU-2向pRRU-1发送导频信号的时间,以及接收来自pRRU-2的导频信号的时间,确定第二时延#1。pRRU-1还可根据pRRU-3向pRRU-1发送导频信号的时间,以及接收来自pRRU-3的导频信号的时间,确定第二时延#2。类似的,pRRU-2和pRRU-3均可分别确定两个第二时延。
一种可选的实施方式中,第二网络设备接收来自一个或多个第三网络设备的导频信号,包括:在多个第二时隙上分别采用第二波束接收来自一个或多个第三网络设备中每个第三网络设备的导频信号。也就是说,第二网络设备可在不同的时隙上分别采用不同的第二波束接收来自每个第三网络设备的导频信号。
示例性的,多个第二网络设备包括pRRU-1、pRRU-2和pRRU-3。针对pRRU-1,第三网络设备为pRRU-2和pRRU-3,pRRU-1在时隙3和时隙4上分别采用波束3和波束4接收来自pRRU-2的导频信号,以及在时隙7和时隙8上分别采用波束3和波束4接收来自pRRU-3的导频信号。
可理解的,每个第二网络在不同时隙上采用不同的第一波束向每个第三网络设备发送导频信号,以及在不同时隙上采用不同的第二波束接收来自每个第三网络设备的导频信号时,每个第二网络设备向各第三网络设备发送导频信号所采用的多个第一波束,与各第三网络设备接收来自该第二网络设备的导频信号所采用的多个波束可视为一组波束对。
示例性的,多个第二网络设备包括pRRU-1、pRRU-2和pRRU-3。针对pRRU-1,第三网络设备为pRRU-2和pRRU-3。pRRU-1在时隙1上采用波束1向pRRU-2发送导频信号,相应的,pRRU-2在时隙1上采用波束1′接收来自pRRU-1的导频信号,波束1和波束1′可组成波束对1;pRRU-1在时隙2上采用波束2向pRRU-2发送导频信号,相应的,pRRU-2在时隙2上采用波束2′接收来自pRRU-1的导频信号,波束2和波束2′可组成波束对2。pRRU-1在时隙3上采用波束3向pRRU-3发送导频信号,相应的,pRRU-3在时隙3上采用波束3′接收来自pRRU-3的导频信号,波束3和波束3′可组成波束对3;pRRU-1在时隙4上采用波束4向pRRU-3发送导频信号,相应的,pRRU-3在时隙4上采用波束4′接收来自pRRU-1的导频信号,波束4和波束4′可组成波束对4。
该实施方式下,每个第二网络设备的各第二时延具体是最优波束对所对应的时延,该最优波束对是多个第一波束和多个第二波束中接收信噪比最大的波束对。也就是说,每个第二网络在不同时隙上采用不同的第一波束向每个第三网络设备发送导频信号,以及在不同时隙上采用不同的第二波束接收来自每个第三网络设备的导频信号时,每个第二网络设备的各第二时延是该第二网络设备采用最优波束对接收来自第三网络设备的导频信号时的时延,且该第二网络设备采用最优波束对接收来自该第三网络设备的导频信号时,其接收信噪比与采用其他波束对接收来自该第三网络设备的导频信号时的信噪比相比,该第二网络设备采用最优波束对接收来自该第三网络设备的导频信号的信噪比最大。
示例性的,多个第二网络设备包括pRRU-1、pRRU-2。针对pRRU-1,第三网络设备为pRRU-2。pRRU-1在时隙1上采用波束1向pRRU-2发送导频信号,相应的,pRRU-2在时隙1上采用波束1′接收来自pRRU-1的导频信号;pRRU-1在时隙2上采用波束2向pRRU-2发送导频信号,相应的,pRRU-2在时隙2上采用波束2′接收来自pRRU-1的导频信号。pRRU-2在时隙2上采用波束2′接收来自pRRU-1的导频信号时的信噪比,大于在时隙1上采用波束1′接收来自pRRU-1的导频信号时的信噪比。那么,pRRU-2接收来自pRRU-1的导频信号时的第二时延是波束2和波束2′组成的波束对所对应的时延,也可理解为是:pRRU-1在时隙2上采用波束2向pRRU-2发送导频信号,以及pRRU-2在时隙2上采用波束2′接收来自pRRU-1 的导频信号时的时延。
该实施方式可提高一个或多个第二时延中每个第二时延的精度,进而有利于提高第一网络设备根据每个第二网络设备的一个或多个第二时延确定的每个第二网络设备的位置信息的精度。
本申请实施例不限定S102至S104的执行顺序。也就是说,S102可在S103和S104之前执行,也可在S103和S104之后执行。同理,S103可在S102和S104之前执行,也可在S102和S104之后执行;S104可在S102和S103之前执行,也可在S102和S103之后执行。
S105.第二网络设备发送第一时延,以及一个或多个第二时延。相应的,第一网络设备接收每个第二网络设备的第一时延,以及一个或多个第二时延。
可理解的,多个第二网络设备中的每个第二网络设备向第一网络设备发送该第二网络设备的第一时延,以及一个或多个第二时延,以使得第一网络设备获得确定每个第二网络设备的位置信息所需的时延信息。
一种可选的实施方式中,每个第二网络设备还可记录一个或多个最优波束对,即记录接收来自每个第三网络设备的导频信号时,接收信噪比最大时对应的最优波束对的波束指向和角度信息。
可选的,每个第二网络设备还可向第一网络设备发送该第二网络设备的一个或多个最优波束对。相应的,第一网络设备还可接收来自每个第二网络设备的一个或多个最优波束对。该方式有利于第一网络设备确定每个第二网络设备的位置信息时,参考每个第二网络设备的一个或多个最优波束对中每个最优波束对的波束指向和角度信息,进而有利于提高每个第二网络设备的位置信息的精度。
S106.第一网络设备根据各第二网络设备之间的空口时延,确定每个第二网络设备的位置信息,各第二网络设备之间的空口时延是基于每个第二网络设备的第一时延,以及一个或多个第二时延确定的。
一种可选的实施方式中,第一网络设备还可根据多个第二网络设备的第一时延和一个或多个第二时延,补偿多个第二网络设备中每两个第二网络设备之间的接收通道的时延,再根据补偿后的每两个第二网络设备之间的接收通道的时延,确定各第二网络设备之间的空口时延。
第一网络设备根据多个第二网络设备的第一时延和一个或多个第二时延,补偿多个第二网络设备中每两个第二网络设备之间的接收通道的时延,也可理解为:根据多个第二网络设备中每两个第二网络设备的第一时延和一个或多个第二时延,使其该两个第二网络设备之间的接收通道的时延对齐;还可理解为:使每两个第二网络设备的接收通道的时延相等时,对该两个第二网络设备中的一个网络设备的接收通道的时延进行补偿。
示例性的,如图5所示,多个第二网络设备包括pRRU-1和pRRU-2。图5中,H12表示pRRU-1发送,pRRU-2接收的空口时延;H21表示pRRU-2发送,pRRU-1接收的空口时延。假设pRRU-1确定的第一时延为t11,第二时延为t21;pRRU-2确定的第一时延为t22,第二时延为t12。那么每个时延存在如下关系:
t11=T1+C1+R1         (1)
t21=T2+H21+R1       (2)
t22=T2+C2+R2        (3)
t12=T1+H12+R2         (4)
第一网络设备基于pRRU-1与pRRU-2之间收发空口的信道互易性可知:H12=H21,且若忽略不同pRRU自环回空口时延C1、C2的差异影响,即C1≈C2,通过公式(1)至公式(4)可得到:
基于公式(5)可知,第一网络设备可根据pRRU-1的第一时延t11和第二时延t21,以及pRRU-2的第一时延t22和第二时延t12,确定pRRU-1的接收通道与pRRU-2的接收通道之间的差值。从而第一网络设备可使得pRRU-1的接收通道的时延R1与pRRU-2的接收通道的时延R2相等,对齐pRRU-1与pRRU-1之间的接收通道的时延。即第一网络设备使得pRRU-1的接收通道的时延R1与pRRU-2的接收通道的时延R2相等时,补偿pRRU-1或pRRU-1的接收通道的时延。例如,第一网络设备将pRRU-1的接收通道的时延R1增大R1-R2,或者而将pRRU-1的接收通道的时延R2减小R1-R2
第一网络设备补偿pRRU-1与pRRU-1之间的接收通道的时延后,基于上述公式(1)至公式(4),可计算获得pRRU-1与pRRU-2之间的空口时延。从而第一网络设备可根据pRRU-1与pRRU-2之间的空口时延,确定pRRU-1与pRRU-2之间的距离,进而可根据pRRU-1与pRRU-2之间的距离,确定pRRU-1 和pRRU-2的位置信息。例如,pRRU-1的位置信息是预先设定的,那么第一网络设备可根据pRRU-1与pRRU-2之间的距离,以及pRRU-1的已知位置信息,确定pRRU-2的位置信息。
可见,第一网络设备可根据多个第二网络设备的第一时延和一个或多个第二时延,补偿多个第二网络设备中每两个第二网络设备之间的接收通道的时延,再根据补偿后的每两个第二网络设备之间的接收通道的时延,确定各第二网络设备之间的空口时延。进而第一网络设备可根据各第二网络设备之间的空口时延,确定每个第二网络设备的位置信息。
一种可选的实施方式中,第一网络设备根据各第二网络设备之间的空口时延,确定每个第二网络设备的位置信息,包括:根据各第二网络设备之间的空口时延,确定每两个第二网络设备之间的距离;根据每两个第二网络设备之间的距离,以及一个或多个第四网络设备的位置信息,确定每个第二网络设备的位置信息。第四网络设备是多个第二网络设备中已知位置信息的网络设备。
也就是说,第一网络设备根据各第二网络设备之间的空口时延,确定每两个第二网络设备之间的距离,再基于每两个第二网络设备之间的距离,以及已知的少量第二网络设备的位置信息,确定多个第二网络设备中其余网络设备的位置信息。
一种可选的实施方式中,第一网络设备根据每两个第二网络设备之间的距离,以及一个或多个第四网络设备的位置信息,确定每个第二网络设备的位置信息,包括:根据每两个第二网络设备之间的距离,以及每个第二网络设备的一个或多个最优波束对的波束信息,确定多个第二网络设备之间的空间拓扑结构;根据每两个第二网络设备之间的距离、空间拓扑结构,以及一个或多个第四网络设备的位置信息,确定每个第二网络设备的位置信息。
可理解的,第一网络设备根据每两个网络设备之间的距离,以及每个第二网络设备的一个或多个最优波束对的波束信息,利用多维尺度变换技术,确定多个第二网络设备之间的空间拓扑结构,即各第二网络设备之间的相对位置结构关系。
示例性的,多个第二网络设备包括pRRU-1、pRRU-2、pRRU-3和pRRU-4,第一网络设备根据每两个pRRU之间的距离,以及每个pRRU的一个或多个最优波束对的波束信息,利用多维尺度变换技术,确定4个pRRU之间的空间拓扑结构如图7所示,即图7为4个pRRU之间的空间拓扑结构示意图。
第一网络设备再根据每两个第二网络设备之间的距离、多个第二网络设备之间空间拓扑结构,以及多个第二网络设备中预先规划的少量第二网络设备的位置信息,对多个第二网络设备之间的空间拓扑结构图进行平移、镜像和旋转等刚体变换操作,确定每个第二网络设备的位置信息。
可见,第一网络设备确定每个第二网络设备的位置信息的实施方式,与通过人工测量确定每个第二网络设备的位置信息的方式相比,可提高确定每个第二网络设备的位置信息的效率,以及可提高每个第二网络设备的位置信息的准确度。
一种可选的实施方式中,第一网络设备还可根据第五网络设备的多个逻辑端口,确定多个逻辑端口中每个逻辑端口对应的第二网络设备,即确定每个逻辑端口与第二网络设备的连接关系。第五网络设备是控制多个第二网络设备的网络设备,比如第五网络设备是RHUB。
可理解的,第一网络设备根据第五网络设备的逻辑端口,指定某个特定的第二网络设备发送导频信号。第一网络设备通过多个第二网络设备除该第二网络设备之外的网络设备对接收信号和空口时延的测量,获得该第二网络设备到其他网络设备的距离。第一网络设备再结合多个第二网络设备之间的空间拓扑结构,确定该第二网络设备在空间拓扑结构中的位置,进而确定指定的逻辑端口所对应的第二网络设备,即确定了与该逻辑端口连接的第二网络设备。
示例性的,图8为第一网络设备确定逻辑端口1所对应的pRRU-1的示意图。如图8所示,第一网络设备通过控制模块控制与逻辑端口1连接的pRRU向其他pRRU发送导频信号,可确定与逻辑端口1连接的pRRU-1与其余pRRU的距离,进而再基于pRRU-1至pRRU-4之间的空间拓扑结构,确定与逻辑端口1连接的pRRU-1为图8中所示的位置。
该实施方式中,第一网络设备可自行确定RHUB的逻辑端口与各pRRU之间的连接关系,无需人工现场逐一测试,可提升后续运维过程中查找和识别故障pRRU的效率。
本申请实施例中,第二网络设备向多个第二网络设备中每个第二网络设备发送第一信息和第二信息,第一信息用于指示第二网络设备确定导频信号通过该第二网络设备的发送通道和接收通道的第一时延,第二信息用于指示第二网络设备向一个或多个第三网络设备发送导频信号,以及接收来自一个或多个第三网络设备的导频信号。多个第二网络设备中的每个第二网络设备接收第一信息和第二信息。每个第二网络设备根据导频信号确定第一时延,以及通过接收导频信号确定一个或多个第二时延。每个第二网络设备将该 第二网络设备的第一时延,以及一个或多个第二时延反馈给第一网络设备。从而第一网络设备根据各第二网络设备之间的空口时延,确定每个第二网络设备的位置信息,各第二网络设备之间的空口时延是根据每个第二网络设备的第一时延和一个或多个第二时延确定的。
第一网络设备可通过每个第二网络设备反馈的第一时延和一个或多个第二时延确定多个第二网络设备中每个第二网络设备的位置信息。该方式与通过人工测量确定每个第二网络设备的位置信息的方式相比,可提高确定多个第二网络设备的位置信息的效率,以及提高每个第二网络设备的位置信息的精确度。
图9是以多个第二网络设备包括pRRU-1、pRRU-2、pRRU-3和pRRU-4,第五网络设备为RHUB为例的系统架构示意图。如图9所示,第一网络设备包括控制模块和数据处理模块,第一网络设备的控制模块和数据处理模块与RHUB连接,RHUB的4个逻辑端口分别与pRRU-1、pRRU-2、pRRU-3和pRRU-4连接。pRRU-1、pRRU-2、pRRU-3和pRRU-4中每个pRRU均包括通道校正模块、发送通道和接收通道。
其中,第一网络设备的控制模块用于调度每个pRRU在指定时隙上发送或接收导频信号,即第一网络设备通过控制模块向每个pRRU发送第一信息和第二信息。此外,第一网络设备的控制模块还用于每个pRRU定向波束的切换选择与调度。第一网络设备的数据处理模块用于收集各pRRU的测量结果,并根据多个pRRU的测量结果构建多个pRRU之间的空间拓扑架构和确定每个pRRU的位置信息。也就是说,第一网络设备的数据处理模块用于接收每个pRRU的第一时延和一个或多个第二时延,并根据多个pRRU的第一时延和一个或多个第二时延,构建多个pRRU之间的空间拓扑架构,以及确定每个pRRU的位置信息。
每个pRRU的通道校正模块用于对接收通道的时延进行校正,即用于对与其他pRRU之间的接收通道的时延进行补偿。每个pRRU的发送通道用于发送信号,接收通道用于接收信号。从图9还可看出,对于pRRU-1而言,pRRU-1可采用定向波束1、定向波束2、定向波束3和定向波束4向其余pRRU发送信号。例如,pRRU-1采用定向波束1、定向波束2、定向波束3和定向波束4向pRRU-2发送导频信号。同理,pRRU-1还可采用定向波束1、定向波束2、定向波束3和定向波束4向pRRU-3和pRRU-4发送信号。
图10是以多个第二网络设备包括pRRU-1、pRRU-2、pRRU-3,且第一网络设备包括数据处理模块和控制模块为例,数据处理模块、控制模块和各pRRU之间的交互示意图。如图10所示,数据处理模块、控制模块和各pRRU之间的交互包括但不限于以下步骤:
S11,第一网络设备通过控制模块向每个pRRU发送第一信息,第一信息用于指示pRRU确定导频信号通过该pRRU的发送通道和接收通道的第一时延。相应的,每个pRRU接收第一信息,并启动该pRRU的通道校正模块,使得导频信号在该pRRU的内部空口环回,并确定第一时延。
S12,第一网络设备通过控制模块向每个pRRU发送第二信息,第二信息用于指示pRRU在特定时隙上发送和接收导频信号。相应的,每个pRRU接收第二信息。
S13,每个pRRU向其他pRRU发送导频信号,接收来自其他pRRU的导频信号,并完成时延估计,确定一个或多个第二时延。
S14,每个pRRU向第一网络设备反馈第一时延和一个或多个第二时延。相应的,第一网络设备通过数据处理模块接收每个pRRU的第一时延和一个或多个第二时延。
S15,第一网络设备的数据处理模块对每个pRRU的第一时延和一个或多个第二时延进行处理,获得各pRRU之间接收通道的时延差。即第一网络设备根据每个pRRU的第一时延和一个或多个第二时延,对每两个pRRU之间接收通道的时延进行补偿。
S16,第一网络设备的数据处理模块根据补偿后的每两个pRRU之间接收通道的时延,确定每两个pRRU之间的空口时延,并根据每两个pRRU之间的空口时延,确定每两个pRRU之间的距离。
S17,第一网络设备的数据处理模块根据每两个pRRU之间的距离,确定多个pRRU之间的空间拓扑关系。
S18,第一网络设备的数据处理模块根据每两个pRRU之间的距离和多个pRRU之间的空间拓扑关系,确定每个pRRU的位置信息。
可见,第一网络设备可通过控制模块控制多个pRRU中的每个pRRU之间互相发送和接收导频信号,从而每个pRRU确定第一时延和一个或多个第二时延,并向第一网络设备反馈该pRRU的第一时延和一个或多个第二时延。进而,第一网络设备可根据多个pRRU的第一时延和一个或多个第二时延,确定每个pRRU的位置信息,而无需依靠运维人员现场测量获得每个pRRU的位置信息,可提高确定多个pRRU的位置信息的效率和精度。
针对前文描述的技术方案,下文进一步描述相应的装置实现方案。
为了实现上述本申请实施例提供的方法中的各功能,第一网络设备和第二网络设备可以包括硬件结构和/或软件模块,以硬件结构、软件模块、或硬件结构加软件模块的形式来实现上述各功能。上述各功能中的某个功能以硬件结构、软件模块、还是硬件结构加软件模块的方式来执行,取决于技术方案的特定应用和设计约束条件。
如图11所示,本申请实施例提供了一种通信装置1100。该通信装置1100可以是第一网络设备的部件(例如,集成电路,芯片等等),也可以是第二网络设备的部件(例如,集成电路,芯片等等)。该通信装置1100也可以是其他通信单元,用于实现本申请方法实施例中的方法。该通信装置1100可以包括:通信单元1101和处理单元1102。可选的,还可以包括存储单元1103。
在一种可能的设计中,如图11中的一个或者多个单元可能由一个或者多个处理器来实现,或者由一个或者多个处理器和存储器来实现;或者由一个或多个处理器和收发器实现;或者由一个或者多个处理器、存储器和收发器实现,本申请实施例对此不作限定。所述处理器、存储器、收发器可以单独设置,也可以集成。
所述通信装置1100具备实现本申请实施例描述的第一网络设备或第二网络设备的功能。比如,所述通信装置1100包括第一网络设备执行本申请实施例描述的第一网络设备涉及步骤所对应的模块或单元或手段(means),所述功能或单元或手段(means)可以通过软件实现,或者通过硬件实现,也可以通过硬件执行相应的软件实现,还可以通过软件和硬件结合的方式实现。详细可进一步参考前述对应方法实施例中的相应描述。
在一种可能的设计中,一种通信装置1100可包括:处理单元1102和通信单元1101;
通信单元1101,用于向多个第二网络设备中每个第二网络设备发送第一信息和第二信息;
所述第一信息用于指示所述第二网络设备确定导频信号通过该第二网络设备的发送通道和接收通道的第一时延;
所述第二信息用于指示所述第二网络设备向一个或多个第三网络设备发送所述导频信号,以及接收来自所述一个或多个第三网络设备的所述导频信号;所述第三网络设备是所述多个第二网络设备中除该第二网络设备之外的网络设备;
通信单元1101,还用于接收所述每个第二网络设备的所述第一时延,以及一个或多个第二时延;
所述每个第二网络设备的各第二时延分别是所述导频信号从各第三网络设备的发送通道到该第二网络设备的接收通道的时延;
处理单元1102,用于根据各第二网络设备之间的空口时延,确定所述每个第二网络设备的位置信息;所述各第二网络设备之间的空口时延是基于所述每个第二网络设备的第一时延,以及一个或多个第二时延确定的。
一种可选的实现方式中,所述第二信息具体用于指示该第二网络设备在多个第一时隙上分别采用不同的第一波束向所述一个或多个第三网络设备中的每个第三网络设备发送所述导频信号,以及在多个第二时隙上分别采用不同的第二波束接收来自所述每个第三网络设备的所述导频信号。
一种可选的实现方式中,所述每个第二网络设备的各第二时延具体是最优波束对所对应的时延;所述最优波束对是所述多个第一波束和所述多个第二波束中接收信噪比最大的波束对。
一种可选的实现方式中,通信单元1101,还用于接收所述每个第二网络设备的一个或多个所述最优波束对的波束信息。
一种可选的实现方式中,所述处理单元1102根据各第二网络设备之间的空口时延,确定所述每个第二网络设备的位置信息,具体用于:根据所述各第二网络设备之间的空口时延,确定所述每两个第二网络设备之间的距离;根据所述每两个第二网络设备之间的距离,以及一个或多个第四网络设备的位置信息,确定所述每个第二网络设备的位置信息;所述第四网络设备是所述多个第二网络设备中已知位置信息的网络设备。
一种可选的实现方式中,所述处理单元1102根据所述每两个第二网络设备之间的距离,以及一个或多个第四网络设备的位置信息,确定所述每个第二网络设备的位置信息,具体用于:根据所述每两个第二网络设备之间的距离,以及所述每个第二网络设备的一个或多个所述最优波束对的波束信息,确定所述多个第二网络设备之间的空间拓扑结构;根据所述每两个第二网络设备之间的距离、所述空间拓扑结构,以及一个或多个第四网络设备的位置信息,确定所述每个第二网络设备的位置信息。
一种可选的实现方式中,所述处理单元1102还用于:根据所述多个第二网络设备的所述第一时延和 一个或多个所述第二时延,补偿所述多个第二网络设备中每两个第二网络设备之间的接收通道的时延;根据补偿后的所述每两个第二网络设备之间的接收通道的时延,确定所述各第二网络设备之间的空口时延。
一种可选的实现方式中,所述处理单元1102还用于:根据第五网络设备的多个逻辑端口,确定所述多个逻辑端口中每个逻辑端口对应的第二网络设备;所述第五网络设备是控制所述多个第二网络设备的网络设备。
一种可选的实现方式中,所述处理单元1102可以包括上述图9中第一网络设备的数据处理模块和控制模块。
本申请实施例和上述所示方法实施例基于同一构思,其带来的技术效果也相同,具体原理请参照上述所示实施例的描述,不再赘述。
在另一种可能的设计中,一种通信装置1100可包括:处理单元1102和通信单元1101,
通信单元1101,用于接收第一信息和第二信息;所述第一信息用于指示第二网络设备确定导频信号通过该第二网络设备的发送通道和接收通道的第一时延;
所述第二信息用于指示所述第二网络设备向一个或多个第三网络设备发送所述导频信号,以及接收来自所述一个或多个第三网络设备的所述导频信号;所述第三网络设备是所述多个第二网络设备中除该第二网络设备之外的网络设备;
处理单元1102,用于根据所述导频信号确定所述第一时延;
通信单元1101,还用于向所述一个或多个第三网络设备发送所述导频信号;
通信单元1101,还用于接收来自所述一个或多个第三网络设备的所述导频信号,并确定一个或多个所述第二时延;所述一个或多个第二时延中各第二时延分别是所述导频信号从各第三网络设备的发送通道到该第二网络设备的接收通道的时延;
通信单元1101,还用于发送所述第一时延,以及所述一个或多个第二时延。
一种可选的实现方式中,所述第二信息具体用于指示所述第二网络设备在多个第一时隙上分别采用不同的第一波束向所述一个或多个第三网络设备中的每个第三网络设备发送所述导频信号,以及在多个第二时隙上分别采用不同的第二波束接收来自所述每个第三网络设备的所述导频信号;
通信单元1101向所述一个或多个第三网络设备发送所述导频信号,具体用于:
在所述多个第一时隙上分别采用不同的第一波束,向所述一个或多个第三网络设备中的每个第三网络设备发送所述导频信号;
通信单元1101接收来自所述一个或多个第三网络设备的所述导频信号,具体用于:
在所述多个第二时隙上分别采用不同的第二波束,接收来自所述每个第三网络设备的所述导频信号。
一种可选的实现方式中,所述第二网络设备的各第二时延具体是最优波束对所对应的时延;所述最优波束对是所述多个第一波束和所述多个第二波束中接收信噪比最大的波束对。
一种可选的实现方式中,通信单元1101还用于发送一个或多个所述最优波束对的波束信息。
本申请实施例和上述所示方法实施例基于同一构思,其带来的技术效果也相同,具体原理请参照上述所示实施例的描述,不再赘述。
本申请实施例还提供一种通信装置1200,图12为通信装置1200的结构示意图。所述通信装置1200可以是第一网络设备,也可以是支持第一网络设备实现上述方法的芯片、芯片系统、或处理器等;或者,可以是第二网络设备,也可以是支持第二网络设备实现上述方法的芯片、芯片系统、或处理器等。该装置可用于实现上述方法实施例中描述的方法,具体可以参见上述方法实施例中的说明。
所述通信装置1200可以包括一个或多个处理器1201。所述处理器1201可以是通用处理器或者专用处理器等。例如可以是基带处理器、数字信号处理器、专用集成电路、现场可编程门阵列或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件或中央处理器(central processing unit,CPU)。基带处理器可以用于对通信协议以及通信数据进行处理,中央处理器可以用于对通信装置(如,基站、基带芯片,终端、终端芯片,DU或CU等)进行控制,执行软件程序,处理软件程序的数据。
可选的,所述通信装置1200中可以包括一个或多个存储器1202,其上可以存有指令1204,所述指令可在所述处理器1201上被运行,使得所述通信装置1200执行上述方法实施例中描述的方法。可选的,所述存储器1202中还可以存储有数据。所述处理器1201和存储器1202可以单独设置,也可以集成在一起。
存储器1202可包括但不限于硬盘(hard disk drive,HDD)或固态硬盘(solid-state drive,SSD)等非易失性存储器,随机存储记忆体(Random Access Memory,RAM)、可擦除可编程只读存储器(Erasable Programmable ROM,EPROM)、ROM或便携式只读存储器(Compact Disc Read-Only Memory,CD-ROM) 等等。
可选的,所述通信装置1200还可以包括收发器1205、天线1206。所述收发器1205可以称为收发单元、收发机、或收发电路等,用于实现收发功能。收发器1205可以包括接收器和发送器,接收器可以称为接收机或接收电路等,用于实现接收功能;发送器可以称为发送机或发送电路等,用于实现发送功能。
所述通信装置1200为第一网络设备:收发器1205用于执行上述位置确定方法中的S101和S105,处理器1201用于执行上述位置确定方法中的S106。
所述通信装置1200为第二网络设备:收发器1205用于执行上述位置确定方法中的S101、S103和S105,处理器1201用于执行上述位置确定方法中的S102、S104。
另一种可能的设计中,处理器1201中可以包括用于实现接收和发送功能的收发器。例如该收发器可以是收发电路,或者是接口,或者是接口电路。用于实现接收和发送功能的收发电路、接口或接口电路可以是分开的,也可以集成在一起。上述收发电路、接口或接口电路可以用于代码/数据的读写,或者,上述收发电路、接口或接口电路可以用于信号的传输或传递。
又一种可能的设计中,可选的,处理器1201可以存有指令1203,指令1203在处理器1201上运行,可使得所述通信装置1200执行上述方法实施例中描述的方法。指令1203可能固化在处理器1201中,该种情况下,处理器1201可能由硬件实现。
又一种可能的设计中,通信装置1200可以包括电路,所述电路可以实现前述方法实施例中发送或接收或者通信的功能。本申请实施例中描述的处理器和收发器可实现在集成电路(integrated circuit,IC)、模拟IC、射频集成电路(radio frequency integrated circuit,RFIC)、混合信号IC、专用集成电路(application specific integrated circuit,ASIC)、印刷电路板(printed circuit board,PCB)、电子设备等上。该处理器和收发器也可以用各种IC工艺技术来制造,例如互补金属氧化物半导体(complementary metal oxide semiconductor,CMOS)、N型金属氧化物半导体(nMetal-oxide-semiconductor,NMOS)、P型金属氧化物半导体(positive channel metal oxide semiconductor,PMOS)、双极结型晶体管(Bipolar Junction Transistor,BJT)、双极CMOS(BiCMOS)、硅锗(SiGe)、砷化镓(GaAs)等。
本申请实施例中描述的通信装置的范围并不限于此,而且通信装置的结构可以不受图12的限制。通信装置可以是独立的设备或者可以是较大设备的一部分。例如所述通信装置可以是:
(1)独立的集成电路IC,或芯片,或,芯片系统或子系统;
(2)具有一个或多个IC的集合,可选的,该IC集合也可以包括用于存储数据,指令的存储部件;
(3)ASIC,例如调制解调器(modulator);
(4)可嵌入在其他设备内的模块;
本申请实施例中通信装置、芯片还可执行上述通信装置1100所述的实现方式。本领域技术人员还可以了解到本申请实施例列出的各种说明性逻辑块(illustrative logical block)和步骤(step)可以通过电子硬件、电脑软件,或两者的结合进行实现。这样的功能是通过硬件还是软件来实现取决于特定的应用和整个系统的设计要求。本领域技术人员可以对于每种特定的应用,可以使用各种方法实现所述的功能,但这种实现不应被理解为超出本申请实施例保护的范围。
本申请实施例和上述位置确定方法所示方法实施例基于同一构思,其带来的技术效果也相同,具体原理请参照上述位置确定方法所示实施例的描述,不再赘述。
本申请还提供了一种计算机可读存储介质,用于储存计算机软件指令,当所述指令被通信装置执行时,实现上述任一方法实施例的功能。
本申请还提供了一种计算机程序产品,用于储存计算机软件指令,当所述指令被通信装置执行时,实现上述任一方法实施例的功能。
本申请还提供了一种计算机程序,当其在计算机上运行时,实现上述任一方法实施例的功能。
本申请还提供了一种通信系统,该系统包括一个或多个网络设备,以及一个或多个终端设备。在另一种可能的设计中,该系统还可以包括本申请提供的方案中与网络设备、终端设备进行交互的其他设备。
上述实施例中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。所述计算机程序产品包括一个或多个计算机指令。在计算机上加载和执行所述计算机指令时,全部或部分地产生按照本申请实施例所述的流程或功能。所述计算机可以是通用计算机、专用计算机、计算机网络、或者其他可编程装置。所述计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,所述计算机指令可以从一个网站站点、计算机、服务器或数据中心通过有线(例如同轴电缆、光纤、数字用户线(digital  subscriber line,DSL))或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。所述计算机可读存储介质可以是计算机能够存取的任何可用介质或者是包含一个或多个可用介质集成的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质(例如,软盘、硬盘、磁带)、光介质(例如,高密度数字视频光盘(digital video disc,DVD))、或者半导体介质(例如,SSD)等。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以所述权利要求的保护范围为准。

Claims (31)

  1. 一种位置确定方法,其特征在于,所述方法包括:
    向多个第二网络设备中每个第二网络设备发送第一信息和第二信息;
    所述第一信息用于指示所述第二网络设备确定导频信号通过该第二网络设备的发送通道和接收通道的第一时延;
    所述第二信息用于指示所述第二网络设备向一个或多个第三网络设备发送所述导频信号,以及接收来自所述一个或多个第三网络设备的所述导频信号;所述第三网络设备是所述多个第二网络设备中除该第二网络设备之外的网络设备;
    接收所述每个第二网络设备的第一时延,以及一个或多个第二时延;
    所述每个第二网络设备的各第二时延分别是所述导频信号从各第三网络设备的发送通道到该第二网络设备的接收通道的时延;
    根据各第二网络设备之间的空口时延,确定所述每个第二网络设备的位置信息;所述各第二网络设备之间的空口时延是基于所述每个第二网络设备的所述第一时延,以及所述一个或多个第二时延确定的。
  2. 根据权利要求1所述的方法,其特征在于,
    所述第二信息具体用于指示该第二网络设备在多个第一时隙上分别采用不同的第一波束向所述一个或多个第三网络设备中的每个第三网络设备发送所述导频信号,以及在多个第二时隙上分别采用不同的第二波束接收来自所述每个第三网络设备的所述导频信号。
  3. 根据权利要求2所述的方法,其特征在于,
    所述每个第二网络设备的各第二时延具体是最优波束对所对应的时延;
    所述最优波束对是所述多个第一波束和所述多个第二波束中接收信噪比最大的波束对。
  4. 根据权利要求3所述的方法,其特征在于,所述方法还包括:
    接收所述每个第二网络设备的一个或多个所述最优波束对的波束信息。
  5. 根据权利要求1至4任一项所述的方法,其特征在于,所述根据各第二网络设备之间的空口时延,确定所述每个第二网络设备的位置信息,包括:
    根据所述各第二网络设备之间的空口时延,确定每两个第二网络设备之间的距离;
    根据所述每两个第二网络设备之间的距离,以及一个或多个第四网络设备的位置信息,确定所述每个第二网络设备的位置信息;
    所述第四网络设备是所述多个第二网络设备中已知位置信息的网络设备。
  6. 根据权利要求5所述的方法,其特征在于,所述根据所述每两个第二网络设备之间的距离,以及一个或多个第四网络设备的位置信息,确定所述每个第二网络设备的位置信息,包括:
    根据所述每两个第二网络设备之间的距离,以及所述每个第二网络设备的一个或多个最优波束对的波束信息,确定所述多个第二网络设备之间的空间拓扑结构;
    根据所述每两个第二网络设备之间的距离、所述空间拓扑结构,以及一个或多个第四网络设备的位置信息,确定所述每个第二网络设备的位置信息。
  7. 根据权利要求1至6任一项所述的方法,其特征在于,所述方法还包括:
    根据所述多个第二网络设备的所述第一时延和所述一个或多个第二时延,补偿所述多个第二网络设备中每两个第二网络设备之间的接收通道的时延;
    根据补偿后的所述每两个第二网络设备之间的接收通道的时延,确定所述各第二网络设备之间的空口时延。
  8. 根据权利要求1至7任一项所述的方法,其特征在于,所述方法还包括:
    根据第五网络设备的多个逻辑端口,确定所述多个逻辑端口中每个逻辑端口对应的第二网络设备;
    所述第五网络设备是控制所述多个第二网络设备的网络设备。
  9. 一种位置确定方法,其特征在于,所述方法包括:
    接收第一信息和第二信息;所述第一信息用于指示第二网络设备确定导频信号通过该第二网络设备的发送通道和接收通道的第一时延;
    所述第二信息用于指示所述第二网络设备向一个或多个第三网络设备发送所述导频信号,以及接收来自所述一个或多个第三网络设备的所述导频信号;所述第三网络设备是所述多个第二网络设备中除该第二网络设备之外的网络设备;
    根据所述导频信号确定所述第一时延;
    向所述一个或多个第三网络设备发送所述导频信号;
    接收来自所述一个或多个第三网络设备的所述导频信号,并确定一个或多个第二时延;所述一个或多个第二时延中的各第二时延分别是所述导频信号从各第三网络设备的发送通道到该第二网络设备的接收通道的时延;
    发送所述第一时延,以及所述一个或多个第二时延。
  10. 根据权利要求9所述的方法,其特征在于,
    所述第二信息具体用于指示所述第二网络设备在多个第一时隙上分别采用不同的第一波束向所述一个或多个第三网络设备中的每个第三网络设备发送所述导频信号,以及在多个第二时隙上分别采用不同的第二波束接收来自所述每个第三网络设备的所述导频信号;
    所述向所述一个或多个第三网络设备发送所述导频信号,包括:
    在所述多个第一时隙上分别采用不同的第一波束,向所述一个或多个第三网络设备中的每个第三网络设备发送所述导频信号;
    所述接收来自所述一个或多个第三网络设备的所述导频信号,包括:
    在所述多个第二时隙上分别采用不同的第二波束,接收来自所述每个第三网络设备的所述导频信号。
  11. 根据权利要求10所述的方法,其特征在于,
    所述第二网络设备的各第二时延具体是最优波束对所对应的时延;
    所述最优波束对是所述多个第一波束和所述多个第二波束中接收信噪比最大的波束对。
  12. 根据权利要求11所述的方法,其特征在于,所述方法还包括:
    发送一个或多个所述最优波束对的波束信息。
  13. 一种通信装置,其特征在于,所述装置包括处理单元和通信单元,
    所述通信单元,用于向多个第二网络设备中每个第二网络设备发送第一信息和第二信息;
    所述第一信息用于指示所述第二网络设备确定导频信号通过该第二网络设备的发送通道和接收通道的第一时延;
    所述第二信息用于指示所述第二网络设备向一个或多个第三网络设备发送所述导频信号,以及接收来自所述一个或多个第三网络设备的所述导频信号;所述第三网络设备是所述多个第二网络设备中除该第二网络设备之外的网络设备;
    所述通信单元,还用于接收所述每个第二网络设备的第一时延,以及一个或多个第二时延;所述每个第二网络设备的各第二时延分别是所述导频信号从各第三网络设备的发送通道到该第二网络设备的接收通道的时延;
    所述处理单元,用于根据各第二网络设备之间的空口时延,确定所述每个第二网络设备的位置信息;所述各第二网络设备之间的空口时延是基于所述每个第二网络设备的所述第一时延,以及所述一个或多个第二时延确定的。
  14. 根据权利要求13所述的装置,其特征在于,
    所述第二信息具体用于指示该第二网络设备在多个第一时隙上分别采用不同的第一波束向所述一个或多个第三网络设备中的每个第三网络设备发送所述导频信号,以及在多个第二时隙上分别采用不同的第 二波束接收来自所述每个第三网络设备的所述导频信号。
  15. 根据权利要求14所述的装置,其特征在于,
    所述每个第二网络设备的各第二时延具体是最优波束对所对应的时延;
    所述最优波束对是所述多个第一波束和所述多个第二波束中接收信噪比最大的波束对。
  16. 根据权利要求15所述的装置,其特征在于,所述通信单元还用于:
    接收所述每个第二网络设备的一个或多个所述最优波束对的波束信息。
  17. 根据权利要求13至16任一项所述的装置,其特征在于,所述处理单元根据各第二网络设备之间的空口时延,确定所述每个第二网络设备的位置信息,具体用于:
    根据所述各第二网络设备之间的空口时延,确定每两个第二网络设备之间的距离;
    根据所述每两个第二网络设备之间的距离,以及一个或多个第四网络设备的位置信息,确定所述每个第二网络设备的位置信息;
    所述第四网络设备是所述多个第二网络设备中已知位置信息的网络设备。
  18. 根据权利要求17所述的装置,其特征在于,所述处理单元根据所述每两个第二网络设备之间的距离,以及一个或多个第四网络设备的位置信息,确定所述每个第二网络设备的位置信息,具体用于:
    根据所述每两个第二网络设备之间的距离,以及所述每个第二网络设备的一个或多个最优波束对的波束信息,确定所述多个第二网络设备之间的空间拓扑结构;
    根据所述每两个第二网络设备之间的距离、所述空间拓扑结构,以及一个或多个第四网络设备的位置信息,确定所述每个第二网络设备的位置信息。
  19. 根据权利要求13至18任一项所述的装置,其特征在于,所述处理单元还用于:
    根据所述多个第二网络设备的所述第一时延和所述一个或多个第二时延,补偿所述多个第二网络设备中每两个第二网络设备之间的接收通道的时延;
    根据补偿后的所述每两个第二网络设备之间的接收通道的时延,确定所述各第二网络设备之间的空口时延。
  20. 根据权利要求13至19任一项所述的装置,其特征在于,所述处理单元还用于:
    根据第五网络设备的多个逻辑端口,确定所述多个逻辑端口中每个逻辑端口对应的第二网络设备;
    所述第五网络设备是控制所述多个第二网络设备的网络设备。
  21. 一种通信装置,其特征在于,所述装置包括通信单元和处理单元,
    所述通信单元,用于接收第一信息和第二信息;所述第一信息用于指示第二网络设备确定导频信号通过该第二网络设备的发送通道和接收通道的第一时延;
    所述第二信息用于指示所述第二网络设备向一个或多个第三网络设备发送所述导频信号,以及接收来自所述一个或多个第三网络设备的所述导频信号;所述第三网络设备是所述多个第二网络设备中除该第二网络设备之外的网络设备;
    所述处理单元,用于根据所述导频信号确定所述第一时延;
    所述通信单元,还用于向所述一个或多个第三网络设备发送所述导频信号;
    所述通信单元,还用于接收来自所述一个或多个第三网络设备的所述导频信号,并确定一个或多个第二时延;所述一个或多个第二时延中的各第二时延分别是所述导频信号从各第三网络设备的发送通道到该第二网络设备的接收通道的时延;
    所述通信单元,还用于发送所述第一时延,以及所述一个或多个第二时延。
  22. 根据权利要求21所述的装置,其特征在于,所述第二信息具体用于指示所述第二网络设备在多个第一时隙上分别采用不同的第一波束向所述一个或多个第三网络设备中的每个第三网络设备发送所述导频信号,以及在多个第二时隙上分别采用不同的第二波束接收来自所述每个第三网络设备的所述导频信号;
    所述通信单元向所述一个或多个第三网络设备发送所述导频信号,具体用于:
    在所述多个第一时隙上分别采用不同的第一波束,向所述一个或多个第三网络设备中的每个第三网络设备发送所述导频信号;
    所述通信单元接收来自所述一个或多个第三网络设备的所述导频信号,具体用于:
    在所述多个第二时隙上分别采用不同的第二波束,接收来自所述每个第三网络设备的所述导频信号。
  23. 根据权利要求22所述的装置,其特征在于,
    所述第二网络设备的各第二时延具体是最优波束对所对应的时延;
    所述最优波束对是所述多个第一波束和所述多个第二波束中接收信噪比最大的波束对。
  24. 根据权利要求23所述的装置,其特征在于,所述通信单元,还用于:
    发送一个或多个所述最优波束对的波束信息。
  25. 一种通信装置,其特征在于,包括处理器和收发器,所述收发器用于与其它通信装置进行通信,所述处理器用于运行程序,以使得所述通信装置实现权利要求1至8任一项所述的方法。
  26. 一种通信装置,其特征在于,包括处理器和收发器,所述收发器用于与其它通信装置进行通信,所述处理器用于运行程序,以使得所述通信装置实现权利要求9至12任一项所述的方法。
  27. 一种通信装置,其特征在于,包括用于实现权利要求1至8任一项所述的方法的单元。
  28. 一种通信装置,其特征在于,包括用于实现权利要求9至12任一项所述的方法的单元。
  29. 一种通信系统,其特征在于,包括:
    权利要求13至20任一项所述的装置,和权利要求21至24任一项所述的装置;
    权利要求25所述的通信装置和权利要求26所述的通信装置;或,
    权利要求27所述的通信装置和权利要求28所述的通信装置。
  30. 一种计算机可读存储介质,其特征在于,所述计算机可读存储介质用于存储有指令,当其在计算机上运行时,使得权利要求1至8任一项所述的方法被执行,或者使得权利要求9至12任一项所述的方法被执行。
  31. 一种包含指令的计算机程序产品,其特征在于,当其在计算机上运行时,使得权利要求1至8任一项所述的方法被执行,或者使得权利要求9至12任一项所述的方法被执行。
PCT/CN2023/134181 2022-12-01 2023-11-25 一种位置确定方法及装置 WO2024114550A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202211531315.X 2022-12-01
CN202211531315.XA CN118139163A (zh) 2022-12-01 2022-12-01 一种位置确定方法及装置

Publications (1)

Publication Number Publication Date
WO2024114550A1 true WO2024114550A1 (zh) 2024-06-06

Family

ID=91246244

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/134181 WO2024114550A1 (zh) 2022-12-01 2023-11-25 一种位置确定方法及装置

Country Status (2)

Country Link
CN (1) CN118139163A (zh)
WO (1) WO2024114550A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101212780A (zh) * 2006-12-31 2008-07-02 华为技术有限公司 确定网络节点相对位置的方法及系统
CN107277121A (zh) * 2017-06-05 2017-10-20 中国科学院信息工程研究所 一种网络设备定位方法及装置
US20200403876A1 (en) * 2019-06-21 2020-12-24 At&T Intellectual Property I, L.P. Mapping Network Topology for Latency Sensitive Applications in a Mobile network
CN115226026A (zh) * 2021-04-21 2022-10-21 中兴通讯股份有限公司 Ue定位方法、装置、设备和存储介质

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101212780A (zh) * 2006-12-31 2008-07-02 华为技术有限公司 确定网络节点相对位置的方法及系统
CN107277121A (zh) * 2017-06-05 2017-10-20 中国科学院信息工程研究所 一种网络设备定位方法及装置
US20200403876A1 (en) * 2019-06-21 2020-12-24 At&T Intellectual Property I, L.P. Mapping Network Topology for Latency Sensitive Applications in a Mobile network
CN115226026A (zh) * 2021-04-21 2022-10-21 中兴通讯股份有限公司 Ue定位方法、装置、设备和存储介质

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
WENBIN LI: "Exploration and practice of 5G high-precision UTDOA algorithm in industrial In-ternet field", CHANGJIANG INFORMATION & COMMUNICATIONS, 15 October 2022 (2022-10-15), pages 45 - 48, XP093176729 *

Also Published As

Publication number Publication date
CN118139163A (zh) 2024-06-04

Similar Documents

Publication Publication Date Title
US20240365151A1 (en) Inter-integrated access and backhaul node cross-link interference measurement and reporting
WO2023197226A1 (zh) 波束选择方法和装置
US20180310127A1 (en) System and Method for Collaborative Position Determination
WO2024026795A1 (zh) 一种侧行链路sl定位参考信号prs的发送方法及装置
WO2024087612A1 (zh) 用于定位的方法及装置
WO2019101051A1 (zh) 用于无线通信系统的电子设备、方法和存储介质
WO2024114550A1 (zh) 一种位置确定方法及装置
CN115997392A (zh) 侧行链路定位消息的发送方法、接收方法及其装置
CN115175303A (zh) 定位方法、装置及可读存储介质
WO2024092825A1 (zh) 终端设备位置验证方法及装置
US20240163837A1 (en) Collaborative geolocation of an access point
WO2024140061A1 (zh) 一种定位信号的接收方法及装置
WO2024065096A1 (zh) 信息传输方法、装置、设备及芯片系统
WO2024114189A1 (zh) 一种定位方法及通信装置
WO2024140462A1 (zh) 通信方法和通信装置
WO2024138461A1 (zh) 定位测量方法及装置
WO2023011292A1 (zh) 一种移动性限制通信方法、装置及系统
WO2024169531A1 (zh) 一种通信方法及装置
WO2023216034A1 (zh) 一种校验位置信息的方法及其装置
WO2024021705A1 (zh) 一种定位方法及相关装置
WO2024138430A1 (zh) 一种通信方法和通信装置
WO2024045198A1 (zh) 一种传输接收点trp信息的确定方法及其装置
WO2024060155A1 (zh) 定位验证方法及装置
WO2024138460A1 (zh) 定位方法及装置
WO2024087116A1 (zh) 一种通信方法及装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23896701

Country of ref document: EP

Kind code of ref document: A1