WO2024114549A1 - 通信方法和装置 - Google Patents

通信方法和装置 Download PDF

Info

Publication number
WO2024114549A1
WO2024114549A1 PCT/CN2023/134179 CN2023134179W WO2024114549A1 WO 2024114549 A1 WO2024114549 A1 WO 2024114549A1 CN 2023134179 W CN2023134179 W CN 2023134179W WO 2024114549 A1 WO2024114549 A1 WO 2024114549A1
Authority
WO
WIPO (PCT)
Prior art keywords
terminal
downlink
uplink
frequency domain
domain resources
Prior art date
Application number
PCT/CN2023/134179
Other languages
English (en)
French (fr)
Inventor
高翔
张鹏
刘烨
丁梦颖
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2024114549A1 publication Critical patent/WO2024114549A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0453Resources in frequency domain, e.g. a carrier in FDMA
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/21Control channels or signalling for resource management in the uplink direction of a wireless link, i.e. towards the network

Definitions

  • the present application relates to the field of communications, and in particular to a communication method and device.
  • the licensed spectrum resources of the mobile communication system are artificially divided into several frequency bands with unique numbers.
  • operators can use dual connectivity (DC) or carrier aggregation (CA) technology for uplink and downlink communications.
  • DC dual connectivity
  • CA carrier aggregation
  • network equipment and terminals will work on multiple carriers in one frequency band or multiple frequency bands, and users can get better coverage or higher uplink and downlink communication rate experience.
  • the number of frequency bands is limited, in theory, the permutations and combinations within/between frequency bands are huge, so the existing communication protocol defines the spectrum combination proposed by the operator based on the frequency bands it has obtained authorization for and the actual network deployment requirements.
  • the transmission performance of the terminal receiving downlink signals and sending uplink signals at the same time is poor. Therefore, it is necessary to study how to improve the transmission performance when receiving downlink signals and sending uplink signals at the same time in the scenario of flexible configuration of spectrum combination.
  • the embodiments of the present application disclose a communication method and device, which can reduce the self-interference of a terminal when it simultaneously receives a downlink signal in a downlink frequency domain resource and sends an uplink signal in an uplink frequency domain resource, and can also improve the spectrum utilization rate of the communication system.
  • an embodiment of the present application provides a communication method, which is executed by a terminal or a module applied to a terminal, and the method includes: generating a first message, which indicates the minimum interval between the downlink frequency domain resources and the uplink frequency domain resources when the terminal simultaneously receives a downlink signal in the downlink frequency domain resources and sends an uplink signal in the uplink frequency domain resources; and sending the first message to a network device.
  • the terminal sends a first message to the network device so that the network device can schedule or configure downlink frequency domain resources and uplink frequency domain resources for the terminal in a targeted manner according to the minimum interval corresponding to the terminal.
  • different terminals report their corresponding minimum intervals to the network device, and the network device can configure or schedule different downlink frequency domain resources and/or uplink frequency domain resources for different terminals in a targeted manner according to the minimum intervals corresponding to different terminals; this can not only reduce the self-interference of the terminal when it simultaneously receives downlink signals in the downlink frequency domain resources and sends uplink signals in the uplink frequency domain resources, but also improve the spectrum utilization of the communication system.
  • the method also includes: receiving a first request message from a network device, wherein the first request message requests the terminal to report to the network device the minimum interval between the downlink frequency domain resources and the uplink frequency domain resources when the terminal simultaneously receives a downlink signal on the downlink frequency domain resources and sends an uplink signal on the uplink frequency domain resources.
  • a first request message is received from a network device, so that the minimum interval between the downlink frequency domain resources and the uplink frequency domain resources when the terminal simultaneously receives a downlink signal on the downlink frequency domain resources and sends an uplink signal on the uplink frequency domain resources is reported to the network device according to the first request message; this enables the network device to promptly know the minimum interval corresponding to the terminal.
  • the first message also indicates that when the terminal simultaneously receives a downlink signal in a downlink frequency domain resource and sends an uplink signal in an uplink frequency domain resource, the first RF indicator is satisfied when the interval between the downlink frequency domain resource and the uplink frequency domain resource is greater than or equal to a first interval, and the first interval is greater than the minimum interval corresponding to the terminal.
  • the first message also indicates that when the terminal simultaneously receives a downlink signal in the downlink frequency domain resources and sends an uplink signal in the uplink frequency domain resources, the first radio frequency indicator is satisfied when the interval between the downlink frequency domain resources and the uplink frequency domain resources is greater than or equal to the first interval; so that the network device can configure or schedule different downlink frequency domain resources and/or uplink frequency domain resources for different terminals in a more targeted manner according to the first message and the needs of different terminals.
  • the first radio frequency indicator includes that a maximum desensitization value of a downlink reference sensitivity of the terminal is not higher than a first threshold.
  • the first radio frequency indicator includes that the maximum desensitization value of the downlink reference sensitivity of the terminal is not higher than the first threshold value, and the first radio frequency indicator can accurately reflect the interference inside the terminal.
  • the minimum interval between the downlink frequency domain resource and the uplink frequency domain resource is any one of the following: 5MHz, 9MHz, 10MHz, 11MHz, 12MHz, 15MHz or 20MHz.
  • an embodiment of the present application provides another communication method, which is executed by a network device or a module applied to a network device, and the method includes: receiving a first message from a terminal, the first message indicating that the terminal simultaneously receives a downlink signal in a downlink frequency domain resource and receives an uplink signal in an uplink frequency domain resource.
  • the frequency domain resources send an uplink signal, the minimum interval between the downlink frequency domain resources and the uplink frequency domain resources; the minimum interval is determined according to the first message.
  • a network device receives a first message from a terminal, and determines the minimum interval corresponding to the terminal according to the first message; the network device can schedule or configure downlink frequency domain resources and uplink frequency domain resources for the terminal in a targeted manner according to the minimum interval corresponding to the terminal.
  • the network device configures or schedules different downlink frequency domain resources and/or uplink frequency domain resources for different terminals in a targeted manner according to the minimum intervals corresponding to different terminals; this can not only reduce the self-interference of the terminal when it simultaneously receives downlink signals in the downlink frequency domain resources and sends uplink signals in the uplink frequency domain resources, but also improve the spectrum utilization of the communication system.
  • the method also includes: determining the frequency domain resources for the terminal to receive downlink signals and the uplink frequency domain resources for sending uplink signals based on the minimum interval between the downlink frequency domain resources and the uplink frequency domain resources when the terminal simultaneously receives downlink signals in the downlink frequency domain resources and sends uplink signals in the uplink frequency domain resources.
  • the network device determines the frequency domain resources for the terminal to receive downlink signals and the uplink frequency domain resources for sending uplink signals based on the minimum interval corresponding to the terminal; different downlink frequency domain resources and/or uplink frequency domain resources can be configured or scheduled for different terminals in a targeted manner; this can not only reduce the self-interference of the terminal when it simultaneously receives downlink signals on the downlink frequency domain resources and sends uplink signals on the uplink frequency domain resources, but also improve the spectrum utilization of the communication system.
  • the method further includes: sending a first request message to the terminal, wherein the first request message requests the terminal to report a minimum interval corresponding to the terminal.
  • the minimum interval corresponding to the terminal can be timely learned, and then downlink frequency domain resources and/or uplink frequency domain resources can be configured or scheduled for the terminal in a targeted manner.
  • Possible implementations of the method of the second aspect may refer to various possible implementations of the first aspect.
  • an embodiment of the present application provides a communication device, which has the function of implementing the behavior in the method embodiment of the first aspect above.
  • the communication device can be a terminal, or a component of a terminal (such as a processor, a chip, or a chip system, etc.), or a logic module or software that can implement all or part of the functions of the terminal.
  • the functions of the communication device can be implemented by hardware, or by hardware executing corresponding software, and the hardware or software includes one or more modules or units corresponding to the above functions.
  • the communication device includes a transceiver unit and a processing unit, wherein: the processing unit is used to generate a first message, and the first message indicates the minimum interval between the downlink frequency domain resource and the uplink frequency domain resource when the terminal simultaneously receives a downlink signal in the downlink frequency domain resource and sends an uplink signal in the uplink frequency domain resource; the transceiver unit is used to send the first message to the network device.
  • the transceiver unit is also used to receive a first request message from a network device, which first request message requests the terminal to report to the network device the minimum interval between the downlink frequency domain resources and the uplink frequency domain resources when the terminal simultaneously receives a downlink signal on the downlink frequency domain resources and sends an uplink signal on the uplink frequency domain resources.
  • Possible implementations of the communication device of the third aspect may refer to various possible implementations of the first aspect.
  • an embodiment of the present application provides a communication device, which has the function of implementing the behavior in the method embodiment of the second aspect above.
  • the communication device can be a network device, or a component of a network device (such as a processor, a chip, or a chip system, etc.), or a logic module or software that can implement all or part of the functions of the network device.
  • the functions of the communication device can be implemented by hardware, or by hardware executing corresponding software, and the hardware or software includes one or more modules or units corresponding to the above functions.
  • the communication device includes a transceiver unit and a processing unit, wherein: the transceiver unit is used to receive a first message from a terminal, and the first message indicates the minimum interval between the downlink frequency domain resource and the uplink frequency domain resource when the terminal simultaneously receives a downlink signal in the downlink frequency domain resource and sends an uplink signal in the uplink frequency domain resource; the processing unit is used to determine the minimum interval according to the first message.
  • the processing unit is further used to determine the frequency domain resources for the terminal to receive downlink signals and the uplink frequency domain resources for sending uplink signals based on the minimum interval between the downlink frequency domain resources and the uplink frequency domain resources when the terminal simultaneously receives downlink signals in the downlink frequency domain resources and sends uplink signals in the uplink frequency domain resources.
  • the transceiver unit is further configured to send a first request message to the terminal, where the first request message requests the terminal to report a minimum interval corresponding to the terminal.
  • Possible implementations of the communication device of the fourth aspect may refer to various possible implementations of the second aspect.
  • an embodiment of the present application provides another communication device, which includes a processor and an interface circuit, wherein the interface circuit is used to receive signals from other communication devices and transmit them to the processor or send signals from the processor to other communication devices, and the processor is used to implement the method shown in the above first aspect or the above second aspect through logic circuits or execution code instructions.
  • an embodiment of the present application provides a computer-readable storage medium, in which a computer program or instruction is stored.
  • a computer program or instruction is stored.
  • the method shown in the first aspect or the second aspect is implemented.
  • the present application provides a computer program product, which includes a computer program or instructions, which, when executed, enables a computer to perform the method shown in the first aspect or the second aspect.
  • the present application provides a communication system, comprising the communication device described in the third aspect or any possible implementation of the third aspect, and the communication device described in the fourth aspect or any possible implementation of the fourth aspect.
  • the present application provides a chip comprising a processor and a communication interface, wherein the processor reads instructions stored in a memory through the communication interface to execute the method as shown in the first aspect or the second aspect.
  • FIG1 is a schematic diagram of the architecture of a communication system 1000 used in an embodiment of the present application.
  • FIG2 is a schematic diagram of an interaction flow of a communication method provided in an embodiment of the present application.
  • FIG3 is a schematic diagram of an interaction flow of another communication method provided in an embodiment of the present application.
  • FIG4 is a schematic diagram of the structure of a possible communication device provided in an embodiment of the present application.
  • FIG5 is a schematic diagram of the structure of a possible communication device provided in an embodiment of the present application.
  • FIG1 is a schematic diagram of the architecture of a communication system 1000 used in an embodiment of the present application.
  • the communication system includes a wireless access network 100 and a core network 200.
  • the communication system 1000 may also include the Internet 300.
  • the wireless access network 100 may include at least one wireless access network device (such as 110a and 110b in FIG1 ), and may also include at least one terminal (such as 120a-120j in FIG1 ).
  • the terminal is connected to the wireless access network device by wireless means, and the wireless access network device is connected to the core network by wireless or wired means.
  • the core network device and the wireless access network device may be independent and different physical devices, or the functions of the core network device and the logical functions of the wireless access network device may be integrated on the same physical device, or the functions of some core network devices and some wireless access network devices may be integrated on one physical device. Terminals and terminals and wireless access network devices may be connected to each other by wire or wireless means.
  • FIG1 is only a schematic diagram, and the communication system may also include other network devices, such as wireless relay devices and wireless backhaul devices, which are not shown in FIG1 .
  • Radio access network equipment is the access equipment that terminals use to access the communication system wirelessly.
  • Radio access network equipment can be a base station (BS), an evolved NodeB (eNodeB), a transmission reception point (TRP), a next generation NodeB (gNB) in the fifth generation (5G) mobile communication system, a next generation NodeB in the sixth generation (6G) mobile communication system, a base station in a future mobile communication system, or an access node in a WiFi system; it can also be a module or unit that completes some functions of a base station, for example, a centralized unit (CU) or a distributed unit (DU).
  • the CU completes the functions of the radio resource control protocol and the packet data convergence layer protocol (PDCP) of the base station, and can also complete the function of the service data adaptation protocol (SDAP);
  • the DU completes the functions of the radio link control layer and the medium access control (MAC) layer of the base station, and can also complete the functions of part of the physical layer or all of the physical layer.
  • 3GPP 3rd Generation Partnership Project
  • the wireless access network device can be a macro base station (such as 110a in Figure 1), a micro base station or an indoor station (such as 110b in Figure 1), or a relay node or a donor node.
  • the embodiments of the present application do not limit the specific technology and specific device form adopted by the wireless access network device.
  • the following description takes the base station as an example of the wireless access network device.
  • a terminal is a device with wireless transceiver functions that can send signals to a base station or receive signals from a base station.
  • a terminal can also be called a terminal, user equipment (UE), a mobile station, a mobile terminal, etc.
  • Terminals can be widely used in various scenarios, for example, device-to-device (D2D), vehicle to everything (V2X) communication, machine-type communication (MTC), Internet of Things (IOT), virtual reality, augmented reality, industrial control, autonomous driving, telemedicine, smart grid, smart furniture, smart office, smart wearable, smart transportation, smart city, etc.
  • D2D device-to-device
  • V2X vehicle to everything
  • MTC machine-type communication
  • IOT Internet of Things
  • virtual reality augmented reality
  • industrial control autonomous driving
  • telemedicine smart grid
  • smart furniture smart office
  • smart wearable smart transportation
  • smart city etc.
  • a terminal can be a mobile phone, a tablet computer, a computer with wireless transceiver functions, a wearable device, a vehicle, an airplane, a ship, a robot, a robotic arm, a smart home device, etc.
  • This application The embodiments of the present invention do not limit the specific technology and specific device form adopted by the terminal.
  • Base stations and terminals can be fixed or movable. Base stations and terminals can be deployed on land, including indoors or outdoors, handheld or vehicle-mounted; they can also be deployed on the water surface; they can also be deployed on airplanes, balloons, and artificial satellites. The embodiments of this application do not limit the application scenarios of base stations and terminals.
  • the helicopter or drone 120i in FIG. 1 can be configured as a mobile base station.
  • the terminal 120j that accesses the wireless access network 100 through 120i
  • the terminal 120i is a base station; but for the base station 110a, 120i is a terminal, that is, 110a and 120i communicate through the wireless air interface protocol.
  • 110a and 120i can also communicate through the interface protocol between base stations.
  • relative to 110a, 120i is also a base station. Therefore, base stations and terminals can be collectively referred to as communication devices.
  • 110a and 110b in FIG. 1 can be referred to as communication devices with base station functions
  • 120a-120j in FIG. 1 can be referred to as communication devices with terminal functions.
  • Base stations and terminals, base stations and base stations, and terminals and terminals can communicate through authorized spectrum, unauthorized spectrum, or both; they can communicate through spectrum below 6 gigahertz (GHz), spectrum above 6 GHz, or spectrum below 6 GHz and spectrum above 6 GHz.
  • GHz gigahertz
  • the embodiments of the present application do not limit the spectrum resources used for wireless communication.
  • the functions of the base station may also be performed by a module (such as a chip) in the base station, or by a control subsystem including the base station function.
  • the control subsystem including the base station function here may be a control center in the above-mentioned application scenarios such as smart grid, industrial control, smart transportation, smart city, etc.
  • the functions of the terminal may also be performed by a module (such as a chip or a modem) in the terminal, or by a device including the terminal function.
  • the base station sends a downlink signal or downlink information to the terminal, and the downlink information is carried on the downlink channel; the terminal sends an uplink signal or uplink information to the base station, and the uplink information is carried on the uplink channel.
  • the terminal In order to communicate with the base station, the terminal needs to establish a wireless connection with the cell controlled by the base station.
  • the cell with which the terminal has established a wireless connection is called the service cell of the terminal.
  • the service cell When the terminal communicates with the service cell, it will also be interfered by signals from neighboring cells.
  • TDD time division duplexing
  • FDD frequency division duplexing
  • supplementary uplink (SUL) frequency band such as the n80 frequency band in Table 1
  • uplink frequencies and corresponding upper and lower limits For the supplementary uplink (SUL) frequency band (such as the n80 frequency band in Table 1), there are only uplink frequencies and corresponding upper and lower limits; for the supplementary downlink (SDL) frequency band (such as the n29 frequency band in Table 1), there are only downlink frequencies and corresponding upper and lower limits.
  • SUL supplementary uplink
  • SDL supplementary downlink
  • the uplink working frequency band (referred to as the uplink frequency band) is the frequency band used by the base station to receive signals, and is also the frequency band used by the UE to transmit signals.
  • the downlink working frequency band (referred to as the downlink frequency band) is the frequency band used by the BS to transmit signals, and is also the frequency band used by the UE to transmit signals.
  • Table 1 the first column is the number of the working frequency band, the second column is the uplink working frequency band, the third column is the downlink working frequency band, and the fourth column is the duplex mode corresponding to the frequency band.
  • the uplink working frequency band numbered n5 is 824MHz-849MHz
  • the downlink working frequency band numbered n5 is 869MHz-894MHz
  • the duplex mode corresponding to the working frequency band numbered n5 is FDD.
  • the uplink working frequency band of any row is N/A
  • the downlink working frequency band of any row is N/A
  • the downlink working frequency band of this row does not exist.
  • the working frequency band numbered n29 has only a downlink working frequency band and no uplink working frequency band, that is, the uplink working frequency band does not exist.
  • any uplink working frequency band has an upper limit and a lower limit
  • any downlink working frequency band has an upper limit and a lower limit.
  • the lower limit of the downlink working frequency band is 869MHz
  • the upper limit of the downlink working frequency band is 894MHz.
  • the uplink working frequency band numbered n8 the lower limit of the uplink working frequency band is 880MHz
  • the upper limit of the uplink working frequency band is 894MHz.
  • the interval between the uplink frequency domain resource and the downlink frequency domain resource is the difference between the lower limit of the uplink frequency domain resource and the upper limit of the downlink frequency domain resource or the difference between the lower limit of the downlink frequency domain resource and the upper limit of the uplink frequency domain resource.
  • the frequency domain resource may refer to a frequency band, a carrier or a bandwidth part (BWP), or a part of a frequency band, a carrier or a BWP. Specifically, if the lower limit of the uplink frequency domain resource is greater than the upper limit of the downlink frequency domain resource, the interval between the uplink frequency domain resource and the downlink frequency domain resource is the difference between the lower limit of the uplink frequency domain resource and the upper limit of the downlink frequency domain resource.
  • the interval between the uplink working frequency band and the downlink working frequency band is 20MHz.
  • the interval between the uplink frequency domain resource and the downlink frequency domain resource is the difference between the lower limit of the downlink frequency domain resource and the upper limit of the uplink frequency domain resource.
  • the interval between the uplink working frequency band and the downlink working frequency band is 10MHz.
  • a spectrum combination refers to a collection of one or more frequency bands.
  • a spectrum combination can be called a frequency band combination.
  • Table 1 some uplink and downlink frequency bands overlap.
  • the downlink receiving frequency band of NR Band n5 (869-894MHz) overlaps with the uplink transmitting frequency band of Band n8 (880-915MHz).
  • one solution currently used is to divide the spectrum so that there is a certain guard band between the uplink and downlink frequency bands.
  • the spectrum division of some countries is shown in Table 2.
  • the downlink frequency range of Band n5 divided (or adopted) by China is 869 ⁇ 880MHz
  • the uplink frequency range of Band n5 divided by China is 889 ⁇ 915MHz
  • the terminal When operators have the need to deploy a spectrum combination of these two frequency bands (i.e., the downlink frequency band of Band n5 and the uplink frequency band of Band n8), considering the evolution of spectrum division in the future, in theory, the terminal is required to have the ability to transmit and receive at the same frequency in the overlapping frequency band (880-894MHz), which is not possible for existing terminals.
  • the main reason why the terminal does not have the ability to transmit and receive at the same frequency in the overlapping frequency band is that when the terminal simultaneously sends an uplink signal and receives a downlink signal in the overlapping frequency band, the uplink signal transmitted by the terminal will generate strong interference to the downlink signal received by the terminal, affecting the terminal's reception of the downlink signal.
  • the terminal's receiving filter (used to receive the downlink signal) is usually less than 20dB in suppressing the uplink signal, and the terminal's self-interference is relatively serious, which blocks the reception of the received signal, that is, seriously affecting the reception of the downlink signal.
  • the terminal when the terminal simultaneously receives a downlink signal in the downlink frequency domain resources and sends an uplink signal in the uplink frequency domain resources, the larger the interval between the uplink frequency domain resources and the downlink frequency domain resources, the smaller the interference between the downlink signal and the uplink signal.
  • the minimum interval between the downlink frequency domain resources and the uplink frequency domain resources that the terminals can support is different.
  • the minimum interval between the downlink frequency domain resources and the uplink frequency domain resources can be understood as: when the terminal simultaneously receives a downlink signal in the downlink frequency domain resources and sends an uplink signal in the uplink frequency domain resources, as long as the interval between the downlink frequency domain resources and the uplink frequency domain resources is not less than the minimum interval, the normal reception of the downlink signal can be basically guaranteed.
  • a currently adopted solution is as follows: through spectrum division, a certain protection band is created between the uplink frequency domain resources and the downlink frequency domain resources, such as 9MHz.
  • the minimum interval between the supported downlink frequency domain resources and the uplink frequency domain resources may be different. It can be understood that when the protection band between the uplink frequency domain resources and the downlink frequency domain resources is greater than or equal to the minimum interval corresponding to the terminal, the terminal can ensure the performance when simultaneously receiving downlink signals in the downlink frequency domain resources and sending uplink signals in the uplink frequency domain resources, that is, avoiding strong self-interference between the uplink signal and the downlink signal.
  • the minimum interval corresponding to the terminal refers to the minimum interval between the downlink frequency domain resources and the uplink frequency domain resources that can be supported when the terminal simultaneously receives downlink signals in the downlink frequency domain resources and sends uplink signals in the uplink frequency domain resources.
  • the spectrum is divided to ensure that the protection band between the uplink frequency domain resources and the downlink frequency domain resources is greater than the minimum interval supported by all terminals, for example, the minimum interval is 9MHz. This inevitably leads to a problem that the protection band between the uplink frequency domain resources and the downlink frequency domain resources is too wide, which will reduce the spectrum utilization.
  • the present application provides a communication scheme in which a terminal reports the minimum interval corresponding to the terminal to a network device, so that the network device can configure or schedule different downlink frequency domain resources and/or uplink frequency domain resources for different terminals according to the minimum intervals corresponding to different terminals, that is, spectrum combinations, thereby improving the spectrum utilization of the communication system while ensuring the communication quality.
  • FIG2 is a schematic diagram of an interaction flow of a communication method provided in an embodiment of the present application, the method comprising:
  • a terminal generates a first message.
  • the first message indicates the minimum interval between the downlink frequency domain resources and the uplink frequency domain resources when the terminal receives a downlink signal in the downlink frequency domain resources and sends an uplink signal in the uplink frequency domain resources at the same time.
  • the minimum interval between the downlink frequency domain resources and the uplink frequency domain resources (hereinafter referred to as the minimum interval corresponding to the terminal) can be regarded as: when the terminal receives a downlink signal in the downlink frequency domain resources and sends an uplink signal in the uplink frequency domain resources at the same time, the minimum interval between the downlink frequency domain resources and the uplink frequency domain resources when the RF indicator #0 is met.
  • the RF indicator #0 is met when the interval between the downlink frequency domain resources and the uplink frequency domain resources is greater than or equal to the minimum interval.
  • the above-mentioned first message can be a radio resource control (RRC) message.
  • RF index #0 may include that the maximum desensitization value of the downlink reference sensitivity of the terminal is not higher than threshold #0, and threshold #0 can be any value in the range of 0dB to 35dB, which can be set according to actual needs. For example, threshold #0 is 5dB, 10dB, 15dB, 20dB, 25dB, 30dB, or 35dB, etc.
  • the downlink reference sensitivity refers to the minimum average power input to the antenna port of the terminal when the throughput of the terminal can be greater than or equal to 95% of the maximum throughput of the terminal.
  • the desensitization value may also be referred to as the deterioration value.
  • Maximum desensitization value of downlink reference sensitivity In a specific scenario, the interference inside the terminal will have a negative impact on the downlink reference sensitivity of the terminal. In this specific interference scenario, the RF protocol allows the downlink reference sensitivity of the terminal to deteriorate (also called desensitization), but the RF protocol also specifies the maximum desensitization value of the downlink reference sensitivity.
  • the maximum desensitization value of the downlink reference sensitivity the downlink reference sensitivity after deterioration (for example, in a specific interference scenario) minus the downlink reference sensitivity before deterioration (for example, in a scenario without the specific interference).
  • RF indicator #0 can be set according to actual needs, and the minimum interval corresponding to the terminal can be determined according to RF indicator #0.
  • the minimum interval corresponding to the terminal is any one of the following: 5MHz, 9MHz, 10MHz, 11MHz, 12MHz, 15MHz or 20MHz. Due to the different capabilities of different terminals, the minimum interval between the downlink frequency domain resources and the uplink frequency domain resources of different terminals is different when meeting RF indicator #0.
  • the first message includes first indication information for indicating the above-mentioned minimum interval.
  • first indication information for indicating the above-mentioned minimum interval.
  • the minimum interval between the downlink frequency domain resource and the uplink frequency domain resource is 5MHz
  • the first indication information indicates 5MHz.
  • the first indication information can indicate any value between 5MHz and 30MHz.
  • the first message includes a bitmap, which indicates the above-mentioned minimum interval, and each bit position in the bitmap represents a frequency interval.
  • bit position in the bitmap is 'true' (for example, the value of the bit position is 1), it means that the terminal can support the frequency interval represented by the bit position; if a bit position in the bitmap is 'false' (for example, the value of the bit position is 0), it means that the terminal does not support the frequency interval represented by the bit position.
  • the terminal and the network device can pre-determine the frequency interval corresponding to each bit position in the bitmap. For example, bit position 1 in the bitmap is set to 'true', indicating that the minimum interval supported by the terminal is 24MHz. For another example, bit position 0 in the bitmap is set to 'true', indicating that the minimum interval supported by the terminal is 9 MHz.
  • the first message includes a numerical value, which indicates the minimum interval supported by the terminal.
  • the first message includes a first numerical value (for example, 1), which indicates that the minimum interval supported by the terminal is 9 MHz.
  • the first message includes a second numerical value (for example, 2), which indicates that the minimum interval supported by the terminal is 24 MHz.
  • the terminal and the network device may pre-agree on frequency intervals corresponding to different numerical values. Further, the terminal and the network device may pre-agree on frequency positions of uplink and downlink corresponding to different frequency intervals.
  • the minimum interval (24 MHz) supported by the terminal corresponds to the downlink frequency range (DL frequency range) of band n5 of 869 to 880 MHz and the uplink frequency range (UL frequency range) of band n8 of 904 to 915 MHz.
  • the first message indicates the minimum interval (24 MHz), which means that the terminal satisfies the radio frequency indicator #0 when simultaneously receiving downlink signals in the downlink frequency range of 869 to 880 MHz of band n5 and sending uplink signals in the uplink frequency range of 904 to 915 MHz of band n8.
  • the minimum interval (9MHz) supported by the terminal corresponds to the downlink frequency range of band n5 of 869-880MHz and the uplink frequency range of band n8 of 889-915MHz.
  • the first message indicates the minimum interval (9MHz), which means that the terminal satisfies the RF indicator #0 when simultaneously receiving downlink signals in the downlink frequency range of band n5 of 869-880MHz and sending uplink signals in the uplink frequency range of band n8 of 889-915MHz.
  • the first message further indicates that the first RF indicator is satisfied when the interval between the downlink frequency domain resources and the uplink frequency domain resources is greater than or equal to the first interval, and the first interval is greater than the minimum interval.
  • the first message indicates that the terminal supports multiple frequency intervals (for example, one or more of 5MHz, 10MHz, 15MHz, 20MHz, and 25MHz) when simultaneously receiving downlink signals in the downlink frequency domain resources and sending uplink signals in the uplink frequency domain resources, and each frequency interval corresponds to a RF indicator.
  • the multiple frequency intervals include the minimum interval and the first interval.
  • the terminal and the network device may pre-agree on the RF indicators corresponding to different frequency intervals.
  • the RF indicator corresponding to a frequency interval is the RF indicator satisfied by the terminal when the interval between the downlink frequency domain resources and the uplink frequency domain resources is greater than or equal to the frequency interval when the terminal simultaneously receives downlink signals in the downlink frequency domain resources and sends uplink signals in the uplink frequency domain resources.
  • the first message includes a bitmap indicating multiple frequency intervals supported by the terminal (including the above-mentioned minimum interval and the first interval).
  • Each bit position in the bitmap represents a frequency interval, and each frequency interval corresponds to a radio frequency indicator. If a bit position in the bitmap is set to 'true', it means that the terminal supports the frequency interval corresponding to the bit position; if a bit position in the bitmap is set to 'false', it means that the terminal does not support the frequency interval corresponding to the bit position.
  • the terminal supports the frequency interval corresponding to a bit position in the bitmap, indicating that when the terminal simultaneously receives a downlink signal in the downlink frequency domain resource and sends an uplink signal in the uplink frequency domain resource, and the interval between the downlink frequency domain resource and the uplink frequency domain resource is greater than or equal to the frequency interval corresponding to the bit position, the terminal meets the radio frequency indicator corresponding to the frequency interval.
  • bit position 1 and bit position 2 of the bitmap in the first message are both set to 'true', bit position 1 is set to 'true', indicating that the terminal can support a frequency interval of 9MHz (corresponding to radio frequency indicator #0), and bit position 2 is set to 'true', indicating that the terminal can support a frequency interval of 24MHz (corresponding to the first radio frequency indicator).
  • the terminal and the network device may pre-approximate the frequency interval corresponding to each bit position in the bit map and the radio frequency index corresponding to each frequency interval.
  • the first message includes multiple numerical values, each numerical value represents a frequency interval supported by the terminal, and each frequency interval corresponds to a radio frequency indicator.
  • the first message includes a first numerical value and a second numerical value, the first numerical value indicates that the terminal supports a frequency interval of 9 MHz (corresponding to radio frequency indicator #0), and the second numerical value indicates that the terminal can support a frequency interval of 24 MHz (corresponding to the first radio frequency indicator).
  • the terminal and the network device may pre-agree on frequency intervals corresponding to different numerical values. Further, the terminal and the network device may pre-agree on the frequency positions of uplink and downlink corresponding to different frequency intervals.
  • a frequency interval of 9 MHz corresponds to a downlink frequency range of 869 to 880 MHz for band n5 and an uplink frequency range of 889 to 915 MHz for band n8, and a frequency interval of 24 MHz (corresponding to the first radio frequency indicator) corresponds to a downlink frequency range of 869 to 880 MHz for band n5 and an uplink frequency range of 904 to 915 MHz for band n8.
  • the terminal supports a frequency interval of 9 MHz (corresponding to RF indicator #0), which means that the terminal satisfies RF indicator #0 when simultaneously receiving downlink signals in the downlink frequency range of 869 to 880 MHz of band n5 and sending uplink signals in the uplink frequency range of 889 to 915 of band n8.
  • the first interval can be regarded as: the terminal simultaneously receives downlink signals in the downlink frequency domain resources and sends uplink signals in the uplink frequency domain resources.
  • the terminal meets the first RF indicator it also meets RF indicator #0; when the terminal meets RF indicator #0, it may meet the first RF indicator or may not meet the first RF indicator.
  • the above-mentioned first RF indicator includes that the maximum desensitization value of the downlink reference sensitivity of the terminal is not higher than the first threshold.
  • the first threshold is less than threshold #0. For example, threshold #0 is 10dB and the first threshold is 5dB.
  • threshold #0 is 5dB and the first threshold is 3dB.
  • threshold #0 is 20dB and the first threshold is 10dB.
  • the above-mentioned first message also indicates that the second RF indicator is met when the interval between the above-mentioned downlink frequency domain resources and the above-mentioned uplink frequency domain resources is greater than or equal to the second interval, the above-mentioned second interval is greater than the above-mentioned first interval, and the above-mentioned second RF indicator includes that the maximum desensitization value of the downlink reference sensitivity of the terminal is not higher than the second threshold.
  • the second threshold is less than the first threshold.
  • the above-mentioned second interval can be regarded as: when the terminal simultaneously receives a downlink signal in the downlink frequency domain resources and sends an uplink signal in the uplink frequency domain resources, when the second radio frequency indicator is met, the minimum interval between the downlink frequency domain resources and the uplink frequency domain resources.
  • the first message may indicate the radio frequency indicators that the terminal meets respectively at multiple different intervals, and the embodiment of the present application is not limited.
  • the first message also indicates that the first radio frequency indicator is met when the interval between the downlink frequency domain resources and the uplink frequency domain resources is greater than or equal to the first interval, so that the network device can obtain more capability information of the terminal.
  • the terminal sends a first message to the network device.
  • the network device receives the first message from the terminal.
  • the network device refers to the wireless access network device.
  • the first message is a capability information that the terminal actively reports to the network device. For example, after entering the connected state, the terminal actively reports the first message to the network device.
  • the terminal before sending a first message to the network device, receives a first request message sent by the network device.
  • the terminal sends a first message to the network device in response to the first request message.
  • the first request message requests the terminal to report the minimum interval between the downlink frequency domain resources and the uplink frequency domain resources when the terminal simultaneously receives a downlink signal in the downlink frequency domain resources and sends an uplink signal in the uplink frequency domain resources.
  • the above-mentioned first request message can be carried in a physical downlink control channel (physical downlink control channel, PDCCH) or in an RRC message.
  • the network device sends a first request message to the terminal when preparing to configure carrier aggregation for the terminal.
  • the network device determines the minimum interval corresponding to the terminal according to the first message.
  • the network device determines, according to a minimum interval corresponding to the terminal, a downlink carrier for receiving a downlink signal and an uplink carrier for sending an uplink signal by the terminal.
  • the network device After determining the downlink carrier for receiving downlink signals and the uplink carrier for sending uplink signals by the terminal, the network device can configure the downlink carrier and the uplink carrier to the terminal through RRC signaling.
  • a possible implementation method in which the network device determines the downlink carrier for receiving downlink signals and the uplink carrier for sending uplink signals by the terminal according to the minimum interval corresponding to the terminal is as follows: determine any downlink carrier (one or more downlink carriers) in the first downlink frequency range as the downlink carrier for receiving downlink signals by the terminal, and any uplink carrier (one or more uplink carriers) in the first uplink frequency range as the uplink carrier for sending uplink signals by the terminal; the interval between the first downlink frequency range and the first uplink frequency range is greater than or equal to the minimum interval corresponding to the terminal.
  • the network device determines the transmission power of the downlink signal sent to the terminal according to the radio frequency indicator #0.
  • RF indicator #0 can be regarded as the desensitization value of the downlink reference sensitivity reported by the terminal.
  • the desensitization value of the downlink reference sensitivity is 3dB, and the downlink transmit power value of the network device can be increased by 3dB.
  • the desensitization value of the downlink reference sensitivity is 5dB, and the downlink transmit power value of the network device is not increased, but the desensitization value of the downlink reference sensitivity is between 5dB and 10dB, and the downlink transmit power value of the network device can be increased by 3dB.
  • the network device can determine the transmit power of the downlink signal sent to the terminal by other means, which is not limited in the embodiments of the present application.
  • the following are examples of how several network devices, when communicating with a terminal using a spectrum combination including Band n5 and Band n8, determine the downlink carrier for receiving downlink signals and the uplink carrier for sending uplink signals of the terminal based on the minimum interval corresponding to the terminal.
  • Example 1 The minimum interval corresponding to the terminal is 5MHz.
  • the network device determines that the downlink carrier for receiving the downlink signal of the terminal is any carrier in the downlink frequency range 0 and the uplink carrier for sending the uplink signal is any carrier in the uplink frequency range 0 according to the minimum interval corresponding to the terminal.
  • the downlink frequency range 0 is 879 ⁇ 890MHz, and the uplink frequency range 0 is 895 ⁇ 915MHz.
  • Example 2 The minimum interval corresponding to the terminal is 9 MHz.
  • the network device determines that the downlink carrier for receiving the downlink signal of the terminal is any carrier in the downlink frequency range 1 and the uplink carrier for sending the uplink signal is any carrier in the uplink frequency range 1 according to the minimum interval corresponding to the terminal.
  • the downlink frequency range 1 is 869 to 880 MHz, and the uplink frequency range 1 is 889 to 915 MHz.
  • Example 3 The minimum interval corresponding to the terminal is 10MHz.
  • the network device determines that the downlink carrier for receiving the downlink signal of the terminal is any carrier in the downlink frequency range 2 and the uplink carrier for sending the uplink signal is any carrier in the uplink frequency range 2 according to the minimum interval corresponding to the terminal.
  • the downlink frequency range 2 is 869 ⁇ 880MHz, and the uplink frequency range 2 is 890 ⁇ 915MHz.
  • Example 4 The minimum interval corresponding to the terminal is 10MHz.
  • the network device determines that the downlink carrier for receiving the downlink signal of the terminal is any carrier in the downlink frequency range 3 and the uplink carrier for sending the uplink signal is any carrier in the uplink frequency range 3 according to the minimum interval corresponding to the terminal.
  • the downlink frequency range 3 is 860 ⁇ 890MHz, and the uplink frequency range 3 is 900 ⁇ 905MHz.
  • Example 5 The minimum interval corresponding to the terminal is 11MHz.
  • the network device determines the minimum interval corresponding to the terminal to receive the downlink signal.
  • the downlink carrier is any carrier in the downlink frequency range 4 and the uplink carrier for sending the uplink signal is any carrier in the uplink frequency range 4.
  • the downlink frequency range 4 is 874 to 894 MHz and the uplink frequency range 4 is 905 to 915 MHz.
  • Example 6 The minimum interval corresponding to the terminal is 12MHz.
  • the network device determines that the downlink carrier for receiving the downlink signal of the terminal is any carrier in the downlink frequency range 5 and the uplink carrier for sending the uplink signal is any carrier in the uplink frequency range 5 according to the minimum interval corresponding to the terminal.
  • the downlink frequency range 5 is 869 ⁇ 879MHz, and the uplink frequency range 5 is 891 ⁇ 915MHz.
  • Example 7 The minimum interval corresponding to the terminal is 15MHz.
  • the network device determines that the downlink carrier for receiving the downlink signal of the terminal is any carrier in the downlink frequency range 6 and the uplink carrier for sending the uplink signal is any carrier in the uplink frequency range 6 according to the minimum interval corresponding to the terminal.
  • the downlink frequency range 6 is 869 ⁇ 880MHz, and the uplink frequency range 6 is 895 ⁇ 915MHz.
  • Example 8 The minimum interval corresponding to the terminal is 20MHz.
  • the network device determines that the downlink carrier for receiving the downlink signal of the terminal is any carrier in the downlink frequency range 7 and the uplink carrier for sending the uplink signal is any carrier in the uplink frequency range 7 according to the minimum interval corresponding to the terminal.
  • the downlink frequency range 7 is 869 ⁇ 880MHz, and the uplink frequency range 7 is 900 ⁇ 915MHz.
  • Example 9 The minimum interval corresponding to the terminal is 24MHz.
  • the network device determines that the downlink carrier for receiving the downlink signal of the terminal is any carrier in the downlink frequency range 8 and the uplink carrier for sending the uplink signal is any carrier in the uplink frequency range 8 according to the minimum interval corresponding to the terminal.
  • the downlink frequency range 8 is 869 ⁇ 880MHz, and the uplink frequency range 8 is 904 ⁇ 915MHz.
  • the above examples are some possible examples of step 204, but not all examples.
  • the main principle for the network device to determine the downlink carrier for receiving downlink signals and the uplink carrier for sending uplink signals of the terminal according to the minimum interval corresponding to the terminal is that the interval between the downlink frequency range to which the downlink carrier for receiving downlink signals belongs and the uplink frequency range to which the uplink carrier for sending uplink signals belongs is greater than or equal to the minimum interval corresponding to the terminal.
  • a terminal sends a first message to a network device, and the network device learns the minimum interval corresponding to the terminal according to the first message, so that the network device can schedule or configure downlink frequency domain resources and uplink frequency domain resources for the terminal in a targeted manner according to the minimum interval corresponding to the terminal.
  • different terminals report their corresponding minimum intervals to the network device, and the network device can configure or schedule different downlink frequency domain resources and/or uplink frequency domain resources for different terminals in a targeted manner according to the minimum intervals corresponding to different terminals; this can not only reduce the self-interference of the terminal when it receives downlink signals in the downlink frequency domain resources and sends uplink signals in the uplink frequency domain resources at the same time, but also improve the spectrum utilization rate of the communication system.
  • FIG3 is an interactive flow chart of another communication method provided in an embodiment of the present application.
  • the network device determines the downlink carrier for receiving the downlink signal and the uplink carrier for sending the uplink signal of the terminal according to the minimum interval corresponding to the terminal.
  • the network device determines the downlink carrier for receiving the downlink signal and the uplink carrier for sending the uplink signal of the terminal according to the first interval corresponding to the terminal.
  • the network device may perform the operations in FIG2 or the operations in FIG3 according to preset rules (see description below). That is, the network device performs the operations in FIG2 in some cases, and performs the operations in FIG3 in other cases.
  • the method includes:
  • a terminal sends a first message to a network device.
  • the network device receives a first message from the terminal.
  • Step 301 may refer to step 202.
  • the first message indicates the minimum interval between the downlink frequency domain resources and the uplink frequency domain resources when the terminal simultaneously receives a downlink signal in the downlink frequency domain resources and sends an uplink signal in the uplink frequency domain resources.
  • the first message also indicates that when the terminal simultaneously receives a downlink signal in the downlink frequency domain resources and sends an uplink signal in the uplink frequency domain resources, the first RF indicator is satisfied when the interval between the downlink frequency domain resources and the uplink frequency domain resources is greater than or equal to the first interval, and the first interval is greater than the minimum interval.
  • the network device determines a first radio frequency indicator and a first interval according to the first message.
  • the network device may also determine the minimum interval corresponding to the terminal according to the first message.
  • the network device determines, according to the first interval corresponding to the terminal, a downlink carrier for receiving downlink signals and an uplink carrier for sending uplink signals by the terminal.
  • the network device can configure the downlink carrier and the uplink carrier to the terminal through RRC signaling.
  • a possible implementation method for the network device to determine the downlink carrier for receiving downlink signals and the uplink carrier for sending uplink signals by the terminal according to the first interval corresponding to the terminal is as follows: determine any downlink carrier (one or more downlink carriers) in the second downlink frequency range as the downlink carrier for receiving downlink signals by the terminal, and any uplink carrier (one or more uplink carriers) in the second uplink frequency range as the uplink carrier for sending uplink signals by the terminal; the interval between the second downlink frequency range and the second uplink frequency range is greater than or equal to the first interval corresponding to the terminal.
  • the network device determines the downlink carrier for receiving downlink signals and the uplink carrier for sending uplink signals of the terminal according to the minimum interval corresponding to the terminal.
  • the network device determines the downlink carrier for receiving downlink signals and the uplink carrier for sending uplink signals of the terminal according to the first interval corresponding to the terminal. It should be noted that when the network device learns that the terminal meets the RF indicators at multiple different intervals (such as the minimum interval and the first interval), the network device can determine the RF indicators according to a certain interval among the multiple different intervals according to a preset rule.
  • the downlink carrier for receiving downlink signals and the uplink carrier for sending uplink signals by the terminal are determined according to the interval.
  • the network device can also determine the transmission power of the downlink signal sent to the terminal according to the RF indicator corresponding to the interval. For example, when the terminal simultaneously receives downlink signals in the downlink frequency domain resources and sends uplink signals in the uplink frequency domain resources, the RF indicator #0 is satisfied when the interval between the downlink frequency domain resources and the uplink frequency domain resources is greater than or equal to the minimum interval, and the first RF indicator is satisfied when the interval between the downlink frequency domain resources and the uplink frequency domain resources is greater than or equal to the first interval; after the network device learns the minimum interval and the first interval according to the first message, it determines the downlink carrier for receiving downlink signals and the uplink carrier for sending uplink signals by the terminal according to the first interval (or the minimum interval) according to the preset rules; and determines the transmission power of the downlink signal sent to the terminal according to the first RF indicator (or RF indicator #0).
  • the network device may consider configuring a frequency interval with a smaller downlink reference sensitivity desensitization value for the terminal. At this time, the network device may preferentially configure a frequency interval of 20MHz to ensure that the terminal obtains better downlink sensitivity performance.
  • Scenario 2 The terminal is located in the center of the cell, and the downlink measurement signal strength received by the terminal is strong.
  • the network device may consider configuring a frequency interval with a larger downlink reference sensitivity desensitization value for the terminal.
  • the network device may consider configuring a frequency interval of 15MHz for the terminal to obtain a larger bandwidth.
  • the network device may configure a suitable frequency interval between the uplink carrier and the downlink carrier for the terminal according to the strength of the downlink measurement signal received by the terminal.
  • the network device determines the transmission power of the downlink signal sent to the terminal according to the first radio frequency indicator.
  • Step 304 may refer to step 205 .
  • the terminal sends a first message to the network device to indicate the first interval corresponding to the terminal.
  • the network device determines the downlink carrier for receiving the downlink signal and the uplink carrier for sending the uplink signal of the terminal according to the first interval corresponding to the terminal; this can reduce the self-interference of the terminal when receiving the downlink signal in the downlink frequency domain resources and sending the uplink signal in the uplink frequency domain resources at the same time, and improve the spectrum utilization rate of the communication system.
  • the network equipment such as a base station
  • the terminal include hardware structures and/or software modules corresponding to the execution of each function. It should be easily appreciated by those skilled in the art that, in combination with the units and method steps of each example described in the embodiments disclosed in this application, the present application can be implemented in the form of hardware or a combination of hardware and computer software. Whether a function is executed in the form of hardware or computer software driving hardware depends on the specific application scenario and design constraints of the technical solution.
  • Figures 4 and 5 are schematic diagrams of possible communication devices provided by embodiments of the present application. These communication devices can be used to implement the functions of the terminal or network device in the above method embodiments, and thus can also achieve the beneficial effects of the above method embodiments.
  • the communication device can be one of the terminals 120a-120j as shown in Figure 1, or a base station 110a or 110b as shown in Figure 1, or a module (such as a chip) applied to a terminal or network device.
  • the communication device 400 includes a processing unit 410 and a transceiver unit 420.
  • the communication device 400 is used to implement the functions of the terminal or network device in the method embodiment shown in Fig. 2 or Fig. 3 above.
  • the processing unit 410 is used to generate a first message; and the transceiver unit 420 is used to send the first message to the network device.
  • the transceiver unit 420 is used to receive the first message; the processing unit 410 is used to determine the minimum interval corresponding to the terminal according to the first message.
  • the processing unit 410 is also used to determine the downlink carrier for receiving the downlink signal and the uplink carrier for sending the uplink signal according to the minimum interval corresponding to the terminal.
  • the processing unit 410 is also used to determine the transmission power of the downlink signal sent to the terminal according to the radio frequency indicator #0.
  • the processing unit 410 is used to generate a first message; and the transceiver unit 420 is used to send the first message to the network device.
  • the transceiver unit 420 is used to receive the first message; the processing unit 410 is used to determine the first radio frequency indicator and the first interval according to the first message; according to the first interval corresponding to the terminal, determine the downlink carrier for receiving the downlink signal and the uplink carrier for sending the uplink signal of the terminal.
  • the processing unit 410 is also used to determine the transmission power of the downlink signal sent to the terminal according to the first radio frequency indicator.
  • the communication device 500 includes a processor 510 and an interface circuit 520.
  • the processor 510 and the interface circuit 520 are coupled to each other.
  • the interface circuit 520 may be a transceiver or an input/output interface.
  • the communication device 500 may also include a storage
  • the memory 530 is used to store instructions executed by the processor 510 or to store input data required by the processor 510 to execute instructions or to store data generated after the processor 510 executes instructions.
  • the processor 510 is used to implement the function of the processing unit 410
  • the interface circuit 520 is used to implement the function of the transceiver unit 420 .
  • the processor 510 is used to implement the function of the processing unit 410
  • the interface circuit 520 is used to implement the function of the transceiver unit 420 .
  • the terminal chip When the above communication device is a chip applied to a terminal, the terminal chip implements the functions of the terminal in the above method embodiment.
  • the terminal chip receives information from other modules in the terminal (such as a radio frequency module or an antenna), and the information is sent by the network device to the terminal; or the terminal chip sends information to other modules in the terminal (such as a radio frequency module or an antenna), and the information is sent by the terminal to the network device.
  • the module in the network device implements the function of the network device in the above-mentioned method embodiment.
  • the module in the network device receives information from other modules in the network device (such as a radio frequency module or an antenna), and the information is sent by the terminal to the network device; or, the module in the network device sends information to other modules in the network device (such as a radio frequency module or an antenna), and the information is sent by the network device to the terminal.
  • the module in the network device here can be a baseband chip of the network device, or it can be a DU or other module.
  • the DU here can be a DU under the open radio access network (open radio access network, O-RAN) architecture.
  • processors in the embodiments of the present application may be a central processing unit (CPU), or other general-purpose processors, digital signal processors (DSP), application specific integrated circuits (ASIC), field programmable gate arrays (FPGA) or other programmable logic devices, transistor logic devices, hardware components or any combination thereof.
  • the general-purpose processor may be a microprocessor or any conventional processor.
  • the method steps in the embodiments of the present application can be implemented in hardware or in software instructions that can be executed by a processor.
  • the software instructions can be composed of corresponding software modules, and the software modules can be stored in random access memory, flash memory, read-only memory, programmable read-only memory, erasable programmable read-only memory, electrically erasable programmable read-only memory, register, hard disk, mobile hard disk, CD-ROM or any other form of storage medium well known in the art.
  • An exemplary storage medium is coupled to the processor so that the processor can read information from the storage medium and can write information to the storage medium.
  • the storage medium can also be a component of the processor.
  • the processor and the storage medium can be located in an ASIC.
  • the ASIC can be located in a network device or a terminal.
  • the processor and the storage medium can also be present in a network device or a terminal as discrete components.
  • the computer program product includes one or more computer programs or instructions.
  • the computer may be a general-purpose computer, a special-purpose computer, a computer network, a network device, a user device or other programmable device.
  • the computer program or instruction may be stored in a computer-readable storage medium, or transmitted from one computer-readable storage medium to another computer-readable storage medium, for example, the computer program or instruction may be transmitted from one website site, computer, server or data center to another website site, computer, server or data center by wired or wireless means.
  • the computer-readable storage medium may be any available medium that a computer can access or a data storage device such as a server, data center, etc. that integrates one or more available media.
  • the available medium may be a magnetic medium, for example, a floppy disk, a hard disk, a tape; it may also be an optical medium, for example, a digital video disc; it may also be a semiconductor medium, for example, a solid-state hard disk.
  • the computer-readable storage medium may be a volatile or nonvolatile storage medium, or may include both volatile and nonvolatile types of storage media.
  • “at least one” means one or more, and “more” means two or more.
  • “And/or” describes the association relationship of associated objects, indicating that three relationships can exist. For example, A and/or B can mean: A exists alone, A and B exist at the same time, and B exists alone, where A and B can be singular or plural. In the text description of this application, the character “/" generally indicates that the associated objects before and after are in an "or" relationship.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请公开了通信方法和装置。终端生成第一消息并将该第一消息发送给网络设备,该第一消息指示该终端同时在下行频域资源接收下行信号和在上行频域资源发送上行信号时,该下行频域资源与该上行频域资源之间的最小间隔;网络设备根据该终端对应的最小间隔有针对性的为该终端调度下行频域资源和上行频域资源。网络设备根据不同终端对应的最小间隔能够有针对性的为不同终端调度不同的下行频域资源和上行频域资源;既能减轻终端同时在下行频域资源接收下行信号和在上行频域资源发送上行信号时的自干扰,又能提高通信系统的频谱利用率。

Description

通信方法和装置
本申请要求在2022年11月28日提交中国国家知识产权局、申请号为202211508261.5的中国专利申请的优先权,发明名称为“通信方法和装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及通信领域,尤其涉及一种通信方法和装置。
背景技术
移动通信系统的授权频谱资源被人为划分成若干频段,且有独一无二的编号。运营商为了充分利用频谱资源,可以采用双连接(dual connectivity,DC)或载波聚合(carrier aggregation,CA)技术进行上下行通信。在这种技术下,网络设备与终端将工作在一个频段或多个频段的多个载波上,用户可以获得更好的覆盖或更高的上下行通信速率体验。虽然频段数有限,但理论上频段内/频段间的排列组合是庞大的,故现有通信协议定义了运营商基于自身获得授权的频段以及实际布网需求而提出的频谱组合。然而,目前采用的通信方案中,对于某些频谱组合场景,终端同时接收下行信号和发送上行信号的传输性能较差。因此,需要研究在灵活配置频谱组合的场景下,同时接收下行信号和发送上行信号时,如何提升传输性能的方案。
发明内容
本申请实施例公开了一种通信方法和装置,既能减轻终端同时在下行频域资源接收下行信号和在上行频域资源发送上行信号时的自干扰,又能提高通信系统的频谱利用率。
第一方面,本申请实施例提供一种通信方法,由终端或应用于终端的模块执行,该方法包括:生成第一消息,该第一消息指示该终端同时在下行频域资源接收下行信号和在上行频域资源发送上行信号时,该下行频域资源与该上行频域资源之间的最小间隔;向网络设备发送该第一消息。
本申请实施例中,终端向网络设备发送第一消息,以便该网络设备根据该终端对应的最小间隔有针对性的为该终端调度或配置下行频域资源和上行频域资源。在实际应用中,不同终端向网络设备上报各自对应的最小间隔,网络设备根据不同终端对应的最小间隔能够有针对性的为不同终端配置或调度不同的下行频域资源和/或上行频域资源;这样既能减轻终端同时在下行频域资源接收下行信号和在上行频域资源发送上行信号时的自干扰,又能提高通信系统的频谱利用率。
在一种可能的实现方式中,该方法还包括:接收来自网络设备的第一请求消息,该第一请求消息请求终端向该网络设备上报该终端同时在下行频域资源接收下行信号和在上行频域资源发送上行信号时,该下行频域资源与该上行频域资源之间的最小间隔。
在该实现方式中,接收来自网络设备的第一请求消息,以便根据该第一请求消息向网络设备上报该终端同时在下行频域资源接收下行信号和在上行频域资源发送上行信号时,该下行频域资源与该上行频域资源之间的最小间隔;能够使得网络设备及时获知该终端对应的最小间隔。
在一种可能的实现方式中,第一消息还指示终端同时在下行频域资源接收下行信号和在上行频域资源发送上行信号时,该下行频域资源与该上行频域资源之间的间隔大于或等于第一间隔时满足第一射频指标,该第一间隔大于该终端对应的最小间隔。
在该实现方式中,第一消息还指示终端同时在下行频域资源接收下行信号和在上行频域资源发送上行信号时,该下行频域资源与该上行频域资源之间的间隔大于或等于第一间隔时满足第一射频指标;以便网络设备根据第一消息和不同终端的需求,更有针对性的为不同终端配置或调度不同的下行频域资源和/或上行频域资源。
在一种可能的实现方式中,第一射频指标包括终端的下行参考灵敏度的最大降敏值不高于第一阈值。
在该实现方式中,第一射频指标包括终端的下行参考灵敏度的最大降敏值不高于第一阈值,该第一射频指标可准确地反映终端内部的干扰。
在一种可能的实现方式中,终端同时在下行频域资源接收下行信号和在上行频域资源发送上行信号时,该下行频域资源与该上行频域资源之间的最小间隔为以下任一项:5MHz、9MHz、10MHz、11MHz、12MHz、15MHz或20MHz。
第二方面,本申请实施例提供另一种通信方法,该方法由网络设备或应用于网络设备的模块执行,该方法包括:接收来自终端的第一消息,该第一消息指示该终端同时在下行频域资源接收下行信号和在上行 频域资源发送上行信号时,该下行频域资源与该上行频域资源之间的最小间隔;根据第一消息,确定该最小间隔。
本申请实施例中,网络设备接收来自终端的第一消息,并根据该第一消息确定该终端对应的最小间隔;该网络设备根据该终端对应的最小间隔能够有针对性的为该终端调度或配置下行频域资源和上行频域资源。在实际应用中,网络设备根据不同终端对应的最小间隔有针对性的为不同终端配置或调度不同的下行频域资源和/或上行频域资源;这样既能减轻终端同时在下行频域资源接收下行信号和在上行频域资源发送上行信号时的自干扰,又能提高通信系统的频谱利用率。
在一种可能的实现方式中,该方法还包括:根据终端同时在下行频域资源接收下行信号和在上行频域资源发送上行信号时,该下行频域资源与该上行频域资源之间的最小间隔,确定该终端接收下行信号的频域资源以及发送上行信号的上行频域资源。
在该实现方式中,网络设备根据终端对应的最小间隔,确定该终端接收下行信号的频域资源以及发送上行信号的上行频域资源;能够有针对性的为不同终端配置或调度不同的下行频域资源和/或上行频域资源;这样既能减轻终端同时在下行频域资源接收下行信号和在上行频域资源发送上行信号时的自干扰,又能提高通信系统的频谱利用率。
在一种可能的实现方式中,该方法还包括:向终端发送第一请求消息,该第一请求消息请求该终端上报该终端对应的最小间隔。
在该实现方式中,向终端发送第一请求消息,可及时获知该终端对应的最小间隔,进而有针对性的为该终端配置或调度下行频域资源和/或上行频域资源。
第二方面的方法可能的实现方式可参见第一方面的各种可能的实现方式。
关于第二方面的各种可能的实现方式所带来的技术效果,可参考对于第一方面或第一方面的各种可能的实现方式的技术效果的介绍。
第三方面,本申请实施例提供一种通信装置,该通信装置具有实现上述第一方面方法实施例中的行为的功能。该通信装置可以是终端,也可以是终端的部件(例如处理器、芯片、或芯片系统等),还可以是能实现全部或部分该终端的功能的逻辑模块或软件。该通信装置的功能可以通过硬件实现,也可以通过硬件执行相应的软件实现,该硬件或软件包括一个或多个与上述功能相对应的模块或单元。在一种可能的实现方式中,该通信装置包括收发单元和处理单元,其中:处理单元,用于生成第一消息,该第一消息指示该终端同时在下行频域资源接收下行信号和在上行频域资源发送上行信号时,该下行频域资源与该上行频域资源之间的最小间隔;收发单元,用于向网络设备发送该第一消息。
在一种可能的实现方式中,收发单元,还用于接收来自网络设备的第一请求消息,该第一请求消息请求终端向该网络设备上报该终端同时在下行频域资源接收下行信号和在上行频域资源发送上行信号时,该下行频域资源与该上行频域资源之间的最小间隔。
第三方面的通信装置可能的实现方式可参见第一方面的各种可能的实现方式。
关于第三方面的各种可能的实现方式所带来的技术效果,可参考对于第一方面或第一方面的各种可能的实现方式的技术效果的介绍。
第四方面,本申请实施例提供一种通信装置,该通信装置具有实现上述第二方面方法实施例中的行为的功能。该通信装置可以是网络设备,也可以是网络设备的部件(例如处理器、芯片、或芯片系统等),还可以是能实现全部或部分该网络设备的功能的逻辑模块或软件。该通信装置的功能可以通过硬件实现,也可以通过硬件执行相应的软件实现,该硬件或软件包括一个或多个与上述功能相对应的模块或单元。在一种可能的实现方式中,该通信装置包括收发单元和处理单元,其中:收发单元,用于接收来自终端的第一消息,该第一消息指示该终端同时在下行频域资源接收下行信号和在上行频域资源发送上行信号时,该下行频域资源与该上行频域资源之间的最小间隔;处理单元,用于根据第一消息,确定该最小间隔。
在一种可能的实现方式中,处理单元,还用于根据终端同时在下行频域资源接收下行信号和在上行频域资源发送上行信号时,该下行频域资源与该上行频域资源之间的最小间隔,确定该终端接收下行信号的频域资源以及发送上行信号的上行频域资源。
在一种可能的实现方式中,收发单元,还用于向终端发送第一请求消息,该第一请求消息请求该终端上报该终端对应的最小间隔。
第四方面的通信装置可能的实现方式可参见第二方面的各种可能的实现方式。
关于第四方面的各种可能的实现方式所带来的技术效果,可参考对于第二方面或第二方面的各种可能的实现方式的技术效果的介绍。
第五方面,本申请实施例提供另一种通信装置,该通信装置包括处理器和接口电路,该接口电路用于接收来自其它通信装置的信号并传输至该处理器或将来自该处理器的信号发送给其它通信装置,该处理器通过逻辑电路或执行代码指令用于实现上述第一方面或上述第二方面所示的方法。
第六方面,本申请实施例提供一种计算机可读存储介质,该计算机可读存储介质中存储有计算机程序或指令,当该计算机程序或指令被通信装置执行时,实现如上述第一方面或上述第二方面所示的方法。
第七方面,本申请提供一种计算机程序产品,该计算机程序产品包括计算机程序或指令,该计算机程序或指令被执行时使得计算机执行如上述第一方面或上述第二方面所示的方法。
第八方面,本申请提供一种通信系统,包括上述第三方面或第三方面的任意可能的实现方式所述的通信装置、上述第四方面或第四方面的任意可能的实现方式所述的通信装置。
第九方面,本申请提供一种芯片,包括处理器与通信接口,所述处理器通过该通信接口读取存储器上存储的指令,执行如上述第一方面或上述第二方面所示的方法。
附图说明
图1是本申请的实施例应用的通信系统1000的架构示意图;
图2为本申请实施例提供的一种通信方法交互流程示意图;
图3为本申请实施例提供的另一种通信方法交互流程示意图;
图4为本申请的实施例提供的可能的通信装置的结构示意图;
图5为本申请的实施例提供的可能的通信装置的结构示意图。
具体实施方式
图1是本申请的实施例应用的通信系统1000的架构示意图。如图1所示,该通信系统包括无线接入网100和核心网200。可选的,通信系统1000还可以包括互联网300。其中,无线接入网100可以包括至少一个无线接入网设备(如图1中的110a和110b),还可以包括至少一个终端(如图1中的120a-120j)。终端通过无线的方式与无线接入网设备相连,无线接入网设备通过无线或有线方式与核心网连接。核心网设备与无线接入网设备可以是独立的不同的物理设备,也可以是将核心网设备的功能与无线接入网设备的逻辑功能集成在同一个物理设备上,还可以是一个物理设备上集成了部分核心网设备的功能和部分的无线接入网设备的功能。终端和终端之间以及无线接入网设备和无线接入网设备之间可以通过有线或无线的方式相互连接。图1只是示意图,该通信系统中还可以包括其它网络设备,如还可以包括无线中继设备和无线回传设备,在图1中未画出。
无线接入网设备是终端通过无线方式接入到通信系统中的接入设备。无线接入网设备可以是基站(base station,BS)、演进型基站(evolved NodeB,eNodeB)、发送接收点(transmission reception point,TRP)、第五代(5th generation,5G)移动通信系统中的下一代基站(next generation NodeB,gNB)、第六代(6th generation,6G)移动通信系统中的下一代基站、未来移动通信系统中的基站或WiFi系统中的接入节点等;也可以是完成基站部分功能的模块或单元,例如,可以是集中式单元(central unit,CU),也可以是分布式单元(distributed unit,DU)。这里的CU完成基站的无线资源控制协议和分组数据汇聚层协议(packet data convergence protocol,PDCP)的功能,还可以完成业务数据适配协议(service data adaptation protocol,SDAP)的功能;DU完成基站的无线链路控制层和介质访问控制(medium access control,MAC)层的功能,还可以完成部分物理层或全部物理层的功能,有关上述各个协议层的具体描述,可以参考第三代合作伙伴计划(3rd generation partnership project,3GPP)的相关技术规范。无线接入网设备可以是宏基站(如图1中的110a),也可以是微基站或室内站(如图1中的110b),还可以是中继节点或施主节点等。本申请的实施例对无线接入网设备所采用的具体技术和具体设备形态不做限定。为了便于描述,下文以基站作为无线接入网设备的例子进行描述。
终端是具有无线收发功能的设备,可以向基站发送信号,或接收来自基站的信号。终端也可以称为终端、用户设备(user equipment,UE)、移动台、移动终端等。终端可以广泛应用于各种场景,例如,设备到设备(device-to-device,D2D)、车物(vehicle to everything,V2X)通信、机器类通信(machine-type communication,MTC)、物联网(internet of things,IOT)、虚拟现实、增强现实、工业控制、自动驾驶、远程医疗、智能电网、智能家具、智能办公、智能穿戴、智能交通、智慧城市等。终端可以是手机、平板电脑、带无线收发功能的电脑、可穿戴设备、车辆、飞机、轮船、机器人、机械臂、智能家居设备等。本申 请的实施例对终端所采用的具体技术和具体设备形态不做限定。
基站和终端可以是固定位置的,也可以是可移动的。基站和终端可以部署在陆地上,包括室内或室外、手持或车载;也可以部署在水面上;还可以部署在飞机、气球和人造卫星上。本申请的实施例对基站和终端的应用场景不做限定。
基站和终端的角色可以是相对的,例如,图1中的直升机或无人机120i可以被配置成移动基站,对于那些通过120i接入到无线接入网100的终端120j来说,终端120i是基站;但对于基站110a来说,120i是终端,即110a与120i之间是通过无线空口协议进行通信的。当然,110a与120i之间也可以是通过基站与基站之间的接口协议进行通信的,此时,相对于110a来说,120i也是基站。因此,基站和终端都可以统一称为通信装置,图1中的110a和110b可以称为具有基站功能的通信装置,图1中的120a-120j可以称为具有终端功能的通信装置。
基站和终端之间、基站和基站之间、终端和终端之间可以通过授权频谱进行通信,也可以通过免授权频谱进行通信,也可以同时通过授权频谱和免授权频谱进行通信;可以通过6千兆赫(gigahertz,GHz)以下的频谱进行通信,也可以通过6GHz以上的频谱进行通信,还可以同时使用6GHz以下的频谱和6GHz以上的频谱进行通信。本申请的实施例对无线通信所使用的频谱资源不做限定。
在本申请的实施例中,基站的功能也可以由基站中的模块(如芯片)来执行,也可以由包含有基站功能的控制子系统来执行。这里的包含有基站功能的控制子系统可以是智能电网、工业控制、智能交通、智慧城市等上述应用场景中的控制中心。终端的功能也可以由终端中的模块(如芯片或调制解调器)来执行,也可以由包含有终端功能的装置来执行。
在本申请中,基站向终端发送下行信号或下行信息,下行信息承载在下行信道上;终端向基站发送上行信号或上行信息,上行信息承载在上行信道上。终端为了与基站进行通信,需要与基站控制的小区建立无线连接。与终端建立了无线连接的小区称为该终端的服务小区。当终端与该服务小区进行通信的时候,还会受到来自邻区的信号的干扰。
下面介绍本申请实施例中所涉及的术语。
频段(frequency band)
移动通信系统通常是部署在运营商被授权使用的频段上。频谱资源被人为划分成的若干频段,且有独一无二的编号。每个频段对应有频率上限和下限,以及该频段的双工方式(duplex mode)。下面的表1列举了第三代合作伙伴计划(third generation partnership project,3GPP)新空口(new ratio,NR)协议38.101-1 V17.7.0中定义的FR1频段。
表1
对于时分双工(time division duplexing,TDD)频段(如表1中的n34频段),上行频段与下行频段完 全重叠,即上行频段的上下限,与下行频段的上下限相同。对于频分双工(frequency division duplexing,FDD)频段(如表1中的n5频段),上行频段和下行频率不重叠,即分别有对应的上限和下限。对于补充下行链路(supplementary uplink,SUL)频段(如表1中的n80频段),只存在上行频率以及对应的上限和下限;对于补充下行链路(supplementary downlink,SDL)频段(如表1中的n29频段),只存在下行频率以及对应的上限和下限。
上行工作频段(简称上行频段)是基站接收信号使用的频段,也是UE发射信号使用的频段。下行工作频段(简称下行频段)是BS发射信号使用的频段,也是UE发射信号使用的频段。表1中,第一列为工作频段的编号,第二列为上行工作频段,第三列为下行工作频段,第四列为频段对应的双工方式。以表1的第6行为例,编号为n5的上行工作频段为824MHz-849MHz,编号为n5的下行工作频段为869MHz-894MHz,编号为n5的工作频段对应的双工方式为FDD。表1中,若任一行的上行工作频段为N/A,表明这一行的上行工作频段不存在;若任一行的下行工作频段为N/A,表明这一行的下行工作频段不存在。以表1的第30行为例,编号为n29的工作频段只有下行工作频段,没有上行工作频段,即上行工作频段不存在。
从表1可以看出,任意一个上行工作频段都有一个上限和下限,任意一个下行工作频段有一个上限和下限。以编号为n5的下行工作频段为例,该下行工作频段的下限为869MHz,该下行工作频段的上限为894MHz。以编号为n8的上行工作频段为例,该上行工作频段的下限为880MHz,该上行工作频段的上限为894MHz。
上行频域资源和下行频域资源之间的间隔为该上行频域资源的下限与该下行频域资源的上限的差值或者该下行频域资源的下限与该上行频域资源的上限的差值。在本申请中,频域资源可以是指频段、载波或者带宽部分(bandwidth part,BWP),也可以是频段、载波或者BWP中的一部分。具体的,若上行频域资源的下限大于下行频域资源的上限,则上行频域资源和下行频域资源之间的间隔为该上行频域资源的下限与该下行频域资源的上限的差值。以表1中编号为n14的上行工作频段788MHz-798MHz和下行工作频段758MHz-768MHz为例,上行工作频段和下行工作频段之间的间隔为20MHz。具体的,若上行频域资源的上限小于下行频域资源的下限时,上行频域资源和下行频域资源之间的间隔为该下行频域资源的下限与该上行频域资源的上限的差值。以表1中编号为n8的上行工作频段880MHz-915MHz和下行工作频段925MHz-960MHz为例,上行工作频段和下行工作频段之间的间隔为10MHz。
频谱组合(band combination,BC)
频谱组合是指一个或多个频段的集合。频谱组合可称为频段组合。
参阅表1,表1中个别上行频段和下行频段存在重叠的情况。例如,NR Band n5的下行接收频段(869~894MHz)与Band n8的上行发送频段(880~915MHz)重叠。为避免上行频段和下行频段重叠,目前采用的一种方案是通过频谱划分的方式使得上行频段和下行频段之间存在一定的保护频带(guard band)。针对NR Band n5的下行接收频段与Band n8的上行发送频段重叠的情况,部分国家的频谱划分如表2所示。
表2
以表2的第二行为例,中国划分(或者说采用的)的Band n5的下行频率范围为869~880MHz,中国划分的Band n5的上行频率范围为889~915MHz,上行频率范围和下行频率范围存在9MHz的保护频带。从表2可以看出,不同国家采用的Band n5的下行频率范围不同,不同国家采用的Band n8的上行频率范围不同,不同国家采用的Band n5的下行频率范围和Band n8的上行频率范围之间的保护频带不同。
当运营商存在部署这两个频段(即Band n5的下行频段和Band n8的上行频段)的频谱组合的需求时,考虑到未来频谱划分的演进,理论上要求终端具备在重叠频段(880~894MHz)同时同频收发的能力,这对于现有的终端还无法实现。终端在重叠频段不具备同时同频收发的能力的主要原因在于,终端在重叠频段同时发送上行信号和接收下行信号时,终端发射的上行信号会对终端接收的下行信号产生较强的干扰,影响终端对下行信号的接收。举例来说,终端同时在下行频域资源880~894MHz接收下行信号和在上行频域资源880~894MHz接收上行信号时,终端的接收滤波器(用于接收该下行信号)对于该上行信号的抑制能力通常小于20dB,终端的自干扰较为严重,对该接收信号的接收造成阻塞,即严重影响该下行信号的接收。
应理解,终端同时在下行频域资源接收下行信号和在上行频域资源发送上行信号时,该上行频域资源和该下行频域资源之间的间隔越大,该下行信号和该上行信号之间的干扰越小。由于不同终端的能力(例如包括射频能力、基带能力、干扰信号抑制能力等)不同,不同终端同时在下行频域资源接收下行信号和在上行频域资源发送上行信号时,终端所能支持的下行频域资源与上行频域资源之间的最小间隔不同。终端同时在下行频域资源接收下行信号和在上行频域资源发送上行信号时,下行频域资源与上行频域资源之间的最小间隔可理解为:终端同时在下行频域资源接收下行信号和在上行频域资源发送上行信号时,只要下行频域资源与上行频域资源之间的间隔不小于该最小间隔就能基本保证下行信号的正常接收。
为避免终端在重叠频段同时发送上行信号和接收下行信号时,终端发射的上行信号会对终端接收的下行信号产生较强的干扰,影响终端对下行信号的接收,目前采用的一种方案如下:通过频谱划分的方式使得上行频域资源和下行频域资源之间存在一定的保护频带,例如9MHz。
根据上文描述可知,不同终端同时在下行频域资源接收下行信号和在上行频域资源发送上行信号时,所能支持的下行频域资源与上行频域资源之间的最小间隔可能不同。可理解,当上行频域资源和下行频域资源之间的保护频带大于或等于终端对应的最小间隔时,终端才能保证同时在下行频域资源接收下行信号和在上行频域资源发送上行信号时的性能,即避免上行信号和下行信号发生较强的自干扰。本申请中,终端对应的最小间隔是指该终端同时在下行频域资源接收下行信号和在上行频域资源发送上行信号时,所能支持的下行频域资源与上行频域资源之间的最小间隔。为了让所有终端都能正常通信,通过频谱划分的方式来确保,上行频域资源和下行频域资源之间的保护频带大于所有终端所能支持的最小间隔,例如最小间隔为9MHz,这样必然导致的一个问题是上行频域资源和下行频域资源之间的保护频带过宽,会降低频谱利用率。
为解决上述方案存在的问题,本申请提供了一种终端向网络设备上报该终端对应的最小间隔的通信方案,以便网络设备可根据不同终端对应的最小间隔,为不同终端配置或调度不同的下行频域资源和/或上行频域资源,即频谱组合,从而可以在保证通信质量的前提下提高通信系统的频谱利用率。
下面结合附图介绍本申请提供的通信方法。
图2为本申请实施例提供的一种通信方法交互流程示意图,该方法包括:
201、终端生成第一消息。
第一消息指示上述终端同时在下行频域资源接收下行信号和在上行频域资源发送上行信号时,下行频域资源与上行频域资源之间的最小间隔。终端同时在下行频域资源接收下行信号和在上行频域资源发送上行信号时,下行频域资源与上行频域资源之间的最小间隔(下文简称终端对应的最小间隔)可视为:终端同时在下行频域资源接收下行信号和在上行频域资源发送上行信号的情况下,满足射频指标#0时,下行频域资源和上行频域资源之间的最小间隔。或者说,终端同时在下行频域资源接收下行信号和在上行频域资源发送上行信号时,下行频域资源与上行频域资源之间的间隔大于或等于最小间隔时满足射频指标#0。上述第一消息可以为无线资源控制(radio resource control,RRC)消息。
终端同时在下行频域资源接收下行信号和在上行频域资源发送上行信号时,若满足射频指标#0,则能够基本保证下行信号的成功接收。射频指标#0可包括终端的下行参考灵敏度的最大降敏值不高于阈值#0,阈值#0可以是0dB~35dB中的任一值,可根据实际需求来设置。例如,阈值#0为5dB、10dB、15dB、20dB、25dB、30dB、或35dB等。下行参考灵敏度是指当终端的吞吐率可以大于或等于该终端的最大吞吐率的95%时,此时输入到终端的天线端口的最小平均功率为下行参考灵敏度。在本申请中,降敏值也可以称为恶化值。下行参考灵敏度的最大降敏值:在特定的场景中,终端内部的干扰会对终端的下行参考灵敏度产生负面影响。在该特定的干扰场景中,射频协议允许终端的下行参考灵敏度产生恶化(也称为降敏),但是射频协议中也同时规定了下行参考灵敏度的最大降敏值。下行参考灵敏度的最大降敏值=恶化后的(例如,特定干扰场景中的)下行参考灵敏度减去恶化前的(例如,无该特定干扰的场景中的)下行参考灵敏度。 应理解,射频指标#0可根据实际需求来设置,终端对应的最小间隔可根据射频指标#0确定。例如,终端对应的最小间隔为以下任一项:5MHz、9MHz、10MHz、11MHz、12MHz、15MHz或20MHz。由于不同终端的能力不同,因此不同终端在满足射频指标#0时,下行频域资源和上行频域资源之间的最小间隔不同。
可选的,第一消息包括用于指示上述最小间隔的第一指示信息。例如,终端同时在下行频域资源接收下行信号和在上行频域资源发送上行信号时,下行频域资源与上行频域资源之间的最小间隔为5MHz,第一指示信息指示5MHz。又例如,以1MHz为步进,第一指示信息可以指示从5MHz到30MHz之间的任意一个值。可选的,第一消息包括一个位图(bit map),该位图指示上述最小间隔,该位图中的每一个bit位置代表一个频率间隔。若位图中的某个bit位置为’真’(例如该bit位置的值为1),表示终端可以支持该bit位置代表的频率间隔;若位图中的某个bit位置为’假’(例如该bit位置的值为0),表示终端不支持该bit位置代表的频率间隔。终端和网络设备可预先约定位图中的每个bit位置对应的频率间隔。例如,位图中的bit位置1设置为’真’,表示终端支持的最小间隔为24MHz。又例如,位图中的bit位置0设置为’真’,表示终端支持的最小间隔为9MHz。
可选的,第一消息包括一个数值,该数值表示终端支持的最小间隔。例如,第一消息包括第一数值(例如1),该第一数值表示终端支持的最小间隔为9MHz。又例如,第一消息包括第二数值(例如2),该第二数值表示终端支持的最小间隔为24MHz。终端和网络设备可预先约定不同数值对应的频率间隔。进一步的,终端和网络设备可预先约定不同频率间隔对应的上下行的频率位置。例如,终端支持的最小间隔(24MHz)对应band n5的下行频率范围(DL frequency range)869~880MHz和band n8的上行频率范围(UL frequency range)904~915MHz。在该例子中,第一消息指示最小间隔(24MHz),也即指示终端同时在band n5的下行频率范围869~880MHz接收下行信号和在band n8的上行频率范围904~915MHz发送上行信号时,满足射频指标#0。又例如,终端支持的最小间隔(9MHz)对应band n5的下行频率范围869~880MHz和band n8的上行频率范围889~915MHz。在该例子中,第一消息指示最小间隔(9MHz),也即指示终端同时在band n5的下行频率范围869~880MHz接收下行信号和在band n8的上行频率范围889~915MHz发送上行信号时,满足射频指标#0。
在一种可能的实现方式中,上述第一消息还指示上述下行频域资源与上述上行频域资源之间的间隔大于或等于第一间隔时满足第一射频指标,上述第一间隔大于上述最小间隔。上述第一消息指示终端同时在下行频域资源接收下行信号和在上行频域资源发送上行信号的情况下,支持的多个频率间隔(例如5MHz、10MHz、15MHz、20MHz、25MHz中的一个或多个),每个频率间隔对应一个射频指标。该多个频率间隔包括上述最小间隔和上述第一间隔。终端和网络设备可预先约定不同频率间隔对应的射频指标。一个频率间隔对应的射频指标为终端同时在下行频域资源接收下行信号和在上行频域资源发送上行信号的情况下,下行频域资源与上行频域资源之间的间隔大于或等于该频率间隔时,终端满足的射频指标。
可选的,第一消息包括一个位图,该位图指示终端支持的多个频率间隔(包括上述最小间隔和第一间隔)。该位图中的每一个bit位置代表一个频率间隔,每个频率间隔对应一个射频指标。若位图中的某个bit位置设置为’真’,表示终端支持该bit位置对应的频率间隔;若位图中的某个bit位置设置为’假’,表示终端不支持该bit位置对应的频率间隔。终端支持位图中的某个bit位置对应的频率间隔表示终端同时在下行频域资源接收下行信号和在上行频域资源发送上行信号的情况下,下行频域资源与上行频域资源之间的间隔大于或等于该bit位置对应的频率间隔时,终端满足该频率间隔对应的射频指标。例如,第一消息中的位图的bit位置1、bit位置2同时设置为’真’,bit位置1设置为’真’表示终端可以支持频率间隔9MHz(对应射频指标#0),bit位置2设置为’真’表示终端可以支持频率间隔24MHz(对应第一射频指标)。终端和网络设备可预先约定位图中的每个bit位置对应的频率间隔以及每个频率间隔对应的射频指标。
可选的,第一消息中包括多个数值,每个数值表示终端支持的一个频率间隔,每个频率间隔对应一个射频指标。例如,第一消息包括第一数值和第二数值,第一数值表示终端支持频率间隔9MHz(对应射频指标#0),第二数值表示终端可以支持频率间隔24MHz(对应第一射频指标)。终端和网络设备可预先约定不同数值对应的频率间隔。进一步的,终端和网络设备可预先约定不同频率间隔对应的上下行的频率位置。例如,频率间隔9MHz(对应射频指标#0)对应band n5的下行频率范围869~880MHz和band n8的上行频率范围889~915MHz,频率间隔24MHz(对应第一射频指标)对应band n5的下行频率范围869~880MHz和band n8的上行频率范围904~915MHz。在该例子中,终端支持频率间隔9MHz(对应射频指标#0)表示终端同时在band n5的下行频率范围869~880MHz接收下行信号和在band n8的上行频率范围889~915发送上行信号时,满足射频指标#0。
上述第一间隔可视为:终端同时在下行频域资源接收下行信号和在上行频域资源发送上行信号的情况 下,满足第一射频指标时,下行频域资源和上行频域资源之间的最小间隔。需要注意,终端满足第一射频指标时,也满足射频指标#0;终端满足射频指标#0时,可能满足第一射频指标,也可能不满足第一射频指标。可选的,上述第一射频指标包括终端的下行参考灵敏度的最大降敏值不高于第一阈值。第一阈值小于阈值#0。例如,阈值#0为10dB,第一阈值为5dB。又例如,阈值#0为5dB,第一阈值为3dB。又例如,阈值#0为20dB,第一阈值为10dB。可选的,上述第一消息还指示上述下行频域资源与上述上行频域资源之间的间隔大于或等于第二间隔时满足第二射频指标,上述第二间隔大于上述第一间隔,上述第二射频指标包括终端的下行参考灵敏度的最大降敏值不高于第二阈值。第二阈值小于第一阈值。上述第二间隔可视为:终端同时在下行频域资源接收下行信号和在上行频域资源发送上行信号的情况下,满足第二射频指标时,下行频域资源和上行频域资源之间的最小间隔。应理解,第一消息可指示终端在多个不同间隔下分别满足的射频指标,本申请实施例不作限定。在该实现方式中,第一消息还指示下行频域资源与上行频域资源之间的间隔大于或等于第一间隔时满足第一射频指标,以便网络设备获知终端更多的能力信息。
202、终端向网络设备发送第一消息。
相应的,网络设备接收来自终端的第一消息。网络设备是指上述无线接入网设备。可选的,上述第一消息为终端主动向网络设备上报的一种能力信息。举例来说,终端在进入连接态后,主动向网络设备上报第一消息。
在一种可能的实现方式中,终端在向网络设备发送第一消息之前,接收网络设备发送的第一请求消息。终端针对第一请求消息,向网络设备发送第一消息。第一请求消息请求终端上报终端同时在下行频域资源接收下行信号和在上行频域资源发送上行信号时,下行频域资源与上行频域资源之间的最小间隔。上述第一请求消息可以承载于物理下行控制信道(physical downlink control channel,PDCCH),也可以承载在RRC消息中。可选的,网络设备在准备给终端配置载波聚合时,向终端发送的第一请求消息。
203、网络设备根据第一消息,确定终端对应的上述最小间隔。
204、可选的,网络设备根据终端对应的最小间隔,确定该终端接收下行信号的下行载波以及发送上行信号的上行载波。
网络设备在确定该终端接收下行信号的下行载波以及发送上行信号的上行载波之后,可通过RRC信令向该终端配置该下行载波以及该上行载波。网络设备根据终端对应的最小间隔,确定该终端接收下行信号的下行载波以及发送上行信号的上行载波的一种可能的实现方式如下:确定第一下行频率范围中的任意下行载波(一个或多个下行载波)为终端接收下行信号的下行载波,以及第一上行频率范围中的任意上行载波(一个或多个上行载波)为终端发送上行信号的上行载波;第一下行频率范围和第一上行频率范围之间的间隔大于或等于终端对应的最小间隔。
205、可选的,网络设备根据射频指标#0,确定向终端发送下行信号的发射功率。
射频指标#0可视为终端上报的下行参考灵敏度的降敏值。例如,下行参考灵敏度的降敏值为3dB,网络设备的下行发送功率值可以提高3dB。又例如,下行参考灵敏度的降敏值在5dB,网络设备的下行发送功率值都不提高,但是下行参考灵敏度的降敏值在5dB~10dB之间,网络设备的下行发送功率值可以提高3dB。网络设备可通过其他方式确定向终端发送下行信号的发射功率,本申请实施例不作限定。
下面介绍几种网络设备在采用包括Band n5和Band n8的频谱组合与终端通信的情况下,根据终端对应的最小间隔,确定该终端接收下行信号的下行载波以及发送上行信号的上行载波的举例。
例1:终端对应的最小间隔为5MHz,网络设备根据终端对应的最小间隔,确定终端接收下行信号的下行载波为下行频率范围0中的任意载波以及发送上行信号的上行载波为上行频率范围0中的任意载波,下行频率范围0为879~890MHz,上行频率范围0为895~915MHz。
例2:终端对应的最小间隔为9MHz,网络设备根据终端对应的最小间隔,确定终端接收下行信号的下行载波为下行频率范围1中的任意载波以及发送上行信号的上行载波为上行频率范围1中的任意载波,下行频率范围1为869~880MHz,上行频率范围1为889~915MHz。
例3:终端对应的最小间隔为10MHz,网络设备根据终端对应的最小间隔,确定终端接收下行信号的下行载波为下行频率范围2中的任意载波以及发送上行信号的上行载波为上行频率范围2中的任意载波,下行频率范围2为869~880MHz,上行频率范围2为890~915MHz。
例4:终端对应的最小间隔为10MHz,网络设备根据终端对应的最小间隔,确定终端接收下行信号的下行载波为下行频率范围3中的任意载波以及发送上行信号的上行载波为上行频率范围3中的任意载波,下行频率范围3为860~890MHz,上行频率范围3为900~905MHz。
例5:终端对应的最小间隔为11MHz,网络设备根据终端对应的最小间隔,确定终端接收下行信号的 下行载波为下行频率范围4中的任意载波以及发送上行信号的上行载波为上行频率范围4中的任意载波,下行频率范围4为874~894MHz,上行频率范围4为905~915MHz。
例6:终端对应的最小间隔为12MHz,网络设备根据终端对应的最小间隔,确定终端接收下行信号的下行载波为下行频率范围5中的任意载波以及发送上行信号的上行载波为上行频率范围5中的任意载波,下行频率范围5为869~879MHz,上行频率范围5为891~915MHz。
例7:终端对应的最小间隔为15MHz,网络设备根据终端对应的最小间隔,确定终端接收下行信号的下行载波为下行频率范围6中的任意载波以及发送上行信号的上行载波为上行频率范围6中的任意载波,下行频率范围6为869~880MHz,上行频率范围6为895~915MHz。
例8:终端对应的最小间隔为20MHz,网络设备根据终端对应的最小间隔,确定终端接收下行信号的下行载波为下行频率范围7中的任意载波以及发送上行信号的上行载波为上行频率范围7中的任意载波,下行频率范围7为869~880MHz,上行频率范围7为900~915MHz。
例9:终端对应的最小间隔为24MHz,网络设备根据终端对应的最小间隔,确定终端接收下行信号的下行载波为下行频率范围8中的任意载波以及发送上行信号的上行载波为上行频率范围8中的任意载波,下行频率范围8为869~880MHz,上行频率范围8为904~915MHz。
上文例举了步骤204一些可能的示例,而不是全部示例。网络设备根据终端对应的最小间隔,确定该终端接收下行信号的下行载波以及发送上行信号的上行载波的主要原理是:终端接收下行信号的下行载波所属的下行频率范围和发送上行信号的上行载波所属的上行频率范围之间的间隔大于或等于该终端对应的最小间隔。
本申请实施例中,终端向网络设备发送第一消息,网络设备根据该第一消息获知该终端对应的最小间隔,以便该网络设备根据该终端对应的最小间隔有针对性的为该终端调度或配置下行频域资源和上行频域资源。在实际应用中,不同终端向网络设备上报各自对应的最小间隔,网络设备根据不同终端对应的最小间隔能够有针对性的为不同终端配置或调度不同的下行频域资源和/或上行频域资源;这样既能减轻终端同时在下行频域资源接收下行信号和在上行频域资源发送上行信号时的自干扰,又能提高通信系统的频谱利用率。
图3为本申请实施例提供的另一种通信方法交互流程图。图2的流程中网络设备根据终端对应的最小间隔,确定该终端接收下行信号的下行载波以及发送上行信号的上行载波。图3的流程中网络设备根据终端对应的第一间隔,确定该终端接收下行信号的下行载波以及发送上行信号的上行载波。在实际应用中,网络设备可根据预设规则(参阅下文描述),执行图2中的操作或图3中的操作。也就是说,网络设备在一些情况下,执行图2中的操作;在另一些情况下,执行图3中的操作。如图3所示,该方法包括:
301、终端向网络设备发送第一消息。
相应的,网络设备接收来自终端的第一消息。步骤301可参阅步骤202。上述第一消息指示上述终端同时在下行频域资源接收下行信号和在上行频域资源发送上行信号时,上述下行频域资源与上述上行频域资源之间的最小间隔。上述第一消息还指示终端同时在下行频域资源接收下行信号和在上行频域资源发送上行信号时,下行频域资源与上行频域资源之间的间隔大于或等于第一间隔时满足第一射频指标,上述第一间隔大于上述最小间隔。
302、网络设备根据第一消息,确定第一射频指标和第一间隔。
进一步地,网络设备还可以根据第一消息确定终端对应的最小间隔。
303、网络设备根据终端对应的第一间隔,确定该终端接收下行信号的下行载波以及发送上行信号的上行载波。
网络设备在确定该终端接收下行信号的下行载波以及发送上行信号的上行载波之后,可通过RRC信令向该终端配置该下行载波以及该上行载波。网络设备根据终端对应的第一间隔,确定该终端接收下行信号的下行载波以及发送上行信号的上行载波的一种可能的实现方式如下:确定第二下行频率范围中的任意下行载波(一个或多个下行载波)为终端接收下行信号的下行载波,以及第二上行频率范围中的任意上行载波(一个或多个上行载波)为终端发送上行信号的上行载波;第二下行频率范围和第二上行频率范围之间的间隔大于或等于终端对应的第一间隔。
图2的交互流程中,网络设备根据终端对应的最小间隔,确定该终端接收下行信号的下行载波以及发送上行信号的上行载波。图3的交互流程中,网络设备根据终端对应的第一间隔,确定该终端接收下行信号的下行载波以及发送上行信号的上行载波。需要注意,当网络设备获知终端在多个不同间隔(例如最小间隔和第一间隔)下满足的射频指标时,网络设备可根据预设规则,确定根据该多个不同间隔中的某个间 隔来确定该终端接收下行信号的下行载波以及发送上行信号的上行载波,进一步地,网络设备还可以根据该间隔对应的射频指标确定向终端发送下行信号的发射功率。举例来说,终端同时在下行频域资源接收下行信号和在上行频域资源发送上行信号时,下行频域资源与上行频域资源之间的间隔大于或等于最小间隔时满足射频指标#0,下行频域资源与上行频域资源之间的间隔大于或等于第一间隔时满足第一射频指标;网络设备根据第一消息获知该最小间隔和第一间隔之后,根据预设规则,确定根据第一间隔(或最小间隔)确定该终端接收下行信号的下行载波以及发送上行信号的上行载波;根据第一射频指标(或射频指标#0)确定向终端发送下行信号的发射功率。
下面对一种可能的预设规则进行介绍。假设终端上报其支持的频率间隔15MHz对应的下行灵敏度的降敏为5dB,频率间隔20MHz对应的下行灵敏度的降敏为3dB。场景1,终端位于小区边缘,终端接收到的下行测量信号的强度较弱。为了保证终端不断开下行链接,网络设备可以考虑向终端配置下行参考灵敏度的降敏值较小的频率间隔。此时,网络设备可以优先配置20MHz的频率间隔来保证终端获得较好的下行灵敏度性能。场景2终端位于小区中心,终端接收到的下行测量信号强度较强,则网络设备可以考虑向终端配置下行参考灵敏度的降敏值较大的频率间隔。此时,网络设备可以考虑给终端配置15MHz的频率间隔以获得更大的带宽。也就是说,网络设备可根据终端接收到的下行测量信号的强弱,为终端配置合适的上行载波和下行载波之间的频率间隔。
304、可选的,网络设备根据第一射频指标,确定向终端发送下行信号的发射功率。
步骤304可参阅步骤205。
本申请实施例中,终端向网络设备发送第一消息以指示该终端对应的第一间隔。网络设备根据终端对应的第一间隔,确定该终端接收下行信号的下行载波以及发送上行信号的上行载波;既能减轻终端同时在下行频域资源接收下行信号和在上行频域资源发送上行信号时的自干扰,又能提高通信系统的频谱利用率。
可以理解的是,为了实现上述实施例中功能,网络设备(例如基站)和终端包括了执行各个功能相应的硬件结构和/或软件模块。本领域技术人员应该很容易意识到,结合本申请中所公开的实施例描述的各示例的单元及方法步骤,本申请能够以硬件或硬件和计算机软件相结合的形式来实现。某个功能究竟以硬件还是计算机软件驱动硬件的方式来执行,取决于技术方案的特定应用场景和设计约束条件。
图4和图5为本申请的实施例提供的可能的通信装置的结构示意图。这些通信装置可以用于实现上述方法实施例中终端或网络设备的功能,因此也能实现上述方法实施例所具备的有益效果。在本申请的实施例中,该通信装置可以是如图1所示的终端120a-120j中的一个,也可以是如图1所示的基站110a或110b,还可以是应用于终端或网络设备的模块(如芯片)。
如图4所示,通信装置400包括处理单元410和收发单元420。通信装置400用于实现上述图2或图3中所示的方法实施例中终端或网络设备的功能。
当通信装置400用于实现图2所示的方法实施例中终端的功能时:处理单元410用于生成第一消息;收发单元420用于向网络设备发送该第一消息。
当通信装置400用于实现图2所示的方法实施例中网络设备的功能时:收发单元420用于接收第一消息;处理单元410用于根据第一消息,确定终端对应的最小间隔。可选的,处理单元410还用于根据终端对应的最小间隔,确定该终端接收下行信号的下行载波以及发送上行信号的上行载波。可选的,处理单元410还用于根据射频指标#0,确定向终端发送下行信号的发射功率。
有关上述处理单元410和收发单元420更详细的描述可以参考图2所示的方法实施例中相关描述。处理单元410和收发单元420涉及的静态限定的特征(例如第一消息包括的内容)可以参考图2所示的方法实施例中相关描述。
当通信装置400用于实现图3所示的方法实施例中终端的功能时:处理单元410用于生成第一消息;收发单元420用于向网络设备发送该第一消息。
当通信装置400用于实现图3所示的方法实施例中网络设备的功能时:收发单元420用于接收第一消息;处理单元410用于根据第一消息,确定第一射频指标和第一间隔;根据终端对应的第一间隔,确定该终端接收下行信号的下行载波以及发送上行信号的上行载波。可选的,处理单元410还用于根据第一射频指标,确定向终端发送下行信号的发射功率。有关上述处理单元410和收发单元420更详细的描述可以参考图3所示的方法实施例中相关描述。处理单元410和收发单元420涉及的静态限定的特征(例如第一消息包括的内容)可以参考图3所示的方法实施例中相关描述。
如图5所示,通信装置500包括处理器510和接口电路520。处理器510和接口电路520之间相互耦合。可以理解的是,接口电路520可以为收发器或输入输出接口。可选的,通信装置500还可以包括存储 器530,用于存储处理器510执行的指令或存储处理器510运行指令所需要的输入数据或存储处理器510运行指令后产生的数据。
当通信装置500用于实现图2所示的方法时,处理器510用于实现上述处理单元410的功能,接口电路520用于实现上述收发单元420的功能。
当通信装置500用于实现图3所示的方法时,处理器510用于实现上述处理单元410的功能,接口电路520用于实现上述收发单元420的功能。
当上述通信装置为应用于终端的芯片时,该终端芯片实现上述方法实施例中终端的功能。该终端芯片从终端中的其它模块(如射频模块或天线)接收信息,该信息是网络设备发送给终端的;或者,该终端芯片向终端中的其它模块(如射频模块或天线)发送信息,该信息是终端发送给网络设备的。
当上述通信装置为应用于网络设备(例如基站)中的模块时,该网络设备中的模块实现上述方法实施例中网络设备的功能。该网络设备中的模块从网络设备中的其它模块(如射频模块或天线)接收信息,该信息是终端发送给网络设备的;或者,该网络设备中的模块向网络设备中的其它模块(如射频模块或天线)发送信息,该信息是网络设备发送给终端的。这里的网络设备中的模块可以是网络设备的基带芯片,也可以是DU或其他模块,这里的DU可以是开放式无线接入网(open radio access network,O-RAN)架构下的DU。
可以理解的是,本申请的实施例中的处理器可以是中央处理单元(central processing unit,CPU),还可以是其它通用处理器、数字信号处理器(digital signal processor,DSP)、专用集成电路(application specific integrated circuit,ASIC)、现场可编程门阵列(field programmable gate array,FPGA)或者其它可编程逻辑器件、晶体管逻辑器件,硬件部件或者其任意组合。通用处理器可以是微处理器,也可以是任何常规的处理器。
本申请的实施例中的方法步骤可以在硬件中实现,也可以在可由处理器执行的软件指令中实现。软件指令可以由相应的软件模块组成,软件模块可以被存放于随机存取存储器、闪存、只读存储器、可编程只读存储器、可擦除可编程只读存储器、电可擦除可编程只读存储器、寄存器、硬盘、移动硬盘、CD-ROM或者本领域熟知的任何其它形式的存储介质中。一种示例性的存储介质耦合至处理器,从而使处理器能够从该存储介质读取信息,且可向该存储介质写入信息。存储介质也可以是处理器的组成部分。处理器和存储介质可以位于ASIC中。另外,该ASIC可以位于网络设备或终端中。处理器和存储介质也可以作为分立组件存在于网络设备或终端中。
在上述实施例中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。所述计算机程序产品包括一个或多个计算机程序或指令。在计算机上加载和执行所述计算机程序或指令时,全部或部分地执行本申请实施例所述的流程或功能。所述计算机可以是通用计算机、专用计算机、计算机网络、网络设备、用户设备或者其它可编程装置。所述计算机程序或指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,所述计算机程序或指令可以从一个网站站点、计算机、服务器或数据中心通过有线或无线方式向另一个网站站点、计算机、服务器或数据中心进行传输。所述计算机可读存储介质可以是计算机能够存取的任何可用介质或者是集成一个或多个可用介质的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质,例如,软盘、硬盘、磁带;也可以是光介质,例如,数字视频光盘;还可以是半导体介质,例如,固态硬盘。该计算机可读存储介质可以是易失性或非易失性存储介质,或可包括易失性和非易失性两种类型的存储介质。
在本申请的各个实施例中,如果没有特殊说明以及逻辑冲突,不同的实施例之间的术语和/或描述具有一致性、且可以相互引用,不同的实施例中的技术特征根据其内在的逻辑关系可以组合形成新的实施例。
本申请中,“至少一个”是指一个或者多个,“多个”是指两个或两个以上。“和/或”,描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B的情况,其中A,B可以是单数或者复数。在本申请的文字描述中,字符“/”,一般表示前后关联对象是一种“或”的关系。
可以理解的是,在本申请的实施例中涉及的各种数字编号仅为描述方便进行的区分,并不用来限制本申请的实施例的范围。上述各过程的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定。本申请的说明书、权利要求书及附图中的术语“第一”和“第二”等仅用于区别不同对象,而不是用于描述特定顺序。在本申请各实施例中,“A对应的B”表示A与B存在对应关系。

Claims (13)

  1. 一种通信方法,由终端或应用于终端的模块执行,其特征在于,所述方法包括:
    生成第一消息,所述第一消息指示所述终端同时在下行频域资源接收下行信号和在上行频域资源发送上行信号时,所述下行频域资源与所述上行频域资源之间的最小间隔;
    向网络设备发送所述第一消息。
  2. 根据权利要求1所述的方法,其特征在于,所述方法还包括:
    接收来自网络设备的第一请求消息,所述第一请求消息请求所述终端上报所述最小间隔。
  3. 根据权利要求1或2所述的方法,其特征在于,所述第一消息还指示所述下行频域资源与所述上行频域资源之间的间隔大于或等于第一间隔时满足第一射频指标,所述第一间隔大于所述最小间隔。
  4. 根据权利要求3所述的方法,其特征在于,所述第一射频指标包括所述终端的下行参考灵敏度的最大降敏值不高于第一阈值。
  5. 根据权利要求1至4任一项所述的方法,其特征在于,所述最小间隔为以下任一项:5MHz、9MHz、10MHz、11MHz、12MHz、15MHz或20MHz。
  6. 一种通信方法,由网络设备或应用于网络设备的模块执行,其特征在于,所述方法包括:
    接收来自终端的第一消息,所述第一消息指示所述终端同时在下行频域资源接收下行信号和在上行频域资源发送上行信号时,所述下行频域资源与所述上行频域资源之间的最小间隔;
    根据所述第一消息,确定所述最小间隔。
  7. 根据权利要求6所述的方法,其特征在于,所述方法还包括:
    根据所述最小间隔,确定所述终端接收下行信号的频域资源以及发送上行信号的上行频域资源。
  8. 根据权利要求6或7所述的方法,其特征在于,所述方法还包括:
    向所述终端发送第一请求消息,所述第一请求消息请求所述终端上报所述最小间隔。
  9. 根据权利要求6至8中任一项所述的方法,其特征在于,所述第一消息还指示所述下行频域资源与所述上行频域资源之间的间隔大于或等于第一间隔时满足第一射频指标,所述第一间隔大于所述最小间隔。
  10. 根据权利要求9所述的方法,其特征在于,所述第一射频指标包括所述终端的下行参考灵敏度的最大降敏值不高于第一阈值。
  11. 根据权利要求6至10任一项所述的方法,其特征在于,所述最小间隔为以下任一项:5MHz、9MHz、10MHz、11MHz、12MHz、15MHz或20MHz。
  12. 一种通信装置,其特征在于,包括处理器和接口电路,所述接口电路用于接收来自其它通信装置的信号并传输至所述处理器或将来自所述处理器的信号发送给其它通信装置,所述处理器通过逻辑电路或执行代码指令用于实现如权利要求1至11中任一项所述的方法。
  13. 一种计算机可读存储介质,其特征在于,所述存储介质中存储有计算机程序或指令,当所述计算机程序或指令被通信装置执行时,实现如权利要求1至11中任一项所述的方法。
PCT/CN2023/134179 2022-11-28 2023-11-25 通信方法和装置 WO2024114549A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202211508261.5A CN118102465A (zh) 2022-11-28 2022-11-28 通信方法和装置
CN202211508261.5 2022-11-28

Publications (1)

Publication Number Publication Date
WO2024114549A1 true WO2024114549A1 (zh) 2024-06-06

Family

ID=91142969

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/134179 WO2024114549A1 (zh) 2022-11-28 2023-11-25 通信方法和装置

Country Status (2)

Country Link
CN (1) CN118102465A (zh)
WO (1) WO2024114549A1 (zh)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102468953A (zh) * 2010-11-15 2012-05-23 中兴通讯股份有限公司 一种用户设备多载波能力的配置方法和装置
US20180255523A1 (en) * 2015-11-06 2018-09-06 Huawei Technologies Co., Ltd. Method and apparatus for indicating uplink-downlink carrier frequency spacing, and method and apparatus for obtaining uplink-downlink carrier frequency spacing
CN111246581A (zh) * 2017-07-19 2020-06-05 北京小米移动软件有限公司 传输信息的方法及装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102468953A (zh) * 2010-11-15 2012-05-23 中兴通讯股份有限公司 一种用户设备多载波能力的配置方法和装置
US20180255523A1 (en) * 2015-11-06 2018-09-06 Huawei Technologies Co., Ltd. Method and apparatus for indicating uplink-downlink carrier frequency spacing, and method and apparatus for obtaining uplink-downlink carrier frequency spacing
CN111246581A (zh) * 2017-07-19 2020-06-05 北京小米移动软件有限公司 传输信息的方法及装置

Also Published As

Publication number Publication date
CN118102465A (zh) 2024-05-28

Similar Documents

Publication Publication Date Title
JP7055869B2 (ja) マルチキャリア通信のためのキャリア・スイッチング方法、装置およびシステム
WO2020248897A1 (zh) 功率配置方法及装置
CN109392142B (zh) 载波切换和信息发送方法,以及装置
CN111565464B (zh) 传输信息的方法和装置
US20220263641A1 (en) Method For Configuring CLI Measurement And Communications Apparatus
WO2021027376A1 (zh) 一种共生网络中的资源配置方法及装置
EP3913832A1 (en) Communication method, apparatus, device, system, and storage medium
CN111491383A (zh) 用于5GHz天线共享的LAA/Wi-Fi共存
CN111182633B (zh) 一种通信方法及装置
WO2024114549A1 (zh) 通信方法和装置
CN114223282A (zh) 通信方法以及通信装置
WO2022012396A1 (zh) 一种通信方法及装置
WO2020200115A1 (zh) 通信方法、装置、系统和存储介质
WO2020143739A1 (zh) 通信方法和通信装置
WO2022104689A1 (zh) 一种小区频域带宽切换的方法、相关装置以及设备
WO2024032326A1 (zh) 一种通信方法和装置
WO2024032683A1 (zh) 上行传输的方法和装置
WO2024032744A1 (zh) 通信方法与通信装置
WO2023143007A1 (zh) 信息传输方法和装置
WO2024061012A1 (zh) 一种波束确定的方法和装置
EP4383897A1 (en) Signal transmission method and apparatus
WO2023241401A9 (zh) 一种通信方法及装置
WO2024119479A1 (zh) 通信方法、终端设备以及通信设备
WO2022237763A1 (zh) 信道监听方法与装置、终端和网络设备
WO2024017019A1 (zh) 一种通信方法和装置