WO2024032744A1 - 通信方法与通信装置 - Google Patents

通信方法与通信装置 Download PDF

Info

Publication number
WO2024032744A1
WO2024032744A1 PCT/CN2023/112420 CN2023112420W WO2024032744A1 WO 2024032744 A1 WO2024032744 A1 WO 2024032744A1 CN 2023112420 W CN2023112420 W CN 2023112420W WO 2024032744 A1 WO2024032744 A1 WO 2024032744A1
Authority
WO
WIPO (PCT)
Prior art keywords
cell
subband
time unit
transmission direction
signal transmission
Prior art date
Application number
PCT/CN2023/112420
Other languages
English (en)
French (fr)
Inventor
刘云峰
郭志恒
谢信乾
宋兴华
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2024032744A1 publication Critical patent/WO2024032744A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation

Definitions

  • the present application relates to the field of communication technology, and more specifically, to a communication method and communication device.
  • the peak rate of a terminal device is closely related to the communication bandwidth it can obtain.
  • the communication bandwidth of a single cell is fixed, the communication bandwidth of multiple cells can be aggregated through carrier aggregation technology to increase the peak rate of the terminal device.
  • the carrier index of the secondary carrier and the cell identity of the secondary cell operating on the secondary carrier can be carried at the same time.
  • carrier and cell are equivalent concepts.
  • the terminal device accessing the carrier and the terminal device accessing the cell are equivalent concepts.
  • the bandwidth of the carrier can be understood as the communication bandwidth of the cell.
  • the existing direction conflict handling criteria used to resolve inconsistencies in transmission directions between different component carriers are applicable to scenarios where the cells corresponding to the component carriers are all traditional time division duplex cells in the time division duplex system, but are not applicable to the scenario where the cells corresponding to the component carriers are traditional time division duplex cells.
  • the cell includes a scenario in which a subband full-duplex cell in a time division duplex system is included.
  • the present application provides a communication method and communication device, which can solve the problem of inconsistent transmission directions between different component carriers when the cell corresponding to the component carrier includes a sub-band full-duplex cell.
  • a communication method including: a terminal device determines a reference cell and at least one other cell in a first time unit, and the reference cell and at least one other cell are active serving cells configured with a transmission direction in the first time unit. ;
  • the transmission direction of the reference cell in the first time unit conflicts with the transmission direction of the first other cell in the first time unit, and at least one cell in the reference cell and the first other cell is a subband full-duplex cell, and the subband
  • the full-duplex cell includes a first subband and a second subband.
  • the first other cell is any other cell among at least one other cell.
  • the terminal device determines at least one of the reference cell and the first other cell based on the first subband.
  • the transmission direction of the cell in the first time unit includes:
  • this application can solve the problem of inconsistent transmission directions between different component carriers when the cell corresponding to the component carrier includes a sub-band full-duplex cell.
  • the terminal device can determine the first subband of the SBFD cell, and determine the reference cell and the first subband based on the first subband.
  • the reference cell may be an SBFD cell, or the first other cell may be an SBFD cell, or both the reference cell and the first other cell may be SBFD cells.
  • the terminal device needs to determine the representative subband (for example, the first subband) of the reference cell used to participate in direction conflict processing, and the first other cell used to participate in the direction conflict processing.
  • the representative subband (for example, the third subband) of the collision is processed, and the respective transmission direction on the first time unit is determined according to the respective representative subband.
  • the transmission direction of the first subband in the first time unit conflicts with the transmission direction of the second subband in the first time unit.
  • the community includes all sub-bands In a duplex cell, there is a problem of inconsistent transmission directions between different component carriers.
  • the transmission direction includes at least one of the following: a signal transmission direction, or a statically configured symbol direction; the signal transmission direction includes at least one of the following: a static signal transmission direction, Or, dynamic signal transmission direction.
  • At least one other cell may be configured with any one of the above static signal transmission directions, dynamic signal transmission directions, and statically configured symbol directions on the first time unit, and the reference cell may be configured on the first time unit.
  • the above-mentioned static signal transmission directions, dynamic signal transmission directions, and statically configured symbol directions There are any of the above-mentioned static signal transmission directions, dynamic signal transmission directions, and statically configured symbol directions.
  • the reference cell is an activated serving cell configured with a static transmission direction in the first time unit;
  • the static transmission direction includes at least one of the following: a static signal transmission direction, or, Static configured symbol orientation.
  • the terminal equipment can determine the reference cell in the first time unit in advance, and the inconsistent understanding of the reference cell by the terminal equipment and the cell due to dynamic signal reception failure can be avoided. question.
  • the first subband satisfies at least one of the following conditions:
  • the first subband is configured with a signal transmission direction in the first time unit, and the second subband is not configured with a signal transmission direction in the first time unit, where the signal transmission direction of the first subband in the first time unit is the same as the signal transmission direction in the first time unit.
  • the statically configured symbol directions of the two subbands conflict in the first time unit;
  • the first subband is configured with a signal transmission direction in the first time unit
  • the second subband is configured with a signal transmission direction in the first time unit
  • the signal transmission direction of the first subband in the first time unit is the same as that of the subband.
  • the final signal transmission direction of the duplex cell is consistent, wherein the signal transmission direction of the first subband in the first time unit conflicts with the signal transmission direction of the second subband in the first time unit;
  • the first subband is configured with a statically configured symbol direction in the first time unit
  • the second subband is configured with a statically configured symbol direction in the first time unit
  • the identifier of the first subband is smaller or larger than the second subband.
  • the identification, or the statically configured symbol direction of the first subband at the first time unit is uplink or downlink, where the statically configured symbol direction of the first subband at the first time unit is the same as the statically configured symbol direction of the second subband at the first time unit.
  • the symbol directions of the statically configured units conflict, and the first subband has no signal transmission direction configuration in the first time unit, and the second subband has no signal transmission direction configuration in the first time unit.
  • the terminal device may determine the transmission direction conflict between the reference cell and the first other cell in the first time unit among the multiple subbands in the SBFD cell according to one or more of the above conditions.
  • the first subband of the problem In this way, it is possible to avoid obtaining two completely different conflict judgment results due to the conflict between the transmission directions of the first subband and the second subband in the time unit W1, thereby leading to an increase in erroneous judgment cases, and thus effectively solving the component carrier correspondence.
  • a cell includes a subband full-duplex cell, there is a problem of inconsistent transmission directions between different component carriers.
  • the above three conditions can be regarded as an indication of conflict handling within the SBFD cell.
  • the transmission direction of the SBFD cell is determined.
  • the transmission direction of the first subband and the SBFD cell is the same.
  • the specific conflict handling within the SBFD cell shall be subject to the final agreement, and the invention content of this application does not limit this.
  • the final signal transmission direction of the above-mentioned SBFD cell can be determined through the following example:
  • the transmission direction of the first subband configured in the first time unit is Dynamic-D
  • the transmission direction of the second subband configured in the first time unit is RRC-U.
  • the terminal device determines that the final signal transmission direction of the SBFD cell is downlink. Transmission direction, the terminal equipment therefore selects the first subband to determine the transmission direction of the reference cell and at least one of the first other cells in the time unit W1.
  • the transmission direction of the first subband configured in the first time unit is Dynamic-U, and the transmission direction of the second subband configured in the first time unit is RRC-D.
  • the terminal device determines that the final signal transmission direction of the SBFD cell is uplink. Transmission direction, the terminal equipment therefore selects the first subband to determine the transmission direction of the reference cell and at least one of the first other cells in the time unit W1.
  • the above two examples can be regarded as illustrations of conflict processing within the SBFD cell.
  • the transmission direction of the SBFD cell is determined.
  • the transmission directions of the first subband and the SBFD cell are the same.
  • the specific conflict handling within the SBFD cell shall be subject to the final agreement, and the invention content of this application does not limit this.
  • the method further includes: the terminal device receives the first indication information sent by the network device, The first indication information is used to instruct the network device to configure at least two activated serving cells for the terminal device, and the at least two activated serving cells include at least one SBFD cell.
  • the terminal device may determine the reference cell and at least one other cell based on the instruction information issued by the network device for instructing the network device to configure at least two activated serving cells for the terminal device. In this way, inactive serving cells can be avoided from participating in subsequent direction rush Conflict handling reduces the complexity of terminal processing.
  • the reference cell and at least one other cell are both activated serving cells among the above-mentioned at least two activated serving cells.
  • the terminal device determines the reference cell and at least one other cell in the first time unit, including: the terminal device determines a first cell set, and each cell in the first cell set A cell is an activated serving cell configured with a static transmission direction among at least two activated serving cells; the terminal device determines the first cell as a reference cell, and the first cell is any activated serving cell in the first cell set, and at least two All cells except the first cell among the activated serving cells are at least one other cell.
  • the terminal device can select a cell set that can be used as a reference cell from at least two activated serving cells, and each cell in the cell set is an activated serving cell configured with a static transmission direction in the first time unit. , and then the terminal device can select any cell from the cell set as a reference cell.
  • the selection of the reference cell can be avoided from changing with dynamic signal transmission
  • the terminal equipment can determine the reference cell in the first time unit in advance, and the inconsistent understanding of the reference cell by the terminal equipment and the cell due to dynamic signal reception failure can be avoided. The problem.
  • the terminal equipment determines the first cell as the reference cell from the cell set, all cells in the at least two activated serving cells except the first cell are other cells.
  • each of the at least two activated serving cells is configured with a transmission direction in the first time unit.
  • the index value of the first cell is the minimum value among the index values of all cells in the first cell set.
  • each SBFD cell in the at least one SBFD cell included in the first cell set is configured with a signal transmission direction in the first time unit.
  • the symbol direction configurations of multiple subbands may be different.
  • the symbol direction configuration of the subbands cannot represent the transmission direction of the SBFD cell.
  • the SBFD cell can be avoided from participating in direction conflict processing and judgment. This can reduce the complexity of terminal processing. That is, only SBFD cells with signal transmission will participate in direction conflict processing.
  • the method before the terminal device receives the first indication information sent by the network device, the method further includes:
  • the terminal device sends second indication information to the network device, where the second indication information is used to indicate whether the terminal device supports simultaneous transceiver capability between frequency bands.
  • terminal equipment that supports inter-band transceiver capabilities can be enabled to handle directional conflicts within the frequency band.
  • the frequency band to which all cells in the first cell set belong is the first frequency band;
  • the second indication information is used to indicate that when the terminal equipment does not support the simultaneous transceiver capability between frequency bands, the frequency bands to which all cells in the first cell set belong include the first frequency band and the second frequency band, and the second frequency band is different from the first frequency band.
  • the first other cell is another cell configured with direction conflict processing parameters, and the direction conflict processing parameters are used to enable the terminal device to determine that the first other cell participates in direction conflict processing .
  • the terminal device can determine that when the transmission directions of the first other cell and the reference cell conflict on the first time unit, the terminal device can handle the transmission direction conflict problem.
  • the first time unit includes at least one of the following: a time slot, a symbol, or a mini-slot.
  • the first time unit is a time slot (which may be one time slot or multiple time slots)
  • the aforementioned transmission direction conflict is processed by conflict judgment on the time slot.
  • the first time unit is a symbol (it can be one symbol or multiple symbols)
  • the transmission direction conflict mentioned above is handled by conflict judgment on the symbol.
  • the first time unit is a mini-slot (it can be one mini-slot or multiple mini-slots)
  • the transmission direction conflict mentioned above is handled by conflict judgment on the mini-slot. .
  • a communication method including: a network device determines a reference cell and at least one other cell in a first time unit, and the reference cell and at least one other cell are active serving cells configured with a transmission direction in the first time unit. ;
  • the transmission direction of the reference cell in the first time unit conflicts with the transmission direction of the first other cell in the first time unit, and at least one cell in the reference cell and the first other cell is a subband full-duplex SBFD cell, and the SBFD cell Including the first subband and the second subband, the first other cells It is any other cell among at least one other cell, and the network device determines the transmission direction of the reference cell and at least one of the first other cells in the first time unit according to the first subband.
  • the transmission direction of the first subband in the first time unit conflicts with the transmission direction of the second subband in the first time unit.
  • the transmission direction includes at least one of the following: a signal transmission direction, or a statically configured symbol direction; the signal transmission direction includes at least one of the following: static signal transmission direction, or, dynamic signal transmission direction.
  • the reference cell is an activated serving cell configured with a static transmission direction in the first time unit;
  • the static transmission direction includes at least one of the following: static signal transmission direction , or, statically configured symbolic orientation.
  • the first subband satisfies at least one of the following conditions:
  • the first subband is configured with a signal transmission direction in the first time unit, and the second subband is not configured with a signal transmission direction in the first time unit, wherein the signal transmission of the first subband in the first time unit is The direction conflicts with the statically configured symbol direction of the second subband in the first time unit;
  • the first subband is configured with a signal transmission direction in the first time unit
  • the second subband is configured with a signal transmission direction in the first time unit
  • the signal transmission direction of the first subband in the first time unit is the same as
  • the final signal transmission direction of the SBFD cell is consistent, wherein the signal transmission direction of the first subband in the first time unit conflicts with the signal transmission direction of the second subband in the first time unit;
  • the first subband is configured with a statically configured symbol direction in the first time unit
  • the second subband is configured with a statically configured symbol direction in the first time unit
  • the first subband is not configured in the first time unit.
  • the configuration of the signal transmission direction, the second subband does not have the configuration of the signal transmission direction in the first time unit
  • the identifier of the first subband is smaller than or larger than the identifier of the second subband, or the first subband is in
  • the symbol direction of the static configuration of the first time unit is uplink or downlink, wherein the symbol direction of the static configuration of the first subband in the first time unit is different from the static configuration of the second subband in the first time unit.
  • the symbol orientation conflicts.
  • the method before the network device determines the reference cell and at least one other cell in the first time unit, the method further includes: the network device sends first indication information to the terminal device, the first indication information being sent by the network device to the terminal device.
  • An indication information is used to instruct the network device to configure at least two activated serving cells for the terminal device, and the at least two activated serving cells include at least one of the SBFD cells.
  • the network device determines the reference cell and at least one other cell in the first time unit, including: the network device determines a first cell set, and each cell in the first cell set The cell is an activated serving cell configured with a static transmission direction among at least two activated serving cells; the network device determines the first cell as a reference cell, and the first cell is any activated serving cell in the first cell set, and at least two activated serving cells All cells in the cell except the first cell are at least one other cell.
  • the index value of the first cell is the minimum value among the index values of all cells in the first cell set.
  • each SBFD cell in the at least one SBFD cell included in the first cell set is configured with a signal transmission direction in the first time unit.
  • the method before the network device sends the first indication information to the terminal device, the method further includes: the network device receives the second indication information sent by the terminal device, and the second indication information is It is used to indicate whether the terminal equipment supports simultaneous transmission and reception capabilities between frequency bands.
  • the second indication information is used to indicate that when the terminal device supports the simultaneous transceiver capability between frequency bands, the frequency band to which all cells in the first cell set belong is the first frequency band. ;
  • the second indication information is used to indicate that when the terminal equipment does not support the simultaneous transmission and reception capability between frequency bands, the frequency bands to which all cells in the first cell set belong include the first frequency band and the second frequency band, and the second frequency band is different from the first frequency band.
  • the first other cell is another cell configured with a direction conflict processing parameter
  • the direction conflict processing parameter is used to enable the network device to determine that the first other cell participates in the direction conflict. deal with.
  • the first time unit includes at least one of the following: a time slot, a symbol, or a mini-slot.
  • a communication device including: a processing unit configured to determine a reference cell and at least one other cell in a first time unit, and the reference cell and at least one other cell are configured with a transmission direction in the first time unit.
  • the SBFD cell includes a first subband and a second subband, and the first other cell is any other cell among at least one other cell.
  • the processing unit is also configured to determine the reference cell and the first subband according to the first subband. The transmission direction of at least one of the other cells in the first time unit.
  • the transmission direction of the first subband in the first time unit conflicts with the transmission direction of the second subband in the first time unit.
  • the transmission direction includes at least one of the following: a signal transmission direction, or a statically configured symbol direction; the signal transmission direction includes at least one of the following: static signal transmission direction, or, dynamic signal transmission direction.
  • the reference cell is an activated serving cell configured with a static transmission direction in the first time unit; the static transmission direction includes at least one of the following: static signal transmission direction , or, statically configured symbolic orientation.
  • the first subband satisfies at least one of the following conditions:
  • the first subband is configured with a signal transmission direction in the first time unit, and the second subband is not configured with a signal transmission direction in the first time unit, wherein the signal transmission of the first subband in the first time unit is The direction conflicts with the statically configured symbol direction of the second subband in the first time unit;
  • the first subband is configured with a signal transmission direction in the first time unit
  • the second subband is configured with a signal transmission direction in the first time unit
  • the signal transmission direction of the first subband in the first time unit is the same as
  • the final signal transmission direction of the SBFD cell is consistent, wherein the signal transmission direction of the first subband in the first time unit conflicts with the signal transmission direction of the second subband in the first time unit;
  • the first subband is configured with a statically configured symbol direction in the first time unit
  • the second subband is configured with a statically configured symbol direction in the first time unit
  • the first subband is not configured in the first time unit.
  • the configuration of the signal transmission direction, the second subband does not have the configuration of the signal transmission direction in the first time unit
  • the identifier of the first subband is smaller than or larger than the identifier of the second subband, or the first subband is in
  • the symbol direction of the static configuration of the first time unit is uplink or downlink, wherein the symbol direction of the static configuration of the first subband in the first time unit is different from the static configuration of the second subband in the first time unit.
  • the symbol orientation conflicts.
  • the device further includes a transceiver unit configured to receive first indication information sent by the network device, where the first indication information is used to indicate that the network device is the terminal device.
  • a transceiver unit configured to receive first indication information sent by the network device, where the first indication information is used to indicate that the network device is the terminal device.
  • At least two activated serving cells are configured, and the at least two activated serving cells include at least one SBFD cell.
  • the processing unit is configured to: determine a first cell set, each cell in the first cell set being at least two activated serving cells configured with static The activated serving cell in the transmission direction; determine the first cell as the reference cell, the first cell is any activated serving cell in the first cell set, and all cells in at least two activated serving cells except the first cell for at least one other neighborhood.
  • the index value of the first cell is the minimum value among the index values of all cells in the first cell set.
  • each SBFD cell in the at least one SBFD cell included in the first cell set is configured with a signal transmission direction in the first time unit.
  • the index value of the first cell is the minimum value among the index values of all cells in the cell set.
  • the SBFD cells included in the first cell set are configured with a signal transmission direction in the first time unit.
  • the transceiver unit is further configured to send second indication information to the network device, where the second indication information is used to indicate whether the terminal device supports simultaneous transceiver between frequency bands. ability.
  • the second indication information is used to indicate that when the communication device supports the simultaneous transmission and reception capability between frequency bands, the frequency band to which all cells in the cell set belong is the first frequency band. ;
  • the second indication information is used to indicate that when the communication device does not support the simultaneous transmission and reception capability between frequency bands, the frequency bands to which all cells in the cell set belong include the first frequency band and the second frequency band. segment, the second frequency band is different from the first frequency band.
  • the first other cell is another cell configured with a directional conflict processing parameter
  • the directional conflict processing parameter is used to enable the communication device to determine that the first other cell participates Direction conflict handling.
  • the first time unit includes at least one of the following: a time slot, a symbol, or a mini-slot.
  • a communication device including: a processing unit configured to determine a reference cell and at least one other cell in a first time unit, and the reference cell and at least one other cell are configured with transmission in the first time unit.
  • the active serving cell in the direction; the transmission direction of the reference cell in the first time unit conflicts with the transmission direction of the first other cell in the first time unit, and the reference cell is a sub-cell of at least one of the first other cells.
  • a full-duplex SBFD cell the SBFD cell includes a first subband and a second subband, the first other cell is any other cell among at least one other cell, and the processing unit is also configured to perform the processing according to the first subband
  • the transmission direction of the reference cell and at least one of the first other cells in the first time unit is determined.
  • the transmission direction of the first subband in the first time unit conflicts with the transmission direction of the second subband in the first time unit.
  • the transmission direction includes at least one of the following: a signal transmission direction, or a statically configured symbol direction; the signal transmission direction includes at least one of the following: static signal transmission direction, or, dynamic signal transmission direction.
  • the reference cell is an activated serving cell configured with a static transmission direction in the first time unit; the static transmission direction includes at least one of the following: static signal transmission direction , or, statically configured symbolic orientation.
  • the first subband satisfies at least one of the following conditions:
  • the first subband is configured with a signal transmission direction in the first time unit, and the second subband is not configured with a signal transmission direction in the first time unit, wherein the signal transmission of the first subband in the first time unit is The direction conflicts with the statically configured symbol direction of the second subband in the first time unit;
  • the first subband is configured with a signal transmission direction in the first time unit
  • the second subband is configured with a signal transmission direction in the first time unit
  • the signal transmission direction of the first subband in the first time unit is the same as
  • the final signal transmission direction of the SBFD cell is consistent, wherein the signal transmission direction of the first subband in the first time unit conflicts with the signal transmission direction of the second subband in the first time unit;
  • the first subband is configured with a statically configured symbol direction in the first time unit
  • the second subband is configured with a statically configured symbol direction in the first time unit
  • the first subband is not configured in the first time unit.
  • the configuration of the signal transmission direction, the second subband does not have the configuration of the signal transmission direction in the first time unit
  • the identifier of the first subband is smaller than or larger than the identifier of the second subband, or the first subband is in
  • the symbol direction of the static configuration of the first time unit is uplink or downlink, wherein the symbol direction of the static configuration of the first subband in the first time unit is different from the static configuration of the second subband in the first time unit.
  • the symbol orientation conflicts.
  • the device further includes a transceiver unit configured to send first indication information to the terminal device, where the first indication information is used to instruct the communication device to configure at least one of the terminal devices.
  • a transceiver unit configured to send first indication information to the terminal device, where the first indication information is used to instruct the communication device to configure at least one of the terminal devices.
  • the processing unit is configured to: determine a first cell set, each cell in the first cell set being at least two active serving cells configured with a static transmission direction Activated serving cell; determine the first cell as the reference cell, the first cell is any activated serving cell in the first cell set, and all cells except the first cell among the at least two activated serving cells are at least one other cell .
  • the index value of the first cell is the minimum value among the index values of all cells in the first cell set.
  • each SBFD cell in the at least one SBFD cell included in the first cell set is configured with a signal transmission direction in the first time unit.
  • the index value of the first cell is the minimum value among the index values of all cells in the cell set.
  • the SBFD cells included in the first cell set are configured with a signal transmission direction in the first time unit.
  • the transceiver unit is further configured to receive second indication information sent by the terminal device, where the second indication information is used to indicate whether the terminal device supports simultaneous inter-frequency transceiver capability.
  • the second indication information is used to indicate that when the terminal device supports the simultaneous transceiver capability between frequency bands, the frequency band to which all cells in the cell set belong is the first frequency band;
  • the second indication information is used to indicate that when the terminal equipment does not support the simultaneous transceiver capability between frequency bands, the frequency bands to which all cells in the cell set belong include the first frequency band and the second frequency band, and the second frequency band is different from the first frequency band.
  • the first other cell is another cell configured with a direction conflict processing parameter
  • the direction conflict processing parameter is used to enable the terminal device to determine that the first other cell participates in direction conflict processing .
  • the first time unit includes at least one of the following: a time slot, a symbol, or a mini-slot.
  • a communication device including a processor, the processor being coupled to a memory, and the processor being configured to execute a computer program or instructions, so that the communication device executes the first aspect and any one of the first aspect The method described in any one of the possible implementation ways; or, causing the communication device to perform the second aspect and the method described in any one of the possible implementation ways of the second aspect.
  • the device further includes a memory.
  • processor and the memory are integrated together, or the processor and the memory are provided separately.
  • the memory is external to the communication device.
  • the communication device further includes a communication interface, which is used for the communication device to communicate with other devices, such as sending or receiving data and/or signals.
  • the communication interface may be a transceiver, a circuit, a bus, a module, or other types of communication interfaces.
  • a communication device including a logic circuit and an input-output interface.
  • the input-output interface is used to output and/or input signals.
  • the logic circuit is used to perform the first aspect and any possible implementation of the first aspect. The method described in any one of them; or, perform the method described in any one of the second aspect and any possible implementation manner of the second aspect.
  • the logic circuit is used to determine a reference cell and at least one other cell in a first time unit, and the reference cell and at least one other cell are active serving cells configured with a transmission direction in the first time unit; the reference cell Conflicts with the transmission direction of the first other cells in the first time unit.
  • At least one cell among the reference cell and the first other cells is a subband full-duplex cell, which includes a first subband and a second subband.
  • the first other The cell is any other cell among at least one other cell, and the logic circuit is also used to determine the transmission direction of the reference cell and at least one of the first other cells in the first time unit according to the first subband.
  • a computer-readable storage medium including a computer program or instructions.
  • the computer program or instructions When the computer program or instructions are run on a computer, the computer is caused to execute the first aspect and any one of the first aspects.
  • the method described in any one of the possible implementation ways; or, the computer is caused to execute the second aspect and the method described in any one of the possible implementation ways of the second aspect.
  • a computer program product which includes instructions that, when the instructions are run on a computer, cause the computer to execute the method described in any one of the first aspect and any possible implementation of the first aspect. Method; or, causing the computer to execute the method described in any one of the second aspect and any possible implementation manner of the second aspect.
  • embodiments of the present application further provide a terminal device for executing the method in the above-mentioned first aspect and its various possible implementations.
  • embodiments of the present application further provide a network device for executing the method in the above-mentioned second aspect and its various possible implementations.
  • embodiments of the present application further provide a communication system, including the communication device provided by the third aspect and various possible implementations and the communication device provided by the fourth aspect and various possible implementations.
  • FIG. 1 is a schematic diagram of a communication system 100 applicable to the embodiment of the present application.
  • Figure 2 is a schematic diagram of subband full duplex.
  • Figure 3 is a schematic diagram of a communication method 300 according to an embodiment of the present application.
  • Figure 4 is a schematic diagram of a communication method 400 according to an embodiment of the present application.
  • Figure 5 is a schematic block diagram of a communication device 500 according to an embodiment of the present application.
  • Figure 6 is a schematic block diagram of a communication device 600 according to an embodiment of the present application.
  • Figure 7 is a schematic block diagram of a communication device 700 according to an embodiment of the present application.
  • Figure 8 is a schematic block diagram of a communication device 800 according to an embodiment of the present application.
  • Figure 9 is a schematic block diagram of a communication device 900 according to an embodiment of the present application.
  • Figure 10 is a schematic block diagram of a communication device 1000 according to an embodiment of the present application.
  • LTE long term evolution
  • FDD frequency division duplex
  • TDD time division duplex
  • UMTS universal mobile telecommunication system
  • 5th generation, 5G fifth generation
  • 5G new radio
  • NR new radio
  • 6th generation, 6G sixth generation
  • Satellite communication systems include satellite base stations and terminal equipment. Satellite base stations provide communication services to terminal devices. Satellite base stations can also communicate with ground base stations. Satellites can serve as base stations and terminal equipment. Among them, satellites can refer to non-ground base stations or non-ground equipment such as UAVs, hot air balloons, low-orbit satellites, medium-orbit satellites, and high-orbit satellites.
  • the technical solutions of the embodiments of this application are applicable to both homogeneous and heterogeneous network scenarios. At the same time, there are no restrictions on transmission points. They can be between macro base stations and macro base stations, micro base stations and micro base stations, or macro base stations and micro base stations. Multi-point coordinated transmission is applicable to FDD/TDD systems.
  • the technical solutions of the embodiments of this application are not only applicable to low-frequency scenarios (sub 6G), but also to high-frequency scenarios (above 6GHz), terahertz, optical communications, etc.
  • the technical solutions of the embodiments of this application can be applied not only to the communication between network equipment and terminals, but also to the communication between network equipment and network equipment, the communication between terminals, the Internet of Vehicles, the Internet of Things, the Industrial Internet, etc.
  • the technical solutions of the embodiments of this application can also be applied to scenarios where a terminal is connected to a single base station, where the base station to which the terminal is connected and the core network (core network, CN) to which the base station is connected are of the same standard.
  • core network core network
  • CN core network
  • the base station corresponds to 5G base station, and 5G base station is directly connected to 5G Core; or if CN is 6G Core, the base station is 6G base station, and 6G base station is directly connected to 6G Core.
  • the technical solution of the embodiment of the present application can also be applied to a dual connectivity (DC) scenario in which a terminal is connected to at least two base stations.
  • DC dual connectivity
  • the technical solutions of the embodiments of this application can also use macro and micro scenarios composed of different forms of base stations in the communication network.
  • the base stations can be satellites, aerial balloon stations, drone stations, etc.
  • the technical solutions of the embodiments of this application are also suitable for scenarios in which wide-coverage base stations and small-coverage base stations coexist.
  • Applicable scenarios include but are not limited to terrestrial cellular communication, NTN, satellite communication, and high altitude communication platform (high altitude platform).
  • station (HAPS) communication vehicle-to-everything (V2X), integrated access and backhaul (IAB), and reconfigurable intelligent surface (RIS) communication and other scenarios .
  • V2X vehicle-to-everything
  • IAB integrated access and backhaul
  • RIS reconfigurable intelligent surface
  • the terminal in the embodiment of the present application may be a device with wireless transceiver functions, and may specifically refer to user equipment (UE), access terminal, subscriber unit (subscriber unit), user station, or mobile station (mobile station). , remote station, remote terminal, mobile device, user terminal, wireless communication device, user agent or user device.
  • UE user equipment
  • access terminal subscriber unit (subscriber unit)
  • subscriber unit subscriber unit
  • user station or mobile station (mobile station).
  • remote station remote terminal, mobile device, user terminal, wireless communication device, user agent or user device.
  • the terminal device may also be a satellite phone, a cellular phone, a smartphone, a wireless data card, a wireless modem, a machine type communications device, a cordless phone, a session initiation protocol (SIP) phone, a wireless local loop (wireless local loop, WLL) station, personal digital assistant (PDA), customer-premises equipment (CPE), intelligent point of sale (POS) machine, handheld device with wireless communication function, computing Equipment or other processing equipment connected to wireless modems, vehicle-mounted equipment, communication equipment carried on high-altitude aircraft, wearable devices, drones, robots, terminals in device-to-device (D2D) communication, V2X Terminals in virtual reality (VR) terminal equipment, augmented reality (AR) terminal equipment, wireless terminals in industrial control (industrial control), wireless terminals in self-driving (self driving), remote Wireless terminals in remote medical, wireless terminals in smart grid, wireless terminals in transportation safety, wireless terminals in smart city, and smart home Wireless terminals or terminal equipment in communication networks evolved after 5G, etc.
  • the device used to implement the functions of the terminal device in the embodiment of the present application may be a terminal device; it may also be a device that can support the terminal device to implement the function, such as a chip system.
  • the device can be installed in a terminal device or used in conjunction with the terminal device.
  • the chip system may be composed of chips, or may include chips and other discrete devices.
  • the network device in the embodiment of the present application has a wireless transceiver function and is used to communicate with the terminal device.
  • the access network equipment can be a node in the radio access network (radio access network, RAN), and can also be called a base station or a RAN node. It can be an evolved base station (evolved Node B, eNB or eNodeB) in LTE; or a base station in a 5G network such as gNodeB (gNB) or a base station in a public land mobile network (public land mobile network, PLMN) evolved after 5G. Broadband network gateway (BNG), aggregation switch or 3rd generation partnership project (3GPP) access equipment, etc.
  • eNB evolved Node B
  • gNB gNodeB
  • PLMN public land mobile network
  • BNG Broadband network gateway
  • aggregation switch or 3rd generation partnership project (3GPP) access equipment etc.
  • the network equipment in the embodiment of the present application may also include various forms of base stations, such as: macro base stations, micro base stations (also called small stations), relay stations, transmission points (transmitting and receiving point, TRP), transmitting points , TP), mobile switching center and base station responsible for device-to-device (D2D), vehicle outreach (vehicle-to-everything, V2X), machine-to-machine (M2M) communications Functional equipment, etc., can also include centralized units (CU) and distributed units (DU) in cloud radio access network (cloud radio access network, C-RAN) systems, and NTN communication systems.
  • Network equipment is not specifically limited in the embodiments of this application.
  • the device used to implement the function of the network device in the embodiment of the present application may be a network device, or may be a device that can support the network device to implement the function, such as a chip system.
  • the device can be installed in a network device or used in conjunction with a network device.
  • the chip system in the embodiment of the present application may be composed of chips, or may include chips and other discrete devices.
  • FIG. 1 is a schematic diagram of a communication system 100 applicable to the embodiment of the present application.
  • the communication system 100 includes a network device 110 and a terminal device 120 .
  • the network device 110 and the terminal device 120 can perform uplink communication or downlink communication, which is not limited by the embodiments of this application.
  • the communication system 100 shown in FIG. 1 is only understood as an example and cannot limit the scope of protection required by this application.
  • the network device 110 can perform uplink/downlink communication with the terminal device 120 through four cells: cell #0, cell #1, cell #2, and cell #3. Among them, cell #0 and cell #1 are located in frequency band A, and cell #2 and cell #3 are located in frequency band B.
  • the terminal equipment 120 aggregates the carriers of the above four cells through carrier aggregation technology, so that it can obtain a larger communication bandwidth, thereby increasing the uplink/downlink peak rate of the terminal equipment.
  • the terminal device 120 may be any terminal device listed above, and the network device 110 may also be any network device listed above.
  • Carrier aggregation refers to the technology of aggregating multiple component carriers (CC) to obtain carriers with larger communication bandwidth.
  • CA technology can be divided into the following categories:
  • Inter-band carrier aggregation Multiple CCs belong to different frequency bands.
  • cell #1 and cell #2 belong to frequency band A, and the aggregation between cell #1 and cell #2 belongs to the first type of CA or the second type of CA.
  • Cell #3 and cell #4 belong to frequency band B, and the aggregation between cell #3 and cell #4 belongs to the first type of CA or the second type of CA.
  • Cell #2 belongs to frequency band A, cell #3 belongs to frequency band B, and the aggregation between cell #2 and cell #3 belongs to the third type of CA.
  • the carrier index of the secondary carrier and the cell identifier (cell indentify, Cell ID) of the secondary cell operating on the secondary carrier can be carried at the same time.
  • carrier and cell are two equivalent concepts.
  • the terminal equipment accessing the carrier is the same as the terminal equipment accessing the cell.
  • the bandwidth of the carrier can be understood as the communication bandwidth of the cell.
  • SBFD subband full duplex
  • FIG. 2 is a schematic diagram of subband full duplex.
  • a CC can be divided into three sub-bands.
  • the transmission directions configured for subband #1 and subband #3 are both the DL transmission direction
  • the transmission direction configured for subband #2 is the UL transmission direction.
  • the transmission directions configured for subband #1, subband #2, and subband #3 are all UL transmission directions.
  • the UL transmission direction and the DL transmission direction can respectively use different frequency domain resources.
  • the SBFD technical solution can increase the resources used for UL transmission, thereby effectively reducing the delay of UL transmission.
  • different subbands can occupy different frequency domain resources respectively, and the frequency domain resources occupied by different subbands do not overlap with each other.
  • the frequency domain resources occupied by subband #1 are different from the frequency domain resources occupied by subband #2, and there are no overlapping frequency domain resources.
  • a certain frequency guard interval can exist between the subbands to reduce interference between signals with different transmission directions on the two subbands.
  • GB frequency guard interval
  • guard banding GB
  • GB#1 guard banding between subband #1 and subband #2
  • guard intervals GB#2, GB#1 and GB#2 can be the same value.
  • the UE meets the following conditions:
  • the UE can select the serving cell with the smallest cell index value among the activated serving cells as the reference cell (reference cell) in any time unit (described below using symbols as an example).
  • the UE can select the serving cell with the smallest cell index value from the activated serving cells in each frequency band as the reference cell. For example, the UE selects cell #1 on frequency band A as the reference cell, and selects cell #3 on frequency band B as the reference cell.
  • the UE does not support simultaneous transmission and reception capabilities between frequency bands, the UE can select the serving cell with the smallest cell index value from all activated serving cells as the reference cell. For example, the UE selects cell #1 among cells #1 to #4 as the reference cell.
  • the UE supports simultaneous transceiver capability between frequency bands, which means that the UE supports transmitting in frequency band A and receiving in frequency band B at the same time.
  • cell #1 of frequency band A and cell #3 of frequency band B support simultaneous transmission and reception.
  • the UE does not support simultaneous transceiver capability between frequency bands, which means that the UE does not support transmitting in one frequency band A while receiving in another frequency band B.
  • the serving cell on a symbol needs to meet at least one of the following conditions to serve as a reference cell:
  • the static configuration is Semi-D/U (tdd-UL-DL-ConfigurationCommon or tdd-UL-DL-ConfigurationDedicated)
  • the symbol is flexible, and the UE is configured to send the sounding reference signal (SRS), physical uplink control channel (PUCCH), and physical uplink shared channel (PUSCH) on the symbol. ) or physical random access channel (physical random access channel, PRACH) (can be written as radio resource control uplink signal (RRC-U)).
  • SRS sounding reference signal
  • PUCCH physical uplink control channel
  • PUSCH physical uplink shared channel
  • PRACH physical random access channel
  • RRC-U radio resource control uplink signal
  • the symbol is flexible, and the UE is configured to receive PDCCH, physical downlink shared channel (PDSCH) or channel state information reference signal (CSI-RS) on this symbol (can be written for RRC-D).
  • PDSCH physical downlink shared channel
  • CSI-RS channel state information reference signal
  • statically configured transmission direction can also be understood as the static transmission direction.
  • quiet The state transmission direction includes: static signal transmission direction (can be RRC-D/U) and statically configured symbol direction (can be Semi-D/U).
  • the above-mentioned first condition can also be called the statically configured symbol direction (including the uplink direction and the downlink direction), and the second condition and the third condition can be called the static signal transmission direction (including the uplink signal transmission direction and the downlink signal transmission direction). direction).
  • cells #2 to #4 can be called other cells of cell #1.
  • cell #2 can be called another cell of cell #1, and cell #4 can be called another cell of cell #3.
  • the number of other cells may be at least one.
  • other cells may include cell #2 (UE does not support simultaneous transceiver between frequency bands), and other cells may also include cell #2 to cell #4 (UE supports simultaneous transceiver between frequency bands).
  • Other cells may have statically configured transmission directions or may not have statically configured transmission directions.
  • other cells may be: the symbol is flexible, and the UE is instructed by DCI to send or receive signals on this symbol (which can be written as Dynamic-U/D).
  • Other cells can have any one of Semi-D/U, RRC-D/U and Dynamic-D/U on symbol #M.
  • the transmission direction of the reference cell and other cells in the time unit for example, symbol #M
  • symbol #M the transmission direction of the reference cell and other cells in the time unit
  • the transmission direction of the reference cell in symbol #M is Dynamic-D/U, and the transmission direction of other cells in symbol #M is Dynamic-U/D.
  • the UE hopes to avoid this situation (error case ).
  • the transmission direction of the reference cell in symbol #M is Dynamic-D
  • the transmission direction of other cells in symbol #M is Semi-U/RRC-U
  • the UE cancels transmission in other cells drop U on other cells
  • the transmission direction of the reference cell at symbol #M is Dynamic-U
  • the transmission direction of other cells at symbol #M The transmission direction is Semi-D/RRC-D, and the UE cancels reception in other cells (drop D on other cells).
  • the transmission direction of the reference cell in symbol #M is Semi-U/RRC-U, and the transmission direction of other cells in symbol #M is Dynamic-D.
  • the UE hopes to avoid the occurrence of this situation (error case).
  • the transmission direction of the reference cell in symbol #M is Semi-D/RRC-D
  • the transmission direction of other cells in symbol #M is Dynamic-U.
  • the reference cell in symbol # When the transmission direction of M is Semi-D, the UE transmits on other cells (Tx on other cells); when the reference cell's transmission direction of symbol #M is RRC-D, the UE is not required to receive on reference cell).
  • the transmission direction of the reference cell in symbol #M is Semi-D/RRC-D, and the transmission direction of other cells in symbol #M is Dynamic-U. If it is intra-band carrier aggregation, the UE hopes to avoid this The occurrence of the situation (error case).
  • the transmission direction of the reference cell in symbol #M is Semi-D/U
  • the transmission direction of other cells in symbol #M is Semi-U/D. If it is inter-band carrier aggregation, it is assumed that other cells The symbol is flexible configuration (assume symbol #M as Flexible on the other cell).
  • the transmission direction of the reference cell in symbol #M is Semi-D/U, and the transmission direction of other cells in symbol #M is Semi-U/D.
  • the UE hopes to avoid this The occurrence of the situation (error case).
  • the transmission direction of the reference cell in symbol #M is Semi-D/U
  • other cells are RRC-U/D
  • the transmission direction of the reference cell in symbol #M is RRC-D/U
  • the transmission direction of other cells in symbol #M is Semi-U/D.
  • the UE assumes that the symbols of other cells are flexible configurations (assume symbol # M as Flexible on the other cell), and cancels sending RRC-U or receiving RRC-D in other cells.
  • the transmission direction of the reference cell in symbol #M is RRC-D/U
  • the transmission direction of other cells in symbol #M is RRC-U/D
  • the direction conflict handling criteria shown in Table 1 are applicable to traditional TDD cells in TDD systems (for example, Legacy TDD cells).
  • the above directional conflict handling criteria may not necessarily apply.
  • the transmission direction of symbols is configured at the subband level. Therefore, when an SBFD cell includes three subbands, it will include three transmission direction configurations. For example, on symbol #1, the transmission direction of subband #1 is Semi-D, the transmission direction of subband #2 is Semi-D, and the transmission direction of subband #3 is Semi-D. On symbol #2, the transmission direction of subband #1 is RRC-D, the transmission direction of subband #2 is F (flexible), and the transmission direction of subband #3 is Semi-D. On symbol #3, the transmission direction of subband #1 is RRC-D, the transmission direction of subband #2 is Semi-U, and the transmission direction of subband #3 is Dynamic-D.
  • the transmission direction of subband #1 is Semi-D
  • the transmission direction of subband #2 is Semi-U
  • the transmission direction of subband #3 is Semi-D
  • the transmission direction of subband #1 is F
  • the transmission direction of subband #2 is RRC-U
  • the transmission direction of subband #3 is F.
  • the transmission direction of symbols is configured at the cell level, and there will only be one transmission direction configuration.
  • the transmission direction is RRC-D.
  • the transmission direction is Semi-D.
  • the transmission direction is Semi-D/RRC-D.
  • the transmission direction is Semi-U.
  • the transmission direction is Semi-U.
  • the transmission direction of subband #3 is Dynamic-D
  • the transmission direction of subband #2 is Semi-U
  • the transmission direction of subband #1 is RRC- D
  • UE can perform Dynamic-D and RRC-D.
  • the transmission direction is Semi-U
  • the configured RRC-D will be canceled (drop), and the UE does not expect to have Dynamic-D configured (the uplink priority is higher than the downlink priority).
  • the transmission directions of the two subbands of the SBFD cell are opposite, and the transmission direction of the Legacy TDD cell is the same as that of subband #1.
  • the reference cell is an SBFD cell
  • the other cells are Legacy TDD cells
  • the transmission direction of subband #1 in symbol #M is Dynamic-D/U or RC-D/U
  • subband #2 is in
  • the transmission direction of symbol #M is Semi-U/D.
  • the transmission direction of Legacy TDD cell in symbol #M is Dynamic-D/U, Semi-D/U or RRC-D/U, which is the same as subband #1 in symbol
  • the transmission direction of #M is the same as that of subband #2 in symbol #M.
  • the reference cell is a Legacy TDD cell
  • the other cells are SBFD cells.
  • the transmission direction of the Legacy TDD cell in symbol #M is Semi-D/U
  • the subband #1 of the SBFD cell in the transmission direction of symbol #M is Dynamic.
  • the transmission direction of subband #2 in symbol #M is Semi-U/D
  • the transmission direction of subband #1 in symbol #M is the same as the Legacy TDD cell in symbol #M
  • the transmission directions are the same, and the transmission direction of subband #2 at symbol #M is opposite to the transmission direction of Legacy TDD cell at symbol #M.
  • the transmission directions of the two subbands of the SBFD cell are opposite, and the transmission direction of the Legacy TDD cell is the same as that of subband #1.
  • the reference cell is an SBFD cell
  • the other cells are Legacy TDD cells
  • subband #1 is Semi-D/U in the transmission direction of symbol #M
  • subband #2 is in the transmission direction of symbol #M.
  • the Legacy TDD cell is Dynamic-D/U, Semi-D/U or RRC-D/U in the transmission direction of symbol #M respectively, and it is in the transmission direction of symbol #M with subband #1 same
  • the transmission direction of symbol #M is opposite to that of subband #2.
  • the reference cell is a Legacy TDD cell
  • the other cells are SBFD cells.
  • the transmission direction of the Legacy TDD cell in symbol #M is Semi-D/U
  • the subband #1 of the SBFD cell is Semi-D/U in the transmission direction of symbol #M.
  • the transmission direction of subband #2 in symbol #M is Semi-U/D
  • the transmission direction of subband #1 in symbol #M is the same as the transmission direction of Legacy TDD cell in symbol #M
  • subband # 2 The transmission direction of symbol #M is opposite to the transmission direction of Legacy TDD cell in symbol #M.
  • the transmission direction of subband #2 of the SBFD cell in symbol #M is opposite to the transmission direction of subband #1 in symbol #M.
  • the transmission direction of Legacy TDD cell in symbol #M is opposite to the transmission direction of subband #1 of the SBFD cell in symbol #.
  • the transmission direction of M is the same, but the signal of subband #1 of the SBFD cell still cannot be transmitted (scenario b and scenario d);
  • the existing direction conflict handling guidelines are applicable to scenarios where the cells corresponding to the component carriers are all traditional time division duplex cells in the time division duplex system, but are not applicable to the scenario where the cells corresponding to the component carriers include subband full-duplex cells. Scenes.
  • this application provides a communication method and communication device, which can solve the problem of inconsistent transmission directions between different component carriers when the cell corresponding to the component carrier includes a sub-band full-duplex cell.
  • Figure 3 is an interactive flow chart of the communication method 300 according to the embodiment of the present application.
  • the method flow in Figure 3 can be executed by the terminal device 120, or by modules and/or devices (for example, chips or integrated circuits) with corresponding functions installed in the terminal device 120, which are not limited by the embodiments of this application.
  • the following description takes the terminal device 120 as an example.
  • the communication method 300 includes:
  • the terminal device 120 determines the reference cell and at least one other cell in the time unit W1.
  • the reference cell and the at least one other cell are active serving cells configured with a transmission direction in the time unit W1.
  • the transmission direction of the reference cell in the time unit W1 is the same as that of the third cell.
  • the transmission direction of another cell conflicts in time unit W1, the first other cell is any one of the at least one other cells, the reference cell and at least one of the first other cells are SBFD cells, and the SBFD cell includes the first sub-cell. Band and second sub-band.
  • the terminal device 120 may determine the reference cell and at least one other cell on the time unit W1.
  • the reference cell and at least one other cell are both active serving cells configured with a transmission direction in time unit W1.
  • one time unit may include multiple activated serving cells.
  • one cell among multiple activated serving cells can be used as a reference cell, and all cells except the reference cell can be used as other cells.
  • time unit W1 On a time unit (eg, time unit W1), there may be a conflict in the transmission direction of the reference cell and at least one other cell on the time unit.
  • time unit W1 On a time unit (eg, time unit W1), there may be a conflict in the transmission direction of the reference cell and at least one other cell on the time unit.
  • the embodiment of the present application only describes the transmission direction conflict between the reference cell and the first other cell in at least one other cell on time unit W1 as an example, but does not limit the reference cell and the third other cell in at least one other cell. 2. Scenarios such as transmission direction conflicts of other cells on time unit W1.
  • the first other cell is another cell configured with direction conflict processing parameters.
  • the direction conflict processing parameters are used to enable the terminal device to determine that the first other cell can participate in direction conflict processing. For example, when the terminal device determines that the transmission direction of the first other cell in time unit W1 conflicts with the transmission direction of the reference cell in time unit W1, and determines that the first other cell is configured with a direction conflict processing parameter, it can compare the first other cell with the transmission direction of the reference cell in time unit W1. The reference cell performs direction conflict processing judgment in the transmission direction of time unit W1. In other words, the terminal device 120 can determine, based on the parameter, to perform direction conflict processing on the transmission directions of the first other cell and the reference cell on the time unit W1.
  • the first other cell is another cell in at least one other cell that is configured with direction conflict processing parameters.
  • the cell performs direction conflict processing in the transmission direction of time unit W1, thereby determining the transmission directions of the first other cell and the reference cell in time unit W1.
  • the first other cell may be another cell that is not configured with direction conflict processing parameters, and the terminal device may directly perform direction conflict processing judgment on the transmission directions of the first other cell and the reference cell in time unit W1.
  • the embodiment of the present application takes the transmission direction conflict between the first other cell and the reference cell in time unit W1 as an example, but does not limit the transmission direction conflict between the at least one other cell and the reference cell in time unit W1.
  • the number of cells may also include scenarios such as second other cells, third other cells, etc., all of which conflict with the transmission direction of the reference cell in time unit W1.
  • At least one of the reference cell and the first other cell is an SBFD cell, which may include any of the following: the reference cell is an SBFD cell, and the first other cell is a non-SBFD cell, for example, a Legacy TDD cell; or, the first other cell is an SBFD cell. , the reference cell is a non-SBFD cell, for example, a Legacy TDD cell; or, the reference cell is the first SBFD cell, and the first other cell is the second SBFD cell.
  • the first SBFD cell includes a first subband and a second subband
  • the second SBFD cell includes a third subband and a fourth subband.
  • any one of the reference cell and the first other cell is an SBFD cell (for example, the reference cell is an SBFD cell, or the first other cell is an SBFD cell), and the transmission direction of the reference cell in time unit W1 is the same as The transmission directions of the first other cells collide in time unit W1, and the SBFD cell includes at least two subbands.
  • each subband of the SBFD cell needs to be compared with another cell.
  • each subband of the SBFD cell needs to perform direction conflict processing with the first other cell, which may easily lead to problems as shown in Table 3 and Table 4.
  • the embodiment of the present application is described by taking an SBFD cell including a first subband and a second subband as an example, but does not limit the scenario where the number of subbands included in the SBFD cell is more than two.
  • the transmission direction conflict between the reference cell and the first other cell in time unit W1 can be understood as: the transmission direction of the reference cell in time unit W1 is opposite to the transmission direction of the first other cell in time unit W1.
  • the transmission direction of the reference cell in time unit W1 is RRC-D/U
  • the transmission direction of the first other cell in time unit W1 is Dynamic-U/D.
  • the reference cell is an SBFD cell
  • the first other cell is a Legacy TDD cell
  • the first other cell is an SBFD cell
  • the reference cell is a Legacy TDD cell
  • the transmission directions of the reference cell and the first other cell conflict in time unit W1 which can be understood as: the transmission direction of at least one subband in the SBFD cell and the Legacy TDD cell on time unit W1 is opposite.
  • the reference cell and the first other cell are both SBFD cells, which can be understood as: at least one subband in the reference cell and at least one subband in the first other cell have opposite transmission directions on the time unit W1.
  • the transmission direction of the first subband on the time unit W1 is opposite to the transmission direction of the third subband on the time unit W1.
  • the number of other cells can be more than one.
  • the reference cell may be the serving cell with the smallest index value among the above-mentioned activated serving cells, the serving cell with the largest index value, or any serving cell, etc., which are not limited by the embodiments of this application.
  • the selection of reference cells can be described later and will not be discussed further here.
  • the terminal device 120 determines the transmission direction of the reference cell and at least one of the first other cells in the time unit W1 according to the first subband.
  • the transmission directions of the first subband and the second subband on the time unit W1 may be consistent and may conflict.
  • the transmission directions of the first subband and the second subband in the time unit W1 are consistent, according to the existing direction conflict processing method, the first subband and the second subband need to communicate with another cell in the time unit W1. If the transmission direction conflict judgment is carried out above, it will easily lead to redundant conflict judgment.
  • the transmission directions of the first subband and the second subband conflict in the time unit W1 according to the existing direction conflict processing method, the first subband and the second subband need to communicate with another cell in the time unit W1. If the transmission direction conflict judgment is carried out on the system, it is easy to lead to wrong conflict judgment. For example, scenarios a-d are shown in Table 3, and scenarios eh are shown in Table 4.
  • the terminal device 120 can determine the transmission direction of the reference cell in time unit W1 and the transmission direction of the first other cell in time unit W1 based on the first subband of the SBFD cell (the first subband can be any subband of the SBFD cell). direction, so that the above situation can be avoided.
  • the terminal device 120 determines, according to the first subband, that the reference cell and at least one of the first other cells are in the time unit.
  • the transmission direction of W1 can include any of the following situations:
  • Case #1 The terminal device 120 determines the transmission direction of the reference cell in time unit W1 according to the first subband;
  • Case #2 The terminal device 120 determines the transmission direction of the first other cell in the time unit W1 according to the first subband;
  • the terminal device 120 determines the transmission direction of the reference cell and the first other cell in the time unit W1 according to the first subband.
  • the first subband when the reference cell is an SBFD cell, the first subband may be the transmission direction of the SBFD cell in time unit W1. After that, the terminal device 120 may cancel the transmission direction of the first other cell in time unit W1 (can be understood as The transmission direction of the first other cell in time unit W1 is None).
  • the first other cell is an SBFD cell
  • the first subband may be the transmission direction of the first other cell in time unit W1.
  • the terminal device 120 can cancel the transmission direction of the reference cell in time unit W1 (it can be understood that the transmission direction of the reference cell in time unit W1 is none).
  • the reference cell is an SBFD cell
  • the transmission direction of the reference cell in the time unit W1 is determined, and the terminal device 120 can cancel the transmission direction of the first other cell in the time unit W1, so that the transmission direction of the reference cell in the time unit W1 is determined.
  • the transmission direction of another cell in time unit W1 is also determined.
  • the terminal The device 120 may first determine the first subband of the first SBFD cell, and determine the third subband of the second SBFD cell, and determine the reference cell and the first other cell based on the first subband and the third subband. At least one cell is in the transmission direction of time unit W1.
  • the terminal device 120 may maintain the transmission direction of the reference cell in the time unit W1, and cancel the transmission direction of the first other cell in the time unit W1, or the terminal device 120 may maintain the transmission direction of the first other cell in the time unit W1, And cancel the transmission direction of the reference cell in time unit W1.
  • this application can solve the problem of inconsistent transmission directions between different component carriers when the cell corresponding to the component carrier includes a sub-band full-duplex cell.
  • the terminal device can determine the first subband of the SBFD cell, and determine the distance between the reference cell and other cells based on the first subband.
  • the direction of transmission in time units.
  • the transmission direction of the first subband in time unit W1 conflicts with the transmission direction of the second subband in time unit W1.
  • this application determines the reference cell and the first other cell by selecting the first subband among the first subband and the second subband.
  • the transmission direction of the cell in time unit W1 this can avoid obtaining two completely different conflict judgment results due to the conflict between the transmission directions of the first subband and the second subband in time unit W1, thus leading to an increase in erroneous judgment cases.
  • This can effectively solve the problem of inconsistent transmission directions between different component carriers when the cell corresponding to the component carrier includes a sub-band full-duplex cell.
  • the transmission direction may include at least one of the following:
  • Signal transmission direction or, statically configured symbol direction.
  • the signal transmission direction may include a dynamic signal transmission direction and a static signal transmission direction.
  • the dynamic signal transmission direction can be Dynamic D/U; the static signal transmission direction can be RRC-D/U.
  • the statically configured symbol direction can be Semi-D/U.
  • At least one other cell may be configured with any one of the above-mentioned static signal transmission direction, dynamic signal transmission direction and statically configured symbol direction in time unit W1
  • the reference cell may be configured with the above-mentioned signal transmission direction in time unit W1. Any one of static signal transmission direction, dynamic signal transmission direction and statically configured symbol direction.
  • the reference cell is an activated serving cell configured with a static transmission direction in time unit W1.
  • the reference cell may be configured with one or more of RRC-D/U and Semi-D/U in time unit W.
  • the reference cell is configured with RRC-D/U in time unit W1; or the reference cell is configured with Semi-D/U in time unit W1; or the reference cell is configured with RRC-D/U and Semi-D in time unit W1. D/U etc.
  • the terminal equipment can determine the reference cell on the time unit W1 in advance, and the problem of inconsistent understanding of the reference cell by the terminal equipment and the cell due to dynamic signal reception failure can be avoided. .
  • the above-mentioned RRC-D/U and Semi-D/U can belong to one of the cases of static transmission direction.
  • At least one other cell is an activated serving cell configured with a transmission direction in time unit W1, which may include at least one of the following: at least one other cell is configured with RRC-D/U, Dynamic-D in time unit W1 /U, one of Semi-D/U Item or multiple items, etc. are not limited in the embodiments of this application.
  • the reference cell is an activated serving cell configured with a transmission direction in time unit W1. It may also include: the reference cell is configured with Dynamic-D/U in time unit W1.
  • the first subband satisfies at least one of the following conditions:
  • the first subband is configured with a signal transmission direction in time unit W1, and the second subband is not configured with a signal transmission direction in time unit W1.
  • the signal transmission direction of the first subband in time unit W1 is the same as that of the second subband in time unit W1.
  • the statically configured symbol directions of time unit W1 conflict;
  • the first subband is configured with a signal transmission direction in time unit W1
  • the second subband is configured with a signal transmission direction in time unit W1
  • the signal transmission direction of the first subband in time unit W1 is the same as the final signal transmission direction of the SBFD cell Consistent, wherein the signal transmission direction of the first subband in time unit W1 conflicts with the signal transmission direction of the second subband in time unit W1;
  • the first subband is configured with a statically configured symbol direction in time unit W1
  • the second subband is configured with a statically configured symbol direction in time unit W1
  • the first subband has no signal transmission direction configuration in time unit W1
  • the second subband is configured with a statically configured symbol direction in time unit W1.
  • the two subbands have no signal transmission direction configuration in time unit W1.
  • the identifier of the first subband is smaller or larger than the identifier of the second subband, or the statically configured symbol direction of the first subband in time unit W1 is uplink or downlink. , wherein the statically configured symbol direction of the first subband in time unit W1 conflicts with the statically configured symbol direction of the second subband in time unit W1.
  • the signal transmission direction of the first subband in time unit W1 is Dynamic-D/U
  • the statically configured symbol direction of the second subband in time unit W1 is Semi-U/D
  • the signal transmission direction of the first subband in time unit W1 is Dynamic-D/U
  • the signal transmission direction of the second subband in time unit W1 is RRC-U/D
  • the statically configured symbol direction of the first subband in time unit W1 is Semi-D/U
  • the statically configured symbol direction of the second subband in time unit W1 is Semi-U/D. Please refer to Table 5 for details.
  • the identification (ID) of the first subband may be smaller or larger than the ID of the second subband.
  • the transmission direction of the first subband in time unit W1 is the uplink direction or the downlink direction
  • the transmission direction of the second subband in time unit W1 is the downlink direction or the uplink direction
  • the terminal device can select the first subband. To determine the transmission direction of the reference cell and at least one of the first other cells in the time unit W1.
  • the first subband is configured with a statically configured symbol direction in time unit W1
  • the second subband is configured with a statically configured symbol direction in time unit W1
  • the first subband has no signal transmission direction configuration in time unit W1.
  • the second subband has no signal transmission direction configuration in time unit W1
  • the identity of the first subband is smaller than or greater than the identity of the second subband
  • the statically configured symbol direction of the first subband in time unit W1 is uplink Or downlink, wherein the statically configured symbol direction of the first subband at time unit W1 conflicts with the statically configured symbol direction of the second subband at time unit W1.
  • the transmission direction of the first subband in time unit W1 is Dynamic-D/U
  • the transmission direction of the second subband in time unit W1 is Semi-U/D.
  • the transmission direction of the first subband in time unit W1 is RRC-D/U
  • the transmission direction of the second subband in time unit W1 is Semi-U/D.
  • the transmission direction of the first subband in time unit W1 is Dynamic-D/U
  • the transmission direction of the second subband in time unit W1 is RRC-U/D.
  • the transmission direction of the first subband in time unit W1 is RRC-D/U
  • the transmission direction of the second subband in time unit W1 is Dynamic-U/D.
  • the transmission direction of the first subband in time unit W1 is Semi-D/U
  • the transmission direction of the second subband in time unit W1 is Semi-U/D
  • the signal transmission direction of the first subband in time unit W1 is synchronization signal block and physical broadcast signal block (synchronization signal block and physical broadcast signal block (SSB)
  • the transmission direction of the second subband in time unit W1 is RRC-U/Dynamic-U. It should be understood that the RRC-D in the aforementioned scenarios 1 to 5 may not include SSB.
  • the transmission direction of the first subband configured in time unit W1 is Dynamic-D
  • the transmission direction of the second subband configured in time unit W1 is RRC-U
  • the terminal device determines that the final signal transmission direction of the SBFD cell is downlink transmission. direction
  • the terminal equipment therefore selects the first subband to determine the transmission direction configured between the reference cell and at least one of the first other cells in the time unit W1.
  • the transmission direction of the first subband configured in time unit W1 is Dynamic-U, and the transmission direction of the second subband configured in time unit W1 is RRC-D.
  • the terminal device determines that the final signal transmission direction of the SBFD cell is uplink transmission. direction, the terminal equipment therefore selects the first subband to determine the transmission direction of the reference cell and at least one of the first other cells in the time unit W1.
  • the transmission direction of the first subband configured in time unit W1 is SSB
  • the transmission direction of the second subband configured in time unit W1 is RRC-U/Dynamic-U
  • the terminal equipment determines that the final signal transmission direction of the SBFD cell is In the downlink transmission direction, the terminal equipment therefore selects the first subband to determine the transmission direction configured by the reference cell and at least one of the first other cells in the time unit W1.
  • the multiple scenarios listed above can be combined with each other.
  • the transmission directions of the second subband in time unit W1 are RRC-D and Semi-D
  • the transmission directions of the first subband in time unit W1 are Dynamic-U and Semi-U.
  • the terminal device 120 can select the first subband.
  • the transmission direction between the reference cell and the first other cell in time unit W1 is determined.
  • the terminal device 120 may not select the statically configured symbol direction of the first subband or the second subband to determine the transmission direction of the reference cell and the first other cell in the time unit W1.
  • the terminal device 120 may determine the first subband according to one of the above three conditions.
  • the terminal device 120 can determine the transmission direction of the reference cell and the first other cell in time unit W1 according to the first subband.
  • One possible implementation is that when the signal transmission direction of the first subband in time unit W1 conflicts with the signal transmission direction of the second subband in time unit W1, the terminal device 120 can first determine the final signal transmission direction of the SBFD cell, and then The subband consistent with the final signal transmission direction of the SBFD cell performs direction conflict processing with the first other cell.
  • the signal transmission direction of the first subband in time unit W1 is RRC-D
  • the signal transmission direction of the second subband in time unit W1 is Dynamic-U
  • the terminal device 120 determines that the final signal transmission direction of the SBFD cell is Dynamic- U, then the first subband whose transmission direction is Dynamic-U in time unit W1 will perform transmission direction conflict processing with another cell.
  • One possible implementation is that when the transmission direction of the first subband in time unit W1 is a statically configured symbol direction, and the transmission direction of the second subband in time unit W1 is a statically configured symbol direction, the transmission direction between the first subband and the second subband is a statically configured symbol direction.
  • the SBFD cell does not need to be used as a reference cell or other cells. In this way, the four scenarios listed in Table 4 can also be avoided.
  • the transmission direction of the first subband in time unit W1 is a statically configured symbol direction and signal transmission direction
  • the transmission direction of the second subband in time unit W1 is a statically configured symbol direction and no signal transmission direction
  • the SBFD cell can be a reference cell or other cells. , but the SBFD cell only handles direction conflicts in the subband in the direction of signal transmission.
  • the above-mentioned terminal device 120 uses the first subband to determine the transmission direction of the reference cell and the first other cell in the time unit W1 only as an exemplary description, and is intended to describe the transmission direction of any two subbands of the SBFD cell in the time unit W1.
  • the terminal device 120 may determine the transmission direction of the reference cell and the first other cell in time unit W1 according to one of the subbands of the SBFD cell.
  • the terminal device 120 may also determine the reference cell and the first other cell based on the first subband. The transmission direction of the cell in time unit W1.
  • time unit W1 may include at least one of the following:
  • the transmission direction conflict mentioned above is performed on the time slot (which can be one time slot or multiple time slots).
  • the transmission direction conflict mentioned above is performed on the symbol (which can be one symbol or multiple symbols).
  • the transmission direction conflict mentioned above is determined and processed on the mini-slot (which can be one mini-slot or multiple mini-slots).
  • this application can solve the problem of how to solve the problem of the transmission direction conflict between the reference cell and the first other cell in the time unit when the serving cells corresponding to different component carriers include SBFD cells.
  • a possible implementation method is to configure at least one of the following constraints on the SBFD cell:
  • statically configured symbol direction (Semi-D/U) of the first subband in time unit W1 is consistent with the signal transmission direction (RRC-D/U, Dynamic-D/U) of the second subband in time unit W1 ;
  • statically configured symbol direction (Semi-D/U) of the first subband in time unit W1 is consistent with the statically configured symbol direction (Semi-D/U) of the second subband in time unit W1;
  • statically configured symbol type of the first subband in time unit W1 is Semi-F
  • statically configured symbol type of the second subband in time unit W1 is Semi-F
  • the terminal device 120 may receive the first indication information sent by the network device, and the first indication information is used to indicate that the network device 110 is a terminal device. 120 configures at least two activated serving cells, and the at least two activated serving cells include at least one SBFD cell.
  • the following determination of the reference cell and at least one other cell refers to the determination of the reference cell and at least one other cell on the time unit W1.
  • the terminal device 120 can determine the reference cell and at least one other cell among the at least two activated serving cells according to the first indication information sent by the network device 110 .
  • the terminal device 120 may determine the above-mentioned at least two activated serving cells according to the first indication information.
  • the activated serving cells configured with static transmission directions in time unit W1 may form the first cell set.
  • the terminal device 120 determines that the first cell in the first cell set is the reference cell, and in addition, the remaining cells in the at least two activated serving cells except the first cell are all other cells.
  • the first cell may be any activated serving cell in the first cell set.
  • the terminal device can select a cell set that can be used as a reference cell from at least two activated serving cells, and each cell in the cell set is an activated serving cell configured with a static transmission direction in the first time unit. , and then the terminal device can select any cell from the cell set as the reference cell.
  • the selection of the reference cell can be avoided from changing with dynamic signal transmission
  • the terminal equipment can determine the reference cell in the first time unit in advance, and the inconsistent understanding of the reference cell by the terminal equipment and the cell due to dynamic signal reception failure can be avoided. The problem.
  • the terminal equipment determines the first cell as the reference cell from the cell set, all cells in the at least two activated serving cells except the first cell are other cells.
  • each of the at least two activated serving cells is configured with a transmission direction in the first time unit.
  • the index value of the first cell is the minimum value among the index values of all cells in the first cell set.
  • the network device 110 can ensure that the transmission direction of the first other cell in time unit W1 does not conflict with the transmission direction of the reference cell in time unit W1.
  • each SBFD cell in the at least one SBFD cell may be configured with a signal transmission direction on the time unit W1.
  • a signal transmission direction on the time unit W1 For example, static signal transmission direction.
  • the symbol direction configurations of multiple subbands may be different.
  • the symbol direction configuration of the subbands cannot represent the transmission direction of the SBFD cell.
  • the SBFD cell can be avoided from participating in direction conflict processing and judgment. This can reduce the complexity of terminal processing. That is, only SBFD cells with signal transmission will participate in direction conflict processing.
  • the index value of the first subband is smaller than the index value of the second subband.
  • the index value of the first subband is the minimum value among the index values of all subbands in the SBFD cell.
  • the terminal device 120 may first send second indication information to the network device 110.
  • the second indication information is used to indicate whether the terminal device 120 supports simultaneous transceiver capability between frequency bands.
  • the frequency bands to which all cells in the first cell set belong are the same, for example, they are all the first frequency band. If the second indication information is used to indicate that the terminal device 120 does not support the simultaneous transmission and reception capability between frequency bands, the frequency bands to which all cells in the first cell set belong are not the same. For example, the frequency band to which some cells belong is the first frequency band, and the frequency band to which some cells belong is the first frequency band. The frequency band is the second frequency band, and so on.
  • the frequency bands to which all cells in the first cell set belong include the first frequency band and the second frequency band, and the second frequency band is different from the first frequency band. frequency band.
  • the network device 110 configures multiple serving cells for the terminal device 120 .
  • the terminal device 120 can perform cell access.
  • the cell where the terminal device 120 performs initial access is the primary cell (PCell).
  • the network device 120 can establish a CA frequency point set through manual configuration, and the CA frequency point set includes multiple frequency points.
  • the cells corresponding to these frequency points are candidate cells (secondary cells, SCell).
  • the network device 110 may determine the candidate cells that the terminal device needs to add based on the capabilities of the candidate cells and the terminal device 120, and send the relevant information of these candidate cells to the terminal device 120 through an RRC reconfiguration message.
  • the terminal device 120 can add corresponding candidate cells according to the relevant information of the candidate cells.
  • there are two ways to configure candidate cells : blind configuration and measurement-based configuration.
  • the terminal device 120 When blind configuration is adopted, the terminal device 120 directly configures the candidate cell according to the candidate cell related information delivered by the network device 110 . When using measurement-based configuration, the terminal device 120 needs to consider the signal quality of the cell. Only when the signal quality of the cell meets certain conditions, the cell can be configured as a candidate cell.
  • the RRC signaling may include high-level configuration CellGroupConfig IE, and CellGroupConfig IE includes sCell set (sCellToAddModList), sCell set Each sCell in the sCell is configured through SCellConfig.
  • the configuration of SCellConfig includes sCellState-r16ENUMERATED ⁇ activated ⁇ .
  • sCellState-r16 When sCellState-r16 is configured, the candidate cell is configured as the activated serving cell. After the candidate cell is initially configured, the terminal device 120 or the network device 110 may subsequently activate/deactivate the candidate cell through MAC CE.
  • the network device 110 can determine when the candidate cell becomes active. The network device 110 may decide whether to activate the candidate cell according to the traffic volume of the terminal device 120. When the traffic volume waiting for transmission by the terminal device 120 is large, the network device 110 activates the candidate cell. Among them, the primary cell accessed by the terminal device 120 may always be in an active state.
  • the SBFD cell may not be used as a reference cell, but only as other cells. In this way, the above conflict problem can also be solved.
  • the execution subject of the communication method shown in Figure 3 may also be the network device 110.
  • the steps performed by the network device 110 are basically the same as the steps performed by the terminal device 120. For details, please refer to the above content and will not be described again.
  • the network device 110 can send terminal device capability request information (for example, terminal device capability query signaling) to the terminal device 120, and the capability request information is used for The request inquires about the capabilities of the terminal device 120 .
  • terminal device capability request information for example, terminal device capability query signaling
  • the terminal device 120 may send terminal device capability feedback information (eg, terminal device capability signaling) to the network device 110, and the terminal device capability feedback information is used to feed back the capabilities of the terminal device 120 to the network device 110.
  • terminal device capability feedback information eg, terminal device capability signaling
  • the terminal device capability feedback information may include the CA capability of the terminal device 120, and may also include information such as frequency band combinations supported by the terminal device 120, whether the capability of simultaneous transmission and reception between frequency bands is supported, and other information.
  • the network device 110 can configure multiple serving cells for the terminal device 120 based on the terminal device capabilities fed back by the terminal device 120 .
  • the network device 110 can configure multiple serving cells for the terminal device 120 according to the capabilities reported by the terminal device 120, And the multiple serving cells may be distributed on the frequency band combination supported by the terminal device 120.
  • the network device 110 can also activate one or more serving cells configured by the network device 110 for the terminal device 120 for the terminal device 120 .
  • the terminal device 120 may determine the reference cell and at least one other cell from the activated serving cells.
  • Figure 4 is an interactive flow chart of the communication method 400 according to the embodiment of the present application.
  • the method flow in Figure 4 can be executed by the terminal device 120, or by modules and/or devices (for example, chips or integrated circuits) with corresponding functions installed in the terminal device 120, which are not limited by the embodiments of this application.
  • the following description takes the terminal device 120 as an example.
  • communication method 400 includes:
  • the terminal device 120 determines the reference subband and at least one other subband in time unit W2.
  • the reference subband and at least one other subband are subbands configured with a transmission direction in time unit W2.
  • the reference subband is in time unit W2.
  • the transmission direction conflicts with the transmission direction of the first other subband at time unit W2.
  • the terminal device 120 may determine a reference sub-band and at least one other sub-band on the time unit W2.
  • the reference subband and at least one other subband are subbands configured with a transmission direction on time unit W2.
  • one time unit may include multiple subbands.
  • One subband among the multiple subbands can be used as a reference subband, and all subbands except the reference subband can be used as other subbands.
  • time unit W2 On one time unit (eg, time unit W2), there may be a conflict in the transmission direction of the reference subband and at least one other subband on the time unit.
  • the embodiment of the present application only describes the conflict between the reference subband and the transmission direction of the first other subband in the time unit W2 as an example, but does not limit the reference subband to the at least one other subband. Scenarios such as the transmission direction conflict of the second other subband in the subband on time unit W2.
  • the first other subband is another subband configured with a direction conflict parameter
  • the direction conflict processing parameter is used to enable the terminal device to determine that the first other subband can participate in direction conflict processing. For example, when the terminal device determines that the transmission direction of the first other subband in time unit W2 conflicts with the transmission direction of the reference subband in time unit W2, and determines that the first other subband is configured with a direction conflict processing parameter, it can then One other subband and the reference subband perform direction conflict processing and judgment in the transmission direction of time unit W2. In other words, the terminal device can determine, based on the parameter, to perform direction conflict processing on the transmission directions of the first other subband and the reference subband on the time unit W2.
  • the first other subband may be another subband that is not configured with direction conflict processing parameters, and the terminal device may directly perform direction conflict processing judgment on the transmission direction of the first other subband and the reference subband in time unit W2.
  • the reference subband and at least one other subband belong to the SBFD cell; or the reference subband belongs to the SBFD cell and at least one other subband belongs to the Legacy TDD cell; or the reference subband belongs to the Legacy TDD cell and at least one Other subbands belong to the SBFD cell, which is not limited by the embodiment of this application.
  • the terminal device 120 determines the transmission direction of the reference subband and at least one of the first other subbands in the time unit W2 according to the reference subband.
  • the transmission direction of the reference subband in time unit W2 conflicts with the transmission direction of the first other subband in time unit W2.
  • the terminal device may process the reference subband according to the transmission direction of the reference subband in time unit W2. with the first other subbands respectively in the transmission direction of time unit W2.
  • the description of the transmission direction can be found above and will not be repeated here.
  • the terminal device 120 may cancel the signal transmission direction of the first other subband at time unit W2.
  • the terminal device 120 may cancel the transmission direction of the first other subband in time unit W2. .
  • the transmission direction of the reference subband in symbol #M is Dynamic-D/U
  • the transmission direction of other subbands in symbol #M is Dynamic-U/D.
  • the terminal device 120 hopes to avoid this situation. occurrence (error case).
  • the transmission direction of the reference cell in symbol #M is Dynamic-D
  • the transmission direction of other subbands in symbol #M is Semi-U/RRC-U
  • the terminal device 120 cancels transmission in other subbands (drop U on other sub-band).
  • the transmission direction of the reference subband in symbol #M is Dynamic-U
  • the transmission direction of other cells in symbol #M is Semi-D/RRC-D
  • the terminal device 120 cancels reception in other subbands (drop D on other sub-band).
  • the transmission direction of the reference subband in symbol #M is Semi-D/U
  • the transmission direction of other cells in symbol #M is RRC-U/D
  • the terminal device 120 cancels transmission/reception in other subbands ( drop U/D on other sub-band).
  • the transmission direction of the reference subband in symbol #M is RRC-D/U
  • the transmission direction of other subbands in symbol #M is Semi-U/D
  • the terminal device 120 cancels transmission/reception in other subbands. (drop U/D on other sub-band).
  • the transmission direction of the reference subband in symbol #M is RRC-D/U
  • the transmission direction of other subbands in symbol #M is RRC-U/D
  • the terminal device 120 cancels the transmission in other subbands/ Receive (drop U/D on other sub-band).
  • the present application can solve the problem of how to handle when there is a transmission direction conflict between the reference subband and other subbands on the same time unit.
  • the terminal device 120 determines the transmission direction of the reference subband and the first other subband in time unit W2 based on the reference subband, as follows:
  • the rules shown in Table 7 handle direction conflicts. See Table 7 for details.
  • the transmission direction of the reference subband in time unit W2 is Semi-D/U
  • the transmission direction of other subbands (first other subbands) in time unit W2 is Dynamic-U/D.
  • the terminal device 120 cancels transmission/reception (drop U/D on other sub-band) in other sub-bands (first other sub-band).
  • the transmission direction of the reference subband in time unit W2 is Semi-D/U
  • the transmission direction of other subbands (the first other subband) in time unit W2 is Semi-U/D
  • the terminal device 120 cancels the transmission direction in time unit W2. Transmission/reception of other sub-bands (drop U/D on other sub-band).
  • the transmission direction of the reference subband in time unit W2 is Semi-D/U
  • the transmission direction of other subbands (the first other subband) in time unit W2 is RRC-U/D
  • the terminal device 120 cancels the transmission direction in time unit W2.
  • Transmission/reception of other sub-bands drop U/D on other sub-band.
  • the transmission direction of the reference subband in time unit W2 is Semi-D/U
  • the transmission direction of other subbands (the first other subband) in time unit W2 is Dynamic-U/D
  • the terminal device 120 cancels the transmission direction in time unit W2.
  • Receive/transmit reference sub-band drop D/U on reference sub-band).
  • the transmission direction of the reference subband in time unit W2 is RRC-D/U
  • the transmission direction of other subbands (the first other subband) in time unit W2 is RRC-U/D
  • the terminal device 120 cancels the transmission direction in time unit W2. Transmission/reception of other sub-bands (drop U/D on other sub-band).
  • the index value of the reference subband is the minimum value among the index values of all subbands in the SBFD cell or Legacy TDD cell.
  • the index value of the reference subband is the minimum value among the index values of all subbands in the subband set configured with the transmission direction.
  • the index value of the reference subband is the minimum value among the index values of all subbands in the subband set with static transmission direction configuration.
  • Other subbands are subbands excluding the reference subband in at least two activated serving cells.
  • the transmission direction of any subband in the SBFD cell is the dynamic signal transmission direction in time unit W2
  • the transmission direction of the remaining subbands in the time unit W2 needs to be consistent with the dynamic signal transmission direction, otherwise it can be canceled
  • the remaining subbands are in the transmission direction of time unit W2.
  • the terminal device 120 may receive the third indication information sent by the network device 110, and the third indication information is used to instruct the network device 110 At least two active serving cells are configured for the terminal device 120, and the at least two active serving cells include at least one SBFD cell.
  • the terminal device 120 can determine the reference subbands and at least one other subband in at least two activated serving cells according to the third indication information sent by the network device 110 .
  • the terminal device 120 may determine the above-mentioned at least two activated serving cells according to the third indication information, and determine the first subband set from the above-mentioned at least two activated serving cells.
  • Each subband set in the first subband set The bands are subbands configured with static transmission directions in at least two of the above activated serving cells.
  • the terminal device 120 may determine that the first subband in the first subband set is the reference subband, and the remaining subbands in the subband set (the subbands included in the at least two activated serving cells) except the first subband are all for other sub-bands.
  • the first subband may be any subband in the first subband set.
  • the subbands belonging to the SBFD cell in the first subband set are configured with static signal transmission directions.
  • the index value of the first subband is the minimum value among the index values of all subbands in the first subband set.
  • the network device 110 can ensure that the transmission direction of the first other subband in time unit W2 and the transmission direction of the reference subband in time unit W2 are not the same. conflict.
  • Reference cells can be selected according to the above scheme:
  • Method 1 when the reference cell is an SBFD cell, the index value of the reference subband is the minimum value among the index values of all subbands in the SBFD cell;
  • Method 2 Optional.
  • the reference cell is an SBFD cell
  • the transmission direction of the SBFD cell is obtained according to the conflict handling criteria within the SBFD cell.
  • the index value of the reference subband is the subband in the SBFD cell that has the same transmission direction as the SBFD cell. The minimum value among the index values;
  • Method 3 when the reference cell is a legacy TDD cell, the reference subband is the subband corresponding to the legacy TDD cell;
  • a possible implementation is that when the reference subband and the first other subband both belong to the SBFD cell, the reference subband and the first other subband are handled according to the conflict within the SBFD cell.
  • Guidelines for conflict resolution The specific conflict handling within the SBFD cell shall be subject to the final agreement, and this is not limited in the embodiments of this application.
  • the terminal device 120 may first send fourth indication information to the network device 110.
  • the fourth indication information is used to indicate whether the terminal device 120 supports simultaneous transceiver capability between frequency bands.
  • the fourth indication information is used to instruct the terminal device 120 to support simultaneous transmission and reception capabilities between frequency bands
  • all subbands in the subband set belong to the same frequency band, for example, they are all the third frequency band.
  • the fourth indication information is used to indicate that the terminal device 120 does not support the simultaneous transmission and reception capability between frequency bands
  • the frequency bands to which all subbands in the subband set belong are not the same.
  • the frequency band to which some subbands belong is the third frequency band
  • the frequency band to which some subbands belong is the third frequency band.
  • the frequency band to which the band belongs is the fourth frequency band, and so on.
  • the frequency bands to which all subbands in the subband set belong include the third frequency band and the fourth frequency band, and the fourth frequency band is different from the fourth frequency band. Three bands.
  • the execution subject of the communication method shown in Figure 4 may also be the network device 110.
  • the steps performed by the network device 110 are basically the same as the steps performed by the terminal device 120. For details, please refer to the above content and will not be described again.
  • both the terminal and the network device may include a hardware structure and/or a software module to implement the above functions in the form of a hardware structure, a software module, or a hardware structure plus a software module. Whether one of the above functions is performed as a hardware structure, a software module, or a hardware structure plus a software module depends on the specific application and design constraints of the technical solution.
  • FIG 5 is a schematic structural block diagram of a communication device 500 according to an embodiment of the present application. See Figure 5.
  • the communication device 500 can be used to perform the process performed by the terminal device 120 in the embodiments shown in Figures 3 and 4.
  • FIGs 3 and 4 please refer to the relevant introduction in the above method embodiments.
  • the communication device 500 includes a processing module 501 and a transceiver module 502.
  • the transceiver module 502 can implement corresponding communication functions, and the processing module 501 is used for data processing.
  • the transceiver module 502 may also be called a communication interface or communication module.
  • the communication device 500 may further include a storage module, which may be used to store instructions and/or data.
  • the processing module 501 can read instructions and/or data in the storage module, so that the communication device implements the foregoing method embodiments.
  • the communication device module 500 may be used to perform the actions performed by the terminal device in the above method embodiment.
  • the communication device 500 may be a terminal device or a component configurable in the terminal device.
  • the processing module 501 is used to perform operations related to processing on the terminal device side in the above method embodiment.
  • the transceiver module 502 is configured to perform reception-related operations on the terminal device side in the above method embodiment.
  • the transceiver module 502 may include a sending module and a receiving module.
  • the sending module is used to perform the sending operation in the above method embodiment.
  • the receiving module is used to perform the receiving operation in the above method embodiment.
  • the communication device 500 may include a sending module but not a receiving module.
  • communication device 500 may include a receiving module but not a transmitting module. Specifically, it may depend on whether the above solution executed by the communication device 500 includes a sending action and a receiving action.
  • Processing module 501 configured to determine a reference cell and at least one other cell on time unit W1.
  • the reference cell and at least one other cell are active serving cells configured with a transmission direction in time unit W1; the transmission direction of the reference cell in time unit W1 When the transmission direction conflicts with the first other cell in time unit W1, at least one cell among the reference cell and the first other cell is an SBFD cell, and the SBFD cell includes a first subband and a second subband;
  • the processing module 501 is also configured to determine the transmission direction of the reference cell and at least one of the first other cells in the time unit W1 according to the first subband.
  • the transceiver module 502 is configured to send second indication information to the network device or to receive the first indication information sent by the network device.
  • the processing module 501 is also configured to determine the reference subband and at least one other subband in time unit W2.
  • the reference subband and at least one other subband are subbands configured with transmission directions in time unit W2. band, the transmission direction of the reference subband in time unit W2 conflicts with the transmission direction of the first other subband in time unit W2.
  • the processing module 501 is also configured to determine the transmission direction of the reference subband and at least one of the first other subbands in time unit W2 according to the reference subband.
  • the transceiver module 502 is also configured to receive third indication information sent by the network device.
  • the third indication information is used to instruct the network device to configure at least two activated serving cells for the terminal device, and the at least two activated serving cells include at least one SBFD cell. .
  • the transceiver module 502 is also configured to send fourth indication information to the network device.
  • the fourth indication information is used to indicate whether the terminal device supports simultaneous transceiver capability between frequency bands.
  • the processing module 501 in the above embodiment may be implemented by at least one processor or processor-related circuit.
  • the transceiver module 502 may be implemented by a transceiver or a transceiver-related circuit.
  • the transceiver module 502 may also be called a communication module or communication interface.
  • the storage module can be implemented by at least one memory.
  • FIG. 6 is a schematic block diagram of the structure of the communication device 600 according to the embodiment of the present application.
  • the communication device 600 can be used to perform the process performed by the network device 110 in the embodiments shown in Figures 3 and 4.
  • the relevant introduction in the above method embodiments please refer to the relevant introduction in the above method embodiments.
  • the communication device 600 includes a transceiver module 601.
  • the communication device 600 also includes a processing module 602.
  • the transceiver module 601 can implement corresponding communication functions, and the processing module 602 is used for data processing.
  • the transceiver module 601 may also be called a communication interface or communication module.
  • the communication device 600 may also include a storage module, which may be used to store instructions and/or data.
  • the processing module 602 can read instructions and/or data in the storage module, so that the communication device 600 implements the foregoing method embodiments.
  • the communication device 600 may be used to perform the actions performed by the network device 110 in the above method embodiment.
  • the communication device 600 may be the network device 110 or a component configurable in the network device 110 .
  • the transceiver module 601 is used to perform reception-related operations on the network device 110 side in the above method embodiment, and the processing module 602 is used to perform processing-related operations on the network device 110 side in the above method embodiment.
  • the transceiver module 601 may include a sending module and a receiving module.
  • the sending module is used to perform the sending operation in the above method embodiment.
  • the receiving module is used to perform the receiving operation in the above method embodiment.
  • the communication device 600 may include a sending module but not a receiving module.
  • communication device 600 may include a receiving module but not a transmitting module. Specifically, it may depend on whether the above solution executed by the communication device 600 includes a sending action and a receiving action.
  • Transceiver module 601 configured to determine the reference cell and at least one other cell on the time unit W1, and the reference cell and at least one other cell.
  • the other cell is an activated serving cell configured with a transmission direction in time unit W1; the transmission direction of the reference cell in time unit W1 conflicts with the transmission direction of the first other cell in time unit W1, and the reference cell is in conflict with at least one of the first other cells.
  • the cell is an SBFD cell, and the SBFD cell includes a first subband and a second subband;
  • the processing module 601 is also configured to determine the transmission direction of the reference cell and at least one of the first other cells in the time unit W1 according to the first subband.
  • the transceiver module 602 is configured to send first indication information to the terminal device 120 or to receive the second indication information sent by the terminal device 120 .
  • the processing module 601 is also configured to determine the reference subband and at least one other subband in time unit W2.
  • the reference subband and at least one other subband are subbands configured with transmission directions in time unit W2. band, the transmission direction of the reference subband in time unit W2 conflicts with the transmission direction of the first other subband in time unit W2.
  • the processing module 601 is also configured to determine the transmission direction of the reference subband and at least one of the first other subbands in time unit W2 according to the reference subband.
  • the transceiver module 602 is also configured to send third indication information to the terminal device 120.
  • the third indication information is used to instruct the network device 110 to configure at least two activated serving cells for the terminal device 110, and the at least two activated serving cells include at least one SBFD community.
  • the transceiver module 502 is also configured to receive fourth indication information sent to the terminal device.
  • the fourth indication information is used to indicate whether the terminal device 120 supports simultaneous transceiver capability between frequency bands.
  • the processing module 501 in the above embodiment may be implemented by at least one processor or processor-related circuit.
  • the transceiver module 502 may be implemented by a transceiver or a transceiver-related circuit.
  • the transceiver module 502 may also be called a communication module or communication interface.
  • the storage module can be implemented by at least one memory.
  • Figure 7 is a schematic structural block diagram of a communication device 700 according to an embodiment of the present application.
  • the communication device 700 can be used to implement the functions of the network device 110 and the terminal device 120 in the above method.
  • the communication device 700 may be a chip in the network device 110 or the terminal device 120 .
  • the communication device 700 includes an input/output interface 720 and a processor 710 .
  • the input/output interface 720 may be an input/output circuit.
  • the processor 710 can be a signal processor, a chip, or other integrated circuit that can implement the method of the present application. Among them, the input and output interface 720 is used for input or output of signals or data.
  • the input and output interface 720 is used to receive the first instruction information sent by the network device 110, and the first instruction information is used to instruct the network device 110 to configure at least two terminal devices for the terminal device 120.
  • the input and output interface 720 is used to send first indication information to the terminal device 110, and the first indication information is used to instruct the network device 110 to configure at least two activations for the terminal device 120.
  • the processor 710 is used to execute some or all steps of any method provided in this application.
  • the processor 710 implements the functions implemented by the network device 110 or the terminal device 120 by executing instructions stored in the memory.
  • the communication device 700 further includes a memory.
  • processor and memory are integrated together.
  • the memory is external to the communication device 1300.
  • the processor 710 may be a logic circuit, and the processor 710 inputs/outputs messages or signaling through the input/output interface 720 .
  • the logic circuit may be a signal processor, a chip, or other integrated circuits that can implement the methods of the embodiments of the present application.
  • FIG. 7 The above description of the device in FIG. 7 is only an exemplary description.
  • the device can be used to perform the method described in the previous embodiment.
  • FIG. 8 is a schematic block diagram of the structure of the communication device 800 according to the embodiment of the present application.
  • the communication device 80 includes a processor 810.
  • the processor 810 is coupled to a memory 820.
  • the memory 820 is used to store computer programs or instructions and/or data.
  • the processor 810 is used to execute the computer programs or instructions and/or data stored in the memory 820, so that The methods in the above method embodiments are executed.
  • the communication device 800 includes one or more processors 810 .
  • the communication device 800 may further include a memory 820 .
  • the communication device 800 may include one or more memories 820 .
  • the memory 820 may be integrated with the processor 810 or provided separately.
  • the communication device 800 may also include a transceiver 830, which is used for receiving and/or transmitting signals.
  • the processor 810 is used to control the transceiver 830 to receive and/or transmit signals.
  • the communication device 800 is used to implement operations performed by network equipment, terminal equipment, or communication equipment in the above method embodiments.
  • the processor 810 is used to implement processing-related operations performed by the network device, terminal device, or communication device in the above method embodiment
  • the transceiver 830 is used to implement the processing-related operations performed by the network device, terminal device, or communication device in the above method embodiment.
  • the sending and receiving related operations performed by the communication equipment are used to implement processing-related operations performed by the network device, terminal device, or communication device in the above method embodiment.
  • FIG. 9 is a schematic block diagram of a communication device 900 according to an embodiment of the present application.
  • the communication device 900 may be a network device 110 or a chip.
  • the communication device 900 may be used to perform operations performed by the network device 110 in the above method embodiments shown in FIGS. 3 to 4 .
  • FIG. 9 shows a simplified schematic structural diagram of a base station.
  • the base station includes a 910 part, a 920 part and a 930 part.
  • Part 910 is mainly used for baseband processing, controlling the base station, etc.
  • Part 910 is usually the control center of the base station, which can usually be called a processor, and is used to control the base station to perform processing operations on the network device side in the above method embodiments.
  • Part 920 is primarily used to store computer program code and data.
  • Part 930 is mainly used for the transmission and reception of radio frequency signals and the conversion of radio frequency signals and baseband signals; part 930 can usually be called a transceiver module, a transceiver, a transceiver circuit, or a transceiver, etc.
  • the transceiver module of part 930 may also be called a transceiver or transceiver, etc., which includes an antenna 933 and a radio frequency circuit (not shown in the figure), where the radio frequency circuit is mainly used for radio frequency processing.
  • the device used to implement the receiving function in part 930 can be regarded as a receiver, and the device used to implement the transmitting function can be regarded as a transmitter, that is, part 930 includes a receiver 932 and a transmitter 931.
  • the receiver can also be called a receiving module, receiver, or receiving circuit, etc.
  • the transmitter can be called a transmitting module, transmitter, or transmitting circuit, etc.
  • Parts 910 and 920 may include one or more single boards, and each single board may include one or more processors and one or more memories.
  • the processor is used to read and execute programs in the memory to implement baseband processing functions and control the base station. If there are multiple boards, each board can be interconnected to enhance processing capabilities.
  • multiple single boards may share one or more processors, or multiple single boards may share one or more memories, or multiple single boards may share one or more processors at the same time. device.
  • the transceiver module of part 930 is used to perform transceiver-related processes performed by the network device in the embodiment shown in FIGS. 3 to 4 .
  • the processor in part 910 is used to perform processes related to processing performed by the network device in the embodiment shown in FIGS. 3 to 4 .
  • the processor in part 910 is configured to perform processes related to processing performed by the communication device in the embodiment shown in FIGS. 3 to 4 .
  • the transceiver module of part 930 is used to perform transceiver-related processes performed by the communication device in the embodiment shown in FIGS. 3 to 4 .
  • FIG. 9 is only an example and not a limitation.
  • the network equipment including the processor, memory and transceiver mentioned above may not rely on the structures shown in FIGS. 5 to 8 .
  • the chip When the communication device 900 is a chip, the chip includes a transceiver, a memory, and a processor.
  • the transceiver may be an input-output circuit or a communication interface;
  • the processor may be a processor, a microprocessor, or an integrated circuit integrated on the chip.
  • the sending operation of the network device in the above method embodiment can be understood as the output of the chip, and the receiving operation of the network device in the above method embodiment can be understood as the input of the chip.
  • FIG 10 is a schematic block diagram of a communication device 1000 according to an embodiment of the present application.
  • the communication device 1000 may be the terminal device 120, a processor of the terminal device 110, or a chip.
  • the communication device 1000 may be used to perform operations performed by the terminal device 120 or the communication device in the above method embodiments.
  • FIG. 10 shows a simplified structural schematic diagram of the terminal device 120.
  • the terminal device 120 includes a processor, a memory, and a transceiver.
  • the memory can store computer program code
  • the transceiver includes a transmitter 1031, a receiver 1032, a radio frequency circuit (not shown in the figure), an antenna 1033, and an input and output device (not shown in the figure).
  • the processor is mainly used to process communication protocols and communication data, control the terminal device 120, execute software programs, process data of software programs, etc.
  • Memory is mainly used to store software programs and data.
  • Radio frequency circuits are mainly used for conversion of baseband signals and radio frequency signals and processing of radio frequency signals.
  • Antennas are mainly used to send and receive radio frequency signals in the form of electromagnetic waves.
  • Input and output devices example For example, touch screens, display screens, keyboards, etc. are mainly used to receive data input by users and output data to users. It should be noted that some types of terminal equipment may not have input and output devices.
  • the processor When data needs to be sent, the processor performs baseband processing on the data to be sent and then outputs the baseband signal to the radio frequency circuit.
  • the radio frequency circuit performs radio frequency processing on the baseband signal and then sends the radio frequency signal out in the form of electromagnetic waves through the antenna.
  • the radio frequency circuit receives the radio frequency signal through the antenna, converts the radio frequency signal into a baseband signal, and outputs the baseband signal to the processor.
  • the processor converts the baseband signal into data and processes the data.
  • Only one memory, processor and transceiver are shown in Figure 10. In an actual terminal equipment product, one or more processors and one or more memories may exist. Memory can also be called storage media or storage devices.
  • the memory may be provided independently of the processor, or may be integrated with the processor, which is not limited in the embodiment of the present application.
  • the antenna and the radio frequency circuit with the transceiver function can be regarded as the transceiver module of the terminal device, and the processor with the processing function can be regarded as the processing module of the terminal device.
  • the terminal device includes a processor 1010, a memory 1020 and a transceiver 1030.
  • the processor 1010 may also be called a processing unit, a processing board, a processing module, a processing device, etc.
  • the transceiver 1030 may also be called a transceiver unit, a transceiver, a transceiver device, etc.
  • the components in the transceiver 1030 used to implement the receiving function may be regarded as receiving modules, and the components in the transceiver 1030 used to implement the transmitting function may be regarded as transmitting modules, that is, the transceiver 1030 includes a receiver and a transmitter.
  • a transceiver may also be called a transceiver, a transceiver module, or a transceiver circuit.
  • the receiver may also be called a receiver, receiving module, or receiving circuit.
  • the transmitter may also be called a transmitter, transmitting module or transmitting circuit.
  • the processor 1010 is configured to perform processing actions on the terminal device 120 side in the embodiment shown in FIGS. 3 to 4
  • the transceiver 1030 is configured to perform processing actions on the terminal device 120 side in the embodiment shown in FIGS. 3 to 4 sending and receiving actions.
  • the processor 1010 is configured to perform processing actions on the terminal device 120 side in the embodiment shown in FIGS. 3 to 4
  • the transceiver 1030 is configured to perform processing actions on the terminal device 120 side in the embodiment shown in FIGS. 3 to 4 sending and receiving actions.
  • FIG. 10 is only an example and not a limitation.
  • the above-mentioned terminal device including a transceiver module and a processing module may not rely on the structure shown in FIGS. 5 to 8 .
  • the chip When the communication device 1000 is a chip, the chip includes a processor, a memory and a transceiver.
  • the transceiver may be an input-output circuit or a communication interface;
  • the processor may be a processing module, a microprocessor, or an integrated circuit integrated on the chip.
  • the sending operation of the terminal device in the above method embodiment can be understood as the output of the chip, and the receiving operation of the terminal device in the above method embodiment can be understood as the input of the chip.
  • This application also provides a chip, including a processor, configured to call from a memory and run instructions stored in the memory, so that the communication device installed with the chip executes the methods in each of the above examples.
  • This application also provides another chip, including: an input interface, an output interface, and a processor.
  • the input interface, the output interface, and the processor are connected through an internal connection path.
  • the processor is used to execute the code in the memory. , when the code is executed, the processor is used to execute the methods in each of the above examples.
  • the chip also includes a memory for storing computer programs or codes.
  • This application also provides a processor, coupled to a memory, and used to execute the methods and functions involving network equipment or terminal equipment in any of the above embodiments.
  • a computer program product containing instructions is provided.
  • the method of the aforementioned embodiment is implemented.
  • This application also provides a computer program.
  • the computer program is run in a computer, the methods of the aforementioned embodiments are implemented.
  • a computer-readable storage medium stores a computer program.
  • the computer program is executed by a computer, the method described in the previous embodiment is implemented.
  • plural means two or more than two.
  • At least one of the following” or similar expressions thereof refers to any combination of these items, including any combination of a single item (items) or a plurality of items (items).
  • at least one of a, b, or c can mean: a, b, c, a-b, a-c, b-c, or a-b-c, where a, b, c can be single or multiple .
  • A/B can represent A or B; "and/or” in this application "It is just an association relationship that describes related objects. It means that there can be three relationships.
  • a and/or B can mean: A exists alone, A and B exist simultaneously, and B exists alone. Among them, A , B can be singular or plural.
  • the size of the sequence numbers of the above-mentioned processes does not mean the order of execution.
  • the execution order of each process should be determined by its functions and internal logic, and should not be determined by the implementation process of the embodiments of the present application. constitute any limitation.
  • the size of the sequence numbers of each process does not mean the order of execution.
  • the execution order of each process should be determined by its functions and internal logic, and should not be determined by the execution order of the embodiments of the present application.
  • the implementation process constitutes no limitation.
  • the disclosed systems, devices and methods can be implemented in other ways.
  • the device embodiments described above are only illustrative.
  • the division of units is only a logical function division. In actual implementation, there may be other division methods.
  • multiple units or components may be combined or integrated. to another system, or some features can be ignored, or not implemented.
  • the coupling or direct coupling or communication connection between each other shown or discussed may be through some interfaces, and the indirect coupling or communication connection of the devices or units may be in electrical, mechanical or other forms.
  • a unit described as a separate component may or may not be physically separate.
  • a component shown as a unit may or may not be a physical unit, that is, it may be located in one place, or it may be distributed to multiple network units. Some or all of the units can be selected according to actual needs to achieve the purpose of the solution of this embodiment.
  • each functional unit in each embodiment of the present application can be integrated into one processing unit, or each unit can exist physically alone, or two or more units can be integrated into one unit.
  • Functions may be stored in a computer-readable storage medium when implemented in the form of software functional units and sold or used as independent products.
  • the technical solutions of the embodiments of the present application are essentially or the part that contributes to the existing technology or the part of the technical solution can be embodied in the form of a software product, and the computer software product is stored in a storage medium , including several instructions to cause a computer device (which may be a personal computer, a server, or a network device, etc.) to execute all or part of the steps of the methods of various embodiments of the present application.
  • the aforementioned storage media include: U disk, mobile hard disk, ROM, RAM, magnetic disk or optical disk and other media that can store program codes.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请提供了一种通信方法与通信装置,方法包括:终端设备在第一时间单元确定参考小区与至少一个其他小区,参考小区与至少一个其他小区是在第一时间单元配置有传输方向的激活服务小区;参考小区在第一时间单元的传输方向与第一其他小区在第一时间单元的传输方向冲突,参考小区与第一其他小区中的至少一个小区是子带全双工小区,子带全双工小区包括第一子带与第二子带,第一其他小区是任意一个其他小区,终端设备根据第一子带确定参考小区与第一其他小区中的至少一个小区在第一时间单元的传输方向。通过上述技术方案,本申请能够解决分量载波对应的小区中包括子带全双工小区时,不同分量载波之间存在传输方向不一致的问题。

Description

通信方法与通信装置
本申请要求于2022年8月12日提交中国国家知识产权局、申请号为202210968331.9、申请名称为“通信方法与通信装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及通信技术领域,更具体地,涉及一种通信方法与通信装置。
背景技术
在无线通信系统中,终端设备的峰值速率与其所能获得的通信带宽息息相关。在单个小区的通信带宽固定的情况下,可以通过载波聚合技术将多个小区的通信带宽聚合起来,实现终端设备的峰值速率的提升。
在载波聚合的场景中,当为终端设备配置辅载波时,可以同时携带辅载波的载波索引与工作在该辅载波的辅小区的小区标识。在这种情况下,载波与小区是等同的概念。譬如,终端设备接入载波和终端设备接入小区是等同的概念。其中,载波的带宽可以理解为小区的通信带宽。通过将多个载波(也可称为分量载波)聚合起来,终端设备获得的通信带宽是多个分量载波的带宽之和,其峰值速率也能得到提升。
在一个符号上,不同分量载波之间可能存在传输方向不一致的问题。现有的用于解决不同分量载波之间传输方向不一致的方向冲突处理准则适用于分量载波对应的小区均为时分双工系统中传统的时分双工小区的场景,但不适用于分量载波对应的小区中包括时分双工系统中子带全双工小区的场景。
发明内容
本申请提供一种通信方法与通信装置,能够解决分量载波对应的小区中包括子带全双工小区时,不同分量载波之间存在传输方向不一致的问题。
第一方面,提供了一种通信方法,包括:终端设备在第一时间单元确定参考小区与至少一个其他小区,参考小区与至少一个其他小区是在第一时间单元配置有传输方向的激活服务小区;参考小区在第一时间单元的传输方向与第一其他小区在第一时间单元的传输方向冲突,参考小区与该第一其他小区中的至少一个小区是子带全双工小区,该子带全双工小区包括第一子带与第二子带,第一其他小区是至少一个其他小区中的任意一个其他小区,终端设备根据第一子带确定参考小区与第一其他小区中的至少一个小区在第一时间单元的传输方向。
通过上述技术方案,本申请能够解决分量载波对应的小区中包括子带全双工小区时,不同分量载波之间存在传输方向不一致的问题。
具体来说,当分量载波对应的小区包括SBFD小区时,且SBFD小区包括至少两个子带时,终端设备可以确定SBFD小区的第一子带,并根据第一子带来确定参考小区与第一其他小区中的至少一个小区在第一时间单元上的传输方向。
可选地,参考小区可以是SBFD小区,或者,第一其他小区可以是SBFD小区,或者参考小区与第一其他小区均为SBFD小区。对于参考小区与第一其他小区均为SBFD小区的场景,终端设备需要确定参考小区用于参与方向冲突处理的代表子带(例如,第一子带),以及,第一其他小区用于参与方向冲突处理的代表子带(例如,第三子带),并根据各自的代表子带来确定各自在第一时间单元上的传输方向。
结合第一方面,在第一方面的某些实现方式中,第一子带在第一时间单元的传输方向与第二子带在第一时间单元的传输方向冲突。
如此,就可以避免因第一子带与第二子带在时间单元W1的传输方向冲突而得出两个截然不同的冲突判断结果,从而导致错误判断案例的增加,进而能够有效解决分量载波对应的小区中包括子带全 双工小区时,不同分量载波之间存在传输方向不一致的问题。
结合第一方面,在第一方面的某些实现方式中,传输方向包括以下至少一项:信号传输方向,或者,静态配置的符号方向;信号传输方向包括以下至少一项:静态信号传输方向,或者,动态信号传输方向。
具体而言,至少一个其他小区在第一时间单元上可以配置有上述的静态信号传输方向、动态信号传输方向以及静态配置的符号方向中的任意一种,参考小区在第一时间单元上可以配置有上述的静态信号传输方向、动态信号传输方向以及静态配置的符号方向中的任意一种。
结合第一方面,在第一方面的某些实现方式中,参考小区是在第一时间单元配置有静态传输方向的激活服务小区;静态传输方向包括以下至少一项:静态信号传输方向,或者,静态配置的符号方向。
如此,可以避免参考小区的选择随动态信号传输而变化,终端设备可提前确定好第一时间单元上的参考小区,且可避免因动态信号接收失败导致终端设备和小区对于参考小区的理解不一致的问题。
结合第一方面,在第一方面的某些实现方式中,第一子带满足以下至少一项条件:
条件一:第一子带在第一时间单元配置有信号传输方向,第二子带在第一时间单元没有配置信号传输方向,其中,第一子带在第一时间单元的信号传输方向与第二子带在第一时间单元的静态配置的符号方向冲突;
条件二:第一子带在第一时间单元配置有信号传输方向,第二子带在第一时间单元配置有信号传输方向,第一子带在第一时间单元的信号传输方向与子带全双工小区的最终信号传输方向一致,其中,第一子带在第一时间单元的信号传输方向与第二子带在第一时间单元的信号传输方向冲突;
条件三:第一子带在第一时间单元配置有静态配置的符号方向,第二子带在第一时间单元配置有静态配置的符号方向,第一子带的标识小于或者大于第二子带的标识,或者第一子带在第一时间单元的静态配置的符号方向为上行或者下行,其中,第一子带在第一时间单元的静态配置的符号方向与第二子带在第一时间单元的静态配置的符号方向冲突,以及,第一子带在第一时间单元没有信号传输方向的配置,第二子带在第一时间单元没有信号传输方向的配置。
具体来说,终端设备可以根据上述的多项条件的一项或者多项来确定SBFD小区中的多个子带中用于处理参考小区与第一其他小区在第一时间单元上的传输方向冲突的问题的第一子带。如此,就可以避免因第一子带与第二子带在时间单元W1的传输方向冲突而得出两个截然不同的冲突判断结果,从而导致错误判断案例的增加,进而能够有效解决分量载波对应的小区中包括子带全双工小区时,不同分量载波之间存在传输方向不一致的问题。
上述的三项条件可看做是SBFD小区内冲突处理的示意,根据SBFD小区内冲突处理,确定出SBFD小区的传输方向,第一子带和SBFD小区的传输方向相同。具体的SBFD小区内冲突处理以最终的协议为准,本申请发明内容对此不做限定。
另外,上述的SBFD小区的最终信号传输方向可通过如下示例进行确定:
1)第一子带在第一时间单元配置的传输方向为Dynamic-D,第二子带在第一时间单元配置的传输方向为RRC-U,终端设备确定SBFD小区的最终信号传输方向为下行传输方向,终端设备因此选择第一子带确定参考小区与第一其他小区中的至少一个小区在时间单元W1的传输方向。
2)第一子带在第一时间单元配置的传输方向为Dynamic-U,第二子带在第一时间单元配置的传输方向为RRC-D,终端设备确定SBFD小区的最终信号传输方向为上行传输方向,终端设备因此选择第一子带确定参考小区与第一其他小区中的至少一个小区在时间单元W1的传输方向。
上述的两个示例可看做是SBFD小区内冲突处理的示意,根据SBFD小区内冲突处理,确定出SBFD小区的传输方向,第一子带和SBFD小区的传输方向相同。具体的SBFD小区内冲突处理以最终的协议为准,本申请发明内容对此不做限定。
结合第一方面,在第一方面的某些实现方式中,终端设备在第一时间单元确定参考小区与至少一个其他小区之前,该方法还包括:终端设备接收网络设备发送的第一指示信息,该第一指示信息用于指示网络设备为终端设备配置的至少两个激活服务小区,至少两个激活服务小区包括至少一个SBFD小区。
终端设备可以基于网络设备下发的用于指示网络设备为终端设备配置的至少两个激活服务小区的指示信息来确定参考小区与至少一个其他小区,如此,可以避免非激活的服务小区参与后续的方向冲 突处理,减少终端处理的复杂度。
应理解,参考小区与至少一个其他小区均为上述的至少两个激活服务小区中的激活服务小区。
结合第一方面,在第一方面的某些实现方式中,终端设备在第一时间单元确定参考小区与至少一个其他小区,包括:终端设备确定第一小区集合,该第一小区集合中的每个小区是至少两个激活服务小区中配置有静态传输方向的激活服务小区;终端设备确定第一小区为参考小区,该第一小区是该第一小区集合中的任意一个激活服务小区,至少两个激活服务小区中除该第一小区之外的所有小区为至少一个其他小区。
具体来说,终端设备可以从至少两个激活服务小区中筛选出可以作为参考小区的小区集合,且该小区集合中的每个小区都是在第一时间单元配置有静态传输方向的激活服务小区,然后,终端设备可以从该小区集合中选择任意一个小区作为参考小区。如此,就可以避免参考小区的选择随动态信号传输而变化,终端设备可提前确定好第一时间单元上的参考小区,且可避免因动态信号接收失败导致终端设备和小区对于参考小区的理解不一致的问题。
终端设备从该小区集合中确定第一小区为参考小区之后,至少两个激活服务小区中除第一小区之外的所有小区均为其他小区。
应理解,至少两个激活服务小区中的每个激活服务小区在第一时间单元均配置有传输方向的。
结合第一方面,在第一方面的某些实现方式中,第一小区的索引值是第一小区集合中所有小区的索引值中的最小值。
结合第一方面,在第一方面的某些实现方式中,第一小区集合包括的至少一个SBFD小区中的每个SBFD小区在第一时间单元配置有信号传输方向。
具体地,SBFD小区中,多个子带的符号方向配置可以不同,此时,子带的符号方向配置无法表征SBFD小区的传输方向。在SBFD小区中多个子带有静态符号方向配置,其中存在2个子带的静态配置的符号方向配置相反,且多个子带上均无信号传输的情况下,可避免SBFD小区参与方向冲突处理判断,这可以减少终端处理的复杂度。即有信号传输的SBFD小区才会参与方向冲突处理。
结合第一方面,在第一方面的某些实现方式中,终端设备接收网络设备发送的第一指示信息之前,该方法还包括:
终端设备向网络设备发送第二指示信息,该第二指示信息用于指示终端设备是否支持频段间同时收发能力。
如此,可以使能支持频段间收发能力的终端设备在频段内可进行方向冲突处理。
结合第一方面,在第一方面的某些实现方式中,第二指示信息用于指示终端设备支持该频段间同时收发能力时,第一小区集合中的所有小区所属的频段为第一频段;第二指示信息用于指示终端设备不支持该频段间同时收发能力时,第一小区集合中的所有小区所属的频段包括第一频段与第二频段,第二频段不同于第一频段。
结合第一方面,在第一方面的某些实现方式中,第一其他小区是配置有方向冲突处理参数的其他小区,该方向冲突处理参数用于使终端设备确定第一其他小区参与方向冲突处理。
通过上述参数,终端设备可以确定当第一其他小区与参考小区在第一时间单元上的传输方向发生冲突时,终端设备可以处理该传输方向冲突问题。
结合第一方面,在第一方面的某些实现方式中,第一时间单元包括以下至少一项:时隙,符号,或者,微时隙。
具体来说,第一时间单元为时隙(可以是一个时隙,也可以是多个时隙)时,前文所述的传输方向冲突是在时隙上进行冲突判断处理的。第一时间单元为符号(可以是一个符号,也可以是多个符号)时,前文所述的传输方向冲突是在符号上进行冲突判断处理的。第一时间单元为微时隙(mini-slot)(可以是一个微时隙,也可以是多个微时隙)时,前文所述的传输方向冲突是在微时隙上进行冲突判断处理的。
第二方面,提供了一种通信方法,包括:网络设备在第一时间单元确定参考小区与至少一个其他小区,参考小区与至少一个其他小区是在第一时间单元配置有传输方向的激活服务小区;参考小区在第一时间单元的传输方向与第一其他小区在第一时间单元的传输方向冲突,参考小区与第一其他小区中的至少一个小区是子带全双工SBFD小区,该SBFD小区包括第一子带与第二子带,第一其他小区 是至少一个其他小区中的任意一个其他小区,网络设备根据第一子带确定参考小区与第一其他小区中的至少一个小区在第一时间单元的传输方向。
结合第二方面,在第二方面的某些实现方式中,第一子带在该第一时间单元的传输方向与该第二子带在该第一时间单元的传输方向冲突。
结合第二方面,在第二方面的某些实现方式中,该传输方向包括以下至少一项:信号传输方向,或者,静态配置的符号方向;该信号传输方向包括以下至少一项:静态信号传输方向,或者,动态信号传输方向。
结合第二方面,在第二方面的某些实现方式中,该参考小区是在该第一时间单元配置有静态传输方向的激活服务小区;该静态传输方向包括以下至少一项:静态信号传输方向,或者,静态配置的符号方向。
结合第二方面,在第二方面的某些实现方式中,该第一子带满足以下至少一项条件:
该第一子带在该第一时间单元配置有信号传输方向,该第二子带在该第一时间单元没有配置信号传输方向,其中,该第一子带在该第一时间单元的信号传输方向与该第二子带在该第一时间单元的静态配置的符号方向冲突;
该第一子带在该第一时间单元配置有信号传输方向,该第二子带在该第一时间单元配置有信号传输方向,该第一子带在该第一时间单元的信号传输方向与该SBFD小区的最终信号传输方向一致,其中,该第一子带在该第一时间单元的信号传输方向与该第二子带在该第一时间单元的信号传输方向冲突;
该第一子带在该第一时间单元配置有静态配置的符号方向,该第二子带在该第一时间单元配置有静态配置的符号方向,该第一子带在该第一时间单元没有信号传输方向的配置,该第二子带在该第一时间单元没有信号传输方向的配置,该第一子带的标识小于或者大于该第二子带的标识,或者,该第一子带在该第一时间单元的静态配置的符号方向为上行或者下行,其中,该第一子带在该第一时间单元的静态配置的符号方向与该第二子带在该第一时间单元的静态配置的符号方向冲突。
结合第二方面,在第二方面的某些实现方式中,网络设备在第一时间单元确定参考小区与至少一个其他小区之前,方法还包括:网络设备向终端设备发送第一指示信息,该第一指示信息用于指示网络设备为该终端设备配置的至少两个激活服务小区,至少两个激活服务小区包括至少一个该SBFD小区。
结合第二方面,在第二方面的某些实现方式中,网络设备在第一时间单元确定参考小区与至少一个其他小区,包括:网络设备确定第一小区集合,第一小区集合中的每个小区是至少两个激活服务小区中配置有静态传输方向的激活服务小区;网络设备确定第一小区为参考小区,第一小区是第一小区集合中的任意一个激活服务小区,至少两个激活服务小区中除第一小区之外的所有小区为至少一个其他小区。
结合第二方面,在第二方面的某些实现方式中,第一小区的索引值是第一小区集合中所有小区的索引值中的最小值。
结合第一方面,在第一方面的某些实现方式中,第一小区集合包括的至少一个SBFD小区中的每个SBFD小区在第一时间单元配置有信号传输方向。
结合第二方面,在第二方面的某些实现方式中,网络设备向终端设备发送第一指示信息之前,方法还包括:网络设备接收终端设备发送的第二指示信息,该第二指示信息用于指示终端设备是否支持频段间同时收发能力。
结合第二方面,在第二方面的某些实现方式中,该第二指示信息用于指示终端设备支持该频段间同时收发能力时,第一小区集合中的所有小区所属的频段为第一频段;该第二指示信息用于指示终端设备不支持该频段间同时收发能力时,第一小区集合中的所有小区所属的频段包括第一频段与第二频段,该第二频段不同于该第一频段。
结合第二方面,在第二方面的某些实现方式中,该第一其他小区是配置有方向冲突处理参数的其他小区,该方向冲突处理参数用于使网络设备确定第一其他小区参与方向冲突处理。
结合第二方面,在第二方面的某些实现方式中,第一时间单元包括以下至少一项:时隙,符号,或者,微时隙。
第三方面,提供了一种通信装置,包括:处理单元,用于在第一时间单元确定参考小区与至少一个其他小区,参考小区与至少一个其他小区是在该第一时间单元配置有传输方向的激活服务小区;参考小区在第一时间单元的传输方向与第一其他小区在该第一时间单元的传输方向冲突,参考小区与第一其他小区中的至少一个小区是子带全双工SBFD小区,该SBFD小区包括第一子带与第二子带,第一其他小区是至少一个其他小区中的任意一个其他小区,处理单元,还用于根据该第一子带确定参考小区与第一其他小区中的至少一个小区在该第一时间单元的传输方向。
结合第三方面,在第三方面的某些实现方式中,第一子带在该第一时间单元的传输方向与该第二子带在该第一时间单元的传输方向冲突。
结合第三方面,在第三方面的某些实现方式中,该传输方向包括以下至少一项:信号传输方向,或者,静态配置的符号方向;该信号传输方向包括以下至少一项:静态信号传输方向,或者,动态信号传输方向。
结合第三方面,在第三方面的某些实现方式中,该参考小区是在该第一时间单元配置有静态传输方向的激活服务小区;该静态传输方向包括以下至少一项:静态信号传输方向,或者,静态配置的符号方向。
结合第三方面,在第三方面的某些实现方式中,该第一子带满足以下至少一项条件:
该第一子带在该第一时间单元配置有信号传输方向,该第二子带在该第一时间单元没有配置信号传输方向,其中,该第一子带在该第一时间单元的信号传输方向与该第二子带在该第一时间单元的静态配置的符号方向冲突;
该第一子带在该第一时间单元配置有信号传输方向,该第二子带在该第一时间单元配置有信号传输方向,该第一子带在该第一时间单元的信号传输方向与该SBFD小区的最终信号传输方向一致,其中,该第一子带在该第一时间单元的信号传输方向与该第二子带在该第一时间单元的信号传输方向冲突;
该第一子带在该第一时间单元配置有静态配置的符号方向,该第二子带在该第一时间单元配置有静态配置的符号方向,该第一子带在该第一时间单元没有信号传输方向的配置,该第二子带在该第一时间单元没有信号传输方向的配置,该第一子带的标识小于或者大于该第二子带的标识,或者,该第一子带在该第一时间单元的静态配置的符号方向为上行或者下行,其中,该第一子带在该第一时间单元的静态配置的符号方向与该第二子带在该第一时间单元的静态配置的符号方向冲突。
结合第三方面,在第三方面的某些实现方式中,该装置还包括收发单元,用于接收网络设备发送的第一指示信息,该第一指示信息用于指示该网络设备为该终端设备配置的至少两个激活服务小区,至少两个激活服务小区包括至少一个SBFD小区。
结合第三方面,在第三方面的某些实现方式中,该处理单元,用于:确定第一小区集合,该第一小区集合中的每个小区是至少两个激活服务小区中配置有静态传输方向的激活服务小区;确定第一小区为参考小区,该第一小区是该第一小区集合中的任意一个激活服务小区,至少两个激活服务小区中除该第一小区之外的所有小区为至少一个其他小区。
结合第三方面,在第三方面的某些实现方式中,第一小区的索引值是第一小区集合中所有小区的索引值中的最小值。
结合第三方面,在第三方面的某些实现方式中,第一小区集合包括的至少一个SBFD小区中的每个SBFD小区在第一时间单元配置有信号传输方向。
结合第三方面,在第三方面的某些实现方式中,该第一小区的索引值是该小区集合中所有小区的索引值中的最小值。
结合第三方面,在第三方面的某些实现方式中,第一小区集合包括的SBFD小区在第一时间单元配置有信号传输方向。
结合第三方面,在第三方面的某些实现方式中,该收发单元,还用于向该网络设备发送第二指示信息,该第二指示信息用于指示该终端设备是否支持频段间同时收发能力。
结合第三方面,在第三方面的某些实现方式中,该第二指示信息用于指示该通信装置支持该频段间同时收发能力时,该小区集合中的所有小区所属的频段为第一频段;该第二指示信息用于指示该通信装置不支持该频段间同时收发能力时,该小区集合中的所有小区所属的频段包括第一频段与第二频 段,该第二频段不同于该第一频段。
结合第三方面,在第三方面的某些实现方式中,该第一其他小区是配置有方向冲突处理参数的其他小区,该方向冲突处理参数用于使该通信装置确定该第一其他小区参与方向冲突处理。
结合第三方面,在第三方面的某些实现方式中,该第一时间单元包括以下至少一项:时隙,符号,或者,微时隙。
第四方面,提供了一种通信装置,包括:处理单元,用于在第一时间单元确定参考小区与至少一个其他小区,该参考小区与至少一个其他小区是在该第一时间单元配置有传输方向的激活服务小区;该参考小区在该第一时间单元的传输方向与第一其他小区在该第一时间单元的传输方向冲突,该参考小区与该第一其他小区中的至少一个小区是子带全双工SBFD小区,该SBFD小区包括第一子带与第二子带,该第一其他小区是至少一个其他小区中的任意一个其他小区,处理单元,还用于根据该第一子带确定该参考小区与该第一其他小区中的至少一个小区在该第一时间单元的传输方向。
结合第四方面,在第四方面的某些实现方式中,该第一子带在该第一时间单元的传输方向与该第二子带在该第一时间单元的传输方向冲突。
结合第四方面,在第四方面的某些实现方式中,该传输方向包括以下至少一项:信号传输方向,或者,静态配置的符号方向;该信号传输方向包括以下至少一项:静态信号传输方向,或者,动态信号传输方向。
结合第四方面,在第四方面的某些实现方式中,该参考小区是在该第一时间单元配置有静态传输方向的激活服务小区;该静态传输方向包括以下至少一项:静态信号传输方向,或者,静态配置的符号方向。
结合第四方面,在第四方面的某些实现方式中,该第一子带满足以下至少一项条件:
该第一子带在该第一时间单元配置有信号传输方向,该第二子带在该第一时间单元没有配置信号传输方向,其中,该第一子带在该第一时间单元的信号传输方向与该第二子带在该第一时间单元的静态配置的符号方向冲突;
该第一子带在该第一时间单元配置有信号传输方向,该第二子带在该第一时间单元配置有信号传输方向,该第一子带在该第一时间单元的信号传输方向与该SBFD小区的最终信号传输方向一致,其中,该第一子带在该第一时间单元的信号传输方向与该第二子带在该第一时间单元的信号传输方向冲突;
该第一子带在该第一时间单元配置有静态配置的符号方向,该第二子带在该第一时间单元配置有静态配置的符号方向,该第一子带在该第一时间单元没有信号传输方向的配置,该第二子带在该第一时间单元没有信号传输方向的配置,该第一子带的标识小于或者大于该第二子带的标识,或者,该第一子带在该第一时间单元的静态配置的符号方向为上行或者下行,其中,该第一子带在该第一时间单元的静态配置的符号方向与该第二子带在该第一时间单元的静态配置的符号方向冲突。
结合第四方面,在第四方面的某些实现方式中,装置还包括收发单元,用于向终端设备发送第一指示信息,该第一指示信息用于指示该通信装置为终端设备配置的至少两个激活服务小区,至少两个激活服务小区包括至少一个子带全双工小区。
结合第四方面,在第四方面的某些实现方式中,处理单元,用于:确定第一小区集合,第一小区集合中的每个小区是至少两个激活服务小区中配置有静态传输方向的激活服务小区;确定第一小区为参考小区,第一小区是第一小区集合中的任意一个激活服务小区,至少两个激活服务小区中除第一小区之外的所有小区为至少一个其他小区。
结合第四方面,在第四方面的某些实现方式中,第一小区的索引值是第一小区集合中所有小区的索引值中的最小值。
结合第四方面,在第四方面的某些实现方式中,第一小区集合包括的至少一个SBFD小区中的每个SBFD小区在第一时间单元配置有信号传输方向。
结合第四方面,在第四方面的某些实现方式中,第一小区的索引值是该小区集合中所有小区的索引值中的最小值。
结合第四方面,在第四方面的某些实现方式中,第一小区集合包括的SBFD小区在第一时间单元配置有信号传输方向。
结合第四方面,在第四方面的某些实现方式中,收发单元,还用于接收终端设备发送的第二指示信息,该第二指示信息用于指示终端设备是否支持频段间同时收发能力。
结合第四方面,在第四方面的某些实现方式中,该第二指示信息用于指示终端设备支持该频段间同时收发能力时,该小区集合中的所有小区所属的频段为第一频段;该第二指示信息用于指示终端设备不支持该频段间同时收发能力时,该小区集合中的所有小区所属的频段包括第一频段与第二频段,第二频段不同于第一频段。
结合第四方面,在第四方面的某些实现方式中,第一其他小区是配置有方向冲突处理参数的其他小区,该方向冲突处理参数用于使终端设备确定第一其他小区参与方向冲突处理。
结合第四方面,在第四方面的某些实现方式中,第一时间单元包括以下至少一项:时隙,符号,或者,微时隙。
第五方面,提供了一种通信装置,包括处理器,所述处理器与存储器耦合,所述处理器用于执行计算机程序或指令,使得所述通信装置执行第一方面以及第一方面的任一种可能实现方式中任一项所述的方法;或者,使得所述通信装置执行第二方面以及第二方面的任一种可能实现方式中任一项所述的方法。
一种可能的实现中,该装置还包括存储器。
可选的,处理器和存储器集成在一起,或者处理器和存储器分开设置。
在另一种可能的实现中,存储器位于该通信装置之外。
一种可能的实现中,该通信装置还包括通信接口,该通信接口用于该通信装置与其他设备进行通信,例如数据和/或信号的发送或接收。
示例性的,通信接口可以是收发器、电路、总线、模块或其它类型的通信接口。
第六方面,提供了一种通信装置,包括逻辑电路和输入输出接口,输入输出接口用于输出和/或输入信号,逻辑电路用于执行第一方面以及第一方面的任一种可能实现方式中任一项所述的方法;或者,执行第二方面以及第二方面的任一种可能实现方式中任一项所述的方法。
一种可能的实现中,该逻辑电路用于在第一时间单元确定参考小区与至少一个其他小区,参考小区与至少一个其他小区是在第一时间单元配置有传输方向的激活服务小区;参考小区与第一其他小区在第一时间单元的传输方向冲突,参考小区与第一其他小区中的至少一个小区是子带全双工小区,其包括第一子带与第二子带,第一其他小区是至少一个其他小区中的任意一个其他小区,该逻辑电路还用根据第一子带确定参考小区与第一其他小区中的至少一个小区在第一时间单元的传输方向。
第七方面,提供了一种计算机可读存储介质,包括计算机程序或指令,当所述计算机程序或所述指令在计算机上运行时,使得该计算机执行第一方面以及第一方面的任一种可能实现方式中任一项所述的方法;或者,使得该计算机执行第二方面以及第二方面的任一种可能实现方式中任一项所述的方法。
第八方面,提供了一种计算机程序产品,包含指令,当所述指令在计算机上运行时,使得该计算机执行第一方面以及第一方面的任一种可能实现方式中任一项所述的方法;或者,使得该计算机执行第二方面以及第二方面的任一种可能实现方式中任一项所述的方法。
第九方面,本申请实施例还提供一种终端设备,用于执行上述的第一方面及其各种可能的实现中的方法。
第十方面,本申请实施例还提供一种网络设备,用于执行上述的第二方面及其各种可能的实现中的方法。
第十一方面,本申请实施例还提供一种通信系统,包括第三方面及各种可能的实现提供的通信装置和第四方面及各种可能的实现提供的通信装置。
附图说明
图1是本申请实施例的适用通信系统100的示意图。
图2是子带全双工的示意图。
图3是本申请实施例的通信方法300的示意图。
图4是本申请实施例的通信方法400的示意图。
图5是本申请实施例的通信装置500的示意框图。
图6是本申请实施例的通信装置600的示意框图。
图7是本申请实施例的通信装置700的示意框图。
图8是本申请实施例的通信装置800的示意框图。
图9是本申请实施例的通信装置900的示意框图。
图10是本申请实施例的通信装置1000的示意框图。
具体实施方式
下面将结合附图,对本申请中的技术方案进行描述。
本申请实施例的技术方案可以应用于各种通信系统,例如:长期演进(long term evolution,LTE)系统、LTE频分双工(frequency division duplex,FDD)系统、LTE时分双工(time division duplex,TDD)、通用移动通信系统(universal mobile telecommunication system,UMTS)、第五代(5th generation,5G)系统或新空口(new radio,NR)、第六代(6th generation,6G)系统等5G之后演进的系统、星间通信和卫星通信等非陆地通信网络(non-terrestrial network,NTN)系统。卫星通信系统包括卫星基站以及终端设备。卫星基站为终端设备提供通信服务。卫星基站也可以与地面基站进行通信。卫星可作为基站,也可作为终端设备。其中,卫星可以是指无人机,热气球,低轨卫星,中轨卫星,高轨卫星等非地面基站或非地面设备等。
本申请实施例的技术方案对于同构网络与异构网络的场景均适用,同时对于传输点也无限制,可以是宏基站与宏基站、微基站与微基站和宏基站与微基站之间的多点协同传输,对FDD/TDD系统均适用。本申请实施例的技术方案不仅适用于低频场景(sub 6G),也适用于高频场景(6GHz以上),太赫兹,光通信等。本申请实施例的技术方案不仅可以适用于网络设备和终端的通信,也可以适用于网络设备和网络设备的通信,终端和终端的通信,车联网,物联网,工业互联网等的通信。
本申请实施例的技术方案也可以应用于终端与单个基站连接的场景,其中,终端所连接的基站以及基站所连接的核心网络(core network,CN)为相同制式。比如CN为5G Core,基站对应的为5G基站,5G基站直接连接5G Core;或者CN为6G Core,基站为6G基站,6G基站直接连接6G Core。本申请实施例的技术方案也可以适用于终端与至少两个基站连接的双连接(dual connectivity,DC)场景。
本申请实施例的技术方案也可以使用通信网络中不同形态的基站组成的宏微场景,例如,基站可以是卫星、空中气球站、无人机站点等。本申请实施例的技术方案也适合于同时存在广覆盖基站和小覆盖基站的场景。
还可以理解的是,本申请实施例的技术方案还可以应用于5.5G、6G及以后的无线通信系统,适用场景包括但不限于地面蜂窝通信、NTN、卫星通信、高空通信平台(high altitude platform station,HAPS)通信、车辆外联(vehicle-to-everything,V2X)、接入回传一体化(integrated access and backhaul,IAB),以及可重构智能表面(reconfigurable intelligent surface,RIS)通信等场景。
本申请实施例中的终端可以是一种具有无线收发功能的设备,具体可以指用户设备(user equipment,UE)、接入终端、用户单元(subscriber unit)、用户站、移动台(mobile station)、远方站、远程终端、移动设备、用户终端、无线通信设备、用户代理或用户装置。终端设备还可以是卫星电话、蜂窝电话、智能手机、无线数据卡、无线调制解调器、机器类型通信设备、可以是无绳电话、会话启动协议(session initiation protocol,SIP)电话、无线本地环路(wireless local loop,WLL)站、个人数字处理(personal digital assistant,PDA)、客户终端设备(customer-premises equipment,CPE)、智能销售点(point of sale,POS)机、具有无线通信功能的手持设备、计算设备或连接到无线调制解调器的其它处理设备、车载设备、高空飞机上搭载的通信设备、可穿戴设备、无人机、机器人、设备到设备通信(device-to-device,D2D)中的终端、V2X中的终端、虚拟现实(virtual reality,VR)终端设备、增强现实(augmented reality,AR)终端设备、工业控制(industrial control)中的无线终端、无人驾驶(self driving)中的无线终端、远程医疗(remote medical)中的无线终端、智能电网(smart grid)中的无线终端、运输安全(transportation safety)中的无线终端、智慧城市(smart city)中的无线终端、智慧家庭(smart home)中的无线终端或者5G之后演进的通信网络中的终端设备等,本申请实施例不作限制。
本申请实施例中用于实现终端设备的功能的装置可以是终端设备;也可以是能够支持终端设备实现该功能的装置,例如芯片系统。该装置可以被安装在终端设备中或者和终端设备匹配使用。本申请实施例中,芯片系统可以由芯片构成,也可以包括芯片和其他分立器件。
本申请实施例中的网络设备具有无线收发功能的设备,用于与终端设备进行通信。接入网设备可以为无线接入网(radio access network,RAN)中的节点,又可以称为基站,还可以称为RAN节点。可以是LTE中的演进型基站(evolved Node B,eNB或eNodeB);或者gNodeB(gNB)等5G网络中的基站或者5G之后演进的公共陆地移动网络(public land mobile network,PLMN)中的基站,宽带网络业务网关(broadband network gateway,BNG),汇聚交换机或者第三代合作伙伴项目(3rd generation partnership project,3GPP)接入设备等。
本申请实施例中的网络设备还可以包括各种形式的基站,例如:宏基站、微基站(也称为小站)、中继站、传输点(transmitting and receiving point,TRP)、发射点(transmitting point,TP)、移动交换中心以及设备到设备(device-to-device,D2D)、车辆外联(vehicle-to-everything,V2X)、机器到机器(machine-to-machine,M2M)通信中承担基站功能的设备等,还可以包括云接入网(cloud radio access network,C-RAN)系统中的集中式单元(centralized unit,CU)和分布式单元(distributed unit,DU)、NTN通信系统中的网络设备,本申请实施例不作具体限定。
本申请实施例中用于实现网络设备的功能的装置可以是网络设备,也可以是能够支持网络设备实现该功能的装置,例如芯片系统。该装置可以被安装在网络设备中或者和网络设备匹配使用。本申请实施例中的芯片系统可以由芯片构成,也可以包括芯片和其他分立器件。
图1是本申请实施例的适用通信系统100的示意图。如图1所示,通信系统100包括网络设备110与终端设备120。网络设备110与终端设备120之间可以进行上行通信,也可以进行下行通信,本申请实施例不限定。另外,图1所示的通信系统100仅作为示例理解,不能限定本申请所要求的保护范围。
具体地,网络设备110可以通过小区#0、小区#1、小区#2、小区#3等四个小区与终端设备120进行上行/下行通信。其中,小区#0与小区#1位于频段A,小区#2与小区#3位于频段B。
终端设备120通过载波聚合技术将上述的四个小区的载波聚合起来,使其获得更大的通信带宽,继而提升终端设备的上行/下行峰值速率。
应理解,本申请实施例对通信系统100包括的终端设备120与网络设备110的数量不作限定。终端设备120可以是如上所列举的任意一个终端设备,网络设备110也可以是如上所列举的任意一个网络设备。
下文将对与本申请实施例揭示的技术方案相关的部分技术术语作简短的描述。
1.载波聚合。
载波聚合(carrier aggregation,CA)是指将多个分量载波(component carrier,CC)进行聚合处理,从而获得更大通信带宽的载波的技术。
具体来说,根据聚合的多个CC所属的频段及多个CC在频域上是否连续,CA技术可以分为如下几类:
1)频段内连续载波聚合:多个CC同属一个频段,且在频域上连续。
2)频段内非连续载波聚合:多个CC同属一个频段,且在频域上不连续。
3)频段间载波聚合:多个CC分别属于不同的频段。
示例性地,小区#1与小区#2属于频段A,小区#1与小区#2之间的聚合属于第一类CA或者第二类CA。小区#3与小区#4属于频段B,小区#3与小区#4之间的聚合属于第一类CA或者第二类CA。小区#2属于频段A,小区#3属于频段B,小区#2与小区#3之间的聚合属于第三类CA。
在CA的场景中,当为终端设备配置辅载波(secondary cell)时,可以同时携带辅载波的载波索引以及工作在该辅载波的辅小区的小区标识(cell indentify,Cell ID)。在这种情况下,载波与小区是等同的两个概念。譬如,终端设备接入载波和终端设备接入小区是等同的。其中,载波的带宽可以理解为小区的通信带宽。通过将多个CC聚合起来,终端设备获得的通信带宽是多个CC的带宽之和,其峰值速率也能得到提升。
然而,在CA的场景中,在一个时间单元(譬如,符号(symbol)上,不同CC之间可能存在传输方向不一致的问题。此时,不同CC之间的传输方向需要进行方向冲突处理(directional collision  handling),从而确定每个CC在一个时间单元上的传输方向。具体将在下文进行描述。
2.子带全双工
为了克服TDD系统中的下行链路(downlink,DL)与上行链路(uplink,UL)之间的频域资源分配不平衡的问题(具体来说,就是用于DL传输的频域资源多,用于UL传输的频域资源少),目前提出一种名为子带全双工(subband fullduplex,SBFD)的技术方案。在该方案中,一个CC可以分为多个子带,且不同子带配置的传输方向可以不同,具体可以参看图2。
图2是子带全双工的示意图。如图2所示,一个CC可以分为三个子带。具体地,在符号#1上,子带#1与子带#3配置的传输方向均为DL传输方向,子带#2配置的传输方向为UL传输方向。在符号#2上,子带#1、子带#2以及子带#3配置的传输方向均为UL传输方向。UL传输方向与DL传输方向可以分别采用不同的频域资源。相比于原有的符号#1的所有频域资源全用于DL传输的方案,SBFD的技术方案能够增加用于UL传输的资源,从而能够有效降低UL传输的时延。
另外,不同的子带能够分别占据不同的频域资源,且不同的子带所占据的频域资源彼此之间互不重叠。例如,子带#1占据的频域资源与子带#2占据的频域资源不同,且没有重叠的频域资源。
此外,在一个符号上,2个子带的符号方向不同时,子带之间可以存在一定的频率保护间隔,用来减少2个子带上传输方向不同的信号之间干扰。例如,在符号#1上,子带#1和子带#2之间可以存在一定的频率保护间隔(guard banding,GB)GB#1,子带#2和子带#3之间可以存在一定的频率保护间隔GB#2,GB#1和GB#2可以为相同值。
3.方向冲突处理准则
正如前文所述,在CA的场景中,在一个时间单元(譬如,符号)上,构成CA的多个CC之间可能存在传输方向不一致的问题。此时,多个CC之间需要进行方向冲突处理,确定每个CC在时间单元上的传输方向。不同CC之间进行的方向冲突处理具体可以参看下文描述。
具体地,若UE满足如下条件:
1)配置了多个激活服务小区(譬如,上述的小区#1、小区#2、小区#3和小区#4),且在该多个激活服务小区中有一个或多个小区配置了参数directionalCollisionHandling-r16='enabled';
2)支持half-DuplexTDD-CA-SameSCS-r16能力;
3)在任一激活服务小区中未配置监听承载下行控制信息(downlink control information,DCI)2-0的物理下行控制信道(physical downlink control channel,PDCCH)。
UE可以在任意一个时间单元(下文以符号为例进行描述)上选择激活服务小区中小区索引值最小的服务小区作为参考小区(reference cell)。当UE支持频段间同时收发能力(simultaneousRxTxInterBandCA)时,UE能够从每个频段的激活服务小区中选择小区索引值最小的服务小区为参考小区。例如,UE选择频段A上的小区#1作为参考小区,选择频段B上的小区#3作为参考小区。当UE不支持频段间同时收发能力时,UE能够从所有激活服务小区中选择小区索引值最小的服务小区为参考小区。例如,UE选择小区#1~小区#4中的小区#1作为参考小区。
UE支持频段间同时收发能力,其表示:UE支持在频段A进行发送的同时在频段B进行接收,此时,频段A的小区#1和频段B的小区#3是支持同时收发的。UE不支持频段间同时收发能力,其表示:UE不支持在一个频段A进行发送的同时在另一个频段B进行接收。
在激活服务小区中,一个符号上的服务小区需要满足如下至少一项条件才能作为参考小区:
1)静态配置为Semi-D/U(tdd-UL-DL-ConfigurationCommon or tdd-UL-DL-ConfigurationDedicated)
2)符号为flexible,且UE在该符号上配置为发送探测参考信号(sounding reference signal,SRS)、物理上行控制信道(physical uplink control channel,PUCCH)、物理上行共享信道(physical uplink shared channel,PUSCH)或者物理随机接入信道(physical random access channel,PRACH)(可以写为无线资源控制-上行(radio resource control uplink signal,RRC-U))。
3)符号为flexible,且UE在该符号上配置为接收PDCCH,物理下行共享信道(physical downlink shared channel,PDSCH)或者信道状态信息-参考信号(channel state information reference signal,CSI-RS)(可以写为RRC-D)。
简单来说,一个符号上的服务小区要满足如上三项条件之一就可以成为参考小区。上述三项条件可以统称为静态配置的传输方向。另外,静态配置的传输方向也可以理解为静态传输方向。其中,静 态传输方向包括:静态信号传输方向(可以为RRC-D/U)与静态配置的符号方向(可以为Semi-D/U)。
上述的第一项条件也可以称为静态配置的符号方向(包括上行方向与下行方向),第二项条件和第三项条件可以称为静态信号传输方向(包括上行信号传输方向与下行信号传输方向)。
小区#1作为参考小区后,小区#2~小区#4可以称为小区#1的其他小区(other cell)。小区#1与小区#3分别作为参考小区后,小区#2可以称为小区#1的其他小区,小区#4可以称为小区#3的其他小区。
参考小区确定以后,其他小区的数量可以在至少一个以上。譬如,小区#1为参考小区时,其他小区可以包括小区#2(UE不支持频段间同时收发),其他小区也可以包括小区#2~小区#4(UE支持频段间同时收发)。
其他小区可以有静态配置的传输方向,也可以没有静态配置的传输方向。换言之,其他小区可能为:符号为flexible,且UE在该符号上由DCI指示发送或接收信号(可写为Dynamic-U/D)。
示例性地,UE在符号#M上选择了参考小区后,可以根据参考小区的Semi-D/U、RRC-D/U以及Dynamic-D/U(参考小区也可以配置动态信号传输方向)和配置了参数directionalCollisionHandling-r16='enabled'(该参数可以称为方向冲突处理参数)的其他小区进行方向冲突处理。其他小区在符号#M上可以有Semi-D/U,RRC-D/U以及Dynamic-D/U中的任意一项。
本申请实施例中,其他小区和参考小区之间的方向冲突处理可以理解为:配置了参数directionalCollisionHandling-r16='enabled'的其他小区和参考小区在时间单元上的传输方向之间的冲突处理。
其中,参考小区不一定配置了参数directionalCollisionHandling-r16='enabled'。还有,参考小区和其他小区在时间单元上(例如,符号#M)的传输方向相同时,则不存在方向冲突处理的问题。在此做统一说明,后文不再赘述。
关于具体的方向冲突处理准则可以参看表1。
表1
表1中,场景1中,参考小区在符号#M的传输方向为Dynamic-D/U,其他小区在符号#M的传输方向为Dynamic-U/D,UE期望避免该情况的发生(error case)。场景2中,参考小区在符号#M的传输方向为Dynamic-D,其他小区在符号#M的传输方向为Semi-U/RRC-U,UE取消在其他小区的发送(drop U on other cell)。场景3中,参考小区在符号#M的传输方向为Dynamic-U,其他小区在符号#M 的传输方向为Semi-D/RRC-D,UE取消在其他小区的接收(drop D on other cell)。场景4中,参考小区在符号#M的传输方向为Semi-U/RRC-U,其他小区在符号#M的传输方向为Dynamic-D,UE期望避免该情况的发生(error case)。场景5-1中,参考小区在符号#M的传输方向为Semi-D/RRC-D,其他小区在符号#M的传输方向为Dynamic-U,若为频带间载波聚合,参考小区在符号#M的传输方向为Semi-D时,UE在其他小区发送(Tx on other cell);参考小区在符号#M的传输方向为RRC-D时,UE不要求参考小区接收(not required to receive on reference cell)。在场景5-2中,参考小区在符号#M的传输方向为Semi-D/RRC-D,其他小区在符号#M的传输方向为Dynamic-U,若为频带内载波聚合,UE期望避免该情况的发生(error case)。在场景6-1中,参考小区在符号#M的传输方向为Semi-D/U,其他小区在符号#M的传输方向为Semi-U/D,若为频带间载波聚合,则假设其他小区的符号为灵活配置(assume符号#M as Flexible on the other cell)。在场景6-2中,参考小区在符号#M的传输方向为Semi-D/U,其他小区在符号#M的传输方向为Semi-U/D,若为频带内载波聚合,UE期望避免该情况的发生(error case)。在场景7中,参考小区在符号#M的传输方向为Semi-D/U,其他小区为RRC-U/D,UE取消在其他小区的发送或者接收(drop U/D on other cell)。在场景8中,参考小区在符号#M的传输方向为RRC-D/U,其他小区在符号#M的传输方向为Semi-U/D,UE假设其他小区的符号为灵活配置(assume符号#M as Flexible on the other cell),并取消在其他小区发送RRC-U或者接收RRC-D。在场景9中,参考小区在符号#M的传输方向为RRC-D/U,其他小区在符号#M的传输方向为RRC-U/D,UE取消在其他小区的发送或者接收(drop U/D on other cell)。
但是,表1所示的方向冲突处理准则适用于TDD系统中传统的TDD小区(例如,Legacy TDD小区)。当TDD系统中存在SBFD小区时,上述的方向冲突处理准则就不一定适用了。具体可以参看表2所示的内容。
表2
表2中,对于SBFD小区来说,符号的传输方向配置为子带级别的。因此,一个SBFD小区包括三个子带时,其会包括三个传输方向配置。例如,符号#1上,子带#1的传输方向为Semi-D、子带#2的传输方向为Semi-D、子带#3的传输方向为Semi-D。符号#2上,子带#1的传输方向为RRC-D、子带#2的传输方向为F(灵活可变)、子带#3的传输方向为Semi-D。符号#3上,子带#1的传输方向为RRC-D、子带#2的传输方向为Semi-U、子带#3的传输方向为Dynamic-D。符号#4上,子带#1的传输方向为Semi-D、子带#2的传输方向为Semi-U、子带#3的传输方向为Semi-D。符号#5上,子带#1的传输方向为F、子带#2的传输方向为RRC-U、子带#3的传输方向为F。
对于Legacy TDD小区来说,符号的传输方向配置为小区级别的,其只会有一个传输方向配置。例如,符号#1上,传输方向为RRC-D。符号#2上,传输方向为Semi-D。符号#3上,传输方向为Semi-D/RRC-D。符号#4上,传输方向为Semi-U。符号#5上,传输方向为Semi-U。
对比二者可知,对于SBFD小区而言,符号#3上,子带#3的传输方向为Dynamic-D,子带#2的传输方向为Semi-U,子带#1的传输方向为RRC-D,UE可进行Dynamic-D和RRC-D。对于Legacy TDD小区而言,符号#3上,传输方向为Semi-U,则配置的RRC-D会被取消(drop),且UE不期望有配置Dynamic-D(上行的优先级高于下行的优先级)。
由于SBFD小区在两个子带上可能存在传输方向不一致的问题,一个Legacy TDD小区需要分别与SBFD小区中的两个子带进行方向冲突处理时,可能会存在一些问题。具体可以参看表3和表4。
表3
表3中,SBFD小区的两个子带的传输方向相反,Legacy TDD小区的传输方向与子带#1的传输方向相同。例如,场景a—c中,参考小区为SBFD小区,其他小区为Legacy TDD小区,子带#1在符号#M的传输方向为Dynamic-D/U或者RC-D/U,子带#2在符号#M的传输方向为Semi-U/D,Legacy TDD小区在符号#M的传输方向为Dynamic-D/U、Semi-D/U或者RRC-D/U,其与子带#1在符号#M的传输方向相同,与子带#2在符号#M的传输方向相反。场景d中,参考小区为Legacy TDD小区,其他小区为SBFD小区,Legacy TDD小区在符号#M的传输方向为Semi-D/U,SBFD小区的子带#1在符号#M的传输方向为Dynamic-D/U或RRC-D/U,子带#2的在符号#M的传输方向为Semi-U/D,子带#1在符号#M的传输方向与Legacy TDD小区在符号#M的传输方向相同,子带#2在符号#M的传输方向与Legacy TDD小区在符号#M的传输方向相反。
表4
表4中,SBFD小区的两个子带的传输方向相反,且Legacy TDD小区的传输方向与子带#1的传输方向相同。例如,场景e—g中,参考小区为SBFD小区,其他小区为Legacy TDD小区,子带#1在符号#M的传输方向为Semi-D/U,子带#2在符号#M的传输方向为Semi-U/D,Legacy TDD小区在符号#M的传输方向分别为Dynamic-D/U、Semi-D/U或者RRC-D/U,其与子带#1在符号#M的传输方向相同, 与子带#2在符号#M的传输方向相反。场景h中,参考小区为Legacy TDD小区,其他小区为SBFD小区,Legacy TDD小区在符号#M的传输方向为Semi-D/U,SBFD小区的子带#1在符号#M的传输方向为Semi-D/U,子带#2在符号#M的传输方向为Semi-U/D,子带#1在符号#M的传输方向与Legacy TDD小区在符号#M的传输方向相同,子带#2在符号#M的传输方向与Legacy TDD小区在符号#M的传输方向相反。
此时,同时对比SBFD小区的两个子带在符号#M的传输方向和Legacy TDD小区在符号#M的传输方向,则会存在如下两个问题:
问题1:
1)Legacy TDD小区在符号#M的传输方向和SBFD小区的子带#1在符号#M的传输方向相同:
a)Legacy TDD小区和SBFD小区的信号均无法传输:Dynamic-D/U信号无法传输(场景a);
b)Legacy TDD小区的信号无法传输:RRC-D/U信号会被取消接收/发送(场景c)
2)Legacy TDD小区在符号#M的传输方向和SBFD小区的子带#1在符号#M的传输方向相同,但Legacy TDD小区的信号无法传输:RRC-D/U信号会被取消接收/发送(场景g),Dynamic-D/U信号无法传输(场景e)。
问题2:
1)SBFD小区的子带#2在符号#M的传输方向和子带#1在符号#M的传输方向相反,Legacy TDD小区在符号#M的传输方向和SBFD小区的子带#1在符号#M的传输方向相同,但SBFD小区的子带#1的信号仍无法传输(场景b和场景d);
2)Legacy TDD小区在符号#M的传输方向为Semi-D或Semi-U,UE均不期望发生这种情况(为error case)(场景f和场景h)。
综上,现有的方向冲突处理准则适用于分量载波对应的小区均为时分双工系统中传统时分双工小区的场景,但不适用于分量载波对应的小区中包括子带全双工小区的场景。
鉴于上述技术问题,本申请提供了一种通信方法与通信装置,能够解决分量载波对应的小区中包括子带全双工小区时,不同分量载波之间存在传输方向不一致的问题。
下文将结合附图对本申请实施例的通信方法与通信装置进行描述。
图3是本申请实施例的通信方法300的交互流程图。图3中的方法流程可以由终端设备120执行,或者由安装于终端设备120中的具有相应功能的模块和/或器件(譬如,芯片或集成电路等)执行,本申请实施例不限定。下文以终端设备120为例进行说明。如图3所示,通信方法300包括:
S310、终端设备120在时间单元W1确定参考小区与至少一个其他小区,参考小区与至少一个其他小区是在时间单元W1配置有传输方向的激活服务小区,参考小区在时间单元W1的传输方向与第一其他小区在时间单元W1的传输方向冲突,第一其他小区是至少一个其他小区中的任意一个其他小区,参考小区与第一其他小区中的至少一个小区是SBFD小区,SBFD小区包括第一子带与第二子带。
具体来说,终端设备120可以确定时间单元W1上的参考小区与至少一个其他小区。参考小区与至少一个其他小区均是在时间单元W1配置有传输方向的激活服务小区。
更具体地说,一个时间单元上可以包括多个激活服务小区。其中,多个激活服务小区中的一个小区可以作为参考小区,除参考小区之外的所有小区可以作为其他小区。
在一个时间单元上(例如,时间单元W1),参考小区与至少一个其他小区在该时间单元上的传输方向可能存在冲突。为便于描述,本申请实施例仅以参考小区与至少一个其他小区中的第一其他小区在时间单元W1上的传输方向冲突为例进行描述,但不限定参考小区与至少一个其他小区中的第二其他小区在时间单元W1上的传输方向冲突等场景。
一个可能的实现方式,第一其他小区是配置有方向冲突处理参数的其他小区,该方向冲突处理参数用于使终端设备确定第一其他小区可以参与方向冲突处理。例如,终端设备确定第一其他小区在时间单元W1的传输方向与参考小区在时间单元W1的传输方向冲突时,且确定第一其他小区配置有方向冲突处理参数时,能够对第一其他小区与参考小区在时间单元W1的传输方向进行方向冲突处理判断。换言之,终端设备120能够根据该参数确定对第一其他小区与参考小区在时间单元W1上的传输方向进行方向冲突处理。
具体地,第一其他小区是至少一个其他小区中配置方向冲突处理参数的其他小区,该方向冲突处 理参数可以为前述的“directionalCollisionHandling-r16='enabled'”参数,该参数能够使得第一其他小区在与参考小区在时间单元W1的传输方向冲突时,终端设备120可以对第一其他小区与参考小区在时间单元W1的传输方向进行方向冲突处理,从而确定第一其他小区与参考小区各自在时间单元W1的传输方向。
可选地,第一其他小区可以是没有配置有方向冲突处理参数的其他小区,终端设备可以直接对第一其他小区与参考小区在时间单元W1的传输方向进行方向冲突处理判断。
为便于描述,本申请实施例以第一其他小区与参考小区在时间单元W1的传输方向冲突为例进行描述,但不限定至少一个其他小区中与参考小区在时间单元W1的传输方向冲突的其他小区的数量,例如,还可以包括第二其他小区、第三其他小区等,其均与参考小区在时间单元W1的传输方向冲突等场景。
参考小区与第一其他小区中至少一个小区是SBFD小区,可以包括以下任意一个:参考小区是SBFD小区,第一其他小区是非SBFD小区,例如,Legacy TDD小区;或者,第一其他小区是SBFD小区,参考小区是非SBFD小区,例如,Legacy TDD小区;又或者,参考小区是第一SBFD小区,第一其他小区是第二SBFD小区。其中,第一SBFD小区包括第一子带与第二子带,第二SBFD小区包括第三子带与第四子带。
应理解,参考小区与第一其他小区中的任意一个小区为SBFD小区时(例如,参考小区为SBFD小区,或者,第一其他小区为SBFD小区),且参考小区在时间单元W1的传输方向与第一其他小区在时间单元W1的传输方向冲突,以及,SBFD小区包括至少两个子带,以现有的方向冲突处理方式,SBFD小区的每个子带需要和另一个小区进行比较。例如,参考小区为SBFD小区时,SBFD小区的每个子带需要和第一其他小区进行方向冲突处理,则容易导致如表3和表4所示的问题。
为便于描述,本申请实施例以SBFD小区包括第一子带与第二子带为例进行描述,但不限定SBFD小区所包括的子带的数量在两个以上的场景。
参考小区与第一其他小区在时间单元W1的传输方向冲突,可以理解为:参考小区在时间单元W1的传输方向与第一其他小区在时间单元W1的传输方向相反。譬如,参考小区在时间单元W1的传输方向为RRC-D/U,第一其他小区在时间单元W1的传输方向为Dynamic-U/D。
换句话说,参考小区为SBFD小区,第一其他小区为Legacy TDD小区,或者第一其他小区为SBFD小区,参考小区为Legacy TDD小区,参考小区与第一其他小区在时间单元W1的传输方向冲突,可理解为:SBFD小区中的至少一个子带和Legacy TDD小区在时间单元W1上的传输方向相反。参考小区和第一其他小区均为SBFD小区,可以理解为:参考小区中的至少一个子带和第一其他小区中的至少一个子带在时间单元W1上的传输方向相反。例如,第一子带在时间单元W1上的传输方向与第三子带在时间单元W1上的传输方向相反。
正如前文所述,参考小区确定以后,其他小区的数量可以在一个以上。参考小区可以是上述的激活服务小区中索引值最小的一个服务小区,也可以是索引值最大的一个服务小区,也可以是任意一个服务小区等,本申请实施例不限定。另外,关于参考小区的选择可以见后文描述,在此不再多言。
S320、终端设备120根据第一子带确定参考小区与第一其他小区中的至少一个小区在时间单元W1的传输方向。
具体来说,由于SBFD小区包括第一子带与第二子带,第一子带与第二子带各自在时间单元W1上的传输方向可能一致,可能冲突。当第一子带与第二子带各自在时间单元W1上的传输方向一致时,以现有的方向冲突处理方式,第一子带与第二子带需要分别与另一个小区在时间单元W1上进行传输方向冲突判断,则容易导致多余的冲突判断。当第一子带与第二子带各自在时间单元W1上的传输方向冲突时,以现有的方向冲突处理方式,第一子带与第二子带需要分别与另一个小区在时间单元W1上进行传输方向冲突判断,则很容易导致错误的冲突判断。例如,如表3所示的场景a—d,以及,如表4所示的场景e—h。
综上,终端设备120可以根据SBFD小区的第一子带(第一子带可以为SBFD小区的任意子带)确定参考小区在时间单元W1的传输方向与第一其他小区在时间单元W1的传输方向,这样就可以避免上述情况的发生。
具体地,终端设备120根据第一子带确定参考小区与第一其他小区中的至少一个小区在时间单元 W1的传输方向,可以包括如下任意一项情况:
情况#1:终端设备120根据第一子带确定参考小区在时间单元W1的传输方向;
情况#2:终端设备120根据第一子带确定第一其他小区在时间单元W1的传输方向;
情况#3:终端设备120根据第一子带确定参考小区与第一其他小区在时间单元W1的传输方向。
对于情况#1,参考小区为SBFD小区时,第一子带可以为SBFD小区在时间单元W1的传输方向,之后,终端设备120可以取消第一其他小区在时间单元W1的传输方向(可以理解为第一其他小区在时间单元W1的传输方向为无)。
对于情况#2,第一其他小区为SBFD小区,第一子带可以为第一其他小区在时间单元W1的传输方向。可选地,终端设备120可以取消参考小区在时间单元W1的传输方向(可以理解为参考小区在时间单元W1的传输方向为无)。
对于情况#3,示例性地,参考小区为SBFD小区,则参考小区在时间单元W1的传输方向确定了,以及,终端设备120可以取消第一其他小区在时间单元W1的传输方向,如此,第一其他小区在时间单元W1的传输方向也确定了。
当参考小区为第一SBFD小区,第一SBFD小区包括第一子带与第二子带,第一其他小区为第二SBFD小区,第二SBFD小区包括第三子带与第四子带,终端设备120可以先确定第一SBFD小区的第一子带,以及,确定第二SBFD小区的第三子带,并根据第一子带与第三子带来确定参考小区与第一其他小区中的至少一个小区在时间单元W1的传输方向。譬如,终端设备120可以保持参考小区在时间单元W1的传输方向,且取消第一其他小区在时间单元W1的传输方向,或者,终端设备120可以保持第一其他小区在时间单元W1的传输方向,且取消参考小区在时间单元W1的传输方向。
通过上述技术方案,本申请能够解决分量载波对应的小区中包括子带全双工小区时,不同分量载波之间存在传输方向不一致的问题。
具体来说,当分量载波对应的小区包括SBFD小区时,SBFD小区包括至少两个子带时,终端设备可以确定SBFD小区的第一子带,并根据第一子带来确定参考小区与其他小区在时间单元上的传输方向。
一个可能的实现方式,第一子带在时间单元W1的传输方向与第二子带在时间单元W1的传输方向冲突。
具体来说,第一子带与第二子带在时间单元W1的传输方向冲突时,本申请通过选择第一子带与第二子带中的第一子带来确定参考小区和第一其他小区在时间单元W1的传输方向,这可以避免因第一子带与第二子带在时间单元W1的传输方向冲突而得出两个截然不同的冲突判断结果,从而导致错误判断案例的增加,进而能够有效解决分量载波对应的小区中包括子带全双工小区时,不同分量载波之间存在传输方向不一致的问题。
一个可能的实现方式,传输方向可以包括以下至少一项:
信号传输方向,或者,静态配置的符号方向。
具体地,信号传输方向可以包括动态信号传输方向与静态信号传输方向。譬如,动态信号传输方向可以为Dynamic D/U;静态信号传输方向可以为RRC-D/U。静态配置的符号方向可以为Semi-D/U。
具体而言,至少一个其他小区在时间单元W1上可以配置有上述的静态信号传输方向、动态信号传输方向以及静态配置的符号方向中的任意一种,参考小区在时间单元W1上可以配置有上述的静态信号传输方向、动态信号传输方向以及静态配置的符号方向中的任意一种。
一个可能的实现方式,参考小区是在时间单元W1配置有静态传输方向的激活服务小区。
具体来说,参考小区在时间单元W可以配置有RRC-D/U、Semi-D/U中的一项或者多项。譬如,参考小区在时间单元W1配置有RRC-D/U;或者,参考小区在时间单元W1配置有Semi-D/U;或者,参考小区在时间单元W1配置有RRC-D/U与Semi-D/U等。
如此,可以避免参考小区的选择随动态信号传输而变化,终端设备可提前确定好时间单元W1上的参考小区,且可避免因动态信号接收失败导致终端设备和小区对于参考小区的理解不一致的问题。
综上,上述的RRC-D/U以及Semi-D/U可以属于静态传输方向的其中一种情况。
如前文所述,至少一个其他小区是在时间单元W1配置有传输方向的激活服务小区,其可以包括以下至少一项:至少一个其他小区在时间单元W1配置有RRC-D/U、Dynamic-D/U,Semi-D/U中的一 项或者多项等,本申请实施例不做限定。
可选地,参考小区是在时间单元W1配置有传输方向的激活服务小区,也可以包括:参考小区在时间单元W1配置有Dynamic-D/U。
一个可能的实现方式,第一子带满足以下至少一项条件:
a)第一子带在时间单元W1配置有信号传输方向,第二子带在时间单元W1没有配置信号传输方向,其中,第一子带在时间单元W1的信号传输方向与第二子带在时间单元W1的静态配置的符号方向冲突;
b)第一子带在时间单元W1配置有信号传输方向,第二子带在时间单元W1配置有信号传输方向,第一子带在时间单元W1的信号传输方向与SBFD小区的最终信号传输方向一致,其中,第一子带在时间单元W1的信号传输方向与第二子带在时间单元W1的信号传输方向冲突;
c)第一子带在时间单元W1配置有静态配置的符号方向,第二子带在时间单元W1配置有静态配置的符号方向,第一子带在时间单元W1没有信号传输方向的配置,第二子带在时间单元W1没有信号传输方向的配置,第一子带的标识小于或者大于第二子带的标识,或者,第一子带在时间单元W1的静态配置的符号方向为上行或者下行,其中,第一子带在时间单元W1的静态配置的符号方向与第二子带在时间单元W1的静态配置的符号方向冲突。
对于条件a,譬如,第一子带在时间单元W1的信号传输方向为Dynamic-D/U,第二子带在时间单元W1的静态配置的符号方向为Semi-U/D。对于条件b,譬如,第一子带在时间单元W1的信号传输方向为Dynamic-D/U,第二子带在时间单元W1的信号传输方向为RRC-U/D。对于条件c,譬如,第一子带在时间单元W1的静态配置的符号方向为Semi-D/U,第二子带在时间单元W1的静态配置的符号方向为Semi-U/D。具体可以参看表5。
另外,对于条件c,第一子带的标识(ID)可以小于或者大于第二子带的标识。
可选地,第一子带在时间单元W1的传输方向为上行方向或者下行方向,且第二子带在时间单元W1的传输方向为下行方向或者上行方向,则终端设备可以选择第一子带来确定参考小区与第一其他小区中的至少一个小区在时间单元W1的传输方向。
换句话说,第一子带在时间单元W1配置有静态配置的符号方向,第二子带在时间单元W1配置有静态配置的符号方向,第一子带在时间单元W1没有信号传输方向的配置,第二子带在时间单元W1没有信号传输方向的配置,第一子带的标识小于或者大于第二子带的标识,或者,第一子带在时间单元W1的静态配置的符号方向为上行或者下行,其中,第一子带在时间单元W1的静态配置的符号方向与第二子带在时间单元W1的静态配置的符号方向冲突。
表5
表5中,场景#1中,第一子带在时间单元W1的传输方向为Dynamic-D/U,第二子带在时间单元W1的传输方向为Semi-U/D。场景#2中,第一子带在时间单元W1的传输方向为RRC-D/U,第二子带在时间单元W1的传输方向为Semi-U/D。场景#3中,第一子带在时间单元W1的传输方向为Dynamic-D/U,第二子带在时间单元W1的传输方向为RRC-U/D。场景#4中,第一子带在时间单元W1的传输方向为RRC-D/U,第二子带在时间单元W1的传输方向为Dynamic-U/D。场景#5中,第一子带在时间单元W1的传输方向为Semi-D/U,第二子带在时间单元W1的传输方向为Semi-U/D。场景#6中,第一子带在时间单元W1的信号传输方向为同步信号块与物理广播信号块(synchronization  signal block and physical broadcast signal block,SSB),第二子带在时间单元W1的传输方向为RRC-U/Dynamic-U。应理解,前述的场景1至5中的RRC-D可以没有包括SSB。
应理解,上述的SBFD小区的最终信号传输方向可以通过如下示例进行判断:
(a)第一子带在时间单元W1配置的传输方向为Dynamic-D,第二子带在时间单元W1配置的传输方向为RRC-U,终端设备确定SBFD小区的最终信号传输方向为下行传输方向,终端设备因此选择第一子带确定参考小区与第一其他小区中的至少一个小区在时间单元W1配置的传输方向。
(b)第一子带在时间单元W1配置的传输方向为Dynamic-U,第二子带在时间单元W1配置的传输方向为RRC-D,终端设备确定SBFD小区的最终信号传输方向为上行传输方向,终端设备因此选择第一子带确定参考小区与第一其他小区中的至少一个小区在时间单元W1的传输方向。
(c)第一子带在时间单元W1配置的传输方向为SSB,第二子带在时间单元W1配置的传输方向为RRC-U/Dynamic-U,终端设备确定SBFD小区的最终信号传输方向为下行传输方向,终端设备因此选择第一子带确定参考小区与第一其他小区中的至少一个小区在时间单元W1配置的传输方向。
上述的(a)(b)和(c)是SBFD小区内冲突处理的示意。具体的SBFD小区内冲突处理以最终的协议为准,本申请实施例对此不做限定。
一个可能的实现方式,上述所列举的多个场景之间可以彼此结合起来。譬如,第二子带在时间单元W1的传输方向为RRC-D与Semi-D,第一子带在时间单元W1的传输方向为Dynamic-U与Semi-U,终端设备120可以选择第一子带来确定参考小区与第一其他小区在时间单元W1的传输方向。
如此,就可以避免因第一子带与第二子带在时间单元W1的传输方向冲突而得出两个截然不同的冲突判断结果,从而导致错误判断案例的增加,进而能够有效解决当参考小区和第一其他小区中的一个或者两个均为SBFD小区时的传输方向冲突判断的问题。
可选地,终端设备120可以不选择第一子带或者第二子带的静态配置的符号方向来确定参考小区与第一其他小区在时间单元W1的传输方向。
一个可能的实现方式,终端设备120可以根据上述的三项条件之一来确定第一子带。
当SBFD小区满足如表5所示的任一种场景时,终端设备120可以根据第一子带来确定参考小区与第一其他小区在时间单元W1的传输方向。
一个可能的实现方式,第一子带在时间单元W1的信号传输方向与第二子带在时间单元W1的信号传输方向冲突时,终端设备120可以先确定SBFD小区的最终信号传输方向,继而将与SBFD小区的最终信号传输方向一致的子带与第一其他小区进行方向冲突处理。
譬如,第一子带在时间单元W1的信号传输方向为RRC-D,第二子带在时间单元W1的信号传输方向为Dynamic-U,终端设备120确定SBFD小区的最终信号传输方向为Dynamic-U,则将在时间单元W1的传输方向为Dynamic-U的第一子带与另外一个小区进行传输方向冲突处理。
一个可能的实现方式,第一子带在时间单元W1的传输方向为静态配置的符号方向,第二子带在时间单元W1的传输方向为静态配置的符号方向时,在第一子带和第二子带均无信号传输时,该SBFD小区可以不作为参考小区或者其他小区。如此,也能够避免表4所列举的四种场景的出现。
可选地,第一子带在时间单元W1的传输方向为静态配置的符号方向与信号传输方向,第二子带在时间单元W1的传输方向为静态配置的符号方向,且无信号传输方向,且第一第一子带在时间单元W1的传输方向为静态配置的符号方向与第二子带在时间单元W1的传输方向为静态配置的符号方向冲突,则SBFD小区可以为参考小区或者其他小区,但是SBFD小区仅在有信号传输的方向的子带进行方向冲突处理。
上述的终端设备120以第一子带来确定参考小区与第一其他小区在时间单元W1的传输方向仅作为示例性描述,意在描述当SBFD小区的任意两个子带在时间单元W1的传输方向冲突时(也可以包括一致的场景),终端设备120可以根据SBFD小区的子带之一来确定参考小区与第一其他小区在时间单元W1的传输方向。
一个可能的实现方式,第一子带在时间单元W1的传输方向与第二子带在时间单元W1的传输方向一致时,终端设备120也可以根据第一子带来确定参考小区与第一其他小区在时间单元W1的传输方向。
一个可能的实现方式,时间单元W1可以包括以下至少一项:
时隙、符号或者微时隙。
具体来说,时间单元W1为时隙时,前文所述的传输方向冲突是在时隙(可以是一个时隙,也可以是多个时隙)上进行冲突判断处理的。时间单元W1为符号时,前文所述的传输方向冲突是在符号(可以是一个符号,也可以是多个符号)上进行冲突判断处理的。时间单元W1为微时隙(mini-slot)时,前文所述的传输方向冲突是在微时隙(可以是一个微时隙,也可以是多个微时隙)上进行冲突判断处理的。
通过上述技术方案,本申请能够解决当不同分量载波对应的服务小区中包括SBFD小区时如何解决参考小区与第一其他小区在时间单元的传输方向冲突时的问题。
具体来说,在表3与表4所示的场景中,当选择SBFD小区的子带之一进行传输方向冲突判断处理时,便能够减少错误或者信号被取消的判定场景的出现。
一个可能的实现方式,可以对SBFD小区配置以下至少一项约束:
1)第一子带在时间单元W1的静态配置的符号方向(Semi-D/U)与第二子带在时间单元W1的信号传输方向(RRC-D/U,Dynamic-D/U)一致;
2)第一子带在时间单元W1的静态配置的符号方向(Semi-D/U)与第二子带在时间单元W1的静态配置的符号方向(Semi-D/U)一致;
3)第一子带在时间单元W1的静态配置的符号类别为Semi-F,第二子带在时间单元W1的静态配置的符号类别为Semi-F。
如此,也能够解决如表3和表4中所列举的8种场景。
可选地,SBFD小区中仅有信号传输方向配置的子带参与方向冲突处理。如此,也可以解决如表3和表4中所列举的8种场景。
一个可能的实现方式,终端设备120在时间单元W1确定参考小区与至少一个其他小区之前,终端设备120可以接收网络设备发送的第一指示信息,第一指示信息用于指示网络设备110为终端设备120配置的至少两个激活服务小区,至少两个激活服务小区包括至少一个SBFD小区。如下参考小区和至少一个其他小区的确定是指时间单元W1上的参考小区和至少一个其他小区的确定。
如此,终端设备120可以根据网络设备110发送的第一指示信息确定至少两个激活服务小区中的参考小区与至少一个其他小区。
具体来说,终端设备120可以根据第一指示信息确定上述的至少两个激活服务小区,至少两个激活服务小区中在时间单元W1配置有静态传输方向的激活服务小区可以组成第一小区集合。终端设备120确定第一小区集合中的第一小区为参考小区,此外,至少两个激活服务小区中除第一小区之外的剩余小区均为其他小区。第一小区可以是第一小区集合中的任意一个激活服务小区。
具体来说,终端设备可以从至少两个激活服务小区中筛选出可以作为参考小区的小区集合,且该小区集合中的每个小区都是在第一时间单元配置有静态传输方向的激活服务小区,然后,终端设备可以从该小区集合中选择任意一个小区作为参考小区。如此,就可以避免参考小区的选择随动态信号传输而变化,终端设备可提前确定好第一时间单元上的参考小区,且可避免因动态信号接收失败导致终端设备和小区对于参考小区的理解不一致的问题。
终端设备从该小区集合中确定第一小区为参考小区之后,至少两个激活服务小区中除第一小区之外的所有小区均为其他小区。
应理解,至少两个激活服务小区中的每个激活服务小区在第一时间单元均配置有传输方向的。
可选地,第一小区的索引值是第一小区集合中的所有小区的索引值中的最小值。
可选地,SBFD小区为参考小区时,网络设备110可以来保证第一其他小区在时间单元W1的传输方向与参考小区在时间单元W1的传输方向不会冲突。
可选地,至少两个激活服务小区中的至少一个SBFD小区属于第一小区集合时,至少一个SBFD小区中的每个SBFD小区可以在时间单元W1上配置有信号传输方向。例如,静态信号传输方向。
具体地,SBFD小区中,多个子带的符号方向配置可以不同,此时,子带的符号方向配置无法表征SBFD小区的传输方向。在SBFD小区中多个子带有静态符号方向配置,其中存在2个子带的静态配置的符号方向配置相反,且多个子带上均无信号传输的情况下,可避免SBFD小区参与方向冲突处理判断,这可以减少终端处理的复杂度。即有信号传输的SBFD小区才会参与方向冲突处理。
一个可能的实现方式,第一子带的索引值小于第二子带的索引值。例如,第一子带的索引值是SBFD小区中所有子带的索引值中的最小值。
一个可能的实现方式,终端设备120可以先向网络设备110发送第二指示信息,该第二指示信息用于指示终端设备120是否支持频段间同时收发能力。
具体地,若第二指示信息用于指示终端设备120支持频段间同时收发能力时,第一小区集合中所有小区所属的频段均相同,例如,均为第一频段。若第二指示信息用于指示终端设备120不支持频段间同时收发能力时,第一小区集合中所有小区所属的频段并不相同,例如,部分小区所属的频段为第一频段,部分小区所属的频段为第二频段,等等。
综上,若第二指示信息用于指示终端设备120不支持频段间同时收发能力时,第一小区集合中所有小区所属的频段包括第一频段与第二频段,且第二频段不同于第一频段。
一个可能的实现方式,网络设备110为终端设备120配置多个服务小区。
具体地,终端设备120可以进行小区接入。终端设备120进行初始接入的小区为主小区(primary cell,PCell)。
具体地,网络设备120可以通过人工配置建立CA频点集合,该CA频点集合包括多个频点。这些频点对应的小区为候选小区(secondary cell,SCell)。网络设备110可以根据候选小区与终端设备120的能力确定终端设备需要添加的候选小区,并通过RRC重配消息将这些候选小区的相关信息发送给终端设备120。终端设备120可以根据候选小区的相关信息去添加相应的候选小区。终端设备120在具体添加时有两种配置候选小区的方式:盲配置和基于测量的配置。
采用盲配置时,终端设备120直接根据网络设备110下发的候选小区相关信息配置候选小区。采用基于测量的配置时,终端设备120需要考虑小区的信号质量,只有当小区的信号质量满足一定条件时,该小区才可以配置为候选小区。
终端设备120在添加候选小区时,在通过无线资源控制配置(radio resource control reconfiguration,RRCReconfiguration)信息进行配置时,RRC信令中可以包含高层配置CellGroupConfig IE,CellGroupConfig IE包括sCell集合(sCellToAddModList),sCell集合中的每个sCell通过SCellConfig配置。SCellConfig的配置包括sCellState-r16ENUMERATED{activated},sCellState-r16配置时,候选小区在配置为激活的服务小区。在初次配置候选小区之后,终端设备120或者网络设备110后续可通过MAC CE来激活/去激活候选小区。
此外,网络设备110能够决定候选小区成为激活态的时间。网络设备110可以根据终端设备120的业务量决定是否激活候选小区。当终端设备120等待传输的业务量较大,网络设备110激活候选小区。其中,终端设备120接入的主小区可以一直处于激活态。
一个可能的实现方式,SBFD小区可以不作为参考小区,且仅作为其他小区。如此,也可以解决上述的冲突问题。
一个可能的实现方式,SBFD小区不可配置directionalCollisionHandling-r16='enabled',即CA中不可和SBFD小区同时收发的小区,需由网络设备110保证不会出现方向冲突。如此,也可以解决上述的冲突问题。
图3所示的通信方法的执行主体也可以是网络设备110,网络设备110所执行的步骤与终端设备120所执行的步骤基本一致,具体可以参看上述内容,不再赘述。
一个可能的实现方式,终端设备120向网络设备110发送第二指示信息之前,网络设备110可以向终端设备120发送终端设备能力请求信息(例如,终端设备能力查询信令),能力请求信息用于请求询问终端设备120的能力。
相应地,终端设备120可以向网络设备110发送终端设备能力反馈信息(例如,终端设备能力信令),终端设备能力反馈信息用于向网络设备110反馈终端设备120的能力。
具体地,终端设备能力反馈信息可以包括终端设备120的CA能力,还可以包括终端设备120支持的频段组合、是否支持频段间同时收发的能力等信息。
一个可能的实现方式,网络设备110可以根据终端设备120反馈的终端设备能力为终端设备120配置多个服务小区。
具体地,网络设备110可以根据终端设备120上报的能力,为终端设备120配置多个服务小区, 且该多个服务小区可以分布于终端设备120所支持的频段组合之上。
一个可能的实现方式,网络设备110还可以为终端设备120激活网络设备110为终端设备120配置的一个或者多个服务小区。
相应地,终端设备120可以从激活的服务小区中确定参考小区与至少一个其他小区。
下文将结合附图对本申请实施例的其他的通信方法进行描述。
图4是本申请实施例的通信方法400的交互流程图。图4中的方法流程可以由终端设备120执行,或者由安装于终端设备120中的具有相应功能的模块和/或器件(譬如,芯片或集成电路等)执行,本申请实施例不限定。下文以终端设备120为例进行说明。如图4所示,通信方法400包括:
S410、终端设备120在时间单元W2确定参考子带与至少一个其他子带,参考子带与至少一个其他子带是在时间单元W2配置有传输方向的子带,参考子带在时间单元W2的传输方向与第一其他子带在时间单元W2的传输方向冲突。
具体来说,终端设备120可以确定时间单元W2上的参考子带(reference sub-band)与至少一个其他子带(other sub-band)。参考子带与至少一个其他子带是在时间单元W2上配置有传输方向的子带。
更具体地说,一个时间单元上可以包括多个子带。其中,多个子带中的一个子带可以作为参考子带,除参考子带之外的所有子带可以作为其他子带。
在一个时间单元上(例如,时间单元W2),参考子带与至少一个其他子带在该时间单元上的传输方向可能存在冲突。为便于描述,本申请实施例仅以参考子带与至少一个其他子带中的第一其他子带在时间单元W2上的传输方向冲突为例进行描述,但不限定参考子带与至少一个其他子带中的第二其他子带在时间单元W2上的传输方向冲突等场景。
一个可能的实现方式,第一其他子带是配置有方向冲突参数的其他子带,该方向冲突处理参数用于使终端设备确定第一其他子带可以参与方向冲突处理。例如,终端设备确定第一其他子带在时间单元W2的传输方向与参考子带在时间单元W2的传输方向冲突时,且确定第一其他子带配置有方向冲突处理参数时,则能够对第一其他子带与参考子带在时间单元W2的传输方向进行方向冲突处理判断。换言之,终端设备能够根据该参数确定对第一其他子带与参考子带在时间单元W2上的传输方向进行方向冲突处理。
可选地,第一其他子带可以是没有配置有方向冲突处理参数的其他子带,终端设备可以直接对第一其他子带与参考子带在时间单元W2的传输方向进行方向冲突处理判断。
一个可能的实现方式,参考子带与至少一个其他子带属于SBFD小区;或者,参考子带属于SBFD小区,至少一个其他子带属于Legacy TDD小区;或者,参考子带属于Legacy TDD小区,至少一个其他子带属于SBFD小区,本申请实施例不限定。
S420、终端设备120根据参考子带确定参考子带与第一其他子带中的至少一个子带在时间单元W2的传输方向。
具体来说,参考子带在时间单元W2的传输方向与第一其他子带在时间单元W2的传输方向是冲突的,终端设备可以根据参考子带在时间单元W2的传输方向来处理参考子带与第一其他子带各自在时间单元W2的传输方向。其中,关于传输方向的描述可以参见上文,在此不再赘述。
示例性地,参考子带在时间单元W2的信号传输方向与第一其他子带在时间单元W2的静态配置的符号方向或者静态信号传输方向冲突,终端设备120可以取消第一其他子带在时间单元W2的静态配置的符号方向或者静态信号传输方向。
又示例性地,参考子带在时间单元W2的静态配置的符号方向与第一其他子带在时间单元W2的传输方向冲突,终端设备120可以取消第一其他子带在时间单元W2的传输方向。
关于上述的两项示例性描述可以参看表6。
表6

在表6中,场景s1中,参考子带在符号#M的传输方向为Dynamic-D/U,其他子带在符号#M的传输方向为Dynamic-U/D,终端设备120期望避免该情况的发生(error case)。场景s2中,参考小区在符号#M的传输方向为Dynamic-D,其他子带在符号#M的传输方向为Semi-U/RRC-U,终端设备120取消在其他子带的发送(drop U on other sub-band)。场景s3中,参考子带在符号#M的传输方向为Dynamic-U,其他小区在符号#M的传输方向为Semi-D/RRC-D,终端设备120取消在其他子带的接收(drop D on other sub-band)。场景s4中,参考子带在符号#M的传输方向为Semi-D/U,其他小区在符号#M的传输方向为RRC-U/D,终端设备120取消在其他子带的发送/接收(drop U/D on other sub-band)。场景s5中,参考子带在符号#M的传输方向为RRC-D/U,其他子带在符号#M的传输方向为Semi-U/D,终端设备120取消在其他子带的发送/接收(drop U/D on other sub-band)。在场景s6中,参考子带在符号#M的传输方向为RRC-D/U,其他子带在符号#M的传输方向为RRC-U/D,终端设备120取消在其他子带的发送/接收(drop U/D on other sub-band)。
通过上述技术方案,本申请能够解决当参考子带与其他子带在同一个时间单元上存在传输方向冲突时如何处理的问题。
一个可能的实现方式,参考子带与第一其他子带均属于SBFD小区时,终端设备120根据参考子带确定参考子带与第一其他子带在时间单元W2的传输方向时,可以按照如表7所示的规则进行方向冲突处理。具体可以见表7。
表7
在表7中,场景S1中,参考子带在时间单元W2的传输方向为Semi-D/U,其他子带(第一其他子带)在时间单元W2的传输方向为Dynamic-U/D,终端设备120取消在其他子带(第一其他子带)的发送/接收(drop U/D on other sub-band)。场景S2中,参考子带在时间单元W2的传输方向为Semi-D/U,其他子带(第一其他子带)在时间单元W2的传输方向为Semi-U/D,终端设备120取消在其他子带的发送/接收(drop U/D on other sub-band)。场景S3中,参考子带在时间单元W2的传输方向为Semi-D/U,其他子带(第一其他子带)在时间单元W2的传输方向为RRC-U/D,终端设备120取消在其他子带的发送/接收(drop U/D on other sub-band)。场景S4中,参考子带在时间单元W2的传输方向为Semi-D/U,其他子带(第一其他子带)在时间单元W2的传输方向为Dynamic-U/D,终端设备120取消在参考子带的接收/发送(drop D/U on reference sub-band)。场景S5中,参考子带在时间单元W2的传输方向为RRC-D/U,其他子带(第一其他子带)在时间单元W2的传输方向为RRC-U/D,终端设备120取消在其他子带的发送/接收(drop U/D on other sub-band)。
可选地,参考子带的索引值是SBFD小区或者Legacy TDD小区中所有子带的索引值中的最小值。
可选地,参考子带的索引值是有传输方向配置的子带集合中所有子带的索引值中的最小值。
具体而言,参考子带的索引值是有静态传输方向配置的子带集合中所有子带的索引值中的最小值。 其他子带为至少两个激活的服务小区中除去参考子带外的子带。
可选地,当SBFD小区中的任意一个子带在时间单元W2的传输方向为动态信号传输方向时,剩余子带在该时间单元W2的传输方向需要与动态信号传输方向保持一致,否则可以取消剩余子带在时间单元W2的传输方向。
一个可能的实现方式,终端设备120在时间单元W2确定参考子带与至少一个其他子带之前,终端设备120可以接收网络设备110发送的第三指示信息,第三指示信息用于指示网络设备110为终端设备120配置的至少两个激活服务小区,且至少两个激活服务小区包括至少一个SBFD小区。
如此,终端设备120可以根据网络设备110发送的第三指示信息确定至少两个激活服务小区中的参考子带与至少一个其他子带。
具体来说,终端设备120可以根据第三指示信息确定上述的至少两个激活服务小区,并从上述的至少两个激活服务小区中确定第一子带集合,第一子带集合中的每个子带均是上述的至少两个激活服务小区中配置有静态传输方向的子带。终端设备120可以确定第一子带集合中的第一子带为参考子带,子带集合(上述至少两个激活服务小区包含的子带)中除第一子带之外的剩余子带均为其他子带。其中,第一子带可以是第一子带集合中的任意一个子带。
可选的,第一子带集合中属于SBFD小区的子带配置有静态信号传输方向。
可选地,第一子带的索引值是第一子带集合中所有子带的索引值中的最小值。
可选地,参考子带与第一其他子带均属于SBFD小区时,网络设备110可以来保证第一其他子带在时间单元W2的传输方向与参考子带在时间单元W2的传输方向不会冲突。
按照前述方案可以选出参考小区:
方式1:可选的,参考小区为SBFD小区时,参考子带的索引值是SBFD小区中所有子带的索引值中的最小值;
方式2:可选的,参考小区为SBFD小区时,SBFD小区的传输方向按照SBFD小区内的冲突处理准则得到,参考子带的索引值是SBFD小区中和SBFD小区的传输方向相同的子带中索引值中的最小值;
方式3:可选的,参考小区为legacy TDD小区时,参考子带即为legacy TDD小区对应的子带;
可选的,按照方式2确定参考子带时,一个可能的实现方式,参考子带与第一其他子带均属于SBFD小区时,参考子带与第一其他子带按照SBFD小区内的冲突处理准则进行冲突处理。具体的SBFD小区内冲突处理以最终的协议为准,本申请实施例对此不做限定。
一个可能的实现方式,终端设备120可以先向网络设备110发送第四指示信息,该第四指示信息用于指示终端设备120是否支持频段间同时收发能力。
具体地,若第四指示信息用于指示终端设备120支持频段间同时收发能力时,该子带集合中所有子带所属的频段均相同,例如,均为第三频段。若第四指示信息用于指示终端设备120不支持频段间同时收发能力时,该子带集合中所有子带所属的频段并不相同,例如,部分子带所属的频段为第三频段,部分子带所属的频段为第四频段,等等。
综上,若第四指示信息用于指示终端设备120不支持频段间同时收发能力时,该子带集合中所有子带所属的频段包括第三频段与第四频段,且第四频段不同于第三频段。
图4所示的通信方法的执行主体也可以是网络设备110,网络设备110所执行的步骤与终端设备120所执行的步骤基本一致,具体可以参看上述内容,不再赘述。
以上描述了本申请实施例的方法实施例,下面对相应的装置实施例进行介绍。
为了实现上述本申请实施例提供的方法中的各功能,终端、网络设备均可以包括硬件结构和/或软件模块,以硬件结构、软件模块、或硬件结构加软件模块的形式来实现上述各功能。上述各功能中的某个功能以硬件结构、软件模块、还是硬件结构加软件模块的方式来执行,取决于技术方案的特定应用和设计约束条件。
图5是本申请实施例的通信装置500的结构示意框图。请参阅图5。通信装置500可以用于执行图3和图4所示的实施例中终端设备120执行的过程,具体请参考上述方法实施例中的相关介绍。
通信装置500包括处理模块501和收发模块502。收发模块502可以实现相应的通信功能,处理模块501用于进行数据处理。收发模块502还可以称为通信接口或通信模块。
可选地,通信装置500还可以包括存储模块,该存储模块可以用于存储指令和/或数据。处理模块501可以读取存储模块中的指令和/或数据,以使得通信装置实现前述方法实施例。
通信装置模块500可以用于执行上文方法实施例中终端设备所执行的动作。通信装置500可以为终端设备或者可配置于终端设备的部件。处理模块501用于执行上文方法实施例中终端设备侧的处理相关的操作。可选的,收发模块502用于执行上文方法实施例中终端设备侧的接收相关的操作。
可选的,收发模块502可以包括发送模块和接收模块。发送模块用于执行上述方法实施例中的发送操作。接收模块用于执行上述方法实施例中的接收操作。
需要说明的是,通信装置500可以包括发送模块,而不包括接收模块。或者,通信装置500可以包括接收模块,而不包括发送模块。具体可以视通信装置500执行的上述方案中是否包括发送动作和接收动作。
处理模块501,用于在时间单元W1上确定参考小区与至少一个其他小区,参考小区与至少一个其他小区是在时间单元W1配置有传输方向的激活服务小区;参考小区在时间单元W1的传输方向与第一其他小区在时间单元W1的传输方向冲突时,参考小区与第一其他小区中的至少一个小区是SBFD小区,SBFD小区包括第一子带与第二子带;
处理模块501,还用于根据第一子带确定参考小区与第一其他小区中的至少一个小区在时间单元W1的传输方向。
收发模块502,用于向网络设备发送第二指示信息或者用于接收网络设备发送的第一指示信息。
另一种可能的实现方式,处理模块501,还用于在时间单元W2确定参考子带与至少一个其他子带,参考子带与至少一个其他子带是在时间单元W2配置有传输方向的子带,参考子带在时间单元W2的传输方向与第一其他子带在时间单元W2的传输方向冲突。
另一种可能的实现方式中,处理模块501,还用于根据参考子带确定参考子带与第一其他子带中的至少一个子带在时间单元W2的传输方向。
收发模块502,还用于接收网络设备发送的第三指示信息,第三指示信息用于指示网络设备为终端设备配置的至少两个激活服务小区,且至少两个激活服务小区包括至少一个SBFD小区。
收发模块502,还用于向网络设备发送第四指示信息,第四指示信息用于指示终端设备是否支持频段间同时收发能力。
应理解,各模块执行上述相应过程的具体过程在上述方法实施例中已经详细说明,为了简洁,在此不再赘述。
上文实施例中的处理模块501可以由至少一个处理器或处理器相关电路实现。收发模块502可以由收发器或收发器相关电路实现。收发模块502还可称为通信模块或通信接口。存储模块可以通过至少一个存储器实现。
图6是本申请实施例的通信装置600的结构示意框图。请参阅图6,通信装置600可以用于执行图3和图4所示的实施例中网络设备110执行的过程,具体请参考上述方法实施例中的相关介绍。
通信装置600包括收发模块601。可选的,通信装置600还包括处理模块602。收发模块601可以实现相应的通信功能,处理模块602用于进行数据处理。收发模块601还可以称为通信接口或通信模块。
可选地,通信装置600还可以包括存储模块,该存储模块可以用于存储指令和/或数据。处理模块602可以读取存储模块中的指令和/或数据,以使得通信装置600实现前述方法实施例。
通信装置600可以用于执行上文方法实施例中网络设备110所执行的动作。通信装置600可以为网络设备110或者可配置于网络设备110的部件。收发模块601用于执行上文方法实施例中网络设备110侧的接收相关的操作,处理模块602用于执行上文方法实施例中网络设备110侧的处理相关的操作。
可选的,收发模块601可以包括发送模块和接收模块。发送模块用于执行上述方法实施例中的发送操作。接收模块用于执行上述方法实施例中的接收操作。
需要说明的是,通信装置600可以包括发送模块,而不包括接收模块。或者,通信装置600可以包括接收模块,而不包括发送模块。具体可以视通信装置600执行的上述方案中是否包括发送动作和接收动作。
收发模块601,用于在时间单元W1上确定参考小区与至少一个其他小区,参考小区与至少一个其 他小区是在时间单元W1配置有传输方向的激活服务小区;参考小区在时间单元W1的传输方向与第一其他小区在时间单元W1的传输方向冲突,参考小区与第一其他小区中的至少一个小区是SBFD小区,SBFD小区包括第一子带与第二子带;
处理模块601,还用于根据第一子带确定参考小区与第一其他小区中的至少一个小区在时间单元W1的传输方向。
收发模块602,用于向终端设备120发送第一指示信息或者用于接收终端设备120发送的第二指示信息。
另一种可能的实现方式,处理模块601,还用于在时间单元W2确定参考子带与至少一个其他子带,参考子带与至少一个其他子带是在时间单元W2配置有传输方向的子带,参考子带在时间单元W2的传输方向与第一其他子带在时间单元W2的传输方向冲突。
另一种可能的实现方式中,处理模块601,还用于根据参考子带确定参考子带与第一其他子带中的至少一个子带在时间单元W2的传输方向。
收发模块602,还用于向终端设备120发送第三指示信息,第三指示信息用于指示网络设备110为终端设备110配置的至少两个激活服务小区,且至少两个激活服务小区包括至少一个SBFD小区。
收发模块502,还用于向接收终端设备发送的第四指示信息,第四指示信息用于指示终端设备120是否支持频段间同时收发能力。
应理解,各模块执行上述相应过程的具体过程在上述方法实施例中已经详细说明,为了简洁,在此不再赘述。
上文实施例中的处理模块501可以由至少一个处理器或处理器相关电路实现。收发模块502可以由收发器或收发器相关电路实现。收发模块502还可称为通信模块或通信接口。存储模块可以通过至少一个存储器实现。
图7是本申请实施例的通信装置700的结构示意框图。通信装置700可用于实现上述方法中网络设备110与终端设备120的功能。通信装置700可以是网络设备110或者终端设备120中的芯片。
通信装置700包括:输入输出接口720和处理器710。输入输出接口720可以是输入输出电路。处理器710可以是信号处理器、芯片,或其他可以实现本申请方法的集成电路。其中,输入输出接口720用于信号或数据的输入或输出。
举例来说,当该通信装置700为终端设备110时,输入输出接口720用于接收网络设备110发送的第一指示信息,第一指示信息用于指示网络设备110为终端设备120配置的至少两个激活服务小区等。
举例来说,当通信装置700为网络设备110时,输入输出接口720用于向终端设备110发送第一指示信息,第一指示信息用于指示网络设备110为终端设备120配置的至少两个激活服务小区等等。其中,处理器710用于执行本申请提供的任意一种方法的部分或全部步骤。
一种可能的实现中,处理器710通过执行存储器中存储的指令,以实现网络设备110或终端设备120实现的功能。
可选的,通信装置700还包括存储器。
可选的,处理器和存储器集成在一起。
可选的,存储器在通信装置1300之外。
一种可能的实现中,处理器710可以为逻辑电路,处理器710通过输入输出接口720输入/输出消息或信令。其中,逻辑电路可以是信号处理器、芯片,或其他可以实现本申请实施例方法的集成电路。
上述对于图7的装置的描述仅是作为示例性描述,该装置能够用于执行前述实施例所述的方法,具体内容可以参见前述方法实施例的描述,在此不再赘述。
图8是本申请实施例的通信装置800的结构示意框图。通信装置80包括处理器810,处理器810与存储器820耦合,存储器820用于存储计算机程序或指令和/或数据,处理器810用于执行存储器820存储的计算机程序或指令和/或数据,使得上文方法实施例中的方法被执行。
可选地,通信装置800包括的处理器810为一个或多个。
可选地,如图8所示,通信装置800还可以包括存储器820。
可选地,通信装置800包括的存储器820可以为一个或多个。
可选地,该存储器820可以与该处理器810集成在一起,或者分离设置。
可选地,如图8所示,该通信装置800还可以包括收发器830,收发器830用于信号的接收和/或发送。例如,处理器810用于控制收发器830进行信号的接收和/或发送。
作为一种方案,该通信装置800用于实现上文方法实施例中由网络设备、终端设备、或通信设备执行的操作。
例如,处理器810用于实现上文方法实施例中由网络设备、终端设备、或通信设备执行的处理相关的操作,收发器830用于实现上文方法实施例中由网络设备、终端设备、或通信设备执行的收发相关的操作。
图9是本申请实施例的通信装置900的示意框图。通信装置900可以是网络设备110,也可以是芯片。该通信装置900可以用于执行上述图3至图4所示的方法实施例中由网络设备110所执行的操作。
当通信装置900为网络设备110时,例如为基站。图9示出了一种简化的基站结构示意图。基站包括910部分、920部分以及930部分。910部分主要用于基带处理,对基站进行控制等;910部分通常是基站的控制中心,通常可以称为处理器,用于控制基站执行上述方法实施例中网络设备侧的处理操作。920部分主要用于存储计算机程序代码和数据。930部分主要用于射频信号的收发以及射频信号与基带信号的转换;930部分通常可以称为收发模块、收发机、收发电路、或者收发器等。930部分的收发模块,也可以称为收发机或收发器等,其包括天线933和射频电路(图中未示出),其中射频电路主要用于进行射频处理。可选地,可以将930部分中用于实现接收功能的器件视为接收机,将用于实现发送功能的器件视为发射机,即930部分包括接收机932和发射机931。接收机也可以称为接收模块、接收器、或接收电路等,发送机可以称为发射模块、发射器或者发射电路等。
910部分与920部分可以包括一个或多个单板,每个单板可以包括一个或多个处理器和一个或多个存储器。处理器用于读取和执行存储器中的程序以实现基带处理功能以及对基站的控制。若存在多个单板,各个单板之间可以互联以增强处理能力。作为一种可选的实施方式,也可以是多个单板共用一个或多个处理器,或者是多个单板共用一个或多个存储器,或者是多个单板同时共用一个或多个处理器。
例如,在一种实现方式中,930部分的收发模块用于执行图3至图4所示实施例中由网络设备执行的收发相关的过程。910部分的处理器用于执行图3至图4所示实施例中由网络设备执行的处理相关的过程。
另一种实现方式中,910部分的处理器用于执行图3至图4所示实施例中由通信设备执行的处理相关的过程。
另一种实现方式中,930部分的收发模块用于执行图3至图4所示实施例中由通信设备执行的收发相关的过程。
应理解,图9仅为示例而非限定,上述所包括的处理器、存储器以及收发器的网络设备可以不依赖于图5至图8所示的结构。
当通信装置900为芯片时,该芯片包括收发器、存储器和处理器。其中,收发器可以是输入输出电路、通信接口;处理器为该芯片上集成的处理器、或者微处理器、或者集成电路。上述方法实施例中网络设备的发送操作可以理解为芯片的输出,上述方法实施例中网络设备的接收操作可以理解为芯片的输入。
图10是本申请实施例的通信装置1000的示意框图。通信装置1000可以为终端设备120、终端设备110的处理器、或芯片。通信装置1000可以用于执行上述方法实施例中由终端设备120或通信设备所执行的操作。
当通信装置1000为终端设备120时,图10示出了一种简化的终端设备120的结构示意图。如图10所示,终端设备120包括处理器、存储器、以及收发器。存储器可以存储计算机程序代码,收发器包括发射机1031、接收机1032、射频电路(图中未示出)、天线1033以及输入输出装置(图中未示出)。
处理器主要用于对通信协议以及通信数据进行处理,以及对终端设备120进行控制,执行软件程序,处理软件程序的数据等。存储器主要用于存储软件程序和数据。射频电路主要用于基带信号与射频信号的转换以及对射频信号的处理。天线主要用于收发电磁波形式的射频信号。输入输出装置。例 如,触摸屏、显示屏,键盘等主要用于接收用户输入的数据以及对用户输出数据。需要说明的是,有些种类的终端设备可以不具有输入输出装置。
当需要发送数据时,处理器对待发送的数据进行基带处理后,输出基带信号至射频电路,射频电路将基带信号进行射频处理后将射频信号通过天线以电磁波的形式向外发送。当有数据发送到终端设备时,射频电路通过天线接收到射频信号,将射频信号转换为基带信号,并将基带信号输出至处理器,处理器将基带信号转换为数据并对该数据进行处理。为便于说明,图10中仅示出了一个存储器、处理器和收发器,在实际的终端设备产品中,可以存在一个或多个处理器和一个或多个存储器。存储器也可以称为存储介质或者存储设备等。存储器可以是独立于处理器设置,也可以是与处理器集成在一起,本申请实施例对此不做限制。
在本申请实施例中,可以将具有收发功能的天线和射频电路视为终端设备的收发模块,将具有处理功能的处理器视为终端设备的处理模块。
如图10所示,终端设备包括处理器1010、存储器1020和收发器1030。处理器1010也可以称为处理单元,处理单板,处理模块、处理装置等,收发器1030也可以称为收发单元、收发机、收发装置等。
可选地,可以将收发器1030中用于实现接收功能的器件视为接收模块,将收发器1030中用于实现发送功能的器件视为发送模块,即收发器1030包括接收器和发送器。收发器有时也可以称为收发机、收发模块、或收发电路等。接收器有时也可以称为接收机、接收模块、或接收电路等。发送器有时也可以称为发射机、发射模块或者发射电路等。
例如,在一种实现方式中,处理器1010用于执行图3至图4所示的实施例中终端设备120侧的处理动作,收发器1030用于执行图3至图4中终端设备120侧的收发动作。
例如,在一种实现方式中,处理器1010用于执行图3至图4所示的实施例中终端设备120侧的处理动作,收发器1030用于执行图3至图4中终端设备120侧的收发动作。
应理解,图10仅为示例而非限定,上述的包括收发模块和处理模块的终端设备可以不依赖于图5至图8所示的结构。
当该通信装置1000为芯片时,该芯片包括处理器、存储器和收发器。其中,收发器可以是输入输出电路或通信接口;处理器可以为该芯片上集成的处理模块或者微处理器或者集成电路。上述方法实施例中终端设备的发送操作可以理解为芯片的输出,上述方法实施例中终端设备的接收操作可以理解为芯片的输入。
本申请还提供了一种芯片,包括处理器,用于从存储器中调用并运行所述存储器中存储的指令,使得安装有所述芯片的通信设备执行上述各示例中的方法。
本申请还提供另一种芯片,包括:输入接口、输出接口、处理器,所述输入接口、输出接口以及所述处理器之间通过内部连接通路相连,所述处理器用于执行存储器中的代码,当所述代码被执行时,所述处理器用于执行上述各示例中的方法。可选地,该芯片还包括存储器,该存储器用于存储计算机程序或者代码。
本申请还提供了一种处理器,用于与存储器耦合,用于执行上述各实施例中任一实施例中涉及网络设备或者终端设备的方法和功能。
在本申请的另一实施例中提供一种包含指令的计算机程序产品,当该计算机程序产品在计算机上运行时,前述实施例的方法得以实现。
本申请还提供一种计算机程序,当该计算机程序在计算机中被运行时,前述实施例的方法得以实现。
在本申请的另一实施例中提供一种计算机可读存储介质,该计算机可读存储介质存储有计算机程序,该计算机程序被计算机执行时实现前述实施例所述的方法。
在本申请实施例的描述中,除非另有说明,“多个”是指二个或多于二个。“以下至少一项(个)”或其类似表达,是指的这些项中的任意组合,包括单项(个)或复数项(个)的任意组合。例如,a,b,或c中的至少一项(个),可以表示:a,b,c,a-b,a-c,b-c,或a-b-c,其中a,b,c可以是单个,也可以是多个。
另外,为了便于清楚描述本申请实施例的技术方案,在本申请的实施例中,采用了“第一”、“第 二”等字样对功能和作用基本相同的相同项或相似项进行区分。本领域技术人员可以理解“第一”、“第二”等字样并不对数量和执行次序进行限定,并且“第一”、“第二”等字样也并不限定一定不同。同时,在本申请实施例中,“示例性地”或者“例如”等词用于表示作例子、例证或说明。
本申请实施例中被描述为“示例性地”或者“例如”的任何实施例或设计方案不应被解释为比其它实施例或设计方案更优选或更具优势。确切而言,使用“示例性的”或者“例如”等词旨在以具体方式呈现相关概念,便于理解。
在本申请实施例的描述中,除非另有说明,“/”表示前后关联的对象是一种“或”的关系,例如,A/B可以表示A或B;本申请中的“和/或”仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况,其中A,B可以是单数或者复数。
应理解,说明书通篇中提到的“一个实施例”或“一实施例”意味着与实施例有关的特定特征、结构或特性包括在本申请的至少一个实施例中。
因此,在整个说明书各处出现的“在一个实施例中”或“在一实施例中”未必一定指相同的实施例。此外,这些特定的特征、结构或特性可以任意适合的方式结合在一个或多个实施例中。
在本申请的各种实施例中,上述各过程的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定,而不应对本申请实施例的实施过程构成任何限定。
可以理解,说明书通篇中提到的“实施例”意味着与实施例有关的特定特征、结构或特性包括在本申请的至少一个实施例中。
因此,在整个说明书各个实施例未必指相同的实施例。此外,这些特定的特征、结构或特性可以任意适合的方式结合在一个或多个实施例中。
可以理解,在本申请的各种实施例中,各过程的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定,而不应对本申请实施例的实施过程构成任何限定。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。
另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以二个或二个以上单元集成在一个单元中。
功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请实施例的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、ROM、RAM、磁碟或者光盘等各种可以存储程序代码的介质。
以上,仅为本申请实施例的具体实施方式,但本申请实施例的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请实施例揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申 请实施例的保护范围之内。因此,本申请实施例的保护范围应以权利要求的保护范围为准。

Claims (56)

  1. 一种通信方法,其特征在于,包括:
    终端设备在第一时间单元确定参考小区与至少一个其他小区,所述参考小区与所述至少一个其他小区是在所述第一时间单元配置有传输方向的激活服务小区;
    所述参考小区在所述第一时间单元的传输方向与第一其他小区在所述第一时间单元的传输方向冲突,所述参考小区与所述第一其他小区中的至少一个小区是子带全双工SBFD小区,所述SBFD小区包括第一子带与第二子带,所述第一其他小区是所述至少一个其他小区中的任意一个其他小区,
    所述终端设备根据所述第一子带确定所述参考小区与所述第一其他小区中的至少一个小区在所述第一时间单元的传输方向。
  2. 根据权利要求1所述的方法,其特征在于,所述第一子带在所述第一时间单元的传输方向与所述第二子带在所述第一时间单元的传输方向冲突。
  3. 根据权利要求1或2所述的方法,其特征在于,所述传输方向包括以下至少一项:
    信号传输方向,或者,静态配置的符号方向;
    所述信号传输方向包括以下至少一项:
    静态信号传输方向,或者,动态信号传输方向。
  4. 根据权利要求1至3中任一项所述的方法,其特征在于,所述参考小区是在所述第一时间单元配置有静态传输方向的激活服务小区;
    所述静态传输方向包括以下至少一项:
    静态信号传输方向,或者,静态配置的符号方向。
  5. 根据权利要求1至4中任一项所述的方法,其特征在于,所述第一子带满足以下至少一项条件:
    所述第一子带在所述第一时间单元配置有信号传输方向,所述第二子带在所述第一时间单元没有配置信号传输方向,其中,所述第一子带在所述第一时间单元的信号传输方向与所述第二子带在所述第一时间单元的静态配置的符号方向冲突;
    所述第一子带在所述第一时间单元配置有信号传输方向,所述第二子带在所述第一时间单元配置有信号传输方向,所述第一子带在所述第一时间单元的信号传输方向与所述SBFD小区的最终信号传输方向一致,其中,所述第一子带在所述第一时间单元的信号传输方向与所述第二子带在所述第一时间单元的信号传输方向冲突;
    所述第一子带在所述第一时间单元配置有静态配置的符号方向,所述第二子带在所述第一时间单元配置有静态配置的符号方向,所述第一子带在所述第一时间单元没有信号传输方向的配置,所述第二子带在所述第一时间单元没有信号传输方向的配置,所述第一子带的标识小于或者大于所述第二子带的标识,或者,所述第一子带在所述第一时间单元的静态配置的符号方向为上行或者下行,其中,所述第一子带在所述第一时间单元的静态配置的符号方向与所述第二子带在所述第一时间单元的静态配置的符号方向冲突。
  6. 根据权利要求1至5中任一项所述的方法,其特征在于,所述终端设备在第一时间单元确定参考小区与至少一个其他小区之前,所述方法还包括:
    所述终端设备接收网络设备发送的第一指示信息,所述第一指示信息用于指示所述网络设备为所述终端设备配置的至少两个激活服务小区,所述至少两个激活服务小区包括至少一个所述SBFD小区。
  7. 根据权利要求6所述的方法,其特征在于,所述终端设备在第一时间单元确定参考小区与至少一个其他小区,包括:
    所述终端设备确定第一小区集合,所述第一小区集合中的每个小区是所述至少两个激活服务小区中配置有所述静态传输方向的激活服务小区;
    所述终端设备确定第一小区为所述参考小区,所述第一小区是所述第一小区集合中的任意一个激活服务小区,所述至少两个激活服务小区中除所述第一小区之外的所有小区为所述至少一个其他小区。
  8. 根据权利要求7所述的方法,其特征在于,所述第一小区的索引值是所述第一小区集合中所有小区的索引值中的最小值。
  9. 根据权利要求7或8所述的方法,其特征在于,所述第一小区集合包括的所述至少一个SBFD小区中的每个SBFD小区在所述第一时间单元配置有所述信号传输方向。
  10. 根据权利要求1至9中任一项所述的方法,其特征在于,所述方法还包括:
    所述终端设备向所述网络设备发送第二指示信息,所述第二指示信息用于指示所述终端设备是否支持频段间同时收发能力。
  11. 根据权利要求10所述的方法,其特征在于,
    所述第二指示信息用于指示所述终端设备支持该频段间同时收发能力时,所述第一小区集合中的所有小区所属的频段为第一频段;
    所述第二指示信息用于指示所述终端设备不支持该频段间同时收发能力时,所述第一小区集合中的所有小区所属的频段包括第一频段与第二频段,所述第二频段不同于所述第一频段。
  12. 根据权利要求1至11中任一项所述的方法,其特征在于,
    所述第一其他小区是配置有方向冲突处理参数的其他小区,所述方向冲突处理参数用于使所述终端设备确定所述第一其他小区参与方向冲突处理。
  13. 根据权利要求1至12中任一项所述的方法,其特征在于,所述第一时间单元包括以下至少一项:
    时隙,符号,或者,微时隙。
  14. 一种通信方法,其特征在于,包括:
    网络设备在第一时间单元确定参考小区与至少一个其他小区,所述参考小区与所述至少一个其他小区是在所述第一时间单元配置有传输方向的激活服务小区;
    所述参考小区在所述第一时间单元的传输方向与第一其他小区在所述第一时间单元的传输方向冲突,所述参考小区与所述第一其他小区中的至少一个小区是子带全双工SBFD小区,所述SBFD小区包括第一子带与第二子带,所述第一其他小区是所述至少一个其他小区中的任意一个其他小区,
    所述网络设备根据所述第一子带确定所述参考小区与所述第一其他小区中的至少一个小区在所述第一时间单元的传输方向。
  15. 根据权利要求14所述的方法,其特征在于,所述第一子带在所述第一时间单元的传输方向与所述第二子带在所述第一时间单元的传输方向冲突。
  16. 根据权利要求14或15所述的方法,其特征在于,所述传输方向包括以下至少一项:
    信号传输方向,或者,静态配置的符号方向;
    所述信号传输方向包括以下至少一项:
    静态信号传输方向,或者,动态信号传输方向。
  17. 根据权利要求14至16中任一项所述的方法,其特征在于,所述参考小区是在所述第一时间单元配置有静态传输方向的激活服务小区,
    所述静态传输方向包括以下至少一项:
    静态信号传输方向,或者,静态配置的符号方向。
  18. 根据权利要求14至17中任一项所述的方法,其特征在于,所述第一子带满足以下至少一项条件:
    所述第一子带在所述第一时间单元配置有信号传输方向,所述第二子带在所述第一时间单元没有配置信号传输方向,其中,所述第一子带在所述第一时间单元的信号传输方向与所述第二子带在所述第一时间单元的静态配置的符号方向冲突;
    所述第一子带在所述第一时间单元配置有信号传输方向,所述第二子带在所述第一时间单元配置有信号传输方向,所述第一子带在所述第一时间单元的信号传输方向与所述SBFD小区的最终信号传输方向一致,其中,所述第一子带在所述第一时间单元的信号传输方向与所述第二子带在所述第一时间单元的信号传输方向冲突;
    所述第一子带在所述第一时间单元配置有静态配置的符号方向,所述第二子带在所述第一时间单元配置有静态配置的符号方向,所述第一子带在所述第一时间单元没有信号传输方向的配置,所述第二子带在所述第一时间单元没有信号传输方向的配置,所述第一子带的标识小于或者大于所述第二子带的标识,或者,所述第一子带在所述第一时间单元的静态配置的符号方向为上行或者下行,其中, 所述第一子带在所述第一时间单元的静态配置的符号方向与所述第二子带在所述第一时间单元的静态配置的符号方向冲突。
  19. 根据权利要求14至18中任一项所述的方法,其特征在于,所述网络设备在第一时间单元确定参考小区与至少一个其他小区之前,所述方法还包括:
    所述网络设备向终端设备发送第一指示信息,所述第一指示信息用于指示所述网络设备为所述终端设备配置的至少两个激活服务小区,
    所述至少两个激活服务小区包括至少一个所述SBFD小区。
  20. 根据权利要求19所述的方法,其特征在于,所述网络设备在第一时间单元确定参考小区与至少一个其他小区,包括:
    所述网络设备确定第一小区集合,所述第一小区集合中的每个小区是所述至少两个激活服务小区中配置有所述静态传输方向的激活服务小区;
    所述网络设备确定第一小区为所述参考小区,所述第一小区是所述第一小区集合中的任意一个激活服务小区,所述至少两个激活服务小区中除所述第一小区之外的所有小区为所述至少一个其他小区。
  21. 根据权利要求20所述的方法,其特征在于,所述第一小区的索引值是所述第一小区集合中所有小区的索引值中的最小值。
  22. 根据权利要求20或21所述的方法,其特征在于,所述第一小区集合包括的所述至少一个SBFD小区中的每个SBFD小区在所述第一时间单元配置有所述信号传输方向。
  23. 根据权利要求14至22中任一项所述的方法,其特征在于,所述方法还包括:
    所述网络设备接收来自于所述终端设备的第二指示信息,所述第二指示信息用于指示所述终端设备是否支持频段间同时收发能力。
  24. 根据权利要求23所述的方法,其特征在于,
    所述第二指示信息用于指示所述终端设备支持该频段间同时收发能力时,所述第一小区集合中的所有小区所属的频段为第一频段;
    所述第二指示信息用于指示所述终端设备不支持该频段间同时收发能力时,所述第一小区集合中的所有小区所属的频段包括第一频段与第二频段,所述第二频段不同于所述第一频段。
  25. 根据权利要求14至24中任一项所述的方法,其特征在于,
    所述第一其他小区是配置有方向冲突处理参数的其他小区,所述方向冲突处理参数用于使所述终端设备确定所述第一其他小区参与方向冲突处理。
  26. 根据权利要求14至25中任一项所述的方法,其特征在于,所述第一时间单元包括以下至少一项:
    时隙,符号,或者,微时隙。
  27. 一种通信装置,其特征在于,包括:
    处理单元,用于在第一时间单元确定参考小区与至少一个其他小区,所述参考小区与所述至少一个其他小区是在所述第一时间单元配置有传输方向的激活服务小区;
    所述参考小区在所述第一时间单元的传输方向与第一其他小区在所述第一时间单元的传输方向冲突,所述参考小区与所述第一其他小区中的至少一个小区是子带全双工SBFD小区,所述SBFD小区包括第一子带与第二子带,所述第一其他小区是所述至少一个其他小区中的任意一个其他小区,
    所述处理单元,还用于根据所述第一子带确定所述参考小区与所述第一其他小区中的至少一个小区在所述第一时间单元的传输方向。
  28. 根据权利要求27所述的装置,其特征在于,所述第一子带在所述第一时间单元的传输方向与所述第二子带在所述第一时间单元的传输方向冲突。
  29. 根据权利要求27或28所述的装置,其特征在于,所述传输方向包括以下至少一项:
    信号传输方向,或者,静态配置的符号方向;
    所述信号传输方向包括以下至少一项:
    静态信号传输方向,或者,动态信号传输方向。
  30. 根据权利要求27至29中任一项所述的装置,其特征在于,所述参考小区是在所述第一时间单元配置有静态传输方向的激活服务小区;
    所述静态传输方向包括以下至少一项:
    静态信号传输方向,或者,静态配置的符号方向。
  31. 根据权利要求27至30中任一项所述的装置,其特征在于,所述第一子带满足以下至少一项条件:
    所述第一子带在所述第一时间单元配置有信号传输方向,所述第二子带在所述第一时间单元没有配置信号传输方向,其中,所述第一子带在所述第一时间单元的信号传输方向与所述第二子带在所述第一时间单元的静态配置的符号方向冲突;
    所述第一子带在所述第一时间单元配置有信号传输方向,所述第二子带在所述第一时间单元配置有信号传输方向,所述第一子带在所述第一时间单元的信号传输方向与所述SBFD小区的最终信号传输方向一致,其中,所述第一子带在所述第一时间单元的信号传输方向与所述第二子带在所述第一时间单元的信号传输方向冲突;
    所述第一子带在所述第一时间单元配置有静态配置的符号方向,所述第二子带在所述第一时间单元配置有静态配置的符号方向,所述第一子带在所述第一时间单元没有信号传输方向的配置,所述第二子带在所述第一时间单元没有信号传输方向的配置,所述第一子带的标识小于或者大于所述第二子带的标识,或者,所述第一子带在所述第一时间单元的静态配置的符号方向为上行或者下行,
    其中,所述第一子带在所述第一时间单元的静态配置的符号方向与所述第二子带在所述第一时间单元的静态配置的符号方向冲突。
  32. 根据权利要求27至31中任一项所述的装置,其特征在于,所述装置还包括收发单元,用于接收网络设备发送的第一指示信息,所述第一指示信息用于指示所述网络设备为所述终端设备配置的至少两个激活服务小区,所述至少两个激活服务小区包括至少一个所述SBFD小区。
  33. 根据权利要求32所述的装置,其特征在于,所述处理单元,用于:
    确定第一小区集合,所述第一小区集合中的每个小区是所述至少两个激活服务小区中配置有所述静态传输方向的激活服务小区;
    确定第一小区为所述参考小区,所述第一小区是所述第一小区集合中的任意一个激活服务小区,所述至少两个激活服务小区中除所述第一小区之外的所有小区为所述至少一个其他小区。
  34. 根据权利要求33所述的装置,其特征在于,所述第一小区的索引值是所述第一小区集合中所有小区的索引值中的最小值。
  35. 根据权利要求33或34所述的装置,其特征在于,所述第一小区集合包括的所述至少一个SBFD小区中的每个SBFD小区在所述第一时间单元配置有所述信号传输方向。
  36. 根据权利要求27至35中任一项所述的装置,其特征在于,所述通信装置还包括:
    收发单元,用于向所述网络设备发送第二指示信息,所述第二指示信息用于指示所述通信装置是否支持频段间同时收发能力。
  37. 根据权利要求36所述的装置,其特征在于,
    所述第二指示信息用于指示所述通信装置支持该频段间同时收发能力时,所述第一小区集合中的所有小区所属的频段为第一频段;
    所述第二指示信息用于指示所述通信装置不支持该频段间同时收发能力时,所述第一小区集合中的所有小区所属的频段包括第一频段与第二频段,所述第二频段不同于所述第一频段。
  38. 根据权利要求27至37中任一项所述的装置,其特征在于,
    所述第一其他小区是配置有方向冲突处理参数的其他小区,所述方向冲突处理参数用于使所述通信装置确定所述第一其他小区参与方向冲突处理。
  39. 根据权利要求27至38中任一项所述的装置,其特征在于,所述第一时间单元包括以下至少一项:
    时隙,符号,或者,微时隙。
  40. 一种通信装置,其特征在于,包括:
    处理单元,用于在第一时间单元确定参考小区与至少一个其他小区,所述参考小区与所述至少一个其他小区是在所述第一时间单元配置有传输方向的激活服务小区;
    所述参考小区在所述第一时间单元的传输方向与第一其他小区在所述第一时间单元的传输方向冲 突,所述参考小区与所述第一其他小区中的至少一个小区是子带全双工SBFD小区,所述SBFD小区包括第一子带与第二子带,所述第一其他小区是所述至少一个其他小区中的任意一个其他小区,
    处理单元,还用于根据所述第一子带确定所述参考小区与所述第一其他小区中的至少一个小区在所述第一时间单元的传输方向。
  41. 根据权利要求40所述的装置,其特征在于,所述第一子带在所述第一时间单元的传输方向与所述第二子带在所述第一时间单元的传输方向冲突。
  42. 根据权利要求40或41所述的装置,其特征在于,所述传输方向包括以下至少一项:
    信号传输方向,或者,静态配置的符号方向;
    所述信号传输方向包括以下至少一项:
    静态信号传输方向,或者,动态信号传输方向。
  43. 根据权利要求40至42中任一项所述的装置,其特征在于,所述参考小区是在所述第一时间单元配置有静态传输方向的激活服务小区;
    所述静态传输方向包括以下至少一项:
    静态信号传输方向,或者,静态配置的符号方向。
  44. 根据权利要40至43中任一项所述的装置,其特征在于,所述第一子带满足以下至少一项条件:
    所述第一子带在所述第一时间单元配置有信号传输方向,所述第二子带在所述第一时间单元没有配置信号传输方向,其中,所述第一子带在所述第一时间单元的信号传输方向与所述第二子带在所述第一时间单元的静态配置的符号方向冲突;
    所述第一子带在所述第一时间单元配置有信号传输方向,所述第二子带在所述第一时间单元配置有信号传输方向,所述第一子带在所述第一时间单元的信号传输方向与所述SBFD小区的最终信号传输方向一致,其中,所述第一子带在所述第一时间单元的信号传输方向与所述第二子带在所述第一时间单元的信号传输方向冲突;
    所述第一子带在所述第一时间单元配置有静态配置的符号方向,所述第二子带在所述第一时间单元配置有静态配置的符号方向,所述第一子带在所述第一时间单元没有信号传输方向的配置,所述第二子带在所述第一时间单元没有信号传输方向的配置,所述第一子带的标识小于或者大于所述第二子带的标识,或者,所述第一子带在所述第一时间单元的静态配置的符号方向为上行或者下行,其中,所述第一子带在所述第一时间单元的静态配置的符号方向与所述第二子带在所述第一时间单元的静态配置的符号方向冲突。
  45. 根据权利要求40至44中任一项所述的装置,其特征在于,所述装置还包括:
    收发单元,用于向终端设备发送第一指示信息,所述第一指示信息用于指示所述通信装置为所述终端设备配置的至少两个激活服务小区,所述至少两个激活服务小区包括至少一个所述SBFD小区。
  46. 根据权利要求45所述的装置,其特征在于,所述处理单元,还用于:
    确定第一小区集合,所述第一小区集合中的每个小区是所述至少两个激活服务小区中配置有所述静态传输方向的激活服务小区;
    确定第一小区为所述参考小区,所述第一小区是所述第一小区集合中的任意一个激活服务小区,所述至少两个激活服务小区中除所述第一小区之外的所有小区为所述至少一个其他小区。
  47. 根据权利要求46所述的装置,其特征在于,所述第一小区的索引值是所述第一小区集合中所有小区的索引值中的最小值。
  48. 根据权利要求46或47所述的装置,其特征在于,所述第一小区集合包括的所述至少一个SBFD小区中的每个SBFD小区在所述第一时间单元配置有所述信号传输方向。
  49. 根据权利要求40至48中任一项所述的方法,其特征在于,所述通信装置还包括:
    收发单元,用于接收来自于所述终端设备的第二指示信息,所述第二指示信息用于指示所述终端设备是否支持频段间同时收发能力。
  50. 根据权利要求49所述的方法,其特征在于,
    所述第二指示信息用于指示所述终端设备支持该频段间同时收发能力时,所述第一小区集合中的所有小区所属的频段为第一频段;
    所述第二指示信息用于指示所述终端设备不支持该频段间同时收发能力时,所述第一小区集合中的所有小区所属的频段包括第一频段与第二频段,所述第二频段不同于所述第一频段。
  51. 根据权利要求40至50中任一项所述的方法,其特征在于,
    所述第一其他小区是配置有方向冲突处理参数的其他小区,所述方向冲突处理参数用于使所述终端设备确定所述第一其他小区参与方向冲突处理。
  52. 根据权利要求40至51中任一项所述的方法,其特征在于,所述第一时间单元包括以下至少一项:
    时隙,符号,或者,微时隙。
  53. 一种通信装置,其特征在于,包括处理器,所述处理器与存储器耦合,所述处理器用于执行计算机程序或指令,使得所述通信装置执行权利要求1-26中任一项所述的方法。
  54. 一种通信装置,其特征在于,包括逻辑电路和输入输出接口,所述逻辑电路用于执行计算机程序或指令,使得所述通信装置执行权利要求1-26中任一项所述的方法。
  55. 一种计算机可读存储介质,其特征在于,包括计算机程序或指令,当所述计算机程序或所述指令在计算机上运行时,使得所述计算机执行权利要求1-26中任意一项所述的方法。
  56. 一种计算机程序产品,其特征在于,包含指令,当所述指令在计算机上运行时,使得所述计算机执行权利要求1-26中任意一项所述的方法。
PCT/CN2023/112420 2022-08-12 2023-08-11 通信方法与通信装置 WO2024032744A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210968331.9A CN117676840A (zh) 2022-08-12 2022-08-12 通信方法与通信装置
CN202210968331.9 2022-08-12

Publications (1)

Publication Number Publication Date
WO2024032744A1 true WO2024032744A1 (zh) 2024-02-15

Family

ID=89850953

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/112420 WO2024032744A1 (zh) 2022-08-12 2023-08-11 通信方法与通信装置

Country Status (2)

Country Link
CN (1) CN117676840A (zh)
WO (1) WO2024032744A1 (zh)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20190053227A1 (en) * 2017-08-10 2019-02-14 Asustek Computer Inc. Method and apparatus for handling sfi (slot format information) collision in a wireless communication system
WO2021226506A1 (en) * 2020-05-08 2021-11-11 Qualcomm Incorporated Frequency domain resource allocation techniques for full duplex communications
US20210360670A1 (en) * 2020-05-13 2021-11-18 Qualcomm Incorporated Frame structure for subband full duplex slot formats

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20190053227A1 (en) * 2017-08-10 2019-02-14 Asustek Computer Inc. Method and apparatus for handling sfi (slot format information) collision in a wireless communication system
WO2021226506A1 (en) * 2020-05-08 2021-11-11 Qualcomm Incorporated Frequency domain resource allocation techniques for full duplex communications
US20210360670A1 (en) * 2020-05-13 2021-11-18 Qualcomm Incorporated Frame structure for subband full duplex slot formats

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
VIVO: "Discussion on subband non-overlapping full duplex", 3GPP DRAFT; R1-2203558, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, no. e-Meeting; 20220509 - 20220520, 29 April 2022 (2022-04-29), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France, XP052153033 *
ZTE: "Discussion of subband non-overlapping full duplex", 3GPP DRAFT; R1-2203204, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, no. e-Meeting; 20220509 - 20220520, 29 April 2022 (2022-04-29), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France, XP052152865 *

Also Published As

Publication number Publication date
CN117676840A (zh) 2024-03-08

Similar Documents

Publication Publication Date Title
JP7055869B2 (ja) マルチキャリア通信のためのキャリア・スイッチング方法、装置およびシステム
US11528710B2 (en) Time domain resource indication method in relay network, network device, and user equipment
US20230328654A1 (en) Restricted twt operations for multi-link devices
US20220225333A1 (en) Resource dynamic indication method and apparatus
US11240855B2 (en) Local area network client participation in a network slice
US20230422085A1 (en) Managing a wireless local area network (wlan) to support a mobile communication network service
CN110166179A (zh) 指示方法,网络设备及用户设备
US11197223B2 (en) Method and apparatus for determining transmission path of packet in wireless communication
WO2024032744A1 (zh) 通信方法与通信装置
US20210399866A1 (en) Communication method and apparatus
WO2022140996A1 (zh) 一种信道接入方法及通信装置
WO2023051059A1 (zh) 资源配置方法和通信装置
WO2023134333A1 (zh) 通信方法及装置
WO2022105904A1 (zh) 传输处理方法、装置及通信设备
WO2024027389A1 (zh) 一种能力上报方法及装置
WO2024021972A1 (zh) 定位资源的配置方法、通信装置以及通信系统
WO2024114549A1 (zh) 通信方法和装置
WO2024061268A1 (zh) 资源的配置方法与通信装置
WO2023241401A9 (zh) 一种通信方法及装置
WO2023024982A1 (zh) 一种通信方法及装置
WO2024007237A1 (en) Sidelink kind passive communications
WO2022082767A1 (zh) 一种通信方法及相关设备
WO2023030205A1 (zh) 资源指示方法和通信装置
US20230007540A1 (en) Method and apparatus for mobile ap backhaul link setup and operation
WO2024055180A1 (zh) 数据传输的方法以及通信装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23851964

Country of ref document: EP

Kind code of ref document: A1