WO2024114308A1 - 导管弯曲转向控制方法、导管系统及存储介质 - Google Patents

导管弯曲转向控制方法、导管系统及存储介质 Download PDF

Info

Publication number
WO2024114308A1
WO2024114308A1 PCT/CN2023/130041 CN2023130041W WO2024114308A1 WO 2024114308 A1 WO2024114308 A1 WO 2024114308A1 CN 2023130041 W CN2023130041 W CN 2023130041W WO 2024114308 A1 WO2024114308 A1 WO 2024114308A1
Authority
WO
WIPO (PCT)
Prior art keywords
driving
catheter
wheel
driving wheel
position change
Prior art date
Application number
PCT/CN2023/130041
Other languages
English (en)
French (fr)
Inventor
罗兴桂
肖凡
高元倩
Original Assignee
深圳市精锋医疗科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN202211497241.2A external-priority patent/CN115715839A/zh
Application filed by 深圳市精锋医疗科技股份有限公司 filed Critical 深圳市精锋医疗科技股份有限公司
Publication of WO2024114308A1 publication Critical patent/WO2024114308A1/zh

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M25/00Catheters; Hollow probes
    • A61M25/01Introducing, guiding, advancing, emplacing or holding catheters
    • A61M25/0105Steering means as part of the catheter or advancing means; Markers for positioning
    • A61M25/0116Steering means as part of the catheter or advancing means; Markers for positioning self-propelled, e.g. autonomous robots
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B34/00Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
    • A61B34/10Computer-aided planning, simulation or modelling of surgical operations
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B34/00Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
    • A61B34/30Surgical robots
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B34/00Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
    • A61B34/70Manipulators specially adapted for use in surgery
    • A61B34/71Manipulators operated by drive cable mechanisms
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B34/00Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
    • A61B34/70Manipulators specially adapted for use in surgery
    • A61B34/76Manipulators having means for providing feel, e.g. force or tactile feedback
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M25/00Catheters; Hollow probes
    • A61M25/01Introducing, guiding, advancing, emplacing or holding catheters
    • A61M25/0105Steering means as part of the catheter or advancing means; Markers for positioning
    • A61M25/0133Tip steering devices
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B34/00Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
    • A61B34/10Computer-aided planning, simulation or modelling of surgical operations
    • A61B2034/101Computer-aided simulation of surgical operations
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B34/00Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
    • A61B34/30Surgical robots
    • A61B2034/301Surgical robots for introducing or steering flexible instruments inserted into the body, e.g. catheters or endoscopes

Definitions

  • the present application belongs to the field of medical device technology, and specifically relates to a catheter bending and steering control method, a catheter system, and a computer-readable storage medium.
  • Minimally invasive medical techniques are intended to reduce the amount of tissue damaged during medical procedures to reduce patient recovery time, discomfort, and harmful side effects.
  • it is often necessary to insert a catheter through a natural orifice in the patient's anatomy or through a surgical incision to the target tissue location. In order for the catheter to reach the target tissue location, precise control of the catheter's steering is required.
  • the catheter kinematic model is generally established, that is, the mapping relationship between the angular position of each driving wheel controlling the catheter and the catheter end posture is found, and then the target posture of the catheter is substituted into the kinematic model to solve the angular position of the driving wheel to achieve precise control of the catheter.
  • the catheter is a flexible continuum structure, in actual applications, the material properties, assembly process, temperature changes, external force disturbances and working space of the catheter have a great interference with the kinematic description, resulting in a large deviation between the established kinematic model and the actual motion state, making it difficult to meet the requirements of real-time and precise control of the catheter steering.
  • the present application proposes a catheter bending and steering control method, a catheter system and a computer-readable storage medium, which can solve the problem that the related technology is difficult to meet the requirements of real-time and accurate control of catheter steering.
  • the problem of demand proposes a catheter bending and steering control method, a catheter system and a computer-readable storage medium, which can solve the problem that the related technology is difficult to meet the requirements of real-time and accurate control of catheter steering.
  • the problem of demand proposes a catheter bending and steering control method, a catheter system and a computer-readable storage medium, which can solve the problem that the related technology is difficult to meet the requirements of real-time and accurate control of catheter steering.
  • the catheter system includes a mechanical arm, a catheter instrument engaged with a power unit of the mechanical arm, a main controller and a processor connected to the mechanical arm.
  • the catheter instrument includes an instrument box configured to be engaged with the power unit and a catheter connected to the instrument box, and the instrument box includes a driving wheel configured to be driven by the power unit and a driving wire with one end wound around the driving wheel and the other end extending along the catheter and fixed to the end of the catheter.
  • the power unit includes a plurality of driving motors, and the driving motors, driving wheels and driving wires correspond to each other.
  • the processor is configured to perform the following steps: according to the catheter steering instruction from the main controller, the position change amount of the catheter end is obtained, and the position change amount includes the direction angle and the bending angle; according to the position change amount, the driving wheel and the driven wheel in the driving wheel are determined, and the angular position change amount of the driving wheel is calculated; according to the angular position change amount of the driving wheel and the current position ratio distribution coefficient of the corresponding driven wheel, the angular position change amount of the driven wheel is calculated, and the current position ratio distribution coefficient is used to represent the ratio of the take-up length of the driving wheel to the pay-out length of the corresponding driven wheel in the current state; the driving motor is controlled to drive the corresponding driving wheel to rotate according to the angular position change amount.
  • the catheter bending and steering control method, catheter system and computer-readable storage medium obtained the position change of the catheter end according to the catheter steering instruction from the main controller, and the position change includes the direction angle and the bending angle; determine the driving wheel and the driven wheel in the driving wheel according to the position change, and calculate the angular position change of the driving wheel; calculate the angular position change of the driven wheel according to the angular position change of the driving wheel and the current position proportional distribution coefficient of the corresponding driven wheel, and the current position proportional distribution coefficient is used to express the ratio of the line-receiving length of the driving wheel to the line-releasing length of the corresponding driven wheel in the current state; and control the driving motor to drive the corresponding driving wheel to rotate according to the angular position change.
  • the control is performed based on the position change amount under the action of the duct steering command rather than the target position, and the driving wheel is divided into an active wheel and a driven wheel. Only the angular position change amount of the active wheel is directly calculated based on the position change amount, and the angular position change amount of the driven wheel is calculated based on the angular position change amount of the active wheel, thereby realizing the decoupling of the calculation of the angular position change amount of the driven wheel and the duct steering command, thereby simplifying the calculation process of the angular position change amount of each driving wheel while realizing the bending steering control of the duct, and shortening the response time of the duct steering command.
  • FIG1 shows a schematic diagram of a catheter system provided by an embodiment of the present application
  • FIG2 shows a schematic diagram of a catheter device and a power unit provided in an embodiment of the present application
  • FIG3 shows a schematic diagram of a catheter device provided in an embodiment of the present application.
  • FIG4 is a schematic diagram showing a flow chart of a catheter bending and steering control method provided in an embodiment of the present application.
  • FIG7 is a schematic diagram showing a flow chart of calculating the angular position variation of the driving wheel in a specific embodiment of the present application.
  • FIG8 is a schematic diagram showing a kinematic model established for a rotating segment in an embodiment of the present application.
  • FIG9 is a schematic diagram showing a flow chart of calculating the angular position variation of the driving wheel in another specific embodiment of the present application.
  • FIG10 is a schematic diagram showing a flow chart of calculating the angular position variation of the driving wheel in another specific embodiment of the present application.
  • FIG11 is a schematic flow chart of a catheter bending and steering control method provided by another embodiment of the present application.
  • FIG12 is a schematic diagram showing the division of the joint space of the driving wheels and the corresponding control strategy in another specific embodiment of the present application.
  • FIG13 is a schematic diagram showing the structure of a control system of a catheter system provided by an embodiment of the present application.
  • FIG. 14 shows a schematic diagram of a computer-readable storage medium provided in an embodiment of the present application.
  • FIG1 shows a catheter system 1000 provided in an embodiment of the present application.
  • the catheter system 1000 includes an imaging vehicle 100, a trolley 200 and a main controller 300 respectively connected to the imaging vehicle 100, a catheter instrument 400 that can be coupled (i.e., detachably connected) to the trolley 200, a sensor system 500 connected to the trolley 200, and a control system 600 for realizing control between the catheter instrument 400, the main controller 300, the sensor system 500 and the imaging vehicle 100.
  • the main controller 300 can be connected to the trolley 200 by wire or wirelessly.
  • the control instruction can be triggered by operating the main controller 300, and the catheter instrument 400 can be controlled to advance, retract, bend and turn, etc. through the drive of the trolley 200.
  • the trolley 200 can usually be moved to the side of the operating bed to engage the catheter instrument 400, and control the catheter instrument 400 to move up and down in the vertical direction, or translate in the horizontal direction, or move in non-vertical and non-horizontal directions under the control command, so as to provide a better preoperative preparation angle for the operation of the catheter instrument 400.
  • the control command can be a command triggered by the operator by operating the main controller 300, or a command triggered by the operator directly clicking or pressing a button set on the trolley 200.
  • the control command can also be a command triggered by voice control or a force feedback mechanism.
  • the trolley 200 may include a base 210, A sliding seat body 220 that can be lifted and moved along the base 210, and two mechanical arms 230 fixedly connected to the sliding seat body 220.
  • the mechanical arm 230 may include a plurality of arm segments connected at a joint, and the plurality of arm segments provide the mechanical arm 230 with a plurality of degrees of freedom, for example, seven degrees of freedom corresponding to the seven arm segments.
  • a power unit (not shown in the figure) is installed at the end of the mechanical arm 230, and the power unit of the mechanical arm 230 is used to engage the catheter instrument 400, and under the driving action of the power unit, the end of the catheter instrument 400 is controlled to bend and turn accordingly.
  • the two mechanical arms 230 may be structures that are completely the same or partially the same, one mechanical arm 230 is used to engage the inner catheter instrument 410, and the other mechanical arm 230 is used to engage the outer catheter instrument 420.
  • the outer catheter instrument 420 can be installed first, and when the outer catheter instrument 420 is installed, the catheter of the inner catheter instrument 410 is inserted into the catheter of the outer catheter instrument 420.
  • the sensor system 500 has one or more subsystems for receiving information about the catheter device 400.
  • the subsystems may include: a position sensor system; a shape sensor system for determining the position, orientation, speed, velocity, pose, and/or shape of the tip of the catheter device 400 and/or along one or more segments of a catheter that may constitute the catheter device 400; and/or a visualization system for capturing images from the tip of the catheter device 400.
  • the imaging vehicle 100 may be provided with a display system 110 and a flushing system (not shown in the figure), etc.
  • the display system 110 is used to display images or representations of the surgical site and the catheter instrument 400 generated by the subsystem of the sensor system 500. Real-time images of the surgical site and the catheter instrument 400 captured by the visualization system may also be displayed. Images of the surgical site recorded before or during surgery may also be presented using image data from imaging techniques such as computed tomography (CT), magnetic resonance imaging (MRI), optical coherence tomography (OCT), and ultrasound, etc.
  • CT computed tomography
  • MRI magnetic resonance imaging
  • OCT optical coherence tomography
  • ultrasound etc.
  • the preoperative or intraoperative image data may be presented as two-dimensional, three-dimensional, or four-dimensional (such as time-based or rate-based information) images and/or presented as images from a model created based on a preoperative or intraoperative image data set, and a virtual navigation image may also be displayed.
  • a virtual navigation image the actual position of the catheter instrument 400 is registered with the preoperative image to present a virtual image of the catheter instrument 400 in the surgical site to the operator from the outside.
  • the control system 600 includes at least one memory and at least one processor. It is understood that the control system 600 can be integrated into the trolley 200 or the imaging trolley 100, or can be independently provided.
  • the control system 600 can support wireless communication protocols, such as IEEE 802.11, IrDA, Bluetooth, HomeRF, DECT, and wireless telemetry.
  • the control system 600 can transmit one or more signals indicating the movement of the catheter device 400 by the power unit to move the catheter device 400.
  • the catheter device 400 can extend to a surgical site in the body through an opening of a natural cavity of the patient or a surgical incision.
  • control system 600 may include a mechanical control system (not shown in the figure) and an image processing system (not shown in the figure), wherein the mechanical control system is used to control the movement of the catheter instrument 400, and therefore, can be integrated into the trolley 200.
  • the image processing system is used for virtual navigation path planning, and therefore, can be integrated into the imaging vehicle 100.
  • the various subsystems of the control system 600 are not limited to the specific situations listed above, and can also be reasonably set according to actual conditions. Among them, the image processing system can image the surgical site based on the image of the surgical site recorded before or during the operation, using the above imaging technology.
  • the software used in combination with manual input can also convert the recorded image into a two-dimensional or three-dimensional synthetic image of a part or the entire anatomical organ or segment.
  • the sensor system 500 can be used to calculate the position of the catheter instrument 400 relative to the patient's anatomical structure, which can be used to generate an external tracking image and an internal virtual image of the patient's anatomical structure, so as to realize the actual position of the catheter instrument 400 and the preoperative image registration, so that the virtual image of the catheter instrument 400 in the surgical site can be presented to the operator from the outside.
  • the structural composition of the inner catheter device 410 and the outer catheter device 420 is substantially the same, and each comprises a slender and flexible inner catheter 41 and an outer catheter 42, wherein the diameter of the outer catheter 42 is slightly larger than that of the inner catheter 41, so that the inner catheter 41 can pass through the outer catheter 42 and provide a certain support for the inner catheter 41, so that the inner catheter 41 can reach the target position in the patient's body, so as to facilitate operations such as tissue or cell sampling from the target position.
  • Certain movements of the main controller 300 may cause corresponding movements of the catheter device 400.
  • the movement of the direction lever of the main controller 300 may be mapped to the movement of the catheter device 400.
  • the movement of the direction lever of the main controller 300 can be mapped to the corresponding yaw movement of the end of the catheter device 400.
  • the main controller 300 can control the end of the catheter device 400 to move within a 360° spatial range.
  • FIG. 2 and FIG. 3 show a catheter device 400 provided in an embodiment of the present application.
  • the catheter device 400 is detachably connected to the power unit 240 of the mechanical arm 230, and the catheter device 400 includes an instrument box 45 detachably connected to the power unit 240 and a catheter 48 connected to the instrument box 45.
  • the driving force of the power unit 240 can be transmitted to the instrument box 45, and the catheter 48 can be moved normally.
  • the end of the catheter 48 can be bent and turned.
  • the instrument box 45 includes a plurality of driving wheels 451 driven by the power unit 240 and a plurality of driving wires 452.
  • the power unit 240 includes a plurality of driving motors 241.
  • the driving motors 241, the driving wheels 451 and the driving wires 452 are arranged one by one.
  • Each driving wheel 451 is detachably connected to the corresponding driving motor 241.
  • the corresponding driving motor 241 can drive the driving wheel 451 to rotate, and the driving wheel 451 is wound with the corresponding driving wire 452.
  • the movable part of the corresponding driving wire 452, that is, the part not wound on the driving wheel 451 extends into the catheter 48, extends along the length direction of the catheter 48 and is finally fixed to the end of the catheter.
  • the end in this application may also be referred to as the distal end or the head, which refers to the end away from the instrument box 45 ; the front end may also be referred to as the proximal end or the tail, which refers to the end close to the instrument box 45 .
  • a portion of the catheter 48 including the end is a rotating section 49, and the end of the rotating section 49 is the end of the catheter 48.
  • the rotating section 49 may be a joint component, which has high rigidity in the telescopic direction and low rigidity in the bending direction, and may bend under the control of the driving wire 452, thereby achieving the turning of the catheter 48.
  • the joint component may be referred to as a snake bone.
  • each driving wire 452 can be considered to be fixed, and the driving wire 452 can be extended or shortened along the length direction of the rotating section 49.
  • the end of the driving wire 452 is fixed to the end of the rotating section 49, and It does not necessarily mean that the position where the end of the driving wire 452 is fixed is located within the end plane of the rotating section 49.
  • the end of the driving wire 452 can be fixed at a position that is a short distance from the end plane of the rotating section 49 to the proximal end.
  • the position where the end of the driving wire 452 is fixed can be regarded as being within the end plane of the rotating section 49 during the process of driving the end of the catheter 48 to turn.
  • the driving wheel 451 can rotate clockwise or counterclockwise under the drive of the corresponding driving motor 241. If the driving wheel 451 rotates in one direction, more of the corresponding driving wire 452 will be wound around the driving wheel 451, that is, part of the driving wire 452 originally belonging to the active part enters the winding state, resulting in a shortened length of the active part. This process can also be referred to as pulling the driving wire 452 or pulling/winding the wire. For ease of description, this direction is referred to as the forward direction. If the driving wheel 451 rotates in one direction, less of the driving wire 452 will be wound around the driving wheel 451, that is, part of the driving wire 452 originally wound around the driving wheel 451 becomes the active part, resulting in a longer length of the active part.
  • This process can also be referred to as unwinding.
  • this direction is referred to as the reverse direction. It can be determined which of the clockwise and counterclockwise directions is the forward direction and which is the reverse direction according to the winding direction of the corresponding driving wire 452.
  • the processor of the control system 600 is configured to perform the following steps to implement the catheter bending and steering control method provided in an embodiment of the present application. As shown in FIG4 , the method includes:
  • Step S11 Acquire the position change of the catheter tip according to the catheter steering instruction from the main controller.
  • the position change amount may include a direction angle ⁇ and a bending angle ⁇ for controlling the bending and turning of the catheter.
  • the user may operate at least one of the input devices such as a direction lever and a key on the main controller to input a catheter turning instruction.
  • the user can push the direction lever in any direction within the operation plane.
  • This operation is converted into an electrical signal under the action of the sensor in the main controller, which is the catheter steering instruction, specifically including the first voltage and the second voltage collected on two mutually perpendicular axes of the main controller (i.e., the axes of the operation plane).
  • the direction angle of the user's operation is calculated based on the ratio of the first voltage and the second voltage. Specifically, the inverse tangent function or inverse cotangent function of the ratio can be calculated to obtain the direction angle of the user's operation.
  • the composite value of the voltage and the second voltage is calculated as the first The composite value of the voltage and the second voltage.
  • the composite value reflects the strength of the user's operation.
  • the bending speed of the catheter end can be calculated based on the composite value. For example, the product of the composite value and the preset coefficient can be calculated as the bending speed.
  • the bending angle of the user's operation is obtained by calculating the integral of the bending speed and the command holding time.
  • the command holding time refers to the duration of the same user operation.
  • the control interval is the interval between two adjacent steering controls of the catheter end.
  • there is only one catheter steering instruction in each control interval and the sampling interval of the main controller is fixed.
  • the integration process can be omitted, and the bending speed is directly used as the bending angle ⁇ operated by the user.
  • the direction angle and bending angle of user's operation may be calculated after smoothing and filtering the collected first voltage and second voltage.
  • the bending angle operated by the user can be directly used as the bending angle ⁇ in the position change.
  • the direction angle operated by the user can be directly used as the direction angle ⁇ in the position change. Otherwise, the direction angle operated by the user can be transformed according to the mapping relationship between the two coordinate systems to obtain the direction angle ⁇ .
  • the calculated direction angle and bending angle of the user operation can be divided into multiple parts to obtain the direction angle ⁇ and bending angle ⁇ in the position change. For example, if the bending angle operated by the user is 30°, the catheter steering instruction input by the user this time can be completed in 10 times, and the bending angle ⁇ in the position change used each time is 3°.
  • Step S12 determining the driving wheel and the driven wheel in the driving wheel according to the position change amount, and calculating the angular position change amount of the driving wheel.
  • the direction angle ⁇ in the subsequent position change is referred to as the direction angle change ⁇
  • the bending angle ⁇ in the position change is referred to as the bending angle change ⁇ , which are not necessarily the same as the direction angle and bending angle input by the user operation.
  • coordinate systems are established for the front plane and the end plane of the rotating segment.
  • the focus of the coordinate system is the center of the plane.
  • the coordinates of the fixed position of the drive wire are the angles between the vector pointing from the origin to the coordinates of the drive wire and the positive x-axis of the front/end plane. The coordinates and angles of the same drive wire in these two coordinate systems are consistent.
  • the coordinate system of the end plane of the rotating section is generally consistent with the coordinate system of the front plane.
  • the coordinate system of the front plane of the rotating section remains unchanged, and the coordinate system of the end plane will change under the action of the driving wire.
  • the drive wires on each drive wheel can be maintained in a suitable tightness state. If a certain drive wire is pulled, the drive wire will drive the end of the catheter to bend and turn toward its fixed position, and the bending of the end of the catheter will pull part or all of the other drive wires. If the pulling force caused by the bending of the end of the catheter is large enough, it will drive the corresponding drive wheel to rotate in the opposite direction for a short distance. This distance is generally affected by the tightness and elastic modulus of the drive wire. In the process of reverse rotation, since the change of the pulling force is discontinuous, the jump of the force will cause the speed of the corresponding drive wheel to jump, which may cause the wire to loosen.
  • the drive wire After rotating this distance, the drive wire is tightened. If the corresponding motor does not drive the drive wheel to follow the rotation, the catheter will be stuck. If the pulling force caused by the bending of the end of the catheter on the drive wire is not enough to overcome the resistance and drive the corresponding drive wheel to rotate in the opposite direction, the drive wire will be tightened to the limit determined by the system parameters (such as mechanical structure and size, material properties, etc.), which will also cause the catheter to be stuck.
  • the jam of the catheter means that the driving wheel cannot continue to reel in the line, which often results in the driving wheel being unable to rotate to the position indicated by the angular position change, and the catheter end cannot bend normally to the target position. Therefore, in order for the driving wheel to reel in the line normally, part or all of the driving wheel corresponding to the pulled driving wire needs to act as a driven wheel to follow the release of the line.
  • the relative arrangement means that the line connecting the driving wires corresponding to the two driving wheels at the fixed positions at the end of the catheter passes through the center of the plane at the end of the catheter, that is, the angle difference between the driving wires is ⁇ .
  • the number of driving wires is n, where n is an integer greater than 2.
  • the n driving wires divide the front end plane of the catheter rotating section into n intervals in terms of angle.
  • the driving wires corresponding to the two ends of the interval to which the direction angle variation ⁇ belongs can be used as active driving wires.
  • the driving wheel is the active wheel. Some or all of the remaining driving wheels are driven wheels.
  • the endpoints of the interval are not included. If the direction angle change ⁇ falls on a certain endpoint, that is, it is the same as the angle of a certain driving wire, only the driving wire can be selected as the active driving wire.
  • the number of driving wheels can be greater than 2.
  • some or all of the driving wheels other than the driving wheel can be selected as driven wheels according to the number and position distribution of the driving wires.
  • the serial numbers of the corresponding driving wires, driving wheels and motors are the same, but they may be different in reality; the driving wires are evenly distributed, but they may not be evenly distributed in reality.
  • n 3 and the driving wires are evenly distributed, and the angles of the driving wires 1, 2, and 3 in the front end plane coordinate system of the rotating section are 0, 2 ⁇ /3, and 4 ⁇ /3, respectively.
  • the driving wheel connected to the driving wire with the same angle as the change in direction angle is the driving wheel, and the remaining two driving wheels are driven wheels.
  • the driving wheels 1 and 2 are active wheels, and the driving wheel 3 is the driven wheel.
  • n 4 and the driving wires are evenly distributed, and the angles of the driving wires 5, 6, 7, and 8 in the front end plane coordinate system of the rotating section are 0, ⁇ /2, ⁇ , and 3 ⁇ /2, respectively.
  • the driving wheel connected to the driving wire with the same angle as the direction angle change is the driving wheel, which is set opposite to the driving wheel.
  • the direction angle change is ⁇ /2
  • drive wheel 6 is the driving wheel
  • drive wheel 8 is the driven wheel
  • drive wheels 5 and 7 are neither driving wheels nor driven wheels, that is, they do not need to rotate.
  • the driving wheels 5 and 6 are active wheels, and the driving wheels 7 and 8 are driven wheels.
  • the driving wheels 6 and 7 are active wheels, and the driving wheels 8 and 5 are driven wheels.
  • the driving wheels 7 and 8 are active wheels, and the driving wheels 5 and 6 are driven wheels.
  • the driving wheels 8 and 5 are active wheels, and the driving wheels 6 and 7 are driven wheels.
  • the driving wheel corresponding to the driving wire can be selected as the driving wheel, and the driving wheels corresponding to the two driving wires whose angles are closest to the reverse angle ⁇ of the direction angle change can be selected as the driven wheels; if the reverse angle ⁇ of the direction angle change is the same as the angle of a certain driving wire, the driving wheel corresponding to the driving wire can be selected as the driven wheel, and the driving wheels corresponding to the two driving wires whose angles are closest to the direction angle change ⁇ can be selected as the driving wheels; if the direction angle change ⁇ and its reverse angle ⁇ are different from the angles of any driving wire, the driving wheels corresponding to the two driving wires whose angles are closest to the direction angle change ⁇ can be selected as the driving wheels, and the driving wheels corresponding to the two driving wires whose angles are closest to the reverse angle ⁇ of the direction angle change can be selected as the driving wheels;
  • the drive wheel corresponding to the drive wire can be selected as the active wheel, and the drive wheel corresponding to the drive wire with the same angle as the reverse angle ⁇ of the direction angle change can be selected as the driven wheel; if the direction angle change ⁇ is different from the angle of any drive wire, the drive wheels corresponding to the two drive wires with the closest angle to the direction angle change ⁇ can be selected.
  • the driving wheel is used as the active wheel, and the driving wheels corresponding to the two driving wires whose angles are closest to the reverse angle ⁇ of the direction angle change are used as the driven wheels.
  • the unselected driving wheels do not need to move.
  • the directional angle change of the driving wire controlling the rotation of the catheter end can actually only be the angle of one of the two driving wires.
  • the driving wheel corresponding to the driving wire with the same directional angle change is the active wheel, and the other driving wheel is the driven wheel.
  • the rotating segment/catheter end can bend with two degrees of freedom, and the state/position of the rotating segment/catheter end can be described by two joint variables, the bending angle and the direction angle.
  • the direction angle is used to describe the direction in which the rotating segment/catheter end bends, and its value range can be 2 ⁇ , and the specific range can be determined according to actual needs, such as [0,2 ⁇ ], [- ⁇ , ⁇ ], etc.;
  • the bending angle is used to describe the degree of bending of the rotating segment/catheter end, and the lower limit of its value range can be 0, indicating a natural state without bending, and the upper limit can be determined according to actual conditions, generally not exceeding ⁇ , for example, it can be ⁇ /2, 2 ⁇ /3, etc.
  • the catheter end changes from the current state to the target state, that is, from the current posture to the target posture.
  • the focus is on the transformation of the catheter end from the current position to the target position, and based on this, the length change of the active drive wire, that is, the wire-receiving length of the active wheel, is calculated, and then the angular position change of the active wheel is calculated.
  • calculating the angular position change of the driving wheel includes the following sub-steps:
  • the rotating segment Due to the structural design of the rotating segment, the rotating segment can be approximately treated as a circular arc during the bending and turning process. Based on this characteristic, a kinematic model can be established for the rotating segment, and the position increment offset can be calculated based on the kinematic model.
  • a kinematic model as shown in Figure 8 can be established for the rotating segment, where the length of the rotating segment is L, and the rotating segment is abstracted as a circle with a radius of r in the direction perpendicular to the length.
  • the front end coordinate system of the rotating segment is T 0 (x 0 ,y 0 ,z 0 ), the xoy plane is the front end plane and the origin is the center of the front end plane.
  • T 0 x 0 ,y 0 ,z 0
  • the xoy plane is the front end plane
  • the origin is the center of the front end plane.
  • the end coordinate system of the rotating segment in the current state is T i (x i ,y i ,z i ), the xoy plane is the terminal plane and the origin is the center of the terminal plane.
  • the transformation of the terminal coordinate system of the rotating segment relative to the front coordinate system in the current state can be described by the current direction angle ⁇ i and the current bending angle ⁇ i . More specifically, the current bending angle ⁇ i is the arc angle of the arc with a length of L formed from the center of the front plane to the center of the terminal plane in the current state, and the current direction angle ⁇ i is the rotation angle of the xoy plane of the terminal coordinate system relative to the xoy plane of the front coordinate system in the current state.
  • the transformation matrix of the terminal coordinate system relative to the front coordinate system in the current state can be expressed as:
  • P( ⁇ i , ⁇ i ) represents the position transformation of the terminal coordinate system relative to the front-end coordinate system in the current state, which can be represented by a vector pointing from the center of the front-end plane to the center of the terminal plane in the current state.
  • the calculated target direction angle exceeds the set value range, it can be added with 2 ⁇ or subtracted with 2 ⁇ to return to the value range; if the calculated target bending angle is greater than the upper limit of the bending angle value range, it can be corrected to the upper limit of the bending angle value range; if the calculated target bending angle is a negative number, the target direction angle is added with ⁇ or subtracted with ⁇ according to the value range of the direction angle to change to its reverse direction, and the target bending angle is modified to its absolute value.
  • the transformation matrix of the terminal coordinate system relative to the front-end coordinate system in the target state can be expressed as:
  • P( ⁇ i+1 , ⁇ i+1 ) represents the position transformation of the terminal coordinate system relative to the front-end coordinate system in the target state, which can be represented by a vector pointing from the center of the front-end plane to the center of the terminal plane in the target state.
  • the position increment offset Pi P( ⁇ i +1 , ⁇ i +1 )-P( ⁇ i , ⁇ i ) can be calculated. It is represented by the vector from the center of the terminal plane in the state to the center of the terminal plane in the target state.
  • S102 Calculate the take-up length of each driving wheel according to the position increment offset.
  • the position increment offset describes the transformation of the catheter end from the current position to the target position.
  • a drive wire can be added to the above kinematic model.
  • the fixed position of each drive wire is set on a circle perpendicular to the length direction.
  • the drive wire can be treated as a straight line, an arc, a multi-segment broken line, or a multi-segment arc in the length direction.
  • the drive wire mentioned generally refers to the drive wire in the rotating segment.
  • the mapping function between the position increment offset and the active wheel take-up length (i.e., the shortening amount of the active drive wire) can be calculated, and then the position increment offset obtained by S101 can be substituted to calculate the take-up length of each active wheel.
  • the mapping function may be an analytical solution calculated according to a kinematic model, or a function obtained by processing the analytical solution by means of approximation, fitting, etc. in order to simplify calculations.
  • the value of the angular position change can be calculated by combining the geometric parameters of the driving wheel (such as the winding radius of the driving wire) and the winding length of the driving wheel.
  • the rotation direction of the driving wheel (clockwise or counterclockwise) can be determined according to the winding direction of the driving wire.
  • the angular position change of the driving wheel can be obtained by combining the two.
  • calculating the angular position change of the driving wheel includes the following sub-steps:
  • S112 Calculate the length difference of the active driving wire in the current state and the target state under the action of the position change according to the kinematic model as the wire-receiving length of the active wheel.
  • the lower plane in FIG8 is the front plane, represented by i-1, B1 , B2, B3, B4 are the fixed points of driving wires 1, 2 , 3 , 4 on the front plane, respectively, O is the center of the front plane, for the convenience of calculation, OB1 is defined as the positive x-axis of the front coordinate system, OB2 is defined as the positive y-axis of the front coordinate system, and the z-axis of the front coordinate system is perpendicular to the front plane and points to the end plane.
  • the upper plane in FIG8 is the end plane, represented by i, P1 , P2 , P3, P4 are the fixed points of driving wires 1, 2, 3 , 4 on the end plane, respectively.
  • the fixed point of the end plane, C is the center of the end plane.
  • CP 1 is defined as the positive x-axis of the end coordinate system
  • CP 2 is the positive y-axis of the end coordinate system
  • the z-axis of the end coordinate system is perpendicular to the end plane and points to the side away from the front plane.
  • the length of the j-th driving wire in the current state ( ⁇ i , ⁇ i ) can be obtained:
  • the length change of the active driving wire between the current state and the target state is calculated as the take-up length of the active wheel. If the driving wheel numbered j is the active wheel, the take-up length ⁇ l j directly calculated according to the kinematic model is:
  • the above formula can be processed by approximation, fitting, etc. to simplify the calculation.
  • S113 Calculate the angular position change of the driving wheel according to the take-up length of the driving wheel.
  • the value of the angular position change can be calculated by combining the geometric parameters of the driving wheel (such as the winding radius of the driving wire) and the winding length of the driving wheel.
  • the rotation direction of the driving wheel (clockwise or counterclockwise) can be determined according to the winding direction of the driving wire.
  • the angular position change of the driving wheel can be obtained by combining the two.
  • calculating the angular position change of the driving wheel includes the following sub-steps:
  • the calculation of the take-up length is further decomposed. If the change in the direction angle is consistent with the angle of a certain driving wire, only the driving wheel corresponding to the driving wire will be selected as the driving wheel. In this case, the take-up length of the driving wheel is the single-wheel take-up. Length. The length of a single-wheel take-up is not affected by the actual change in the direction angle, but can be determined by the current bending angle and the change in the bending angle at the end of the rotating section.
  • the single-wheel take-up length ⁇ l directly calculated according to the model is:
  • the above formula can be processed by approximation, fitting, etc. to simplify the calculation.
  • S122 Calculate the wire-retrieving length of each driving wheel according to the wire-retrieving length of a single wheel and the direction angle.
  • the change in the direction angle is often different from the angle of the drive wire, and two drive wheels need to work together to pull the wire to control the end of the catheter to turn according to the change in the direction angle.
  • the single-wheel take-up length can be mapped to the take-up length of each active wheel according to the angle between the change in the direction angle and each active drive wire.
  • the value of the angular position change can be calculated by combining the geometric parameters of the driving wheel (such as the winding radius of the driving wire) and the winding length of the driving wheel.
  • the rotation direction of the driving wheel (clockwise or counterclockwise) can be determined according to the winding direction of the driving wire.
  • the angular position change of the driving wheel can be obtained by combining the two.
  • the driving wire is treated as a straight line.
  • the error will expand nonlinearly as the bending angle of the rotating section/catheter end increases.
  • a more complex but more accurate kinematic model can be selected, such as treating the driving wire as a multi-segment broken line/multi-segment arc, treating the rotating section as a multi-segment circular arc, etc.
  • other calculation methods other than the kinematic model can be introduced as needed to modify the calculation formula of the take-up length and/or correct the results of the model calculation.
  • calculation methods can be used alone or in combination.
  • one of the calculation methods can be selected according to the bending angle segmentation.
  • Experiments can be used to determine how to segment the bending angle and/or the calculation method corresponding to each segment to meet the requirements of steering control. Accuracy and/or real-time requirements.
  • Step S13 Calculate the angular position change of the driven wheel according to the angular position change of the driving wheel and the corresponding current position proportional distribution coefficient of the driven wheel.
  • the position ratio allocation coefficient is used to indicate the ratio of the take-up length of the driving wheel to the pay-out length of the corresponding driven wheel.
  • each driving wheel can have n-1 position ratio allocation coefficients, which are used to indicate the position ratio allocation coefficient of itself as a driven wheel when other driving wheels except itself are used as driving wheels.
  • some position ratio allocation coefficients can be fixed as 0, in which case these position ratio allocation coefficients can be omitted from the set.
  • the position ratio distribution coefficient is a constant. However, the deformation of the rotating segment during the movement is often not negligible, and the actual position ratio distribution coefficient changes nonlinearly.
  • the current position ratio distribution coefficient is defined to represent the ratio of the line-receiving length of the driving wheel to the corresponding line-releasing length of the driven wheel in the current state.
  • the angular position change of the driven wheel can be the sum of the product of the angular position change of the driving wheel corresponding to the driven wheel and the current position proportional distribution coefficient.
  • the calculation function of the angular position change of the driven wheel can be independent or combined with the calculation function of the angular position change of the driving wheel.
  • a combined function, the angle increment allocation function can be set for all driving wheels.
  • the input of this function can include the current position ratio allocation coefficient, the direction angle ⁇ in the position change, and the position increment offset.
  • the function can determine the driving wheel and the driven wheel, calculate the angular position change of the driving wheel and the angular position change of the driven wheel, and finally output the angular position change of each driving wheel.
  • the current position proportional allocation coefficient is input into the pre-stored mapping relationship to obtain the current position proportional distribution coefficient of the driven wheel.
  • the output of the mapping relationship includes the current position proportional distribution coefficient, and the input includes at least the current bending angle.
  • test samples can be collected in advance, and the samples can be processed by piecewise function, curve (such as polynomial) fitting, neural network training, etc. to obtain a mapping relationship.
  • the driven wheel can be adjusted to a suitable position by manual control, that is, a position that meets the wire release condition, and then the angular position of the driven wheel is recorded to calculate the wire release length/angular position change.
  • the wire release condition can include that the driving wheel moves to the target position this time and the driven drive wire wound on the driven wheel maintains a suitable tension state.
  • the nonlinear change of the position proportion distribution coefficient is sensitive to the bending angle
  • each group of samples includes at least the current bending angle, the bending angle change of this movement and at least one of the target bending angle, the line-retrieving length, the angular position change and the angular position of the driving wheel, and the line-releasing length, the angular position change and the angular position of the driven wheel.
  • the direction angle can be introduced into the independent variable of the mapping relationship, and the sample can further include the current direction angle, the direction angle change of this movement and at least one of the target direction angle.
  • one driving wire can be selected and stretched from the natural state until the set maximum bending angle range is reached.
  • multiple groups of samples are collected, each of which includes the angular position of the driving wheel, the angular position of the driven wheel, and the current bending angle.
  • the difference between the angular position of the driving wheel and the driven wheel in the m-1th group of samples can be calculated, and then the ratio of the difference in the angular position of the driven wheel to the difference in the angular position of the driving wheel can be calculated as the current position proportional distribution coefficient of the mth group of samples.
  • the mapping relationship can be in the form of a high-order polynomial, with the input being the current bending angle and the output being the current position proportional distribution coefficient. Multiple groups of samples are used to fit and determine the coefficients of each term in the polynomial, and the final mapping relationship is obtained for use in subsequent control.
  • Step S14 controlling the driving motor to drive the corresponding driving wheel to rotate according to the angular position change.
  • the angular position change amount of the corresponding driving motor may be calculated according to the angular position change amount of the driving wheel obtained in S13 based on the engagement mode between the driving wheel and the corresponding driving motor.
  • the drive motor can have three basic control modes: position control, speed control, and current control (also known as moment control or torque control).
  • position control in which case the control quantity of the drive motor is the angular position.
  • the sum of the current angular position of the drive motor and the change in angular position can be calculated as the target angular position and sent to the controller of the drive motor; or the change in angular position of the drive motor can be directly sent to the controller of the drive motor.
  • you can choose speed control in which case the control quantity of the drive motor is the angular velocity.
  • the angular velocity can be obtained by dividing the change in angular position of the drive motor by the control interval and sent to the controller of the drive motor.
  • the drive motor generally uses three-loop control, which is the current loop, speed loop and position loop from the inside to the outside, and the output of the outer loop is the input of the adjacent loop inside.
  • the controller of the drive motor can complete the three-loop control by itself, or it can hand over some or all of the three loops to the host computer (the processor of the control system 600 in this application) for processing.
  • the host computer the processor of the control system 600 in this application
  • the position loop of the motor control can be processed by the host computer, and the processor sends the angular velocity processed by the position loop to the controller of the drive motor.
  • the position change amount under the action of the catheter steering instruction is used instead of the target position for control, and the driving wheel is divided into a driving wheel and a driven wheel. Only the angular position change amount of the driving wheel is directly calculated based on the position change amount, and the angular position change amount of the driven wheel is calculated based on the angular position change amount of the driving wheel, thereby achieving decoupling of the calculation of the angular position change amount of the driven wheel and the catheter steering instruction, thereby simplifying the calculation process of the angular position change amount of each driving wheel while achieving the bending steering control of the catheter, and shortening the response time of the catheter steering instruction.
  • the processor of the control system 600 is further configured to execute the following steps to implement the catheter bending and steering control method provided in another embodiment of the present application. As shown in FIG11 , after step S12, the method may further include:
  • Step S15 If the end of the catheter meets the preset conditions, the driving motor corresponding to the driving wheel is controlled to drive the driving wheel to rotate according to the angular position change, and at the same time, the planned force of the driving motor corresponding to the driven wheel is calculated according to the goal of zero force on the driving wire corresponding to the driven wheel, and the driving motor corresponding to the driven wheel is controlled to output according to the planned force.
  • the drive wheels can be coupled to the corresponding drive motors according to the
  • the angular position change amount of the driving wheel obtained in S12 is used to calculate the angular position change amount of the corresponding driving motor.
  • the same position control as the driving wheel can be adopted, that is, the angular position change of the driven wheel is calculated, and the driving motor corresponding to the driven wheel is controlled accordingly to drive the driven wheel to rotate according to the angular position change.
  • the current position proportional distribution coefficient calculated using the mapping relationship may have a large error, resulting in the catheter getting stuck or the driven wheel loosening during the bending and turning process, affecting the control effect.
  • the force mode is used to control the drive motor corresponding to the driven wheel.
  • the control target is to make the drive wire corresponding to the driven wheel zero-force, that is, the drive wire corresponding to the driven wheel can move in accordance with the external force (here refers to the tension caused by the bending of the catheter) as if it is in an environment with zero force.
  • This control method can also be called zero-force control of the drive wire corresponding to the driven wheel.
  • the preset condition includes that at least one of the current bending angle and the target bending angle of the catheter end is within a preset range.
  • the preset condition may be that the current bending angle is within the preset range, or the target bending angle is within the preset range, or either the current bending angle and the target bending angle is within the preset range, or both the current bending angle and the target bending angle are within the preset range.
  • the force mode can still be used to perform zero force control on the drive wire corresponding to the driven wheel, or the position control mode can be used in the same way as the driving wheel. If force mode is used, the process of collecting samples and building mapping relationships can be omitted. If position control is used, since the nonlinear change of the position proportional distribution coefficient outside the preset range is less obvious, fewer samples and a simple model can build a sufficiently accurate mapping relationship, and even the change of the position proportional distribution coefficient can be treated as linear.
  • the preset range generally includes a range away from the initial value of the bending angle (i.e., the bending angle in the unbent state).
  • the boundary of the preset range may include a maximum bending angle threshold.
  • another boundary of the preset range may be called a bending angle transition threshold.
  • the maximum bending angle threshold of the catheter end is Tm
  • the bending angle transition threshold is Tg
  • the preset range may be expressed as [ Tg , Tm ].
  • the value range of the bending angle transition threshold Tg is [0, Tm ).
  • the value of the bending angle transition threshold Tg can be set according to needs. For example, the change of the position proportion distribution coefficient outside the preset range can be regarded as linear as the goal.
  • the bending angle transition threshold Tg is estimated according to system parameters (such as mechanical structure and size, material properties, etc.) or samples are collected to fit the mapping relationship between the bending angle and the position proportion distribution coefficient to determine the bending angle transition threshold Tg .
  • the force on the driving wire corresponding to the driven wheel can be obtained in real time during the process of controlling the rotation of the driving wheel, and the planning force of the driving motor corresponding to the driven wheel can be set accordingly.
  • the planning force can be the same as the force on the driving wire corresponding to the driven wheel, so as to realize the follow-up release of the driven wheel to the driving wheel.
  • each force has two attributes, direction and magnitude, in which the direction is simplified to positive and negative.
  • the positive direction can be the direction pointing away from the end of the catheter, and the positive force plays a role in driving the line collection or hindering the line release;
  • the negative direction can be the direction pointing to the end of the catheter, and the negative force plays a role in driving the line release or hindering the line collection.
  • the positive direction is the direction pointing to the end of the catheter, and the positive force plays a role in driving the line release or hindering the line collection;
  • the negative direction can be the direction pointing away from the end of the catheter, and the negative force plays a role in driving the line collection or hindering the line release. The following is explained by taking the positive direction pointing away from the end of the catheter and the negative direction pointing to the end of the catheter as an example.
  • a force/torque sensor may be provided on the driving wheel and/or the driving wire.
  • the force applied to the driving wire corresponding to the driven wheel i.e., the feedback force
  • the feedback force may be directly or indirectly obtained based on the feedback value of the force/torque sensor provided on the driven wheel and/or its corresponding driving wire.
  • the planning force can be set according to the feedback force of the driving wire corresponding to the driven wheel. For example, the planning force can be set equal to the feedback force.
  • the position sensor can be installed on the driving motor or on the driving wheel/driving wire, and the object directly measured can be the angular position or the linear position.
  • the position sensor can be the encoder of the driving motor.
  • the driving wire can be regarded as a spring-damper system.
  • the resistance exerted on the driving wire is the sum of the spring force and the damping force.
  • the magnitude of the spring force is proportional to the position of the driving wire, and its direction is opposite to that of the position.
  • the position of the driving wire can be calculated using the position feedback from the position sensor.
  • the magnitude of the damping force is proportional to the speed, and its direction is opposite to that of the speed.
  • the speed of the driving wire can be obtained by calculating the differential of the position of the driving wire with respect to time.
  • the premise of using the position sensor to correctly obtain the force on the drive wire corresponding to the driven wheel is that the drive wire can rotate under the action of external force (the force output by the drive motor and/or the tension caused by the bending of the end of the catheter).
  • the end of the catheter begins to bend and turn under the action of the driving wheel winding, and the driving wire corresponding to the driven wheel is pulled, and the actual force on the drive wire corresponding to the driven wheel changes. If this pulling force is not enough to overcome the resistance, the driven wheel will not rotate, the position and speed obtained from the sensor will remain unchanged, and the calculated force on the drive wire will remain unchanged, which is inconsistent with the actual situation. It is impossible to accurately control the rotation of the driven wheel, and it may still cause the catheter to get stuck.
  • an initial force can be given to the driving wire to help overcome the resistance, that is, the planning force is set to the initial value.
  • the size of the initial value can be measured based on experiments, or it can be estimated based on system parameters (such as mechanical structure and size, material properties, etc.), and the direction is reverse.
  • the driven wheel Under the action of the initial value, the driven wheel will directly start to rotate and release the wire, or will not rotate temporarily, and then start to rotate and release the wire under the action of the tension brought by the end of the catheter.
  • the initial values corresponding to different driving wheels can be the same or different.
  • the initial value can be a single fixed value; or the preset range can be further divided
  • the initial value is at least two parts, each part corresponds to an initial value; or a function for calculating the initial value including the bending angle is obtained in advance by experiment/modeling, etc., and then the initial value is calculated using the function.
  • the appropriate initial value should be able to assist the driven wheel to start rotating before the corresponding driving wire is tightened by the end of the catheter to the limit determined by the system parameters (such as mechanical structure and size, material properties, etc.).
  • the planning force is equal to the sum of the initial value, the damping force and the spring force.
  • the change in tension brought by the end of the catheter will affect the speed and position of the driving wheel, which in turn affects the damping force and the spring force, and thus affects the calculated planning force.
  • F prf is the planned force
  • F 0 is the initial value
  • F v is the damping force
  • F p is the spring force
  • the position sensor is an encoder installed on the drive motor, which can feedback the current angular position of the motor. According to the size information and assembly relationship of the motor and the drive wheel, the position of the drive wheel can be converted.
  • an encoder is installed on the drive wheel, and the position of the drive wheel can be directly obtained from the feedback signal of the encoder.
  • the speed of the drive wheel can be obtained by calculating the differential of the position of the drive wheel to the speed. For example, the current position of the drive wheel is subtracted from the previous position to obtain the difference between the two, and then divided by the time interval between the two encoder feedback moments to obtain the current speed of the drive wheel.
  • the damping force is calculated based on the speed of the driven wheel. Specifically, the magnitude of the damping force is positively correlated with the speed. If the spring-damper system model is strictly followed, the magnitude of the damping force is proportional to the speed, and the proportional coefficient can be called the damping coefficient. However, in actual applications, for practical needs, the calculation formula of the damping force can be adjusted based on the model. After the adjustment, the damping force and speed may not always maintain a proportional relationship. But in general, as the current speed increases, the magnitude of the damping force increases or remains unchanged. This relationship is defined as a positive correlation between the damping force and the speed.
  • the spring force is calculated based on the position of the driven wheel. Specifically, the magnitude of the spring force is positively correlated with the position. If the spring-damper system model is strictly followed, the magnitude of the spring force is proportional to the position, and the proportional coefficient can be called the spring coefficient. However, in actual applications, the calculation formula of the spring force can be adjusted based on the model for practical needs. The adjusted spring force and position may not always maintain a proportional relationship. But in general, as the current position increases, the spring force increases or remains unchanged. This relationship is defined as a positive correlation between spring force and position.
  • a maximum value may be set for the damping force and/or spring force, and if the calculated damping force and/or spring force is greater than the maximum value, it may be corrected to the maximum value. If the damping force and the spring force are both set to a maximum value, the magnitudes of the two may be the same or different.
  • the calculated control quantity of the drive motor is force. If the motor loses control during the control process, such as position and/or speed exceeding the allowable range, the planned force calculated using the above formula may not be able to solve the loss of control in time, which may cause the motor to be out of control for a long time, causing the motor to malfunction or even damage the motor. In order to solve the possible loss of control of the drive motor in time, position and/or speed limits can be added on the basis of force control.
  • the reverse maximum force corresponding to the over-limit area is used as the planning force to control the driven wheel to quickly return to the position within the allowable range.
  • the over-limit area refers to the area of the driving wheel outside the restricted area of the joint space, and the restricted area refers to the area where the driving wheel can move freely.
  • the over-limit area includes two sub-areas, the positive over-limit area and the reverse over-limit area, wherein the positive over-limit area is closer to the positive boundary of the restricted area, and the reverse over-limit area is closer to the reverse boundary of the restricted area.
  • the direction of the reverse maximum force corresponding to the over-limit area points from the over-limit area to the restricted area, and the size is the maximum value allowed by the system parameters (such as the parameters of the drive motor). For example, if the position belongs to the positive over-limit area, the planning force is the reverse maximum force that the drive motor can output; if the position belongs to the reverse over-limit area, the planning force is the positive maximum force that the drive motor can output.
  • the positive and reverse directions here can be defined according to the winding and releasing of the line, for example, the positive direction corresponds to the winding and the reverse direction corresponds to the releasing of the line, or the positive and reverse directions are defined following the rotation direction of the driving wheel, for example, the positive direction corresponds to the clockwise direction and the reverse direction corresponds to the counterclockwise direction.
  • the catheter can be pulled to the boundary of the bending angle range in multiple direction angles in advance and the corresponding positions of each driving wheel can be recorded.
  • These direction angles generally include the direction angles corresponding to a single driving wheel as a driving wheel/driven wheel.
  • manual adjustment or introduction of force/torque sensors can be used to maintain each driving wire at a suitable loose position.
  • all recorded positions are counted to obtain the maximum range of motion of each driving wheel.
  • the maximum range of motion can be directly used as the restricted area, or it can be appropriately adjusted (for example, appropriately expanded or appropriately reduced) as the restricted area.
  • the catheter can be controlled to bend to the position of ( ⁇ , ⁇ t ), where ⁇ t represents the maximum value of the bending angle value range, and the position of the driving wheel corresponding to the driving wire at this time is recorded as its positive maximum value.
  • the catheter is controlled to bend to the position of ( ⁇ + ⁇ , ⁇ t ), and the position of the driving wheel corresponding to the driving wire at this time is recorded as its reverse maximum value.
  • the above process is performed for each driving wire to obtain the maximum range of motion of each driving wheel.
  • the position of one driving wheel is the maximum value in the positive direction, the position of the other driving wheel is its reverse maximum value.
  • the maximum range of motion of a pair of driving wheels arranged oppositely can be obtained by bending to two positions.
  • the planning force is adjusted to control the speed of the driven wheel to return to the speed limit range.
  • the planning force can be adjusted so that the direction of the force output by the drive motor immediately or quickly changes to the opposite direction of the speed, thereby reducing the speed of the driven wheel and returning the speed of the driven wheel to the speed limit range.
  • the restricted area of the driving wheel in the joint space can be further divided into a free area and a transition area, and the transition area is located between the free area and the over-limit area.
  • the control strategy in the transition area can be the same as that in the free area or different.
  • the joint space of the driving wheel is divided into 1 negative overlimit zone, 2 negative transition zone, 3 free zone, 4 positive transition zone, and 5 positive overlimit zone. If the current position of the driven wheel is in 1 negative overlimit zone, the planning force is the maximum positive force. If the current position of the driven wheel is in 2 negative transition zone, the planning force is calculated according to the target speed of 0, so that the driving wheel stops as much as possible in the negative transition zone without entering the negative overlimit zone. If the current position of the driven wheel is in 3 free zone, it is determined whether the current speed exceeds the speed limit range. If it exceeds, the planning force is calculated according to the target speed returning to the speed limit range.
  • the conventional formula is used to calculate the planning force to control the driven wheel to follow the line-reeling of the driving wheel and release the line. If the current position of the driven wheel is in 4 positive transition zone, the planning force is calculated according to the target speed of 0, so that the driving wheel stops as much as possible in the positive transition zone without entering the positive If the current position of the driven wheel is in the 5 positive overlimit area, the planned force is the maximum force in the reverse direction.
  • the planning force can be set to a preset value, or a calculation formula for the planning force different from that under normal conditions can be used.
  • the calculated planning force can be segmented, smoothed and filtered, etc. before being sent to the drive motor corresponding to the driven wheel.
  • fCurrent is the control current
  • F prf is the planned force after necessary processing
  • fAxisRadius is the radius of the drive wheel
  • fTrqCon is the current torque constant of the motor
  • fDecRatio is the motor reduction ratio, that is, the transmission ratio between the drive wheel and the corresponding drive motor. Since it can be considered that the torque of the drive motor is proportional to the control current, the control torque can be obtained by calculating the product of the control current and the corresponding coefficient.
  • the integral of the acceleration is the speed
  • the integral of the speed is the position.
  • the target speed/position of the driven wheel can be calculated based on the planning force and the current speed/position of the driven wheel as the control quantity of the corresponding driving motor.
  • the position change amount under the action of the catheter steering instruction is used instead of the target position for control, and the driving wheel is divided into an active wheel and a driven wheel.
  • the angular position change amount of the active wheel is directly calculated according to the position change amount. If the end of the catheter meets the preset conditions, in the process of controlling the active wheel according to the angular position change amount, the driven wheel is controlled to follow the rotation according to the target of zero force on the driving wire corresponding to the driven wheel, which is more suitable for the end of the catheter to rotate.
  • the nonlinear changes shown in the process realize the bending and turning of the catheter, while reducing the abnormal tightness of the driving wire corresponding to the driven wheel.
  • the embodiment of the present application also provides a control system for a catheter system.
  • the control system 600 includes: a processor 60, a memory 61, a bus 62 and a communication interface 63, and the processor 60, the communication interface 63 and the memory 61 are connected through the bus 62; the memory 61 stores computer program instructions that can be executed by the processor 60, and the processor 60 executes the catheter bending and steering control method provided in any of the aforementioned embodiments of the present application when executing the computer program instructions.
  • the memory 61 may include a high-speed random access memory (RAM), and may also include a non-volatile memory, such as at least one disk memory.
  • RAM random access memory
  • non-volatile memory such as at least one disk memory.
  • the communication connection between the device network element and at least one other network element is realized through at least one communication interface 63 (which may be wired or wireless), and the Internet, wide area network, local area network, metropolitan area network, etc. may be used.
  • the bus 62 may be an ISA bus, a PCI bus, or an EISA bus, etc.
  • the bus may be divided into an address bus, a data bus, a control bus, etc.
  • the memory 61 is used to store programs, and the processor 60 executes the programs after receiving the execution instructions.
  • the catheter bending and steering control method disclosed in any implementation of the embodiment of the present application may be applied to the processor 60, or implemented by the processor 60.
  • the processor 60 may be an integrated circuit chip with signal processing capabilities. In the implementation process, each step of the above method can be completed by the hardware integrated logic circuit or software instructions in the processor 60.
  • the above processor 60 can be a general-purpose processor, including a central processing unit (CPU), a network processor (NP), etc.; it can also be a digital signal processor (DSP), an application-specific integrated circuit (ASIC), a field-programmable gate array (FPGA) or other programmable logic devices, discrete gates or transistor logic devices, discrete hardware components.
  • DSP digital signal processor
  • ASIC application-specific integrated circuit
  • FPGA field-programmable gate array
  • the methods, steps and logic block diagrams disclosed in the embodiments of the present application can be implemented or executed.
  • the general-purpose processor can be a microprocessor or the processor can also be any conventional processor, etc.
  • the steps of the method disclosed in conjunction with the embodiments of the present application can be directly embodied as a hardware decoding processor for execution, or a combination of hardware and software modules in the decoding processor for execution.
  • the software module can be located in a storage medium mature in the art such as a random access memory, a flash memory, a read-only memory, a programmable read-only memory or an electrically erasable programmable memory, a register, etc.
  • the storage medium is located in the memory 61, and the processor 60 reads the information in the memory 61 and completes the steps of the above method in combination with its hardware.
  • the electronic device provided in the embodiment of the present application and the catheter bending and steering control method provided in the embodiment of the present application are based on the same inventive concept and have the same beneficial effects as the methods adopted, operated or implemented therein.
  • An embodiment of the present application also provides a computer-readable storage medium corresponding to the catheter bending and steering control method provided in the aforementioned embodiment.
  • Figure 14 shows a computer-readable storage medium 6 on which computer program instructions are stored.
  • the catheter bending and steering control method provided in any of the aforementioned embodiments will be implemented.
  • examples of the computer-readable storage medium may include, but are not limited to, optical disks, phase change memory (PRAM), static random access memory (SRAM), dynamic random access memory (DRAM), other types of random access memory (RAM), read-only memory (ROM), electrically erasable programmable read-only memory (EEPROM), flash memory or other optical or magnetic storage media, which are not listed here one by one.
  • PRAM phase change memory
  • SRAM static random access memory
  • DRAM dynamic random access memory
  • RAM random access memory
  • ROM read-only memory
  • EEPROM electrically erasable programmable read-only memory
  • flash memory or other optical or magnetic storage media, which are not listed here one by one.
  • the computer-readable storage medium provided in the above-mentioned embodiment of the present application and the catheter bending and steering control method provided in the embodiment of the present application are based on the same inventive concept and have the same beneficial effects as the method adopted, run or implemented by the application program stored therein.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Surgery (AREA)
  • Public Health (AREA)
  • General Health & Medical Sciences (AREA)
  • Veterinary Medicine (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Animal Behavior & Ethology (AREA)
  • Robotics (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Medical Informatics (AREA)
  • Molecular Biology (AREA)
  • Hematology (AREA)
  • Pulmonology (AREA)
  • Biophysics (AREA)
  • Anesthesiology (AREA)
  • Endoscopes (AREA)

Abstract

一种导管弯曲转向控制方法、导管系统及可读存储介质,该方法包括:根据来自于主控器的导管转向指令,获取导管末端的位置变化量(S11),位置变化量包括方向角和弯曲角;根据位置变化量确定多个驱动轮中的主动轮和从动轮,并计算主动轮的角位置变化量(S12);根据主动轮的角位置变化量以及对应的从动轮的当前位置比例分配系数,计算从动轮的角位置变化量(S13);控制驱动电机驱动对应的驱动轮按照角位置变化量转动(S14)。通过上述方式,能够实现导管的弯曲转向控制,简化角位置变化量的计算过程,缩短导管转向指令的响应时间。

Description

导管弯曲转向控制方法、导管系统及存储介质
本申请要求于2022年11月28日提交的申请号为“202211497241.2”、发明名称为“导管弯曲转向控制方法、导管系统及存储介质”的中国专利申请的优先权,本申请要求2022年11月28日提交的申请号为“202211497242.7”、发明名称为“导管弯曲转向控制方法、导管系统及存储介质”的中国专利申请的优先权,这些文本的全部内容通过引用结合在本申请中。
技术领域
本申请属于医疗器械技术领域,具体涉及一种导管弯曲转向控制方法、导管系统以及计算机可读存储介质。
背景技术
微创医疗技术意图减少在医疗程序期间损害的组织量,以减少患者恢复时间、不适感以及有害副作用。在微创医疗技术中经常需要通过患者解剖结构中的自然孔口或通过外科手术切口插入导管至目标组织方位。为了使导管到达目标组织方位,需要对导管的转向进行精确控制。
相关技术中一般通过建立导管运动学模型,即找到控制导管的各驱动轮的角度位置和导管末端位姿之间的映射关系,再将导管的目标位姿代入运动学模型求解驱动轮的角度位置的方式来实现对导管的精确控制。由于导管是柔性连续体结构,在实际应用中,导管的材料特性、装配工艺、温度变化、外力扰动和作业空间,对运动学描述产生很大的干扰,导致建立的运动学模型和实际运动状态偏差很大,难以满足实时精确控制导管转向的需求。
发明内容
本申请提出一种导管弯曲转向控制方法、导管系统以及计算机可读存储介质,能够解决相关技术中难以满足实时精确控制导管转向 的需求的问题。
为实现上述目的,本申请提供一种导管系统。该导管系统包括机械臂,与机械臂的动力部进行接合的导管器械,与机械臂通讯连接的主控器以及处理器。导管器械包括被设置成与动力部接合的器械盒以及与器械盒连接的导管,器械盒包括被设置成被动力部驱动的驱动轮以及一端缠绕于驱动轮上、另一端沿导管延伸并固定于导管末端的驱动丝。动力部包括多个驱动电机,驱动电机、驱动轮与驱动丝一一对应。处理器被配置成执行以下步骤:根据来自于主控器的导管转向指令,获取导管末端的位置变化量,位置变化量包括方向角和弯曲角;根据位置变化量确定驱动轮中的主动轮和从动轮,并计算主动轮的角位置变化量;根据主动轮的角位置变化量以及对应的从动轮的当前位置比例分配系数,计算从动轮的角位置变化量,当前位置比例分配系数用于表示在当前状态下主动轮的收线长度与对应的从动轮的放线长度的比例;控制驱动电机驱动对应的驱动轮按照角位置变化量转动。
本申请提供的导管弯曲转向控制方法、导管系统以及计算机可读存储介质,根据来自于主控器的导管转向指令,获取导管末端的位置变化量,位置变化量包括方向角和弯曲角;根据位置变化量确定驱动轮中的主动轮和从动轮,并计算主动轮的角位置变化量;根据主动轮的角位置变化量以及对应的从动轮的当前位置比例分配系数,计算从动轮的角位置变化量,当前位置比例分配系数用于表示在当前状态下主动轮的收线长度与对应的从动轮的放线长度的比例;控制驱动电机驱动对应的驱动轮按照角位置变化量转动。采用导管转向指令作用下的位置变化量而非目标位置来进行控制,并且将驱动轮划分为主动轮和从动轮,根据位置变化量直接计算的只有主动轮的角位置变化量,从动轮的角位置变化量是根据主动轮的角位置变化量计算得到的,实现了从动轮的角位置变化量计算与导管转向指令的解耦,从而在实现导管的弯曲转向控制的同时简化了各驱动轮的角位置变化量的计算过程,缩短了导管转向指令的响应时间。
附图说明
通过阅读下文优选实施方式的详细描述,各种其他的优点和益处对于本领域普通技术人员将变得清楚明了。附图仅用于示出优选实施方式的目的,而并不认为是对本申请的限制。而且在整个附图中,用相同的参考符号表示相同的部件。在附图中:
图1示出了本申请一实施例提供的导管系统的示意图;
图2示出了本申请一实施例提供的导管器械与动力部的示意图;
图3示出了本申请一实施例提供的导管器械的示意图;
图4示出了本申请一实施例提供的导管弯曲转向控制方法的流程示意图;
图5示出了本申请一实施例中n=3并且驱动丝均匀分布的情况下根据方向角确定主动轮及从动轮的示意图;
图6示出了本申请一实施例中n=4并且驱动丝均匀分布的情况下根据方向角确定主动轮及从动轮的示意图;
图7示出了本申请一具体实施例中计算主动轮的角位置变化量的流程示意图;
图8示出了本申请一实施例中为转动段建立的一种运动学模型的示意图;
图9示出了本申请另一具体实施例中计算主动轮的角位置变化量的流程示意图;
图10示出了本申请又一具体实施例中计算主动轮的角位置变化量的流程示意图;
图11示出了本申请另一实施例提供的导管弯曲转向控制方法的流程示意图;
图12示出了本申请又一具体实施例中驱动轮的关节空间划分以及对应的控制策略的示意图;
图13示出了本申请一实施例提供的导管系统的控制系统的结构示意图;
图14示出了本申请一实施例提供的一种计算机可读存储介质的示意图。
具体实施方式
下面将参照附图更详细地描述本申请的示例性实施方式。虽然附图中显示了本申请的示例性实施方式,然而应当理解,可以以各种形式实现本申请而不应被这里阐述的实施方式所限制。相反,提供这些实施方式是为了能够更透彻地理解本申请,并且能够将本申请的范围完整的传达给本领域的技术人员。
需要注意的是,除非另有说明,本申请使用的技术术语或者科学术语应当为本申请所属领域技术人员所理解的通常意义。
下面结合附图来描述根据本申请实施例提出的导管弯曲转向控制方法、导管系统及其控制系统,以及计算机可读存储介质。
图1示出了本申请一实施例提供的导管系统1000。导管系统1000包括影像车100、分别与所述影像车100连接的台车200和主控器300,可以被接合(即可拆卸地连接)至所述台车200上的导管器械400,与所述台车200连接的传感器系统500,以及用于在所述导管器械400、所述主控器300、所述传感器系统500以及所述影像车100之间实现控制的控制系统600等。其中,所述主控器300可以与所述台车200有线连接或无线连接。操作者对台车200旁的患者执行各种程序时,可以通过操作所述主控器300触发控制指令,经所述台车200的驱动而控制所述导管器械400前进、缩回以及弯曲转向等。
所述台车200通常可以被移动至手术床旁,用于接合所述导管器械400,并在控制指令下控制所述导管器械400沿竖直方向进行升降,或沿水平方向平移,或非竖直以及非水平方向移动,从而为所述导管器械400的操作提供一个较好的术前准备角度。其中,该控制指令可以是来自操作者通过操作所述主控器300而触发的指令,也可以是来自操作者直接通过点击或按压所述台车200上设置的按键而触发的指令。当然,在其他实施例中,所述控制指令还可以是语音控制或通过力反馈机制而触发的指令。
如图1所示,进一步地,所述台车200可以包括底座210、 可以沿着所述底座210进行升降移动的滑动座体220,以及与所述滑动座体220固定连接的2个机械臂230。所述机械臂230可以包括在关节处联接的多个臂分段,所述多个臂分段为所述机械臂230提供多个自由度,例如,与七个臂分段相对应的七个自由度。所述机械臂230的末端装设有动力部(图中未示出),所述机械臂230的动力部用于接合所述导管器械400,并在所述动力部的驱动作用下控制所述导管器械400的末端相应发生弯曲转向。其中,所述2个机械臂230可以是结构完全相同或部分相同的结构,一个机械臂230用于接合内导管器械410,另一个机械臂230用于接合外导管器械420。装设时,可以先安装所述外导管器械420,待所述外导管器械420安装完毕时,将所述内导管器械410的导管插入所述外导管器械420的导管内。
所述传感器系统500具有用于接收关于所述导管器械400的信息的一个或多个子系统。所述子系统可以包括:位置传感器系统;用于确定所述导管器械400的末端和/或沿着可构成所述导管器械400的导管的一个或多个部段的位置、取向、速度、速率、位姿和/或形状的形状传感器系统;和/或用于从所述导管器械400的末端捕获图像的可视化系统。
所述影像车100可以设置显示系统110以及冲洗系统(图中未示出)等。所述显示系统110用于显示由传感器系统500的子系统生成的手术部位和导管器械400的图像或表示。还可以显示由可视化系统捕获的手术部位和导管器械400的实时图像。还可以使用来自成像技术的图像数据来呈现术前或术中记录的手术部位的图像,所述成像技术诸如计算机断层扫描(CT)、磁共振成像(MRI)、光学相干断层扫描(OCT)、以及超声等。术前或术中图像数据可以被呈现为二维、三维或四维(如基于时间或基于速率的信息)图像和/或被呈现为来自根据术前或术中图像数据集创建的模型的图像,还可以显示虚拟导航图像。在所述虚拟导航图像中,所述导管器械400的实际位置与术前图像配准,以从外部向操作者呈现手术部位内的导管器械400的虚拟图像。
所述控制系统600包括至少一个存储器和至少一个处理器。 可以理解的是,所述控制系统600可以集成于所述台车200或所述影像车100中,也可以独立设置。所述控制系统600可以支持无线通信协议,诸如IEEE 802.11、IrDA、蓝牙、HomeRF、DECT和无线遥测等。所述控制系统600可以传输指示所述导管器械400移动的一个或多个由所述动力部移动所述导管器械400的信号。所述导管器械400可以经由所述患者的自然腔道的开口或手术切口延伸至体内的手术位置。
进一步地,所述控制系统600可以包括机械控制系统(图中未示出)和图像处理系统(图中未示出),所述机械控制系统用于控制所述导管器械400的移动,因此,可以集成于所述台车200中。所述图像处理系统用于虚拟导航路径规划,因此,可以集成于所述影像车100中。当然,所述控制系统600的各个子系统并不限于上述列举的具体情况,还可以根据实际情况合理设置。其中,所述图像处理系统可以基于术前或术中记录的手术部位的图像,使用上述成像技术对手术部位进行成像。还可以与手动输入结合使用的软件将记录的图像转换成部分或整个解剖器官或区段的二维或三维合成图像。在虚拟导航程序期间,所述传感器系统500可用于计算导管器械400相对于患者的解剖结构的位置,该位置可用于产生患者的解剖结构的外部跟踪图像和内部虚拟图像,实现导管器械400的实际位置与术前图像配准,从而可以从外部向操作者呈现手术部位内的导管器械400的虚拟图像。
所述内导管器械410和所述外导管器械420的结构组成大体相同,分别具有细长柔性的内导管41和外导管42,其中,所述外导管42的直径略大于所述内导管41,以使所述内导管41可以穿过所述外导管42,并为所述内导管41提供一定的支撑性,从而可以使得所述内导管41可以到达患者体内的目标位置,以便于从目标位置处进行组织或细胞取样等操作。
所述主控器300的某些运动可以引起导管器械400的对应移动。例如,操作者操作主控器300的方向拨杆向上或向下移动时,所述主控器300的方向拨杆的运动可以被映射到所述导管器械400的 末端相应的俯仰运动;当操作者操作主控器300的方向拨杆向左或向右移动时,所述主控器300的方向拨杆的运动可以被映射到所述导管器械400的末端相应的横摆运动。在本实施例中,所述主控器300可以控制所述导管器械400的末端在360°空间范围内进行移动。
图2和图3示出了本申请一实施例提供的导管器械400。所述导管器械400与机械臂230的动力部240可拆卸连接,所述导管器械400包括与所述动力部240可拆卸连接的器械盒45以及与所述器械盒45连接的导管48。其中,所述器械盒45安装至所述动力部240时,所述动力部240的驱动力可以传递至所述器械盒45内、并能使所述导管48发生正常移动的状态。例如,在所述动力部240的驱动力作用下,所述导管48的末端可以发生弯曲转向等。
器械盒45包括多个被动力部240驱动的驱动轮451以及多根驱动丝452,动力部240包括多个驱动电机241,驱动电机241、驱动轮451与驱动丝452一一对应设置。每个驱动轮451与对应的驱动电机241可拆卸连接,所述器械盒45安装至所述动力部240时,对应的驱动电机241可以带动该驱动轮451旋转,并且该驱动轮451上缠绕有对应的驱动丝452,对应的驱动丝452的活动部分,即未缠绕在该驱动轮451上的部分伸入导管48,沿导管48的长度方向延伸并最终固定于导管末端。
本申请中的末端,也可以被称为远端或头部,是指远离器械盒45的一端;前端,也可以被称为近端或尾部,是指靠近器械盒45的一端。
导管48的包括末端在内的一部分为转动段49,转动段49的末端即为导管48的末端。转动段49可以为关节组件,该关节组件在伸缩方向上具有高刚度,在弯曲方向上具有低刚度,可在驱动丝452的控制下弯曲,从而实现导管48的转向。在某些实施例中,该关节组件可以被称为蛇骨。
在转动段49的垂直于长度方向的平面内,各驱动丝452的位置可以认为是固定不变的,同时驱动丝452可以沿着转动段49的长度方向伸长或缩短。驱动丝452末端固定于转动段49的末端,并 不一定意味着驱动丝452末端固定的位置位于转动段49的末端平面内。实际应用中,为更好的保护导管48可能搭载的器件(如内窥镜、手术器械等),驱动丝452末端可以固定在从转动段49的末端平面向近端移动一小段距离的位置。这种情况下,若这段距离与转动段49长度的比值小于一阈值,在驱动导管48末端转向的过程中可以视为驱动丝452末端固定的位置就在转动段49的末端平面内。
驱动轮451可以在对应的驱动电机241的驱动下顺时针或逆时针旋转。若驱动轮451朝一个方向旋转会使得对应的驱动丝452的更多部分缠绕在驱动轮451上,即部分原本属于活动部分的驱动丝452进入缠绕状态,导致活动部分的长度缩短,这个过程也可以被称为拉动驱动丝452或者说拉线/收线,为便于描述,该方向被称为正向。若驱动轮451朝一个方向旋转会使得驱动丝452的更少部分缠绕在驱动轮451上,即部分原本缠绕在驱动轮451上的驱动丝452变为活动部分,导致活动部分的长度变长,这个过程也可以被称为放线,为便于描述,该方向被称为反向。可以根据对应驱动丝452的缠绕方向决定顺时针和逆时针中哪一个是正向哪一个是反向。
控制系统600的处理器被配置为执行以下步骤以实现本申请一实施例提供的导管弯曲转向控制方法。如图4所示,本方法包括:
步骤S11:根据来自于主控器的导管转向指令,获取导管末端的位置变化量。
位置变化量可以包括用于控制导管弯曲转向的方向角α和弯曲角θ。用户可以操作主控器上的方向拨杆、按键等输入设备中的至少一种来输入导管转向指令。
以方向拨杆为例说明,用户可以向操作平面内的任意方向拨动方向拨杆,这一操作在主控器内传感器的作用下转换为电信号,即为导管转向指令,具体包括在主控器的两条相互垂直的轴(即操作平面的轴)上采集到的第一电压和第二电压。根据第一电压和第二电压的比值计算用户操作的方向角度,具体的,可以计算该比值的反正切函数或反余切函数得到用户操作的方向角度。
计算第一电压和第二电压的平方和的算术平方根作为第一 电压和第二电压的合成值。合成值反映了用户操作的力度,根据合成值可以计算得到导管末端转向的弯曲速度,例如可以计算合成值与预设系数的乘积作为弯曲速度。用户操作的弯曲角是计算弯曲速度对命令保持时间的积分得到的,命令保持时间是指同样的用户操作持续的时间。
控制间隔,即相邻两次导管末端的转向控制之间的间隔。在某些实施例中,每个控制间隔之内只会存在一个导管转向指令,并且主控器的采样间隔固定,此时可以省去积分的过程,而直接将弯曲速度作为用户操作的弯曲角θ。
为减少操作者的抖动、主控器的噪声等带来的影响,可以对采集到的第一电压和第二电压平滑滤波之后再计算用户操作的方向角和弯曲角。
可以直接将用户操作的弯曲角作为位置变化量中的弯曲角θ。并且,若操作平面的坐标系与导管转动段的前端平面的坐标系方向一致,即二者之间的旋转角度为0,那么可以直接采用用户操作的方向角度作为位置变化量中的方向角α,否则可以根据两个坐标系之间的映射关系对用户操作的方向角度进行变换,得到方向角α。
或者,除了必要的角度变换之外,为了使转向更平滑,减少跳变,可以对计算得到用户操作的方向角和弯曲角分割为多份之后得到位置变化量中的方向角α和弯曲角θ。例如,用户操作的弯曲角是30°,可以将本次用户输入的导管转向指令分10次完成,每次使用的位置变化量中的弯曲角θ为3°。
步骤S12:根据位置变化量确定驱动轮中的主动轮和从动轮,并计算主动轮的角位置变化量。
为简化描述,之后的位置变化量中的方向角α简称为方向角变化量α,位置变化量中的弯曲角θ简称为弯曲角变化量θ,与用户操作输入的方向角和弯曲角不一定相同。
为便于描述转动段的姿态,分别为转动段的前端平面和末端平面建立坐标系,为简化计算,坐标系的重点均为平面的中心。某根驱动丝在前端/末端平面内的坐标是指该驱动丝在前端/末端平面内 的固定位置的坐标,角度是指从原点指向该驱动丝的坐标的矢量与前端/末端平面的x轴正向之间的夹角。同一根驱动丝在这两个坐标系中的坐标和角度一致。
装配好的导管处于自然状态时,即末端未转向的状态时,转动段的末端平面的坐标系一般与前端平面的坐标系方向一致。在控制导管末端弯曲/转向的过程中,可以认为转动段前端平面的坐标系维持不变,末端平面的坐标系会在驱动丝的作用下发生变化。
装配好的导管处于自然状态时,各个驱动轮上的驱动丝可以维持在一个合适的松紧状态。若对某根驱动丝进行拉线,该驱动丝会带动导管末端朝其固定的方位弯曲转向,导管末端的弯曲会拉扯其他驱动丝中的部分或全部。如果驱动丝受到的由导管末端弯曲带来的拉力足够大,那么会带动对应的驱动轮反向转动一小段距离,这段距离一般受到驱动丝的松紧状态和弹性模量影响。在反向转动的过程中,由于拉力的变化是不连续的,力的跳变会导致对应的驱动轮的速度跳变,可能导致松线。转完这段距离后,驱动丝被拉紧,如果对应的电机不带动驱动轮跟随转动,会导致导管卡住。如果驱动丝受到的由导管末端弯曲带来的拉力不足以克服阻力让其带动对应的驱动轮反向转动,那么驱动丝被拉紧到系统参数(例如机械结构与尺寸、材料特性等)决定的极限之后也会导致导管卡住。导管卡住意味着主动轮无法继续收线,往往导致主动轮无法转动到角位置变化量指示的位置,导管末端无法正常弯曲到目标位置。因此,为使得主动轮能够正常收线,被拉扯的驱动丝对应的驱动轮中的部分或全部需要作为从动轮跟随放线。
以一对相对设置的驱动轮为例说明,相对设置是指两个驱动轮对应的驱动丝在导管末端固定的位置的连线经过导管末端平面的中心,即驱动丝之间的角度差为π,其中一个驱动轮作为主动轮正向旋转拉线时,另一个驱动轮作为从动轮需要跟随放线。
驱动丝的数量为n,n为大于2的整数,n个驱动丝将导管转动段的前端平面在角度上划分为n个区间。可以将方向角变化量α所属的区间的两端对应的驱动丝作为主动驱动丝,主动驱动丝连接的 驱动轮为主动轮。剩余的驱动轮中的部分或全部为从动轮。这里判断方向角变化量α所属的区间时,不包括区间的端点。若方向角变化量α落在某个端点上,即与某个驱动丝的角度相同时,可以只选择该驱动丝作为主动驱动丝。在某些实施例中,若驱动丝的数量和位置支持,主动轮的数量可以大于2。在确定主动轮的情况下,可以根据驱动丝的数量和位置分布,从除主动轮之外的驱动轮中选择部分或全部作为从动轮。
下面结合附图举例说明主动轮和从动轮的具体确认方式。为简化描述,在下面的示例中,对应的驱动丝、驱动轮和电机的序号均相同,实际可能不同;驱动丝均为均匀分布,实际可能不是均匀分布。
示例一:
在本示例中,n=3并且驱动丝均匀分布,驱动丝1,2,3在转动段的前端平面坐标系中的角度分别为0,2π/3,4π/3。
若方向角变化量为0,2π/3,4π/3中的一个,则角度与方向角变化量相同的驱动丝连接的驱动轮为主动轮,剩余的两个驱动轮为从动轮。
若方向角变化量即落入图5中A部分的阴影,则驱动轮1和2为主动轮,驱动轮3为从动轮。
若方向角变化量即落入图5中B部分的阴影,则驱动轮2和3为主动轮,驱动轮1为从动轮。
若方向角变化量即落入图5中C部分的阴影,则驱动轮3和1为主动轮,驱动轮2为从动轮。
示例二:
在本示例中,n=4并且驱动丝均匀分布,驱动丝5,6,7,8在转动段的前端平面坐标系中的角度分别为0,π/2,π,3π/2。
若方向角变化量为0,π/2,π,3π/2中的一个,则角度与方向角变化量相同的驱动丝连接的驱动轮为主动轮,与主动轮相对设置 的驱动轮为从动轮。例如,若方向角变化量为π/2,则驱动轮6为主动轮,驱动轮8为从动轮,驱动轮5和7既不是主动轮也不是从动轮,即无需转动。
若方向角变化量即落入图6中A部分的阴影,则驱动轮5和6为主动轮,驱动轮7和8为从动轮。
若方向角变化量即落入图6中B部分的阴影,则驱动轮6和7为主动轮,驱动轮8和5为从动轮。
若方向角变化量即落入图6中C部分的阴影,则驱动轮7和8为主动轮,驱动轮5和6为从动轮。
若方向角变化量即落入图6中D部分的阴影,则驱动轮8和5为主动轮,驱动轮6和7为从动轮。
以此类推,n为大于4的奇数且驱动丝均匀分布的情况下,若方向角变化量α与某根驱动丝的角度相同,则可以选择该驱动丝对应的驱动轮作为主动轮,角度与方向角变化量的反向角α±π最接近的两条驱动丝对应的驱动轮作为从动轮;若方向角变化量的反向角α±π与某根驱动丝的角度相同,则可以选择该驱动丝对应的驱动轮作为从动轮,角度与方向角变化量α最接近的两条驱动丝对应的驱动轮作为主动轮;若方向角变化量α及其反向角α±π与任意驱动丝的角度均不相同,则可以选择角度与方向角变化量α最接近的两条驱动丝对应的驱动轮作为主动轮,角度与方向角变化量的反向角α±π最接近的两条驱动丝对应的驱动轮作为从动轮。未被选中的驱动轮无需运动。
n为大于4的偶数且驱动丝均匀分布的情况下,若方向角变化量α与某根驱动丝的角度相同,则可以选择该驱动丝对应的驱动轮作为主动轮,角度与方向角变化量的反向角α±π相同的驱动丝对应的驱动轮作为从动轮;若方向角变化量α与任意驱动丝的角度均不相同,则可以选择角度与方向角变化量α最接近的两条驱动丝对应的 驱动轮作为主动轮,角度与方向角变化量的反向角α±π最接近的两条驱动丝对应的驱动轮作为从动轮。未被选中的驱动轮无需运动。
此外,存在一种特殊的n=2的情况,即两根驱动丝相对设置,这种情况下驱动丝控制导管末端转动的方向角变化量实际仅可以为两根驱动丝其中之一的角度,与方向角变化量相同的驱动丝对应的驱动轮为主动轮,另一个驱动轮为从动轮。
一般来说,在驱动丝的作用下,转动段/导管末端可以以两个自由度进行弯曲,转动段/导管末端的状态/位姿可以用两个联合变量——弯曲角和方向角来描述。通常的,方向角用于描述转动段/导管末端朝哪个方向弯曲,其取值范围大小可以为2π,具体范围可以根据实际需要而定,例如为[0,2π],[-π,π]等;弯曲角用于描述转动段/导管末端的弯曲程度,其取值范围的下限可以为0,表示未弯曲的自然状态,上限可以根据实际情况而定,一般不超过π,例如可以为π/2,2π/3等。
在位置变化量的作用下,导管末端从当前状态变换到目标状态,也就是从当前位姿变换至目标位姿。在导管转向控制中,主要关注导管末端从当前位置到目标位置的变换,并据此计算主动驱动丝的长度变化,也就是主动轮的收线长度,再计算主动轮的角位置变化量。以下结合附图举例说明主动轮的角位置变化量的具体计算过程。
如图7所示,在本申请一具体实施例中,计算所述主动轮的角位置变化量包括以下子步骤:
S101:计算导管末端在位置变化量作用下的位置增量偏移。
由于转动段的结构设计,在弯曲转向的过程中,转动段可以近似作为圆弧来处理。可以基于这一特性为转动段建立运动学模型,并基于该运动学模型计算位置增量偏移。
举例说明,可以为转动段建立如图8所示的运动学模型,其中,转动段的长度为L,在垂直于长度方向上转动段被抽象为半径为r的圆。转动段的前端坐标系为T0(x0,y0,z0),xoy平面即为前端平面且原点为前端平面的圆心,在转动过程中可以按照固定不动来处理,起到类似于世界坐标系的作用。当前状态下转动段的末端坐标系为 Ti(xi,yi,zi),xoy平面即为末端平面且原点为末端平面的圆心。当前状态下转动段的末端坐标系相对于前端坐标系的变换可以用当前方向角αi和当前弯曲角θi来描述。更具体地,当前弯曲角θi为当前状态下前端平面的圆心到末端平面的圆心形成的长度为L圆弧的圆弧角,当前方向角αi为当前状态下末端坐标系的xoy平面相对于前端坐标系的xoy平面的旋转角度。基于该模型,在笛卡尔坐标系中,当前状态下末端坐标系相对于前端坐标系的变换矩阵可以表示为:
其中表示当前状态下末端坐标系相对于前端坐标系的姿态变换;P(αii)表示当前状态下末端坐标系相对于前端坐标系的位置变换,可以用当前状态下前端平面的圆心指向末端平面的圆心的矢量来表示。
计算当前方向角αi与位置变化量中的方向角α之和作为目标方向角αi+1=αi+α,计算当前弯曲角θi与位置变化量中的弯曲角θ之和作为目标弯曲角θi+1=θi+θ。实际应用中,若计算得到的目标方向角超出设定的取值范围,则可以将其加上2π或减去2π以回到取值范围内;若计算得到的目标弯曲角大于弯曲角取值范围的上限,则可以将其修正为弯曲角取值范围的上限;若计算得到的目标弯曲角为负数,则根据方向角的取值范围将目标方向角加上π或减去π以变为其反向,并将目标弯曲角修改为其绝对值。
在笛卡尔坐标系中,目标状态下末端坐标系相对于前端坐标系的变换矩阵可以表示为:
其中表示目标状态下末端坐标系相对于前端坐标系的姿态变换;P(αi+1i+1)表示目标状态下末端坐标系相对于前端坐标系的位置变换,可以用目标状态下前端平面的圆心指向末端平面的圆心的矢量来表示。
根据当前状态下的位置变换和目标状态下的位置变换可以计算得到位置增量偏移Pi=P(αi+1i+1)-P(αii),可以用当前状 态下末端平面的圆心指向目标状态下末端平面的圆心的矢量来表示。
S102:根据位置增量偏移计算各个主动轮的收线长度。
位置增量偏移描述的是导管末端从当前位置到目标位置的变换。可以在上述运动学模型中加入驱动丝,每根驱动丝的固定位置设定在垂直于长度方向的圆上,驱动丝在长度方向上可以作为直线、圆弧、多段折线、或多段弧线来处理。在讨论运动学模型相关的内容时,除特意指出的部分之外,所提到的驱动丝一般是指转动段内的驱动丝。根据运动学模型,可以计算出位置增量偏移与主动轮收线长度(即主动驱动丝的缩短量)之间的映射函数,再代入S101得到的位置增量偏移即可计算得到各主动轮的收线长度。
映射函数可以为根据运动学模型算出来的解析解,或者是为了简化计算用近似、拟合等方式对解析解处理得到的函数。
S103:根据主动轮的收线长度计算对应的主动轮的角位置变化量。
具体的,结合驱动轮的几何参数(例如驱动丝的缠绕半径)以及主动轮的收线长度可以计算得到角位置变化量的数值,再根据驱动丝的缠绕方向可以确定主动轮的转动方向(顺时针或逆时针),二者结合,即可得到主动轮的角位置变化量。
如图9所示,在本申请另一具体实施例中,计算所述主动轮的角位置变化量包括以下子步骤:
S111:获取转动段的运动学模型。
S112:根据运动学模型计算当前状态下与在位置变化量作用的目标状态下的主动驱动丝的长度差值作为主动轮的收线长度。
仍以图8所示的运动学模型来举例说明,驱动丝的数量为4且均匀分布,每根驱动丝被抽象为直线进行处理。图8中下方的平面为前端平面,用i-1表示,B1,B2,B3,B4分别为驱动丝1,2,3,4在前端平面的固定点,O为前端平面的中心,为便于计算,定义OB1为前端坐标系的x轴正向,OB2为前端坐标系的y轴正向,前端坐标系的z轴垂直于前端平面且指向末端平面。图8中上方的平面为末端平面,用i表示,P1,P2,P3,P4分别为驱动丝1,2,3,4在末 端平面的固定点,C为末端平面的中心,为便于计算,定义CP1为末端坐标系的x轴正向,CP2为末端坐标系的y轴正向,末端坐标系的z轴垂直于末端平面且指向远离前端平面的一侧。
根据该模型,可得当前状态(αii)下第j根驱动丝的长度:

其中j=1,2,3,4。
将目标状态(αi+1i+1)代入上述公式,可以得到目标状态(αi+1i+1)下第j根驱动丝的长度:

根据前面确定的主动轮的编号,计算主动驱动丝在当前状态与目标状态之间的长度变化量作为主动轮的收线长度。若编号为j的驱动轮为主动轮,根据运动学模型直接计算得到的收线长度Δlj为:

可以用近似、拟合等方式对上述公式进行处理以简化计算。
S113:根据主动轮的收线长度计算主动轮的角位置变化量。
具体的,结合驱动轮的几何参数(例如驱动丝的缠绕半径)以及主动轮的收线长度可以计算得到角位置变化量的数值,再根据驱动丝的缠绕方向可以确定主动轮的转动方向(顺时针或逆时针),二者结合,即可得到主动轮的角位置变化量。
如图10所示,在本申请又一具体实施例中,计算所述主动轮的角位置变化量包括以下子步骤:
S121:至少根据弯曲角计算单轮收线长度。
在本实施例中对收线长度的计算进行了进一步的分解。若方向角变化量与某根驱动丝的角度一致,则只会选择该根驱动丝对应的驱动轮作为主动轮,这种情况下该主动轮的收线长度即为单轮收线 长度。单轮收线长度不受实际的方向角变化量影响,由转动段末端的当前弯曲角和弯曲角变化量即可确定。
仍以图8所示的运动模型来举例说明,该运动模型的具体描述可参考前述实施例的相关内容。根据模型直接计算得到的单轮收线长度Δl为:
可以用近似、拟合等方式对上述公式进行处理以简化计算。
S122:根据单轮收线长度以及方向角计算各个主动轮的收线长度。
实际控制过程中方向角变化量往往与驱动丝的角度均不相同,需要两个驱动轮协作拉线才能控制导管末端按照方向角变化量转向。可以按照方向角变化量与各主动驱动丝之间的夹角,将单轮收线长度映射为各主动轮的收线长度。
S123:根据主动轮的收线长度计算对应的主动轮的角位置变化量。
具体的,结合驱动轮的几何参数(例如驱动丝的缠绕半径)以及主动轮的收线长度可以计算得到角位置变化量的数值,再根据驱动丝的缠绕方向可以确定主动轮的转动方向(顺时针或逆时针),二者结合,即可得到主动轮的角位置变化量。
在上述给出的运动学模型的例子中将驱动丝作为直线处理,然而该模型与实际情况存在误差,并且随着转动段/导管末端的弯曲角的增大误差会呈现非线性的扩大。为提高转向控制的准确性,可以选择更复杂但更准确的运动学模型,例如将驱动丝作为多段折线/多段弧线来处理,将转动段作为多段圆弧来处理等。此外,可以根据需要引入除运动学模型之外的其他计算方式来修改收线长度的计算公式和/或修正模型计算的结果。
上述给出的计算方式可以择一使用,也可以结合使用,例如根据弯曲角分段式的选择其中一种计算方式,可以通过实验来确定如何对弯曲角分段和/或各段对应的计算方式,以满足对转向控制的 准确性和/或实时性的要求。
步骤S13:根据主动轮的角位置变化量以及对应的从动轮的当前位置比例分配系数,计算从动轮的角位置变化量。
位置比例分配系数用于表示主动轮的收线长度与对应的从动轮的放线长度的比例。对于配有n个驱动轮的导管,理论上每个驱动轮可以具有n-1个位置比例分配系数,分别用于表示除自身外其他各驱动轮作为主动轮时自身作为从动轮的位置比例分配系数。对于第i个驱动轮,其位置比例分配系数可以表示为集合[kij],i,j=1,…,n且i≠j。实际应用中,根据驱动轮的数量和对应驱动丝的位置分布,某些位置比例分配系数可以固定作为0来处理,这种情况下这些位置比例分配系数可以从集合中省去。例如,n=4且驱动丝均匀分布的情况下,相邻的两根驱动丝对应的驱动轮彼此之间的位置比例分配系数可以固定作为0处理,只保留两对相对设置的驱动轮之间的位置比例分配系数。
若转动段可以当作刚体来处理,那么位置比例分配系数是一个常数。然而转动段在运动过程中的形变往往是不可忽略的,实际位置比例分配系数是非线性变化的。为更准确的描述位置比例分配系数,定义当前位置比例分配系数,用于表示在当前状态下主动轮的收线长度与对应的从动轮的放线长度的比例。
若当前位置比例分配系数为对应的从动轮放线长度与主动轮收线长度的比值,从动轮的角位置变化量可以为从动轮对应的主动轮的角位置变化量与当前位置比例分配系数的乘积之和。
从动轮的角位置变化量的计算函数可以是独立的,也可以与主动轮的角位置变化量的计算函数组合在一起。例如,若采用位置增量偏移进行计算,可以为所有的驱动轮设定一组合函数——角度增量分配函数,该函数的输入可以包括当前位置比例分配系数、位置变化量中的方向角α以及位置增量偏移,根据输入,该函数可以确定主动轮与从动轮,计算主动轮的角位置变化量以及从动轮的角位置变化量,最后输出各驱动轮的角位置变化量。
在本步骤之前,可以先获取当前位置比例分配系数。将导 管末端的当前弯曲角输入预存的映射关系,得到从动轮的当前位置比例分配系数。映射关系的输出包括当前位置比例分配系数,输入至少包括当前弯曲角。
可以预先采集多组测试样本,对样本进行分段函数、曲线(例如多项式)拟合、神经网络训练等方式的处理,得到映射关系。样本的采集过程中可以采用手动控制的方式调整从动轮到合适的位置,即满足放线条件的位置,再记录从动轮的角位置以计算放线长度/角位置变化量,放线条件可以包括主动轮本次运动到目标位置且从动轮上缠绕的从动驱动丝维持合适的松紧状态。
根据转动段的结构设计,位置比例分配系数的非线性变化对弯曲角敏感,每组样本至少包括当前弯曲角,本次运动的弯曲角变化量和目标弯曲角中的至少一种,主动轮的收线长度、角位置变化量和角位置中的至少一种,从动轮的放线长度、角位置变化量和角位置中的至少一种。当然,可以在映射关系的自变量中引入方向角,此时样本可以进一步包括当前方向角,本次运动的方向角变化量和目标方向角中的至少一种。
例如,n=4且驱动丝均匀分布的情况下,可以选择一根驱动丝,从自然状态开始单独拉伸该驱动丝直至达到设定的弯曲角最大范围,这个过程中采集多组样本,每组样本包括主动轮的角位置、从动轮的角位置以及当前弯曲角。对第m组样本,可以计算其与第m-1组样本中的主动轮和从动轮的角位置之差,再计算从动轮角位置之差与主动轮角位置之差的比值,作为第m组样本的当前位置比例分配系数。映射关系可以选择高阶多项式的形式,输入为当前弯曲角,输出为当前位置比例分配系数,采用多组样本进行拟合确定多项式中各项的系数,得到最终的映射关系以供后续控制中使用。
步骤S14:控制驱动电机驱动对应的驱动轮按照角位置变化量转动。
可以基于驱动轮与对应的驱动电机之间接合的方式,根据S13中得到的驱动轮的角位置变化量计算对应的驱动电机的角位置变化量。
驱动电机可以具有三种基础的控制模式:位置控制、速度控制、和电流控制(也可以被称为力矩控制或者扭矩控制)。可以选择位置控制,此时驱动电机的控制量为角位置,可以计算驱动电机的当前角位置与角位置变化量之和作为目标角位置,并发给驱动电机的控制器;或者可以直接将驱动电机的角位置变化量发送给驱动电机的控制器。或者可以选择速度控制,此时驱动电机的控制量为角速度,将驱动电机的角位置变化量除以控制间隔可以得到角速度,并发给驱动电机的控制器。
此外,驱动电机一般使用三环控制,从内向外依次为电流环、速度环和位置环,外部环的输出是其内部相邻的环的输入。驱动电机的控制器可以自行完成三环控制,也可以将3个环中的部分或全部交由上位机(本申请中为控制系统600的处理器)来处理。例如,原本使用角位置作为控制量的情况下,可以选择将电机控制的位置环由上位机来处理,此时处理器将位置环处理后的角速度发送给驱动电机的控制器。
通过本实施例的实施,采用导管转向指令作用下的位置变化量而非目标位置来进行控制,并且将驱动轮划分为主动轮和从动轮,根据位置变化量直接计算的只有主动轮的角位置变化量,从动轮的角位置变化量是根据主动轮的角位置变化量计算得到的,实现了从动轮的角位置变化量计算与导管转向指令的解耦,从而在实现导管的弯曲转向控制的同时简化了各驱动轮的角位置变化量的计算过程,缩短了导管转向指令的响应时间。
控制系统600的处理器还被配置为执行以下步骤以实现本申请另一实施例提供的导管弯曲转向控制方法。如图11所示,本方法在步骤S12之后还可以包括:
步骤S15:若导管末端满足预设条件,则控制主动轮对应的驱动电机驱动主动轮按照角位置变化量转动,同时按照从动轮对应的驱动丝零受力的目标计算从动轮对应的驱动电机的规划力,并控制从动轮对应的驱动电机按照规划力输出。
可以基于驱动轮与对应的驱动电机之间接合的方式,根据 S12中得到的主动轮的角位置变化量计算对应的驱动电机的角位置变化量。
对于从动轮,可以采用和主动轮一样的位置控制,即计算从动轮的角位置变化量,并据此控制从动轮对应的驱动电机驱动从动轮按照角位置变化量转动。
可以看出,上述从动轮的位置控制方案中,控制效果的好坏与位置比例分配系数的准确度直接相关,而位置比例分配系数的非线性变化来自于转动段的结构设计,导管末端的弯曲角越大,即越远离未弯曲状态的位置,位置比例分配系数的非线性变化表现的越明显。
为了改善控制效果,上述位置控制方案中,预先采集多组样本处理得到映射关系以计算当前位置比例分配系数。然而,由于导管的材料特性和装配工艺不一致,不同的导管采集到的样本不同,甚至可能需要使用不同的模型来构建映射关系,这就要求在使用每一套导管之前都需要为其采集样本并处理得到该导管的映射关系,这需要耗费大量的时间。此外,在导管末端弯曲程度较大的区域,若采集到的样本不够多或者选择的模型不合适,可能导致使用映射关系计算出的当前位置比例分配系数存在较大误差,导致在导管弯曲转向过程中卡住或者从动轮松线,影响控制效果。
为至少部分解决上述问题,至少在导管末端满足预设条件的情况下,采用力模式控制从动轮对应的驱动电机,控制目标为从动轮对应的驱动丝零受力,就是让从动轮对应的驱动丝可以顺应外力(这里是指导管弯曲带来的拉力)而动仿佛它处在一个受力为零的环境下,这种控制方式也可以被称为对从动轮对应的驱动丝的零力控制。
预设条件包括导管末端的当前弯曲角和目标弯曲角中的至少一种属于预设范围。具体的,预设条件可以为当前弯曲角属于预设范围,或者目标弯曲角属于预设范围,或者当前弯曲角和目标弯曲角中的任意一种属于预设范围,或者当前弯曲角和目标弯曲角均属于预设范围。
若导管末端不满足预设条件,可以仍旧采用力模式对从动轮对应的驱动丝进行零力控制,或者可以采用和主动轮一样的位置控 制。如果采用力模式,则可以省去采集样本和构建映射关系的过程。如果采用位置控制,由于预设范围外位置比例分配系数的非线性变化更不明显,较少的样本和简单的模型即可构建出足够精确的映射关系,甚至可以将位置比例分配系数的变化视为线性来处理。
由于从动轮的位置控制在导管末端弯曲程度较大的区域效果较差,预设范围一般包括远离弯曲角的初始值(即未弯曲状态下的弯曲角)的范围。具体的,预设范围的边界可以包括弯曲角最大阈值,除弯曲角最大阈值之外,预设范围的另一个边界可以被称为弯曲角过渡阈值。导管末端的弯曲角最大阈值为Tm,弯曲角过渡阈值为Tg,那么预设范围可以表示为[Tg,Tm]。
弯曲角过渡阈值Tg的取值范围为[0,Tm),可以根据需求来设定弯曲角过渡阈值Tg的值,例如,以预设范围外位置比例分配系数的变化可以视为线性为目标,根据系统参数(如机械结构与尺寸、材料特性等)估算弯曲角过渡阈值Tg或者采集样本来拟合弯曲角与位置比例分配系数之间的映射关系从而确定弯曲角过渡阈值Tg
为实现从动轮对应的驱动丝零受力的目标,可以在控制主动轮转动的过程中,实时获取从动轮对应的驱动丝受到的力,并据此设置从动轮对应的驱动电机的规划力,例如规划力可以与从动轮对应的驱动丝受到的力相同,实现从动轮对主动轮的跟随放线。为便于描述,在本申请中,各个力具有方向和大小两个属性,其中方向被简化为正向和反向。正向可以是指向远离导管末端的方向,正向的力起到带动收线或者阻碍放线的作用;反向可以是指向导管末端的方向,反向的力起到带动放线或者阻碍收线的作用。当然也可以反过来,正向是指向导管末端的方向,正向的力起到带动放线或者阻碍收线的作用;反向可以是指向远离导管末端的方向,反向的力起到带动收线或者阻碍放线的作用。以下以正向是指向远离导管末端的方向,反向是指向导管末端的方向为例进行说明。
在某些实施例中,驱动轮和/或驱动丝上可以设有力/力矩传感器,根据从动轮和/或其对应的驱动丝上设置的力/力矩传感器的反馈值可以直接或间接得到从动轮对应的驱动丝上受到的力,即反馈力。 然后可以根据从动轮对应的驱动丝的反馈力设置规划力,例如可以设置规划力等于反馈力。
若驱动轮和驱动丝上均未设置力/力矩传感器,则需要借助位置传感器来间接获取从动轮对应的驱动丝所受的力。位置传感器可以是设置在驱动电机上的或者是设置在驱动轮/驱动丝上的,直接测量的对象可以是角位置或是直线位置。例如,位置传感器可以是驱动电机的编码器。
在放线过程中,驱动丝可以被视为一个弹簧-阻尼系统,根据弹簧-阻尼系统的模型,驱动丝所受的阻力为弹簧力和阻尼力之和,弹簧力的大小与驱动丝的位置成正比,方向与位置的方向相反,可以用位置传感器反馈的位置计算得到驱动丝的位置;阻尼力的大小与速度成正比,方向与速度相反,驱动丝的速度可以是计算驱动丝的位置对时间的微分得到的。
使用位置传感器正确的得到从动轮对应的驱动丝所受的力的前提是驱动丝在外力(驱动电机输出的力和/或导管末端弯曲带来的拉力)的作用下能够转动起来。在控制主动轮对应的电机驱动主动轮转动的初始阶段,导管末端在主动轮收线的作用下开始弯曲转向,给从动轮对应的驱动丝带来拉力,从动轮对应的驱动丝实际受力发生了变化。如果这一拉力不足以克服阻力,从动轮就不会转动,从传感器得到的位置和速度都保持不变,计算出的驱动丝受力保持不变,与实际情况不符,无法准确的控制从动轮的转动,仍旧可能导致导管卡住。
为至少部分解决上述问题,在驱动主动轮转动的初始阶段,可以给驱动丝一个初始的力来协助克服阻力,即将规划力设为初始值。初始值的大小可以是根据实验测到的,也可以是根据系统参数(如机械结构与尺寸、材料特性等)估算得到的,方向为反向。在初始值的作用下,从动轮会直接开始转动放线,或者暂时不转动,随后在导管末端带来的拉力的作用下开始转动放线。
不同驱动轮对应的初始值可以相同,也可以不同。对于某个驱动轮,初始值可以是单个固定值;或者是将预设范围进一步划分 为至少两个部分,每个部分对应一个初始值;或者是预先通过实验/建模等方式得到自变量包括弯曲角的用于计算初始值的函数,再使用该函数计算得到初始值。一般来说,合适的初始值应该满足在对应的驱动丝被导管末端拉紧到系统参数(例如机械结构与尺寸、材料特性等)决定的极限之前,能够协助从动轮开始转动。
随后在驱动主动轮转动的过程中,规划力等于初始值、阻尼力与弹簧力之和,导管末端带来的拉力变化会影响驱动轮的速度和位置,进而影响阻尼力和弹簧力,进而影响计算出的规划力。
除初始阶段之外,规划力的计算公式可以表示为:
Fprf=F0+Fv+Fp
其中Fprf为规划力,F0为初始值,Fv为阻尼力,Fp为弹簧力。
举例说明,位置传感器是设置在驱动电机上的编码器,可以反馈电机的当前角位置,根据电机和驱动轮的尺寸信息及装配关系,可以换算得到驱动轮的位置。或者,在驱动轮上设置有编码器,从该编码器的反馈信号可以直接得到驱动轮的位置。计算驱动轮的位置对速度的微分可以得到驱动轮的速度,例如,将驱动轮的当前位置减去前一位置得到二者之差,再除以两次编码器反馈时刻之间的时间间隔,即可得到驱动轮的当前速度。
阻尼力是根据从动轮的速度计算得到的,具体的,阻尼力的大小与速度正相关。如果严格按照弹簧-阻尼系统的模型,阻尼力的大小与速度成正比,比例系数可以被称为阻尼系数。然而实际应用中,出于实际需要,可以在模型的基础上对阻尼力的计算公式进行调整,调整之后的阻尼力与速度不一定能始终维持正比的关系。但总体而言,随着当前的速度的大小的增大,阻尼力的大小随之增大或保持不变,将这种关系定义为阻尼力与速度正相关。
弹簧力是根据从动轮的位置计算得到的,具体的,弹簧力的大小与位置正相关。如果严格按照弹簧-阻尼系统的模型,弹簧力的大小与位置成正比,比例系数可以被称为弹簧系数。然而实际应用中,出于实际需要,可以在模型的基础上对弹簧力的计算公式进行调 整,调整之后的弹簧力与位置不一定能始终维持正比的关系。但总体而言,随着当前的位置的大小的增大,弹簧力的大小随之增大或保持不变,将这种关系定义为弹簧力与位置正相关。
可选的,为了使得力模式下的控制更加平稳,可以为阻尼力和/或弹簧力设置最大值,若计算出的阻尼力和/或弹簧力大于最大值则可以将其修正为最大值。若阻尼力和弹簧力均设置了最大值,则二者的大小可以相同,也可以不同。
采用力模式的情况下,计算得到的驱动电机的控制量为力,若在控制过程中出现电机失控的情况,例如位置和/或超出允许范围,采用上述公式计算的规划力不一定能及时解决失控,可能导致电机较长时间处于失控的状态,电机出现故障甚至损坏电机。为及时解决驱动电机可能出现的失控,可以在力控制的基础上添加位置和/或速度限制。
可选地,若从动轮的位置属于超限区,则将超限区对应的反向最大力作为规划力,以控制从动轮快速回到位置的允许范围内。超限区是指驱动轮的在关节空间的限制区域之外的区域,限制区域是指驱动轮可以自由活动的区域。超限区包括两个子区域,正向超限区和反向超限区,其中正向超限区更接近限制区域的正向边界,反向超限区更接近限制区域的反向边界。超限区对应的反向最大力的方向从超限区指向限制区域,大小为系统参数(例如驱动电机的参数)允许的最大值。例如,如果位置属于正向超限区,那么规划力为驱动电机能够输出的反向最大力;如果位置属于反向超限区,那么规划力为驱动电机能够输出的正向最大力。这里的正向和反向可以是根据收线和放线来定义的,例如正向对应收线以及反向对应放线,或者正向和反向是跟随驱动轮的旋转方向来定义的,例如正向对应顺时针反向对应逆时针。
具体的,可以预先在多个方向角上将导管拉动到弯曲角的取值范围边界并记录各驱动轮对应的位置,这些方向角一般包括单个驱动轮作为主动轮/从动轮时对应的方向角,这个过程中可以使用手工协助调整或者引入力/力矩传感器以使得各驱动丝维持在合适的松 紧状态。然后统计所有记录的位置得到各驱动轮的最大运动范围。可以直接将最大运动范围作为限制区域,也可以对其进行适当的调整(例如适当扩大或者适当缩小)之后作为限制区域。
由于驱动轮一般在单独作为主动轮/从动轮时位置变化最大,可以据此对确定驱动轮最大运动范围的过程进行简化。具体的,对于在前端/末端平面内的角度为γ的驱动丝,可以控制导管弯曲到(γ,θt)的位置,其中θt表示弯曲角取值范围的最大值,记录下此时该驱动丝对应的驱动轮的位置作为其正向最大值,另外控制导管弯曲到(γ+π,θt)的位置,记录下此时该驱动丝对应的驱动轮的位置作为其反向最大值。对每根驱动丝执行上述过程,即可得到各驱动轮的最大运动范围。此外,若存在相对设置的驱动轮对,则获取其中一个驱动轮的位置正向最大值时另一个驱动轮的位置为其反向最大值,弯曲到两个位置即可获取一对相对设置的驱动轮的最大运动范围。
具体的,若从动轮的速度超出限速范围,则调整规划力以控制从动轮的速度回到限速范围。可以调整规划力使得驱动电机输出的力的方向即刻或者快速变为与速度的方向相反,从而降低从动轮的速度,使得从动轮的速度回到限速范围。
此外,可以将驱动轮的在关节空间的限制区域进一步划分为自由区和过渡区,过渡区位于自由区和超限区之间。在过渡区内的控制策略可以与自由区相同,也可以不同。
下面结合附图12举例说明具体的控制策略,驱动轮的关节空间被划分为①负向超限区,②负向过渡区,③自由区,④正向过渡区,和⑤正向超限区。若从动轮的当前位置在①负向超限区,规划力为正向最大力。若从动轮的当前位置在②负向过渡区,则按照速度为0的目标计算规划力,以使得驱动轮尽量在负向过渡区停下来而不进入负向超限区。若从动轮的当前位置在③自由区,则判断当前速度是否超出限速范围,若超出,则按照速度回到限速范围的目标计算规划力,否则采用常规的公式计算规划力以控制从动轮跟随主动轮的收线而放线。若从动轮的当前位置在④正向过渡区,则按照速度为0的目标计算规划力,以使得驱动轮尽量在正向过渡区停下来而不进入正向 超限区。若从动轮的当前位置在⑤正向超限区,规划力为反向最大力。
常规状态下,规划力的采用常规的计算公式,即Fprf=F0+Fv+Fp。在非常规状态下,有了新的控制目标,例如速度为0或速度回到限速范围或离开超限区,此时可以将规划力设置为预设值,或者采用与常规状态下不同的规划力的计算公式。非常规状态下的计算公式的直接表现形式可以与常规公式不同,例如引入新的变量;或者非常规状态下的计算公式仍为Fprf=F0+Fv+Fp,但阻尼力和/或弹簧力的计算公式与常规状态下不同,以实现新的控制目标。
此外,为了使从动轮的控制更平滑,减少跳变,可以对计算出的规划力进行分割、平滑滤波等至少一种处理之后再发送给从动轮对应的驱动电机。
由于驱动电机的基础控制模式中没有力,也就是驱动电机的控制器无法直接按照力来控制驱动电机,因此需要将规划力转换为驱动电机能够处理的控制量再发送给驱动电机的控制器。
例如,可以按照以下公式将规划力转换为控制驱动电机的电流:
fCurrent=Fprf*fAxisRadius/(fDecRatio*fTrqCon)
其中,fCurrent为控制电流,Fprf为经过必要的处理之后的规划力,fAxisRadius为驱动轮的半径,fTrqCon为电机的电流力矩常数,fDecRatio为电机减速比,即驱动轮和对应的驱动电机之间的传动比。由于可以认为驱动电机的力矩/扭矩与控制电流之间成正比,计算控制电流与相应系数的乘积可以得到控制力矩/扭矩。
由于规划力影响了驱动轮转动的加速度,加速度的积分为速度,速度的积分为位置,可以根据规划力和从动轮的当前速度/位置计算出从动轮的目标速度/位置作为对应驱动电机的控制量。
通过本实施例的实施,采用导管转向指令作用下的位置变化量而非目标位置来进行控制,并且将驱动轮划分为主动轮和从动轮,根据位置变化量直接计算主动轮的角位置变化量,若导管末端满足预设条件,在控制主动轮按照角位置变化量的过程中,按照从动轮对应的驱动丝零受力的目标控制从动轮跟随转动,更适应导管末端在转动 过程表现出的非线性变化,实现导管的弯曲转向,同时减少从动轮对应的驱动丝出现松紧状态异常的情况。
本申请实施方式还提供一种导管系统的控制系统。请参考图13,其示出了本申请一实施例提供的导管系统的控制系统的结构示意图。如图13所示,控制系统600包括:处理器60,存储器61,总线62和通信接口63,所述处理器60、通信接口63和存储器61通过总线62连接;所述存储器61中存储有可被所述处理器60执行的计算机程序指令,所述处理器60执行所述计算机程序指令时执行本申请前述任一实施方式所提供的导管弯曲转向控制方法。
其中,存储器61可能包含高速随机存取存储器(RAM:Random Access Memory),也可能还包括非不稳定的存储器(non-volatile memory),例如至少一个磁盘存储器。通过至少一个通信接口63(可以是有线或者无线)实现该装置网元与至少一个其他网元之间的通信连接,可以使用互联网、广域网、本地网、城域网等。
总线62可以是ISA总线、PCI总线或EISA总线等。所述总线可以分为地址总线、数据总线、控制总线等。其中,存储器61用于存储程序,所述处理器60在接收到执行指令后,执行所述程序,前述本申请实施例任一实施方式揭示的所述导管弯曲转向控制方法可以应用于处理器60中,或者由处理器60实现。
处理器60可能是一种集成电路芯片,具有信号的处理能力。在实现过程中,上述方法的各步骤可以通过处理器60中的硬件的集成逻辑电路或者软件形式的指令完成。上述的处理器60可以是通用处理器,包括中央处理器(Central Processing Unit,简称CPU)、网络处理器(Network Processor,简称NP)等;还可以是数字信号处理器(DSP)、专用集成电路(ASIC)、现成可编程门阵列(FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件。可以实现或者执行本申请实施例中的公开的各方法、步骤及逻辑框图。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。结合本申请实施例所公开的方法的步骤可以直接体现为硬件译码处理器执行完成,或者用译码处理器中的硬件及软件模块组合执行完成。 软件模块可以位于随机存储器,闪存、只读存储器,可编程只读存储器或者电可擦写可编程存储器、寄存器等本领域成熟的存储介质中。该存储介质位于存储器61,处理器60读取存储器61中的信息,结合其硬件完成上述方法的步骤。
本申请实施例提供的电子设备与本申请实施例提供的导管弯曲转向控制方法出于相同的发明构思,具有与其采用、运行或实现的方法相同的有益效果。
本申请实施方式还提供一种与前述实施方式所提供的导管弯曲转向控制方法对应的计算机可读存储介质,请参考图14,其示出的计算机可读存储介质6,其上存储有计算机程序指令,所述计算机程序指令在被处理器执行时,会实现前述任意实施方式所提供的导管弯曲转向控制方法。
需要说明的是,所述计算机可读存储介质的例子可以包括,但不限于光盘、相变内存(PRAM)、静态随机存取存储器(SRAM)、动态随机存取存储器(DRAM)、其他类型的随机存取存储器(RAM)、只读存储器(ROM)、电可擦除可编程只读存储器(EEPROM)、快闪记忆体或其他光学、磁性存储介质,在此不再一一赘述。
本申请的上述实施例提供的计算机可读存储介质与本申请实施例提供的导管弯曲转向控制方法出于相同的发明构思,具有与其存储的应用程序所采用、运行或实现的方法相同的有益效果。
需要说明的是:
在此处所提供的说明书中,说明了大量具体细节。然而,能够理解,本申请的实施例可以在没有这些具体细节的情况下实践。在一些实例中,并未详细示出公知的结构和技术,以便不模糊对本说明书的理解。
类似地,应当理解,为了精简本申请并帮助理解各个发明方面中的一个或多个,在上面对本申请的示例性实施例的描述中,本申请的各个特征有时被一起分组到单个实施例、图、或者对其的描述中。然而,并不应将该公开的方法解释成反映如下示意图:即所要求保护的本申请要求比在每个权利要求中所明确记载的特征更多的特 征。更确切地说,如下面的权利要求书所反映的那样,发明方面在于少于前面公开的单个实施例的所有特征。因此,遵循具体实施方式的权利要求书由此明确地并入该具体实施方式,其中每个权利要求本身都作为本申请的单独实施例。
此外,本领域的技术人员能够理解,尽管在此所述的一些实施例包括其它实施例中所包括的某些特征而不是其它特征,但是不同实施例的特征的组合意味着处于本申请的范围之内并且形成不同的实施例。例如,在下面的权利要求书中,所要求保护的实施例的任意之一都可以以任意的组合方式来使用。
以上所述,仅为本申请较佳的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到的变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以所述权利要求的保护范围为准。

Claims (16)

  1. 一种导管系统,其特征在于,所述导管系统包括机械臂,与所述机械臂的动力部进行接合的导管器械,与所述机械臂通讯连接的主控器以及处理器,所述导管器械包括被设置成与所述动力部接合的器械盒以及与所述器械盒连接的导管,所述器械盒包括被设置成被所述动力部驱动的驱动轮以及一端缠绕于所述驱动轮上、另一端沿所述导管延伸并固定于所述导管末端的驱动丝,所述动力部包括多个驱动电机,所述驱动电机、所述驱动轮与所述驱动丝一一对应,所述处理器被配置成执行以下步骤:
    根据来自于所述主控器的导管转向指令,获取所述导管末端的位置变化量,所述位置变化量包括方向角和弯曲角;
    根据所述位置变化量确定所述驱动轮中的主动轮和从动轮,并计算所述主动轮的角位置变化量;
    根据所述主动轮的角位置变化量以及对应的从动轮的当前位置比例分配系数,计算所述从动轮的角位置变化量,所述当前位置比例分配系数用于表示在当前状态下所述主动轮的收线长度与对应的所述从动轮的放线长度的比例;
    控制所述驱动电机驱动对应的所述驱动轮按照所述角位置变化量转动。
  2. 根据权利要求1所述的导管系统,其特征在于,所述驱动丝的数量为n,n为大于2的整数,n个所述驱动丝将导管转动段的前端平面在角度上划分为n个区间,所述方向角所属的区间的两端对应的所述驱动丝为主动驱动丝,所述主动驱动丝连接的驱动轮为所述主动轮,剩余的驱动轮中的部分或全部为所述从动轮。
  3. 根据权利要求2所述的导管系统,其特征在于,所述处理器被配置成执行以下具体步骤:
    计算所述导管末端在所述位置变化量作用下的位置增量偏移;
    根据所述位置增量偏移计算各个所述主动轮的收线长度;
    根据所述主动轮的收线长度计算所述主动轮的角位置变化量;或
    获取所述转动段的运动学模型;
    根据所述运动学模型计算所述当前状态下与在所述位置变化量作用的目标状态下的所述主动驱动丝的长度差值作为所述主动轮的收线长度;
    根据所述主动轮的收线长度计算所述主动轮的角位置变化量;或
    至少根据所述弯曲角计算单轮收线长度;
    根据所述单轮收线长度以及所述方向角计算各个所述主动轮的收线长度;
    根据所述主动轮的收线长度计算所述主动轮的角位置变化量。
  4. 根据权利要求1所述的导管系统,其特征在于,所述处理器被配置成在执行所述根据所述主动轮的角位置变化量以及对应的从动轮的当前位置比例分配系数,计算所述从动轮的角位置变化量之前,执行以下步骤:
    将所述导管末端的当前弯曲角输入预存的映射关系,得到所述从动轮的当前位置比例分配系数,所述映射关系的输入至少包括所述当前弯曲角。
  5. 根据权利要求1所述的导管系统,其特征在于,所述从动轮的角位置变化量为所述从动轮对应的所述主动轮的角位置变化量与所述当前位置比例分配系数的乘积之和。
  6. 根据权利要求1所述的导管系统,其特征在于,所述导管转向指令包括在所述主控器的两条相互垂直的轴上采集到的第一电压和第二电压,所述方向角是根据所述第一电压和所述第二电压的比值计算得到的,所述弯曲角是计算弯曲速度对命令保持时间的积分得到的,所述弯曲速度是根据所述第一电压和所述第二电压的合成值计算得到的。
  7. 根据权利要求1所述的导管系统,其特征在于,所述处理器还被配置成在根据所述位置变化量确定所述驱动轮中的主动轮和从动轮,并计算所述主动轮的角位置变化量的步骤之后执行以下步骤:
    若所述导管末端满足预设条件,则控制所述主动轮对应的驱动电机驱动所述主动轮按照所述角位置变化量转动,同时按照所述从动轮对应的驱动丝零受力的目标计算所述从动轮对应的驱动电机的规划力,并控制所述从动轮对应的驱动电机按照所述规划力输出,所述预设条件包括所述导管末端的当前弯曲角和目标弯曲角中的至少一种属于预设范围,所述目标弯曲角为所述当前弯曲角与所述位置变化量中的弯曲角之和。
  8. 根据权利要求7所述的导管系统,其特征在于,在驱动所述主动轮转动的初始阶段,所述规划力被设为初始值;随后在驱动所述主动轮转动的过程中所述规划力为所述初始值、阻尼力与弹簧力之和,其中所述阻尼力是根据所述从动轮的速度计算得到的,所述弹簧力是根据所述从动轮的位置计算得到的。
  9. 根据权利要求8所述的导管系统,其特征在于,所述阻尼力的大小与所述速度正相关;所述弹簧力的大小与所述位置正相关。
  10. 根据权利要求7所述的导管系统,其特征在于,所述规划力是根据所述从动轮对应的驱动丝的反馈力得到的。
  11. 根据权利要求7所述的导管系统,其特征在于,所述处理器被配置成执行以下步骤:
    若所述从动轮的位置属于超限区,则将所述超限区对应的反向最大力作为所述规划力。
  12. 根据权利要求7所述的导管系统,其特征在于,所述处理器 被配置成执行以下步骤:
    若所述从动轮的速度超出限速范围,则调整所述规划力以控制所述从动轮的速度回到所述限速范围。
  13. 根据权利要求7所述的导管系统,其特征在于,所述处理器被配置成执行以下步骤:
    若所述导管末端不满足所述预设条件,则根据所述主动轮的角位置变化量以及对应的从动轮的当前位置比例分配系数,计算所述从动轮的角位置变化量,控制所述从动轮对应的驱动电机驱动所述从动轮按照所述角位置变化量转动,所述当前位置比例分配系数用于表示在当前状态下所述主动轮的收线长度与对应的所述从动轮的放线长度的比例。
  14. 根据权利要求7所述的导管系统,其特征在于,所述预设范围的边界包括弯曲角最大阈值。
  15. 一种导管末端的转向控制方法,其特征在于,包括:
    根据来自于主控器的导管转向指令,获取导管末端的位置变化量,所述位置变化量包括方向角和弯曲角;
    根据所述位置变化量确定多个驱动轮中的主动轮和从动轮,并计算所述主动轮的角位置变化量,所述驱动轮与驱动电机、驱动丝一一对应设置,所述驱动轮上缠绕有对应的驱动丝并被对应的所述驱动电机驱动,所述驱动丝的另一端沿所述导管延伸并固定于所述导管末端;
    根据所述主动轮的角位置变化量以及对应的从动轮的当前位置比例分配系数,计算所述从动轮的角位置变化量,所述当前位置比例分配系数用于表示在当前状态下所述主动轮的收线长度与对应的所述从动轮的放线长度的比例;
    控制所述驱动电机驱动对应的所述驱动轮按照所述角位置变化量转动。
  16. 一种计算机可读存储介质,所述计算机可读存储介质存储有计算机程序指令,所述计算机程序指令被配置为由处理器加载并执行实现如权利要求15所述的方法的步骤。
PCT/CN2023/130041 2022-11-28 2023-11-07 导管弯曲转向控制方法、导管系统及存储介质 WO2024114308A1 (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN202211497242.7A CN115554568A (zh) 2022-11-28 2022-11-28 导管弯曲转向控制方法、导管系统及存储介质
CN202211497241.2 2022-11-28
CN202211497242.7 2022-11-28
CN202211497241.2A CN115715839A (zh) 2022-10-08 2022-11-28 导管弯曲转向控制方法、导管系统及存储介质

Publications (1)

Publication Number Publication Date
WO2024114308A1 true WO2024114308A1 (zh) 2024-06-06

Family

ID=84770330

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/130041 WO2024114308A1 (zh) 2022-11-28 2023-11-07 导管弯曲转向控制方法、导管系统及存储介质

Country Status (2)

Country Link
CN (1) CN115554568A (zh)
WO (1) WO2024114308A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115554568A (zh) * 2022-11-28 2023-01-03 深圳市精锋医疗科技股份有限公司 导管弯曲转向控制方法、导管系统及存储介质
CN115778554B (zh) * 2023-01-09 2023-05-26 深圳市精锋医疗科技股份有限公司 导管机器人及其配准方法、可读存储介质

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101642364A (zh) * 2008-08-04 2010-02-10 奥林巴斯医疗株式会社 能动驱动式医疗设备
CN105188826A (zh) * 2013-04-30 2015-12-23 圣犹达医疗用品卢森堡控股有限公司 导管的控制手柄
US20170209672A1 (en) * 2013-03-14 2017-07-27 Hansen Medical, Inc. Torque-based catheter articulation
CN109310287A (zh) * 2016-07-01 2019-02-05 直观外科手术操作公司 用于柔性计算机辅助器械控制的系统和方法
US20200384243A1 (en) * 2019-06-07 2020-12-10 Boston Scientific Scimed, Inc. Zero force catheter
CN112336297A (zh) * 2020-10-31 2021-02-09 同济大学 体内导入装置的控制方法、系统和计算机可读存储介质
CN114025699A (zh) * 2019-05-31 2022-02-08 佳能美国公司 具有被动弯曲模式的主动控制可转向医疗设备
CN114848144A (zh) * 2022-03-23 2022-08-05 上海微创微航机器人有限公司 导管形状控制方法、介入手术系统、电子设备和存储介质
CN115554568A (zh) * 2022-11-28 2023-01-03 深圳市精锋医疗科技股份有限公司 导管弯曲转向控制方法、导管系统及存储介质
CN115715839A (zh) * 2022-10-08 2023-02-28 深圳市精锋医疗科技股份有限公司 导管弯曲转向控制方法、导管系统及存储介质

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101642364A (zh) * 2008-08-04 2010-02-10 奥林巴斯医疗株式会社 能动驱动式医疗设备
US20170209672A1 (en) * 2013-03-14 2017-07-27 Hansen Medical, Inc. Torque-based catheter articulation
CN105188826A (zh) * 2013-04-30 2015-12-23 圣犹达医疗用品卢森堡控股有限公司 导管的控制手柄
CN109310287A (zh) * 2016-07-01 2019-02-05 直观外科手术操作公司 用于柔性计算机辅助器械控制的系统和方法
CN114025699A (zh) * 2019-05-31 2022-02-08 佳能美国公司 具有被动弯曲模式的主动控制可转向医疗设备
US20200384243A1 (en) * 2019-06-07 2020-12-10 Boston Scientific Scimed, Inc. Zero force catheter
CN112336297A (zh) * 2020-10-31 2021-02-09 同济大学 体内导入装置的控制方法、系统和计算机可读存储介质
CN114848144A (zh) * 2022-03-23 2022-08-05 上海微创微航机器人有限公司 导管形状控制方法、介入手术系统、电子设备和存储介质
CN115715839A (zh) * 2022-10-08 2023-02-28 深圳市精锋医疗科技股份有限公司 导管弯曲转向控制方法、导管系统及存储介质
CN115554568A (zh) * 2022-11-28 2023-01-03 深圳市精锋医疗科技股份有限公司 导管弯曲转向控制方法、导管系统及存储介质

Also Published As

Publication number Publication date
CN115554568A (zh) 2023-01-03

Similar Documents

Publication Publication Date Title
WO2024114308A1 (zh) 导管弯曲转向控制方法、导管系统及存储介质
WO2018041196A1 (zh) 一种柔性手术工具系统及其在运动约束下的控制方法
US20230072380A1 (en) Tension control in actuation of jointed instruments
JP6666379B2 (ja) 形状センシングを使用した変形補償のためのシステム及び方法
US11877814B2 (en) Tension control in actuation of multi-joint medical instruments
CN106170265B (zh) 用于介入工具的虚拟导航的组织的非刚性变形的系统和方法
US20220273377A1 (en) Systems and methods for flexible computer-assisted instrument control
Bajo et al. Configuration and joint feedback for enhanced performance of multi-segment continuum robots
JP5936607B2 (ja) 位置測定を備える医療機器における駆動力制御
KR102279975B1 (ko) 잉여의 감지부를 갖는 형상 센서 시스템
Webster et al. Design considerations for robotic needle steering
US20170325896A1 (en) Systems and methods for filtering localization data
CN107635488A (zh) 用于力或扭矩极限补偿的系统和方法
CN115715839A (zh) 导管弯曲转向控制方法、导管系统及存储介质
Webster et al. Kinematics and calibration of active cannulas
WO2023036078A1 (zh) 导管机器人及系统与控制方法、可读存储介质及电子设备
WO2022100480A1 (zh) 手术机器人末端位置和姿态的控制方法及手术机器人控制方法
JP7458929B2 (ja) 連続体ロボットの制御システム及びその作動方法、並びに、プログラム
US20220273280A1 (en) Method and system for controlling flexible devices in presence of abnormal sensor signals
Chen et al. Sensor architecture for a two-actuator robotic endoscope tip
Jiang et al. Data-driven modeling the nonlinear backlash of steerable endoscope under a large deflection cannulation in ERCP surgery
Trovato et al. Collision-free 6D non-holonomic planning for nested cannulas
WO2023179339A1 (zh) 导管形状与力感知方法、手术导航方法和介入手术系统
Tavakkolmoghaddam et al. Design and Evaluation of Bidirectional Continuous Rotation and Variable Curvature Needle Steering Algorithm
CN117379187A (zh) 一种可视化约束下内窥镜手术机器人安全控制系统及方法