WO2022100480A1 - 手术机器人末端位置和姿态的控制方法及手术机器人控制方法 - Google Patents

手术机器人末端位置和姿态的控制方法及手术机器人控制方法 Download PDF

Info

Publication number
WO2022100480A1
WO2022100480A1 PCT/CN2021/128053 CN2021128053W WO2022100480A1 WO 2022100480 A1 WO2022100480 A1 WO 2022100480A1 CN 2021128053 W CN2021128053 W CN 2021128053W WO 2022100480 A1 WO2022100480 A1 WO 2022100480A1
Authority
WO
WIPO (PCT)
Prior art keywords
instrument
robot
surgical
point
speed
Prior art date
Application number
PCT/CN2021/128053
Other languages
English (en)
French (fr)
Inventor
黄宇
王了
Original Assignee
重庆金山医疗机器人有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN202011246738.8A external-priority patent/CN114452003B/zh
Priority claimed from CN202011249218.2A external-priority patent/CN114452004B/zh
Application filed by 重庆金山医疗机器人有限公司 filed Critical 重庆金山医疗机器人有限公司
Priority to EP21891007.3A priority Critical patent/EP4245238A1/en
Priority to US18/035,947 priority patent/US20240016559A1/en
Publication of WO2022100480A1 publication Critical patent/WO2022100480A1/zh

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B34/00Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
    • A61B34/30Surgical robots
    • A61B34/37Master-slave robots
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B34/00Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
    • A61B34/20Surgical navigation systems; Devices for tracking or guiding surgical instruments, e.g. for frameless stereotaxis
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B34/00Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
    • A61B34/30Surgical robots
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16HHEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
    • G16H40/00ICT specially adapted for the management or administration of healthcare resources or facilities; ICT specially adapted for the management or operation of medical equipment or devices
    • G16H40/60ICT specially adapted for the management or administration of healthcare resources or facilities; ICT specially adapted for the management or operation of medical equipment or devices for the operation of medical equipment or devices
    • G16H40/63ICT specially adapted for the management or administration of healthcare resources or facilities; ICT specially adapted for the management or operation of medical equipment or devices for the operation of medical equipment or devices for local operation
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B34/00Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
    • A61B34/20Surgical navigation systems; Devices for tracking or guiding surgical instruments, e.g. for frameless stereotaxis
    • A61B2034/2046Tracking techniques
    • A61B2034/2059Mechanical position encoders
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B34/00Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
    • A61B34/30Surgical robots
    • A61B2034/302Surgical robots specifically adapted for manipulations within body cavities, e.g. within abdominal or thoracic cavities
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B90/00Instruments, implements or accessories specially adapted for surgery or diagnosis and not covered by any of the groups A61B1/00 - A61B50/00, e.g. for luxation treatment or for protecting wound edges
    • A61B90/06Measuring instruments not otherwise provided for
    • A61B2090/067Measuring instruments not otherwise provided for for measuring angles
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B34/00Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
    • A61B34/30Surgical robots
    • A61B34/35Surgical robots for telesurgery

Definitions

  • the present invention is required to be submitted to the China Patent Office on November 10, 2020, the application number is 202011249218.2, the name of the invention is "a method for controlling the position and attitude of the end of a surgical robot", and the application is submitted to the China Patent Office on November 10, 2020.
  • the priority of the Chinese patented invention No. 202011246738.8 and the invention title is "A Surgical Robot Control Method", the entire contents of which are incorporated herein by reference.
  • the invention relates to the technical field of medical instruments, in particular to a method for controlling the position and posture of a surgical robot and a method for controlling the surgical robot.
  • Minimally invasive surgical robots can reduce the physical labor of doctors during the operation, and at the same time achieve the purpose of precise surgery, making patients less traumatic, less blood loss, less postoperative infection, and faster postoperative recovery.
  • the minimally invasive surgical robot system usually uses the master-slave control mode: when the operator operates the master hand, the hand movement will drive the master hand to move along with it. The movement of the hand is mapped to the slave hand, and each joint of the slave hand moves passively, driving the surgical instruments to achieve the corresponding movement. The end of the surgical robot is used to load surgical instruments, and its position and posture determine the accuracy of the surgical operation.
  • Da Vinci uses a special configuration of a parallelogram with a physical apocenter; the existing surgical robot control method can only control the surgical robot arm itself to expand and rotate around the physical apocenter. To adjust the position of the telecentric point, the robot base needs to be translated and rotated through an additional displacement mechanism and control method, which is inconvenient to use.
  • One of the objectives of the present invention is to provide a method for controlling the position and posture of the end of a surgical robot, which can precisely control the posture and posture of the end of the surgical robot and improve the accuracy and safety of surgery.
  • the second purpose of the present invention is to provide a method for controlling a surgical robot, which controls the surgical robot through a master-slave control method, with high control precision, convenient and accurate operation; and a general-purpose robot and an instrument robot in the slave-hand control method. , which can not only be used to realize telescopic rotation around the telecentric point, but also to adjust the position of the telecentric point.
  • the present invention provides a method for controlling the position and posture of the end of a surgical robot, including:
  • Step S1 establishing a telecentric point, dragging the surgical robot to move its end to above the telecentric point; the telecentric point is a virtual fixed point around which the end of the surgical instrument rotates through the target position;
  • Step S2 connecting the surgical instrument to the instrument seat of the surgical robot
  • Step S3 controlling the surgical instrument to pass through the telecentric point
  • Step S4 Obtain the desired Cartesian speed of the end of the surgical instrument, calculate the target speed of each axis of the surgical robot, and control the movement of each axis of the surgical robot according to the target speed.
  • the surgical robot includes a first mechanical arm with at least five motion axes, a linear guide portion connected to the first mechanical arm, and the linear guide portion is used to drive the instrument seat to perform linear motion, and further includes: A second mechanical arm connected to the linear guide portion for driving the operation of the surgical instrument.
  • step S1 specifically includes:
  • the step of connecting the stamping card holder and the stamping card, and obtaining the position of the telecentric point is specifically:
  • the actual angles or displacements of all the moving axes are acquired according to the encoders provided at all the moving axes, and the positions of the telecentric points are calculated according to all the actual angles or displacements.
  • the step of connecting the stamping card holder and the stamping card, and obtaining the position of the telecentric point is specifically:
  • the stamping position is obtained according to the stamping seat position, and the position of the telecentric point is obtained from the stamping position and the fixed position offset of the telecentric point relative to the stamping seat.
  • step S3 specifically includes:
  • the linear movement of the surgical instrument is controlled through the stamping card by the linear guide portion, and the linear movement distance of the surgical instrument is controlled by the displacement detected by the displacement sensor provided in the linear guide portion.
  • step S4 further includes:
  • the corresponding overlapping ranges of the first constraining angle range and the second constraining angle range are obtained by comparison, and all the driving motors are controlled to move according to the corresponding overlapping ranges.
  • step S4 is specifically:
  • N is equal to the number of the motion axes and N is greater than or equal to 5;
  • j -1 is the inverse matrix of the first Jacobian matrix corresponding to the configuration of the six mapping axes
  • v is the input Cartesian velocity obtained by the six mapping axes, a six-dimensional vector representing the velocity of the first output joint
  • J -1 is the inverse matrix of the second Jacobian matrix reflecting the configuration of all the axes of motion, an N-dimensional vector representing the velocity of the second output joint;
  • the six mapping axes include two virtual axes at the coincident point, a linear axis corresponding to the linear guide portion, and the three motion axes at the end of the second robotic arm;
  • v x represents the speed in the x direction of the coincidence point
  • v y represents the speed in the y direction of the coincidence point
  • v z represents the speed in the z direction of the coincidence point
  • ⁇ x represents the rotation speed of the coincidence point around the x direction
  • ⁇ y represents the coincidence point
  • ⁇ z represents the rotation speed around the z direction of the coincident point, and respectively represent the output speed of the first joint of the two virtual axes.
  • step S4 it also includes:
  • the linear guide part is controlled to pull out the surgical instrument, the connection between the poke card holder and the poke card is released, and the restriction of all the movement axes is released.
  • the method for controlling the position and posture of the end of the surgical robot makes the surgical instrument move around a virtual fixed point by establishing a telecentric point, and controls the surgical instrument to expand, retract and rotate around the telecentric point.
  • the position of the end of the surgical instrument can be controlled by the speed, and the posture of the end of the surgical instrument can be controlled by controlling the motion axis close to the end of the surgical instrument.
  • the present invention provides a surgical robot control method, comprising:
  • Control the movement of the slave hand according to the speed of the hand movement control the movement of the slave hand according to the speed of the hand movement: first control the universal robot to drive the instrument robot to enter the target object through the target position, and then jointly control the universal robot to orbit the telecentric The point movement and the telescopic movement of the instrument robot make the instrument robot perform a setting operation.
  • the hand motion speed includes Cartesian translation speed and Cartesian rotation speed.
  • the method before the step of controlling the movement of the slave hand according to the movement speed of the hand, the method further includes:
  • the hand motion speed is collected by the master hand controller, filtered and multiplied, and sent to the slave hand controller for slave hand control.
  • the step of re-linking the control of the universal robot to move around the telecentric point and the telescopic movement of the instrument robot it also includes:
  • the step of establishing a telecentric point specifically includes:
  • the step of obtaining the position of the telecentric point by the calculation specifically includes:
  • the encoders set at all the universal motion axes of the universal robot the actual displacements or actual angles of all the universal motion axes are acquired, and the position of the telecentric point is calculated.
  • the step of re-linking the control of the universal robot to move around the telecentric point and the telescopic movement of the instrument robot it also includes:
  • All instrument axis velocities of the instrument robot are obtained by mapping the desired Cartesian velocity at the end of the instrument robot through the inverse of the Jacobian matrix.
  • the instrument axis velocity includes an instrument physical axis axis velocity corresponding to the physical axis and an instrument virtual axis axis velocity corresponding to the virtual axis.
  • the method further includes:
  • the instrument robot after the step of causing the instrument robot to perform a setting operation, it further includes:
  • the instrument robot is controlled to pass through the telecentric point to be retrieved from the target.
  • the surgical robot control method includes two steps.
  • the hand motion speed of the operator at the main hand is collected, and in the second step, according to the hand motion collected in the first step.
  • the speed controls the movement of the slave hand;
  • the second step can be further subdivided into three steps, including: first control the universal robot to drive the instrument robot through the patient's wound and enter the patient's body, and then jointly control the universal robot's movement around the telecentric point and the instrument robot's telescopic movement , making the instrument robot perform surgery.
  • the surgical robot control method controls the surgical robot through the control method of the master and slave hands.
  • the operator operates the hand from the master hand, and the input hand motion is converted into a specific hand motion speed.
  • the movement speed is corresponding to the movement, the control precision is high, and the operation is convenient and accurate.
  • FIG. 1 is a schematic diagram of a surgical robot provided by an embodiment of the invention.
  • Fig. 2 is the schematic diagram of six mapping axes under the instrument coordinate system in Fig. 2;
  • Fig. 3 is the schematic diagram of the motion axis under the base coordinate system in Fig. 2;
  • FIG. 4 is a flowchart of a method for controlling the position and posture of a surgical robot end provided by an embodiment of the present invention.
  • 3-1-Motion axis 3-1-Motion axis, 3-2-Linear guide, 3-3-Instrument seat, 3-4-Surgical instrument, 3-5-Telecentric point.
  • FIG. 5 is a schematic flowchart of a surgical robot control method provided by an embodiment of the present invention.
  • FIG. 6 is a schematic structural diagram of a surgical robot provided by an embodiment of the present invention.
  • FIG. 7 is a schematic structural diagram of the instrument robot in FIG. 6 .
  • Minimally invasive surgery refers to an operation in which a slender endoscope and tiny surgical instruments are implanted into a patient through a small incision. The surgeon can observe the position of the surgical instruments and the surgical process during the operation with the help of the visual inspection device. Compared with traditional open surgery, it has the advantages of smaller incision, less pain, and faster postoperative recovery.
  • the surgical robot system is a robot system that can perform minimally invasive surgery, mainly including a master operator, that is, a master-hand robot, a slave operator, or a slave-hand robot, and a control system.
  • the master-hand robot is controlled by the doctor to generate a pose signal, which is collected and processed to obtain the pose signal of the slave-hand robot, and then the slave-hand robot realizes the surgical operation.
  • the purpose of the present invention is to disclose a surgical robot (slave robot), which solves the problems of inconvenient movement and mutual interference of the surgical robot.
  • FIG. 1 is a schematic diagram of a surgical robot provided by an embodiment of the invention
  • FIG. 2 is a schematic diagram of six mapping axes in the instrument coordinate system in FIG. 1
  • FIG. 3 is a motion in the base coordinate system in FIG. 1.
  • FIG. 4 is a flowchart of a method for controlling the position and posture of the end of a surgical robot according to an embodiment of the present invention.
  • the method for controlling the end position and posture of the surgical robot provided by the present invention can be applied to the surgical robot as shown in FIG. 1 to FIG. 3; the surgical robot includes a first robotic arm and a second robotic arm, and the first robotic arm adopts a
  • the present invention takes a six-axis robot as an example to describe a robot with a movement axis 3-1, which is called a universal robot, and the coordinate system established at the first movement axis 3-1 of the universal robot is called the base Coordinate system; the end of the first manipulator is connected to the linear guide part 3-2, the second manipulator can move linearly along the linear guide part 3-2, and the second manipulator is used to control the operation of the surgical instrument 3-4, such as the second manipulator
  • the arm includes two motors (equivalent to one degree of freedom) that control the opening and closing of surgical instruments 3-4.
  • the two virtual axes that rotate the surgical instrument 3-4 at the telecentric point 3-5, the linear axis of the linear guide 3-2, and the second robotic arm are used to control the operation of the surgical instrument 3-4.
  • the three motion axes 3-1 are regarded as an instrument robot with six degrees of freedom, and the coordinate system of the surgical instrument 3-4 is a coordinate system established with the telecentric point 3-5 as the base point.
  • the present invention realizes control of the position and posture of the end of the surgical robot based on the expected Cartesian velocity in the coordinate system of the surgical instrument 3-4 and the output velocity of the second joint of each motion axis 3-1, that is, the target velocity conversion.
  • the control method for the end position and posture of the surgical robot provided by the present invention includes the following four steps:
  • Step S1 establish a telecentric point 3-5, drag the surgical robot to move its end above the telecentric point; the telecentric point 3-5 is for the end of the surgical instrument 3-4 to rotate through the target position The virtual fixed point around the time;
  • Step S2 connecting the surgical instrument 3-4 to the instrument seat 3-3 of the surgical robot;
  • Step S3 controlling the surgical instrument 3-4 to pass through the telecentric point 3-5;
  • Step S4 Obtain the desired Cartesian speed of the end of the surgical instrument 3-4, calculate the target speed of each axis of the surgical robot, and control the movement of each axis of the surgical robot according to the target speed.
  • step S1 the function of step S1 is to establish a telecentric point 3-5, to determine the coincidence point of the surgical instrument 3-4 that coincides with the telecentric point 3-5 during the rotation process, that is, to coincide with the patient's wound, so that the surgical instrument 3-4
  • the end of the tumbler does telescopic rotation around the coincident point to improve the control accuracy.
  • the specific operation is to perform a minimally invasive opening on the patient's surgical site, insert the laparoscope into the minimally invasive opening after the opening, and drag each movement axis 3-1 of the surgical robot so that the linear guide 3-2 at the end of the universal robot is parallel to the
  • the poke card and the instrument seat 3-3 for installing the surgical instruments 3-4 are located just above the poke card.
  • the stamping card connects to the stamping card holder.
  • the sensor detects that the stamping card is connected to the stamping card holder, the sensor sends the information that the stamping card and the stamping card holder are connected in place to the control system of the surgical robot.
  • the range of motion of the drive motor set by -1 is constrained.
  • the instrument seat 3-3 is fixedly connected with the linear slider of the linear guide part 3-2.
  • the instrument seat 3-3 is driven. 3.
  • the surgical instruments 3-4 move in a straight line, and the motors used to control the pitch, roll, yaw and opening and closing actions of the instruments can move together with the instrument base 3-3 along with the linear slider.
  • the above-mentioned specific operation of connecting the stamp card and the stamp card holder may be: when dragging each movement axis 3-1 to move, the actual angle of all the movement axes 3-1 measured by the encoder arranged at each movement axis 3-1 Or displacement, drag the instrument to calculate the position of the instrument seat 3-3 according to the configuration parameters of the surgical robot.
  • the position of the telecentric point 3-5 is calculated by the position of the poke card holder and the fixed offset distance of the poke card relative to the poke card holder.
  • the telecentric point 3-5 is set at Poke the center of the card, offset the distance of the radius of the poke card by the position of the poke card holder, and then sink to the preset depth to obtain the position of the telecentric point 3-5.
  • Step S3 After obtaining the position of the telecentric point 3-5, the instrument seat 3-3 and the surgical instrument 3-4 are driven down by the linear slider of the linear guide part 3-2, so that the surgical instrument 3-4 passes through the telecentricity Points 3-5.
  • the lowering length can be determined by the position of the instrument seat 3-3, the distance between the instrument seat 3-3 and the poke card or the telecentric point 3-5, the length of the surgical instrument 3-4, and the extension of the surgical instrument 3-4 beyond the telecentric point 3-5. The length into the patient's body is determined.
  • the length of the surgical instrument 3-4 extending beyond the telecentric point 3-5 into the patient's body is taken as the rotation radius of the end of the surgical instrument 3-4, and the point where the surgical instrument 3-4 coincides with the telecentric point 3-5 is taken as the surgical instrument 3-
  • the coincidence point of 4 the coincidence point remains stationary during the rotation of the end of the surgical instrument 3-4. According to the surgical position of the patient, the length of the surgical instrument 3-4 extending into the patient is different, and the telecentric point 3-5 is virtual. Don't move.
  • Step S4 During the surgical operation, it is necessary to keep the coincidence point still, and the six motion axes 3-1 of the six-axis robot as described above are rotated to keep the coincidence point stationary while the end of the surgical instrument 3-4 moves. At this time, all the motion axes 3-1 need to input certain constraints to constrain the motion of the motion axes 3-1.
  • the acquisition of the above constraint conditions is specifically adopted: keep the coincidence point stationary, and calculate the first constraint angle range of the drive motors of all the motion axes 3-1 according to the constraint condition that the coincidence point does not move; then, according to the surgical space range at the end of the surgical instrument 3-4 , obtain the second constraint angle range of the drive motors of all motion axes 3-1 through inverse kinematics operation (there is no need to keep the coincidence point unchanged at this time), and then compare and obtain the corresponding coincidence of the first constraint angle range and the second constraint angle range
  • the above-mentioned corresponding coincidence range simultaneously satisfies that the coincidence point of the surgical instrument 3-4 does not move and the end of the surgical instrument 3-4 moves according to the target speed.
  • the drive motors of all motion axes 3-1 are controlled to rotate according to the corresponding coincidence range, so as to satisfy the precise control of the position and posture of the end of the surgical instrument 3-4.
  • the steps for calculating and obtaining the target speed of each drive motor in the corresponding coincidence range are as follows:
  • the first step is to operate in the 3-4 coordinate system of the surgical instrument
  • this expected Cartesian velocity includes the Cartesian translation velocity and the Cartesian rotation velocity, in other words v is a six-dimensional vector; then obtain the instrument robot configuration, that is, six
  • the inverse matrix j -1 of the Jacobian matrix corresponding to the configuration of the mapping axis, j -1 is related to the structural parameters of the instrument robot. When the relevant parameters of the instrument robot are confirmed, j -1 is known during the operation.
  • the six mapping axes include two virtual axes at the coincident point, the linear axis of the linear guide part 3-2, and the three motion axes 3-1 of the second robotic arm controlling the movement of the surgical instrument 3-4;
  • Calculate the first output joint velocity of the six mapped axes of the surgical instrument coordinate system is a six-dimensional vector representing the velocity of the first output joint; since the coordinate system of the surgical instrument 3-4 is based on the apocentric point 3-5 as the base point, and respectively represent the output speed of the first joint of the two virtual axes, Indicates the output speed of the first joint of the linear guide 3-2 or the linear axis; and respectively represent the output speed of the first joint of the second mechanical arm or the three motion axes 3-1 of the instrument robot used to control the posture of the surgical instrument 3-4 in the surgical instrument coordinate system.
  • the second step is to operate in the base coordinate system
  • N is equal to the number of all motion axes 3-1 of the first robotic arm or universal robot and N is greater than or equal to 5.
  • J -1 is the inverse matrix reflecting the second Jacobian matrix corresponding to the configuration of all motion axes 3-1, when the structural parameters of the multi-axis robot are confirmed, J -1 is in operation time is known;
  • v x represents the speed in the x direction of the coincidence point
  • v y represents the speed in the y direction of the coincidence point
  • v z represents the speed in the z direction of the coincidence point
  • ⁇ x represents the rotation speed of the coincidence point around the x direction
  • ⁇ y represents the rotation around the y direction of the coincidence point speed
  • ⁇ z represents the rotational speed of the coincident point around the z direction
  • the second joint output speed of each motion axis 3-1 of each motion axis 3-1 of the first manipulator in the base coordinate system is obtained through the above calculation, and the control system controls each drive within the corresponding coincidence range according to the output speed of the second joint.
  • the speed of the motor is sufficient.
  • the surgical instrument 3-4 can be pulled out from the poke card through the linear guide part 3-2, the poke card and the poke card holder are separated, and then the control system releases the adjustment of each movement axis 3-4. 1 limit.
  • FIG. 5 is a schematic flowchart of a method for controlling a surgical robot provided by an embodiment of the present invention
  • FIG. 6 is a schematic structural diagram of a surgical robot provided by an embodiment of the present invention
  • FIG. 7 is the structure of the instrument robot in FIG. 6 Schematic.
  • the surgical robot control method provided by the present invention includes two steps: S1, collecting the hand motion speed of the operator at the master hand; S2, controlling the movement of the slave hand according to the hand motion speed.
  • the surgical robot system includes a universal robot 4-1 and an instrument robot 4-2.
  • the universal robot 4-1 can adopt five axes, six axes, seven axes, etc., and has a corresponding number of universal motion axes 4-11;
  • the general motion axis 4-11 has the same number of degrees of freedom;
  • the instrument robot 4-2 includes a linear axis 4-21, the linear axis 4-21 includes a linear guide part and a sliding block for sliding connection, and the stamping card seat 4-23 is arranged on the linear axis
  • the instrument seat 4-25 is arranged on the slider, and the surgical instrument 4-22 is installed on the instrument seat 4-25;
  • the instrument robot 4-2 has an orthogonal virtual axis 4-200, a linear axis 4-21 and a surgical instrument 4-20. 22 of the multiple degrees of freedom of the instrument motion axis 4-221.
  • the surgical instrument 4-22 refers to a replaceable part, excluding the linear guide part and the instrument seat 4-25.
  • control method of the surgical robot adopts the control method of the master and slave hands.
  • the operator controls the hand at the master hand, and the sensor of the master hand converts the hand motion into the hand input to the controller of the master hand.
  • the hand motion speed collected in S1 is input into the controller of the slave hand in S2, so as to realize the control of the movement of the slave hand by the master hand.
  • step S2 can be further subdivided into: S21, firstly control the universal robot 4-1 to drive the instrument robot 4-2 to pass through the target position and enter the target object; S22, then jointly control the universal robot 4-1 to move around the telecentric point 4-2000 Telescopic movement with the instrument robot 4-2; S23, causing the instrument robot 4-2 to perform a setting operation.
  • the surgical robot control method in this embodiment is not only applicable to simulated surgery in the teaching form when the target is a dummy, but also applicable to real surgery when the target is a real person.
  • the above-mentioned target object corresponds to the human body
  • the target position corresponds to the patient's wound
  • the setting operations performed by the instrument robot 4-2 are various operations during the real operation. More specifically, S21, first control the universal robot 4-1 to drive the instrument robot 4-2 through the patient's wound and enter the patient's body; S22, then control the universal robot 4-1 to move around the telecentric point 4-2000 and the instrument robot 4- 2. Telescopic movement; S23, causing the instrument robot 4-2 to perform surgery.
  • the universal robot 4-1 does not stand still until the instrument is inserted; in the surgical procedure after the instrument is inserted, the universal robot 4-1 keeps moving around the telecentric point 4-2000, that is to say, The universal robot 4-1 will move around the telecentric point 4-2000 when the instrument robot 4-2 moves, and the posture and trajectory of the end of the instrument are synthesized by the universal robot 4-1 and the instrument robot 4-2.
  • the control method of the surgical robot adopts the way of controlling the universal robot 4-1 and the instrument robot 4-2 respectively, that is to say, different control methods are used for different robots, thereby realizing different motion control and realizing different functions.
  • the universal robot 4-1 is connected to the instrument robot 4-2, and the universal robot 4-1 can drive the instrument robot 4-2 to move, so the universal robot 4-1 is controlled to move by the controller of the slave hand, so that the universal robot 4-1 moves.
  • -1 drives the instrument robot 4-2 to move around the telecentric point 4-2000, and then the end of the instrument robot 4-2 completes the operation in the body.
  • the hand motion speed includes Cartesian translation speed and Cartesian rotation speed.
  • step S2 that is, before the step of controlling the movement of the slave hand according to the hand motion speed, the method further includes: the hand motion speed is collected by the master hand controller, filtered and multiplied, and sent to the slave hand. The controller performs control from the hand.
  • the method further includes: establishing a telecentric point 4-2000.
  • the steps of establishing the telecentric point 4-2000 include: opening an opening at the target position, inserting the stamping card 4-24; dragging the stamping card holder 4-23 of the instrument robot 4-2 to the stamping card 4-24 place; connect the stamp card holder 4-23 and the stamp card 4-24; calculate the position of the telecentric point 4-2000.
  • the target position corresponds to the real operation site.
  • the Cartesian position of the telecentric point 4-2000 relative to the base coordinate system can be connected to the stamp card 4-24 by inputting the actual angle or actual displacement of each joint encoder.
  • Robot positive kinematics model Robot positive kinematics model.
  • the instrument When inserting the instrument, the instrument is inserted through the spatially fixed linear guides and the spatially fixed prongs 4-24.
  • the poke card 4-24 is parallel to the linear guide, which simplifies the operation difficulty of inserting the instrument; the position of the distal point 4-2000 can be adjusted during the operation according to clinical needs. If the patient's wound moves, the poke card seat 4-23 can be dragged Panning to quickly release the pressure at 4-24 of the poke card to avoid secondary injury; in case of an emergency, such as a power failure, etc., the instrument needs to be quickly removed to continue the operation.
  • This configuration follows the linear guide with fixed spatial position and the poke card with fixed spatial position 4-24 allows the clinician to pull the instrument straight out to protect the patient's wound from secondary injury.
  • the step of calculating and obtaining the position of the telecentric point 4-2000 specifically includes: obtaining the actual displacement or Actual angle, calculate the position of the telecentric point 4-2000.
  • the setting methods of the general motion axes 4-11 include a rotary axis and a linear axis.
  • the displacement changes include angular displacement and linear displacement, that is, the actual angle of feedback and the actual distance of feedback; the actual angle corresponds to When the general motion axis 4-11 is the rotary axis, the angle encoder that obtains the displacement change of the rotary axis, and the actual distance corresponds to the distance encoder that obtains the displacement change of the linear axis when the general motion axis 4-11 is the linear axis.
  • the method further includes: using the inverse matrix of the Jacobian matrix, according to the instrument
  • the desired Cartesian velocity map of the end of the robot 4-2 yields the overall instrument axis velocity of the instrument robot 4-2.
  • the speed of the device axis includes the speed of the physical axis of the device corresponding to the physical axis and the speed of the virtual axis of the device corresponding to the virtual axis.
  • the action of the virtual axis is composed of the movement of each axis of the universal robot 4-1 around the telecentric point 4-2000.
  • the step further includes: obtaining all the universal axes of the universal robot 4-1 according to the axis velocity mapping of the instrument virtual axis through the inverse matrix of the Jacobian matrix. speed.
  • the control system calculates the telecentric point 4- 2000 locations.
  • the control system constrains the rotation angle of each joint of the robot.
  • the universal robot 4-1 can only move around the telecentric point 4-2000 through which the poke card 4-24 passes, but does not control the instrument to pass through the telecentric point 4-2000 at this time.
  • step S23 it also includes: controlling the instrument robot 4-2 to pass through the telecentric point 4-2000 again to take out the target object, wherein, in the actual operation, the target object corresponds to the patient's body, and step S23 is specifically controlling The instrument robot 4-2 is taken out of the patient 1 through the telecentric point 4-2000 again.
  • the surgical robot system is actually composed of two independent robots at the control algorithm level, and each robot has its own control target.
  • One controls the position and posture of the instrument tip in the human body, and the other controls the movement of the linear guide around the telecentric point 4-2000. Therefore, the controllers can be two separate and independent controllers, or one controller, which both belong to the description scope of this embodiment; the end of the universal robot 4-1 does not move with the telescopic motion of the instrument.
  • the controller of the universal robot 4-1 is not responsible for controlling the position and posture of the end of the surgical instrument 4-22, but only controls the movement of the linear guide around the telecentric point 4-2000; the position and posture of the end of the surgical instrument 4-22 are controlled Included in the control model of Instrument Robot 4-2.

Abstract

一种手术机器人末端位置和姿态的控制方法及手术机器人控制方法,手术机器人末端位置和姿态的控制方法包括建立远心点,拖动手术机器人使末端移动至远心点的上方;远心点为供手术器械的末端穿过目标位置转动时所围绕的虚拟不动点(S1);将手术器械连接于手术机器人的器械座(S2);控制手术器械穿过远心点(S3);获取手术器械的末端的期望笛卡尔速度,计算手术机器人的各轴的目标速度,根据目标速度控制手术机器人的各轴运动(S4)。

Description

手术机器人末端位置和姿态的控制方法及手术机器人控制方法
本发明要求于2020年11月10日提交中国专利局、申请号为202011249218.2、发明名称为“一种手术机器人末端位置和姿态的控制方法”及于2020年11月10日提交中国专利局、申请号为202011246738.8、发明名称为“一种手术机器人控制方法”的中国专利发明的优先权,其全部内容通过引用结合在本发明中。
技术领域
本发明涉及医疗器械技术领域,特别涉及一种手术机器人末端位置和姿态的控制方法及手术机器人控制方法。
背景技术
微创手术机器人可以减轻医生在手术过程中的体力劳动,同时达到精准手术的目的,使患者微创伤、失血少、术后感染少、术后恢复快。微创手术机器人系统通常使用主从式控制模式:操作者在对主手进行操作时,手部运动会带动主手随之运动,主手关节处传感器可以测量运动信息,通过主从控制算法将主手的运动映射到从手,从手各关节被动运动,带动手术器械实现相应运动。手术机器人的末端用来装载手术器械,其位置和姿态决定了手术操作的精确性。现有腹腔手术机器人:达芬奇使用平行四边形的专用构型,拥有物理远心点;现有的手术机器人控制方法仅能控制手术机器人手臂本身围绕物理远心点伸缩旋转,术前、术中调整远心点位置,需要通过额外的变位机构和控制方法对机器人基座进行平移和旋转,使用不便。
因此,如何控制手术机器人末端的位置和姿态,提高手术精确和安全性,及如何能够提供一种既可适用于绕远心点实现伸缩旋转、又可适用于调整远心点位置的手术机器人控制方法是本领域技术人员亟需解决的技术问题。
发明内容
本发明的目的之一是提供一种手术机器人末端位置和姿态的控制方法,该控制方法能够精确控制手术机器人末端位姿,提高手术的精确性安全性。本发明的目的之二是提供一种手术机器人控制方法,通过主从手的控制方式控制手术机器人,控制精度高,操作便捷精准;在从手的控制方式中采用通用机器人和器械机器人分工的方式,既可适用于绕远心点实现伸缩旋转、又可适用于调整远心点位置。
为实现上述目的,本发明提供一种手术机器人末端位置和姿态的控制方法,包括:
步骤S1:建立远心点,拖动手术机器人使其末端移动至所述远心点的上方;所述远心点为供手术器械的末端穿过目标位置转动时所围绕的虚拟不动点;
步骤S2:将所述手术器械连接于所述手术机器人的器械座;
步骤S3:控制所述手术器械穿过远心点;
步骤S4:获取所述手术器械的末端的期望笛卡尔速度,计算所述手术机器人的各轴的目标速度,根据所述目标速度控制所述手术机器人的各轴运动。
可选地,所述手术机器人包括至少五个运动轴的第一机械臂、连接所述第一机械臂的直线引导部,所述直线引导部用以带动所述器械座做直线运动,还包括连接所述直线引导部用以驱动所述手术器械动作的第二机械臂。
可选地,所述步骤S1具体包括:
在所述目标位置开口,将戳卡插入所述开口;
拖动全部所述运动轴,使所述直线引导部平行所述戳卡、且所述器械座设于所述戳卡的上方;
连接戳卡座与所述戳卡,获取所述远心点的位置。
可选地,所述连接戳卡座与所述戳卡,获取所述远心点的位置的步骤具体为:
根据全部所述运动轴处设置的编码器获取全部所述运动轴的实际角度或位移,根据全部所述实际角度或位移,计算所述远心点的位置。
可选地,所述连接戳卡座与所述戳卡,获取所述远心点的位置的步骤具体为:
根据所述戳卡座位置获取所述戳卡位置,由所述戳卡位置和所述远心点相对所述戳卡座的固定位置偏移得到所述远心点的位置。
可选地,所述步骤S3具体包括:
通过所述直线引导部控制所述手术器械直线运动穿过所述戳卡,借助设于所述直线引导部的位移传感器检测的位移控制所述手术器械的直线运动距离。
可选地,所述步骤S4进一步包括:
保持所述手术机器人与所述远心点重合的重合点不动,以所述重合点为球心驱动所述手术器械的转动,获取全部所述运动轴的驱动电机的第一约束角范围;
由所述目标速度,计算全部所述运动轴的驱动电机的第二约束角范围;
比对获取所述第一约束角范围和所述第二约束角范围的对应重合范围,根据所述对应重合范围控制全部所述驱动电机运动。
可选地,所述步骤S4具体为:
根据
Figure PCTCN2021128053-appb-000001
计算出手术器械坐标系的六个映射轴的第一输出关节速度;
根据
Figure PCTCN2021128053-appb-000002
计算出基坐标系下全部所述运动轴的第二输出关节速度,N等于所述运动轴的个数且N大于等于5;
其中:j -1为六个所述映射轴的构型对应的第一雅克比矩阵的逆矩阵,v为六个所述映射轴得到输入笛卡尔速度,
Figure PCTCN2021128053-appb-000003
表示所述第一输出关节速度的六维向量;
J -1为反映全部所述运动轴的构型对应的第二雅克比矩阵的逆矩阵,
Figure PCTCN2021128053-appb-000004
Figure PCTCN2021128053-appb-000005
表示所述第二输出关节速度的N维向量;
六个所述映射轴包括所述重合点处的两个虚拟轴、所述直线引导部对应的直线轴和所述第二机械臂的末端的三个所述运动轴;
v x表示所述重合点的x方向速度,v y表示所述重合点y方向速度,v z表示所述重合点z方向速度,ω x表示重合点的绕x方向旋转速度,ω y表示重合点的绕y方向旋转速度,ω z表示重合点的绕z方向旋转速度,
Figure PCTCN2021128053-appb-000006
Figure PCTCN2021128053-appb-000007
分别表示两个虚拟轴的第一关节输出速度。
可选地,所述步骤S4之后还包括:
手术完成或中止时控制所述直线引导部拉出所述手术器械,解除所述戳卡座与所述戳卡的连接,解除全部所述运动轴的限制。
相对于上述背景技术,本发明所提供的手术机器人末端位置和姿态的控制方法通过建立远心点使得手术器械在患者体内动作时围绕一虚拟不动点,通过控制手术器械绕远心点伸缩、旋转的速度即可控制手术器械末端的位置,通过控制靠近手术器械末端的运动轴即可控制手术器械末端的姿态。在远心点建立后,将手术器械与手术机器人的器械座连接,控制手术器械穿过远心点伸入患者体内,由需要完成的手术动作获取手术器械末端的期望笛卡尔速度,通过期望笛卡尔速度的逆运动学求解手术机器人各运动轴的目标速度,然后控制手术机器人的各轴按目标速度运动,实现手术机器人末端也即手术器械末端的位姿的精确控制。
为实现上述目的,本发明提供一种手术机器人控制方法,包括:
采集主手处操作者的手部动作速度;
根据所述手部动作速度控制从手的运动:根据所述手部动作速度控制从手的运动:先控制通用机器人带动器械机器人穿过目标位置进入目标物,再联动控制所述通用机器人绕远心点运动和所述器械机器人伸缩运动,使得所述器械机器人进行设定操作。
可选地,所述手部动作速度包括笛卡尔平移速度和笛卡尔旋转速度。
可选地,所述根据所述手部动作速度控制从手的运动的步骤之前,还包括:
所述手部动作速度由主手控制器采集后进行滤波和倍率处理,并发送 给从手控制器进行从手的控制。
可选地,所述再联动控制所述通用机器人绕远心点运动和所述器械机器人伸缩运动的步骤之前,还包括:
建立远心点。
可选地,所述建立远心点的步骤,具体包括:
在所述目标位置开口,插入戳卡;
将所述器械机器人的戳卡座拖动到所述戳卡处;
连接所述戳卡座和所述戳卡;
计算得到远心点的位置。
可选地,所述计算得到远心点的位置的步骤,具体包括:
根据所述通用机器人的全部通用运动轴处设置的编码器,获取全部所述通用运动轴的实际位移或实际角度,计算所述远心点的位置。
可选地,所述再联动控制所述通用机器人绕远心点运动和所述器械机器人伸缩运动的步骤之前,还包括:
通过雅各布比矩阵的逆矩阵,根据所述器械机器人末端的期望笛卡尔速度映射得到所述器械机器人的全部器械轴速度。
可选地,所述器械轴速度包括与物理轴对应的器械物理轴轴速度以及与虚拟轴对应的器械虚拟轴轴速度。
可选地,所述映射得到所述器械机器人的全部器械轴速度的步骤之后,还包括:
通过雅各布比矩阵的逆矩阵,根据所述器械虚拟轴轴速度映射得到所述通用机器人的全部通用轴速度。
可选地,所述使得所述器械机器人进行设定操作的步骤之后,还包括:
控制所述器械机器人穿过所述远心点由所述目标物取出。
相对于上述背景技术,本发明所提供的手术机器人控制方法包括两步,在第一步中采集主手处操作者的手部动作速度,在第二步中根据第一步采集的手部动作速度控制从手的运动;第二步还可进一步细分为三步,包括:先控制通用机器人带动器械机器人穿过患者创口进入患者体内,再联动控制通用机器人绕远心点运动和器械机器人伸缩运动,使得器械机器人进行 手术。该手术机器人控制方法通过主从手的控制方式控制手术机器人,操作者由主手处进行手部操作,输入的手部动作转化为具体的手部动作速度,从手根据输入主手的手部动作速度进行相应的运动,控制精度高,操作便捷精准,既可适用于绕远心点实现伸缩旋转、又可适用于调整远心点位置。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据提供的附图获得其他的附图。
图1为发明实施例所提供的手术机器人的示意图;
图2为图2中器械坐标系下六个映射轴的示意图;
图3为图2中基坐标系下运动轴的示意图;
图4为本发明实施例所提供的手术机器人末端位置和姿态的控制方法的流程图。
图1-图4中:
3-1-运动轴、3-2-直线引导部、3-3-器械座、3-4-手术器械、3-5-远心点。
图5为本发明实施例提供的手术机器人控制方法的流程示意图;
图6为本发明实施例提供的手术机器人的结构示意图;
图7为图6中器械机器人的结构示意图。
图5-图7中:
4-1-通用机器人、4-2-器械机器人、4-11-通用运动轴、4-21-直线轴、4-22-手术器械、4-23-戳卡座、4-24-戳卡、4-25-器械座、4-200-正交虚拟轴、4-221-器械运动轴、4-2000-远心点。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例, 而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
为了使本技术领域的技术人员更好地理解本发明方案,下面结合附图和具体实施方式对本发明作进一步的详细说明。
微创外科手术是指通过小切口把细长的内窥镜和微小的手术器械植入病人体内进行的手术。外科医生借助视觉检测装置可以在手术的同时观测手术器械的位置及手术过程。相对于传统的开放性外科手术,它具有创口小、可减轻患者痛苦、术后恢复快等优点。
手术机器人系统则能够进行微创外科手术的机器人系统,主要包括主操作手也即主手机器人、从操作手也即从手机器人和控制系统。主手机器人由医生控制产生位姿信号,该位姿信号被采集处理后得到控制从手机器人的位姿信号,进而通过从手机器人实现手术操作。本发明的目的是公开一种手术机器人(从手机器人),解决手术机器人运动不便及相互干扰的问题。
为了使本技术领域的技术人员更好地理解本发明方案,下面结合附图和具体实施方式对本发明作进一步的详细说明。
请参考图1-图4,图1为发明实施例所提供的手术机器人的示意图,图2为图1中器械坐标系下六个映射轴的示意图,图3为图1中基坐标系下运动轴的示意图,图4为本发明实施例所提供的手术机器人末端位置和姿态的控制方法的流程图。
本发明的所提供手术机器人末端位置和姿态的控制方法可以应用于如图1至图3所示手术机器人;该手术机器人包括第一机械臂和第二机械臂,第一机械臂采用具有至少5个运动轴3-1的机器人,本发明以六轴机器人为例进行说明,并将其称为通用机器人,并将以通用机器人的第一个运动轴3-1处建立的坐标系称为基坐标系;第一机械臂的末端连接直线引导部3-2,第二机械臂能够沿直线引导部3-2直线运动且第二机械臂用来控制手术器械3-4动作,如第二机械臂包括两个控制手术器械3-4开合的电机(相当于一个自由度)。
将由第一机械臂动作产生的手术器械3-4在远心点3-5转动的两个虚拟轴、直线引导部3-2的直线轴和第二机械臂用来控制手术器械3-4动作的三个运动轴3-1看作一个拥有六个自由度的器械机器人,手术器械3-4坐标系是以远心点3-5为基点建立的坐标系。本发明是基于手术器械3-4坐标系下期望笛卡尔速度和各运动轴3-1的第二关节输出速度也即目标速度转换实现对手术机器人末端的位置和姿态的控制的。
本发明所提供的手术机器人末端位置和姿态的控制方法包括如下四个步骤:
步骤S1:建立远心点3-5,拖动手术机器人使其末端移动至所述远心点的上方;所述远心点3-5为供手术器械3-4的末端穿过目标位置转动时所围绕的虚拟不动点;
步骤S2:将所述手术器械3-4连接于所述手术机器人的器械座3-3;
步骤S3:控制所述手术器械3-4穿过远心点3-5;
步骤S4:获取所述手术器械3-4的末端的期望笛卡尔速度,计算所述手术机器人的各轴的目标速度,根据所述目标速度控制所述手术机器人的各轴运动。
其中,步骤S1的作用是建立远心点3-5,确定手术器械3-4围绕旋转过程中与远心点3-5重合的重合点,也即与病人创口重合,使得手术器械3-4的末端绕该重合点做伸缩旋转动作,提高控制精度。具体操作为,对患者手术部位进行微创开口,开口后将腹腔镜插入微创开口处,拖动将手术机器人的各运动轴3-1,使得通用机器人末端的直线引导部3-2平行于戳卡、用来安装手术器械3-4的器械座3-3位于戳卡的正上方。
之后将戳卡与戳卡座连接,当传感器检测到戳卡与戳卡器连接之后,传感器将戳卡和戳卡座连接到位信息发送给手术机器人的控制系统,通过控制器对全部运动轴3-1设置的驱动电机的运动范围进行约束。
然后将手术器械3-4安装在手术机器人的器械座3-3,器械座3-3与直线引导部3-2的直线滑块的固接,当直线滑块运动时,带动器械座3-3及手术器械3-4作直线运动,用来控制器械俯仰、滚转、偏航和开合动作的电机能够与器械座3-3一起随同直线滑块运动。
上述将戳卡和戳卡座连接的具体操作可以为:拖动各运动轴3-1运动时,由设置在各运动轴3-1处编码器测得的全部运动轴3-1的实际角度或位移,拖动器械根据手术机器人的构型参数计算器械座3-3的位置。
在戳卡座和戳卡连接时,通过戳卡座的位置和戳卡相对戳卡座的固定偏移距离计算远心点3-5的位置,一般来说,远心点3-5设置在戳卡的正中央,通过戳卡座的位置偏移戳卡半径的距离,下沉预设深度后即可获取远心点3-5的位置。
步骤S3:获取远心点3-5的位置后,通过直线引导部3-2的直线滑块带动器械座3-3和手术器械3-4下放,从而使手术器械3-4穿过远心点3-5。下放长度可由器械座3-3位置、器械座3-3与戳卡或远心点3-5之间间距和手术器械3-4的长度以及手术器械3-4越过远心点3-5伸入患者体内的长度确定。由手术器械3-4越过远心点3-5伸入患者体内的长度作为手术器械3-4末端的旋转半径,手术器械3-4与远心点3-5重合的点作为手术器械3-4的重合点,重合点在手术器械3-4的末端旋转过程中保持不动,根据患者的手术位置,手术器械3-4伸入患者体内的长度不同,远心点3-5为虚拟的不动点。
步骤S4:在手术操作中,需要保持重合点不动,通过如上所述的六轴机器人的六个运动轴3-1转动保持重合点不动而手术器械3-4的末端运动。此时全部运动轴3-1需要输入一定约束条件来约束运动轴3-1的运动。
上述约束条件的获取具体采用:保持重合点不动,按照重合点不动的约束条件计算全部运动轴3-1的驱动电机第一约束角范围;然后根据手术器械3-4末端的手术空间范围,通过逆向运动学运算得到全部运动轴3-1的驱动电机第二约束角范围(此时无需保持重合点不动),然后比对获取第一约束角范围和第二约束角范围的对应重合范围,上述对应重合范围同时满足手术器械3-4的重合点不动和手术器械3-4末端按照目标速度运动。通过向控制系统输入对应重合范围,控制全部运动轴3-1的驱动电机按照对应重合范围转动,满足对手术器械3-4末端的位置和姿态的精确控制。
具体来说,计算获取对应重合范围下各驱动电机的目标速度的步骤具体如下:
第一步,在手术器械3-4坐标系下运算;
获取手术器械3-4末端的期望笛卡尔速度v,此期望笛卡尔速度包括笛卡尔平移速度和笛卡尔旋转速度,换句话说v为一个六维向量;然后获取器械机器人构型也即六个映射轴的构型对应的雅克比矩阵的逆矩阵j -1,j -1与器械机器人的结构参数有关,在器械机器人的相关参数确认时,j -1在运算时为已知。六个映射轴包括重合点处的两个虚拟轴、直线引导部3-2的直线轴和第二机械臂控制手术器械3-4运动的三个运动轴3-1;
根据:
Figure PCTCN2021128053-appb-000008
计算出手术器械坐标系的六个映射轴的第一输出关节速度
Figure PCTCN2021128053-appb-000009
表示第一输出关节速度的六维向量;由于手术器械3-4坐标系是以远心点3-5为基点建立的坐标系,
Figure PCTCN2021128053-appb-000010
Figure PCTCN2021128053-appb-000011
分别表示两个虚拟轴的第一关节输出速度,
Figure PCTCN2021128053-appb-000012
表示直线引导部3-2或直线轴的第一关节输出速度;
Figure PCTCN2021128053-appb-000013
Figure PCTCN2021128053-appb-000014
分别表示用来控制手术器械3-4姿态的第二机械臂或器械机器人的三个运动轴3-1在手术器械坐标系下的第一关节输出速度。
第二步,在基坐标系下运算;
根据
Figure PCTCN2021128053-appb-000015
计算出基坐标系下全部运动轴3-1的第二输出关节速度,其中N等于第一机械臂或通用机器人全部运动轴3-1的个数且N大于等于5。
其中,
Figure PCTCN2021128053-appb-000016
表示第二输出关节速度的N维向量,J -1为反映全部运动轴3-1构型对应的第二雅克比矩阵的逆矩阵,当多轴机器人的结构参数确认时,J -1在运算时为已知;
Figure PCTCN2021128053-appb-000017
v x表示重合点的x方向速度,v y表示重合点y方向速度,v z表示重合点z方向速度,ω x表示重合点的绕x 方向旋转速度,ω y表示重合点的绕y方向旋转速度,ω z表示重合点的绕z方向旋转速度,
Figure PCTCN2021128053-appb-000018
Figure PCTCN2021128053-appb-000019
分别表示两个虚拟轴的第一关节输出速度,在第一步计算中已经求得,且由于重合点不动,仅发生手术器械3-4末端转动,故v x、v y、v z以及ω x均取零。
通过上述运算得到第一机械臂的各运动轴3-1在基坐标系下各运动轴3-1的第二关节输出速度,控制系统按照第二关节输出速度控制在对应重合范围内控制各驱动电机的转速即可。
当完成手术或者其它原因造成手术中止时,通过直线引导部3-2将手术器械3-4从戳卡拔出即可,分离戳卡和戳卡座,进而控制系统解除对各运动轴3-1的限制。
请参考图5-图7,图5为本发明实施例提供的手术机器人控制方法的流程示意图,图6为本发明实施例提供的手术机器人的结构示意图,图7为图6中器械机器人的结构示意图。
在一种具体的实施方式中,本发明所提供的手术机器人控制方法包括两步:S1、采集主手处操作者的手部动作速度;S2、根据手部动作速度控制从手的运动。
手术机器人系统包括通用机器人4-1和器械机器人4-2,通用机器人4-1可采用五轴、六轴、七轴等,具有对应数量的通用运动轴4-11;通用机器人4-1与通用运动轴4-11有数量相同的自由度;器械机器人4-2包括直线轴4-21,直线轴4-21包括直线引导部和滑动连接的滑块,戳卡座4-23设于直线引导部,器械座4-25设于滑块,器械座4-25上安装手术器械4-22;器械机器人4-2具有正交虚拟轴4-200、直线轴4-21以及手术器械4-22的器械运动轴4-221的多个自由度。其中,手术器械4-22是指可更换的部分,不包含直线引导部和器械座4-25。
在本实施例中,该手术机器人的控制方法采用主从手的控制方式,由操作者在主手处进行手部控制,主手的传感器将手部动作转化为输入主手的控制器的手部动作速度,进而将S1中采集到的手部动作速度输入S2的 从手的控制器,进而实现主手对从手的运动的控制。
其中,步骤S2还可细分为:S21、先控制通用机器人4-1带动器械机器人4-2穿过目标位置进入目标物;S22、再联动控制通用机器人4-1绕远心点4-2000运动和器械机器人4-2伸缩运动;S23、使得器械机器人4-2进行设定操作。
需要说明的是,本实施例中的手术机器人控制方法,不仅适用于目标物为假人时的教学形式的模拟手术,还适用于目标物为真人时的真实手术。当进行真实手术时,上述目标物对应于人体,目标位置对应于患者创口,器械机器人4-2进行的设定操作即为真实手术时的各种操作。更具体地说,S21、先控制通用机器人4-1带动器械机器人4-2穿过患者创口进入患者体内;S22、再联动控制通用机器人4-1绕远心点4-2000运动和器械机器人4-2伸缩运动;S23、使得器械机器人4-2进行手术。
在本实施例中,只有在插入器械时通用机器人4-1才静止不动;在插入器械后的手术工程中,通用机器人4-1一直在围绕远心点4-2000运动,也就是说,通用机器人4-1在器械机器人4-2动作时,会绕远心点4-2000运动,器械末端的位姿和轨迹由通用机器人4-1和器械机器人4-2共同合成。该手术机器人的控制方法采用分别控制通用机器人4-1和器械机器人4-2的方式,也就是说,对于不同的机器人采用不同的控制方法,进而实现不同的运动控制,实现不同的功能作用。具体而言,通用机器人4-1与器械机器人4-2相连,通用机器人4-1可带动器械机器人4-2运动,因而通过从手的控制器控制通用机器人4-1运动,使得通用机器人4-1带动器械机器人4-2绕远心点4-2000运动,进而由器械机器人4-2的末端在体内完成手术。
具体而言,手部动作速度包括笛卡尔平移速度和笛卡尔旋转速度。
除此以外,在步骤S2之前,也即根据手部动作速度控制从手的运动的步骤之前,还包括:手部动作速度由主手控制器采集后进行滤波和倍率处理,并发送给从手控制器进行从手的控制。
其中,在步骤S22之前,还包括:建立远心点4-2000。
具体而言,建立远心点4-2000的步骤,具体包括:在目标位置开口, 插入戳卡4-24;将器械机器人4-2的戳卡座4-23拖动到戳卡4-24处;连接戳卡座4-23和戳卡4-24;计算得到远心点4-2000的位置。其中,在真实手术时,目标位置对应于真实手术部位。
由于机器人上设计有戳卡座4-23,远心点4-2000相对于基座坐标系的笛卡尔位置可在连接戳卡4-24瞬间通过输入各关节编码器的实际角度或实际位移到机器人正运动学模型。
插入器械时,器械通过空间位置固定的直线引导部和空间位置固定的戳卡4-24插入。戳卡4-24与直线引导部平行,简化了插入器械的操作难度;远心点4-2000位置可以根据临床需要在术中调整,如遇病人创口移动,可拖动戳卡座4-23平移来快速释放戳卡4-24处的压力,避免二次伤害;如遇紧急情况故障停电等需快速取出器械继续手术,本构型沿空间位置固定的直线引导部和空间位置固定的戳卡4-24允许临床医护人员直线拉出器械以保护病人创口不受二次伤害。
其中,计算得到远心点4-2000的位置的步骤,具体包括:根据通用机器人4-1的全部通用运动轴4-11处设置的编码器,获取全部通用运动轴4-11的实际位移或实际角度,计算远心点4-2000的位置。
具体而言,通用运动轴4-11的设置方式包括旋转轴和直线轴,与此对应的,其位移变化包括角位移和线位移,也即反馈的实际角度和反馈的实际距离;实际角度对应于通用运动轴4-11为旋转轴时获取旋转轴的位移变化的角度编码器,实际距离对应于通用运动轴4-11为直线轴时获取直线轴的位移变化的距离编码器。
除此以外,在步骤S23之前,也即再控制器械机器人4-2穿过远心点4-2000进入患者体内进行手术的步骤之前,还包括:通过雅各布比矩阵的逆矩阵,根据器械机器人4-2末端的期望笛卡尔速度映像得到器械机器人4-2的全部器械轴速度。
其中,器械轴速度包括与物理轴对应的器械物理轴轴速度以及与虚拟轴对应的器械虚拟轴轴速度,虚拟轴的动作由通用机器人4-1各轴联动绕远心点4-2000运动组成。
具体而言,映射得到器械机器人4-2的全部器械轴速度的步骤之后, 还包括:通过雅各布比矩阵的逆矩阵,根据器械虚拟轴轴速度映像得到通用机器人4-1的全部通用轴速度。
第一步:使用
Figure PCTCN2021128053-appb-000020
计算器械机器人4-2每个轴的速度,其中,
Figure PCTCN2021128053-appb-000021
表示器械机器人4-2各关节速度(n维向量,器械机器人轴数n=6),j -1表示器械机器人4-2构型对应的雅可比矩阵的逆矩阵,v表示用户期望的器械末端笛卡尔速度(6维向量),v=[v x,v y,v zxyz],最终计算得到的器械机器人4-2关节速度
Figure PCTCN2021128053-appb-000022
第二步:使用
Figure PCTCN2021128053-appb-000023
计算通用机器人4-1每个轴的速度,其中,
Figure PCTCN2021128053-appb-000024
表示通用机器人4-1各关节速度(n维向量,通用机器人轴数n=5、6、7….),J -1表示通用机器人4-1构型对应的雅可比矩阵的逆矩阵,V表示远心点的目标速度(6维向量),
Figure PCTCN2021128053-appb-000025
Figure PCTCN2021128053-appb-000026
其中
Figure PCTCN2021128053-appb-000027
Figure PCTCN2021128053-appb-000028
是第一步计算得到的。最终计算得到通用机器人4-1关节速度
Figure PCTCN2021128053-appb-000029
在本实施例中,远心点4-2000建立流程:
1.在连接戳卡4-24之前,机器人各关节转动角度不受约束,处于自由拖动模式。
2.在手术部位开口,插入戳卡4-24。
3.拖动各轴,将直线引导部底部的戳卡座4-23拖动到戳卡4-24附近位置。
4.连接戳卡4-24与戳卡座4-23,传感器检测到连接建立后,控制系统通过输入各关节编码器实际角度或实际距离到机器人正运动学模型中计算得到远心点4-2000位置。控制系统对机器人各关节转动角度进行约束,此时通用机器人4-1只能围绕戳卡4-24通过的远心点4-2000运动,但此时不控制器械通过远心点4-2000。
5.连接手术器械4-22和器械座4-25,由直线引导部控制器械通过远心点4-2000进入人体。
6.实施控制方法:通过雅各布比矩阵的逆矩阵,将器械末端的期望笛卡尔速度映像到器械机器人4-2的六个轴速度上,此时可得到四个电机的 目标速度和正交虚拟轴4-200也即两个虚拟轴的目标速度。再将正交虚拟轴4-200的目标速度通过雅各布比矩阵的逆矩阵映射到通用机器人4-1的各个物理轴速度上,此时可得到所有电机的目标速度控制指令。
最终,在步骤S23之后,还包括:控制器械机器人4-2再次穿过远心点4-2000由目标物取出,其中,在真实手术时,目标物对应于患者人体,而步骤S23具体为控制器械机器人4-2再次穿过远心点4-2000由1患者体内取出。
在本实施例中,远心点4-2000丢失流程:
1.沿直线引导部直线退出(拉出)器械。
2.分离戳卡座4-23和戳卡4-24。
3.自由拖动机器人各关节到空置区域。
该手术机器人系统在控制算法层面实际是由两个独立的机器人共同组成,每个机器人有自己的控制目标。一个控制器械末端在人体中的位置和姿态,另一个控制直线引导部绕远心点4-2000运动。所以控制器可以是两个分开独立的,也可以是一个,同应属于本实施例的说明范围;通用机器人4-1末端不随器械的伸缩运动而移动。本构型中通用机器人4-1的控制器不负责控制手术器械4-22末端的位置和姿态,仅控制直线引导部绕远心点4-2000运动;手术器械4-22末端的位置和姿态控制包含在器械机器人4-2的控制模型中。
需要说明的是,在本说明书中,诸如第一和第二之类的关系术语仅仅用来将一个实体与另外几个实体区分开来,而不一定要求或者暗示这些实体之间存在任何这种实际的关系或者顺序。
以上对本发明所提供的手术机器人、手术机器人系统、手术机器人末端位置和姿态的控制方法及手术机器人控制方法进行了详细介绍。本文中应用了具体个例对本发明的原理及实施方式进行了阐述,以上实施例的说明只是用于帮助理解本发明的方法及其核心思想。应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明原理的前提下,还可以对本发明进行若干改进和修饰,这些改进和修饰也落入本发明权利要求的保护范围内。

Claims (19)

  1. 一种手术机器人末端位置和姿态的控制方法,其特征在于,包括:
    步骤S1:建立远心点,拖动手术机器人使其末端移动至所述远心点的上方;所述远心点为供手术器械的末端穿过目标位置转动时所围绕的虚拟不动点;
    步骤S2:将所述手术器械连接于所述手术机器人的器械座;
    步骤S3:控制所述手术器械穿过远心点;
    步骤S4:获取所述手术器械的末端的期望笛卡尔速度,计算所述手术机器人的各轴的目标速度,根据所述目标速度控制所述手术机器人的各轴运动。
  2. 根据权利要求1所述的手术机器人末端位置和姿态的控制方法,其特征在于,所述手术机器人包括至少五个运动轴的第一机械臂、连接所述第一机械臂的直线引导部,所述直线引导部用以带动所述器械座做直线运动,还包括连接所述直线引导部用以驱动所述手术器械动作的第二机械臂。
  3. 根据权利要求2所述的手术机器人末端位置和姿态的控制方法,其特征在于,所述步骤S1具体包括:
    在所述目标位置开口,将戳卡插入所述开口;
    拖动全部所述运动轴,使所述直线引导部平行所述戳卡、且所述器械座设于所述戳卡的上方;
    连接戳卡座与所述戳卡,获取所述远心点的位置。
  4. 根据权利要求3所述的手术机器人末端位置和姿态的控制方法,其特征在于,所述连接戳卡座与所述戳卡,获取所述远心点的位置的步骤具体为:
    根据全部所述运动轴处设置的编码器获取全部所述运动轴的实际角度或位移,根据全部所述实际角度或位移,计算所述远心点的位置。
  5. 根据权利要求3所述的手术机器人末端位置和姿态的控制方法,其特征在于,所述连接戳卡座与所述戳卡,获取所述远心点的位置的步骤具体为:
    根据所述戳卡座位置获取所述戳卡位置,由所述戳卡位置和所述远心 点相对所述戳卡座的固定位置偏移得到所述远心点的位置。
  6. 根据权利要求4或5所述的手术机器人末端位置和姿态的控制方法,其特征在于,所述步骤S3具体包括:
    通过所述直线引导部控制所述手术器械直线运动穿过所述戳卡,借助设于所述直线引导部的位移传感器检测的位移控制所述手术器械的直线运动距离。
  7. 根据权利要求6所述的手术机器人末端位置和姿态的控制方法,其特征在于,所述步骤S4进一步包括:
    保持所述手术机器人与所述远心点重合的重合点不动,以所述重合点为球心驱动所述手术器械的转动,获取全部所述运动轴的驱动电机的第一约束角范围;
    由所述目标速度,计算全部所述运动轴的驱动电机的第二约束角范围;
    比对获取所述第一约束角范围和所述第二约束角范围的对应重合范围,根据所述对应重合范围控制全部所述驱动电机运动。
  8. 根据权利要求7所述的手术机器人末端位置和姿态的控制方法,其特征在于,所述步骤S4具体为:
    根据
    Figure PCTCN2021128053-appb-100001
    计算出手术器械坐标系的六个映射轴的第一输出关节速度;
    根据
    Figure PCTCN2021128053-appb-100002
    计算出基坐标系下全部所述运动轴的第二输出关节速度,N等于所述运动轴的个数且N大于等于5;
    其中:j -1为六个所述映射轴的构型对应的第一雅克比矩阵的逆矩阵,v为六个所述映射轴的输入笛卡尔速度,
    Figure PCTCN2021128053-appb-100003
    表示所述第一输出关节速度的六维向量;
    J -1为反映全部所述运动轴的构型对应的第二雅克比矩阵的逆矩阵,
    Figure PCTCN2021128053-appb-100004
    Figure PCTCN2021128053-appb-100005
    表示所述第二输出关节速度的N维向量;
    六个所述映射轴包括所述重合点处的两个虚拟轴、所述直线引导部对应的直线轴和所述第二机械臂的末端的三个所述运动轴;
    v x表示所述重合点的x方向速度,v y表示所述重合点y方向速度,v z表示所述重合点z方向速度,ω x表示重合点的绕x方向旋转速度,ω y表示重合点的绕y方向旋转速度,ω z表示重合点的绕z方向旋转速度,
    Figure PCTCN2021128053-appb-100006
    Figure PCTCN2021128053-appb-100007
    分别表示两个虚拟轴的第一关节输出速度。
  9. 根据权利要求8所述的手术机器人末端位置和姿态的控制方法,其特征在于,所述步骤S4之后还包括:
    手术完成或中止时控制所述直线引导部拉出所述手术器械,解除所述戳卡座与所述戳卡的连接,解除全部所述运动轴的限制。
  10. 一种手术机器人控制方法,其特征在于,包括:
    采集主手处操作者的手部动作速度;
    根据所述手部动作速度控制从手的运动:先控制通用机器人带动器械机器人穿过目标位置进入目标物,再联动控制所述通用机器人绕远心点运动和所述器械机器人伸缩运动,使得所述器械机器人进行设定操作。
  11. 根据权利要求10所述的手术机器人控制方法,其特征在于,所述手部动作速度包括笛卡尔平移速度和笛卡尔旋转速度。
  12. 根据权利要求10所述的手术机器人控制方法,其特征在于,所述根据所述手部动作速度控制从手的运动的步骤之前,还包括:
    所述手部动作速度由主手控制器采集后进行滤波和倍率处理,并发送给从手控制器进行从手的控制。
  13. 根据权利要求10至12任一项所述的手术机器人控制方法,其特征在于,所述再联动控制所述通用机器人绕远心点运动和所述器械机器人伸缩运动的步骤之前,还包括:
    建立远心点。
  14. 根据权利要求13所述的手术机器人控制方法,其特征在于,所述建立远心点的步骤,具体包括:
    在所述目标位置开口,插入戳卡;
    将所述器械机器人的戳卡座拖动到所述戳卡处;
    连接所述戳卡座和所述戳卡;
    计算得到远心点的位置。
  15. 根据权利要求14所述的手术机器人控制方法,其特征在于,所述计算得到远心点的位置的步骤,具体包括:
    根据所述通用机器人的全部通用运动轴处设置的编码器,获取全部所述通用运动轴的实际位移或实际角度,计算所述远心点的位置。
  16. 根据权利要求10至12任一项所述的手术机器人控制方法,其特征在于,所述再联动控制所述通用机器人绕远心点运动和所述器械机器人伸缩运动的步骤之前,还包括:
    通过雅各布比矩阵的逆矩阵,根据所述器械机器人末端的期望笛卡尔速度映射得到所述器械机器人的全部器械轴速度。
  17. 根据权利要求16所述的手术机器人控制方法,其特征在于,所述器械轴速度包括与物理轴对应的器械物理轴轴速度以及与虚拟轴对应的器械虚拟轴轴速度。
  18. 根据权利要求17所述的手术机器人控制方法,其特征在于,所述映射得到所述器械机器人的全部器械轴速度的步骤之后,还包括:
    通过雅各布比矩阵的逆矩阵,根据所述器械虚拟轴轴速度映射得到所述通用机器人的全部通用轴速度。
  19. 根据权利要求10至12任一项所述的手术机器人控制方法,其特征在于,所述使得所述器械机器人进行设定操作的步骤之后,还包括:
    控制所述器械机器人穿过所述远心点由所述目标物取出。
PCT/CN2021/128053 2020-11-10 2021-11-02 手术机器人末端位置和姿态的控制方法及手术机器人控制方法 WO2022100480A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP21891007.3A EP4245238A1 (en) 2020-11-10 2021-11-02 Control method for location and orientation of surgical robot end, and control method for surgical robot
US18/035,947 US20240016559A1 (en) 2020-11-10 2021-11-02 Control method for location and orientation of surgical robot end, and control method for surgical robot

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN202011249218.2 2020-11-10
CN202011246738.8A CN114452003B (zh) 2020-11-10 2020-11-10 一种手术机器人
CN202011246738.8 2020-11-10
CN202011249218.2A CN114452004B (zh) 2020-11-10 2020-11-10 一种手术机器人末端位置和姿态的控制方法

Publications (1)

Publication Number Publication Date
WO2022100480A1 true WO2022100480A1 (zh) 2022-05-19

Family

ID=81602124

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/128053 WO2022100480A1 (zh) 2020-11-10 2021-11-02 手术机器人末端位置和姿态的控制方法及手术机器人控制方法

Country Status (3)

Country Link
US (1) US20240016559A1 (zh)
EP (1) EP4245238A1 (zh)
WO (1) WO2022100480A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114952806A (zh) * 2022-06-16 2022-08-30 法奥意威(苏州)机器人系统有限公司 约束运动控制方法、装置、系统和电子设备
CN115281802A (zh) * 2022-09-28 2022-11-04 真健康(北京)医疗科技有限公司 穿刺装置的控制方法、设备及系统

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101773400A (zh) * 2010-01-19 2010-07-14 天津大学 微创外科手术机器人主控数据手套
US20170239005A1 (en) * 2015-09-04 2017-08-24 Memic Innovative Surgery Ltd. Actuation of a device comprising mechanical arms
CN109091238A (zh) * 2017-06-21 2018-12-28 山东威高手术机器人有限公司 分体式微创手术器械辅助系统
CN109771037A (zh) * 2019-03-22 2019-05-21 重庆金山医疗机器人有限公司 一种机械手立柱回转结构
CN111345894A (zh) * 2018-12-21 2020-06-30 微创(上海)医疗机器人有限公司 机械臂及手术机器人
WO2020197422A2 (en) * 2019-03-22 2020-10-01 Hamad Medical Corporation System and methods for tele-collaboration in minimally invasive surgeries

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101773400A (zh) * 2010-01-19 2010-07-14 天津大学 微创外科手术机器人主控数据手套
US20170239005A1 (en) * 2015-09-04 2017-08-24 Memic Innovative Surgery Ltd. Actuation of a device comprising mechanical arms
CN109091238A (zh) * 2017-06-21 2018-12-28 山东威高手术机器人有限公司 分体式微创手术器械辅助系统
CN111345894A (zh) * 2018-12-21 2020-06-30 微创(上海)医疗机器人有限公司 机械臂及手术机器人
CN109771037A (zh) * 2019-03-22 2019-05-21 重庆金山医疗机器人有限公司 一种机械手立柱回转结构
WO2020197422A2 (en) * 2019-03-22 2020-10-01 Hamad Medical Corporation System and methods for tele-collaboration in minimally invasive surgeries

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114952806A (zh) * 2022-06-16 2022-08-30 法奥意威(苏州)机器人系统有限公司 约束运动控制方法、装置、系统和电子设备
CN114952806B (zh) * 2022-06-16 2023-10-03 法奥意威(苏州)机器人系统有限公司 约束运动控制方法、装置、系统和电子设备
CN115281802A (zh) * 2022-09-28 2022-11-04 真健康(北京)医疗科技有限公司 穿刺装置的控制方法、设备及系统
CN115281802B (zh) * 2022-09-28 2023-01-24 真健康(北京)医疗科技有限公司 穿刺装置的控制方法、设备及系统

Also Published As

Publication number Publication date
EP4245238A1 (en) 2023-09-20
US20240016559A1 (en) 2024-01-18

Similar Documents

Publication Publication Date Title
JP6615931B2 (ja) 手術器具の近位制御のためのシステム及び方法
CN111315309B (zh) 用于控制机器人操纵器或相关工具的系统和方法
WO2022100480A1 (zh) 手术机器人末端位置和姿态的控制方法及手术机器人控制方法
KR20200078422A (ko) 직관적인 움직임을 위한 마스터/도구 정합과 제어를 위한 시스템 및 방법
TWI695765B (zh) 機械手臂
CN113180828A (zh) 基于旋量理论的手术机器人约束运动控制方法
US11090126B2 (en) Input device handle for robotic surgical systems capable of large rotations about a roll axis
AU2024201458A1 (en) Controlling movement of a surgical robot arm
WO2022166024A1 (zh) 一种腔镜手术机器人的手术臂初始位姿规划方法及装置
JP2023544315A (ja) 非接触情報に基づく外科用ロボットにおける衝突回避
CN114452004B (zh) 一种手术机器人末端位置和姿态的控制方法
CN116327375A (zh) 从操作设备、手术机器人及其移动控制方法
CN114452003B (zh) 一种手术机器人
JP2023544314A (ja) 接触情報の検出に基づく外科用ロボットにおける衝突回避
Dai et al. A foot-controlled interface for endoscope holder in functional endoscopic sinus surgery
Nawrat et al. The Robin Heart Vision, telemanipulator for camera holding–preliminary test results
WO2019236540A1 (en) Articulated apparatus for surgery

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21891007

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 18035947

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2021891007

Country of ref document: EP

Effective date: 20230612