WO2023179339A1 - 导管形状与力感知方法、手术导航方法和介入手术系统 - Google Patents

导管形状与力感知方法、手术导航方法和介入手术系统 Download PDF

Info

Publication number
WO2023179339A1
WO2023179339A1 PCT/CN2023/079551 CN2023079551W WO2023179339A1 WO 2023179339 A1 WO2023179339 A1 WO 2023179339A1 CN 2023079551 W CN2023079551 W CN 2023079551W WO 2023179339 A1 WO2023179339 A1 WO 2023179339A1
Authority
WO
WIPO (PCT)
Prior art keywords
catheter
sensor
real
shape
conduit
Prior art date
Application number
PCT/CN2023/079551
Other languages
English (en)
French (fr)
Inventor
王家寅
占雄
Original Assignee
上海微创微航机器人有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN202210293574.7A external-priority patent/CN114668502B/zh
Priority claimed from CN202210293581.7A external-priority patent/CN114848144B/zh
Application filed by 上海微创微航机器人有限公司 filed Critical 上海微创微航机器人有限公司
Publication of WO2023179339A1 publication Critical patent/WO2023179339A1/zh

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B34/00Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
    • A61B34/20Surgical navigation systems; Devices for tracking or guiding surgical instruments, e.g. for frameless stereotaxis
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B34/00Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
    • A61B34/30Surgical robots

Definitions

  • the invention relates to the technical field of medical devices, and in particular to a catheter shape and force sensing method, a surgical navigation method, a catheter shape control method, an interventional surgery system, electronic equipment and a storage medium.
  • minimally invasive robotic surgery has the advantages of small incisions, less trauma, faster recovery, and less pain.
  • the interventional robot surgery system uses the guidance of medical imaging equipment to introduce special instruments, catheters and other precision instruments into the human body to perform minimally invasive surgeries such as diagnosis and local treatment of lesions in the body.
  • the catheter is the most important tool in interventional technology. With the guidance of image navigation, doctors can reach the lesion location through remote control catheter movement for interventional treatment or diagnosis.
  • the interventional robotic surgery system can navigate the movement of the minimally invasive catheter in the natural or surgically created channels in the anatomical system, position the minimally invasive catheter in real time and accurately register it to the anatomical channel; at the same time, Identification of stresses on the catheter can also avoid damage to the anatomy and damage to the catheter itself. Therefore, effective shape and stress information sensing methods are the key to the successful application of interventional surgical robots.
  • the object of the present invention is to provide a catheter shape and force sensing method, a surgical navigation method, a catheter shape control method, an interventional surgery system, an electronic device and a storage medium, which can more accurately and simply sense the shape of the catheter and the force it is subjected to. Stress can effectively control the shape of the catheter to ensure the smooth progress of interventional surgery, and can effectively improve the accuracy of surgical navigation.
  • the present invention provides a method for sensing the shape and force of a catheter.
  • the catheter is equipped with multiple sensors along its length direction, and the sensors are used to sense position information and direction information at its location.
  • Methods include:
  • real-time shape information of the conduit and real-time stress information on the conduit are obtained.
  • the invention also provides a surgical navigation method, including:
  • the shape information of the catheter after entering the anatomical channel and the three-dimensional anatomical model obtain the spatial mapping relationship between the world coordinate system and the three-dimensional anatomical model coordinate system;
  • the catheter is controlled to move according to the navigation path until the end of the catheter reaches the lesion.
  • the present invention also provides a catheter shape control method.
  • the catheter is equipped with multiple sensors along its length direction.
  • the sensors are used to sense position information and direction information at its location.
  • the catheter shape control method includes:
  • the catheter is controlled to perform corresponding movement.
  • the present invention also provides an interventional surgery system, including a communication-connected robot and a controller.
  • the robot includes a trolley and a robotic arm installed on the trolley. The end of the robotic arm is used to install a catheter.
  • the catheter is equipped with a plurality of sensors along its length direction, and the controller is configured to implement the catheter shape and force sensing method described above or the surgical navigation method described above or the catheter shape control method described above .
  • the present invention also provides an electronic device, including a processor and a memory.
  • a computer program is stored on the memory.
  • the catheter shape and force sensing method or the above method is implemented.
  • the present invention also provides a readable storage medium.
  • a computer program is stored in the readable storage medium.
  • the computer program When executed by a processor, it implements the catheter shape and force sensing method described above or the method described above. surgical navigation methods or catheters as described above Shape control methods.
  • the catheter shape and force sensing method, surgical navigation method, catheter shape control method, interventional surgery system, electronic device and storage medium have the following advantages:
  • the catheter shape and force sensing method provided by the present invention installs multiple sensors in the length direction of the catheter to sense position information and direction information at corresponding positions, thereby based on the real-time positions sensed by all the sensors.
  • Information and real-time direction information can be obtained to obtain real-time shape information of the catheter and real-time stress information on the catheter. Since the sensor can sense the position information and direction information at its location, that is, the sensor in the present invention senses absolute spatial information, and there is no error accumulation phenomenon. Therefore, the present invention is based on all the sensors.
  • the sensed real-time position information and real-time direction information can more accurately and simply obtain the real-time shape information of the conduit and the real-time stress information suffered by the conduit.
  • the real-time shape information of the conduit It can provide a favorable basis for surgical navigation and improve the accuracy in the process of surgical navigation; based on the real-time stress information received by the catheter, it can provide a reference for the operator to avoid excessive interaction between the catheter and the anatomical channel. This may cause the anatomical channels to be damaged or the catheter to be damaged.
  • the surgical navigation method provided by the present invention performs three-dimensional reconstruction of pre-obtained preoperative medical images to obtain a three-dimensional anatomical model, and plans a navigation path to the lesion based on the three-dimensional anatomical model, while using the catheter described above
  • the shape and force sensing method obtains the shape information of the catheter after entering the anatomical channel, and obtains the shape information between the world coordinate system and the three-dimensional anatomical model coordinate system based on the shape information of the catheter after entering the anatomical channel and the three-dimensional anatomical model. Spatial mapping relationship.
  • the catheter can be controlled to move according to the navigation path until the end of the catheter reaches the lesion, which is completed. Navigation during surgery.
  • the present invention first obtains the desired shape reference quantity of the catheter based on the obtained catheter shape instruction; and obtains the desired shape reference quantity of the catheter based on the current position information and current direction information sensed by each sensor installed on the catheter.
  • the current shape reference amount and then calculate the control compensation amount based on the desired shape reference amount and the current shape reference amount of the catheter; and finally control the catheter to perform corresponding movement based on the control compensation amount.
  • the present invention can effectively realize closed-loop control of the shape of the catheter, so that the shape of the catheter can achieve a desired shape, thereby ensuring the smooth progress of the interventional surgery.
  • the present invention can sense the position information and direction information at its location, that is, the sensor in the present invention senses absolute spatial information, and there is no error accumulation phenomenon. Therefore, the present invention is based on various The real-time position information and real-time direction information sensed by the sensor can more accurately and simply obtain the current shape reference quantity of the catheter, thereby further improving the control accuracy of the catheter shape.
  • the interventional surgery system, electronic equipment and storage medium provided by the present invention belong to the same inventive concept as the catheter shape and force sensing method or the surgical navigation method or the catheter shape control method described above, the interventional surgery system, electronic device and storage medium provided by the present invention
  • the equipment and storage medium have all the advantages of the catheter shape and force sensing method or the surgical navigation method or the catheter shape control method described above, so the advantages of the interventional surgery system, electronic equipment and storage medium provided by the present invention will no longer be discussed. Expand description.
  • Figure 1 is a schematic structural diagram of the connection relationship between a catheter and a terminal device provided by an embodiment of the present invention
  • Figure 2 is a schematic structural diagram of the connection relationship between the guide wire and the driving device provided by one embodiment of the present invention
  • Figure 3 is a schematic structural diagram of the connection relationship between the guide wire and the driving device provided by another embodiment of the present invention.
  • Figure 4 is a schematic cross-sectional structural diagram of a catheter provided by an embodiment of the present invention.
  • Figure 5 is a schematic cross-sectional structural diagram of a catheter provided by another embodiment of the present invention.
  • Figure 6 is a schematic flow chart of a catheter shape and force sensing method provided by an embodiment of the present invention.
  • Figure 7 is a schematic diagram of strain distribution on a cross-section of a conduit provided by a specific example of the present invention.
  • Figure 8 is a schematic diagram of the principle of reconstructing an arc curve according to an embodiment of the present invention.
  • Figure 9 is a schematic diagram of the principle of obtaining the arc radius corresponding to the neutral point provided by an embodiment of the present invention.
  • Figure 10 is a schematic diagram of the principle of obtaining position information of a neutral point according to an embodiment of the present invention.
  • Figure 11 is a schematic diagram of using shape-position optical fibers to sense the shape of a catheter in the prior art
  • Figure 12 is a schematic diagram of a sensor array arrangement according to an embodiment of the present invention.
  • Figure 13 is a schematic diagram of the distribution of various measurement points on the catheter
  • Figure 14 is a schematic flow chart of a surgical navigation method provided by an embodiment of the present invention.
  • Figure 15 is a schematic flowchart of a catheter shape control method provided by an embodiment of the present invention.
  • Figure 16 is a schematic diagram of the principle of reconstructing an arc curve according to an embodiment of the present invention.
  • Figure 17 is a schematic diagram of the principle of obtaining the bending radius corresponding to the neutral layer according to an embodiment of the present invention.
  • Figure 18 is a schematic diagram of the distance from the sensor and each first channel (the channel where the guide wire is installed) to the neutral layer according to an embodiment of the present invention
  • Figure 19 is a schematic diagram of an application scenario of the interventional surgery system provided by an embodiment of the present invention.
  • Figure 20 is a schematic diagram of the principle of obtaining the position information of the neutral point provided by an embodiment of the present invention.
  • the core idea of the present invention is to provide a catheter shape and force sensing method, a surgical navigation method, a catheter shape control method, an interventional surgery system, an electronic device and a storage medium, which can more accurately and simply sense the shape of the catheter and the effects on it.
  • the stress can effectively control the shape of the catheter to ensure the smooth progress of interventional surgery, and can effectively improve the accuracy of surgical navigation.
  • the proximal end mentioned below refers to the end close to the operator, and the distal end/end refers to the end far away from the operator, that is, the end close to the lesion.
  • the plurality referred to herein includes two situations.
  • the shape reference quantity referred to herein refers to parameters related to the shape of the catheter, such as the radius of curvature, bending curvature, bending angle, tangential vector, etc. of the catheter.
  • the catheter shape and force sensing method, surgical navigation method and catheter shape control method provided by the present invention can be applied to the electronic device provided by the present invention, and the electronic device can be configured on the interventional surgery system according to the embodiment of the present invention, wherein , the electronic device may be a computer, a mobile terminal, etc., and the mobile terminal may be a mobile phone, a tablet computer, or other hardware devices with various operating systems.
  • this embodiment provides a catheter shape and force sensing method.
  • the catheter 100 is equipped with multiple sensors 200 along its length direction.
  • the multiple sensors 200 are spaced apart from each other.
  • the sensors 200 are used to sense position information and direction information at their locations.
  • the multiple sensors 200 are arranged in an array, that is, when the catheter 100 is in a straight state, the multiple sensors 200 are located on the same straight line. This arrangement not only makes it easier to install multiple sensors 200 , but also makes it easier to obtain real-time shape information of the catheter 100 and real-time stress information on the catheter 100 .
  • the catheter 100 includes a connected first tube body 110 and a second tube body 120, where the first tube body 110 is a controllable bending section (that is, the bending angle and bending direction of the first tube body 110 can be accurately adjusted through the driving device 140),
  • the second pipe body 120 is an uncontrollable bending section (that is, the bending angle and bending direction of the second pipe body 120 are affected by external forces and cannot be accurately controlled).
  • a plurality of sensors 200 are evenly arranged on the first tube body 110 and the second tube body 120 along their length directions. Therefore, by evenly arranging multiple sensors 200 on both the first tube body 110 and the second tube body 120 , the accuracy of the acquired real-time shape information of the catheter 100 and the real-time stress information to which the catheter 100 is subjected can be further ensured. .
  • the distribution density of the sensors 200 on the first pipe body 110 (the number of sensors 200 on the first pipe body 110 per unit length) is different from that of the second pipe body 120
  • the distribution density of the sensors 200 on the second pipe body 120 (the number of sensors 200 on the second pipe body 120 per unit length) can be the same or different.
  • the distribution density of the sensors 200 on the first pipe body 110 is greater than that of the second pipe body 120
  • the catheter 100 is provided with at least one set of guide components, wherein each set of guide components includes two guide wires 130 arranged in parallel.
  • the distal end of the guide wire 130 is connected to the end of the first tube body 110.
  • the proximal end is connected to a driving device 140 (such as a motor), whereby under the action of the driving device 140, the guide wire 130 can be extended or shortened, so that the first tube body 110 can be bent in the corresponding direction.
  • a driving device 140 such as a motor
  • two guide wires 130 in the same group of guide assemblies can be driven by the same driving device 140 .
  • the driving device 140 is a motor
  • the two guide wires 130 in the same group of guide assemblies can be driven by the same driving device 140 .
  • the ends are respectively fixed on both sides of the output shaft of the motor, thereby ensuring that when the motor rotates, one guide wire 130 is elongated and the other guide wire 130 is shortened, and the elongation amount is equal to the shortening amount.
  • two guide wires 130 in the same group of guide assemblies can be driven by one driving device 140 respectively, that is, different guide wires 130 are driven by different driving devices 140 .
  • the two drive devices 140 rotate in opposite directions.
  • the catheter 100 is provided with a first channel 150 for the guide wire 130 to pass through and a second channel 160 for installing the sensor 200, where the guide wire 130 corresponds to the first channel 150 one-to-one, that is, different guide wires. 130 is installed in different first channels 150 . Therefore, by arranging the first channel 150 in the catheter 100, the installation of the guide wire 130 can be more convenient, and effectively preventing mutual interference between the guide wires 130; by arranging the second channel 160 in the catheter 100, the installation of the sensor 200 can be more convenient. Install.
  • two guide wires 130 i.e., a set of guide components
  • the catheter 100 is provided with two first channels 150 along its length direction. and a second channel 160 disposed along its length.
  • a total of four guide wires 130 are provided in the catheter 100 , and a total of four first channels 150 are provided on the catheter 100 along its length direction. and a second channel 160 disposed along its length.
  • both the first channel 150 and the second channel 160 are arranged offset from the centerline of the catheter 100 . Therefore, this arrangement can ensure that a channel for delivering terminal instruments can be reserved in the central area of the catheter 100 .
  • the terminal instrument is installed at the end of the catheter 100.
  • the terminal instruments can be commonly used interventional treatment instruments such as biopsy forceps, biopsy brushes, and biopsy planers.
  • an instrument box 170 is installed at the proximal end of the catheter 100 , and a driving device 140 for driving the guide wire 130 is installed in the instrument box 170 .
  • the catheter shape and force sensing method provided by the present invention includes:
  • Step S110 Obtain real-time position information and real-time direction information sensed by each sensor 200.
  • Step S120 Obtain real-time shape information of the catheter 100 and real-time stress information on the catheter 100 based on the real-time position information and real-time direction information sensed by all the sensors 200.
  • multiple sensors 200 are installed in the length direction of the catheter 100 to sense the position information and direction information at corresponding positions, thereby based on the information sensed by all the sensors 200
  • the real-time position information and real-time direction information By obtaining the real-time position information and real-time direction information, the real-time shape information of the catheter 100 and the real-time stress information on the catheter 100 can be obtained.
  • the sensor 200 can sense the position information and direction information at its location, that is, in this embodiment, the sensor 200 senses absolute spatial information, and there is no error accumulation phenomenon. Therefore, this embodiment is based on the information sensed by all the sensors 200.
  • the measured real-time position information and real-time direction information can more accurately and easily obtain the real-time shape information of the catheter 100 and the real-time stress information experienced by the catheter 100. Therefore, surgical navigation can be performed based on the real-time shape information of the catheter 100. Provide a favorable basis to improve the accuracy in the surgical navigation process; based on the real-time stress information on the catheter 100, it can provide a reference for the operator to avoid anatomy caused by excessive interaction between the catheter 100 and the anatomical channel. The passage is damaged or the catheter 100 is damaged.
  • each sensor 200 Obtain real-time position information and real-time direction information sensed by each sensor 200, including:
  • the real-time position information and real-time direction information sensed by the sensor 200 are obtained according to the real-time magnetic field intensity information sensed by the sensor 200.
  • the sensor 200 is a magnetic sensor that can sense position and attitude information of at least five degrees of freedom (which may not include the direction of rotation of the catheter section where the sensor 200 is located about its own axis). That is, the sensor 200 can detect Obtain the three-dimensional spatial position coordinates and extension direction information of its location. Because when the location of the sensor 200 changes, the magnetic field intensity information it can sense will also change accordingly. Therefore, based on the magnetic field intensity information currently sensed by the sensor 200, the current location of the sensor 200 can be obtained. Location information and direction information at the location.
  • real-time shape information of the catheter 100 is obtained, including:
  • the real-time position information of the neutral point on the conduit cross-section 300 where the sensor 200 is located is obtained, in The neutral point is the intersection point between the bending plane 500 corresponding to the duct segment between the sensor 200 and the adjacent sensor 200 and the neutral layer 400 on the duct cross-section 300 where the sensor 200 is located;
  • the catheter shape and force sensing method provided by this implementation By obtaining for each sensor 200 the real-time position information of the neutral point on the conduit cross-section 300 where the sensor 200 is located, and by connecting all the neutral points in sequence according to the real-time position information of each neutral point, the conduit 100 is obtained
  • the corresponding real-time shape curve can ensure that the obtained real-time shape information of the catheter 100 is more accurate, thereby improving the accuracy of surgical navigation.
  • the real-time position information of the neutral point on the conduit cross-section 300 where the sensor 200 is located is obtained, including:
  • real-time position information of the neutral point on the conduit cross section 300 where the sensor 200 is located is obtained.
  • the following describes how to reconstruct the real-time arc curve corresponding to the conduit segment between two adjacent sensors 200.
  • the two-dimensional case is used for illustration, and the three-dimensional case can be similarly expanded.
  • sensor 200P n and sensor 200P n+1 are a set of two adjacent sensors 200, where the coordinates of the location of sensor 200P n are (X n , Y n ) (coordinates in the world coordinate system ), the coordinates at the location of sensor 200P n+1 are (X n+1 , Y n+1 ) (coordinates in the world coordinate system), L n is the length of the straight line between sensor 200P n and sensor 200P n+1 , is the direction vector along the length of the catheter 100 at the location of the sensor 200P n , is the direction vector along the length of the catheter 100 at the location of sensor 200P n+1 ; ⁇ n is the direction vector and The angle between them, C n is the center position of the arc curve to be reconstructed, and R n is the arc radius of the arc curve to be reconstructed.
  • the following calculation formula can be derived from relevant geometric knowledge:
  • the sensor 200P n and its adjacent neighbor can be calculated based on the position information and direction information sensed by the sensor 200P n and its adjacent neighbor sensor 200P n+1.
  • the center position of the arc curve can be calculated, specifically, according to the direction vector along the length direction of the catheter 100 at the location of the sensor 200P n
  • the slope k n of the straight line equation of the arc radius passing through the position of the sensor 200P n can be calculated.
  • the slope k n of the straight line passing through the sensor 200P n can be calculated.
  • is a positive number
  • the average strain occurring in the conduit section between the sensor 200P n and the sensor 200P n+1 is a positive strain, that is, the sensor The conduit section between 200P n and sensor 200P n+1 is elongated
  • is a negative number
  • the average strain occurring in the conduit section between sensor 200P n and sensor 200P n+1 is negative strain, that is, the sensor The conduit section between 200P n and sensor 200P n+1 is shortened.
  • the previous sensor 200 adjacent to it can be regarded as its neighbor sensor 200.
  • the real-time position of the neutral point on the conduit cross-section 300 where the sensor 200 is located is obtained.
  • information also including:
  • the length of the conduit segment between the sensor 200 and its adjacent adjacent sensor 200 is obtained. average strain
  • the real-time position information of the neutral point on the conduit cross-section 300 where the sensor 200 is located is obtained.
  • the average strain ⁇ can be calculated according to Equation (7). Therefore, by substituting the arc radius R n and the average strain ⁇ into From the above formula (9), the arc radius R Q corresponding to the neutral point can be obtained.
  • Real-time location information including:
  • the distance between the sensor 200 and the neutral layer 400 on the conduit cross-section 300 where the sensor 200 is located is obtained;
  • the installation position information of the sensor 200 on the duct cross-section 300, and the real-time position information sensed by the sensor 200 and the real-time Direction information is obtained to obtain real-time position information of the neutral point on the conduit cross-section 300 where the sensor 200 is located.
  • the large circle in the figure represents a certain conduit cross section 300.
  • the dotted line in the figure that does not pass through the center of the conduit cross section 300 is the neutral layer 400 on the conduit cross section 300.
  • the dotted line in the figure that passes through the center of the conduit cross section 300 is the curved plane 500 corresponding to the conduit segment between sensor 200P n and sensor 200P n+1 (side view). It can be known from relevant geometric knowledge that the dotted line passing through the center of the conduit cross-section 300 (ie, the bending plane 500) is perpendicular to the neutral layer 400 on the conduit cross-section 300. Further, as shown in Figure 10, there is an intersection point between the bending plane 500 and the neutral layer 400 on the cross-section 300 of the conduit. This intersection point is the neutral point. The location of the point Pn in the figure is where the sensor 200Pn is located. Location.
  • the two-dimensional case is used for illustration, and the three-dimensional case can be similarly expanded.
  • the coordinates of the position of the sensor 200P n are (x n, y n ), and the neutral point Q n is in this coordinate system (taking the conduit).
  • the coordinates in the coordinate system created with the center point of cross section 300 as the origin are It can be seen from Figure 9 that the distance d n between the sensor 200P n and the neutral layer 400 can be calculated by the following formula:
  • the center point of the conduit cross-section 300 can be obtained.
  • the following describes how to determine the angle a n between the bending plane 500 and the x-axis of the coordinate system created with the center point of the section as the origin.
  • the coordinates of the center point C n of the reconstructed arc curve in the world coordinate system can be obtained, Then, based on the spatial mapping relationship between the coordinate system created with the center point of the conduit cross-section 300 as the origin and the world coordinate system, it is possible to obtain the center point C n of the reconstructed arc curve with the center point of the conduit cross-section 300 as the origin.
  • the center point is the coordinate in the coordinate system created by the origin. Since the distance (i.e.
  • R Q between the center point C n of the reconstructed arc curve and the neutral point Q n in the world coordinate system is equal to the distance between the center C n of the reconstructed arc curve and the neutral point Q n
  • the center point of the conduit cross-section 300 is the distance under the coordinate system created by the origin. From this, an equation can be established based on this, that is, the value of a n can be calculated, and then combined with the center point of the conduit cross-section 300 as the origin.
  • the spatial mapping relationship between the created coordinate system and the world coordinate system can be used to calculate the coordinates of the neutral point Q n in the world coordinate system.
  • Obtain real-time stress information on the catheter 100 including:
  • the length of the conduit segment between the sensor 200 and its adjacent adjacent sensor 200 is obtained. average strain
  • the average stress on the conduit section between the sensor 200 and the adjacent sensor 200 is obtained.
  • this embodiment can sense the average stress on each section of the catheter 100, thereby providing a reference for the doctor's operation and avoiding excessive interaction between the catheter 100 and the anatomical channel due to misoperation. This may cause the anatomical passage to be damaged or the catheter 100 to be damaged.
  • the shape and force sensing method provided in this embodiment uses the position and direction information at a measurement point (where the sensor 200 is located), so it can more accurately fit the local features of the catheter 100 .
  • the shape and force sensing method provided by this embodiment can achieve accurate measurement of the local curvature of the catheter 100, and can not only obtain accurate shape information of the catheter 100, but also accurately obtain the position of the end of the catheter 100 and attitude information.
  • this embodiment takes into account the direction information, more information is provided at the same measurement point. Therefore, when using methods such as polynomials for fitting, compared with the method of extracting only the location information of the measurement point, more measurement points are required. It can be reduced, theoretically it can be halved.
  • Figure 11 schematically shows a schematic diagram of using the shape position optical fiber 600 to sense the shape of the catheter 100 in the prior art
  • Figure 12 schematically shows the method provided by an implementation of this embodiment.
  • Schematic diagram of sensor 200 array arrangement As shown in Figures 11 and 12, assuming that the catheter 100 is bent within the bending plane 500, the direction vector of each measurement point (where the sensor 200 is located) is also within the bending plane 500, but its form is a spatial three-dimensional vector, which can be expressed Bending in any bending plane 500 in three-dimensional space. If the shape position optical fiber 600 is used to sense the shape of the catheter 100 in the three-dimensional space, generally at least three optical fibers 600 are needed to realize the calculation function of the shape and stress of the catheter 100 that can be achieved using one sensor 200 array in this embodiment.
  • each measurement point on the catheter 100 The absolute position of is obtained by sequentially accumulating the relative distance from the base point position of the proximal end of the catheter 100 (in absolute coordinates, ((X 1 + ⁇ X 1 ,Y 1 + ⁇ Y 1 )) in Figure 13 ), that is, using the shape position
  • the technology used by the optical fiber 600 to obtain the end posture of the catheter 100 and the shape of the catheter 100 is an integration process of each measurement point of the optical fiber 600 along the shape position.
  • the sensor 200 in this embodiment has the ability to sense absolute position, which can effectively avoid error accumulation.
  • (X n , Y n ) is the actual position of the n-th measurement point p n
  • ( ⁇ X n , ⁇ Y n ) is the deviation between the actual position of the n-th measurement point and the measured position. Since the position of the shape position optical fiber 600 is calculated cumulatively, there is a cumulative error relationship: ⁇ X n ⁇ X n+1 , ⁇ Y n ⁇ Y n+1 . For the sensor 200 in this embodiment, since there is no cumulative error relationship, that is: ⁇ X n ⁇ ⁇ X n+1 and ⁇ Y n ⁇ ⁇ Y n+1 . It can be seen that this embodiment has more advantages in positioning accuracy.
  • this embodiment provides a surgical navigation method.
  • the surgical navigation method includes:
  • Step S210 Perform three-dimensional reconstruction on the pre-obtained preoperative medical images to obtain a three-dimensional anatomical model.
  • Step S220 Plan a navigation path to the lesion based on the three-dimensional anatomical model.
  • Step S230 Obtain the shape information of the catheter 100 after entering the anatomical channel.
  • Step S240 Obtain the spatial mapping relationship between the world coordinate system and the three-dimensional anatomical model coordinate system based on the shape information and the three-dimensional anatomical model after the catheter 100 enters the anatomical channel.
  • Step S250 According to the spatial mapping relationship between the world coordinate system and the three-dimensional anatomical model coordinate system, the catheter 100 is controlled to move according to the navigation path until the end of the catheter 100 reaches the lesion.
  • the above catheter shape and force sensing method is used to obtain the shape information of the catheter 100 after entering the anatomical channel, and based on the shape information of the catheter 100 after entering the anatomical channel and the three-dimensional anatomical model, the relationship between the world coordinate system and the three-dimensional anatomical model coordinate system is obtained.
  • the spatial mapping relationship between the obtained world coordinate system and the three-dimensional anatomical model coordinate system can be ensured, thereby ensuring the accuracy of surgical navigation, and further ensuring that the end of the catheter 100 can smoothly reach the lesion. , to successfully complete the operation.
  • step S230 can be executed before step S220, or after step S220, or step S220 and step S230 can be executed at the same time, which is not limited by the present invention.
  • the preoperative medical images acquired in advance may be CT (computed tomography), MRI (magnetic resonance imaging), fluoroscopy, thermography, ultrasound, optical coherence tomography (OCT) thermography, impedance imaging, laser
  • CT computed tomography
  • MRI magnetic resonance imaging
  • fluoroscopy thermography
  • ultrasound optical coherence tomography
  • OCT optical coherence tomography
  • impedance imaging laser
  • preoperative medical images of preoperative parts collected by imaging, nanotube X-ray imaging and other technologies can be used to obtain three-dimensional anatomical models by performing three-dimensional modeling on the acquired preoperative medical images.
  • the navigation path in the three-dimensional model coordinate system to the lesion can be planned.
  • the navigation path in the world coordinate system can be obtained.
  • the catheter 100 is pushed into the anatomical channel (such as the anatomical channel of the kidney) according to the navigation path in the world coordinate system, and is registered (according to the spatial mapping relationship between the world coordinate system and the three-dimensional anatomical model coordinate system). ), that is, the real-time position of the catheter 100 in the anatomical channel can be registered to the three-dimensional anatomical model to form a real-time composite image. Since the composite image is updated synchronously according to the real-time position of the catheter 100 in the anatomical channel, images of the entire process of the catheter 100 from entering the kidney to exiting can be obtained, thereby providing a navigation function for the surgeon.
  • the anatomical channel such as the anatomical channel of the kidney
  • the doctor controls the movement of the catheter 100 through the master-slave control.
  • the navigation system will prompt the entrance of the next-level anatomical channel.
  • the master-slave control will follow the navigation movement and repeat the above process before reaching the lesion location. After reaching the lesion, the navigation will stop. .
  • the surgical navigation method before obtaining the shape information of the catheter 100 after entering the anatomical channel, the surgical navigation method further includes:
  • the initial spatial mapping relationship between the world coordinate system and the three-dimensional anatomical model coordinate system is obtained;
  • the spatial mapping relationship between the world coordinate system and the three-dimensional anatomical model coordinate system is obtained, including:
  • a non-rigid registration method is used to obtain the relationship between the world coordinate system and the three-dimensional anatomical model coordinate system. spatial mapping relationship between them.
  • the feature points may be bifurcation points of an anatomical channel, and the number of feature points is at least three. Since the end of the catheter 100 is provided with a sensor 200 capable of sensing position and direction, when the end of the catheter 100 touches a feature point, the position information of the feature point in the world coordinate system can be obtained. After the feature point picking is completed, the rigid registration method can be used to initially register the anatomical structure and the three-dimensional model to establish an initial spatial mapping relationship between the world coordinate system and the three-dimensional anatomical model coordinate system. After initial registration is completed, the movement of catheter 100 is controlled within the anatomical passages of the patient's anatomy. During the movement, the overall shape of the catheter 100 can be generated by a plurality of sensors 200 installed on the catheter 100 .
  • the catheter 100 is controlled to move accordingly according to the preoperatively planned navigation path, and finally reaches the location of the lesion.
  • the catheter shape control method includes:
  • Step S100 Obtain the desired shape reference quantity of the catheter 100 according to the obtained catheter shape instruction.
  • Step S200 Obtain the current shape reference quantity of the catheter 100 based on the current position information and current direction information sensed by each sensor 200.
  • Step S300 Calculate the control compensation amount according to the desired shape reference amount and the current shape reference amount of the catheter 100.
  • Step S400 Control the catheter 100 to perform corresponding movement according to the control compensation amount.
  • the method for controlling the shape of the catheter 100 can effectively realize closed-loop control of the shape of the catheter 100, so that the shape of the catheter 100 can achieve the desired shape, thereby ensuring the smooth progress of the interventional surgery.
  • the sensor 200 in the present invention can sense the position information and direction information at its location, that is, the sensor 200 in the present invention senses absolute spatial information, there is no error accumulation phenomenon. Therefore, the present invention is based on various The real-time position information and real-time direction information sensed by the sensor 200 can more accurately and simply obtain the current shape reference quantity of the catheter 100, thereby further improving the control accuracy of the shape of the catheter 100.
  • the catheter shape instruction is specifically an instruction input by the operator from the main end (main control platform) through the operating handle.
  • obtain the real-time position information and real-time direction information sensed by each sensor 200 including:
  • the real-time position information and real-time direction information sensed by the sensor 200 are obtained according to the real-time magnetic field intensity information sensed by the sensor 200.
  • the sensor 200 is a magnetic sensor capable of sensing position and attitude information of at least five degrees of freedom (which may not include the degree of freedom of the rotation direction of the catheter section 700 about its own axis where the sensor 200 is located). That is, the sensor 200 can The three-dimensional spatial position coordinates and extension direction information of its location are measured. Because when the location of the sensor 200 changes, the magnetic field intensity information it can sense will also change accordingly. Therefore, based on the magnetic field intensity information currently sensed by the sensor 200, the current location of the sensor 200 can be obtained. Location information and direction information at the location.
  • obtaining the desired shape reference quantity of the catheter 100 according to the obtained catheter shape instruction includes:
  • the desired radius of curvature of the catheter 100 is acquired.
  • the current shape reference quantity of the catheter 100 is obtained, including:
  • the current curvature radius of the catheter 100 is obtained.
  • the control compensation amount is calculated, including:
  • the control compensation amount is calculated based on the desired radius of curvature and the current radius of curvature of the catheter 100 .
  • the curvature radius as the shape reference quantity of the conduit 100 and calculating the control compensation amount based on the expected curvature radius and the current curvature radius of the conduit 100, it is easier to control the shape of the conduit 100 through the calculated control compensation amount.
  • the current curvature radius of the catheter 100 is obtained based on the current position information and current direction information sensed by each sensor 200, including:
  • the current bending radius corresponding to the neutral layer 400 of the conduit segment 700 is taken as the current curvature radius of the conduit segment 700 .
  • the next sensor 200 adjacent to the sensor 200 will be regarded as the neighbor sensor 200 of the sensor 200. , that is, there is a catheter segment 700 between the sensor 200 and the next adjacent sensor 200; if this embodiment is performed for each sensor 200 except the first sensor 200 located at the proximal end of the catheter 100, Then, the previous sensor 200 adjacent to the sensor 200 is regarded as the adjacent sensor 200 of the sensor 200, that is, there is a conduit segment 700 between the sensor 200 and the previous sensor 200 adjacent to it.
  • the shape control method of the conduit 100 provided in this implementation is passed For each conduit segment 700 , the current bending radius corresponding to the neutral layer 400 of the conduit segment 700 is used as the current curvature radius of the conduit segment 700 , thereby further improving the control accuracy of the shape of the conduit 100 .
  • the expected curvature radius of the catheter segment 700 between any two adjacent sensors 200 can be calculated. According to any adjacent Based on the current position information and current direction information sensed by the two sensors 200, the current curvature radius of the catheter segment 700 between the two adjacent sensors 200 can be calculated, so that for each catheter segment 700, according to the catheter Based on the expected radius of curvature and the current radius of curvature of the segment 700, the control compensation amount corresponding to the conduit segment 700 can be calculated.
  • sensor 200P i and sensor 200P i+1 are a set of two adjacent sensors 200, where the coordinates of the location of sensor 200P i are (X i , Y i ) (coordinates in the world coordinate system ), the coordinates at the location of sensor 200P i+1 are (X i+1 ,Y i+1 ) (coordinates in the world coordinate system), L i is the length of the straight line between sensor 200P i and sensor 200P i+1 , is the direction vector along the length of the catheter 100 at the location of the sensor 200P i , is the direction vector along the length of the catheter 100 at the location of the sensor 200P i+1 ; is the direction vector and The angle between them (that is, the central angle corresponding to the arc curve), C i is the center position of the reconstructed arc curve, is the arc radius of the reconstructed arc curve.
  • the following calculation formula can be derived from relevant geometric knowledge:
  • the sensor 200P i and its adjacent neighbor can be calculated based on the position information and direction information sensed by the sensor 200P i and its adjacent neighbor sensor 200P i+1.
  • the center position of the arc curve can be calculated, specifically, according to the direction vector along the length direction of the catheter 100 at the location of the sensor 200P i
  • the slope k i of the straight line equation of the arc radius passing through the position of the sensor 200P i can be calculated.
  • the slope k i of the straight line passing through the sensor 200P i can be calculated.
  • the length of the catheter section 700 between the sensor 200P i and the sensor 200P i+1 is S 0
  • the average value of the catheter section 700 between the sensor 200P i and the sensor 200P i+1 strain for:
  • the current bending radius corresponding to the neutral layer 400 of the conduit segment 700 is obtained, including:
  • the average strain of the conduit section 700 is obtained;
  • the current bending radius corresponding to the neutral layer 400 of the conduit segment 700 is obtained.
  • FIG. 17 schematically provides a schematic diagram of the principle of obtaining the bending radius corresponding to the neutral layer 400 provided in an implementation manner of this embodiment.
  • the length of the conduit section 700 along the neutral layer 400 does not change, so the corresponding bending radius of the neutral layer 400 and the arc radius of the reconstructed arc curve The following relationship is satisfied:
  • the arc radius of the reconstructed arc curve It can be calculated according to equation (15), and the average strain ⁇ i can be calculated according to equation (19). Therefore, by dividing the arc radius and average strain Substituting into the above equation (21), the bending radius corresponding to the neutral layer 400 can be obtained That is, the radius of curvature of the conduit section 700 where the neutral layer 400 is located.
  • control compensation amount is calculated according to the desired radius of curvature and the current radius of curvature of the catheter 100, including:
  • ⁇ i is the control compensation amount corresponding to the conduit segment 700 between the i-th sensor 200 and its adjacent neighbor sensor 200
  • g i is the control compensation amount between the i-th sensor 200 and its adjacent neighbor sensor 200.
  • the control gain corresponding to the conduit segment 700 is the expected radius of curvature of the conduit segment 700 between the i-th sensor 200 and its adjacent adjacent sensor 200
  • control gain corresponding to each conduit section 700 can be adjusted according to the actual control effect.
  • a PI, PD or PID controller in the prior art is used to calculate the control compensation amount to achieve closed-loop control of the shape of the catheter 100 .
  • the catheter 100 is controlled to perform corresponding movements according to the control compensation amount, including:
  • the target length of each guide wire 130 is calculated
  • the corresponding driving device 140 is controlled to perform corresponding movement.
  • the target length of each guide wire 130 can be calculated. Since the current length of each guide wire 130 is known, therefore, for each guide wire 130, according to the The target length and current length of the guide wire 130 can control the corresponding driving device 140 to perform corresponding movements, so that the length of the guide wire 130 is extended or shortened to its target length.
  • the target length of each guide wire 130 is calculated, including:
  • the sum of the target lengths of the guide wire 130 in each catheter section 700 is calculated to obtain the target length of the guide wire 130 .
  • N sensors 200 are installed on the catheter 100.
  • one sensor 200 is installed at the proximal end and the end of the catheter 100.
  • the sensor 200 located at the proximal end of the catheter 100 is the first sensor 200.
  • the sensor 200 at the end is the last sensor 200, then these N sensors 200 divide the catheter 100 into (N-1) catheter segments 700.
  • the control compensation amount corresponding to the conduit segment 700 can be calculated according to the above formula (22), and then the target change rate of the arc length of the arc curve corresponding to the conduit segment 700 can be calculated.
  • the target change rate of the arc length of the arc curve corresponding to the catheter segment 700 can be used to calculate the target change rate of the length of each guide wire 130 in the catheter segment 700, thereby calculating the target change rate of the length of each guide wire 130 in the catheter segment 700.
  • Target length of catheter segment 700 Target length of catheter segment 700. Therefore, for each guide wire 130, the target lengths of the guide wire 130 in the (N-1) catheter segments 700 are added, and the result of the addition is the target length of the guide wire 130.
  • the arc length of the arc curve corresponding to the conduit section 700 is calculated based on the control compensation amount corresponding to the conduit section 700 between the sensor 200 and the adjacent sensor 200 .
  • Target change rates including:
  • the conduit segment 700 According to the central angle of the arc curve corresponding to the conduit segment 700 and the target change rate of the arc radius, the conduit segment 700 corresponding to The target change rate of the arc length of the arc curve.
  • the target change rate of the length of each guide wire 130 in the catheter section 700 is calculated based on the target change rate of the arc length of the arc curve corresponding to the catheter section 700, including:
  • the target change rate of the length is calculated as the target change rate of the length of the guide wire 130 .
  • FIG. 18 schematically shows a schematic diagram of the distance from the sensor 200 and each first channel 150 (the channel where the guide wire 130 is installed) to the neutral layer 400 according to an embodiment of the present invention.
  • the dot-dash line in the figure that does not pass through the center of the cross-section of the conduit 100 is the neutral layer 400
  • the dot-and-dash line that passes through the center of the cross-section of the conduit 100 in the figure is the sensor 200P i and its adjacent
  • the curved plane 500 corresponding to the catheter segment 700 between adjacent sensors 200P i+1 (side view). It can be known from relevant geometric knowledge that the bending plane 500 and the neutral layer 400 are perpendicular to each other.
  • the figure represents the distance from the sensor 200P i to the neutral layer 400 of the conduit section 700 where it is located, Indicates the distance from the first first channel 150 to the neutral layer 400 of the catheter segment 700 where the sensor 200P i is located (ie, the i-th catheter segment 700) (ie, the distance from the first guide wire 130 to the neutral layer 400), Indicates the distance from the second first channel 150 to the neutral layer 400 of the catheter section 700 where the sensor 200P i is located (ie, the distance from the second guide wire 130 to the neutral layer 400), represents the distance from the third first channel 150 to the neutral layer 400 of the catheter section 700 where the sensor 200P i is located (ie, the distance from the third guide wire 130 to the neutral layer 400), It represents the distance from the fourth first channel 150 to the neutral layer 400 of the catheter section 700 where the sensor 200P i is located (ie, the distance from the fourth guide wire 130 to the neutral layer 400).
  • each first channel 150 (each first guide wire 130) Since the positional relationship between the sensor 200Pi and each first channel 150 (each first guide wire 130) is known, therefore, according to the transmission The distance between the sensor 200P i and the neutral layer 400 of the ith conduit segment 700 As well as the positional relationship between the sensor Pi and each first channel 150 (each first guide wire 130), the distance from each first channel 150 (each first guide wire 130) to the i-th catheter segment 700 can be obtained. Neutral layer 400 distance.
  • the target change rate of the length of each guide wire 130 in each catheter section 700 can be calculated according to equation (31).
  • the target length of each guide wire 130 in each catheter segment 700 can be calculated according to the following formula:
  • ⁇ t represents the time step
  • the target length of the guide wire 130 can be calculated according to the following formula:
  • S m,j represents the target length of the jth guide wire 130
  • N represents the number of sensors 200 .
  • the corresponding driving device 140 is controlled to perform corresponding movement, including:
  • the corresponding driving device 140 is controlled to perform corresponding movement.
  • the difference obtained by subtracting the current length of the guide wire 130 from the target length of the guide wire 130 is the current displacement of the guide wire 130 corresponding to the guide wire 130. Therefore, according to the current displacement of the guide wire 130 corresponding to the guide wire 130, the corresponding driving device 140 is controlled to move, so that the length of the guide wire 130 can be extended or shortened to the length of the guide wire 130.
  • the target length is 130, thereby completing the shape control of the catheter 100.
  • the bending curvature ⁇ , the relative bending angle between the proximal end and the distal end of the catheter 100 may also be and the tangential vector of the proximal end of catheter 100 and the tangential vector of the end etc.
  • the desired tangential vector of the proximal end, the desired tangential vector of the distal end, the current tangential vector of the proximal end and the current tangential vector of the distal end are used to calculate the control compensation amount.
  • the desired bending curvature ⁇ of the conduit section 700 and the desired curvature radius Rd of the conduit section 700 satisfy the following relationship: The following relationship is satisfied between the desired relative bending angle of the conduit section 700 and the desired curvature radius Rd of the conduit section 700:
  • is the average strain corresponding to the conduit segment 700
  • S 0 is the original length of the conduit segment 700.
  • is the average strain corresponding to the conduit segment 700, is the desired tangential vector for the proximal end of the catheter segment 700, is the desired tangential vector for the tip of the catheter segment 700 .
  • this embodiment also provides an interventional surgery system.
  • the interventional surgery system includes a communication-connected robot 10 and a controller 20.
  • the robot 10 includes at least one robotic arm, and the end of the robotic arm is used to install the catheter 100.
  • the catheter 100 has a plurality of sensors 200 (not shown in the figure) installed along its length direction, and the controller 20 is configured to implement the above catheter shape and force sensing method or the above surgical navigation method or the above catheter shape control. method. Since the interventional surgery system provided by this embodiment belongs to the same inventive concept as the above catheter shape and force sensing method or the above surgical navigation method or the above catheter shape control method, the interventional surgery system provided by this embodiment has the above characteristics. Therefore, the advantages of the interventional surgery system provided by this embodiment will not be further described here.
  • the interventional surgery system also includes a main control platform 30.
  • the main control platform 30 is provided with an operating device 31, and the surgeon can control the catheter 100 through the operating device 31.
  • the main control platform 30 is also provided with a display device 32 that is communicatively connected to the controller 20.
  • the display device 32 is used to display the real-time shape/current shape of the catheter 100 and/or the real-time position/current position of the catheter 100 in the anatomical channel.
  • an endoscope can be installed on other robotic arms of the robot 10, and the endoscope can be inserted into the human body to obtain tissue images of the patient's body, so that the position of the end of the catheter 100 can be displayed on the display device 32.
  • the above method can be used to register the catheter 100 to the three-dimensional medical model according to the current position and shape information of the catheter 100, so as to display the real-time shape/current shape and shape of the catheter 100 on the three-dimensional medical model. /or the real-time position/current position of the catheter 100 in the anatomical passage. Therefore, by displaying the real-time shape/current shape of the catheter 100 and/or the real-time position/current position of the catheter 100 in the anatomical channel, it is easier to provide a reference for the doctor's operation, so that the doctor can accurately operate the catheter 100 for the next step.
  • the displacement of the catheter 100 in one step and the speed of the displacement of the catheter 100 in the next step are determined to better assist the doctor in controlling the movement of the catheter 100 .
  • intersection point (ie, the neutral point) of the neutral layer 400 of the catheter cross-section 300 where each sensor 200 is located and the bending plane 500 where it is located can be connected to obtain the current shape of the catheter 100.
  • FIG. 20 schematically illustrates a principle diagram of obtaining position information of a neutral point according to an embodiment of the present invention.
  • the bending plane 500 and the neutral layer 400 have an intersection point on the conduit cross-section 300 , and the intersection point is the neutral point Q i .
  • the two-dimensional case is used for illustration, and the three-dimensional case can be similarly expanded.
  • the coordinates of the position where the sensor 200P i is located are (x i, y i ), and the neutral point Q i is in the coordinate system ( The coordinates in the coordinate system (created with the center point of the conduit cross-section 300 as the origin) are
  • the conduit cross-section 300 where the sensor 200P i is located can be obtained.
  • the center point of is the original The spatial mapping relationship between the coordinate system created by the point and the world coordinate system.
  • the center point C i of the reconstructed arc curve in the world can be found The coordinates in the coordinate system, and then based on the spatial mapping relationship between the coordinate system created with the center point of the conduit cross-section 300 where the sensor 200P i is located as the origin and the world coordinate system, the center point of the reconstructed arc curve can be obtained The coordinates of C i in a coordinate system created with the origin of the center point of the conduit cross-section 300 where the sensor 200P i is located.
  • the distance between the center point C i of the reconstructed arc curve and the neutral point Q i in the world coordinate system is equal to the distance between the center point C i of the reconstructed arc curve and the neutral point Q i in a coordinate system created with the center point of the conduit cross-section 300 where the sensor 200P i is located as the origin. From this, an equation is established accordingly , that is, we can find value, combined with the spatial mapping relationship between the coordinate system created with the center point of the conduit cross-section 300 where the sensor 200P i is located as the origin and the world coordinate system, the coordinates of the neutral point Q i in the world coordinate system can be obtained .
  • the previous sensor 200 adjacent to it can be regarded as its neighbor sensor 200, so as to An arc curve is constructed to obtain the position information of the neutral point of the conduit cross-section 300 where the sensor 200 installed at the end of the conduit 100 is located.
  • the current position information of the neutral point on the conduit cross-section 300 where the sensor 200 is located is obtained, and all the neutral points are connected in sequence according to the current position information of each neutral point.
  • the current shape curve corresponding to the catheter 100 is obtained, thereby ensuring that the obtained shape information of the catheter 100 is more accurate.
  • the senor 200 is a magnetic sensor
  • the interventional surgery system further includes a magnetic field generator (not shown in the figure)
  • the magnetic field generator is used to generate a magnetic field
  • the sensor 200 is used to sense the strength of the magnetic field within the magnetic field.
  • Information the controller 20 is configured to obtain position information and direction information at the location of the sensor 200 based on the magnetic intensity information sensed by the sensor 200 . Therefore, this embodiment uses a magnetic navigation positioning system to position the catheter 100, which can further improve the accuracy of shape and stress sensing of the catheter 100, and effectively improve the positioning accuracy.
  • This embodiment provides an electronic device.
  • the electronic device includes a processor and a memory.
  • a computer program is stored on the memory.
  • the above catheter shape and force sensing method or surgical navigation method or catheter shape control is implemented. method. Since the electronic device provided by this embodiment and the above catheter shape and force sensing method or the surgical navigation method or the catheter shape control method belong to the same inventive concept, the electronic device provided by this embodiment has the above catheter shape and force sensing method. Or all the advantages of the surgical navigation method or the catheter shape control method, so the advantages of the electronic device provided by this embodiment will not be described in detail.
  • the processor referred to in the present invention may be a central processing unit (Central Processing Unit, CPU).
  • the memory can be used to store computer programs, and the processor implements various functions of the electronic device by running or executing the computer programs stored in the memory and calling data stored in the memory.
  • Memory may include non-volatile and/or volatile memory.
  • This embodiment provides a readable storage medium.
  • a computer program is stored in the readable storage medium.
  • the computer program is executed by a processor, the above catheter shape and force sensing method, surgical navigation method, or catheter shape control method can be implemented.
  • the computer program code for performing the operations of the present invention can be written in one or more programming languages or a combination thereof.
  • the program code may execute entirely on the user's computer, partly on the user's computer, as a stand-alone software package, partly on the user's computer and partly on a remote computer or entirely on the remote computer or server.
  • the remote computer may be connected to the user's computer through any kind of network, or may be connected to an external computer.
  • the catheter shape and force sensing method, surgical navigation method, catheter shape control method, interventional surgery system, electronic device and storage medium have the following advantages:
  • the catheter shape and force sensing method provided by the present invention installs multiple sensors in the length direction of the catheter to sense position information and direction information at corresponding positions, thereby based on the real-time position information and real-time direction sensed by all sensors.
  • information you can obtain real-time shape information of the catheter and real-time stress information on the catheter.
  • the sensor can sense the position information and direction information at its location, that is, the sensor in the present invention senses absolute spatial information, and there is no error accumulation phenomenon. Therefore, the present invention is based on the real-time position sensed by all sensors. Information and real-time direction information can more accurately and easily obtain the real-time shape information of the catheter and the real-time stress information on the catheter.
  • the catheter can provide a favorable basis for surgical navigation and improve surgical navigation. Accuracy in the process; based on real-time stress information on the catheter, it can provide a reference for the operator to avoid damage to the anatomical channel or damage to the catheter due to excessive interaction between the catheter and the anatomical channel. occur.
  • the surgical navigation method provided by the present invention performs three-dimensional reconstruction of pre-obtained preoperative medical images to obtain a three-dimensional anatomical model, and plans a navigation path to the lesion based on the three-dimensional anatomical model, while using the above-mentioned catheter shape and force perception.
  • obtain catheter The shape information after the catheter enters the anatomical channel and the three-dimensional anatomical model are used to obtain the spatial mapping relationship between the world coordinate system and the three-dimensional anatomical model coordinate system. Finally, the spatial mapping relationship between the world coordinate system and the three-dimensional anatomical model can be obtained.
  • the spatial mapping relationship between the model coordinate systems controls the movement of the catheter according to the navigation path until the end of the catheter reaches the lesion, completing the navigation during the operation.
  • the surgical navigation method provided by the present invention adopts the above catheter shape and force sensing method, the shape information of the catheter after entering the anatomical channel is obtained, and the world coordinate system is obtained based on the shape information of the catheter after entering the anatomical channel and the three-dimensional anatomical model.
  • the spatial mapping relationship between the obtained world coordinate system and the three-dimensional anatomical model coordinate system can ensure the accuracy of the spatial mapping relationship between the obtained world coordinate system and the three-dimensional anatomical model coordinate system, thereby ensuring the accuracy of surgical navigation and further ensuring the catheter The end can reach the lesion smoothly to complete the operation smoothly.
  • the present invention first obtains the desired shape reference amount of the catheter based on the obtained catheter shape instruction; and obtains the current shape reference amount of the catheter based on the current position information and current direction information sensed by each sensor installed on the catheter; and then According to the desired shape reference amount and the current shape reference amount of the catheter, the control compensation amount is calculated; finally, based on the control compensation amount, the catheter is controlled to move accordingly. It can be seen that the present invention can effectively realize closed-loop control of the shape of the catheter, so that the shape of the catheter can reach the desired shape, thereby ensuring the smooth progress of the interventional surgery.
  • the present invention can sense the position information and direction information at its location, that is, the sensor in the present invention senses absolute spatial information, and there is no error accumulation phenomenon. Therefore, the present invention is based on the sensor information sensed by each sensor.
  • the measured real-time position information and real-time direction information can more accurately and easily obtain the current shape reference of the catheter, which can further improve the control accuracy of the catheter shape.
  • the interventional surgery system, electronic equipment and storage medium provided by the present invention belong to the same inventive concept as the above catheter shape and force sensing method or surgical navigation method or catheter shape control method, the interventional surgery system, electronic equipment and storage medium provided by the present invention
  • the storage medium has all the advantages of the above-mentioned catheter shape and force sensing methods, surgical navigation methods, or catheter shape control methods, so the advantages of the interventional surgery system, electronic equipment, and storage media provided by the present invention will not be described further.
  • each functional module in each embodiment of this article can be integrated together to form an independent part, each module can exist alone, or two or more modules can be integrated to form an independent part.

Landscapes

  • Health & Medical Sciences (AREA)
  • Surgery (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biomedical Technology (AREA)
  • Robotics (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Medical Informatics (AREA)
  • Molecular Biology (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Media Introduction/Drainage Providing Device (AREA)

Abstract

本发明提供了一种导管形状与力感知方法、手术导航方法、导管形状控制方法、介入手术系统、电子设备和存储介质,导管沿其长度方向安装有多个传感器,传感器用于感测其所在位置处的位置信息和方向信息,该形状与力感知方法包括获取每一传感器所感测到的实时位置信息和实时方向信息;根据所有的传感器所感测到的实时位置信息和实时方向信息,获取导管的实时形状信息和导管所受到的实时应力信息。本发明基于所有的传感器所感测到的实时位置信息和实时方向信息,能够更加准确、更加简便地获取导管的实时形状信息以及导管所受到的实时应力信息。

Description

导管形状与力感知方法、手术导航方法和介入手术系统 技术领域
本发明涉及医疗器械技术领域,特别涉及一种导管形状与力感知方法、手术导航方法、导管形状控制方法、介入手术系统、电子设备和存储介质。
背景技术
与传统手术相比,微创伤机器人手术具有切口小、创伤小、恢复快、痛苦少的优点。其中,介入机器人手术系统利用医学影像设备的引导,将特制的器械、导管等精密器械引入人体,对体内病灶进行诊断和局部治疗等微创伤手术。其中,导管作为介入技术中最主要的工具,医生借助图像导航的引导,通过遥控导管运动到达病变位置进行介入治疗或诊断。
为精确到达病灶位置,介入机器人手术系统可以对微创伤导管在解剖系统中自然的或手术创建的通道里的运动进行导航,将微创伤导管实时定位并准确配准到解剖通道;同时,导管上应力的识别也可以避免对解剖结构造成损伤和对导管本身造成损坏。因此,有效的形状与应力信息感知方法是介入手术机器人成功应用的关键。
需要说明的是,公开于该发明背景技术部分的信息仅仅旨在加深对本发明一般背景技术的理解,而不应当被视为承认或以任何形式暗示该信息构成已为本领域技术人员所公知的现有技术。
发明内容
本发明的目的在于提供一种导管形状与力感知方法、手术导航方法、导管形状控制方法、介入手术系统、电子设备和存储介质,可以更加准确、更加简便地感知导管的形状以及其所受到的应力,可以实现导管形状的有效控制,以保证介入手术的顺利进行,以及可以有效提高手术导航过程中的准确性。
为达到上述目的,本发明提供一种导管形状与力感知方法,所述导管沿其长度方向安装有多个传感器,所述传感器用于感测其所在位置处的位置信息和方向信息,所述方法包括:
获取每一所述传感器所感测到的实时位置信息和实时方向信息;
根据所有的所述传感器所感测到的实时位置信息和实时方向信息,获取所述导管的实时形状信息和所述导管所受到的实时应力信息。
本发明还提供一种手术导航方法,包括:
对预先获取的术前医学图像进行三维重建,以获取三维解剖模型;
根据所述三维解剖模型,规划到达病灶处的导航路径;
采用如上所述的导管形状与力感知方法,获取所述导管进入解剖通道后的形状信息;
根据所述导管进入解剖通道后的形状信息和所述三维解剖模型,获取世界坐标系与三维解剖模型坐标系之间的空间映射关系;
根据所述世界坐标系与三维解剖模型坐标系之间的空间映射关系,按照所述导航路径,控制所述导管进行运动,直至所述导管的末端到达所述病灶处。
本发明还提供一种导管形状控制方法,所述导管沿其长度方向安装有多个传感器,所述传感器用于感测其所在位置处的位置信息和方向信息,所述导管形状控制方法包括:
根据所获取的导管形状指令,获取所述导管的期望形状参考量;
根据各个所述传感器所感测到的当前位置信息和当前方向信息,获取所述导管的当前形状参考量;
根据所述导管的期望形状参考量和当前形状参考量,计算控制补偿量;
根据所述控制补偿量,控制所述导管进行相应运动。
本发明还提供一种介入手术系统,包括通信连接的机器人和控制器,所述机器人包括台车和安装于所述台车上的机械臂,所述机械臂的末端用于安装导管,所述导管沿其长度方向安装有多个传感器,所述控制器被配置用于实现上文所述的导管形状与力感知方法或者上文所述的手术导航方法或者上文所述的导管形状控制方法。
本发明还提供一种电子设备,包括处理器和存储器,所述存储器上存储有计算机程序,所述计算机程序被所述处理器执行时,实现上文所述的导管形状与力感知方法或者上文所述的手术导航方法或者上文所述的导管形状控制方法。
本发明还提供一种可读存储介质,所述可读存储介质内存储有计算机程序,所述计算机程序被处理器执行时,实现上文所述的导管形状与力感知方法或者上文所述的手术导航方法或者上文所述的导管 形状控制方法。
与现有技术相比,本发明提供的导管形状与力感知方法、手术导航方法、导管形状控制方法、介入手术系统、电子设备和存储介质具有以下优点:
本发明提供的导管形状与力感知方法通过在所述导管的长度方向上安装多个传感器以感测对应位置处的位置信息和方向信息,由此根据所有的所述传感器所感测到的实时位置信息和实时方向信息,即可获取所述导管的实时形状信息和所述导管所受到的实时应力信息。由于所述传感器能够感测到其所在位置处的位置信息和方向信息,即本发明中所述传感器感测的是绝对空间信息,不存在误差累积现象,因此,本发明基于所有的所述传感器所感测到的实时位置信息和实时方向信息,能够更加准确、更加简便地获取所述导管的实时形状信息以及所述导管所受到的实时应力信息,由此,根据所述导管的实时形状信息,能够为手术导航提供有利地依据,提高手术导航过程中的准确性;根据所述导管所受到的实时应力信息,能够为操作者提供参考,避免由于导管与解剖通道之间的相互作用力过大而引起的解剖通道被损伤或导管被损坏的现象的发生。
本发明提供的手术导航方法通过对预先获取的术前医学图像进行三维重建,以获取三维解剖模型,并根据所述三维解剖模型,规划到达病灶处的导航路径,同时采用上文所述的导管形状与力感知方法,获取所述导管进入解剖通道后的形状信息,并根据所述导管进入解剖通道后的形状信息和所述三维解剖模型,获取世界坐标系与三维解剖模型坐标系之间的空间映射关系,最后即可根据世界坐标系与三维解剖模型坐标系之间的空间映射关系,按照所述导航路径,控制所述导管进行运动,直至所述导管的末端到达所述病灶处,完成手术过程中的导航。
本发明通过先根据所获取的导管形状指令,获取所述导管的期望形状参考量;并根据安装于所述导管上的各个传感器所感测到的当前位置信息和当前方向信息,获取所述导管的当前形状参考量;再根据所述导管的期望形状参考量和当前形状参考量,计算控制补偿量;最后再根据所述控制补偿量,控制所述导管进行相应运动。由此可见,本发明能够有效实现对所述导管的形状的闭环控制,以使得所述导管的形状能够达到期望形状,从而可以保证介入手术的顺利进行。此外,由于本发明中的传感器能够感测到其所在位置处的位置信息和方向信息,即本发明中所述传感器感测的是绝对空间信息,不存在误差累积现象,因此,本发明基于各个所述传感器所感测到的实时位置信息和实时方向信息,能够更加准确、更加简便地获取所述导管的当前形状参考量,从而可以进一步提高导管形状的控制精度。
由于本发明提供的介入手术系统、电子设备和存储介质与上文所述的导管形状与力感知方法或手术导航方法或导管形状控制方法属于同一发明构思,因此本发明提供的介入手术系统、电子设备和存储介质具有上文所述的导管形状与力感知方法或手术导航方法或导管形状控制方法的所有优点,故不再对本发明提供的介入手术系统、电子设备和存储介质所具有的优点进行展开说明。
附图说明
图1为本发明一实施方式提供的导管与末端器械之间的连接关系结构示意图;
图2为本发明一实施方式提供的导丝与驱动装置之间的连接关系结构示意图;
图3为本发明另一实施方式提供的导丝与驱动装置之间的连接关系结构示意图;
图4为本发明一实施方式提供的导管的截面结构示意图;
图5为本发明另一实施方式提供的导管的截面结构示意图;
图6为本发明一实施方式提供的导管形状与力感知方法的流程示意图;
图7为本发明一具体示例提供的导管横截面上的应变分布示意图;
图8为本发明一实施方式提供的重构圆弧曲线的原理示意图;
图9为本发明一实施方式提供的获取中性点所对应的圆弧半径的原理示意图;
图10为本发明一实施方式提供的获取中性点的位置信息的原理示意图;
图11为现有技术中使用形状位置光纤感知导管形状的示意图;
图12为本发明一实施方式提供的传感器阵列排布示意图;
图13为导管上各测量点的分布示意图;
图14为本发明一实施方式提供的手术导航方法的流程示意图;
图15为本发明本实施例一实施方式提供的导管形状控制方法的流程示意图;
图16为本发明一实施方式提供的重构圆弧曲线的原理示意图;
图17为本发明一实施方式提供的获取中性层所对应的弯曲半径的原理示意图;
图18为本发明一实施方式提供的传感器和各第一通道(安装导丝的通道)到中性层的距离示意图;
图19为本发明一实施方式提供的介入手术系统的应用场景示意图;
图20为本发明一实施方式提供的获取中性点的位置信息的原理示意图;
具体实施方式
以下结合附图和具体实施方式对本发明提出的导管形状与力感知方法、手术导航方法、导管形状控制方法、介入手术系统、电子设备和存储介质作进一步详细说明。根据下面说明,本发明的优点和特征将更清楚。需要说明的是,附图采用非常简化的形式且均使用非精准的比例,仅用以方便、明晰地辅助说明本发明实施方式的目的。为了使本发明的目的、特征和优点能够更加明显易懂,请参阅附图。须知,本说明书所附图式所绘示的结构、比例、大小等,均仅用以配合说明书所揭示的内容,以供熟悉此技术的人士了解与阅读,并非用以限定本发明实施的限定条件,任何结构的修饰、比例关系的改变或大小的调整,在与本发明所能产生的功效及所能达成的目的相同或近似的情况下,均应仍落在本发明所揭示的技术内容能涵盖的范围内。
本发明的核心思想在于提供一种导管形状与力感知方法、手术导航方法、导管形状控制方法、介入手术系统、电子设备和存储介质,可以更加准确、更加简便地感知导管的形状以及其所受到的应力,可以实现导管形状的有效控制,以保证介入手术的顺利进行,以及可以有效提高手术导航过程中的准确性。需要说明的是,如本领域技术人员所能理解的,下述的近端是指靠近操作者的一端,远端/末端是指远离操作者的一端,也即靠近病灶的一端。此外,需要说明的是,如本领域技术人员所能理解的,本文中所称的多个包括两个的情形。另外,需要说明的是,本文中所称的形状参考量是指与导管的形状相关的参数,例如导管的曲率半径、弯曲曲率、弯曲角度、切向向量等。
另外,本发明提供的导管形状与力感知方法、手术导航方法和导管形状控制方法可应用于本发明提供的电子设备上,该电子设备可被配置于本发明实施方式的介入手术系统上,其中,该电子设备可以是计算机、移动终端等,该移动终端可以是手机、平板电脑等具有各种操作系统的硬件设备。
为实现上述思想,本实施例提供一种导管形状与力感知方法。为了便于理解,在介绍本实施例提供的导管形状与力感知方法之前,先对本实施例中的导管的具体结构进行说明。如图1所示,导管100沿其长度方向安装有多个传感器200,多个传感器200之间相互间隔设置,传感器200用于感测其所在位置处的位置信息和方向信息。
多个传感器200呈阵列设置,即当导管100处于平直状态时,多个传感器200位于同一条直线上。此种设置,不仅可以更加便于多个传感器200的安装,同时也更加便于获取导管100的实时形状信息和导管100所受到的实时应力信息。
导管100包括相连的第一管体110和第二管体120,其中第一管体110为可控弯段(即通过驱动装置140可以精确调整第一管体110的弯曲角度和弯曲方向),第二管体120为不可控弯段(即第二管体120的弯曲角度和弯曲方向受外力影响,无法精确进行控制)。
如图1所示,第一管体110和第二管体120沿其长度方向均均匀布置有多个传感器200。由此,通过在第一管体110和第二管体120上均均匀布置有多个传感器200,可以进一步确保所获取的导管100的实时形状信息和导管100所受到的实时应力信息的准确性。
需要说明的是,如本领域技术人员所能理解的,第一管体110上的传感器200的分布密度(单位长度的第一管体110上的传感器200的个数)与第二管体120上的传感器200的分布密度(单位长度的第二管体120上的传感器200的个数)可以相同也可以不同,优选,第一管体110上的传感器200的分布密度大于第二管体120上的传感器200的分布密度。由此,通过在第一管体110上设置更加密集的传感器200,可以进一步提高所获取的导管100的实时形状信息和导管100所受到的实时应力信息的准确性。
导管100内穿设有至少一组引导组件,其中,每一组引导组件均包括两根平行设置的导丝130,导丝130的远端与第一管体110的末端相连,导丝130的近端与驱动装置140(例如电机)相连,由此,在驱动装置140的作用下,导丝130能够伸长或缩短,从而使得第一管体110能够沿对应的方向弯曲。
如图2所示,同一组引导组件中的两根导丝130可以由同一个驱动装置140进行驱动,例如,当驱动装置140为电机时,同一组引导组件中的两根导丝130的近端分别固定在电机的输出轴的两侧,由此可以保证在电机转动时,一根导丝130伸长,另一根导丝130缩短,且伸长量等于缩短量。
如图3所示,在本实施方式中,同一组引导组件中的两根导丝130可以分别由一个驱动装置140进行驱动,即不同的导丝130由不同的驱动装置140进行驱动,此时这两个驱动装置140的旋转方向相反。
进一步地,导管100上设有用于供导丝130穿过的第一通道150以及用于安装传感器200的第二通道160,其中导丝130与第一通道150一一对应,即不同的导丝130穿设在不同的第一通道150内。由此,通过在导管100内设置第一通道150,可以更加便于导丝130的安装,有效防止导丝130之间相互干扰;通过在导管100内设置第二通道160,可以更加便于传感器200的安装。
如图4所示,在本实施方式中,导管100内共穿设有两根导丝130(即一组引导组件),导管100上共设有两个沿其长度方向设置的第一通道150和一个沿其长度方向设置的第二通道160。
如图5所示,在本实施方式中,导管100内共穿设有四根导丝130(即两组引导组件),导管100上共设有四个沿其长度方向设置的第一通道150和一个沿其长度方向设置的第二通道160。
在一种示范性的实施方式中,如图4和图5所示,第一通道150和第二通道160均偏离导管100的中心线设置。由此,此种设置可以保证在导管100的中央区域能够预留出用于输送末端器械的通道。
请继续参考图1,末端器械安装于导管100的末端。末端器械可以为活检钳、活检刷、活检刨等常用介入治疗器械。进一步地,如图1所示,导管100的近端安装有器械盒170,用于驱动导丝130的驱动装置140安装于器械盒170内。
如图6所示,本发明提供的导管形状与力感知方法包括:
步骤S110、获取每一传感器200所感测到的实时位置信息和实时方向信息。
步骤S120、根据所有的传感器200所感测到的实时位置信息和实时方向信息,获取导管100的实时形状信息和导管100所受到的实时应力信息。
可见,本实施例提供的导管形状与力感知方法中,通过在导管100的长度方向上安装多个传感器200以感测对应位置处的位置信息和方向信息,由此根据所有的传感器200所感测到的实时位置信息和实时方向信息,即可获取导管100的实时形状信息和导管100所受到的实时应力信息。由于传感器200能够感测到其所在位置处的位置信息和方向信息,即本实施例中传感器200感测的是绝对空间信息,不存在误差累积现象,因此,本实施例基于所有的传感器200所感测到的实时位置信息和实时方向信息,能够更加准确、更加简便地获取导管100的实时形状信息以及导管100所受到的实时应力信息,由此,根据导管100的实时形状信息,能够为手术导航提供有利地依据,提高手术导航过程中的准确性;根据导管100所受到的实时应力信息,能够为操作者提供参考,避免由于导管100与解剖通道之间的相互作用力过大而引起的解剖通道被损伤或导管100被损坏的现象的发生。
获取每一传感器200所感测到的实时位置信息和实时方向信息,包括:
获取每一传感器200所感测到的实时磁场强度信息;
针对每一传感器200,根据该传感器200所感测到的实时磁场强度信息,获取该传感器200所感测到的实时位置信息和实时方向信息。
具体地,传感器200为能够感测到至少五个自由度(可以不包含该传感器200所在导管段绕自身轴线旋转方向的自由度)的位置和姿态信息的磁感应器,也即通过传感器200可以测得其所在位置处的三维空间位置坐标和延伸方向信息。由于当传感器200所在位置发生变化时,则其所能够感测到的磁场强度信息也会对应发生变化,由此,根据传感器200当前所感测到的磁场强度信息,即可获取该传感器200当前所在位置处的位置信息和方向信息。
根据所有的传感器200所感测到的实时位置信息和实时方向信息,获取导管100的实时形状信息,包括:
针对每一传感器200,根据该传感器200和与其相邻的邻传感器200所感测到的实时位置信息和实时方向信息,获取该传感器200所在导管横截面300上的中性点的实时位置信息,中性点为该传感器200和与其相邻的邻传感器200之间的导管段所对应的弯曲平面500与该传感器200所在导管横截面300上的中性层400之间的交点;
依次连接所有的中性点,以获取导管100所对应的实时形状曲线,从而获取导管100的实时形状信息。
如图7所示,当导管100弯曲时,针对导管100的任一个导管横截面300,在该导管横截面300内均存在一个中性层400,在中性层400处不产生应变,且中性层400的位置随载荷而动态变化。中性层400两侧分别存在拉应变和压应变,由于中性层400沿手术器械长度方向上的连线在弯曲过程中,长度不发生改变,因此,本实施提供的导管形状与力感知方法通过针对每一传感器200,获取该传感器200所在导管横截面300上的中性点的实时位置信息,并通过根据各中性点的实时位置信息,依次连接所有的中性点,以获取导管100所对应的实时形状曲线,从而可以确保所获取的导管100的实时形状信息更加精确,进而可以提高手术导航的准确性。
进一步地,根据该传感器200和与其相邻的邻传感器200所感测到的实时位置信息和实时方向信息,获取该传感器200所在导管横截面300上的中性点的实时位置信息,包括:
根据该传感器200和与其相邻的邻传感器200所感测到的实时位置信息和实时方向信息,重构该传感器200和与其相邻的邻传感器200之间的导管段所对应的实时圆弧曲线;
根据实时圆弧曲线所对应的圆弧长度和圆弧半径以及传感器200所感测到的实时位置信息和实时方向信息,获取该传感器200所在导管横截面300上的中性点的实时位置信息。
为了便于理解,下面对如何重构相邻的两个传感器200之间的导管段所对应的实时圆弧曲线进行说明,为了方便描述,以二维情况进行说明,三维情形可做类似拓展。
如图8所示,传感器200Pn和传感器200Pn+1为一组相邻的两个传感器200,其中传感器200Pn所在位置处的坐标为(Xn,Yn)(世界坐标系下的坐标),传感器200Pn+1所在位置处的坐标为(Xn+1,Yn+1)(世界坐标系下的坐标),Ln为传感器200Pn和传感器200Pn+1之间的直线长度,为传感器200Pn所在位置处沿导管100长度方向的方向向量,为传感器200Pn+1所在位置处沿导管100长度方向的方向向量;θn为方向向量之间的夹角,Cn为待重构的圆弧曲线的圆心位置,Rn为待重构的圆弧曲线的圆弧半径。由相关几何学知识可以得出以下计算公式:



由上式(1)至式(3)可以根据该传感器200Pn和与其相邻的邻传感器200Pn+1所感测到的位置信息和方向信息,计算出该传感器200Pn和与其相邻的邻传感器200Pn+1之间的导管段所对应的圆弧曲线的圆弧半径Rn。进一步地,可以计算出该圆弧曲线的圆心位置,具体地,根据传感器200Pn所在位置处沿导管100长度方向的方向向量可以计算出经过传感器200Pn所在位置处的圆弧半径所在直线的直线方程的斜率kn,再结合传感器200Pn所在位置处的坐标(Xn,Yn),即可计算出经过传感器200Pn所在位置处的圆弧半径所在直线的直线方程的常数项bn。同理,根据传感器200Pn+1所在位置处沿导管100长度方向的方向向量可以计算出经过传感器200Pn+1所在位置处的圆弧半径所在直线的直线方程的斜率kn+1,再结合传感器200Pn+1所在位置处的坐标(Xn+1,Yn+1),即可计算出经过传感器200Pn+1所在位置处的圆弧半径所在直线的直线方程的常数项bn+1。由此,该圆弧曲线的圆心Cn在世界坐标系下的坐标可以通过联立以下方程组得到:
通过求解上述方程组(5),可以得出圆弧曲线的圆心Cn在世界坐标系下的坐标满足如下关系式:
假设导管100处于平直状态时,传感器200Pn与传感器200Pn+1之间的长度为S0,则传感器200Pn与传感器200Pn+1之间的导管段所发生的平均应变ε为:
需要说明的是,如本领域技术人员所能理解的,当ε为正数时,则说明传感器200Pn与传感器200Pn+1之间的导管段所发生的平均应变为正应变,也即传感器200Pn与传感器200Pn+1之间的导管段伸长;当ε为负数时,则说明传感器200Pn与传感器200Pn+1之间的导管段所发生的平均应变为负应变,也即传感器200Pn与传感器200Pn+1之间的导管段缩短。此外,本领域技术人员所能理解的,针对安装于导管100的末端的传感器200(即最末尾的一个传感器200),可以将与其相邻的上一个传感器200作为其邻传感器200。
进一步地,根据实时圆弧曲线所对应的圆弧长度和圆弧半径以及传感器200所感测到的实时位置信息和实时方向信息,获取该传感器200所在导管横截面300上的中性点的实时位置信息,还包括:
根据该传感器200和与其相邻的邻传感器200之间的导管段的原始长度和实时圆弧曲线所对应的圆弧长度,获取该传感器200和与其相邻的邻传感器200之间的导管段的平均应变;
根据平均应变以及实时圆弧曲线所对应的圆弧半径,获取该传感器200所在导管横截面300上的中性点所对应的圆弧半径;
根据中性点所对应的圆弧半径以及传感器200所感测到的实时位置信息和实时方向信息,获取该传感器200所在导管横截面300上的中性点的实时位置信息。
如图9所示,由于中性层400处不发生应变,因此沿着中性层400的导管段的长度也不发生改变,因此中性层400(也即中性点Qn)对应的圆弧半径RQ与重构的圆弧曲线的圆弧半径Rn之间满足如下关系式:
由式(8)可以得出如下关系式:
由于,重构的圆弧曲线的圆弧半径Rn可以根据式(3)计算得到,平均应变ε可以根据式(7)计算得到,由此,通过将圆弧半径Rn和平均应变ε代入上式(9),即可以求出中性点所对应的圆弧半径RQ
在一种示范性的实施方式中,根据中性点所对应的圆弧半径以及传感器200所感测到的实时位置信息和实时方向信息,获取该传感器200所在导管横截面300上的中性点的实时位置信息,包括:
根据中性点所对应的圆弧半径以及实时圆弧曲线所对应的圆弧半径,获取该传感器200到该传感器200所在导管横截面300上的中性层400之间的距离;
根据该传感器200到该传感器200所在导管横截面300上的中性层400之间的距离、该传感器200在导管横截面300上的安装位置信息、以及传感器200所感测到的实时位置信息和实时方向信息,获取该传感器200所在导管横截面300上的中性点的实时位置信息。
如图10所示,图中的大圆表示某一导管横截面300,图中未经过该导管横截面300的中心的点划线为该导管横截面300上的中性层400,图中经过该导管横截面300的中心的点划线为传感器200Pn与传感器200Pn+1之间的导管段所对应的弯曲平面500(侧视图)。由相关几何学知识可知,经过该导管横截面300的中心的点划线(即弯曲平面500)与该导管横截面300上的中性层400相垂直。进一步地,如图10所示,弯曲平面500与中性层400在该导管横截面300上存在一个交点,该交点即为中性点,图中的点Pn所在位置即为传感器200Pn所在位置。
下面对如何获取该导管横截面300上的中性点的位置坐标进行说明。为了方便描述,以二维情况进行说明,三维情形可做类似拓展。假设在以该导管横截面300的中心点为原点所创建的坐标系下,传感器200Pn所在位置处的坐标为(xn,yn),中性点Qn在该坐标系(以该导管横截面300的中心点为原点所创建的坐标系)下的坐标为结合图9可知,传感器200Pn到中性层400之间的距离dn可通过下式计算得到:
如图10所示,假设弯曲平面500与以该截面的中心点为原点所创建的坐标系的x轴之间的夹角为an,则根据相关的几何学知识,可以得出中性点Qn在以该导管横截面300的中心点为原点所创建的坐标系下的坐标满足如下关系式:
由上式(11)可知,只要能够确定出弯曲平面500与以该截面的中心点为原点所创建的坐标系的x轴之间的夹角an,就可以求出中性点Qn在以该导管横截面300的中心点为原点所创建的坐标系下的坐标再根据以该导管横截面300的中心点为原点所创建的坐标系与世界坐标系之前的空间映射关系,即可以求出中性点Qn在世界坐标系下的坐标。其中,根据传感器200Pn在以该导管横截面300的中心点为原点所创建的坐标系下的坐标以及传感器200Pn在世界坐标系下的坐标,即可以获取以该导管横截面300的中心点为原点所创建的坐标系与世界坐标系之前的空间映射关系。
下面对如何确定出弯曲平面500与以该截面的中心点为原点所创建的坐标系的x轴之间的夹角an进行说明。
具体地,根据传感器200Pn和与其相邻的邻传感器200Pn+1所感测到的位置信息和方向信息,可以求出重构后的圆弧曲线的圆心Cn在世界坐标系下的坐标,进而根据以该导管横截面300的中心点为原点所创建的坐标系与世界坐标系之前的空间映射关系,从而可以获取重构后的圆弧曲线的圆心Cn在以该导管横截面300的中心点为原点所创建的坐标系下的坐标。由于重构后的圆弧曲线的圆心Cn与中性点Qn在世界坐标系下的距离(即RQ)等于重构后的圆弧曲线的圆心Cn与中性点Qn在以该导管横截面300的中心点为原点所创建的坐标系下的距离,由此,据此建立方程,即可以求出an的值,再结合以该导管横截面300的中心点为原点所创建的坐标系与世界坐标系之间的空间映射关系即可求出中性点Qn在世界坐标系下的坐标。
在一种示范性的实施方式中,根据所有的传感器200所感测到的实时位置信息和实时方向信息,获 取导管100所受到的实时应力信息,包括:
针对每一传感器200,根据该传感器200和与其相邻的邻传感器200所感测到的实时位置信息和实时方向信息,重构该传感器200和与其相邻的邻传感器200之间的导管段所对应的实时圆弧曲线;
根据该传感器200和与其相邻的邻传感器200之间的导管段的原始长度和实时圆弧曲线所对应的圆弧长度,获取该传感器200和与其相邻的邻传感器200之间的导管段的平均应变;
根据该传感器200和与其相邻的邻传感器200之间的导管段所对应的拉伸刚度以及平均应变,获取该传感器200和与其相邻的邻传感器200之间的导管段所受到的平均应力。
具体地,关于如何根据该传感器200和与其相邻的邻传感器200所感测到的实时位置信息和实时方向信息,重构该传感器200和与其相邻的邻传感器200之间的导管段所对应的实时圆弧曲线,可以参考前文中的相关论述,故在此不再进行展开说明。假设根据式(7)可以求出该传感器200和与其相邻的邻传感器200之间的导管段所受到的平均应变为ε,该传感器200和与其相邻的邻传感器200之间的导管段所对应的拉伸刚度为E,则该传感器200和与其相邻的邻传感器200之间的导管段所受到的平均应力可通过下式计算得到:σ=Eε    (12)
由此,本实施例能够感测到导管100上各段所受到的平均应力,从而能够为医生的操作提供参考,避免由于误操作而引起导管100与解剖通道之间的相互作用力过大,进而导致解剖通道被损伤或者导管100被损坏。
综上可知,本实施例提供的形状与力感知方法,由于利用了一个测量点处(传感器200所在位置处)的位置和方向信息,因此对导管100的局部特征拟合更加准确。另外,根据上文的相关论述可知,本实施例提供的形状与力感知方法能够实现导管100局部曲率的精确测量,不仅能够获取精确的导管100形状信息,而且可以精确地获取导管100末端的位置和姿态信息。另外,由于本实施例考虑了方向信息,因此在同一个测量点处提供的信息增多,因此在使用多项式等方法进行拟合时,相比于只提取测量点位置信息的方法,需要的测量点可以减少,理论是可以减半。
请继续参考图11和图12,其中图11示意性地给出了现有技术中使用形状位置光纤600感知导管100形状的示意图;图12示意性地给出了本实施例一实施方式提供的传感器200阵列排布示意图。如图11和图12所示,假设导管100弯曲平面500内弯曲,每个测量点(传感器200所在位置处)的方向向量也在该弯曲平面500内,但是其形式为空间三维向量,可以表示三维空间内任一弯曲平面500内的弯曲。而若使用形状位置光纤600感知三维空间内导管100的形状,则一般至少需要三根光纤600才能实现本实施例使用一个传感器200阵列即可实现的导管100形状和应力的计算功能。
如图13所示,由于形状位置光纤600获取的是当前位置相对于上一个形状位置光纤600的沿着形状位置光纤600延伸方向的相对距离,因此,该种情况下,导管100上各测量点的绝对位置是由导管100近端的基点位置(绝对坐标下,如图13中的((X1+ΔX1,Y1+ΔY1)))依次累加相对距离得到的,也即采用形状位置光纤600获取导管100末端位姿以及导管100形态的技术是沿着形状位置光纤600各个测量点的积分过程。而本实施例中的传感器200具备绝对位置感知能力,能够有效避免误差累计。如图13所示,(Xn,Yn)为第n个测量点pn的实际位置,(ΔXn,ΔYn)为第n个测量点的实际位置与测量位置的偏差。由于形状位置光纤600的位置为累积计算得到的,因此存在累积误差关系:ΔXn<ΔXn+1,ΔYn<ΔYn+1。而对于本实施例中的传感器200,由于不存在累积误差关系,即:ΔXn≈ΔXn+1,ΔYn≈ΔYn+1。由此可见,本实施例在定位精度上更具有优势。
如图14所示,本实施例提供一种手术导航方法,手术导航方法包括:
步骤S210、对预先获取的术前医学图像进行三维重建,以获取三维解剖模型。
步骤S220、根据三维解剖模型,规划到达病灶处的导航路径。
步骤S230、获取导管100进入解剖通道后的形状信息。
步骤S240、根据导管100进入解剖通道后的形状信息和三维解剖模型,获取世界坐标系与三维解剖模型坐标系之间的空间映射关系。
步骤S250、根据世界坐标系与三维解剖模型坐标系之间的空间映射关系,按照导航路径,控制导管100进行运动,直至导管100的末端到达病灶处。
具体地,采用上述导管形状与力感知方法获取导管100进入解剖通道后的形状信息,并根据导管100进入解剖通道后的形状信息和三维解剖模型,获取世界坐标系与三维解剖模型坐标系之间的空间映射关系,从而可以确保所获取的世界坐标系与三维解剖模型坐标系之间的空间映射关系的准确性,进而可以确保手术导航的准确性,进一步保证导管100的末端能够顺利达到病灶处,以顺利完成手术。
需要说明的是,如本领域技术人员所能理解的,在实际操作过程中,步骤S220与步骤S230的顺序 可以调换,即步骤S230可以在步骤S220之前执行,也可以在步骤S220之后执行,还可以步骤S220和步骤S230同时执行,本发明对此并不进行限定。
具体地,预先获取的术前医学图像可以为CT(计算机断层扫描)、MRI(磁共振成像)、荧光镜检查、热敏成像、超声、光学相干断层扫描(OCT)热成像、阻抗成像、激光成像、纳米管X射线成像等技术所采集的术前部位的术前医学图像,通过对所获取的术前医学图像进行三维建模,即可以获取三维解剖模型,根据所获取的三维解剖模型,即可以规划出到达病灶处的三维模型坐标系下导航路径,根据所获取的世界坐标系与三维解剖模型坐标系之间的空间映射关系,即可以获取世界坐标系下的导航路径。在介入手术中,导管100按照世界坐标系下的导航路径,被推入解剖通道(比如肾的解剖通道)中,通过配准(依据世界坐标系与三维解剖模型坐标系之间的空间映射关系),即可以将导管100在解剖通道中的实时位置配准至三维解剖模型上,以形成实时的合成图像。由于合成图像是根据导管100在解剖通道中的实时位置同步更新的,由此可以获取导管100从进入肾到退出的整个过程中的图像,从而可以为外科医生提供导航功能。进一步地,在导航过程中,医生通过主从控制导管100进行运动。在运动过程中,如果导管100的末端运动至分叉口附近,导航系统会提示下一级解剖通道入口,主从控制跟随导航运动,在达到病灶位置之前重复上述过程,到达病灶之后,导航停止。
在一种示范性的实施方式中,在获取导管100进入解剖通道后的形状信息之前,手术导航方法还包括:
利用导管100的末端在解剖通道中拾取多个特征点,并获取特征点在世界坐标系下的位置信息;
根据特征点在三维解剖模型坐标系下的位置信息以及特征点在世界坐标系下的位置信息,获取世界坐标系与三维解剖模型坐标系之间的初始空间映射关系;
根据导管100进入解剖通道后的形状信息和三维解剖模型,获取世界坐标系与三维解剖模型坐标系之间的空间映射关系,包括:
根据导管100进入解剖通道后的形状信息、三维解剖模型以及世界坐标系与三维解剖模型坐标系之间的初始空间映射关系,采用非刚性配准方法,获取世界坐标系与三维解剖模型坐标系之间的空间映射关系。
具体地,特征点可以是解剖通道的分叉点,且特征点的数目为至少三个。由于导管100的末端上设有能够感测位置和方向的传感器200,由此,在导管100的末端触碰特征点的过程中,可以获取特征点在世界坐标系下的位置信息。在特征点拾取完成后,可以利用刚性配准的方法,对解剖结构和三维模型进行初始配准,以建立世界坐标系与三维解剖模型坐标系之间的初始空间映射关系。初始配准完成后,控制导管100在病人的解剖结构的解剖通道中运动。运动过程中,通过安装于导管100上的多个传感器200,可以生成导管100的整体形状。再利用三维解剖模型和导管100的形状信息,通过CPD等非刚性配准方法,在初始配准的基础上,对三维解剖模型与解剖结构进行一步配准,以提升配准的精度,从而获取更加精确的世界坐标系与三维解剖模型坐标系之间的空间映射关系。在非刚性配准完成以后,遵循术前规划后的导航路径,控制导管100进行相应运动,最终达到病灶位置处。
如图15所示,本发明还提供一种导管形状控制方法,导管形状控制方法包括:
步骤S100、根据所获取的导管形状指令,获取导管100的期望形状参考量。
步骤S200、根据各个传感器200所感测到的当前位置信息和当前方向信息,获取导管100的当前形状参考量。
步骤S300、根据导管100的期望形状参考量和当前形状参考量,计算控制补偿量。
步骤S400、根据控制补偿量,控制导管100进行相应运动。
由此可见,本实施例提供的导管100形状控制方法能够有效实现对导管100的形状的闭环控制,以使得导管100的形状能够达到期望形状,从而可以保证介入手术的顺利进行。此外,由于本发明中的传感器200能够感测到其所在位置处的位置信息和方向信息,即本发明中传感器200感测的是绝对空间信息,不存在误差累积现象,因此,本发明基于各个传感器200所感测到的实时位置信息和实时方向信息,能够更加准确、更加简便地获取导管100的当前形状参考量,从而可以进一步提高导管100形状的控制精度。需要说明的是,如本领域技术人员所能理解的,导管形状指令具体为来自主端(主控平台)的操作者通过操作手柄输入的指令。
进一步地,获取每一传感器200所感测到的实时位置信息和实时方向信息,包括:
获取每一传感器200所感测到的实时磁场强度信息;
针对每一传感器200,根据该传感器200所感测到的实时磁场强度信息,获取该传感器200所感测到的实时位置信息和实时方向信息。
具体地,传感器200为能够感测到至少五个自由度(可以不包含该传感器200所在导管段700绕自身轴线旋转方向的自由度)的位置和姿态信息的磁感应器,也即通过传感器200可以测得其所在位置处的三维空间位置坐标和延伸方向信息。由于当传感器200所在位置发生变化时,则其所能够感测到的磁场强度信息也会对应发生变化,由此,根据传感器200当前所感测到的磁场强度信息,即可获取该传感器200当前所在位置处的位置信息和方向信息。
在一种示范性的实施方式中,根据所获取的导管形状指令,获取导管100的期望形状参考量,包括:
根据所获取的导管形状指令,获取导管100的期望曲率半径。
对应地,根据各个传感器200所感测到的当前位置信息和当前方向信息,获取导管100的当前形状参考量,包括:
根据各个传感器200所感测到的当前位置信息和当前方向信息,获取导管100的当前曲率半径。
根据导管100的期望形状参考量和当前形状参考量,计算控制补偿量,包括:
根据导管100的期望曲率半径和当前曲率半径,计算控制补偿量。
由此,通过采用曲率半径作为导管100的形状参考量,并基于导管100的期望曲率半径和当前曲率半径,计算控制补偿量,从而可以更加便于通过计算出的控制补偿量进行导管100的形状控制。
在一种示范性的实施方式中,根据各个传感器200所感测到的当前位置信息和当前方向信息,获取导管100的当前曲率半径,包括:
针对除位于导管100的末端的最后一个传感器200或者位于导管100的近端的第一个传感器200以外的每一个传感器200:
根据该传感器200和与其相邻的邻传感器200所感测到的当前位置信息和当前方向信息,重构该传感器200和与其相邻的邻传感器200之间的导管段700所对应的圆弧曲线;
根据导管段700所对应的圆弧曲线的圆弧长度和圆弧半径,获取导管段700的中性层400所对应的当前弯曲半径;
将导管段700的中性层400所对应的当前弯曲半径,作为导管段700的当前曲率半径。
具体地,若本实施方式是针对除位于导管100的末端的最后一个传感器200以外的每一个传感器200进行的,则将与该传感器200相邻的下一个传感器200作为该传感器200的邻传感器200,即该传感器200和与其相邻的下一个传感器200之间为一个导管段700;若本实施方式是针对除位于导管100的近端的第一个传感器200以外的每一个传感器200进行的,则将与该传感器200相邻的上一个传感器200作为该传感器200的邻传感器200,即该传感器200和与其相邻的上一个传感器200之间为一个导管段700。
如图7所示,当导管100弯曲时,针对导管100的任一个导管横截面300,在该导管横截面300内均存在一个中性层400(也即针对任一个导管段700,在该导管段700内均存在一段中性层400),在中性层400处不产生应变,且中性层400的位置随载荷而动态变化。中性层400两侧分别存在拉应变和压应变,由于中性层400沿导管100长度方向上的连线在弯曲过程中,长度不发生改变,因此,本实施提供的导管100形状控制方法通过针对每一导管段700,将该导管段700的中性层400所对应的当前弯曲半径作为导管段700的当前曲率半径,从而可以进一步提高导管100形状的控制精度。
需要说明的是,如本领域技术人员所能理解的,根据所获取的导管形状指令,可以计算出任意相邻的两个传感器200之间的导管段700的期望曲率半径),根据任意相邻的两个传感器200所感测到的当前位置信息和当前方向信息,可以计算出相邻的两个传感器200之间的导管段700的当前曲率半径,由此针对每一个导管段700,根据该导管段700的期望曲率半径和当前曲率半径,即可计算出该导管段700所对应的控制补偿量。
为了便于理解,下面对如何重构相邻的两个传感器200之间的导管段700所对应的圆弧曲线进行说明,为了方便描述,以二维情况进行说明,三维情形可做类似拓展。
如图16所示,传感器200Pi和传感器200Pi+1为一组相邻的两个传感器200,其中传感器200Pi所在位置处的坐标为(Xi,Yi)(世界坐标系下的坐标),传感器200Pi+1所在位置处的坐标为(Xi+1,Yi+1)(世界坐标系下的坐标),Li为传感器200Pi和传感器200Pi+1之间的直线长度,为传感器200Pi所在位置处沿导管100长度方向的方向向量,为传感器200Pi+1所在位置处沿导管100长度方向的方向向量;为方向向量之间的夹角(也即圆弧曲线所对应的圆心角),Ci为重构的圆弧曲线的圆心位置, 为重构的圆弧曲线的圆弧半径。由相关几何学知识可以得出以下计算公式:



由上式(13)至式(16)可以根据该传感器200Pi和与其相邻的邻传感器200Pi+1所感测到的位置信息和方向信息,计算出该传感器200Pi和与其相邻的邻传感器200Pi+1之间的导管段700所对应的圆弧曲线的圆弧半径进一步地,可以计算出该圆弧曲线的圆心位置,具体地,根据传感器200Pi所在位置处沿导管100长度方向的方向向量可以计算出经过传感器200Pi所在位置处的圆弧半径所在直线的直线方程的斜率ki,再结合传感器200Pi所在位置处的坐标(Xi,Yi),即可计算出经过传感器200Pi所在位置处的圆弧半径所在直线的直线方程的常数项bi。同理,根据传感器200Pi+1所在位置处沿导管100长度方向的方向向量可以计算出经过传感器200Pi+1所在位置处的圆弧半径所在直线的直线方程的斜率ki+1,再结合传感器200Pi+1所在位置处的坐标(Xi+1,Yi+1),即可计算出经过传感器200Pi+1所在位置处的圆弧半径所在直线的直线方程的常数项bi+1。由此,该圆弧曲线的圆心Ci在世界坐标系下的坐标可以通过联立以下方程组得到:
通过求解上述方程组(17),可以得出圆弧曲线的圆心Ci在世界坐标系下的坐标满足如下关系式:
假设导管100处于平直状态时,传感器200Pi与传感器200Pi+1之间的导管段700的长度为S0,则传感器200Pi与传感器200Pi+1之间的导管段700所发生的平均应变为:
需要说明的是,如本领域技术人员所能理解的,当为正数时,则说明传感器200Pi与传感器200Pi+1之间的导管段700所发生的平均应变为正应变,也即传感器200Pi与传感器200Pi+1之间的导管段700伸长;当为负数时,则说明传感器200Pi与传感器200Pi+1之间的导管段700所发生的平均应变为负应变,也即传感器200Pi与传感器200Pi+1之间的导管段700缩短。
进一步地,根据导管段700所对应的圆弧曲线的圆弧长度和圆弧半径,获取导管段700的中性层400所对应的当前弯曲半径,包括:
根据导管段700的原始长度和圆弧曲线的圆弧长度,获取导管段700的平均应变;
根据平均应变以及圆弧曲线的圆弧半径,获取导管段700的中性层400所对应的当前弯曲半径。
具体地,请参考图17,其示意性地给出了本实施例一实施方式提供的获取中性层400所对应的弯曲半径的原理示意图。如图17所示,由于中性层400处不发生应变,因此沿着中性层400的导管段700的长度也不发生改变,因此中性层400对应的弯曲半径与重构的圆弧曲线的圆弧半径之间满足如下关系式:
由式(20)可以得出如下关系式:
由于,重构的圆弧曲线的圆弧半径可以根据式(15)计算得到,平均应变εi可以根据式(19)计算得到,由此,通过将圆弧半径和平均应变代入上式(21),即可以求出中性层400所对应的弯曲半径也即中性层400所在的导管段700的曲率半径。
在一种示范性的实施方式中,根据导管100的期望曲率半径和当前曲率半径,计算控制补偿量,包括:
按照如下公式,计算控制补偿量:
式中,Δi为第i个传感器200和与其相邻的邻传感器200之间的导管段700所对应的控制补偿量,gi为第i个传感器200和与其相邻的邻传感器200之间的导管段700所对应的控制增益,为第i个传感器200和与其相邻的邻传感器200之间的导管段700的期望曲率半径,为第i个传感器200和与其相邻的邻传感器200之间的导管段700的当前曲率半径。
由此,通过设置对应的控制增益来计算每一导管段700所对应的控制补偿量,可以得到更好的控制精度和控制响应。需要说明的是,如本领域技术人员所能理解的,每一个导管段700所对应的控制增益均可以根据实际的控制效果进行调节。此外,需要说明的是,如本领域技术人员所能理解的,在其它一些实施方式中针对每一导管段700还可以根据导管段700的期望曲率半径和当前曲率半径之间的差值,采用现有技术中的PI、PD或PID控制器来计算控制补偿量,以实现对导管100的形状的闭环控制。
在一种示范性的实施方式中,根据控制补偿量,控制导管100进行相应运动,包括:
根据控制补偿量,计算各根导丝130的目标长度;
根据各根导丝130的目标长度,控制对应的驱动装置140进行相应运动。
由此,通过控制补偿量,可以计算出每一根导丝130的目标长度,由于每一根导丝130的当前长度是已知的,由此,针对每一根导丝130,根据该根导丝130的目标长度和当前长度,即可控制对应的驱动装置140进行相应运动,以使得该根导丝130的长度伸长或缩短至其目标长度。
进一步地,根据控制补偿量,计算各根导丝130的目标长度,包括:
针对除位于导管100的末端的最后一个传感器200或者位于导管100的近端的第一个传感器200以外的每一个传感器200:
根据该传感器200和与其相邻的邻传感器200之间的导管段700所对应的控制补偿量,计算导管段700所对应的圆弧曲线的圆弧长度的目标变化率;
根据导管段700所对应的圆弧曲线的圆弧长度的目标变化率,计算各根导丝130在导管段700的长度的目标变化率;以及
根据各根导丝130在导管段700的长度的目标变化率,计算各根导丝130在导管段700的目标长度;
针对每一根导丝130,计算该根导丝130在各个导管段700的目标长度的总和,以获取该根导丝130的目标长度。
具体地,假设导管100上共安装有N个传感器200,其中,导管100的近端和末端各安装有一个传感器200,位于导管100的近端的传感器200为第一个传感器200,位于导管100的末端的传感器200为最后一个传感器200,则这N个传感器200将导管100划分为(N-1)个导管段700。针对每一个导管段700,根据上式(22)可以计算出该导管段700所对应的控制补偿量,进而计算出该导管段700所对应的圆弧曲线的圆弧长度的目标变化率,根据该导管段700所对应的圆弧曲线的圆弧长度的目标变化率,即可计算出各根导丝130在该导管段700的长度的目标变化率,从而计算出各根导丝130在该导管段700的目标长度。从而针对每一根导丝130,将该根导丝130在这(N-1)个导管段700的目标长度相加,相加的结果即为该根导丝130的目标长度。
在一种示范性的实施方式中,根据该传感器200和与其相邻的邻传感器200之间的导管段700所对应的控制补偿量,计算导管段700所对应的圆弧曲线的圆弧长度的目标变化率,包括:
根据该传感器200和与其相邻的邻传感器200之间的导管段700所对应的控制补偿量,计算导管段700所对应的圆弧曲线的圆弧半径的目标变化率;
根据导管段700所对应的圆弧曲线的圆心角以及圆弧半径的目标变化率,计算导管段700所对应 的圆弧曲线的圆弧长度的目标变化率。
具体地,由上式(21)可知,导管段700所对应的圆弧曲线的圆弧半径与导管段700的中性层400的弯曲半径(导管段700的曲率半径)之间存在如下关系式:
通过对上式(23)进行求导,可以得出下式:
式中,表示第i个导管段700所对应的圆弧曲线的圆弧半径的目标变化率,表示导管段700的期望曲率半径,表示第i个导管段700的平均应变,gi表示第i个导管段700所对应的控制增益。
又由于第i个导管段700所对应的圆弧曲线的圆弧半径与其所对应的圆弧长度之间满足如下关系式:
式中,为第i个导管段700所对应的圆弧曲线的圆心角。
对式(25)进行求导可以得到如下关系式:
式中,表示第i个导管段700所对应的圆弧曲线的圆弧长度的目标变化率。
在一种示范性的实施方式中,根据导管段700所对应的圆弧曲线的圆弧长度的目标变化率,计算各根导丝130在该导管段700的长度的目标变化率,包括:
针对每一根导丝130:
根据该根导丝130与导管段700的中性层400之间的距离、导管段700所对应的传感器200与中性层400之间的距离以及导管段700所对应的圆弧曲线的圆弧长度的目标变化率,计算该根导丝130的长度的目标变化率。
请继续参考图18,其示意性地给出了本发明一实施方式提供的传感器200和各第一通道150(安装导丝130的通道)到中性层400的距离示意图。如图18所示,图中未经过导管100的横截面的中心的点划线为中性层400,图中经过导管100的横截面的中心的点划线为传感器200Pi和与其相邻的邻传感器200Pi+1之间的导管段700所对应的弯曲平面500(侧视图)。由相关几何学知识可知,弯曲平面500和中性层400相垂直,图中的表示传感器200Pi到其所在导管段700的中性层400的距离,表示第一个第一通道150到传感器200Pi所在导管段700(即第i个导管段700)的中性层400的距离(即第一根导丝130到中性层400的距离),表示第二个第一通道150到传感器200Pi所在导管段700的中性层400的距离(即第二根导丝130到中性层400的距离),表示第三个第一通道150到传感器200Pi所在导管段700的中性层400的距离(即第三根导丝130到中性层400的距离),表示第四个第一通道150到传感器200Pi所在导管段700的中性层400的距离(即第四根导丝130到中性层400的距离)。
由上式(19)可以得出如下关系式:
式中,表示传感器200Pi到中性层400的距离,表示第j根导丝130到第i个导管段700的中性层400的距离,表示第j根导丝130在第i个导管段700的长度。当传感器200Pi和第j根导丝130位于中性层400的同一侧时,则取“+”号,若传感器200Pi和第j根导丝130位于中性层400的不同侧时,则取“-”号。
结合图17可知,传感器200Pi到在第i个导管段700的中性层400之间的距离可通过下式计算得到:
由于传感器200Pi和各第一通道150(各根第一导丝130)之间的位置关系是已知的,由此,根据传 感器200Pi到第i个导管段700的中性层400之间的距离以及传感器Pi和各第一通道150(各根第一导丝130)之间的位置关系,可以求出各第一通道150(各根第一导丝130)到第i个导管段700的中性层400的距离。
由式(27)可以得到如下关系式:
对式(29)进行求导,可以得到如下关系式:
式中,表示第j根导丝130在第i个导管段700的长度的目标变化率。
将式(24)代入式(30)可以得到如下关系式:
由此,根据式(31)可以计算出每一根导丝130在各个导管段700的长度的目标变化率。
在计算出每一根导丝130在各个导管段700的长度的目标变化率后,根据如下公式,即可求出每一根导丝130在各个导管段700的目标长度:
式中,表示第j根导丝130在第i个导管段700的目标长度,Δt表示时间步长,表示第j根导丝130在第i个导管段700的当前长度。
由此,针对每一根导丝130,计算出该根导丝130在各个导管段700的目标长度后,通过将该根导丝130在各个导管段700的目标长度相加,即可求出该根导丝130的目标长度,具体地可以按照如下公式,计算出各根导丝130的目标长度:
式中,Sm,j表示第j根导丝130的目标长度,N表示传感器200的个数。
在一种示范性的实施方式中,根据各根导丝130的目标长度,控制对应的驱动装置140进行相应运动,包括:
针对每一根导丝130:
根据该根导丝130的目标长度和当前长度,计算该根导丝130所对应的当前步导丝130位移量;
根据该根导丝130所对应的当前步导丝130位移量,控制对应的驱动装置140进行相应运动。
具体地,针对每一根导丝130,该根导丝130的目标长度减去该根导丝130的当前长度所得的差值,即为该根导丝130所对应的当前步导丝130位移量,由此,根据该根导丝130所对应的当前步导丝130位移量,控制对应的驱动装置140进行运动,即可使得该根导丝130的长度伸长或缩短至该根导丝130的目标长度,从而完成导管100的形状控制。
需要说明的是,如本领域技术人员所能理解的,虽然本实施例是以曲率半径作为形状参考量为例进行说明,但是如本领域技术人员所能理解的,在其它一些实施方式中,还可以以弯曲曲率ρ、导管100的近端和末端之间的相对弯曲角度以及导管100的近端的切向向量和末端的切向向量等作为导管100的形状参考量,从而根据导管100的期望弯曲曲率和当前弯曲曲率计算控制补偿量,或者根据导管100的期望相对弯曲角度和当前相对弯曲角度计算控制补偿量,或者根据导管100的近端的期望切向向量、末端的期望切向向量、近端的当前切向向量和末端的当前切向向量计算控制补偿量。
具体地,对于任一个导管段700而言,该导管段700的期望弯曲曲率ρ和该导管段700的期望曲率半径Rd之间满足如下关系式:该导管段700的期望相对弯曲角度和该导管段700期望曲率半径Rd之间满足如下关系式:式中,ε为该导管段700所对应的平均应变,S0为该导管段700的原始长度。
该导管段700的期望切向向量和该导管段700的期望曲率半径Rd之间满足如下关系式:
式中,ε为该导管段700所对应的平均应变,为该导管段700的近端的期望切向向量,为该导管段700的末端的期望切向向量。
如图19所示,本实施例还提供一种介入手术系统,介入手术系统包括通信连接的机器人10和控制器20,机器人10包括至少一条机械臂,机械臂的末端用于安装导管100,导管100沿其长度方向安装有多个传感器200(图中未示出),控制器20被配置用于实现上文的导管形状与力感知方法或者上文的手术导航方法或者上文的导管形状控制方法。由于本实施例提供的介入手术系统与上文的导管形状与力感知方法或上文的手术导航方法或者上文的导管形状控制方法属于同一发明构思,因此本实施例提供的介入手术系统具有上文的导管形状与力感知方法或上文的手术导航方法或者上文的导管形状控制方法的所有优点,故在此不再对本实施例提供的介入手术系统所具有的优点进行展开说明。
需要说明的是,导管100的具体结构可以参考上述实施一种的相关描述,故在此不再对导管100的具体结构进行说明。
如图19所示,介入手术系统还包括主控平台30,主控平台30上设有操作设备31,外科医生可以通过操作设备31对导管100进行控制。主控平台30上还设有与控制器20通信连接的显示装置32,显示装置32用于显示导管100的实时形状/当前形状和/或导管100在解剖通道中的实时位置/当前位置。具体地,在一些实施方式中,可以在机器人10的其它机械臂上安装内窥镜,通过将内窥镜插入人体内部,以获得病人体内的组织图像,从而可以将导管100的末端的位置在显示装置32上显示出来。在又一些实施方式中,可以采用前文的方法,根据导管100的当前位置与形状信息,将导管100配准至三维医学模型上,以在三维医学模型上显示导管100的实时形状/当前形状和/或导管100在解剖通道中的实时位置/当前位置。由此,通过显示导管100的实时形状/当前形状和/或导管100在解剖通道中的实时位置/当前位置,可以更加便于为医生的操作提供参考,以使得医生能够准确地操作导管100进行下一步的位移以及确定导管100下一步位移的速度,以更好地辅助医生控制导管100进行运动。
进一步地,可以将各个传感器200所在导管横截面300的中性层400与其所在的弯曲平面500的交点(即中性点)相连,以获取导管100的当前形状。
具体地,请参考图20,其示意性地给出了本发明一实施方式提供的获取中性点的位置信息的原理示意图。如图20所示,弯曲平面500与中性层400在该导管横截面300上存在一个交点,该交点即为中性点Qi
下面对如何获取传感器200Pi所在导管横截面300上的中性点的位置坐标进行说明。为了方便描述,以二维情况进行说明,三维情形可做类似拓展。假设在以传感器200Pi所在导管横截面300的中心点为原点所创建的坐标系下,传感器200Pi所在位置处的坐标为(xi,yi),中性点Qi在该坐标系(以该导管横截面300的中心点为原点所创建的坐标系)下的坐标为
如图20所示,假设弯曲平面500与以传感器200Pi所在导管横截面300的中心点为原点所创建的坐标系的x轴之间的夹角为则根据相关的几何学知识,可以得出中性点Qi在以传感器200Pi所在导管横截面300的中心点为原点所创建的坐标系下的坐标满足如下关系式:
由上式(34)可知,只要能够确定出弯曲平面500与以传感器200Pi所在导管横截面300的中心点为原点所创建的坐标系的x轴之间的夹角就可以求出中性点Qi在以传感器200Pi所在导管横截面300的中心点为原点所创建的坐标系下的坐标再根据以传感器200Pi所在导管横截面300的中心点为原点所创建的坐标系与世界坐标系之间的空间映射关系,即可以求出中性点Qi在世界坐标系下的坐标。其中,根据传感器200Pi在以该导管横截面300的中心点为原点所创建的坐标系下的坐标以及传感器200Pi在世界坐标系下的坐标,即可以获取以传感器200Pi所在导管横截面300的中心点为原 点所创建的坐标系与世界坐标系之间的空间映射关系。
下面对如何确定出弯曲平面500与以传感器200Pi所在导管横截面300的中心点为原点所创建的坐标系的x轴之间的夹角进行说明。
具体地,根据前述计算过程可知,根据传感器200Pi和与其相邻的邻传感器200Pi+1所感测到的位置信息和方向信息,可以求出重构后的圆弧曲线的圆心Ci在世界坐标系下的坐标,进而根据以传感器200Pi所在导管横截面300的中心点为原点所创建的坐标系与世界坐标系之间的空间映射关系,从而可以获取重构后的圆弧曲线的圆心Ci在以传感器200Pi所在导管横截面300的中心点为原点所创建的坐标系下的坐标。由于重构后的圆弧曲线的圆心Ci与中性点Qi在世界坐标系下的距离(即)等于重构后的圆弧曲线的圆心Ci与中性点Qi在以传感器200Pi所在导管横截面300的中心点为原点所创建的坐标系下的距离,由此,据此建立方程,即可以求出的值,再结合以传感器200Pi所在导管横截面300的中心点为原点所创建的坐标系与世界坐标系之间的空间映射关系即可求出中性点Qi在世界坐标系下的坐标。需要说明的是,如本领域技术人员所能理解的,针对安装于导管100的末端的传感器200(即最后一个传感器200),可以将与其相邻的上一个传感器200作为其邻传感器200,以构建圆弧曲线,从而获取安装于导管100的末端的传感器200所在导管横截面300的中性点的位置信息。
由此,针对每一传感器200,获取该传感器200所在导管横截面300上的中性点的当前位置信息,并通过根据各中性点的当前位置信息,依次连接所有的中性点,即可获取导管100所对应的当前形状曲线,从而可以确保所获取的导管100的形状信息更加精确。
在一种示范性的实施方式中,传感器200为磁感应器,介入手术系统还包括磁场发生器(图中未示出),磁场发生器用于产生磁场,传感器200用于在磁场内感测磁场强度信息,控制器20用于根据传感器200所感测到的磁感强度信息,获取传感器200所在位置处的位置信息和方向信息。由此,本实施例通过采用磁导航定位系统实现导管100的定位,可以进一步提高导管100形状与应力感知的准确性,有效提高定位精度。
本实施例提供一种电子设备,电子设备包括处理器和存储器,存储器上存储有计算机程序,计算机程序被处理器执行时,实现上文的导管形状与力感知方法或手术导航方法或导管形状控制方法。由于本实施例提供的电子设备与上文的导管形状与力感知方法或手术导航方法或导管形状控制方法属于同一发明构思,因此本实施例提供的电子设备具有上文的导管形状与力感知方法或手术导航方法或导管形状控制方法的所有优点,故不再对本实施例提供的电子设备所具有的优点进行展开说明。
本发明中所称处理器可以是中央处理单元(Central Processing Unit,CPU)。存储器可用于存储计算机程序,处理器通过运行或执行存储在存储器内的计算机程序,以及调用存储在存储器内的数据,实现电子设备的各种功能。存储器可以包括非易失性和/或易失性存储器。
本实施例提供了一种可读存储介质,可读存储介质内存储有计算机程序,计算机程序被处理器执行时可以实现上文的导管形状与力感知方法或手术导航方法或导管形状控制方法。
需要说明的是,可以以一种或多种程序设计语言或其组合来编写用于执行本发明操作的计算机程序代码。程序代码可以完全地在用户计算机上执行、部分地在用户计算机上执行、作为一个独立的软件包执行、部分在用户计算机上部分在远程计算机上执行、或者完全在远程计算机或服务器上执行。在涉及远程计算机的情形中,远程计算机可以通过任意种类的网络连接到用户计算机,或者可以连接到外部计算机。
综上,与现有技术相比,本发明提供的导管形状与力感知方法、手术导航方法、导管形状控制方法、介入手术系统、电子设备和存储介质具有以下优点:
本发明提供的导管形状与力感知方法通过在导管的长度方向上安装多个传感器以感测对应位置处的位置信息和方向信息,由此根据所有的传感器所感测到的实时位置信息和实时方向信息,即可获取导管的实时形状信息和导管所受到的实时应力信息。由于传感器能够感测到其所在位置处的位置信息和方向信息,即本发明中传感器感测的是绝对空间信息,不存在误差累积现象,因此,本发明基于所有的传感器所感测到的实时位置信息和实时方向信息,能够更加准确、更加简便地获取导管的实时形状信息以及导管所受到的实时应力信息,由此,根据导管的实时形状信息,能够为手术导航提供有利地依据,提高手术导航过程中的准确性;根据导管所受到的实时应力信息,能够为操作者提供参考,避免由于导管与解剖通道之间的相互作用力过大而引起的解剖通道被损伤或导管被损坏的现象的发生。
本发明提供的手术导航方法通过对预先获取的术前医学图像进行三维重建,以获取三维解剖模型,并根据三维解剖模型,规划到达病灶处的导航路径,同时采用上文的导管形状与力感知方法,获取导管 进入解剖通道后的形状信息,并根据导管进入解剖通道后的形状信息和三维解剖模型,获取世界坐标系与三维解剖模型坐标系之间的空间映射关系,最后即可根据世界坐标系与三维解剖模型坐标系之间的空间映射关系,按照导航路径,控制导管进行运动,直至导管的末端到达病灶处,完成手术过程中的导航。由于本发明提供的手术导航方法中是采用上文的导管形状与力感知方法,获取导管进入解剖通道后的形状信息,并根据导管进入解剖通道后的形状信息和三维解剖模型,获取世界坐标系与三维解剖模型坐标系之间的空间映射关系,从而可以确保所获取的世界坐标系与三维解剖模型坐标系之间的空间映射关系的准确性,进而可以确保手术导航的准确性,进一步保证导管的末端能够顺利达到病灶处,以顺利完成手术。
本发明通过先根据所获取的导管形状指令,获取导管的期望形状参考量;并根据安装于导管上的各个传感器所感测到的当前位置信息和当前方向信息,获取导管的当前形状参考量;再根据导管的期望形状参考量和当前形状参考量,计算控制补偿量;最后再根据控制补偿量,控制导管进行相应运动。由此可见,本发明能够有效实现对导管的形状的闭环控制,以使得导管的形状能够达到期望形状,从而可以保证介入手术的顺利进行。此外,由于本发明中的传感器能够感测到其所在位置处的位置信息和方向信息,即本发明中传感器感测的是绝对空间信息,不存在误差累积现象,因此,本发明基于各个传感器所感测到的实时位置信息和实时方向信息,能够更加准确、更加简便地获取导管的当前形状参考量,从而可以进一步提高导管形状的控制精度。
由于本发明提供的介入手术系统、电子设备和存储介质与上文的导管形状与力感知方法或手术导航方法或导管形状控制方法属于同一发明构思,因此本发明提供的介入手术系统、电子设备和存储介质具有上文的导管形状与力感知方法或手术导航方法或导管形状控制方法的所有优点,故不再对本发明提供的介入手术系统、电子设备和存储介质所具有的优点进行展开说明。
另外,在本文各个实施方式中的各功能模块可以集成在一起形成一个独立的部分,也可以是各个模块单独存在,也可以两个或两个以上模块集成形成一个独立的部分。
上述描述仅是对本发明较佳实施方式的描述,并非对本发明范围的任何限定,本发明领域的普通技术人员根据上述揭示内容做的任何变更、修饰,均属于本发明的保护范围。显然,本领域的技术人员可以对本发明进行各种改动和变型而不脱离本发明的精神和范围。这样,倘若这些修改和变型属于本发明及其等同技术的范围之内,则本发明也意图包括这些改动和变型在内。

Claims (15)

  1. 一种导管形状与力感知方法,其特征在于,所述导管沿其长度方向安装有多个传感器,所述传感器用于感测其所在位置处的位置信息和方向信息,所述方法包括:
    获取每一所述传感器所感测到的实时位置信息和实时方向信息;
    根据所有的所述传感器所感测到的实时位置信息和实时方向信息,获取所述导管的实时形状信息和所述导管所受到的实时应力信息。
  2. 根据权利要求1所述的导管形状与力感知方法,其特征在于,所述根据所有的所述传感器所感测到的实时位置信息和实时方向信息,获取所述导管的实时形状信息,包括:
    针对每一所述传感器,根据该传感器和与其相邻的邻传感器所感测到的实时位置信息和实时方向信息,重构该传感器和与其相邻的邻传感器之间的导管段所对应的实时圆弧曲线,根据所述实时圆弧曲线所对应的圆弧长度和圆弧半径以及所述传感器所感测到的实时位置信息和实时方向信息,获取该传感器所在导管横截面上的中性点的实时位置信息,所述中性点为该传感器和与其相邻的邻传感器之间的导管段所对应的弯曲平面与该传感器所在导管横截面上的中性层之间的交点;
    依次连接所有的所述中性点,以获取所述导管所对应的实时形状曲线,从而获取所述导管的实时形状信息。
  3. 根据权利要求2所述的导管形状与力感知方法,其特征在于,所述获取该传感器所在导管横截面上的中性点的实时位置信息,包括:
    根据该传感器和与其相邻的邻传感器之间的导管段的原始长度和所述实时圆弧曲线所对应的圆弧长度,获取该传感器和与其相邻的邻传感器之间的导管段的平均应变;
    根据所述平均应变以及所述实时圆弧曲线所对应的圆弧半径,获取该传感器所在导管横截面上的中性点所对应的圆弧半径;
    根据所述中性点所对应的圆弧半径以及所述实时圆弧曲线所对应的圆弧半径,获取该传感器到该传感器所在导管横截面上的中性层之间的距离;根据该传感器到该传感器所在导管横截面上的中性层之间的距离、该传感器在所述导管横截面上的安装位置信息、以及所述传感器所感测到的实时位置信息和实时方向信息,获取该传感器所在导管横截面上的中性点的实时位置信息。
  4. 根据权利要求1所述的导管形状与力感知方法,其特征在于,所述根据所有的所述传感器所感测到的实时位置信息和实时方向信息,获取所述导管所受到的实时应力信息,包括:
    针对每一所述传感器,根据该传感器和与其相邻的邻传感器所感测到的实时位置信息和实时方向信息,重构该传感器和与其相邻的邻传感器之间的导管段所对应的实时圆弧曲线;
    根据该传感器和与其相邻的邻传感器之间的导管段的原始长度和所述实时圆弧曲线所对应的圆弧长度,获取该传感器和与其相邻的邻传感器之间的导管段的平均应变;
    根据该传感器和与其相邻的邻传感器之间的导管段所对应的拉伸刚度以及所述平均应变,获取该传感器和与其相邻的邻传感器之间的导管段所受到的平均应力。
  5. 一种手术导航方法,其特征在于,包括:
    对预先获取的术前医学图像进行三维重建,以获取三维解剖模型;
    根据所述三维解剖模型,规划到达病灶处的导航路径;
    采用权利要求1至4中任一项所述的导管形状与力感知方法,获取所述导管进入解剖通道后的形状信息;
    根据所述导管进入解剖通道后的形状信息和所述三维解剖模型,获取世界坐标系与三维解剖模型坐标系之间的空间映射关系;
    根据所述世界坐标系与三维解剖模型坐标系之间的空间映射关系,按照所述导航路径,控制所述导管进行运动,直至所述导管的末端到达所述病灶处。
  6. 一种导管形状控制方法,其特征在于,所述导管沿其长度方向安装有多个传感器,所述传感器用于感测其所在位置处的位置信息和方向信息,所述导管形状控制方法包括:
    根据所获取的导管形状指令,获取所述导管的期望形状参考量;
    根据各个所述传感器所感测到的当前位置信息和当前方向信息,获取所述导管的当前形状参考量;
    根据所述导管的期望形状参考量和当前形状参考量,计算控制补偿量;
    根据所述控制补偿量,控制所述导管进行相应运动。
  7. 根据权利要求6所述的导管形状控制方法,其特征在于,所述导管内穿设有多根导丝,所述导 丝的近端与一驱动装置相连,所述导丝的远端与所述导管的末端相连,在所述驱动装置的作用下,所述导丝能够伸长和缩短,以使得所述导管的末端沿至少一个方向弯曲;
    所述根据所述控制补偿量,控制所述导管进行相应运动,包括:
    根据所述控制补偿量,计算各根导丝的目标长度;
    根据各根导丝的目标长度和当前长度,计算该根导丝所对应的当前步导丝位移量,根据该根导丝所对应的当前步导丝位移量,控制对应的所述驱动装置进行相应运动。
  8. 根据权利要求7所述的导管形状控制方法,其特征在于,所述根据所获取的导管形状指令,获取所述导管的期望形状参考量,包括:
    根据所获取的导管形状指令,获取所述导管的期望曲率半径;
    所述根据各个所述传感器所感测到的当前位置信息和当前方向信息,获取所述导管的当前形状参考量,包括:
    根据各个所述传感器所感测到的当前位置信息和当前方向信息,获取所述导管的当前曲率半径;
    所述根据所述导管的期望形状参考量和当前形状参考量,计算控制补偿量,包括:
    根据所述导管的期望曲率半径和当前曲率半径,计算所述控制补偿量。
  9. 根据权利要求8所述的导管形状控制方法,其特征在于,所述根据各个所述传感器所感测到的当前位置信息和当前方向信息,获取所述导管的当前曲率半径,包括:
    针对除位于所述导管的末端的最后一个传感器或者位于所述导管的近端的第一个传感器以外的每一个所述传感器:
    根据该传感器和与其相邻的邻传感器所感测到的当前位置信息和当前方向信息,重构该传感器和与其相邻的邻传感器之间的导管段所对应的圆弧曲线;
    根据所述导管段的原始长度和所述圆弧曲线的圆弧长度,获取所述导管段的平均应变;
    根据所述平均应变以及所述圆弧曲线的圆弧半径,获取所述导管段的中性层所对应的当前弯曲半径;
    将所述导管段的中性层所对应的当前弯曲半径,作为所述导管段的当前曲率半径。
  10. 根据权利要求7所述的导管形状控制方法,其特征在于,所述根据所述控制补偿量,计算各根导丝的目标长度,包括:
    针对除位于所述导管的末端的最后一个传感器或者位于所述导管的近端的第一个传感器以外的每一个所述传感器:
    根据该传感器和与其相邻的邻传感器之间的导管段所对应的控制补偿量,计算所述导管段所对应的圆弧曲线的圆弧半径的目标变化率;
    根据所述导管段所对应的圆弧曲线的圆心角以及所述圆弧半径的目标变化率,计算所述导管段所对应的圆弧曲线的圆弧长度的目标变化率;
    根据所述导管段所对应的圆弧曲线的圆弧长度的目标变化率,计算各根导丝在所述导管段的长度的目标变化率;
    根据各根导丝在所述导管段的长度的目标变化率,计算各根导丝在所述导管段的目标长度;以及
    针对每一根导丝,计算该根导丝在各个导管段的目标长度的总和,以获取该根导丝的目标长度。
  11. 根据权利要求10所述的导管形状控制方法,其特征在于,所述计算各根导丝在该导管段的长度的目标变化率,包括:
    针对每一根导丝:
    根据该根导丝与所述导管段的中性层之间的距离、所述导管段所对应的传感器与所述中性层之间的距离以及所述导管段所对应的圆弧曲线的圆弧长度的目标变化率,计算该根导丝的长度的目标变化率。
  12. 一种介入手术系统,其特征在于,包括通信连接的机器人和控制器,所述机器人包括台车和安装于所述台车上的机械臂,所述机械臂的末端用于安装导管,所述导管沿其长度方向安装有多个传感器,所述控制器被配置用于实现权利要求1至4中任一项所述的导管形状与力感知方法或者权利要求5所述的手术导航方法或者权利要求6至11中任一项所述的导管形状控制方法。
  13. 根据权利要求12所述的介入手术系统,其特征在于,所述传感器偏离所述导管的中心线设置;所述介入手术系统还包括与所述控制器通信连接的显示装置,所述显示装置用于显示所述导管的实时形状或当前形状和/或所述导管在解剖通道中的实时位置或当前位置。
  14. 一种电子设备,其特征在于,包括处理器和存储器,所述存储器上存储有计算机程序,所述 计算机程序被所述处理器执行时,实现权利要求1至4中任一项所述的导管形状与力感知方法或者权利要求5所述的手术导航方法或者权利要求6至11中任一项所述的导管形状控制方法。
  15. 一种可读存储介质,其特征在于,所述可读存储介质内存储有计算机程序,所述计算机程序被处理器执行时,实现权利要求1至4中任一项所述的导管形状与力感知方法或者权利要求5所述的手术导航方法或者权利要求6至11中任一项所述的导管形状控制方法。
PCT/CN2023/079551 2022-03-23 2023-03-03 导管形状与力感知方法、手术导航方法和介入手术系统 WO2023179339A1 (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN202210293574.7A CN114668502B (zh) 2022-03-23 2022-03-23 导管形状与力感知方法、手术导航方法和介入手术系统
CN202210293581.7A CN114848144B (zh) 2022-03-23 2022-03-23 导管形状控制方法、介入手术系统、电子设备和存储介质
CN202210293581.7 2022-03-23
CN202210293574.7 2022-03-23

Publications (1)

Publication Number Publication Date
WO2023179339A1 true WO2023179339A1 (zh) 2023-09-28

Family

ID=88099910

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/079551 WO2023179339A1 (zh) 2022-03-23 2023-03-03 导管形状与力感知方法、手术导航方法和介入手术系统

Country Status (1)

Country Link
WO (1) WO2023179339A1 (zh)

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103800017A (zh) * 2012-11-08 2014-05-21 上海微创电生理医疗科技有限公司 检测导管与组织之间的接触压力的装置和方法
CN104958824A (zh) * 2015-07-30 2015-10-07 湖南埃普特医疗器械有限公司 一种导引导管
US20160360951A1 (en) * 2014-03-24 2016-12-15 Olympus Corporation Bend shape estimation system, tubular insertion system, and bend shape estimation method of bend member
CN107789051A (zh) * 2016-08-30 2018-03-13 四川锦江电子科技有限公司 一种导管压力检测方法,以及对应的导管
CN109715037A (zh) * 2016-09-21 2019-05-03 直观外科手术操作公司 用于器械弯折检测的系统和方法
CN211723160U (zh) * 2019-06-12 2020-10-23 深圳惠泰医疗器械股份有限公司 冠状窦空间弯标测电极导管
CN113116475A (zh) * 2020-12-31 2021-07-16 杭州堃博生物科技有限公司 经导管的导航处理方法、装置、介质、设备与导航系统
CN113712674A (zh) * 2021-09-13 2021-11-30 上海微创医疗机器人(集团)股份有限公司 导管机器人及系统与控制方法、可读存储介质及电子设备
CN114668502A (zh) * 2022-03-23 2022-06-28 上海微创微航机器人有限公司 导管形状与力感知方法、手术导航方法和介入手术系统
CN114848144A (zh) * 2022-03-23 2022-08-05 上海微创微航机器人有限公司 导管形状控制方法、介入手术系统、电子设备和存储介质

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103800017A (zh) * 2012-11-08 2014-05-21 上海微创电生理医疗科技有限公司 检测导管与组织之间的接触压力的装置和方法
US20160360951A1 (en) * 2014-03-24 2016-12-15 Olympus Corporation Bend shape estimation system, tubular insertion system, and bend shape estimation method of bend member
CN104958824A (zh) * 2015-07-30 2015-10-07 湖南埃普特医疗器械有限公司 一种导引导管
CN107789051A (zh) * 2016-08-30 2018-03-13 四川锦江电子科技有限公司 一种导管压力检测方法,以及对应的导管
CN109715037A (zh) * 2016-09-21 2019-05-03 直观外科手术操作公司 用于器械弯折检测的系统和方法
CN211723160U (zh) * 2019-06-12 2020-10-23 深圳惠泰医疗器械股份有限公司 冠状窦空间弯标测电极导管
CN113116475A (zh) * 2020-12-31 2021-07-16 杭州堃博生物科技有限公司 经导管的导航处理方法、装置、介质、设备与导航系统
CN113712674A (zh) * 2021-09-13 2021-11-30 上海微创医疗机器人(集团)股份有限公司 导管机器人及系统与控制方法、可读存储介质及电子设备
CN114668502A (zh) * 2022-03-23 2022-06-28 上海微创微航机器人有限公司 导管形状与力感知方法、手术导航方法和介入手术系统
CN114848144A (zh) * 2022-03-23 2022-08-05 上海微创微航机器人有限公司 导管形状控制方法、介入手术系统、电子设备和存储介质

Similar Documents

Publication Publication Date Title
US11678813B2 (en) Systems and methods for deformation compensation using shape sensing
US11786311B2 (en) Systems and methods for non-rigid deformation of tissue for virtual navigation of interventional tools
US11452569B2 (en) Systems and methods for device-aware flexible tool registration
US20220133414A1 (en) Shape sensor systems with redundant sensing
US20230420107A1 (en) Systems and methods for filtering localization data
JP7213830B2 (ja) 画像誘導処置のためのレジストレーションシステム及び方法
US10376178B2 (en) Systems and methods for registration of a medical device using rapid pose search
CN114848144B (zh) 导管形状控制方法、介入手术系统、电子设备和存储介质
CN114668502B (zh) 导管形状与力感知方法、手术导航方法和介入手术系统
WO2021194850A1 (en) Mitigation of registration data oversampling
WO2023179339A1 (zh) 导管形状与力感知方法、手术导航方法和介入手术系统
CN117958968A (zh) 一种呼吸介入机器人的多源感知和运动控制方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23773590

Country of ref document: EP

Kind code of ref document: A1