WO2023036078A1 - 导管机器人及系统与控制方法、可读存储介质及电子设备 - Google Patents

导管机器人及系统与控制方法、可读存储介质及电子设备 Download PDF

Info

Publication number
WO2023036078A1
WO2023036078A1 PCT/CN2022/117016 CN2022117016W WO2023036078A1 WO 2023036078 A1 WO2023036078 A1 WO 2023036078A1 CN 2022117016 W CN2022117016 W CN 2022117016W WO 2023036078 A1 WO2023036078 A1 WO 2023036078A1
Authority
WO
WIPO (PCT)
Prior art keywords
catheter
flexible catheter
master
flexible
robot
Prior art date
Application number
PCT/CN2022/117016
Other languages
English (en)
French (fr)
Inventor
占雄
李自汉
张飘艺
王家寅
Original Assignee
上海微创微航机器人有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 上海微创微航机器人有限公司 filed Critical 上海微创微航机器人有限公司
Publication of WO2023036078A1 publication Critical patent/WO2023036078A1/zh

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B34/00Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
    • A61B34/30Surgical robots
    • A61B34/37Master-slave robots
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B34/00Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
    • A61B34/10Computer-aided planning, simulation or modelling of surgical operations
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B34/00Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
    • A61B34/20Surgical navigation systems; Devices for tracking or guiding surgical instruments, e.g. for frameless stereotaxis
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B34/00Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
    • A61B34/10Computer-aided planning, simulation or modelling of surgical operations
    • A61B2034/101Computer-aided simulation of surgical operations
    • A61B2034/105Modelling of the patient, e.g. for ligaments or bones
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B34/00Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
    • A61B34/20Surgical navigation systems; Devices for tracking or guiding surgical instruments, e.g. for frameless stereotaxis
    • A61B2034/2046Tracking techniques
    • A61B2034/2065Tracking using image or pattern recognition
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B34/00Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
    • A61B34/30Surgical robots
    • A61B2034/301Surgical robots for introducing or steering flexible instruments inserted into the body, e.g. catheters or endoscopes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B34/00Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
    • A61B34/30Surgical robots
    • A61B2034/302Surgical robots specifically adapted for manipulations within body cavities, e.g. within abdominal or thoracic cavities
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B34/00Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
    • A61B34/30Surgical robots
    • A61B2034/303Surgical robots specifically adapted for manipulations within body lumens, e.g. within lumen of gut, spine, or blood vessels

Definitions

  • the present application relates to the field of medical devices, in particular to a catheter robot, a catheter robot system, a readable storage medium, electronic equipment and a control method for the catheter robot.
  • a bronchoscope is a medical device inserted into the patient's lower respiratory tract through the mouth or nose, and is commonly used for observation of lung lobes, segmental and subsegmental bronchial lesions, biopsy sampling, and bacteriological and cytological examinations.
  • Using bronchoscope to perform alveolar lavage treatment and examination on the lower respiratory lobe where the lesion is located can effectively improve the detection rate and accuracy of infectious respiratory diseases.
  • the accuracy of nucleic acid detection of samples obtained through alveolar lavage of the lower respiratory tract is higher than that of specimens obtained by throat swab testing.
  • the use of bronchoscopic direct lung lavage therapy can also relieve lower airway symptoms.
  • Three-dimensional model display use medical images to reconstruct the three-dimensional anatomical model of the bronchi, and combine the real-time position and shape information of the catheter to display the relative spatial relationship between the two in real time. By observing the relative spatial relationship, the operator Make next catheter movement decisions.
  • bronchoscopic robots provide operators with master-slave control human-computer interaction devices, and rely on vision (such as endoscopes, three-dimensional anatomical structure models, visual markers, etc.) and experience operations to realize catheter movement control.
  • vision such as endoscopes, three-dimensional anatomical structure models, visual markers, etc.
  • the purpose of this application is to provide a catheter robot, a catheter robot system, a readable storage medium, electronic equipment and a control method for the catheter robot, which can enable the catheter robot to perform motion assistance Instructions are used to assist the operator to control the movement of the catheter, which can make the operation of the flexible catheter more flexible and convenient, as well as safer and more reliable.
  • a readable storage medium which stores a program, and when the program is executed, the following steps are performed: outputting a master-slave control command to a catheter robot; wherein, The catheter robot holds a flexible catheter; according to the determined movement information of the flexible catheter moving in the natural lumen, selectively output motion assistance instructions or master-slave control instructions for the catheter robot to use according to the received master-slave control instructions.
  • a control instruction or a movement assistance instruction controls the movement of the flexible catheter in the natural lumen; wherein the movement assistance instruction is used to adjust movement information of the flexible catheter based on the master-slave control instruction.
  • the movement information includes at least one of a current moving speed of the flexible conduit, a current position of the flexible conduit, and a current configuration of the flexible conduit.
  • the readable storage medium further includes performing at least one of the following steps: detecting whether the movement information meets a preset requirement, so as to obtain a corresponding detection result; wherein, the preset requirement is based on the movement information determined by at least one of the position, shape, and speed in the information and its judgment logic; When the flexible conduit is located on the same road section, a master-slave control instruction is output.
  • the movement information includes the shape of the flexible catheter at the current position; the selectively outputting the movement assistance instruction according to the determined movement information of the flexible catheter moving in the natural lumen includes: according to the flexible catheter Based on the difference between the shape of the current position and the natural shape of the natural cavity corresponding to the current position, a motion assistance instruction for adjusting the shape of the flexible catheter is generated; wherein the natural shape is based on the natural shape obtained in advance A three-dimensional anatomical model of the cavity was obtained.
  • the readable storage medium also pre-stores a navigation path, wherein the navigation path is obtained by using the three-dimensional anatomical structure model to simulate the natural shape of the natural cavity, and the motion assistance instruction is based on the The deviation between the position of the flexible catheter in the navigation path and the navigation path is obtained.
  • the movement assistance instruction is used to adjust the shape of the flexible catheter to change the curvature of its movement in the natural lumen; or the movement assistance instruction is used to adjust the shape of the flexible catheter to change its curvature in the natural lumen. towards.
  • the movement information includes the current movement speed of the flexible catheter; and according to the determined movement information of the flexible catheter moving in the natural lumen, selectively outputting the exercise assistance instruction includes: when the current movement speed When the preset value is exceeded, a motion assistance instruction including a moving speed lower than the current speed is generated to control the flexible catheter to reduce the moving speed.
  • the selectively outputting the movement assistance instruction according to the determined movement information of the flexible catheter moving in the natural lumen includes: detecting the current position and the current speed in the movement information to determine the flexibility of the catheter.
  • the catheter is ready to move towards one of the passage branches of the natural lumen; and detecting the angular deviation between the current shape in the movement information and the preset target orientation; wherein the target orientation indicates that the flexible catheter is aligned with the The corresponding path branch direction in the natural cavity; according to the angle deviation, output a motion assistance command for adjusting the current shape to align with the path branch direction, so as to control the flexible catheter to adjust the angle.
  • the detecting the current position and the current movement speed in the movement information includes: mapping the current position in the movement information to the model position in the pre-acquired three-dimensional anatomical structure model of the natural cavity and determining that the flexible catheter is close to one of the pathway branches according to the model position; detecting that the absolute value of the current moving speed in the moving information is less than a preset speed threshold; and detecting that the flexible catheter in the moving information
  • the current form of is branched towards one of the pathways under the control of the master-slave control instruction.
  • the selectively outputting motion assistance instructions or master-slave control instructions according to the determined movement information of the flexible catheter moving in the natural lumen includes: when it is detected that the flexible catheter is adjusted to the target orientation, , outputting a master-slave control command to make the flexible catheter enter the channel branch.
  • the selectively outputting the movement assistance instruction according to the determined movement information of the flexible catheter moving in the natural lumen includes: detecting the current position in the movement information to determine that the flexible catheter has entered One of the pathway branches of the natural orifice; and detecting a curvature deviation between the current shape in the movement information and the pathway branch; according to the curvature deviation, the output is used to adjust the current shape along the Motion assistance commands that describe the movement of the curvature of the path branch.
  • the detecting the current position in the movement information to determine that the flexible catheter has entered one of the pathway branches of the natural lumen includes: mapping the current position to a three-dimensional corresponding natural lumen In the anatomical structure model, to detect whether the flexible catheter is located at the curved section of the corresponding passage branch; wherein, the curvature is determined based on the bending degree of the curved section.
  • the curvature is determined based on the path curvature corresponding to the curved segment in the pre-acquired navigation path.
  • the selectively outputting motion assistance instructions or master-slave control instructions according to the determined movement information of the flexible catheter moving in the natural lumen includes: when it is detected that the flexible catheter moves to the passage branch After the straight line segment of , a master-slave control instruction is output to make the flexible catheter move along the branch of the passage.
  • a catheter robot which includes a communication-connected motion control device and a motion execution device;
  • the motion control device includes any one of the above-mentioned readable storage media and a processor ;
  • the processor is used to run the program in the readable storage medium to output motion assistance instructions or master-slave control instructions;
  • the motion execution device is configured to , controlling the movement of the flexible catheter in the natural lumen.
  • the motion execution device includes a posture adjustment unit and a shape adjustment unit;
  • the posture adjustment unit includes an adjustment arm, the adjustment arm has at least five degrees of freedom, and the end of the adjustment arm is connected to the flexible
  • the catheter is connected to drive the flexible catheter to move to adjust the position of the flexible catheter;
  • the shape adjustment unit includes a power box, the power box is arranged on the adjustment arm, and the power box is used to communicate with the flexible catheter.
  • the instrument box at the proximal end of the catheter is connected by transmission to adjust the shape of the flexible catheter.
  • the motion control device further includes a sensing unit; the sensing unit is configured to detect movement information of the flexible catheter when it moves in the natural lumen.
  • a catheter robot system including a master end and a slave end connected by communication, the master end includes an operation unit, and the slave end includes a catheter robot;
  • the terminal includes any one of the above-mentioned readable storage media and a processor; the operating unit is used to accept external instructions; the processor is used to convert the external instructions into master-slave control instructions, and convert the master-slave control instructions sent to the catheter robot.
  • the main end further includes a navigation device, configured to establish a three-dimensional anatomical model of the natural cavity according to medical image data, and create a navigation path simulating the natural shape of the natural cavity according to the three-dimensional anatomical model, so as to Provides a reference for flexible catheter movement.
  • a navigation device configured to establish a three-dimensional anatomical model of the natural cavity according to medical image data, and create a navigation path simulating the natural shape of the natural cavity according to the three-dimensional anatomical model, so as to Provides a reference for flexible catheter movement.
  • the navigation device includes an image display unit, and the image display unit includes a medical image display module, an endoscopic lens image display module and an animation display module;
  • the medical image display module is used to display the three-dimensional anatomical structure model
  • the endoscope lens image display module is used to display the image fed back by the endoscope, and the endoscope is arranged at the end of the flexible catheter;
  • the animation display module is used to display the flexible catheter in real time in a dynamic manner shape, and display the shape of the flexible catheter at the position corresponding to the three-dimensional anatomical structure model.
  • the operation unit is further configured to detect an enabling or disabling interaction command of the user, so as to control the catheter robot to allow or prohibit the corresponding output of the motion assistance command.
  • an electronic device including a processor and a memory
  • the memory includes any one of the above-mentioned readable storage media
  • the memory stores a program
  • the A program is for being executed by the processor.
  • a control method for a catheter robot wherein the catheter robot is used to control the movement of a flexible catheter, and the control method includes: acquiring to reflect the movement information of the flexible catheter moving in the space provided by the natural cavity; to detect the movement information according to the three-dimensional anatomical model of the natural cavity; to selectively output motion assistance according to the obtained detection results Instructions or master-slave control instructions for the catheter robot to drive the flexible catheter to move according to the master-slave control instruction or motion assistance instruction; wherein the motion assistance instruction is used to adjust the flexible catheter based on the master-slave control The movement information executed by the instruction.
  • the catheter robot, catheter robot system, readable storage medium, electronic equipment and control method for the catheter robot provided by the present application have the following advantages:
  • the catheter robot can switch back and forth between master-slave control and motion-assisted control , to realize the safe movement of the catheter in the space according to the operator's operation intention.
  • motion assistance can perform catheter operations corresponding to the operator's intention, thereby sharing the operator's decision-making and operation burden, making the operation more flexible and convenient, and motion assistance can avoid unsafe factors in the process of master-slave control, such as catheter movement Excessive speed and unreasonable bending of the catheter can easily damage the cavity wall.
  • the catheter robot can detect the movement information of the flexible catheter in real time during the master-slave control operation of the flexible catheter, such as shape, speed and shape. If the flexible catheter moves along the path to the fork in the bronchi, The catheter robot can assist in the operation so that the flexible catheter is aligned with the fork, or when the flexible catheter enters the straight line from the fork, the catheter robot can assist in the operation so that the flexible catheter can pass along the path near the branch of the bronchus, etc., so that the operation of the catheter is more convenient , but also more accurate, safe and reliable.
  • the catheter robot can assist in the operation so that the flexible catheter is aligned with the fork, or when the flexible catheter enters the straight line from the fork, the catheter robot can assist in the operation so that the flexible catheter can pass along the path near the branch of the bronchus, etc., so that the operation of the catheter is more convenient , but also more accurate, safe and reliable.
  • the catheter robot can follow the shape of the flexible catheter at the current position and its current position in the bronchi According to the difference between the natural forms of the bronchi, motion assistance instructions for adjusting the form are generated, so that the catheter robot assists the operator to control the movement of the flexible catheter, so that the flexible catheter can enter the straight section of the bronchi from the bifurcation quickly, smoothly and smoothly.
  • the catheter robot can assist the flexible catheter according to the operator's master-slave operation intention Align the next level of bifurcation, thereby reducing the operator's difficulty in operation and shortening the operation time, especially after the catheter robot assists in adjusting the orientation of the flexible catheter, the catheter robot can also actively exit the motion assistance mode according to the operator's master-slave operation intention, thereby It is more flexible and convenient to switch between motion assist mode and master-slave control mode.
  • Fig. 1 is the structural block diagram of the catheter robot system of the preferred embodiment of the present application.
  • Fig. 2 is a schematic diagram of the application scene of the catheter robot system in the preferred embodiment of the present application
  • Fig. 3 is a schematic structural view of a catheter robot in a preferred embodiment of the present application arranged on an operating trolley;
  • Fig. 4 is a schematic structural diagram of a navigation device in a preferred embodiment of the present application.
  • Fig. 5 is an overall flowchart of the catheter robotic system of the preferred embodiment of the present application.
  • Fig. 6 is a schematic diagram of creating the initial movement path of the flexible catheter on the three-dimensional anatomical structure model of the bronchus according to the preferred embodiment of the present application;
  • Fig. 7 is a schematic diagram of creating the first smooth navigation path on the three-dimensional anatomical structure model of the bronchus according to the preferred embodiment of the present application;
  • Fig. 8 is a schematic diagram of creating a second smooth navigation path on the three-dimensional anatomical structure model of the bronchi in a preferred embodiment of the present application;
  • Fig. 9a is a state diagram of the comparative embodiment of the present application assisting the movement of the flexible catheter through the initial path;
  • Fig. 9b is a state diagram of assisting the movement of the flexible catheter through a smooth navigation path according to the preferred embodiment of the present application.
  • Fig. 10 is a flow chart of registering the three-dimensional anatomical structure model of the bronchi with the patient's lung characteristics according to the preferred embodiment of the present application;
  • Fig. 11 is a flow chart of the flexible catheter assisted movement in the preferred embodiment of the present application.
  • Fig. 12 is a schematic diagram of the human-computer interaction interface of the preferred embodiment of the present application.
  • Fig. 13 is a schematic diagram of the operation principle of adjusting the curvature of the preferred embodiment of the present application.
  • Fig. 14 is a flow chart of adjusting curvature in a preferred embodiment of the present application.
  • Fig. 15 is a schematic diagram of the operation principle of adjusting the orientation of the preferred embodiment of the present application.
  • Fig. 16 is a flow chart of orientation adjustment in a preferred embodiment of the present application.
  • Fig. 17 is a schematic diagram of estimating the bending shape of a flexible catheter through three points according to a preferred embodiment of the present application.
  • Fig. 18 is a schematic diagram of estimating the bending shape of a flexible catheter by using point sequence information of a shape sensor according to a preferred embodiment of the present application.
  • 100-motion control device 101-processing unit; 102-sensing unit; 1021-magnetic field generator; 1022-magnetic sensor; 103-storage unit; 200-navigation device; 201-image display unit; 202-medical image display module ; 203-endoscopic lens image display module; 204-animation display module; 205-image trolley; 206-human-computer interaction interface; 207-first button; 208-second button; Posture adjustment unit; 3011-adjustment arm; 3012-moving joint; 302-morphology adjustment unit; 400-operating trolley; 500-patient bed; 600-sensing unit support structure;
  • S0-initial path S1-first smooth navigation path
  • S2-second smooth navigation path S1-first smooth navigation path
  • the features defined as “first” and “second” may explicitly or implicitly include one or at least two of these features.
  • the terms “tip” or “distal end” generally refer to the end remote from the operator of the instrument.
  • the following embodiments take the bronchus as an anatomical structure example to further elaborate the present application, but it should be understood that the present application is not limited to the bronchus, such as other anatomical structures, such as the intestinal tract or stomach, and other anatomical structures.
  • Fig. 1 shows a structural block diagram of a catheter robot system in a preferred embodiment of the present application.
  • this embodiment provides a catheter robot system, which includes a master end and a slave end connected by communication.
  • the master end and the slave end can be configured with separate computing devices, or share the same computing device.
  • the main end includes an operating unit, and further includes a navigation device 200; the operating unit is used to accept external instructions; the main end also includes a readable storage medium and a processor; the processor of the main end is used to use the external
  • the instruction is converted into a master-slave control instruction, and the master-slave control instruction includes motion information and a master-slave mapping relationship.
  • the slave end includes a catheter robot, and the processor at the master end sends the master-slave control instructions to the catheter robot.
  • the catheter robot includes a motion control device 100 and a motion execution device 300 connected in communication.
  • the motion control device 100 includes a readable storage medium and a processor, and the processor of the motion control device 100 is used to run the program in the readable storage medium to output motion assistance instructions or master-slave control instructions.
  • the motion implementing device 300 controls the flexible catheter 10 of the catheter robot to move in the natural lumen according to the received master-slave control instruction or motion assistance instruction.
  • the natural lumen is, for example, the bronchi.
  • the processor of the motion control device 100 is configured to output a master-slave control instruction according to the motion information sent by the processor at the master end and the preset master-slave mapping relationship, so as to control the motion execution device 300 to execute the master-slave Control instructions to drive the flexible catheter 10 to move in the natural lumen.
  • the motion control device 100 controls the motion implementing device 300 to drive the flexible catheter 10 to move according to the obtained moving speed of the operating unit, and controls the motion implementing device 300 to drive the flexible catheter 10 according to the obtained rotation angle or rotation speed of the operating unit.
  • the catheter 10 rotates, and the motion actuator 300 can be controlled to drive the flexible catheter 10 to bend according to the acquired bending angle or bending direction of the operating unit.
  • the operator and the master end are preferably located in different rooms from the slave end to achieve physical isolation between the operator and the patient.
  • Both the master terminal and the slave terminal can also be separated in different hospitals and different regions, and communicated and connected through remote communication technology.
  • the operator completes the required surgical operation according to the image information collected by the endoscope in another room, another hospital or another city, and the motion implementing device 300 reproduces the operation of the operator. All actions, thereby realizing the physical isolation between the operator and the patient during the operation.
  • the operation unit is used to receive position commands, shape commands, and/or speed commands from the operator, and feed back position information, shape information, and/or speed information to the catheter robot through the processor at the main end.
  • the shape is also called posture, turning angle, etc., and is used to represent the angle of the end of the catheter in a coordinate system, or the deflection angle relative to the initial posture, etc.
  • the catheter robot is specifically configured to perform master-slave mapping calculation on the received position information, shape information, and/or velocity information to output master-slave control instructions
  • the master-slave control instructions may include the desired position of the end of the flexible catheter , shape, and/or speed, and accordingly control the motion actuator 300 to drive the flexible catheter 10 to move to the desired position according to the desired speed and/or position, and make the end of the flexible catheter 10 reach the desired posture and posture in the natural lumen form.
  • the present application has no particular limitation on the type and size of the flexible catheter 10 .
  • the end of the flexible catheter 10 is provided with an endoscope, and the endoscope is used to acquire images in the natural cavity, and can further feed back to the navigation device 200 .
  • the end of the flexible catheter 10 is also provided with a magnetic sensor for providing position information in a magnetic field environment, which can be further fed back to the navigation device 200 .
  • Fig. 2 shows a schematic diagram of an application scenario of a catheter robot system according to a preferred embodiment of the present application.
  • the slave end further includes a surgical trolley 400 .
  • the motion implementing device 300 includes an adjustment arm 3011 , which is set on the operating trolley 400 .
  • the large-scale movement of the catheter robot in the operating room can be realized through the operating trolley 400, making the operation process more convenient.
  • the secondary end may also include other auxiliary equipment, such as a hospital bed 500 , which is responsible for supporting and adjusting the height of the patient 20 .
  • the main terminal implements surgery on the patient 20 on the hospital bed 500 through the operating unit, such as minimally invasive surgery.
  • the navigation device 200 is configured to generate a three-dimensional anatomical model of the natural cavity according to preoperative medical image data, and to The anatomical structure model plans the navigation path to the lesion site (such as a lung nodule).
  • the operator's operation information on the operation unit is converted into a master-slave control instruction for the end of the flexible catheter, and transmitted to the motion control device 100, the motion control device 100
  • a driving signal is output to the movement implementing device 300, so that the movement implementing device 300 controls the movement mode of the flexible catheter 10 in the natural lumen according to the master-slave control instruction.
  • the operator can operate according to the navigation path, so that the flexible catheter 10 moves in the natural lumen along the planned navigation path.
  • the operator can operate according to the pair of images provided by the endoscope, so that the endoscope can provide images of the flexible catheter 10 at the same position and in different directions in the natural lumen.
  • the operator can control the flexible catheter 10 in various ways.
  • the space provided by the natural orifices of the human body is complex, such as the bronchi with numerous branches and complex structural curves.
  • the operator uses the master-slave control mapping relationship to operate the flexible catheter 10 during the movement process. Whether using the endoscope at the end of the flexible catheter to observe the local scene inside the natural cavity or controlling the posture of the end of the flexible catheter by means of the navigation path, there are Problems such as improper speed of movement of the catheter tip, or loss of control of the direction.
  • the image provided by the endoscope may be located in the turning space section of the natural lumen, and its field of view is limited, and the operator cannot know the space of the turning space section of the natural lumen corresponding to the current position of the flexible catheter. This makes it difficult for the operator to quickly make the best or correct catheter movement decision during the operation of the flexible catheter, resulting in problems such as jamming, blockage and direction control failure of the flexible catheter 10 during movement.
  • the catheter robot of the present application has a motion-assisted mode in addition to a master-slave control mode.
  • the catheter robot controls the moving mode of the flexible catheter 10 in the natural lumen according to the master-slave control instruction; in the motion assistance mode, the catheter robot controls the flexible catheter 10 according to the motion assistance instruction. The way the catheter 10 moves in the natural lumen.
  • the present application provides a control method for a catheter robot.
  • control method can be executed by the motion control device 100 in the catheter robot, and the joint operation of the motion control device 100 and the motion execution device 300 can be used to control and operate the end of the flexible catheter; it can also be controlled by the main end of the navigation robot system
  • the computer equipment in the system executes through the information interaction with the catheter robot.
  • the motion control device 100 outputs master-slave control instructions to the motion execution device 300; and selectively outputs A movement assistance instruction or a master-slave control instruction, for the movement implementing device 300 to control the movement of the flexible catheter in the natural lumen according to the received master-slave control instruction or movement assistance instruction; wherein, the movement assistance instruction and used for adjusting movement information performed by the flexible conduit based on the master-slave control instruction.
  • the master end performs the following steps: output master-slave control instructions to the catheter robot; and selectively output motion according to the determined movement information of the flexible catheter moving in the natural lumen Auxiliary instructions or master-slave control instructions, for the catheter robot to control the movement of the flexible catheter in the natural lumen according to the received master-slave control instructions or motion assistance instructions; wherein, the motion assistance instructions are used to adjust Movement information performed by the flexible conduit based on the master-slave control instruction.
  • the motion control device 100 in the catheter robot converts the received master-slave control instruction or motion assistance instruction into a master-slave control instruction or motion assistance instruction that can be recognized by the motion implementing device 300 .
  • the above movement information is the movement information of the end of the flexible catheter 10, and the movement information may include one or more information of the current moving speed, current position, and current shape of the flexible catheter.
  • the movement information may be provided by a sensor disposed at the end of the flexible catheter, or calculated according to the driving data of the catheter robot driving the catheter to move.
  • the movement information also known as the first movement information
  • the movement information reflects the information that the end of the flexible catheter moves according to the operation of the operator
  • the movement information also known as the second movement information
  • the flexibility Information on the movement of the tip of the catheter under the control of the motion control device 100 .
  • the catheter robot can switch back and forth between the master-slave control mode and the motion-assisted mode, wherein the motion-assisted mode can be executed to match the operator's intention and
  • the movement of the end of the flexible catheter conforms to the catheter operation of the navigation path, thereby sharing the burden of decision-making and operation of the operator, making the operation more flexible and convenient, and the motion-assisted mode can avoid unsafe factors in the process of master-slave control mode, such as flexible catheter Excessive moving speed and unreasonable bending of the catheter cause damage to the cavity wall of the natural cavity, etc., making the operation process safer and more reliable.
  • the catheter robot can detect the movement information of the flexible catheter 10 in real time, such as posture, speed and other movement information. If the flexible catheter 10 is moving along the navigation path When moving to a bifurcation (also called a bifurcation) of the natural cavity, the catheter robot can assist the doctor to align the flexible catheter 10 with the bifurcation, or when the flexible catheter 10 enters the straight section of the natural cavity from the bifurcation, the catheter robot can also It can assist the doctor to operate, so that the flexible catheter 10 can pass along the planned navigation path near the road section including the bifurcation in the natural cavity and smoothly enter the straight section, which makes the operation of the flexible catheter more convenient, and more accurate, safe and reliable.
  • the catheter robot can assist the doctor to align the flexible catheter 10 with the bifurcation, or when the flexible catheter 10 enters the straight section of the natural cavity from the bifurcation, the catheter robot can also It can assist the doctor to operate, so that the flexible catheter 10 can pass along the planned navigation path near the road section including the bifurcation in the natural cavity
  • the operator controls the rotation of the end of the flexible catheter in a master-slave mode. Such an operation may trigger the switching condition of the motion assistance mode of the motion control device 100 .
  • the motion control device 100 determines to output when the flexible catheter 10 is located on the same road section according to the number of alternations of the exercise assistance instruction and the master-slave control instruction generated by the flexible catheter 10 on the same road section. Master-slave control instructions, that is, output master-slave control instructions according to the number of alternations.
  • the flexible catheter 10 moves in the space provided by the bronchus under the control of the catheter robot. , or located: according to the position marked with lesions or suspected lesions in the three-dimensional anatomical model, it is mapped to the corresponding position of the bronchus, and the doctor can observe the information of the corresponding position through the image provided by the endoscope, so as to facilitate the doctor to accurately diagnose the patient. diagnosis. For this reason, when the catheter robot detects that the movement information of the end of the catheter meets the switching conditions according to the master-slave control command, it turns into the motion assistance mode and outputs the motion assistance command to adjust the shape of the end of the flexible catheter.
  • the catheter robot After the adjustment, it again Turn into the master-slave control mode to receive the operator's control. This kind of reciprocating switching will be repeated multiple times on the same road section according to the doctor's needs.
  • the catheter robot detects the position and speed in the movement information, and the above-mentioned number of alternations reaches the condition of giving up switching, the catheter robot controls the shape of the end of the flexible catheter in the master-slave control mode until the detected position in the movement information, The speed does not meet the above conditions for abandoning the switch.
  • the motion control device 100 judges whether the first movement information meets preset requirements; if not, the motion control device 100 outputs a motion assistance instruction according to the first movement information; if If so, the motion control device 100 controls the motion implementing device 300 to drive the flexible catheter 10 to move in the natural lumen according to the master-slave control instruction. In this way, the catheter robot can be informed of the status of the flexible catheter in time, and the motion assistance mode can be turned on in time, further improving the flexibility and convenience of the catheter robot.
  • the preset requirement is a switching logic set according to an operator's operation mode for determining whether to switch the master-slave control mode to the sports assistance mode.
  • the preset requirement is related to at least one of position, shape, and speed in the movement information and its corresponding judgment logic.
  • the preset requirements include at least a location and its corresponding location judgment logic.
  • the motion control device 100 determines to switch from the master-slave control mode to the motion assistance mode to improve the posture accuracy of the movement of the end of the catheter; or by detecting The position of the end of the catheter in the natural lumen is located in the straight section of the natural lumen, and the motion control device 100 switches from the motion assistance mode to the master-slave control mode, so that the operator can flexibly adjust the moving speed of the end of the catheter.
  • the motion control device 100 determines to switch from the master-slave control mode to the motion assistance mode.
  • the motion control device determines to switch from the master-slave control mode to the motion assistance mode.
  • the motion control device switches to the master-slave control mode after outputting the motion assistance instruction.
  • the motion control device maintains the motion assistance mode under preset duration conditions and/or road section conditions, and switches to the master-slave control mode when the above switching conditions are not met.
  • the catheter robot detects the current pose of the flexible catheter 10 when it moves in the bronchi, obtains the shape of the flexible catheter 10 at the current position according to the current pose, and generates adjustments based on the shape of the flexible catheter at the current position Movement of the flexible catheter morphology assists commands to adjust the flexible catheter 10 to a target configuration.
  • the above first movement information includes the shape of the flexible catheter at the current position
  • the second movement information includes the target shape of the flexible catheter at the current position.
  • the motion control device 100 is configured to generate motion assistance instructions for adjusting the shape of the flexible catheter according to the difference between the shape of the flexible catheter 10 at the current position and the natural shape of the natural lumen corresponding to the current position.
  • the motion implementing device 300 can control the flexible catheter 10 according to the target shape from the bifurcation into the straight section and move in the natural lumen according to the motion assistance instruction of the shape.
  • the movement of the flexible catheter 10 is more in line with the natural shape of the natural cavity during the operation, and it can pass through the natural cavity of the human body to reach the lesion site (such as a pulmonary nodule) more quickly, smoothly and smoothly, and reduce the impact of the catheter on the natural cavity. contact or friction, reduce the accidental injury to the natural orifice during the treatment process, and reduce the risk of surgery.
  • the navigation device 200 performs path planning on the basis of the three-dimensional anatomical structure model of the natural lumen for the target lesion (such as the target pulmonary nodule), so as to create an initial path (such as a broken line) for the movement of the flexible catheter 10 .
  • the initial path is generally along the centerline of the true natural orifice, such as along the centerline of the bronchi.
  • the motion control device 100 smoothes the planned initial path, so that the planned path is more in line with the natural shape of the real bronchi. Because the smoothed path more truly reflects the natural shape of the natural cavity, and the tangential direction changes continuously, the direction and speed of the flexible catheter can be optimized by using this information, thereby assisting the movement of the flexible catheter. That is to say, the natural shape of the natural orifice is obtained based on a pre-acquired three-dimensional anatomical structure model of the natural orifice.
  • the motion control device 100 includes a processing unit 101 and a sensing unit 102 . Further, the processing unit 101 is communicatively connected with the navigation device 200 .
  • the processing unit 101 includes a processor and a storage medium, and is used for smoothing the initial path to obtain a smooth navigation path.
  • the navigation path is used to simulate the natural shape of the real natural orifice (the natural shape is the real shape).
  • the sensing unit 102 can detect movement information of the flexible catheter 10 when it moves in the natural lumen.
  • the processing unit 101 can also generate an exercise assistance instruction corresponding to the movement information according to the first movement information.
  • the sensing unit 102 can obtain the current posture of the flexible catheter 10 in the bronchi, and then the processing unit 101 can learn the shape of the flexible catheter 10 at the current position according to the current posture of the flexible catheter 10 ( Including the bending shape), and then compare the shape of the flexible catheter 10 at the current position with the natural shape of the real natural orifice, and if the shape difference is large, generate a motion assistance command corresponding to the shape adjustment.
  • the motion implementing device 300 is connected in communication with the processing unit 101, and is used to control the flexible catheter 10 according to the motion assistance instruction corresponding to the adjustment of the shape, so as to adjust the shape of the flexible catheter 10 at the current position to the target shape, so that the flexible catheter 10 can Enter the next position of the natural orifice (such as the next bronchial bifurcation or straight segment of the bronchi) with the target configuration.
  • the motion assistance instruction corresponding to the adjustment of the shape
  • the motion control device 100 also includes a storage unit 103 .
  • the storage unit 103 is used for storing information, such as storing various programs, and storing movement information provided by the sensing unit 102 . More specifically, the information stored in the storage unit 103 includes path smoothing calculation programs, navigation paths, real-time acquired movement information, and the like.
  • the processing unit 101 retrieves corresponding information by accessing the storage unit 103 .
  • the motion implementing device 300 may specifically include a pose adjustment unit 301 and a shape adjustment unit 302 .
  • the posture adjustment unit 301 includes an adjustment arm 3011, the end of the adjustment arm 3011 is connected to the flexible catheter 10, and is used to drive the flexible catheter 10 to adjust the position of the flexible catheter 10, so that the flexible catheter 10 can enter the human body at a suitable angle .
  • the present application does not limit the structure of the adjustment arm 3011.
  • the adjustment arm 3011 is a mechanical arm with at least five degrees of freedom.
  • the adjustment arm 3011 can also be a mechanical arm with more than five degrees of freedom, such as six degrees of freedom or seven degrees of freedom.
  • the adjustment arm 3011 can be actively controlled or passively controlled.
  • “Active control” means that the driving device of the catheter robot, such as a driving motor, drives the adjustment arm 3011 to move.
  • Passive control refers to manually driving the adjustment arm 3011 to move.
  • the end of the adjustment arm 3011 is provided with a movable joint 3012 (see FIG. 2 ), and the flexible conduit 10 is detachably arranged on the movable joint 3012 .
  • the moving joint 3012 is mainly responsible for pushing the flexible catheter 10 deep into the lung bronchi of the human body, and retracting the flexible catheter.
  • the shape adjustment unit 302 includes a power box, and the power box is set on the adjustment arm 3011 , specifically, it can be set on the moving joint 3012 .
  • the power box is in driving connection with the instrument box at the proximal end of the flexible catheter 10 .
  • the power box outputs power, and the instrument box adjusts the shape of the flexible catheter 10 after receiving the power output by the power box.
  • the morphology includes bending curvature and bending direction. Specifically, the power box outputs power through the traction motor to control the transmission wire in the instrument box to drive the distal end of the flexible catheter 10 to bend, thereby realizing the adjustment of the shape of the flexible catheter 10 .
  • Fig. 3 shows a schematic structural view of a catheter robot in a preferred embodiment of the present application arranged on an operating trolley.
  • the sensing unit 102 and the adjusting arm 3011 are both arranged on the operating trolley 400 .
  • the sensing unit 102 is a magnetic sensing device, specifically including a magnetic field generator 1021 and a magnetic sensor 1022; the magnetic field generator 1021 is set on the operating trolley 400 and is set independently from the adjustment arm 3011;
  • the magnetic sensor 1022 is arranged on the flexible conduit 10, and there are at least three magnetic sensors 1022 arranged at intervals in the axial direction of the flexible conduit 10; the magnetic field generator 1021 is used to generate a magnetic field, thereby determining the flexibility according to the position of the magnetic sensor 1022 in the magnetic field.
  • the current position and configuration of the catheter 10 primarily determines the current position and configuration of the actively bendable portion 12 of the flexible catheter 10 .
  • the catheter robotic system may further include a sensing unit support structure 600 disposed on the operating trolley 400 , and the magnetic field generator 1021 is disposed at the end of the sensing unit support structure 600 .
  • the sensing unit supporting structure 600 is composed of several movable joints, and is used to adjust the position of the magnetic field generator 1021, so as to adjust the position of the magnetic field before the operation, and use the magnetic field generated by it and the magnetic sensor near the end of the flexible catheter to Position the catheter tip in the natural lumen.
  • the endoscope at the end of the catheter and the structural pattern projected by the light source can also be used to implement a catheter positioning solution designed based on structured light technology and a three-dimensional anatomical structure model.
  • the hardware structure of magnetic sensing technology or structured light technology is easy to integrate, the calculation process is convenient, and it is easy to implement.
  • the flexible catheter 10 generally includes two parts, namely a proximal passive bendable part 11 and a distal active bendable part 12 (also known as the end of the catheter, the end of the flexible catheter, etc.).
  • the active bendable part 12 is controlled by the catheter robot, which can realize free bending in space.
  • the passive bendable part 11 is not controlled by the catheter robot, and can be bent according to the natural shape of the natural cavity where it is located.
  • An endoscope (not shown) is provided at the end of the active bendable part 12, and the endoscope is used to take internal images of the natural cavity.
  • the driving wire of the instrument box is connected to the active bendable part 12 to change the shape of the active bendable part 12, and the sensing unit 102 is also used to sense the shape of the active bendable part 12 of the flexible catheter 10 in real time. mobile information.
  • the processing unit 101 compares the shape of the active bendable part 12 at the current position with the natural shape of the natural cavity corresponding to the current position, and generates a motion assistance command for adjusting the shape of the catheter according to the difference between the two, so that
  • the shape adjustment unit 302 controls the flexible catheter according to the motion assistance instruction, and adjusts the shape of the active bendable part 12 at the current position to the target shape.
  • the motion assistance instruction for adjusting the shape of the catheter is obtained according to the deviation between the position of the flexible catheter in the navigation path and the navigation path.
  • Fig. 4 shows the structure of the navigation device of the preferred embodiment of the present application.
  • the navigation device 200 includes an image display unit 201, and the image display unit 201 is responsible for displaying information such as system interface programs and input controls, and can specifically display endoscopic images and three-dimensional anatomical structure models of the bronchi.
  • the shape of the catheter at the current position corresponding to the three-dimensional anatomical structure model can be dynamically displayed in real time.
  • the software interface of the image display unit 201 is displayed in modules, for example, it may include a medical image display module 202 , an endoscopic lens image display module 203 and an animation display module 204 .
  • the medical image display module 202 is responsible for displaying the three-dimensional anatomical structure model of the natural cavity reconstructed from the preoperative medical image, and can also display the preoperatively planned navigation path and other information.
  • the endoscope lens image display module 203 is responsible for displaying in real time the images captured by the endoscope module inside natural lumens such as bronchi.
  • the animation display module 204 is responsible for displaying the shape of the flexible catheter 10 (that is, the shape of the active bendable part 12) in real time in a dynamic manner, and displaying the shape of the flexible catheter on the corresponding position of the three-dimensional anatomical structure model.
  • the catheter robotic system further includes an image trolley 205 on which the image display unit 201 is disposed, and the image trolley 205 is used to realize the large-scale movement of the navigation device 200 in the operating room.
  • the main end or the catheter robot is further configured to determine whether to execute the state of the motion assistance mode according to an external instruction.
  • the state of executing the sports assistance mode includes enabling the sports assistance mode and disabling the sports assistance mode.
  • the catheter robot receives an external command to enable the motion assistance function
  • the catheter robot is allowed to turn on the motion assistance mode to selectively output the motion assistance instruction; on the contrary, when the catheter robot receives an instruction to disable the motion assistance function
  • the catheter robot does not turn on the motion assistance mode, and does not output the motion assistance command.
  • the catheter robot drives the flexible catheter according to the master-slave control command.
  • the operation unit is used to detect the enabling or disabling interaction instruction of the user, so as to control the catheter robot to allow or prohibit outputting the motion assistance instruction correspondingly.
  • the operation unit includes a human-computer interaction interface 206, preferably the human-computer interaction interface 206 is integrated with the image display unit 201 of the navigation device 200, so that the execution is determined through the human-computer interaction interface 206 of the image display unit 201
  • the state of the sports assistance mode enables the operator to independently choose whether to enable the sports assistance function.
  • the human-computer interaction interface 206 can receive an instruction from an operator to generate an instruction to activate the motion assistance function. Further, the human-computer interaction interface 206 displays text prompt information, the text prompt information is used to prompt "whether to enable the exercise assistance" function, and a first button 207 and a second button 208 are set below the text prompt information.
  • an instruction to enable the motion assistance function is sent to the catheter robot, so that the catheter robot turns on the motion assistance mode, so that the catheter robot is allowed to selectively output the motion assistance instruction; otherwise, when the second button 208 is triggered, Send an instruction to disable the motion assistance function to the catheter robot, so that the catheter robot does not turn on the motion assistance mode and executes the master-slave control mode. Further, when the first button 207 is triggered, the catheter robot is configured to lock the master-slave control mode, so that the catheter robot will not be falsely triggered to perform master-slave control.
  • Fig. 5 shows the workflow of the catheter robotic system in a preferred embodiment of the present application.
  • This example uses the natural lumen as an example to illustrate the working process of the catheter robotic system.
  • the catheter robot utilizes the channels provided by other natural lumens
  • the working method performed in the space is similar to this and will not be described in detail here.
  • the workflow is mainly executed by computer equipment, wherein, for the convenience of description, a catheter robot system is used to represent the execution process of the master end, the slave end, and the coordination between the master end and the slave end.
  • the described workflow includes the following steps:
  • Step S1 Create a three-dimensional anatomical model of the bronchi, generate an initial path, and smooth the initial path to generate a navigation path.
  • the navigation device 200 reconstructs the three-dimensional anatomical model of the patient's bronchial structure and pulmonary nodule lesions based on medical image data such as CT or MRI scanned before the operation; then, the navigation device 200 plans out
  • the flexible catheter 10 moves from the main airway to the initial path of the pulmonary nodule focus; then, the motion control device 100 smoothes the initial path to generate a smooth navigation path.
  • Step S2 Register the three-dimensional anatomical structure model of the bronchi with the actual anatomical structure.
  • the reconstructed three-dimensional anatomical model is not limited to CT scan data, and in other embodiments, the three-dimensional anatomical model can also be reconstructed according to image data scanned by other image scanning devices. Therefore, the present application makes no special limitation on the source of the image data.
  • the flexible catheter 10 it is necessary to insert the flexible catheter 10 into the bronchus before the operation, and with the assistance of the sensing unit 102, extract at least three feature points of the patient's lungs to facilitate the registration of the three-dimensional anatomical model.
  • the feature points on the 3D anatomical model of the bronchus can be registered with the actual feature points extracted from the patient's lungs, so as to establish the relationship between the 3D anatomical model of the bronchi and the real bronchi. associated.
  • Step S3 Select whether to enable the sports assistance mode.
  • the operator can control whether to enable the motion assistance mode through the man-machine interface 206 .
  • the human-computer interaction interface 206 can be configured in an operation unit (also known as a human-computer interaction device).
  • Step S4 After the exercise assistance mode is turned on, detect the movement information of the flexible catheter 10 during the movement in the bronchi in the master-slave control mode;
  • the current pose (including position and configuration) of the flexible catheter 10 as it moves within the bronchi is detected.
  • the position and configuration of the flexible catheter 10 can be obtained by detecting the shape of the flexible catheter 10 such as a shape sensor.
  • the shape sensor is, for example, sensors distributed within a length of the flexible conduit to provide discrete positions and shapes within the length.
  • the position and shape of the flexible catheter can be obtained by detecting the position of the flexible catheter 10 such as a magnetic sensor.
  • Step S5 Selectively output a motion assistance instruction or a master-slave control instruction according to the movement information.
  • step S5 usually the catheter robot needs to judge whether the movement information meets the preset requirements, and if not, it generates a motion assistance instruction according to the movement information.
  • the preset requirements include the moving speed of the flexible conduit, the shape of the flexible conduit, the position of the flexible conduit, and the like.
  • the catheter robot system first determines the current position of the flexible catheter in the bronchi, and then determines whether to execute the motion assistance mode according to the position of the flexible catheter in the bronchial segment. If the catheter robot system determines that the current shape of the flexible catheter needs to be adjusted in time, it generates a corresponding Morphology-adjusted motion-assisted instructions to adjust the shape of the flexible catheter so that the flexible catheter follows a smooth navigation path from the bifurcation of the bronchi to the straight segment. The processing unit 101 compares the shape of the flexible catheter at the current position obtained in step S4 with the natural shape of the bronchi where it is located.
  • the processing unit 101 If the curvature deviation between the two is not within the threshold, the processing unit 101 generates an exercise assistance command corresponding to shape adjustment. Specifically, the processing unit 101 compares the shape of the active bendable part 12 at the current position with the tangent direction of the position corresponding to the natural shape of the bronchus, and if the curvature deviation between the two is not within the threshold, the processing unit 101 generates an exercise assistance command corresponding to the shape adjustment .
  • the catheter robotic system first determines the current position of the flexible catheter in the bronchi and the current moving speed of the flexible catheter. If the moving speed of the flexible catheter at the current position is close to 0 or equal to 0, it means that the operator’s current intention is to Consider making the best catheter movement decision to adjust the posture of the catheter, such as the orientation, so that the catheter can smoothly enter the next-level access branch of the bronchial bifurcation. Corresponding to the motion assistance command for posture adjustment, the orientation of the flexible catheter is adjusted so that the end of the flexible catheter is aligned with the lower-level bronchial bifurcation.
  • the catheter robot system can also generate motion assistance instructions containing a movement speed lower than the current movement speed when the current movement speed of the flexible catheter exceeds a preset value, so that the motion implementing device 300 can control the flexible catheter according to the movement assistance instruction of the movement speed.
  • Step S6 Control the flexible catheter to move in the bronchi according to the second movement information according to the motion assistance instruction.
  • the second movement information may include the orientation, shape and speed of the flexible catheter, and the speed may include magnitude and direction, such as advancing and bending.
  • the navigation device 200 plans an initial path S0 .
  • the initial path S0 is a polyline formed by sequentially connecting the starting point P0, several bifurcation points P1, P2, P3, P4 and the target point P5.
  • the present application has no requirement on the number of bifurcation points.
  • the number of bifurcation points is usually consistent with or less than the number of bifurcation points of the bronchi, and the number of bifurcation points is not less than 3.
  • the starting point P0 is the starting position of the catheter movement
  • the target point P5 is the end position of the catheter movement.
  • FIG. 6 shows four branch points P1, P2, P3, P4 on the initial route S0.
  • the initial path S0 is non-smooth and cannot reflect the natural shape of the real bronchi, so it needs to be smoothed. There are various ways to smooth the initial path S0.
  • only the navigation paths near the bifurcation points P1, P2, P3, and P4 can be locally smoothed, while the navigation paths farther away from the bifurcation points P1, P2, P3, and P4 can be smoothed.
  • the straight line shape of the initial path S0 is retained, and then the retained initial path S0 and the smoothed path are subjected to local smooth curve fitting, and finally the first smooth navigation path S1 is obtained.
  • the dotted line in FIG. 7 is the straight line portion of the initial path S0, and the solid line is the path portion after local smoothing.
  • the fitting curve passes through all bifurcation points P1 , P2 , P3 , and P4 , and of course also passes through the starting point P0 and the target point P5 .
  • cubic spline curves, multi-segment arc curves, etc. can be used for fitting, so as to obtain the second smooth navigation path S2.
  • Fig. 9a shows the state of the auxiliary flexible catheter moving under the initial path S0
  • Fig. 9b shows the state of the auxiliary flexible catheter moving under the smoothed navigation path.
  • Figures 9a and 9b show the difference between smooth front and rear paths for flexible catheter motion assistance near the bifurcation point P3, and the arrow at point P3 indicates the forward direction of the flexible catheter movement.
  • This application compares the possible movement of the flexible catheter guided by the initial path S0 and the smoothed navigation path (S2 or S1). After comparison, it can be seen that when the flexible catheter 10 moves along the initial path S0 in Fig. 9a, as indicated by the arrow, the end of the flexible catheter travels in the direction of an abrupt change in speed and the risk of hitting the bronchial wall, so it cannot be used for motion assistance; while the flexible catheter 10 When moving along the smoothed navigation path in Figure 9b, as indicated by the arrow, the navigation path is along the extension direction of the bronchi, and the velocity direction is continuous and smooth. Therefore, using this direction as a reference can assist the operator to control the flexibility. The catheter 10 passes through the bifurcation point P3 safely and quickly.
  • the catheter robotic system can assist the doctor in catheter operation according to the navigation path, so that when the flexible catheter moves along the path, for example, the catheter can pass through the fork near the fork of the bronchus along the navigation path, and avoid hitting the bronchial tissue. risk.
  • step S1 is the preparatory work that needs to be completed before the operation. After completing the smoothing of the preoperative planning path, at the beginning of the operation, it is necessary to register the three-dimensional anatomical structure model of the bronchi with the actual characteristics of the patient's lungs.
  • Figure 10 shows a flow chart of the registration process provided by the preferred embodiment of the present application, which mainly includes the following steps:
  • Step S11 including step S11-1 and step S11-2.
  • Step S11-1 extracting feature points of the patient's lungs.
  • the sensor inside the flexible catheter 10 picks up the position of the feature point of the patient's lung (the position of the feature point of the patient's lung is usually the position of the bifurcation of the extracted bronchus and the position of the target pulmonary nodule).
  • the number of feature points extracted from the patient's lungs should not be less than 3. It should be understood that the feature points of the anatomical structure correspond to the positions of the bifurcations, and feature points can be easily extracted at the positions of the bifurcations.
  • Step S11-2 extracting feature points on the three-dimensional anatomical structure model of the bronchus, specifically extracting the position of a bifurcation point on the three-dimensional anatomical structure model of the bronchi.
  • Step S12 Using the feature point method to register the three-dimensional anatomical structure model of the bronchus and the patient's lungs, and generate a registration matrix.
  • the registration method can easily realize the registration of the three-dimensional anatomical structure model of the bronchus and the patient's lungs according to the registration method based on feature points in the known technology, and generate a registration matrix, so this application The registration process will not be described in more detail, and those skilled in the art should know how to realize the registration of the two and how to obtain the registration matrix.
  • Step S13 After the registration matrix is generated, the registration of the three-dimensional anatomical model of the patient's lungs and bronchi is completed.
  • the registration process establishes a mapping relationship between the patient's lungs and the 3D anatomical model of the bronchus.
  • the smooth path generated based on the 3D anatomical model of the bronchi ie, the reference navigation path
  • the first situation is: the flexible conduit 10 enters the straight section of the corresponding path branch from the curved section of the bifurcation of the bronchi. If it is adjusted, it is easy to make the end of the catheter squeeze against the bronchial wall of the curved section, hinder the movement of the catheter, and even damage the bronchial wall or the catheter itself.
  • the catheter robot detects that the movement information at the end of the catheter meets the switching conditions, and then adjusts the curvature of the active bendable part 12 by switching to the motion-assisted mode, so that its advancement is more in line with the shape of the bronchi and smoother; it should be understood that in this case, The catheter robot directly controls the bending shape of the flexible catheter according to the motion assistance instruction, while ignoring the master-slave control instruction at the master end. At this time, the master-slave control mode is preferably locked.
  • the second situation is: the flexible catheter 10 enters the curved section of the bifurcation area of the bronchus from the straight section of the bronchus, and the operator uses master-slave operation to align one of the bifurcations of the bronchus. Try, the operation time is long, so it is necessary to automatically adjust the orientation of the flexible catheter through the catheter robot to quickly align with the next bifurcation; Adjust the orientation of the flexible catheter under the auxiliary command, and ignore the master-slave control command of the master end. When the end of the flexible catheter is aligned with the next bifurcation, the catheter robot continues to execute the master-slave control command to control the movement of the flexible catheter 10 .
  • the catheter robot system of the present application mainly controls the posture and shape of the flexible catheter 10 according to the master-slave control instructions, but when necessary, the catheter robot system ignores the master-slave control instructions and executes motion assistance instructions to assist the doctor to adjust the shape of the flexible catheter 10 , to improve the safety of the operation, share the work of the operator, and shorten the operation time.
  • the motion assistance mode of the catheter robot includes a curvature adjustment mode (that is, adjusting the curvature in the motion assistance mode) and orientation adjustment. mode (that is, adjust the orientation in sports assist mode).
  • the motion control device 100 can selectively execute one of the curvature adjustment mode and the orientation adjustment mode according to the current position of the flexible catheter 10 in the bronchi.
  • the motion control device 100 is configured to: when it is determined according to the movement information that the end of the flexible catheter 10 enters a straight section (also known as trunk lumen, or straight section or pathway), choose to execute the motion assistance mode to control the bending shape of the flexible catheter 10; and when it is determined that the end of the flexible catheter enters the transition cavity When walking, choose to execute the motion assistance mode to control the orientation of the flexible catheter 10 .
  • a straight section also known as trunk lumen, or straight section or pathway
  • Fig. 11 shows a flow chart of motion assistance of the catheter robot system according to the preferred embodiment of the present application.
  • the motion assistance mode selection process starts in step S20.
  • a prompt may be displayed on the human-computer interaction interface 206 of the image display unit 201 whether to enable motion assistance; if Select to enable exercise assistance in step S22, then enter step S24; if disable exercise assistance, then preferably enter the exercise safety protection function in step S23;
  • the movement posture of the catheter 10 in the bronchus is used for safety protection.
  • the movement posture of the flexible catheter 10 includes at least the moving speed. For example, when the speed detection device detects that the speed of the flexible catheter 10 is too fast, the catheter robot system actively controls the flexible catheter 10 to reduce the moving speed, and ignores the master-slave control instruction.
  • the motion control device 100 When the motion assisting function is turned on, the motion control device 100 enters into the motion assisting mode, and the processing unit 101 judges the position of the bronchi where the active bendable part 12 is currently located according to the information (current position and current speed) detected by the sensing unit 102.
  • step S24 is used to determine whether the end of the catheter enters the straight section of the bronchus; if the end of the catheter is near the bifurcation and is entering the straight section of the bronchi, then go to step S25 to adjust the curvature, thereby passing the shape adjustment unit 302 Adjust the curvature of the active bendable part 12 in real time to adapt to changes in the curvature of the bronchi, so that the active bendable part 12 enters the straight section of the bronchus smoothly and smoothly; Fork (that is, it is determined to move to one of the bronchial pathway branches), then the flow goes to step S26 to adjust the orientation, and the shape adjustment unit 302 controls the adjustment to the current shape of the flexible catheter so that the orientation of the active bendable part 12 is as follows: Align the end of the catheter with the next bifurcation to assist the operator in positioning.
  • the output is used to adjust the current Morphologically, the direction of the branch of the passage is aligned with the auxiliary command to control the angle adjustment of the flexible catheter; wherein the target orientation indicates that the flexible catheter is aligned with the direction of the corresponding branch of the passage in the bronchi.
  • detecting the current position and the current movement speed in the movement information includes: mapping the current position of the flexible catheter to the model position in the pre-acquired three-dimensional anatomical structure model of the bronchi; and determining the position according to the model
  • the flexible conduit is close to one of the pathway branches; detecting that the absolute value of the current moving speed of the flexible conduit is less than a preset speed threshold; and detecting that the current shape of the flexible conduit is heading towards one of the pathways under the control of a master-slave control instruction branch.
  • the motion optimization command i.e., the auxiliary motion command
  • the motion optimization command is sent to the shape adjustment unit 302, so that the shape adjustment unit 302 performs motion optimization in step S28 command, allowing smoother and more fluid movement of the flexible catheter 10 in the bronchi, or quick alignment of bifurcations to shorten procedure time.
  • Fig. 13 shows the operation principle diagram of the operation curvature adjustment of the preferred embodiment of the present application, wherein the implementation process of the suggested curvature when the end of the catheter enters the straight line from the bronchial bifurcation point.
  • three equally spaced discrete time points (t1, t1+ ⁇ t and t1+2 ⁇ t) are selected as an example for illustration.
  • the solid line a1) of the active bendable part 12 is at the bifurcation point.
  • the bending curvature of the active bendable part 12 is locally maximum; as the catheter is pushed down, it gradually enters a straight line segment, and the curvature of the bronchi gradually changes.
  • the active bendable part 12 needs to gradually become straight; at the time t1+ ⁇ t, the curvature of the active bendable part 12 (dotted line a2) is smaller than that at the time t1; further at the time t1+2 ⁇ t, the active bendable part 12 ( The curvature of the dotted line a3) is smaller than that at time t1+ ⁇ t; accordingly, when the active bendable part 12 completely enters the straight segment of the bronchi, it is basically in a straight state.
  • the shape adjustment unit 302 can gradually adjust the curvature of the active bendable part 12 according to the current posture of the catheter end, so that the curvature gradually decreases, so as to enter the straight section of the bronchi smoothly and smoothly.
  • the motion control device 100 outputs a master-slave control command to move the flexible catheter 10 along the path branch.
  • FIG. 14 shows the curvature adjustment process of the preferred embodiment of the present application, including:
  • Step S31 the processing unit 101 judges the position of the end of the catheter in the bronchi according to the information detected by the sensor (ie, the sensing unit 102);
  • Step S32 The processing unit 101 obtains the latest position of the catheter at the current position according to the current position of the catheter end (or catheter head) in the bronchus and the distance between the catheter end and the previous bifurcation point (ie, the upper-level anatomical structure). Excellent curvature (i.e. the current optimal curvature of the catheter);
  • Step S33 The processing unit 101 inversely solves the driving parameters (i.e., the target motion parameters) of the catheter bending from the optimal curvature.
  • the driving parameters include information such as the motor rotation angle, the length of the traction wire in the catheter, and the unit catheter bending angle;
  • Step S34 Finally, send the driving parameters to the motion execution device 300 for execution, and the motion execution device 300 drives the flexible catheter 10 to move according to the driving parameters, so as to adjust the bending form of the catheter in the current pose to the target bending form.
  • c_max is the maximum curvature of the bronchial centerline near the bifurcation point
  • L is the length of the active bendable part 12
  • x is the distance from the end of the catheter to the last bifurcation point
  • c(x) is the optimal curvature of the catheter.
  • the inverse kinematics algorithm is used to solve the motor rotation angle, the length of the traction wire in the catheter, and the bending angle of the unit catheter. It should also be known that the above optimal curvature can also be obtained from the curvature of the smoothed navigation path at the current position of the catheter, so it is not limited to obtain the optimal curvature through the above algorithm.
  • selectively outputting the motion assistance instruction includes: detecting the current position in the movement information to determine that the flexible catheter has entered the natural lumen.
  • One of the pathway branches of the natural orifice and detecting the curvature deviation between the current shape in the movement information and the pathway branch; according to the curvature deviation, the output is used to adjust the current shape to follow the Motion assistance commands for curvature movement of pathway branches.
  • detecting the current position in the movement information to determine that the flexible catheter has entered one of the pathway branches of the natural lumen includes: mapping the current position to a three-dimensional anatomical structure model corresponding to the natural lumen , to detect whether the flexible conduit is located at the curved section of the corresponding passage branch; wherein, the curvature is determined based on the degree of curvature of the curved section. Further, the curvature is determined based on the path curvature corresponding to the curved segment in the pre-acquired navigation path.
  • Fig. 15 shows a schematic diagram of the operation principle of the orientation adjustment mode of the preferred embodiment of the present application.
  • Figure 15 shows the flexible catheter 10 (only the active bendable part 12 is shown) within the preset range before entering a certain bronchial orifice at the P3 bifurcation point, as shown by the dotted circle, the possible orientation trials, They are respectively indicated by the dotted line O1, the dotted line O2 and the solid line O3 in FIG. 15 .
  • O3 represents the possible optimal orientation, which is determined by the natural extension direction of the bronchus where the catheter is located. As mentioned above, this direction is considered to coincide with the smoothed path direction.
  • the motion control device 100 is configured to: detect whether the movement information meets preset requirements, so as to obtain corresponding detection results; wherein, the preset requirements are based on the position and shape in the movement information , and at least one of speed is determined by the corresponding judgment logic.
  • the motion control device 100 obtains the current position, shape and current moving speed of the flexible catheter 10 in the bronchi according to the movement information; judges according to the preset switching conditions: the current position is located near a bifurcation section to be selectively entered into the bronchi, If the current moving speed is close to 0, and the current shape deviates towards any branch path, switch to the motion assistance mode, and output a motion assistance command for aiming at the next branch of the bronchi.
  • the catheter robot is also configured to execute a master-slave control mode when at least one of the three conditions is not satisfied.
  • FIG. 16 shows the flow of the orientation adjustment mode in the preferred embodiment of the present application, which specifically includes:
  • step S41 the catheter robot judges whether the current forward speed of the flexible catheter is close to zero. If so, the catheter robot determines that the operator is not currently controlling the catheter master-slave, but may be thinking about the adjustment strategy of the catheter; continue to judge steps S42 and S43.
  • Step S42 is to determine that the posture of the flexible catheter is being fine-tuned by the master-slave control, and the posture of the flexible catheter is always facing the target bifurcation.
  • Step S43 is to determine that the end of the flexible catheter is close to the target bifurcation or target inlet; when the flexible catheter meets the conditions in steps S42 and S43, the catheter robot assists in adjusting the direction of the catheter so that the end of the catheter is aligned with the target bronchial inlet.
  • the catheter robotic system can set a predefined space area C, which can be spherical, cubic, ellipsoidal, conical, etc., when the processing unit 101 determines that the end of the catheter enters the When the spatial area is predefined, it is determined that the position of the end of the catheter is close to the target bifurcation.
  • the catheter robot when assisting in adjusting the orientation of the catheter, the catheter robot makes auxiliary adjustments to the orientation of the catheter while ignoring the master-slave control instructions, and actively adjusts the orientation of the catheter to the optimal orientation. Further, it can give visual prompts on the display interface of the master terminal (or Exclusive sound prompt for motion assistance), which has given the operator a boost and the current catheter has been assisted to adjust to the optimal orientation.
  • step S45 can be used to further determine the intention of the operator, that is, after the flexible catheter 10 is adjusted to the target orientation, the catheter robot system continues to judge whether the posture of the flexible catheter occurs If there is a change, the catheter robot system exits the orientation adjustment mode and executes the master-slave control mode, and the catheter robot system continues to control the flexible catheter access path branch according to the master-slave control instruction.
  • the catheter robot can obtain the motion information of the operating unit from the master end to further judge the master-slave adjustment posture of the catheter. If it is determined that the master end is continuously master-slave changing the catheter posture, the catheter robot exits the orientation adjustment mode and continues to execute The master-slave control command enters into a loop in the orientation adjustment mode, and waits for the next switching condition trigger to start the orientation adjustment mode again.
  • the curvature adjustment mode or the orientation adjustment mode is related to the position of the end of the catheter, and is determined by considering the difference between the shape of the end of the catheter and the natural shape of the corresponding position of the natural lumen.
  • the shape of the catheter may be provided by movement information, and the natural shape is obtained based on a pre-acquired three-dimensional anatomical structure model of the natural lumen.
  • at least three position sensors P1, P2 and P3 i.e. magnetic sensors
  • the relative positions of the three position sensors are arbitrary but cannot Coincidence, and then estimate the bending curvature of the active bendable part 12 (considered to be bent into a circular arc) by the three-point method.
  • A x1(y2-y3)-y1(x2-x3)+x2y3-x3y2;
  • c is the bending curvature
  • r is the radius of curvature
  • the radius of curvature r of the actively bendable portion 12 can be calculated using the point sequence information of the shape sensor and the least square method. Specifically, an optional implementation manner is:
  • (x c , y c ) is the coordinates of the center of the circle; P1, P2, P3, P4, ..., Pn are point columns; N is the number of point columns, and there are at least three point columns.
  • the embodiment of the present application also provides a readable storage medium, on which a program is stored, and when the program is executed, all the steps performed by the aforementioned motion control device 100 are executed.
  • the present application also provides an electronic device, including a processor and a memory, where the memory includes the readable storage medium.
  • a program is stored on the readable storage medium, and the program is used to be executed by the processor to execute all the steps performed by the motion control device 100 .
  • the present application also provides a control method for a catheter robot, including: obtaining movement information reflecting the movement of the flexible catheter in the space provided by the natural lumen; The movement information is detected; according to the obtained detection results, selectively output motion assistance instructions or master-slave control instructions for the catheter robot to drive the flexible catheter to move according to the master-slave control instructions or motion assistance instructions; wherein, The movement assistance instructions are used to adjust movement information of the flexible catheter based on the master-slave control instructions.
  • the so-called processor can be a central processing unit (Central Processing Unit, CPU), and can also be other general-purpose processors, digital signal processors (Digital Signal Processor, DSP), application specific integrated circuits (Application Specific Integrated Circuit, ASIC), off-the-shelf Programmable gate array (Field-Programmable Gate Array, FPGA) or other programmable logic devices, discrete gate or transistor logic devices, discrete hardware components, etc.
  • the general-purpose processor may be a microprocessor or any conventional processor, etc.
  • the processor is the control center of the electronic device, and uses various interfaces and lines to connect various parts of the entire electronic device.
  • the memory may be non-volatile and/or volatile memory.
  • the non-volatile memory may include read-only memory (ROM), programmable ROM (PROM), electrically programmable ROM (EPROM), electrically erasable programmable ROM (EEPROM), variable resistance memory (ReRAM) , Phase Change Memory (PCRAM) or Flash Memory (Flash Memory).
  • Volatile memory can include random access memory (RAM), registers, or cache.
  • RAM is available in many forms such as Static RAM (SRAM), Dynamic RAM (DRAM), Synchronous DRAM (SDRAM), Double Data Rate SDRAM (DDRSDRAM), Enhanced SDRAM (ESDRAM), Synchronous Chain Synchlink DRAM (SLDRAM), memory bus (Rambus) direct RAM (RDRAM), direct memory bus dynamic RAM (DRDRAM), and memory bus dynamic RAM (RDRAM), etc.
  • SRAM Static RAM
  • DRAM Dynamic RAM
  • SDRAM Synchronous DRAM
  • DDRSDRAM Double Data Rate SDRAM
  • ESDRAM Enhanced SDRAM
  • SLDRAM Synchronous Chain Synchlink DRAM
  • Rambus direct RAM
  • DRAM direct memory bus dynamic RAM
  • RDRAM memory bus dynamic RAM
  • the present application has no special limitation on the type of the processing unit, which may be hardware that performs logical operations, such as a single-chip microcomputer, a microprocessor, a programmable logic controller (PLC, Programmable Logic Controller) or a field programmable logic gate array (FPGA, Field-Programmable Gate Array), or software programs, functional modules, functions, object libraries (Object Libraries) or dynamic link libraries (Dynamic-Link Libraries) that realize the above functions based on hardware. Or, a combination of the above two.
  • PLC programmable logic controller
  • FPGA Field-Programmable Gate Array

Landscapes

  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Surgery (AREA)
  • Robotics (AREA)
  • Biomedical Technology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Medical Informatics (AREA)
  • Molecular Biology (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Manipulator (AREA)

Abstract

本申请涉及一种导管机器人及系统与控制方法、可读存储介质及电子设备,导管机器人包括通信的运动控制装置和运动执行装置;运动控制装置包括可读存储介质和处理器,所述处理器运行可读存储介质中的程序,当所述程序被运行时执行:向导管机器人输出主从控制指令;其中,所述导管机器人持有柔性导管;根据经确定的柔性导管在自然腔道内移动的移动信息,选择性输出运动辅助指令或主从控制指令,以供导管机器人根据所接收的主从控制指令或运动辅助指令,控制柔性导管在自然腔道内移动;其中,所述运动辅助指令用于调整柔性导管基于主从控制指令而执行的移动信息。本申请可使柔性导管操作更为灵活和方便,也更为安全和可靠。

Description

导管机器人及系统与控制方法、可读存储介质及电子设备 技术领域
本申请涉及医疗器械领域,特别涉及一种导管机器人、导管机器人系统、可读存储介质、电子设备以及用于导管机器人的控制方法。
背景技术
支气管镜是一种经口或鼻置入患者下呼吸道的医疗器械,常用于做肺叶、段及亚段支气管病变的观察、活检采样、细菌学和细胞学检查。利用支气管镜对病灶所在下呼吸道肺叶进行肺泡灌洗治疗和检查,可以有效提高传染性呼吸道疾病的检出率与准确度。特别对于呼吸道传染病、肺癌早期等疾病,常集中于下呼吸道,通过下呼吸道肺泡灌洗所获取的标本的核酸检测准确度高于咽拭子检测所获取的标本。而利用支气管镜直接对肺部进行的灌洗治疗也可缓解下呼吸道的症状。
支气管镜诊治过程大多利用医学影像信息辅助支气管镜运动。目前利用医学影像信息辅助支气管镜运动(或导航)主要有两种形式:
(1)视觉标记:利用基于医学影像生成的支气管中心线(非光滑的折线)辅助支气管镜运动,并在图像导航中,利用支气管分岔处设置视觉标记,以实时提醒操作者下一步的路径选择;
(2)三维模型显示:利用医学影像重建出支气管的三维解剖结构模型,并结合导管实时的位姿和形状信息,实时显示两者之间的相对空间关系,通过观察该相对空间关系,操作者做出下一步的导管运动决策。
支气管镜机器人大多为操作者提供可主从控制的人机交互装置,并凭借视觉(如内窥镜、三维解剖结构模型、视觉标记等)与经验操作,实现导管运动控制。但是,在主控操作过程中,容易出现因操作者的主动操作而导致映射到导管末端行为出现异常。比如在弯曲的空间内导管末端受主从控制而产生姿态异常等。
发明内容
为了解决现有技术中所存在的技术问题,本申请的目的在于提供一种导管机器人、导管机器人系统、可读存储介质、电子设备以及用于导管机器人的控制方法,能够使导管机器人执行运动辅助指令来辅助操作者操控导管运动,可使柔性导管操作更为灵活和方便,也更为安全和可靠。
为实现上述目的,根据本申请的第一个方面,提供一种可读存储介质,存储有程序,当所述程序被运行时执行以下的步骤:向一导管机器人输出主从控制指令;其中,所述导管机器人持有柔性导管;根据经确定的所述柔性导管在自然腔道内移动的移动信息,选择性输出运动辅助指令或主从控制指令,以供所述导管机器人根据所接收的主从控制指令或运动辅助指令,控制所述柔性导管在所述自然腔道内移动;其中,所述运动辅助指令用于调整所述柔性导管基于所述主从控制指令而执行的移动信息。
可选地,所述移动信息包括柔性导管的当前移动速度、柔性导管的当前位置以及柔性导管的当前形态中的至少一种。
可选地,所述可读存储介质还包括执行以下步骤至少一种:检测所述移动信息是否符合预设要求,以得到相应的检测结果;其中,所述预设要求是基于与所述移动信息中的位 置、形态、速度中的至少一种及其判断逻辑而确定的;以及,根据所述柔性导管在同一路段所产生的运动辅助指令与主从控制指令的交替次数,确定在所述柔性导管位于所述同一路段期间,输出主从控制指令。
可选地,所述移动信息包括柔性导管在当前位置的形态;所述根据经确定的所述柔性导管在自然腔道内移动的移动信息,选择性输出运动辅助指令,包括:根据所述柔性导管在当前位置的形态与所述自然腔道对应当前位置的自然形态之间的差异,生成用于调整所述柔性导管形态的运动辅助指令;其中,所述自然形态是基于预先获取的所述自然腔道的三维解剖结构模型得到的。
可选地,所述可读存储介质还预存储一导航路径,其中,所述导航路径是利用所述三维解剖结构模型而模拟自然腔道的自然形态得到的,所述运动辅助指令是根据所述柔性导管在所述导航路径中的位置与所述导航路径之间的偏差得到的。
可选地,所述运动辅助指令用于调整柔性导管形态以改变其在所述自然腔道内移动的曲率;或者所述运动辅助指令用于调整柔性导管形态以改变其在所述自然腔道内的朝向。
可选地,所述移动信息包括柔性导管的当前移动速度;所述根据经确定的所述柔性导管在自然腔道内移动的移动信息,选择性输出运动辅助指令,包括:当所述当前移动速度超过预设值时,生成包含低于所述当前移动速度的运动辅助指令,以控制所述柔性导管降低移动速度。
可选地,所述根据经确定的所述柔性导管在自然腔道内移动的移动信息,选择性输出运动辅助指令,包括:检测所述移动信息中的当前位置和当前速度,以确定所述柔性导管准备向所述自然腔道的其中一个通路分支方向移动;以及检测所述移动信息中的当前形态与预设的目标朝向之间的角度偏差;其中所述目标朝向表示使柔性导管对准所述自然腔道的中的相应通路分支方向;根据所述角度偏差,输出用于调整所述当前形态以对准所述通路分支方向的运动辅助指令,以控制所述柔性导管调整角度。
可选地,所述检测所述移动信息中的当前位置和当前移动速度,包括:将所述移动信息中的当前位置映射到预先获取的所述自然腔道的三维解剖结构模型中的模型位置;以及依据所述模型位置确定所述柔性导管靠近其中一个通路分支;检测所述移动信息中的当前移动速度的绝对值小于预设的速度阈值;以及,检测所述移动信息中所述柔性导管的当前形态在主从控制指令的控制下朝向其中一个通路分支。
可选地,所述根据经确定的所述柔性导管在自然腔道内移动的移动信息,选择性输出运动辅助指令或主从控制指令,包括:当检测到所述柔性导管被调整至目标朝向后,输出主从控制指令以使所述柔性导管进入所述通路分支。
可选地,所述根据经确定的所述柔性导管在自然腔道内移动的移动信息,选择性输出运动辅助指令,包括:检测所述移动信息中的当前位置,以确定所述柔性导管已进入所述自然腔道的其中一个通路分支;以及检测所述移动信息中的当前形态与所述通路分支之间的曲率偏差;根据所述曲率偏差,输出用于调整所述当前形态以沿着所述通路分支的曲率移动的运动辅助指令。
可选地,所述检测所述移动信息中的当前位置,以确定所述柔性导管已进入所述自然腔道的其中一个通路分支,包括:将所述当前位置映射到对应自然腔道的三维解剖结构模型中,以检测所述柔性导管是否位于相应通路分支的弯曲段;其中,所述曲率是基于所述弯曲段的弯曲程度而确定的。
可选地,所述曲率是基于预先获取的导航路径中对应所述弯曲段的路径曲率而确定 的。
可选地,所述根据经确定的所述柔性导管在自然腔道内移动的移动信息,选择性输出运动辅助指令或主从控制指令,包括:当检测到所述柔性导管移动至所述通路分支的直线段后,输出主从控制指令以使所述柔性导管沿所述通路分支移动。
为实现上述目的,根据本申请的第二个方面,提供一种导管机器人,包括通信连接的运动控制装置和运动执行装置;所述运动控制装置包括任一所述的可读存储介质以及处理器;其中,所述处理器用于运行所述可读存储介质中的程序,以输出运动辅助指令或者主从控制指令;所述运动执行装置被配置为根据所接收的主从控制指令或运动辅助指令,控制所述柔性导管在自然腔道内移动。
可选地,所述运动执行装置包括位姿调整单元和形态调整单元;所述位姿调整单元包括调整臂,所述调整臂至少具有五个自由度,所述调整臂的末端与所述柔性导管连接,以驱动所述柔性导管运动来调整所述柔性导管的位置;所述形态调整单元包括动力盒,所述动力盒设置在所述调整臂上,所述动力盒用于与所述柔性导管的近端的器械盒传动连接,以调整所述柔性导管的形态。
可选地,所述运动控制装置还包括传感单元;所述传感单元被配置为检测所述柔性导管在所述自然腔道内移动时的移动信息。
为实现上述目的,根据本申请的第三个方面,提供一种导管机器人系统,包括通信连接的主端和从端,所述主端包括操作单元,所述从端包括导管机器人;所述主端包括任一所述的可读存储介质和处理器;所述操作单元用于接受外界指令;所述处理器用于将所述外界指令转换为主从控制指令,并将所述主从控制指令发送至所述导管机器人。
可选地,所述主端还包括导航装置,用于根据医学影像数据建立自然腔道的三维解剖结构模型,并根据所述三维解剖结构模型创建模拟自然腔道的自然形态的导航路径,以给柔性导管移动提供参考。
可选地,所述导航装置包括图像显示单元,所述图像显示单元包括医学图像显示模块、内窥镜头图像显示模块和动画显示模块;所述医学图像显示模块用于显示所述三维解剖结构模型;所述内窥镜头图像显示模块用于显示内窥镜反馈的图像,所述内窥镜设置在所述柔性导管的末端;所述动画显示模块用于以动态的方式实时显示所述柔性导管的形态,并将所述柔性导管形态显示在所述三维解剖结构模型所对应的位置上。
可选地,所述操作单元还用于检测用户的启用或禁用交互指令,以控制所述导管机器人对应允许或禁止输出运动辅助指令。
为实现上述目的,根据本申请的第四个方面,提供一种电子设备,包括处理器和存储器,所述存储器包括任一所述的可读存储介质,所述存储器上存储有程序,所述程序用于被所述处理器执行。
为实现上述目的,根据本申请的第五个方面,提供一种用于导管机器人的控制方法,其中,所述导管机器人用于控制柔性导管移动,其特征在于,所述控制方法包括:获取用于反映柔性导管在自然腔道所提供的空间内移动的移动信息;根据所述自然腔道的三维解剖结构模型,对所述移动信息进行检测;根据所得到的检测结果,选择性输出运动辅助指令或主从控制指令,以供所述导管机器人根据主从控制指令或运动辅助指令,驱动所述柔性导管移动;其中,所述运动辅助指令用于调整所述柔性导管基于所述主从控制指令而执行的移动信息。
本申请提供的导管机器人、导管机器人系统、可读存储介质、电子设备以及用于导管 机器人的控制方法具有如下优点:
第一、当操作者借助导管机器人实施主从控制操作,以驱动柔性导管在自然腔道如支气管等所形成的空间内移动时,可通过导管机器人在主从控制和运动辅助控制之间来回切换,实现导管按照操作者的操作意图在空间内稳妥移动。其中,运动辅助可以执行对应于操作者意图的导管操作,从而分担操作者决策和操作负担,使手术更为灵活和方便,而且运动辅助可以避免主从控制过程中的不安全因素,如导管移动速度过大、导管弯曲不合理容易损伤腔道壁等。如导管机器人在操作者主从控制操作柔性导管移动的过程中,可以实时检测柔性导管的移动信息,如形态、速度和形态等移动信息,如果柔性导管在沿路径移动至支气管的岔路口时,导管机器人可以辅助操作使柔性导管对准岔路口,或者柔性导管从岔路口进入直线段时,导管机器人可以辅助操作使柔性导管能够在支气管的岔路附近沿路径通过等,从而使导管操作更为方便,也更为精准、安全和可靠。
第二、当操作者主从操控柔性导管如在支气管内移动过程中,柔性导管需要从分岔进入支气管的直线段时,导管机器人能够根据柔性导管在当前位置的形态与其当前在支气管所处位置的自然形态之间的差异,生成调整形态的运动辅助指令,从而由导管机器人辅助操作者控制柔性导管的移动,使柔性导管能够快速、平滑和顺畅地由分岔进入支气管的直线段,该方式使手术过程中柔性导管的运动更顺应自然腔道的自然形态,更快速、平滑和顺畅地通过人体解剖结构到达病灶部位(如肺结节),并减少柔性导管对解剖结构的接触或摩擦,降低治疗过程中对解剖结构的误伤害,降低手术风险。
第三、当操作者主从操控柔性导管如在支气管内移动过程中,柔性导管需要从支气管的直线段进入下一级分岔口时,导管机器人能够根据操作者的主从操作意图来辅助柔性导管对准下一级分岔口,从而降低操作者操作难度,缩短手术时间,尤其导管机器人在辅助调整柔性导管的朝向后,导管机器人也能够根据操作者的主从操作意图主动退出运动辅助模式,从而在运动辅助模式和主从控制模式之前切换,该方式更为灵活和方便。
附图说明
本申请的实施方法以及相关实施例的特征、性质和优势将通过结合下列附图进行描述,其中:
图1是本申请优选实施例的导管机器人系统的结构框图;
图2是本申请优选实施例的导管机器人系统的应用场景示意图;
图3是本申请优选实施例的导管机器人设置于手术台车上的结构示意图;
图4是本申请优选实施例的导航装置的结构示意图;
图5是本申请优选实施例的导管机器人系统的总体流程图;
图6是本申请优选实施例的在支气管的三维解剖结构模型上创建柔性导管运动初始路径的原理图;
图7是本申请优选实施例的在支气管的三维解剖结构模型上创建第一种光滑的导航路径的原理图;
图8是本申请优选实施例的在支气管的三维解剖结构模型上创建第二种光滑的导航路径的原理图;
图9a是本申请对比实施例的通过初始路径辅助柔性导管运动的状态图;
图9b是本申请优选实施例的通过光滑的导航路径辅助柔性导管运动的状态图;
图10是本申请优选实施例的将支气管的三维解剖结构模型与病人肺部特征进行配准 的流程图;
图11是本申请优选实施例的柔性导管辅助运动的流程图;
图12是本申请优选实施例的人机交互界面的示意图;
图13是本申请优选实施例的调整曲率的操作原理图;
图14是本申请优选实施例的调整曲率的流程图;
图15是本申请优选实施例的调整朝向的操作原理图;
图16是本申请优选实施例的调整朝向的流程图;
图17是本申请优选实施例的通过三点估算柔性导管的弯曲形态的原理图;
图18是本申请优选实施例的通过形状传感器点列信息估算柔性导管的弯曲形态的原理图。
附图标记说明如下:
100-运动控制装置;101-处理单元;102-传感单元;1021-磁场发生器;1022-磁传感器;103-存储单元;200-导航装置;201-图像显示单元;202-医学图像显示模块;203-内窥镜头图像显示模块;204-动画显示模块;205-图像台车;206-人机交互界面;207-第一按键;208-第二按键;300-运动执行装置;301-位姿调整单元;3011-调整臂;3012-移动关节;302-形态调整单元;400-手术台车;500-病床;600-传感单元支撑结构;
10-柔性导管;11-被动可弯部分;12-主动可弯部分;20-病人;
S0-初始路径;S1-第一种光滑的导航路径;S2-第二种光滑的导航路径。
具体实施方式
以下将结合本申请实施例中的附图,对本申请优选实施例中的技术方案进行清楚、完整地描述。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
如在本申请中所使用的,单数形式“一”、“一个”以及“该”包括复数对象,除非内容另外明确指出外。如在本申请中所使用的,术语“或”通常是以包括“和/或”的含义而进行使用的,除非内容另外明确指出外。如在本申请中所使用的,术语“若干”通常是以包括“至少一个”的含义而进行使用的,除非内容另外明确指出外。如在本申请中所使用的,术语“至少两个”通常是以包括“两个或两个以上”的含义而进行使用的,除非内容另外明确指出外。此外,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括一个或者至少两个该特征。另外,术语“末端”或“远端”通常是指远离器械操作者的一端。下述实施例以支气管为解剖结构例对本申请做进一步阐述,但是应理解本申请不限于支气管,如还可以是其他解剖结构,如肠道或胃等解剖结构。
图1示出了本申请优选实施例的导管机器人系统的结构框图。如图1所示,本实施例提供一种导管机器人系统,包括通信连接的主端和从端。其中,主端和从端可配置单独的计算设备,或者共用同一计算设备。所述主端包括操作单元,进一步还包括导航装置200;所述操作单元用于接受外界指令;所述主端还包括可读存储介质和处理器;所述主端的处理器用于将所述外界指令转换为主从控制指令,所述主从控制指令包括运动信息和主从映射关系。所述从端包括导管机器人,所述主端的处理器将所述主从控制指令发送至所述导管机器人。所述导管机器人包括通信连接的运动控制装置100和运动执行装置300。所述运动控制装置100包括可读存储介质以及处理器,所述运动控制装置100的处理器用于运 行可读存储介质中的程序,以输出运动辅助指令或主从控制指令。所述运动执行装置300根据所接收的主从控制指令或运动辅助指令,控制导管机器人的柔性导管10在自然腔道内移动。所述自然腔道例如为支气管。
更详细地,所述运动控制装置100的处理器用于根据所述主端的处理器所发送的运动信息和预设的主从映射关系,输出主从控制指令,以控制运动执行装置300执行主从控制指令来驱动柔性导管10在自然腔道内移动。例如,所述运动控制装置100根据获取的操作单元的移动速度,控制运动执行装置300以驱动柔性导管10移动,并根据获取的操作单元的转动角度或转动速度,控制运动执行装置300以驱动柔性导管10转动,还可根据获取的操作单元的弯曲角度或弯曲方向,控制运动执行装置300以驱动柔性导管10弯曲。操作者及主端优选与从端位于不同的房间,以实现操作者与患者的物理隔离。
所述主端和从端两者也可分置在不同医院,不同地区,通过远程通信技术通信连接。如此,在呼吸道疾病诊断和治疗过程中,操作者在另外一个房间、另一个医院或另外一个城市根据内窥镜采集的图像信息完成所需要的手术操作,而运动执行装置300复现操作者的所有动作,由此实现操作者与患者在手术过程中的物理隔离。
进一步,所述操作单元用于接受操作者的位置指令、形态指令、和/或速度指令,并通过主端的处理器向所述导管机器人反馈位置信息、形态信息、和/或速度信息。其中,形态又称姿态、转弯角度等,用于表示导管末端在一坐标系内的角度、或相对于初始姿态的偏转角度等。所述导管机器人具体用于对所述接收到的位置信息、形态信息、和/或速度信息进行主从映射计算,以输出主从控制指令,主从控制指令可包括期望的柔性导管末端的位置、形态、和/或速度,并据此控制运动执行装置300,驱使柔性导管10按照期望的速度和/或位置运动到期望位置,并使柔性导管10的末端达到自然腔道中期望的位姿和形态。本申请对柔性导管10的种类和尺寸没有特别的限制。其中,所述柔性导管10的末端设置有内窥镜,所述内窥镜用于获取自然腔道内的图像,并可进一步反馈至导航装置200。所述柔性导管10的末端还设有磁感应器,用于提供在磁场环境内的位置信息,并可进一步反馈至导航装置200。
图2示出了本申请优选实施例的导管机器人系统的应用场景示意图。如图2所示,所述从端进一步包括手术台车400。所述运动执行装置300包括调整臂3011,设置在手术台车400上。通过手术台车400可实现导管机器人在手术室内的大范围移动,使手术过程更为方便。所述从端还可包括其他辅助设备,如病床500,病床500负责支撑和调整病人20的高度。所述主端通过操作单元实现对病床500上的病人20进行手术,例如微创伤手术治疗。
以为实现观察、诊断、活检、治疗肺部结节等目的为例,所述导航装置200被配置为根据术前医学影像数据生成自然腔道的三维解剖结构模型,并用于根据自然腔道的三维解剖结构模型,规划出到达病灶部位(如肺结节)的导航路径。操作单元根据其与导管机器人之间的主从控制关系,将操作者对操作单元的操作信息转换为柔性导管的末端的主从控制指令,并传输至运动控制装置100,所述运动控制装置100根据所述主从控制指令向运动执行装置300输出驱动信号,使运动执行装置300根据主从控制指令控制柔性导管10在自然腔道内的移动方式。例如,操作者可根据导航路径进行操作,使得柔性导管10沿着规划的导航路径在自然腔道内移动。又如,操作者可依照内窥镜所提供的图像对进行操作,使得内窥镜可提供柔性导管10在自然腔道中的同一位置处且不同方向的图像。
由上述各示例可见,操作者对柔性导管10的控制方式是多样的。与之对应地,人体 的自然腔道所提供的空间是复杂的,如支气管分岔繁多,结构曲线复杂等。操作者利用主从控制映射关系,操作柔性导管10运动过程中,无论采用柔性导管末端的内窥镜来观察自然腔道内部局部场景,还是借助于导航路径来控制柔性导管末端的姿态,都存在导管末端移动速度不当、或方向失控等问题。例如,内窥镜提供的图像,可能因其位置位于自然腔道的转弯空间段内,其视野是受限的,操作者无法获知柔性导管当前位置所对应的自然腔道的转弯空间段的空间形态等全面信息,这使得操作者在操作柔性导管过程中难以快速做出最佳或正确的导管运动决策,导致柔性导管10在移动时发生卡顿、堵塞和方向控制失效等问题。
为此,本申请的导管机器人除具有主从控制模式外,还具有运动辅助模式。其中,在主从控制模式下,所述导管机器人根据主从控制指令,来控制柔性导管10在自然腔道内的移动方式;在运动辅助模式下,所述导管机器人根据运动辅助指令,来控制柔性导管10在自然腔道内的移动方式。为此,本申请提供一种用于导管机器人的控制方法。其中,所述控制方法可以由导管机器人中的运动控制装置100执行,并借由运动控制装置100和运动执行装置300协同工作,对柔性导管末端进行控制操作;也可以由导航机器人系统的主端中的计算机设备通过与导管机器人的信息交互来执行。
在导管机器人执行的示例中,所述运动控制装置100向所述运动执行装置300输出主从控制指令;以及根据经确定的所述柔性导管在所述自然腔道内移动的移动信息,选择性输出运动辅助指令或主从控制指令,以供所述运动执行装置300根据所接收的主从控制指令或运动辅助指令,控制所述柔性导管在所述自然腔道内移动;其中,所述运动辅助指令用于调整所述柔性导管基于所述主从控制指令而执行的移动信息。
在导管机器人系统执行的示例中,所述主端执行以下步骤:向导管机器人输出主从控制指令;以及根据经确定的所述柔性导管在所述自然腔道内移动的移动信息,选择性输出运动辅助指令或主从控制指令,以供所述导管机器人根据所接收的主从控制指令或运动辅助指令,控制所述柔性导管在所述自然腔道内移动;其中,所述运动辅助指令用于调整所述柔性导管基于所述主从控制指令而执行的移动信息。其中,所述导管机器人中的运动控制装置100将所接收的主从控制指令或运动辅助指令转换为可供运动执行装置300识别的主从控制指令或运动辅助指令。
所需理解,以上移动信息为柔性导管10的末端的移动信息,移动信息可包括柔性导管的当前移动速度、当前位置、当前形态等的一种或多种信息。所述移动信息可以是利用配置在柔性导管末端的传感器提供的,或者根据导管机器人驱动导管移动的驱动数据而计算得到的。在主从控制模式期间,移动信息(又称第一移动信息)反映柔性导管的末端依据操作者的操作而移动的信息;在运动辅助模式期间,移动信息(又称第二移动信息)反映柔性导管的末端依据运动控制装置100的控制而移动的信息。
如此构造,当操作者操作柔性导管10在自然腔道内移动的过程中,可通过导管机器人在主从控制模式和运动辅助模式之间来回切换,其中运动辅助模式可以执行与操作者意图相匹配且使得柔性导管末端的移动符合导航路径的导管操作,从而分担操作者决策和操作负担,使手术更为灵活和方便,而且运动辅助模式可以避免主从控制模式过程中的不安全因素,如柔性导管移动速度过大、导管弯曲不合理而造成的对自然腔道的腔道壁造成的伤害等,使得手术过程更为安全和可靠。更详细地,当操作者操作柔性导管10在自然腔道内移动的过程中,所述导管机器人可以实时检测柔性导管10的移动信息,如姿态、速度等移动信息,如果柔性导管10在沿导航路径移动至自然腔道的岔路口(又叫分岔口) 时,导管机器人可以辅助医生操作使柔性导管10对准分岔口,或者柔性导管10从分岔口进入自然腔道的直线段时,导管机器人还可以辅助医生操作,使柔性导管10能够在自然腔道中包含分岔口的路段附近沿规划的导航路径通过并顺利进入直线段,这些使柔性导管操作更为方便,也更为精准、安全和可靠。
在一些示例中,操作者为了更仔细地观察自然腔道上某一位置周围的图像,操作者在主从模式下控制柔性导管末端转动。该种操作可能会触发运动控制装置100的运动辅助模式的切换条件。为了减少运动辅助模式对操作者的干扰,运动控制装置100根据柔性导管10在同一路段所产生的运动辅助指令与主从控制指令的交替次数,确定在所述柔性导管位于所述同一路段期间输出主从控制指令,即根据交替次数来输出主从控制指令。
以自然腔道为支气管为例,柔性导管10在导管机器人的控制下,在支气管所提供的空间内移动过程中,医生在柔性导管末端位于某一位置路段时,如位于支气管的分岔路口附近,或者位于:根据三维解剖结构模型中标记有病灶或疑似病灶的位置而映射到支气管的相应位置附近,医生通过内窥镜提供的图像来观察相应位置路段的信息,以方便医生对患者进行准确诊断。为此,当导管机器人在依据主从控制指令而检测到导管末端的移动信息符合切换条件时,转入运动辅助模式,并输出运动辅助指令,以调整柔性导管末端的形态,在调整之后,再次转入主从控制模式,以接收操作者的操控。该种往复切换,将依据医生的需求而在同一路段进行出现多次交替。导管机器人当检测到移动信息中的位置、速度,和上述交替次数达到了放弃切换的条件时,导管机器人以主从控制模式控制柔性导管末端的形态,直至所检测到的移动信息中的位置、速度不满足上述放弃切换的条件。
在另一些示例中,所述运动控制装置100判断所述第一移动信息是否符合预设要求;若不符合,则所述运动控制装置100根据所述第一移动信息,输出运动辅助指令;若符合,则所述运动控制装置100根据所述主从控制指令,控制运动执行装置300驱动柔性导管10在自然腔道内移动。以此方式可以使导管机器人及时获悉柔性导管的状态,并及时开启运动辅助模式,进一步提升导管机器人使用的灵活性和便捷性。
其中,所述预设要求为根据操作者的操作方式而设置的用于确定是否将主从控制模式切换至运动辅助模式的切换逻辑。所述预设要求与移动信息中的位置、形态、速度中的至少一种及其对应的判断逻辑等相关。在一些示例中,所述预设要求中至少包含位置及其对应的位置判断逻辑。例如,通过检测导管末端在自然腔道中的位置位于自然腔道的转弯路段附近,运动控制装置100确定从主从控制模式切换至运动辅助模式,以提高导管末端移动的姿态准确性;或者通过检测导管末端在自然腔道中的位置位于自然腔道的直路段,运动控制装置100从运动辅助模式切换至主从控制模式,以便操作者灵活调整导管末端的移动速度。又如,通过检测移动信息中的位置确定导管末端位于即将进入自然腔道的分岔路段,检测移动信息中的速度降低至接近停止,以及检测移动信息中的形态与预设的其中一个岔路的目标朝向之间的角度偏差,运动控制装置100确定从主从控制模式切换至运动辅助模式。再如,通过检测移动信息中的位置确定导管末端位于沿一分岔路段进入直路段,检测移动信息中的速度达到预设的速度阈值,以及检测移动信息中的形态与预设的路径曲率之间的角度偏差,运动控制装置确定从主从控制模式切换至运动辅助模式。
对于上述各示例来说,运动控制装置在输出运动辅助指令后,切换至主从控制模式。或者运动控制装置在预设的时长条件、和/或路段条件下维持运动辅助模式,以及在不满足上述切换条件时,切换至主从控制模式。
在一实施例中,所述导管机器人检测柔性导管10在支气管内移动时的当前位姿,并 根据当前位姿获取柔性导管10在当前位置的形态,并根据柔性导管在当前位置的形态生成调整柔性导管形态的运动辅助指令,以将柔性导管10调整至目标形态。此时,可以理解为,以上第一移动信息包括柔性导管在当前位置的形态,所述第二移动信息包括柔性导管在当前位置的目标形态。此外,所述运动控制装置100被配置为:根据柔性导管10在当前位置的形态与自然腔道对应当前位置的自然形态之间的差异,生成用于调整柔性导管形态的运动辅助指令。进而所述运动执行装置300能够根据所述形态的运动辅助指令,控制柔性导管10按照目标形态由分岔口进入直线段并在自然腔道内移动。如此构造,使手术过程中柔性导管10的运动更顺应自然腔道的自然形态,更快速、平滑和顺畅地通过人体自然腔道到达病灶部位(如肺结节),并减少导管对自然腔道的接触或摩擦,降低治疗过程中对自然腔道的误伤害,降低手术风险。
进一步的,所述导航装置200针对目标病灶部位(如目标肺结节),在自然腔道的三维解剖结构模型基础上进行路径规划,从而创建柔性导管10运动的初始路径(如折线)。初始路径一般沿着真实自然腔道的中心线,如沿着支气管的中心线。进一步的,所述运动控制装置100对规划的初始路径进行光滑化处理,使得规划路径更符合真实支气管的自然形态。因为光滑后的路径更加真实地反映了自然腔道的自然形态,且切线方向连续变化,故利用该信息可以对柔性导管运动的方向和速度进行优化,从而辅助柔性导管运动。也就是说,所述自然腔道的自然形态是基于预先获取的自然腔道的三维解剖结构模型得到的。
参阅图1,所述运动控制装置100包括处理单元101和传感单元102。进一步,所述处理单元101与导航装置200通信连接。所述处理单元101包含处理器和存储介质,其用于对所述初始路径进行光滑化处理,以获取光滑的导航路径。所述导航路径用于模拟真实自然腔道的自然形态(自然形态即为真实形态)。所述传感单元102能够检测柔性导管10在自然腔道内移动时的移动信息。所述处理单元101还能够根据所述第一移动信息,生成对应移动信息的运动辅助指令。在一具体实施例中,所述传感单元102能够获取柔性导管10在支气管内的当前位姿,进而处理单元101能够根据柔性导管10的当前位姿,获悉柔性导管10在当前位置的形态(包括弯曲形态),进而将柔性导管10在当前位置的形态与真实自然腔道的自然形态进行比较,如果形态差异较大,则生成对应形态调整的运动辅助指令。所述运动执行装置300与处理单元101通信连接,并用于根据对应形态调整的所述运动辅助指令控制柔性导管10,从而将当前位置的柔性导管10的形态调整至目标形态,使得柔性导管10能够以所述目标形态进入自然腔道的下一个位置(如下一个支气管分岔口或支气管的直线段)。
所述运动控制装置100还包括存储单元103。所述存储单元103用于存储信息,例如存储各种程序,以及存储传感单元102所提供的移动信息等。更具体地,所述存储单元103所存储的信息包括路径光滑运算程序、导航路径、实时获取的移动信息等。所述处理单元101通过访问存储单元103以调取相应的信息。
继续参阅1,所述运动执行装置300具体可包括位姿调整单元301和形态调整单元302。所述位姿调整单元301包括调整臂3011,调整臂3011的末端与柔性导管10连接,并用于驱动柔性导管10运动,以调整柔性导管10的位置,使得柔性导管10能够以合适的角度进入人体。本申请对调整臂3011的结构不作限定,如调整臂3011为至少具有五个自由度的机械臂,当然在其他情况下,调整臂3011也可以是大于五个自由度的机械臂,如六个自由度或七个自由度的机械臂。调整臂3011可以是主动控制,也可以是被动控制。“主动控制”指的是由导管机器人自带的驱动装置如驱动电机,驱动调整臂3011运动。“被动 控制”指的是人为手动驱动调整臂3011运动。所述调整臂3011的末端设置有移动关节3012(参阅图2),柔性导管10可拆卸地设置在移动关节3012上。移动关节3012主要负责推动柔性导管10深入人体肺部支气管,以及收回柔性导管。
所述形态调整单元302包括动力盒,所述动力盒设置在调整臂3011上,具体可设置在移动关节3012上。所述动力盒与柔性导管10近端的器械盒传动连接。所述动力盒输出动力,所述器械盒接收动力盒输出的动力后调整柔性导管10的形态。所述形态包括弯曲曲率和弯曲方向。具体地,所述动力盒通过牵引电机输出动力,以控制所述器械盒内的传动丝驱动柔性导管10的远端弯转,从而实现柔性导管10的形态的调整。
图3示出了本申请优选实施例的导管机器人设置在手术台车上的结构示意图。
如图3所示,所述传感单元102和调整臂3011都设置在手术台车400上。在一优选实施例中,所述传感单元102为磁传感装置,具体包括磁场发生器1021和磁传感器1022;磁场发生器1021设置在手术台车400上并与调整臂3011独立地设置;磁传感器1022设置在柔性导管10上,磁传感器1022至少为三个并在柔性导管10的轴向上间隔设置;磁场发生器1021用于产生磁场,从而根据磁传感器1022在磁场中的位置确定柔性导管10的当前位置和形态,主要是确定柔性导管10的主动可弯部分12的当前位置和形态。
所述导管机器人系统可进一步包括传感单元支撑结构600,设置在手术台车400上,磁场发生器1021设置在传感单元支撑结构600的末端。所述传感单元支撑结构600由若干活动关节组成,并用于调整磁场发生器1021的位置,以在术前调整磁场的位置,并利用其发生的磁场和柔性导管中接近其末端的磁传感器来定位导管末端在自然腔道中的位置。当然除了通过磁场检测柔性导管10的位姿外,还可通过导管末端的内窥镜和光源所投身的结构图案,来进行基于结构光技术和三维解剖结构模型而设计的导管定位方案。磁传感技术或结构光技术的硬件结构易于集成,计算过程方便,易于实施。
继续参阅图3,所述柔性导管10通常包括两部分,分别为近端的被动可弯部分11和远端的主动可弯部分12(又称导管末端、柔性导管的末端等)。主动可弯部分12受导管机器人控制,可以实现空间自由弯曲。而被动可弯部分11不受导管机器人控制,可以顺从于所在自然腔道的自然形态而弯曲。主动可弯部分12的末端设置内窥镜(未图示),内窥镜用于拍摄自然腔道的内部图像。实际上,所述器械盒的传动丝与主动可弯部分12连接,以改变主动可弯部分12的形态,而所述传感单元102也用于实时感知柔性导管10的主动可弯部分12的移动信息。进一步的,所述处理单元101将主动可弯部分12在当前位置的形态与自然腔道对应当前位置的自然形态进行比较,根据两者的差异,生成用于调整导管形态的运动辅助指令,使得形态调整单元302根据运动辅助指令控制柔性导管,将当前位置的主动可弯部分12的形态调整至目标形态。也可理解为,用于调整导管形态的运动辅助指令是根据柔性导管在导航路径中的位置与导航路径之间的偏差得到。
图4示出了本申请优选实施例的导航装置的结构。如图4所示,所述导航装置200包括图像显示单元201,图像显示单元201负责显示系统界面程序、输入控件等信息,具体可显示内窥镜图像、支气管的三维解剖结构模型,更进一步还可动态实时显示在三维解剖结构模型所对应的当前位置的导管形态。进一步的,图像显示单元201的软件界面分模块显示,如可包括医学图像显示模块202、内窥镜头图像显示模块203和动画显示模块204。所述医学图像显示模块202负责显示由术前医学图像重构出的自然腔道的三维解剖结构模型,还可显示术前规划的导航路径等信息。所述内窥镜头图像显示模块203负责实时显示由内窥镜模组拍摄到的如支气管等自然腔道内部的图像。所述动画显示模块204负责以动 态的方式实时显示柔性导管10的形态(即主动可弯部分12的形态),并将柔性导管形态显示在三维解剖结构模型所对应的位置上。
进一步地,所述导管机器人系统还包括图像台车205,图像显示单元201设置在图像台车205上,图像台车205用于实现导航装置200在手术室内的大范围移动。优选地,主端或导管机器人还被配置为根据外界指令确定是否执行运动辅助模式的状态。所述执行运动辅助模式的状态包括开启运动辅助模式和禁用运动辅助模式。具体地,当所述导管机器人接收到开启运动辅助功能的外界指令时,所述导管机器人允许开启运动辅助模式,以选择性输出运动辅助指令;反之,当所述导管机器人接收到禁用运动辅助功能的指令时,所述导管机器人不开启运动辅助模式,也就不输出运动辅助指令,此时,所述导管机器人根据主从控制指令对柔性导管进行驱动。在一具体实施例中,所述操作单元用于检测用户的启用或禁用交互指令,以控制导管机器人对应允许或禁止输出运动辅助指令。
如图12所示,所述操作单元包括人机交互界面206,优选该人机交互界面206与导航装置200的图像显示单元201集成,从而通过图像显示单元201的人机交互界面206来确定执行运动辅助模式的状态,使操作者可自主选择是否开启运动辅助功能。所述人机交互界面206能够接收操作者的指令以生成开启运动辅助功能的指令。进一步地,所述人机交互界面206显示文字提示信息,文字提示信息用于提示“是否开启运动辅助”功能,并在文字提示信息的下方设置第一按键207和第二按键208。当第一按键207被触发时,向导管机器人发送开启运动辅助功能的指令,使导管机器人开启运动辅助模式,从而导管机器人允许选择性输出运动辅助指令;反之,当第二按键208被触发时,向导管机器人发送禁用运动辅助功能的指令,使导管机器人不开启运动辅助模式并执行主从控制模式。进一步地,当所述第一按键207被触发时,所述导管机器人被配置为锁定主从控制模式,以使导管机器人不会被误触发而执行主从控制。
请参考图5,示出了本申请一优选实施例的导管机器人系统的工作流程,本实例以自然腔道为支气管进行举例来说明导管机器人系统的工作过程,导管机器人利用其他自然腔道所提供的空间而执行的工作方式,与此类似,在此不再详述。所述工作流程主要由计算机设备来执行,其中,为便于描述,用导管机器人系统来表示其中的主端、从端以及主端和从端协同的执行过程。所述工作流程包括以下步骤:
步骤S1:创建支气管的三维解剖结构模型,并生成初始路径,且对初始路径进行光滑化以生成导航路径。
具体地,导航装置200基于术前扫描的CT或MRI等医学影像数据,重构病人支气管结构和肺结节病灶的三维解剖结构模型;然后,导航装置200根据支气管的三维解剖结构模型,规划出柔性导管10从主气道运动至肺结节病灶处的初始路径;之后,所述运动控制装置100对初始路径进行光滑化,生成光滑的导航路径。
步骤S2:将支气管的三维解剖结构模型与实际解剖结构进行配准。
为了实现支气管的三维解剖结构模型与真实支气管之间的关联,使两者位置的映射实现匹配,还需要将支气管的三维解剖结构模型与病人肺部特征进行配准。但是,应理解,重构的三维解剖结构模型,不限于CT扫描数据,在其他实施例中,也可根据其他影像扫描装置扫描得到的影像数据重构三维解剖结构模型。因此,本申请对影像数据的来源不作特别的限定。此外,在术前还需要将柔性导管10插入支气管,并在传感单元102的辅助下,提取病人肺部的至少三个特征点以方便对三维解剖结构模型进行配准。提取病人肺部的特征点后,即可根据支气管的三维解剖结构模型上的特征点与病人肺部的提取的实际特 征点进行配准,从而建立支气管的三维解剖结构模型与真实支气管之间的关联。
步骤S3:选择是否开启运动辅助模式。
配准完成后,手术开始前,操作者可通过人机交互界面206控制是否开启运动辅助模式。其中,人机交互界面206可配置于操作单元(又称人机交互装置)中。
步骤S4:当开启运动辅助模式后,检测在主从控制模式下柔性导管10在支气管内移动期间的移动信息;
在一些实施方式中,检测柔性导管10在支气管内移动时的当前位姿(包括位置和形态)。例如,可以通过检测柔性导管10的形状如形状传感器,来获取柔性导管10的位置和形态。其中,形状传感器举例为在柔性导管内一段长度内分布的传感器,以提供该段长度内的离散的位置和形态。又如,可以通过检测柔性导管10的位置如磁传感器,来获取柔性导管的位置和形态。在一些实施方式中,还需要检测柔性导管10在支气管内移动时的速度。
步骤S5:根据所述移动信息,选择性输出运动辅助指令或主从控制指令。
应理解,在步骤S5中,通常导管机器人需要判断移动信息是否符合预设要求,如果不符合,才根据移动信息,生成运动辅助指令。所述预设要求包括柔性导管的移动速度、柔性导管的形态、柔性导管的位置等。
例如,导管机器人系统首先判定柔性导管当前在支气管中所处的位置,根据柔性导管在支气管段中的位置判定是否执行运动辅助模式,如果导管机器人系统判定柔性导管当前形态需要及时调整,则生成对应形态调整的运动辅助指令,以调整柔性导管的形态,使柔性导管按照光滑的导航路径由支气管的分岔进入直线段。处理单元101将由步骤S4中获取的柔性导管在当前位置的形态与所在支气管的自然形态进行比较,如果两者曲率偏差不在阈值内,则处理单元101便生成对应形态调整的运动辅助指令。具体地,处理单元101比较主动可弯部分12在当前位置的形态与所在支气管的自然形态对应位置的切线方向,如果两者曲率偏差不在阈值内,处理单元101便生成对应形态调整的运动辅助指令。
又例如导管机器人系统首先判定柔性导管当前在支气管中所处的位置,以及柔性导管的当前移动速度,如果柔性导管在当前位置的移动速度接近0或等于0,则表示操作者的当前意图为正在考虑做出最佳导管运动决策以调整导管的姿态如朝向,使导管顺利进入支气管分岔的下一级的通路分支,此时导管机器人系统判定柔性导管正处于朝向需要及时调整的时刻,则生成对应姿态调整的运动辅助指令,以调整柔性导管的朝向,使柔性导管的末端对准下一级支气管分岔口。
又例如导管机器人系统还能够在柔性导管的当前移动速度超过预设值时,生成包含低于所述当前移动速度的运动辅助指令,使得运动执行装置300根据移动速度的运动辅助指令,控制柔性导管按照目标移动速度在支气管内移动,如可减小导管移动速度,以避免柔性导管撞击支气管组织,造成支气管组织损坏。
步骤S6:根据运动辅助指令,控制柔性导管按照第二移动信息在支气管内移动。所述第二移动信息可包括柔性导管的朝向、形态和速度,速度可以包括大小和方向,如前进和弯曲。
接下去对导管机器人系统的工作流程中各步骤的具体实施方式作进一步的说明。
如图6所示,在支气管的三维解剖结构模型上,导航装置200规划出初始路径S0。初始路径S0由起始点P0、若干分岔点P1、P2、P3、P4和目标点P5依次连接而成的折线。本申请对分岔点的数量没有要求,分岔点的数量通常与支气管的分岔口的数量一致或少于 分岔点的数量,分岔点的数量不少于3个。起始点P0为导管运动的起始位置,目标点P5为导管运动的终点位置。图6中示出了初始路径S0上的四个分岔点P1、P2、P3、P4。鉴于在分岔点处前后路径存在方向突变,因此该初始路径S0是非光滑的,无法体现真实支气管的自然形态,需要对其进行光滑化处理。对初始路径S0进行光滑化处理的方式可以有各种。
根据本申请的一个实施例,如图7所示,可仅对分岔点P1、P2、P3、P4附近的导航路径进行局部光滑,而在距离分岔点P1、P2、P3、P4较远处,保留初始路径S0的直线线形,再将保留的初始路径S0和光滑处理后的路径进行局部光滑曲线拟合,最终得到第一种光滑的导航路径S1。应理解,图7中虚线为初始路径S0的直线部分,实线为局部光滑后的路径部分。局部光滑曲线拟合存在多种方式,如圆弧曲线、样条曲线、多项式曲线、Bezier曲线等。不管使用哪种拟合方式,都需要满足连续光滑条件,即光滑曲线两端与离分岔点较远的直虚线相切,拟合曲线本身可以不经过分岔点。不同拟合曲线的具体参数可以按需灵活调节,比如圆弧曲线的曲率,样条曲线的阶数,多项式曲线和Bezier曲线的次数等。局部光滑算法简单易用,对于复杂分岔结构的适用性高。
根据本申请的另一个实施例,如图8所示,拟合曲线经过所有分岔点P1、P2、P3、P4,当然也经过起始点P0和目标点P5。在该方式中,可采用三次样条曲线、多段圆弧曲线等进行拟合,从而得到第二种光滑的导航路径S2。
图9a示出了在初始路径S0下辅助柔性导管运动的状态,图9b示出了在光滑后的导航路径下辅助柔性导管运动的状态。其中图9a和图9b展示了分岔点P3附近,光滑前后的路径用于柔性导管运动辅助的区别,在P3点的箭头即表示柔性导管运动的前进方向。
本申请对初始路径S0和光滑后的导航路径(S2或S1)引导下的柔性导管可能的运动做了比较。比较后可知,当柔性导管10沿图9a中的初始路径S0运动时,如箭头所指示的方向,柔性导管末端行进存在速度突变和撞击支气管壁的风险,因此不可用于运动辅助;而柔性导管10沿图9b中的光滑后的导航路径运动时,如箭头所指示的方向,导航路径沿着支气管的延伸方向,速度方向连续而光滑,因此,以该方向作为参考,可以辅助操作者控制柔性导管10安全快速地通过分岔点P3。也即,可以理解,导管机器人系统根据导航路径,可以辅助医生进行导管操作,使柔性导管比如沿路径移动时能够使导管在支气管的岔路口附近沿导航路径通过岔路口,而避免撞击支气管组织的风险。
以上步骤S1即为术前需要完成的准备工作。完成术前规划路径光滑化以后,手术开始时,还需要将支气管的三维解剖结构模型与病人肺部实际特征进行配准。
图10示出了本申请优选实施例提供的配准过程的流程图,主要包括以下步骤:
步骤S11:包括步骤S11-1和步骤S11-2。
步骤S11-1:提取病人肺部特征点。具体由柔性导管10内部的传感器拾取病人肺部特征点的位置(病人肺部特征点的位置通常是提取支气管的分岔口的位置,以及目标肺结节的位置)。病人肺部特征点提取的数量不少于3个。所应理解,解剖结构的特征点就是对应于分岔口的位置,在分岔口的位置便于提取到特征点。
步骤S11-2:提取支气管的三维解剖结构模型上的特征点,具体提取支气管的三维解剖结构模型上的分岔点的位置。
步骤S12:采用特征点方法配准支气管的三维解剖结构模型和病人肺部,并生成配准矩阵。在此,需说明的是,本领域的技术人员容易根据公知技术中的基于特征点的配准方法实现支气管的三维解剖结构模型和病人肺部的配准,并生成配准矩阵,因此本申请对配 准过程不再作更详细的说明,本领域的技术人员应当知晓如何实现两者的配准以及如何获取配准矩阵。
步骤S13:生成配准矩阵后,即完成病人肺部与支气管的三维解剖结构模型的配准。
配准过程建立了病人肺部与支气管的三维解剖结构模型之间的映射关系,通过该映射关系,可以将基于支气管的三维解剖结构模型生成的光滑路径(即参考导航路)用于辅助柔性导管运动。
完成配准后,手术开始前,进一步可通过主端或导管机器人确定是否开启运动辅助模式。在实际中,操作者操作柔性导管10在支气管中运动需要辅助的情形通常有两种:
第一种情形为:柔性导管10从支气管的分岔口的弯曲路段进入相应通路分支的直路段,此时柔性导管10的主动可弯部分12的当前形态若未能按照所述弯曲路段的曲率进行调整,则易于使导管的末端挤压到弯曲路段的支气管壁,使得导管运动受阻,甚至还会损伤支气管壁或导管本身。因此导管机器人通过检测导管末端的移动信息符合切换条件,则通过切换至运动辅助模式来调整主动可弯部分12的曲率,使得其前进更加顺应支气管形态,更加平滑;应理解,在该情况下,导管机器人直接根据运动辅助指令控制柔性导管的弯曲形态,而忽略主端的主从控制指令,此时优选锁定主从控制模式。
第二种情形为:柔性导管10由支气管的直路段进入支气管的分岔区的弯曲路段,操作者利用主从操作来对准支气管的其中一个分岔口,操作者在操纵过程中通常需要多次尝试,手术时间长,因此需要通过导管机器人自动辅助调整柔性导管的朝向,以快速对准下一个分岔口;在该情况下,导管机器人系统通过检测移动信息而切换至运动辅助模式,以在运动辅助指令下调整柔性导管的朝向,而忽略主端的主从控制指令,当柔性导管末端对准下一个分岔口后,导管机器人继续执行主从控制指令控制柔性导管10的运动。
因此,本申请的导管机器人系统主要根据主从控制指令控制柔性导管10的位姿和形态,但必要时,导管机器人系统忽略主从控制指令而执行运动辅助指令来辅助医生调整柔性导管10的形态,以提升手术的安全性,并分担操作者的工作,缩短手术时间。
如以上所述,柔性导管10在支气管内移动时通常有两种情形需要运动辅助,对应的,所述导管机器人的运动辅助模式包括曲率调整模式(即在运动辅助模式下调整曲率)和朝向调整模式(即在运动辅助模式下调整朝向)。当所述柔性导管10在支气管内移动时,所述运动控制装置100能够根据柔性导管10在支气管中的当前位置选择性执行所述曲率调整模式和所述朝向调整模式中的一种。在本实施例中,所述运动控制装置100被配置为:当根据移动信息而判定柔性导管10的末端由支气管的转接腔道(又叫转弯路段、弯曲段或通路分支)进入直路段(又叫主干腔道、或直线段或通路)时,选择执行所述运动辅助模式,以控制柔性导管10的弯曲形态;而当判定柔性导管的末端由所述主干腔道进入所述转接腔道时,选择执行所述运动辅助模式,以控制柔性导管10的朝向。
图11示出了本申请优选实施例的导管机器人系统运动辅助的流程图。如图11所示,完成配准后,在步骤S20中开始运动辅助模式选择流程,进入流程后,在步骤S21中,可在图像显示单元201的人机交互界面206提示是否开启运动辅助;若选择步骤S22中的开启运动辅助,则进入步骤S24;若禁用运动辅助,则优选进入步骤S23中的运动安全保护功能;但是不管开启运动辅助与否,都需要开启运动安全保护功能,以对柔性导管10在支气管中的运动姿态进行安全保护。柔性导管10的运动姿态至少包括移动速度,例如速度检测装置检测到柔性导管10的速度过快时,导管机器人系统主动控制柔性导管10降低移动速度,而忽略主从控制指令。
当开启运动辅助功能以后,运动控制装置100即进入运动辅助模式,且处理单元101根据传感单元102所检测的信息(当前位置和当前速度),判断主动可弯部分12当前所处的支气管的具体位置,具体通过步骤S24判断导管末端是否进入支气管的直线段;如果导管末端在分岔口附近,且正在进入支气管的直线段,则流转至步骤S25,以运行调整曲率,从而通过形态调整单元302实时调整主动可弯部分12的曲率,以适应支气管的曲率变化,使主动可弯部分12平滑、顺畅地进入支气管的直线段;反之,如果导管末端正离开支气管的直线段,即将进入下一个分岔口(即确定准备向支气管的其中一个通路分支方向移动),则流转至步骤S26,以调整朝向,并通过形态调整单元302控制调整入柔性导管的当前形态以使主动可弯部分12的朝向以使导管末端对准下一个分岔口,以辅助操作者定位。
更具体地,检测柔性导管在支气管内移动的当前位置和当前速度,以及检测柔性导管的当前形态与预设的目标朝向之间的角度偏差,根据所述角度偏差,输出用于调整所述当前形态以对准所述通路分支方向的运动辅助指令,以控制所述柔性导管调整角度;其中所述目标朝向表示使柔性导管对准支气管中的相应通路分支方向。
进一步地,检测所述移动信息中的当前位置和当前移动速度,包括:将所述柔性导管的当前位置映射到预先获取的支气管的三维解剖结构模型中的模型位置;以及依据所述模型位置确定所述柔性导管靠近其中一个通路分支;检测所述柔性导管的当前移动速度的绝对值小于预设的速度阈值;以及检测所述柔性导管的当前形态在主从控制指令的控制下朝向其中一个通路分支。进一步地,运行曲率调整或朝向调整后,都生成步骤S27中的运动优化指令(即辅助运动指令),最后将运动优化指令发送给形态调整单元302,使形态调整单元302以步骤S28执行运动优化指令,使柔性导管10更平滑和更顺畅地在支气管中运动,或者快速对准分岔口以缩短手术时间。
图13示出了本申请优选实施例的运行曲率调整的操作原理图,其中导管末端由支气管分岔点进入直线段时所建议曲率的实施过程。图13中选取了三个等间距的离散时间点(t1,t1+Δt和t1+2Δt)作为示例进行说明。在t1时刻,主动可弯部分12实线a1)处于分岔点处,此时主动可弯部分12的弯曲曲率局部最大;随着导管的往下推进,逐渐进入直线段,支气管的曲率逐渐变小,主动可弯部分12因而需要逐渐变得平直;在t1+Δt时刻,主动可弯部分12(点线a2)曲率较t1时刻小;进一步在t1+2Δt时刻,主动可弯部分12(虚线a3)曲率较t1+Δt时刻小;依此,当主动可弯部分12完全进入支气管直线段以后,其基本处于平直状态。因此,由分岔点进入直线段的过程中,形态调整单元302可根据导管末端的当前姿态逐渐调整主动可弯部分12的曲率,使曲率逐渐减小,从而平滑、顺畅地进入支气管的直线段。且当检测到柔性导管移动至通路分支的直线段后,运动控制装置100输出主从控制指令以使柔性导管10沿所述通路分支移动。
更详细地,图14示出了本申请优选实施例的曲率调整的流程,包括:
步骤S31:处理单元101根据传感器(即传感单元102)所检测的信息,判断导管末端在支气管中所处位置;
步骤S32:处理单元101根据导管末端(或称导管头部)在支气管中的当前位置,以及导管末端距离上一个分岔点(即上一级解剖结构)的距离,获取导管在当前位置的最优曲率(即当前的导管最优曲率);
步骤S33:处理单元101由最优曲率逆解出导管弯曲的驱动参数(即目标运动参数),驱动参数例如包括电机转角、导管中牵引钢丝的长度、单位导管弯曲角度等信息;
步骤S34:最后将驱动参数下发运动执行装置300执行,运动执行装置300根据驱动 参数驱动柔性导管10运动,以将当前位姿的导管的弯曲形态调整至目标弯曲形态。
进一步地,可通过以下公式计算最优曲率和驱动参数:
c(x)=c_max*(L-x)/((L/2)
其中:c_max为分岔点附近支气管中心线的最大曲率;L为主动可弯部分12的长度;x为导管末端距离上个分岔点的距离;c(x)为导管最优曲率。
进而根据最优曲率c(x),通过逆运动学算法求解得到电机转角、导管中牵引钢丝的长度、单位导管弯曲角度等信息。还应知晓,还可以由光滑后的导航路径在导管当前位置的曲率获取以上最优曲率,因此不局限于通过以上算法来获取最优曲率。
因此,本实施例中,根据经确定的柔性导管在自然腔道内移动的移动信息,选择性输出运动辅助指令,包括:检测所述移动信息中的当前位置,以确定所述柔性导管已进入所述自然腔道的其中一个通路分支;以及检测所述移动信息中的当前形态与所述通路分支之间的曲率偏差;根据所述曲率偏差,输出用于调整所述当前形态以沿着所述通路分支的曲率移动的运动辅助指令。进一步地,检测所述移动信息中的当前位置,以确定所述柔性导管已进入所述自然腔道的其中一个通路分支,包括:将所述当前位置映射到对应自然腔道的三维解剖结构模型中,以检测所述柔性导管是否位于相应通路分支的弯曲段;其中,所述曲率是基于所述弯曲段的弯曲程度而确定的。进一步地,所述曲率是基于预先获取的导航路径中对应所述弯曲段的路径曲率而确定的。
图15示出了本申请优选实施例的朝向调整模式的操作原理图。图15展示的是柔性导管10(仅显示主动可弯部分12)在即将进入P3分岔点处的某个支气管口之前的预设范围内,如虚线圈所示,所可能出现的朝向试探,分别由图15中的虚线O1、点线O2和实线O3表示。其中,O3表示可能的最优朝向,该最优朝向由导管所在支气管的自然延伸方向确定,该方向如前所述,认为与光滑后的路径方向重合。因此,可以用光滑后的P3分岔点处的路径方向作为参考最优导管朝向。本实施例中,所述运动控制装置100被配置为:检测所述移动信息是否符合预设要求,以得到相应的检测结果;其中,所述预设要求是基于与移动信息中的位置、形态、速度中的至少一种对应的判断逻辑而确定的。例如,运动控制装置100根据移动信息得到柔性导管10在支气管中的当前位置、形态和当前移动速度;根据预设的切换条件判断:当前位置位于待选择性进入支气管的一分岔路段的附近,当前移动速度接近0,以及当前形态偏离朝向任一岔路通路,则切换至运动辅助模式,并输出用于对准支气管的下一个分岔口的运动辅助指令。进一步,所述导管机器人还被配置为当三个条件中的至少一种不满足时执行主从控制模式。
更具体地,图16示出了本申请优选实施例的朝向调整模式的流程,具体包括:
首先在步骤S41中,导管机器人判断当前柔性导管的前进速度是否接近零,如果是,则导管机器人判定操作者当前未主从操控导管,而可能在思考导管的调整策略;继续判断步骤S42和步骤S43。
步骤S42为判定柔性导管的姿态正在接受主从控制的微调,且柔性导管的姿态始终朝着目标分岔口。
步骤S43为判定柔性导管末端位置靠近目标分岔口或目标入口;当柔性导管满足步骤S42和步骤S43中的情形时,导管机器人辅助调整导管朝向,使导管末端对准目标支气管入口。
如图15所示,导管机器人系统可以设置一预定义空间区域C,该预定义空间区域可以是球形,立方形,椭球形,圆锥形等,当处理单元101确定导管末端进入分岔点附近的 预定义空间区域时,则判定导管末端位置靠近目标分岔口。
应知晓,在辅助调整导管朝向时,导管机器人对导管朝向做辅助调整而忽视主从控制指令,并将导管朝向主动调整至最优朝向,进一步地可在主端的显示界面给出视觉提示(或运动辅助专属声音提示),已给操作者提升当前导管已辅助调整至最优指向。
但是在朝向调整时,有可能导管机器人系统误判操作者的意图,即误判操作者停止操控柔性导管时的目的是为了将柔性导管对准目标分岔口,但有可能柔性导管需要继续前行而对准另一个分岔口,此时可通过步骤S45来进一步判定操作者的意图,即,当所述柔性导管10被调整至目标朝向后,导管机器人系统继续判断所述柔性导管的姿态是否发生变化,若发生变化,所述导管机器人系统退出朝向调整模式并执行述主从控制模式,所述导管机器人系统继续根据所述主从控制指令控制所述柔性导管进入通路分支。本实施例中,导管机器人可从主端处获取操作单元的运动信息来进一步判断导管的主从调整姿态,如果判定主端在持续地主从改变导管姿态,则导管机器人退出朝向调整模式而继续执行主从控制指令,从而朝向调整模式进入循环,等待下一次切换条件触发来再次启动朝向调整模式。
所应理解,无论曲率调整模式还是朝向调整模式,是与导管末端的位置有关,以及考虑了导管末端的形态与自然腔道相应位置的自然形态之间的差异而确定的。所述导管的形态可由移动信息提供,所述自然形态是基于预先获取的所述自然腔道的三维解剖结构模型得到的。在一实施例中,如图17所示,可以在导管的主动可弯部分12上设置至少三个位置传感器P1、P2和P3(即磁传感器),该三个位置传感器的相对位置任意但不能重合,然后由三点法估计出主动可弯部分12的弯曲曲率(认为弯曲成圆弧形)。
具体地,可以通过如下公式计算:先将三维空间点投影至主动可弯部分12的弯曲平面上;在弯曲平面上,三个位置传感器的坐标分别为:P1=(x1,y1);P2=(x2,y2);P3=(x3,y3);计算主动可弯部分12的曲率半径r:
Figure PCTCN2022117016-appb-000001
其中:A=x1(y2-y3)-y1(x2-x3)+x2y3-x3y2;
B=(x1 2+y1 2)(y3-y2)+(x2 2+y2 2)(y1-y3)
+(x3 2+y3 2)(y2-y1);
C=(x1 2+y1 2)(x2-x3)+(x2 2+y2 2)(x3-x1)
+(x3 2+y3 2)(x1-x2);
D=(x1 2+y1 2)(x3y2-x2y3)+(x2 2+y2 2)(x1y3-x3y1)
+(x3 2+y3 2)(x2y1-x1y2)。
则进一步计算弯曲曲率:
Figure PCTCN2022117016-appb-000002
其中:c为弯曲曲率;r为曲率半径。
在另一实施例中,如果18所示,可以使用形状传感器的点列信息和最小二乘方法,计算主动可弯部分12的曲率半径r。具体地,一种可选的实施方式为:
先将三维空间点投影至弯曲平面,在弯曲平面上,点列坐标分别为:
P1=(x1,y1);
P2=(x2,y2);
Pn=(xN,yN);
计算主动可弯部分12的曲率半径:
Figure PCTCN2022117016-appb-000003
其中,(x c,y c)为圆心坐标;P1、P2、P3、P4、......、Pn为点列;N为点列的个数,点列至少为3个。
进一步地,本申请实施例还提供一种可读存储介质,所述可读存储介质上存储有程序,当所述程序被执行时,执行前述的运动控制装置100所执行的所有步骤。
此外,本申请还提供一种电子设备,包括处理器和存储器,所述存储器包括所述可读存储介质。其中所述可读存储介质上存储有程序,所述程序用于被所述处理器执行,以执行运动控制装置100所执行的所有步骤。
本申请还提供一种用于导管机器人的控制方法,包括:获取用于反映柔性导管在自然腔道所提供的空间内移动的移动信息;根据所述自然腔道的三维解剖结构模型,对所述移动信息进行检测;根据所得到的检测结果,选择性输出运动辅助指令或主从控制指令,以供所述导管机器人根据主从控制指令或运动辅助指令,驱动所述柔性导管移动;其中,所述运动辅助指令用于调整所述柔性导管基于所述主从控制指令而执行的移动信息。
所需理解,本申请对处理器的种类没有特别的限制。所称处理器可以是中央处理单元(Central Processing Unit,CPU),还可以是其他通用处理器、数字信号处理器(Digital Signal Processor,DSP)、专用集成电路(Application Specific Integrated Circuit,ASIC)、现成可编程门阵列(Field-Programmable Gate Array,FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件等。通用处理器可以是微处理器或者该通用处理器也可以是任何常规的处理器等,所述处理器是所述电子设备的控制中心,利用各种接口和线路连接整个电子设备的各个部分。
同样,本申请对所述存储器的种类没有特别的限制。所述存储器可以为非易失性和/或易失性存储器。所述非易失性存储器可包括只读存储器(ROM)、可编程ROM(PROM)、电可编程ROM(EPROM)、电可擦除可编程ROM(EEPROM)、可变电阻式内存(ReRAM)、相变化内存(PCRAM)或闪存存储器(Flash Memory)。易失性存储器可包括随机存取存储器(RAM)、寄存器或者高速缓冲存储器(cache)。作为说明而非局限,RAM以多种形式可得,诸如静态RAM(SRAM)、动态RAM(DRAM)、同步DRAM(SDRAM)、双数据率SDRAM(DDRSDRAM)、增强型SDRAM(ESDRAM)、同步链路(Synchlink)DRAM(SLDRAM)、存储器总线(Rambus)直接RAM(RDRAM)、直接存储器总线动态RAM(DRDRAM)、以及存储器总线动态RAM(RDRAM)等。应理解,本申请对处理单元的种类没有特别的限制,可以是执行逻辑运算的硬件,例如,单片机、微处理器、可编程逻辑控制器(PLC,Programmable Logic Controller)或者现场可编程逻辑门阵列(FPGA,Field-Programmable Gate Array),或者是在硬件基础上的实现上述功能的软件程序、功能模块、函数、目标库(Object Libraries)或动态链接库(Dynamic-Link Libraries)。或者,是以上两者的结合。本领域技术人在本申请公开的内容基础上,应当知晓如何具体实现处理单元的功能。
上述描述仅是对本申请优选实施例的描述,并非对本申请范围的任何限定,本申请领域的普通技术人员根据上述揭示内容做的任何变更、修饰,均属于本申请的保护范围。

Claims (24)

  1. 一种可读存储介质,其特征在于,存储有程序,当所述程序被运行时执行以下的步骤:
    向一导管机器人输出主从控制指令;其中,所述导管机器人持有柔性导管;
    根据经确定的所述柔性导管在自然腔道内移动的移动信息,选择性输出运动辅助指令或主从控制指令,以供所述导管机器人根据所接收的主从控制指令或运动辅助指令,控制所述柔性导管在所述自然腔道内移动;
    其中,所述运动辅助指令用于调整所述柔性导管基于所述主从控制指令而执行的移动信息。
  2. 根据权利要求1所述的可读存储介质,其特征在于,所述移动信息包括所述柔性导管的当前移动速度、所述柔性导管的当前位置以及所述柔性导管的当前形态中的至少一种。
  3. 根据权利要求1所述的可读存储介质,其特征在于,还包括执行以下步骤至少一种:
    检测所述移动信息是否符合预设要求,以得到相应的检测结果;其中,所述预设要求是基于与所述移动信息中的位置、形态、速度中的至少一种及其判断逻辑而确定的;以及,
    根据所述柔性导管在同一路段所产生的运动辅助指令与主从控制指令的交替次数,确定在所述柔性导管位于所述同一路段期间输出主从控制指令。
  4. 根据权利要求1所述的可读存储介质,其特征在于,所述移动信息包括所述柔性导管在当前位置的形态;
    所述根据经确定的所述柔性导管在自然腔道内移动的移动信息,选择性输出运动辅助指令,包括:
    根据所述柔性导管在当前位置的形态与所述自然腔道对应当前位置的自然形态之间的差异,生成用于调整所述柔性导管形态的运动辅助指令;
    其中,所述自然形态是基于预先获取的所述自然腔道的三维解剖结构模型得到的。
  5. 根据权利要求4所述的可读存储介质,其特征在于,所述可读存储介质还预存储一导航路径,其中,所述导航路径是利用所述三维解剖结构模型而模拟自然腔道的自然形态得到的,所述运动辅助指令是根据所述柔性导管在所述导航路径中的位置与所述导航路径之间的偏差得到的。
  6. 根据权利要求4所述的可读存储介质,其特征在于,所述运动辅助指令用于调整所述柔性导管的形态以改变其在所述自然腔道内移动的曲率;或者所述运动辅助指令用于调整所述柔性导管的形态以改变其在所述自然腔道内的朝向。
  7. 根据权利要求1所述的可读存储介质,其特征在于,所述移动信息包括所述柔性导管的当前移动速度;
    所述根据经确定的所述柔性导管在自然腔道内移动的移动信息,选择性输出运动辅助指令,包括:当所述当前移动速度超过预设值时,生成包含低于所述当前移动速度的运动辅助指令,以控制所述柔性导管降低移动速度。
  8. 根据权利要求1所述的可读存储介质,其特征在于,所述根据经确定的所述柔性导管在自然腔道内移动的移动信息,选择性输出运动辅助指令,包括:
    检测所述移动信息中的当前位置和当前速度,以确定所述柔性导管准备向所述自然腔 道的其中一个通路分支方向移动;以及检测所述移动信息中的当前形态与预设的目标朝向之间的角度偏差;其中所述目标朝向表示使所述柔性导管对准所述自然腔道中的相应通路分支方向;
    根据所述角度偏差,输出用于调整所述当前形态以对准所述通路分支方向的运动辅助指令,以控制所述柔性导管调整角度。
  9. 根据权利要求8所述的可读存储介质,其特征在于,所述检测所述移动信息中的当前位置和当前移动速度,包括:
    将所述移动信息中的当前位置映射到预先获取的所述自然腔道的三维解剖结构模型中的模型位置;以及依据所述模型位置确定所述柔性导管靠近其中一个通路分支;
    检测所述移动信息中的当前移动速度的绝对值小于预设的速度阈值;以及,
    检测所述移动信息中所述柔性导管的当前形态在主从控制指令的控制下朝向其中一个通路分支。
  10. 根据权利要求8所述的可读存储介质,其特征在于,所述根据经确定的所述柔性导管在自然腔道内移动的移动信息,选择性输出运动辅助指令或主从控制指令,包括:当检测到所述柔性导管被调整至目标朝向后,输出主从控制指令以使所述柔性导管进入所述通路分支。
  11. 根据权利要求1所述的可读存储介质,其特征在于,所述根据经确定的所述柔性导管在自然腔道内移动的移动信息,选择性输出运动辅助指令,包括:
    检测所述移动信息中的当前位置,以确定所述柔性导管已进入所述自然腔道的其中一个通路分支;以及检测所述移动信息中的当前形态与所述通路分支之间的曲率偏差;
    根据所述曲率偏差,输出用于调整所述当前形态以沿着所述通路分支的曲率移动的运动辅助指令。
  12. 根据权利要求11所述的可读存储介质,其特征在于,所述检测所述移动信息中的当前位置,以确定所述柔性导管已进入所述自然腔道的其中一个通路分支,包括:
    将所述当前位置映射到对应自然腔道的三维解剖结构模型中,以检测所述柔性导管是否位于相应通路分支的弯曲段;其中,所述曲率是基于所述弯曲段的弯曲程度而确定的。
  13. 根据权利要求12所述的可读存储介质,其特征在于,所述曲率是基于预先获取的导航路径中对应所述弯曲段的路径曲率而确定的。
  14. 根据权利要求12所述的可读存储介质,其特征在于,所述根据经确定的所述柔性导管在自然腔道内移动的移动信息,选择性输出运动辅助指令或主从控制指令,包括:当检测到所述柔性导管移动至所述通路分支的直线段后,输出主从控制指令以使所述柔性导管沿所述通路分支移动。
  15. 一种导管机器人,其特征在于,包括通信连接的运动控制装置和运动执行装置;
    所述运动控制装置包括如权利要求1-14中任一所述的可读存储介质,以及处理器;其中,所述处理器用于运行所述可读存储介质中的程序,以输出运动辅助指令或者主从控制指令;
    所述运动执行装置被配置为根据所接收的主从控制指令或运动辅助指令,控制所述柔性导管在自然腔道内移动。
  16. 根据权利要求15所述的导管机器人,其特征在于,所述运动执行装置包括位姿调整单元和形态调整单元;
    所述位姿调整单元包括调整臂,所述调整臂至少具有五个自由度,所述调整臂的末端 与所述柔性导管连接,以驱动所述柔性导管运动来调整所述柔性导管的位置;
    所述形态调整单元包括动力盒,所述动力盒设置在所述调整臂上,所述动力盒用于与所述柔性导管的近端的器械盒传动连接,以调整所述柔性导管的形态。
  17. 根据权利要求16所述的导管机器人,其特征在于,所述运动控制装置还包括传感单元;
    所述传感单元被配置为检测所述柔性导管在所述自然腔道内移动时的移动信息。
  18. 一种导管机器人系统,包括通信连接的主端和从端,所述主端包括操作单元,其特征在于,所述从端包括导管机器人;所述主端包括如权利要求1-14中任一所述的可读存储介质和处理器;所述操作单元用于接受外界指令;所述处理器用于将所述外界指令转换为主从控制指令,并将所述主从控制指令发送至所述导管机器人。
  19. 根据权利要求18所述的导管机器人系统,其特征在于,所述主端还包括导航装置,用于根据医学影像数据建立自然腔道的三维解剖结构模型,并根据所述三维解剖结构模型创建模拟自然腔道的自然形态的导航路径,以给柔性导管移动提供参考。
  20. 根据权利要求19所述的导管机器人系统,其特征在于,所述导航装置包括图像显示单元,所述图像显示单元包括医学图像显示模块、内窥镜头图像显示模块和动画显示模块;
    所述医学图像显示模块用于显示所述三维解剖结构模型;
    所述内窥镜头图像显示模块用于显示内窥镜反馈的图像,所述内窥镜设置在所述柔性导管的末端;
    所述动画显示模块用于以动态的方式实时显示所述柔性导管的形态,并将所述柔性导管形态显示在所述三维解剖结构模型所对应的位置上。
  21. 根据权利要求18所述的导管机器人系统,其特征在于,所述操作单元还用于检测用户的启用或禁用交互指令,以控制所述导管机器人对应允许或禁止输出运动辅助指令。
  22. 根据权利要求21所述的导管机器人系统,其特征在于,所述操作单元显示文字提示信息,以及提供第一按键和第二按键;
    所述文字提示信息用于提示是否开启运动辅助功能;
    所述第一按键被配置为被触发时,向所述导管机器人发送开启运动辅助功能的指令,且所述导管机器人允许选择性输出运动辅助指令;
    所述第二按键被配置为被触发时,向所述导管机器人发送禁用运动辅助功能的指令,且所述导管机器人根据主从控制指令对柔性导管进行驱动。
  23. 一种电子设备,其特征在于,包括处理器和存储器,所述存储器包括如权利要求1至14中任一所述的可读存储介质,所述存储器上存储有程序,所述程序用于被所述处理器执行。
  24. 一种用于导管机器人的控制方法,其中,所述导管机器人用于控制柔性导管移动,其特征在于,所述控制方法包括:
    获取用于反映所述柔性导管在自然腔道所提供的空间内移动的移动信息;
    根据所述自然腔道的三维解剖结构模型,对所述移动信息进行检测;
    根据所得到的检测结果,选择性输出运动辅助指令或主从控制指令,以供所述导管机器人根据主从控制指令或运动辅助指令,驱动所述柔性导管移动;
    其中,所述运动辅助指令用于调整所述柔性导管基于所述主从控制指令而执行的移动信息。
PCT/CN2022/117016 2021-09-13 2022-09-05 导管机器人及系统与控制方法、可读存储介质及电子设备 WO2023036078A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111070675.XA CN113712674B (zh) 2021-09-13 2021-09-13 导管机器人及系统与控制方法、可读存储介质及电子设备
CN202111070675.X 2021-09-13

Publications (1)

Publication Number Publication Date
WO2023036078A1 true WO2023036078A1 (zh) 2023-03-16

Family

ID=78683495

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/117016 WO2023036078A1 (zh) 2021-09-13 2022-09-05 导管机器人及系统与控制方法、可读存储介质及电子设备

Country Status (2)

Country Link
CN (1) CN113712674B (zh)
WO (1) WO2023036078A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113712674B (zh) * 2021-09-13 2023-05-09 上海微创微航机器人有限公司 导管机器人及系统与控制方法、可读存储介质及电子设备
WO2023179339A1 (zh) * 2022-03-23 2023-09-28 上海微创微航机器人有限公司 导管形状与力感知方法、手术导航方法和介入手术系统
CN114917029B (zh) * 2022-07-22 2022-10-11 北京唯迈医疗设备有限公司 一种介入手术机器人系统、控制方法和介质

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102711586A (zh) * 2010-02-11 2012-10-03 直观外科手术操作公司 在机器人内窥镜的远侧尖端自动维持操作者选择的滚动取向的方法和系统
CN106539624A (zh) * 2016-11-23 2017-03-29 常州朗合医疗器械有限公司 医疗路径导航方法、规划方法及系统
US20200237469A1 (en) * 2017-11-10 2020-07-30 Olympus Corporation Medical manipulator system and method for operating same
CN112587243A (zh) * 2020-12-15 2021-04-02 深圳市精锋医疗科技有限公司 手术机器人及其控制方法、控制装置
CN112955067A (zh) * 2018-10-30 2021-06-11 科林达斯公司 用于导航装置通过路径到目标位置的系统和方法
CN113712674A (zh) * 2021-09-13 2021-11-30 上海微创医疗机器人(集团)股份有限公司 导管机器人及系统与控制方法、可读存储介质及电子设备

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4070723A1 (en) * 2015-09-18 2022-10-12 Auris Health, Inc. Navigation of tubular networks
EP3478149B1 (en) * 2016-07-01 2024-03-20 Intuitive Surgical Operations, Inc. Systems for flexible computer-assisted instrument control
CN111568558B (zh) * 2020-04-13 2022-02-22 上海市胸科医院 电子设备、手术机器人系统及其控制方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102711586A (zh) * 2010-02-11 2012-10-03 直观外科手术操作公司 在机器人内窥镜的远侧尖端自动维持操作者选择的滚动取向的方法和系统
CN106539624A (zh) * 2016-11-23 2017-03-29 常州朗合医疗器械有限公司 医疗路径导航方法、规划方法及系统
US20200237469A1 (en) * 2017-11-10 2020-07-30 Olympus Corporation Medical manipulator system and method for operating same
CN112955067A (zh) * 2018-10-30 2021-06-11 科林达斯公司 用于导航装置通过路径到目标位置的系统和方法
CN112587243A (zh) * 2020-12-15 2021-04-02 深圳市精锋医疗科技有限公司 手术机器人及其控制方法、控制装置
CN113712674A (zh) * 2021-09-13 2021-11-30 上海微创医疗机器人(集团)股份有限公司 导管机器人及系统与控制方法、可读存储介质及电子设备

Also Published As

Publication number Publication date
CN113712674B (zh) 2023-05-09
CN113712674A (zh) 2021-11-30

Similar Documents

Publication Publication Date Title
JP7371026B2 (ja) 管状網の経路ベースのナビゲーション
WO2023036078A1 (zh) 导管机器人及系统与控制方法、可读存储介质及电子设备
CN110831486B (zh) 用于基于定位传感器的分支预测的系统和方法
US20230157769A1 (en) Systems and methods for monitoring patient motion during a medical procedure
JP7282685B2 (ja) 生理学的ノイズを補償する管腔ネットワークのナビゲーション用ロボットシステム
US20230116327A1 (en) Robot-assisted driving systems and methods
KR20200099138A (ko) 의료 기구 항행 및 표적 선정을 위한 시스템 및 방법
KR20200139197A (ko) 기구의 추정된 위치를 디스플레이하기 위한 시스템 및 방법
KR20200101334A (ko) 관강내 조직망 내 기구 추적 및 항행을 위한 방법 및 시스템
JP2019088885A (ja) つながっている体の通路を通って医療機器を導くための複数動作モードを有する医療システム
WO2019074682A1 (en) ROBOTIC SYSTEM DESIGNED TO FOLLOW A NAVIGATION PATH
CN113616333B (zh) 导管运动辅助方法、导管运动辅助系统及可读存储介质
JP2023133606A (ja) 細長いデバイスに関するシステム及び方法
US20220047339A1 (en) Endoluminal robotic (elr) systems and methods
JP7402215B2 (ja) ゴースト器具情報を用いた管腔内ナビゲーション
JP2024502578A (ja) 仮想の衛星標的を用いた腔内ナビゲーション
CN113692259A (zh) 用于患者解剖结构配准的系统和方法
WO2022233201A1 (en) Method, equipment and storage medium for navigating a tubular component in a multifurcated channel
US20220273189A1 (en) Six degrees of freedom from a single inductive pickup coil sensor
US20230255442A1 (en) Continuum robot apparatuses, methods, and storage mediums
WO2023060198A1 (en) Medical instrument guidance systems, including guidance systems for percutaneous nephrolithotomy procedures, and associated devices and methods
WO2022234431A1 (en) Endoscope navigation system with updating anatomy model
CN116056654A (zh) 导航操作指令

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22866541

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE