WO2024114100A1 - 射频模组、供电控制方法及通信设备、可读存储介质 - Google Patents

射频模组、供电控制方法及通信设备、可读存储介质 Download PDF

Info

Publication number
WO2024114100A1
WO2024114100A1 PCT/CN2023/122940 CN2023122940W WO2024114100A1 WO 2024114100 A1 WO2024114100 A1 WO 2024114100A1 CN 2023122940 W CN2023122940 W CN 2023122940W WO 2024114100 A1 WO2024114100 A1 WO 2024114100A1
Authority
WO
WIPO (PCT)
Prior art keywords
module
power
power supply
modules
switch
Prior art date
Application number
PCT/CN2023/122940
Other languages
English (en)
French (fr)
Inventor
陈锋
仝林
Original Assignee
Oppo广东移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oppo广东移动通信有限公司 filed Critical Oppo广东移动通信有限公司
Publication of WO2024114100A1 publication Critical patent/WO2024114100A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/38Transceivers, i.e. devices in which transmitter and receiver form a structural unit and in which at least one part is used for functions of transmitting and receiving
    • H04B1/40Circuits
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/38Transceivers, i.e. devices in which transmitter and receiver form a structural unit and in which at least one part is used for functions of transmitting and receiving
    • H04B1/40Circuits
    • H04B1/401Circuits for selecting or indicating operating mode

Definitions

  • the present application relates to the field of antenna technology, and in particular to a radio frequency module, a power supply control method, a communication device, and a readable storage medium.
  • communication equipment usually includes at least two power amplifier modules.
  • the power amplifier (PA) in each power amplifier module is used to amplify the weak signal generated by the radio frequency transceiver into a high-power strong signal, which is radiated into the free space through the antenna to communicate with the base station.
  • PA power amplifier
  • a radio frequency module a power supply control method, a communication device, and a readable storage medium are provided, which can ensure that the normal power amplifier module maintains normal operation and improve the user experience.
  • the first aspect of the present application provides a radio frequency module, including:
  • At least two power modules At least two power modules
  • each transmitting group includes at least two power amplifying modules, each power amplifying module is switchably connected to any one of the at least two power supply modules, and each power amplifying module in the same transmitting group is used to power amplify the received radio frequency signal under the power supply of the same power supply module;
  • a power supply control circuit is used to obtain the working status of each power amplification module in each of the transmission groups, determine the abnormal transmission group in which the abnormal power amplification module is located according to the working status, and control the normal power amplification modules in the abnormal transmission group to switch from the power supply module currently connected to the target power supply module, wherein the target power supply module is any one of the at least two power supply modules except the power supply module currently connected.
  • a second aspect of the present application provides a power supply control method, comprising:
  • the target power module is any one of the at least two power modules except the power module that is currently connected;
  • the number of the transmitting groups is at least two, each of the transmitting groups includes at least two power amplification modules, each power amplification module can be switchably connected to any one of the at least two power modules, and each of the power amplification modules in the same transmitting group is used to power amplify the received radio frequency signal under the power supply of the same power module.
  • a third aspect of the present application provides a communication device, including:
  • a radio frequency module as described above is described above.
  • a fourth aspect of the present application provides a communication device, including:
  • At least two power modules At least two power modules
  • each transmitting group includes at least two power amplifying modules, each power amplifying module is switchably connected to any one of the at least two power supply modules, and each power amplifying module in the same transmitting group is used to power amplify the received radio frequency signal under the power supply of the same power supply module;
  • a fifth aspect of the present application provides a computer-readable storage medium having a computer program stored thereon, and when the computer program is executed by a processor, the steps of the power supply control method as described above are implemented.
  • FIG1 is a structural block diagram of a radio frequency module according to an embodiment
  • FIG2 is a second structural block diagram of a radio frequency module according to an embodiment
  • FIG3 is a third structural block diagram of a radio frequency module according to an embodiment
  • FIG4 is a fourth structural block diagram of a radio frequency module according to an embodiment
  • FIG5 is a fifth structural block diagram of a radio frequency module according to an embodiment
  • FIG6 is a flowchart of a power supply control method according to an embodiment
  • FIG7 is a second flow chart of a power supply control method according to an embodiment
  • FIG8 is a structural block diagram of a communication device in an embodiment.
  • first, second, etc. used in this application can be used in this article to describe various elements, but these elements are not limited by these terms. These terms are only used to distinguish the first element from another element, and cannot be understood as indicating or implying relative importance or implicitly indicating the number of technical features indicated. Thus, the features defined as “first” and “second” can explicitly or implicitly include at least one of the features. In the description of this application, the meaning of "plurality” is at least two, such as two, three, etc., unless otherwise clearly and specifically defined.
  • the radio frequency system involved in the embodiment of the present application can be applied to communication devices with wireless communication functions, and the communication devices can be handheld devices, vehicle-mounted devices, smart cars, wearable devices, computing devices or other processing devices connected to wireless modems, as well as various forms of user equipment (UE) (for example, mobile phones), mobile stations (MS), etc.
  • UE user equipment
  • MS mobile stations
  • FIG1 is a structural block diagram of a radio frequency module according to an embodiment.
  • the radio frequency module includes at least two power modules 10 , at least two transmitting groups 20 and a power supply control circuit 30 .
  • Each transmitting group 20 includes at least two power amplifier modules 210, each power amplifier module 210 can be switched to be connected to any one of the at least two power supply modules 10, and each power amplifier module 210 in the same transmitting group 20 is used to power amplify the received radio frequency signal under the same power supply ( Figure 1 only shows the power amplifier modules 210 in each transmitting group 20).
  • connection status of the power modules connected to the large module 210 is shown, while the connection status of other power modules 10 disconnected from the power amplifier module 210 is not shown); the power supply control circuit 30 is used to obtain the working status of each power amplifier module 210 in each transmission group 20, determine the abnormal transmission group where the abnormal power amplifier module is located according to the working status, and control the normal power amplifier module in the abnormal transmission group to switch from the current connected power module 10 to the target power module, wherein the target power module is any one of the at least two power modules 10 except the current connected power module 10.
  • the number of power modules 10 is at least two, and each power module 10 can be connected to each power amplifier module 210 in the same transmission group 20, and can also be connected to multiple power amplifier modules 210 in different transmission groups 20.
  • the power module 10 provides a power supply signal to the connected power amplifier module 210, so that the power amplifier module 210 performs power amplification on the received radio frequency signal.
  • the power module 10 can adjust the voltage according to the frequency band of the radio frequency signal that the power amplifier module 210 needs to support power amplification, so as to output a power supply signal suitable for the normal operation of the power amplifier module 210 to meet the needs of users.
  • the power module 10 may, for example, include a battery and a power management chip (Power management IC, PMIC) connected to the battery to adjust the power of the battery and provide it to the power amplifier module 210.
  • Power management IC Power management IC
  • the number of transmitting groups 20 is at least two, and each transmitting group 20 includes at least two power amplifier modules 210, so that the radio frequency module includes multiple power amplifier modules 210, and multiple power amplifier modules 210 can form multiple transmitting paths, so that the radio frequency module supports multi-channel transmission processing, improving communication quality and user experience.
  • multiple power amplifier modules 210 can be grouped according to whether the radio frequency signals received by each power amplifier module 210 in the actual application are in the same transmitting path group, and multiple power amplifier modules 210 connected to the same transmitting path group can belong to the same transmitting group 20.
  • the power amplifier modules 210 of the low frequency band, the medium frequency band and the high frequency band are divided into the same transmitting group 20, and the power amplifier modules 210 of the high frequency band and the ultra-high frequency band are divided into the same transmitting group 20 to support different frequency band combinations; it is also possible to group according to the power supply requirements of each power amplifier module 210, for example, different power amplifier modules 210 with similar power supply requirements are divided into the same transmitting group 20. It should be noted that this embodiment is not limited to the above-mentioned grouping method, and can be set specifically according to actual needs.
  • each power amplifier module 210 is switched to be connected to at least two power modules 10, and each power amplifier module 210 in the same transmitting group 20 is used to power amplify the received radio frequency signal under the power supply of the same power module.
  • the power modules 10 connected to each power amplifier module 210 in different transmitting groups 20 are different by default.
  • the switching connection means that the power amplifier module 210 can be connected to at least two power modules 10 respectively, and the connection between the power amplifier module 210 and a power module 10 can be switched.
  • Each power amplifier module 210 may include one or more power amplifiers (PA), the power supply end of each PA is switched to be connected to at least two power supply modules 10, the input end of each PA is used to connect to the RF transceiver to receive the RF signal, and the output end of each PA is used to connect to the antenna or other RF front-end modules.
  • PA power amplifier
  • the PA amplifies the received RF signal and outputs the amplified RF signal to the antenna for the antenna to transmit outward.
  • the power supply control circuit 30 may include a RF transceiver.
  • the power supply control circuit 30 may be connected to the input end of each power amplifier module 210 to provide a RF signal to each power amplifier module 210 ( Figure 1 takes this as an example and shows the connection between the power supply control circuit 30 and each power amplifier module 210).
  • the power amplifier module 210 may also include other functional devices to realize other auxiliary functions, for example, it may also include a low noise amplifier to realize the receiving function at the same time.
  • the power amplifier module 210 may be a low-frequency power amplifier module with built-in low noise amplifier (LB L-PA Mid, Low Band PA Mid With LNA), or a medium and high frequency power amplifier module with built-in low noise amplifier (MHB L-PA Mid, Middle and High Band PA Mid With LNA).
  • LB L-PA Mid, Low Band PA Mid With LNA low-frequency power amplifier module with built-in low noise amplifier
  • MHB L-PA Mid, Middle and High Band PA Mid With LNA medium and high frequency power amplifier module with built-in low noise amplifier
  • LPAF power amplifier switch module with integrated filter and low noise amplifier
  • LNA-PA ASM module with integrated filter etc.
  • it may be So it supports LPAF for high frequency signals or ultra-high frequency signals.
  • the power supply control circuit 30 is used to obtain the working status of each power amplification module 210 in each transmission group 20, determine the abnormal transmission group where the abnormal power amplification module is located according to the working status, and control the normal power amplification module in the abnormal transmission group to switch from the power supply module currently connected to the target power supply module, wherein the target power supply module is any one of the at least two power supply modules 10 except the power supply module 10 currently connected.
  • the working state of each power amplifier module 210 includes a normal working state and an abnormal working state.
  • the PA is a high-power device and is often in a high-temperature, high-power, and high-current working scenario. There may be a small probability of burning.
  • a power line short circuit will occur inside the power amplifier module 210, which may cause other power amplifier modules 210 powered by the same power module 10 to fail to work normally.
  • the working state in which the power line short circuit occurs inside the power amplifier module 210 is defined as an abnormal working state
  • the power amplifier module 210 in the abnormal working state is defined as an abnormal power amplifier module
  • the emission group 20 to which the abnormal power amplifier module belongs is defined as an abnormal emission group. It can be understood that other states other than the abnormal working state can be defined as a normal working state, and the power amplifier module 210 in the normal working state is defined as a normal power amplifier module.
  • the abnormal power amplifier module and the abnormal transmission group where the abnormal power amplifier module is located can be determined, so as to timely control the normal power amplifier module in the abnormal transmission group to switch from the currently connected power module 10 to the target power module, so as to ensure that the normal power amplifier module can maintain normal operation, and increase the number of frequency bands that can be used by the radio frequency module after the power amplifier module 210 burns out, so as to improve the user experience and reduce the customer return rate.
  • some of the multiple transmission groups may include only one power amplifier module. When the abnormal transmission group includes only one abnormal power amplifier module, the power supply control circuit 30 may not perform the relevant operations of switching the target power module.
  • the power supply control circuit 30 can obtain the working state of the power amplifier module 210 according to the state parameters of the power amplifier module 210.
  • the state parameters can be, for example, voltage parameters, current parameters or temperature parameters of the power supply terminal of the power amplifier module 210.
  • the power supply path is short-circuited, which will cause a change in the state parameters.
  • the voltage parameter of the power supply terminal of the power amplifier module 210 may suddenly change to zero, and the current parameter and the temperature parameter may increase abnormally. Therefore, the working state of the power amplifier module 210 can be obtained according to the state parameters of the power amplifier module 210.
  • the power supply control circuit 30 can also obtain the working state of the power amplifier module 210 according to a state signal that can directly feedback the state of the power amplifier module 210.
  • a circuit with corresponding functions can be set between the power supply control circuit 30 and the power amplifier module 210 to achieve the acquisition of the aforementioned state parameters or state signals.
  • a sampling circuit can be set to collect the state parameters of the power amplifier module 210 and feed them back to the power supply control circuit 30; for example, a detection circuit can be set to generate a state signal corresponding to the working state according to the state parameters of the power amplifier module 210, and feed the state signal back to the power supply control circuit 30; for example, the power supply control circuit 30 itself can also be configured to have a state parameter collection function.
  • the method for obtaining the working state of the power amplifier module 210 is not limited to the aforementioned embodiments, and other embodiments are not further limited.
  • the radio frequency module provided in this embodiment includes at least two power modules 10, at least two transmitting groups 20 and a power supply control circuit 30.
  • Each transmitting group 20 includes at least two power amplifier modules 210.
  • Each power amplifier module 210 can be switched to be connected to any one of the at least two power modules 10.
  • Each power amplifier module 210 in the same transmitting group 20 is used to power amplify the received radio frequency signal under the power supply of the same power module.
  • the abnormal transmitting group where the abnormal power amplifier module is located can be determined, so as to timely control the normal power amplifier module in the abnormal transmitting group to switch from the currently connected power module 10 to the target power module, so as to ensure that the normal power amplifier module can maintain normal operation, and increase the number of frequency bands that can be used by the radio frequency module after the power amplifier module 210 burns out, so as to improve user experience and reduce customer dropout rate.
  • the RF module further includes a switch module 40 , and the power supply control circuit 30 controls the conduction status of the connection between each power amplifier module 210 and the power supply module 10 by controlling the conduction status of the switch module 40 .
  • the switch module 40 has a controlled end, a plurality of first ends and a plurality of second ends.
  • the power module 10 is connected, at least some of the multiple first ends are connected to the same power module 10, each second end of the switch module 40 is connected to the power end of a power amplifier module 210, and the controlled end of the switch module 40 is connected to the power supply control circuit 30.
  • the switch module 40 is used to switch the normal power amplifier module from the currently connected power module 10 to the target power module under the control of the power supply control circuit 30.
  • the switch module 40 is connected to the power supply control circuit 30 through the controlled end, is correspondingly connected to multiple power supply modules 10 through multiple first ends, and is correspondingly connected to multiple power amplifier modules 210 through multiple second ends. Under the control of the power supply control circuit 30, the switch module 40 switches the normal power amplifier module to the target power supply module.
  • a default power supply module 10 can be selected as the power supply module currently connected.
  • the switch module 40 turns on the connection path between each power amplifier module 210 and the default power supply module 10, so that each default power supply module 10 supplies power to the default connected transmission group 20; when there is an abnormal power amplifier module, the switch module 40 cuts off the connection between other normal power amplifier modules in the transmission group 20 where the abnormal power amplifier module is located and the default power supply module 10, and at the same time turns on the connection between the normal power amplifier modules and other power supply modules 10.
  • the normal power amplifier modules in the abnormal transmission group can be switched to the target power supply module in time to ensure the normal operation of the normal power amplifier modules.
  • the switch module 40 is further used to disconnect the abnormal power amplification module from the currently connected power supply module under the control of the power supply control circuit 30 .
  • the switch module 40 is promptly controlled to disconnect the abnormal power amplifier module from the power module that is currently connected, so as to avoid the power amplifier module 210 from continuing to have an abnormally large current, which may lead to severe heating.
  • the power supply control circuit 30 may include: a radio frequency transceiver 310 and a control module 320 .
  • the control module 320 is used to obtain the working status of each power amplifier module 210, and when the working status is an abnormal working status, generate a power switching instruction, and the power switching instruction carries parameter information of the abnormal transmission group and the normal power amplifier module;
  • the RF transceiver 310 is respectively connected to the control module 320, the input end of the power amplifier module 210, and the controlled end of the switch module 40, and is used to provide a RF signal, and is also used to control the switch module 40 according to the power switching instruction to switch the normal power amplifier module from the currently connected power module 10 to the target power module.
  • the control module 320 is connected to the RF transceiver 310, and the control module 320 can obtain the working status of each power amplifier module 210, and when the working status is an abnormal working status, generate a power switching instruction to instruct the RF transceiver 310 to perform corresponding operations.
  • the way in which the control module 320 obtains the working status of each power amplifier module 210 can refer to the relevant description in the above embodiment, which will not be repeated here.
  • the control module 320 can be an application processor (AP, Application Processor) or a baseband processor in the communication device. Taking the control module 320 as an AP as an example, when the AP finds an abnormal power amplifier module based on the working status of each power amplifier module 210, it notifies the RF transceiver 310 to perform corresponding operations through a power switching instruction.
  • the RF transceiver 310 is respectively connected to the control module 320, the input end of the power amplifier module 210, and the controlled end of the switch module 40.
  • the RF transceiver 310 can provide RF signals to the power amplifier module 210, and can also receive the power switching instruction output by the control module 320. Since the power switching instruction carries the parameter information of the abnormal transmission group and the normal power amplifier module, the RF transceiver 310 can generate corresponding control signals according to the parameter information to control the switch module 40 to achieve the switching of the target power module.
  • the abnormal power amplifier module can be discovered in time, and the conduction status of the switch module 40 can be controlled in time, so that the switch module 40 can switch the target power module to the normal power amplifier module in the abnormal transmission group in time to ensure the normal operation of the normal power amplifier module.
  • the switch module 40 includes: a plurality of switch units;
  • the RF transceiver 310 controls the conduction status of each switch unit 410 to switch the target power supply module of the normal power amplifier module.
  • a plurality of switch units 410 each switch unit 410 having a controlled end, at least two first ends and a second end (two first ends and one second end are used as an example in FIG. 2 ), at least two first ends of each switch unit 410 are respectively connected to at least two power modules 10, and the second end of each switch unit 410 is connected to a power amplifier module 210; wherein the RF transceiver 310 is configured with a plurality of control interfaces, each control interface is connected to a controlled end of a switch unit 410, the RF transceiver 310 is used to generate a control signal according to a power switching instruction, and send a control signal to a target switch unit 410 through the control interface, so as to control the target switch unit 410 to switch the normal power amplifier module from the currently connected power module to the target power module, and the target switch unit 410 is connected to the normal power amplifier module.
  • the switch unit 410 is disposed on the connection path between each power amplifier module 210 and the power module 10. By controlling the conduction of the switch unit 410, the power supply of the power module 10 to each power amplifier module 210 can be controlled.
  • the control signal includes an on signal and an off signal. The on signal is used to control the switch unit 410 to conduct the connection path that was originally in the off state, and the off signal is used to control the switch unit 410 to shut down the connection path that was originally in the on state.
  • the RF transceiver 310 determines the target switch unit 410 that needs to switch the target power module according to the parameter information carried in the power switching instruction, and generates a control signal to send the control signal to the corresponding target switch unit 410 through the control interface to control the target switch unit 410 to switch the target power module.
  • each switch unit 410 is set on the connection path between each power amplifier module 210 and the power module 10, so that the conduction and shutdown of each switch unit 410 can be independently controlled, and the target power module can be switched more accurately.
  • control interface of the RF transceiver 310 includes one of a mipi (Mobile Industry Processor Interface) interface and a GPIO (General Purpose Input Output) interface.
  • the RF transceiver 310 can send a control signal to the switch unit 410 through the level change control of the mipi interface or the GPIO interface, thereby improving the control efficiency.
  • each switch unit 410 includes at least one switch device, and the switch device may be, for example, a single-pole multi-throw switch.
  • the switch unit 410 may be a single-pole double-throw switch, and the two first ends of the single-pole double-throw switch are respectively connected to the output ends of the two power supply modules 10, and the second end of the single-pole double-throw switch is connected to the power supply end of the power amplifier module 210.
  • the single-pole double-throw switch may be configured to conduct the connection between one of the power supply modules 10 and the power amplifier module 210 by default, and to disconnect the connection between the other power supply module 10 and the power amplifier module 210; when the power supply control circuit 30 acquires an abnormal power amplifier module, the single-pole double-throw switch disconnects the connection between the normal power amplifier module and the power supply module 10 that supplies power to the abnormal power amplifier module at the same time, and conducts the connection between the other power supply module 10 and the normal power amplifier module, so as to realize the switching of the target power module.
  • the switch unit 410 can be arranged outside the power amplifier module 210 (the embodiment of FIG. 2 is illustrated by taking the switch unit 410 as an example, please refer to FIG. 2 for auxiliary reference).
  • Each power amplifier module 210 can be configured with a power interface and an input interface, the power interface is connected to the second end of the switch unit 410, and the input interface is connected to the transmission interface of the RF transceiver 310; wherein the power interface is used to receive the power supply signal of the power module 10, and the input interface is used to receive the RF signal output by the RF transceiver 310.
  • each power amplifier module 210 includes a power amplifier.
  • Each power amplifier module 210 is configured with at least two power supply interfaces, a controlled interface and an input interface (FIG3 takes two power supply interfaces as an example for illustration, the two power supply interfaces are VCC1 and VCC2, the input interface is PAIN, and the controlled interface is BC.
  • the power amplifier and the switch unit 410 are not shown in the figure).
  • the at least two power supply interfaces are respectively connected to the at least two power supply modules 10, the controlled interface is connected to the control interface of the RF transceiver 310, and the input interface is respectively connected to the transmitting interface of the RF transceiver 310 and the input end of the power amplifier; wherein each switch unit 410 is integrated in the corresponding power amplifier module 210, at least two first ends of the switch unit 410 are respectively connected to the at least two power supply interfaces, the second end of the switch unit 410 is connected to the power end of the power amplifier, and the switch unit 410 is connected to the power supply end of the power amplifier.
  • the controlled end of element 410 is connected to the controlled interface.
  • the power amplifier module 210 is configured with at least two power interfaces, a controlled interface and an input interface, each switch unit 410 is integrated in the corresponding power amplifier module 210, the first end of the switch unit 410 is connected to the external power module 10 through the power interface, the second end of the switch unit 410 is connected to the power amplifier of the power amplifier module 210, and the controlled end of the switch unit 410 is connected to the external RF transceiver 310 through the controlled interface.
  • the switch unit 410 By integrating the switch unit 410 inside the power amplifier module 210, the mainboard area occupied by the RF module can be reduced, the integration is improved, and it is conducive to the miniaturization of the RF module and the reduction of costs.
  • the switch unit 410 may also have multiple second ends, each second end corresponding to a power supply end of a power amplifier. It is understood that the power amplifier module 210 is also configured with an output interface, and the output interface can be connected to the antenna through the RF front-end circuit.
  • the switch unit 410 can also be integrated into the power module 10.
  • multiple switch units 410 corresponding to the default power module 10 in the above embodiment can be integrated inside the default power module 10 to improve the integration level, which is also conducive to the miniaturization of the RF module and reducing costs.
  • the radio frequency module may further include: a state detection circuit, and the power supply control circuit 30 obtains the working state of each power amplification module 210 through the state detection circuit.
  • the state detection circuit is connected to the control module 320 and the power amplifier module 210, respectively, and is used to detect the working state of the power amplifier module 210 and feed back the working state to the control module 320. Specifically, the state detection circuit can detect the state parameters of the power amplifier module 210, determine the working state of the power amplifier module 210 according to the state parameters, and feed back the working state to the control module 320 for the control module 320 to obtain.
  • the state detection circuit can generate a signal with a state flag bit change according to the state detection result. For example, when an abnormal power amplifier module is detected, a high or low level signal is generated, and the high or low level signal is used to indicate to the control module 320 that the corresponding power amplifier module 210 is in an abnormal working state.
  • the state detection circuit can be a voltage detection circuit, a current sampling circuit, a temperature detection circuit, etc., which is used to detect the working state of the power amplifier module 210 through the state parameters of the power amplifier module 210.
  • the state detection circuit when the state detection circuit is a voltage detection circuit or a current sampling circuit, the state detection circuit can be connected to the power amplifier module 210, and when the state detection circuit is a temperature detection circuit, the state detection circuit can also not be connected to the power amplifier module 210, and the temperature parameters are obtained by detecting the temperature of the environment around the power amplifier module 210.
  • the number of state detection circuits can be one, and the state detection circuit can have multiple detection terminals and multiple feedback terminals.
  • Each detection terminal can be connected to each power amplification module 210, and each feedback terminal is connected to each feedback receiving terminal of the control module 320.
  • the state detection circuit is used to feed back the working status obtained by each detection terminal to the corresponding feedback terminal, so that the control module 320 can determine the working status of each power amplification module 210 through the status signal received by the feedback receiving terminal.
  • each power amplifier module 210 is also configured with a state feedback interface (the state feedback interface is BD in the figure); wherein each state detection circuit is correspondingly integrated in each power amplifier module 210, and the feedback end of each state detection circuit is connected to the detection interface of the control module 320 through the state feedback interface, and the detection end of each state detection circuit is connected to the power supply end of the power amplifier (the power amplifier and the state detection circuit are not shown in the figure).
  • the state feedback interface is BD in the figure
  • each state detection circuit is correspondingly integrated in each power amplifier module 210, and the feedback end of each state detection circuit is connected to the detection interface of the control module 320 through the state feedback interface, and the detection end of each state detection circuit is connected to the power supply end of the power amplifier (the power amplifier and the state detection circuit are not shown in the figure).
  • the mainboard area occupied by the RF module can be reduced, the integration level can be improved, and it is beneficial to the miniaturization of the RF module and the reduction of costs; on the other hand, the detection distance between the state detection circuit and the power supply terminal of the power amplifier can be shortened, thereby improving the detection accuracy of the state detection circuit.
  • the power supply control circuit 30 is also used to obtain the target frequency band of the RF signal supported by the abnormal power amplification module for power amplification, and update the available network search frequency band according to the target frequency band.
  • the available network search frequency band is the frequency band that the RF module supports for RF signal transmission in the target standard network.
  • the target frequency band is the frequency band of the radio frequency signal supported by the abnormal power amplifier module for power amplification.
  • the power amplifier module 210 When the power amplifier module 210 is in an abnormal state, it means that the target frequency band supported by the power amplifier module 210 can no longer work.
  • the available network search frequency band is the frequency band that the radio frequency module supports the transmission of radio frequency signals in the target standard network.
  • the available network search frequency band is updated according to the target frequency band, which may be to remove the target frequency band from the original available network search frequency band.
  • the target standard network may be one or more standard networks, such as GSM (Global System for Mobile Communications), UMTS (Universal Mobile Telecommunications System), LTE (Long Term Evolution) and NR (New Radio), etc., and each network standard may include multiple frequency bands. This embodiment is not further limited.
  • the LTE signal and the NR signal respectively include a low-frequency signal, a medium-frequency signal, a high-frequency signal and an ultra-high-frequency signal, wherein the frequency band division of the low-frequency signal, the medium-frequency signal, the high-frequency signal and the ultra-high-frequency signal can refer to the following table.
  • the 5G network uses the same frequency bands as the 4G network, with only the identifiers before the serial numbers changed.
  • the 5G network also adds some ultra-high frequency bands that are not available in the 4G network, such as N77, N78, and N79.
  • the communication device When the RF module is used in a communication device, the communication device usually needs to search the network during operation.
  • the network search process usually attempts to search all frequency bands supported by the RF module.
  • the power amplifier module 210 When the power amplifier module 210 is in an abnormal state, it means that the target frequency band implemented by the power amplifier module 210 is no longer working. Continuing to search for the frequency band that cannot work may cause the device to freeze.
  • the updated available network search frequency band removes the target frequency band, allowing the device to skip the frequency band that cannot work when performing a network search operation, thereby not only reducing the power consumption caused by the network search, but also shortening the network search time and speeding up the communication service.
  • control module 320 in the power supply control circuit 30 can obtain the target frequency band of the RF signal that the abnormal power amplification module supports power amplification, and update the available network search frequency band according to the target frequency band.
  • control module 320 can also establish a network search list based on the updated available network search frequency band, so that the device can perform network search operations according to the network search list. By establishing a network search list, the network search speed of the device can be further improved.
  • At least two power modules include a first power module and a second power module
  • at least two firing groups include a first firing group and a second firing group:
  • the first transmitting group includes a low-frequency power amplification module, a medium-high frequency amplification module and a first ultra-high frequency amplification module respectively connected to the first power module and the second power module, the low-frequency power amplification module is used to support power amplification of low-frequency signals, the medium-high frequency amplification module is used to support power amplification of medium-frequency signals and high-frequency signals, the first ultra-high frequency amplification module is used to support power amplification of ultra-high frequency signals, and each power amplification module in the first transmitting group is connected to the first power module by default;
  • the second transmitting group includes a high-frequency amplification module and a second ultra-high frequency amplification module respectively connected to the first power module and the second power module, the high-frequency amplification module is used to support power amplification of high-frequency signals, the second ultra-high frequency amplification module is used to support power amplification of ultra-high frequency signals, and each power amplification module in the second transmitting group is
  • the power supply control circuit 30 is used to switch the normal power amplification module in the first transmission group from the first power supply module currently connected to the second power supply module when the first transmission group includes at least one abnormal power amplification module and the second transmission group does not include an abnormal power amplification module, or to switch the normal power amplification module in the second transmission group from the second power supply module currently connected to the first power supply module when the second transmission group includes at least one abnormal power amplification module and the first transmission group does not include an abnormal power amplification module.
  • the power supply control circuit 30 includes a radio frequency transceiver 310 and a control module 320
  • the radio frequency module also includes a state detection circuit and a switch module 40
  • the switch module 40 includes a plurality of switch units 410
  • the low-frequency power amplifier module, the medium-high frequency amplifier module and the first ultra-high frequency amplifier module of the first transmitting group are powered by the first power module by default
  • the medium-high frequency amplifier module and the second ultra-high frequency amplifier module of the second transmitting group are powered by the second power module by default.
  • the first power module is power supply 1
  • the second power module 10 is power supply 2
  • the low-frequency amplifier module can be an LB LPAMID module
  • the medium-high frequency amplifier module can be an MHB LPAMID module
  • the first ultra-high frequency amplifier module can be an N78 LPAF#1 module
  • the high-frequency amplifier module can be an N41 LPAF PA module
  • the second ultra-high frequency amplifier module is an N78 LAPF#2 module
  • the control module 320 can be an AP.
  • the LB LPAMID module, the MHB LPAMID module, the N78 LPAF#1 module, the N41 LPAF PA module and the N78 LAPF#2 module can each be connected to the corresponding antenna (ANT1, ANT2, ANT3, ANT4 and ANT5 in the figure) through the front-end module.
  • the AP obtains the abnormal working state of the LB LPAMID module through the state detection circuit, determines that the first transmission group is an abnormal transmission group, and then generates a power switching instruction to notify the RF transceiver 310.
  • the RF transceiver 310 generates a control signal according to the power switching instruction, and sends the control signal to the MHB LPAMID module and the switch unit 410 corresponding to the N78 LPAF#1 module through the mipi or GPIO interface to control the switch unit 410 to switch the currently connected first power module to the second power module.
  • the AP can remove low-frequency bands such as B5, B8, B28, n5, n8, and n28 from the search list.
  • the AP obtains the abnormal working state of the N78 LAPF#2 module through the state detection circuit, determines that the second transmission group is an abnormal transmission group, and then generates a power switching instruction to notify the RF transceiver 310.
  • the RF transceiver 310 generates a control signal according to the power switching instruction, and sends the control signal to the switch unit 410 corresponding to the N41 LPAF module through the mipi or GPIO interface to control the switch unit 410 to switch the second power module currently connected to the first power module.
  • the AP can remove the N78 UHF band from the search list.
  • the target power module can usually be switched between the first and second power modules.
  • a third power module can also be added to provide an alternative switching option for the target power module.
  • the RF module can be divided into different circuits as needed to complete all or part of the functions of the above-mentioned RF module.
  • FIG6 is a method flow chart of a power supply control method according to an embodiment.
  • the power supply control method includes steps 602 to 604 .
  • Step 602 obtaining the working status of each power amplification module in each transmitting group.
  • Step 604 determining the abnormal transmission group where the abnormal power amplification module is located according to the working state, and controlling the normal power amplification modules in the abnormal transmission group to switch from the currently connected power supply module to the target power supply module.
  • the target power module is any one of the at least two power modules except the currently connected power module.
  • the number of transmitting groups is at least two, each transmitting group includes at least two power amplifier modules, each power amplifier module can be switchably connected to any one of the at least two power modules, and each power amplifier module in the same transmitting group is used to power amplify the received radio frequency signal under the power supply of the same power module.
  • the transmitting group, power amplifier module, power supply module, target power supply module, etc. refer to the relevant description in the above embodiments, which will not be repeated here; steps 602-604 can be executed by the power supply control circuit in the above embodiments, and the details can be referred to the relevant description in the above embodiments, which will not be repeated here.
  • the step of controlling the normal power amplifier module in the abnormal transmission group to switch the target power module may be to control the switch module to switch the normal power amplifier module from the currently connected power module to the target power module.
  • the working state of each power amplifier module can be obtained according to the feedback of the state detection circuit.
  • the switch module and the state detection circuit can refer to the relevant description in the above embodiment, which will not be repeated here.
  • the power supply control method provided in this embodiment can determine the abnormal transmission group where the abnormal power amplifier module is located by obtaining the working status of each power amplifier module, so as to timely control the normal power amplifier module in the abnormal transmission group to switch the target power supply module to ensure that the normal power amplifier module can maintain normal operation, thereby improving the safety of the power amplifier module after the power amplifier module burns out.
  • the number of frequency bands that can be used by the RF module can improve user experience and reduce customer dropout rate.
  • the power supply control method further includes step 702 .
  • Step 702 disconnect the abnormal power amplifier module from the currently connected power supply module.
  • the steps can be executed by the power supply control circuit and the switch module in the above embodiment.
  • the steps can be executed by the power supply control circuit and the switch module in the above embodiment.
  • the power supply control method further includes step 704 .
  • Step 704 obtain the target frequency band of the RF signal that the abnormal power amplifier module supports power amplification, and update the available network search frequency band according to the target frequency band.
  • the available network search frequency band is the frequency band that the RF module supports RF signal transmission in the target standard network.
  • step 704 can be executed by the power supply control circuit in the above embodiment.
  • step 704 can be executed by the power supply control circuit in the above embodiment.
  • steps in the flow chart of the above-described embodiment may include a plurality of sub-steps or a plurality of stages, and these sub-steps or stages are not necessarily performed at the same time, but can be performed at different times, and the execution order of these sub-steps or stages is not necessarily performed in sequence, but can be performed in turn or alternately with at least a portion of other steps or sub-steps or stages of other steps.
  • An embodiment of the present application also provides a communication device, which may include the radio frequency module in any of the above embodiments.
  • the communication device can promptly control the normal power amplifier module in the abnormal transmission group to switch the target power supply module to ensure that the normal power amplifier module can maintain normal operation, and increase the number of frequency bands that can be used by the radio frequency module after the power amplifier module burns out, so as to improve user experience and reduce customer dropout rate.
  • the embodiment of the present application also provides a communication device, which may include at least two power modules, at least two transmission groups, a memory and a processor.
  • the power modules and the transmission groups can refer to the relevant descriptions in the above embodiments, which will not be repeated here.
  • the memory and the processor the memory stores a computer program, and the processor implements the steps of the power supply control method in the above embodiment when executing the computer program.
  • the communication device of this embodiment includes at least two power modules, at least two transmission groups, a memory and a processor.
  • the communication device can timely control the normal power amplifier module in the abnormal transmission group to switch the target power module to ensure that the normal power amplifier module can maintain normal operation, and increase the number of frequency bands that can be used by the radio frequency module after the power amplifier module burns out, so as to improve user experience and reduce customer exit rate.
  • the above-mentioned communication device is taken as a mobile phone 11 as an example for explanation.
  • the mobile phone 11 may include a memory 21 (which optionally includes one or more computer-readable storage media), a processor 22, a peripheral device interface 23, a radio frequency system 24, and an input/output (I/O) subsystem 26. These components optionally communicate through one or more communication buses or signal lines 29.
  • a memory 21 which optionally includes one or more computer-readable storage media
  • a processor 22 e.g., a central processing unit 22
  • peripheral device interface 23 e.g., a central processing unit 22
  • radio frequency system 24 e.g., a radio frequency subsystem
  • I/O subsystem 26 e.g., the mobile phone 11 shown in FIG8 does not constitute a limitation on the mobile phone, and may include more or fewer components than shown in the figure, or combine certain components, or arrange components differently.
  • the various components shown in FIG8 are implemented in hardware, software, or a combination of hardware and software, including one or more
  • the memory 21 optionally includes a high-speed random access memory, and optionally also includes a non-volatile memory, such as one or more disk storage devices, flash memory devices, or other non-volatile solid-state memory devices.
  • a non-volatile memory such as one or more disk storage devices, flash memory devices, or other non-volatile solid-state memory devices.
  • the software components stored in the memory 21 include an operating system 211, a communication circuit (or an instruction set) 212, a global positioning system (GPS) circuit (or an instruction set) 213, etc.
  • GPS global positioning system
  • the processor 22 and other control circuits can be used to control the operation of the mobile phone 11.
  • the processor 22 can be based on one or more microprocessors, microcontrollers, digital signal processors, baseband processors, power management units, audio codec chips, application-specific integrated circuits, etc.
  • the processor 22 may be configured to implement a control algorithm that controls the use of the antenna in the handset 11.
  • the processor 22 may also Control commands for controlling switches in the radio frequency system 24 may be issued.
  • the I/O subsystem 26 couples input/output peripherals on the mobile phone 11, such as a keypad and other input control devices, to the peripheral device interface 23.
  • the I/O subsystem 26 optionally includes a touch screen, buttons, a tone generator, an accelerometer (motion sensor), an ambient light sensor and other sensors, light emitting diodes and other status indicators, a data interface, etc.
  • a user can control the operation of the mobile phone 11 by supplying commands via the I/O subsystem 26, and can use the output resources of the I/O subsystem 26 to receive status information and other output from the mobile phone 11. For example, a user can press button 261 to turn the mobile phone on or off.
  • the radio frequency system 24 may include the radio frequency module in any of the aforementioned embodiments.
  • the embodiment of the present application also provides a computer-readable storage medium, one or more non-volatile computer-readable storage media containing computer-executable instructions, which, when executed by one or more processors, enable the processors to perform the steps of the power supply control method.
  • the embodiment of the present application also provides a computer program product including instructions, which, when executed on a computer, enables the computer to execute the steps of the power supply control method.
  • Non-volatile memory may include read-only memory (ROM), programmable ROM (PROM), electrically programmable ROM (EPROM), electrically erasable programmable ROM (EEPROM) or flash memory.
  • Volatile memory may include random access memory (RM), which is used as an external cache memory.
  • RM is available in various forms, such as static RM (SRM), dynamic RM (DRM), synchronous DRM (SDRM), double data rate SDRM (DDR SDRM), enhanced SDRM (ESDRM), synchronous link (Synchlink) DRM (SLDRM), memory bus (Rmbus) direct RM (RDRM), direct memory bus dynamic RM (DRDRM), and memory bus dynamic RM (RDRM).
  • SRM static RM
  • DRM synchronous DRM
  • DDR SDRM double data rate SDRM
  • EDRM enhanced SDRM
  • SDRM synchronous link
  • SDRM static RM
  • DDR SDRM double data rate SDRM
  • EDRM enhanced SDRM
  • SDRM synchronous link (Synchlink) DRM
  • SDRM static RM
  • Rmbus direct RM
  • RDRM direct memory bus dynamic RM
  • RDRM memory bus dynamic RM

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Transmitters (AREA)
  • Amplifiers (AREA)

Abstract

本申请涉及一种射频模组、供电控制方法及通信设备、可读存储介质,射频模组包括至少两个电源模块(10)、至少两个发射组(20)及供电控制电路(30),各发射组(20)包括至少两个功率放大模块(210),各功率放大模块(210)可切换地导通连接至至少两个电源模块(10)中的任意一个,同一发射组(20)中的各功率放大模块(210)用于在同一电源模块(10)的供电作用下对接收的射频信号进行功率放大。通过供电控制电路(30)获取各功率放大模块(210)的工作状态,可以确定异常功率放大模块所处的异常发射组(20),从而及时地控制异常发射组(20)中正常功率放大模块切换目标电源模块,以保证正常功率放大模块能够保持正常工作,提升在发生功率放大模块(210)烧毁后射频模组可使用的频段数量,以提升用户体验。

Description

射频模组、供电控制方法及通信设备、可读存储介质
相关申请的交叉引用
本申请要求于2022年11月30日提交中国专利局、申请号为2022115197267、发明名称为“射频模组、供电控制方法及通信设备、可读存储介质”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及天线技术领域,特别是涉及一种射频模组、供电控制方法及通信设备、可读存储介质。
背景技术
这里的陈述仅提供与本申请有关的背景信息,而不必然地构成示例性技术。
随着射频技术的发展,通信设备内部通常包括至少两个功率放大器模组,各功率放大器模组中的功率放大器(Power Amplifier,PA)用于将射频收发器产生的微弱信号放大为大功率强信号,并经过天线辐射到自由空间中与基站通信。
但是,在至少两个功率放大器模组的架构中,当一个PA发生异常,例如烧片时,可能导致同一电源模块供电的其他PA也会无法正常工作,影响客户体验。
发明内容
根据本申请的各种实施例,提供一种射频模组、供电控制方法及通信设备、可读存储介质,能够保证正常功率放大模块保持正常工作,提升用户体验。
本申请第一方面提供了一种射频模组,包括:
至少两个电源模块;
至少两个发射组,各所述发射组包括至少两个功率放大模块,各功率放大模块可切换地导通连接至所述至少两个电源模块中的任意一个,同一所述发射组中的各所述功率放大模块用于在同一电源模块的供电作用下对接收的射频信号进行功率放大;
供电控制电路,用于获取各所述发射组中各所述功率放大模块的工作状态,根据所述工作状态确定异常功率放大模块所处的异常发射组,并控制所述异常发射组中正常功率放大模块由当前导通连接的电源模块切换至目标电源模块,其中,所述目标电源模块为所述至少两个电源模块中除所述当前导通连接的电源模块之外的任意一个电源模块。
本申请第二方面提供了一种供电控制方法,包括:
获取各发射组中各功率放大模块的工作状态;
根据所述工作状态确定异常功率放大模块所处的异常发射组,并控制所述异常发射组中正常功率放大模块由当前导通连接的电源模块切换至目标电源模块;
其中,所述目标电源模块为所述至少两个电源模块中除所述当前导通连接的电源模块之外的任意一个电源模块;所述发射组的数量为至少两个,各所述发射组包括至少两个功率放大模块,各功率放大模块可切换地导通连接至所述至少两个电源模块中的任意一个,同一所述发射组中的各所述功率放大模块用于在同一电源模块的供电作用下对接收的射频信号进行功率放大。
本申请第三方面提供了一种通信设备,包括:
如上所述的射频模组。
本申请第四方面提供了一种通信设备,包括:
至少两个电源模块;
至少两个发射组,各所述发射组包括至少两个功率放大模块,各功率放大模块可切换地导通连接至所述至少两个电源模块中的任意一个,同一所述发射组中的各所述功率放大模块用于在同一电源模块的供电作用下对接收的射频信号进行功率放大;
存储器和处理器,所述存储器存储有计算机程序,所述处理器执行所述计算机程序时实现如上所述的供电控制方法的步骤。
本申请第五方面提供了一种计算机可读存储介质,其上存储有计算机程序,所述计算机程序被处理器执行时实现如上所述的供电控制方法的步骤。
本申请的一个或多个实施例的细节在下面的附图和描述中提出。本申请的其他特征、目的和优点将从说明书、附图以及权利要求书变得明显。
附图说明
为了更清楚地说明本申请实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为一实施例的射频模组的结构框图之一;
图2为一实施例的射频模组的结构框图之二;
图3为一实施例的射频模组的结构框图之三;
图4为一实施例的射频模组的结构框图之四;
图5为一实施例的射频模组的结构框图之五;
图6为一实施例的供电控制方法的方法流程图之一;
图7为一实施例的供电控制方法的方法流程图之二;
图8为一实施例中的通信设备的结构框图。
具体实施方式
为了使本申请的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本申请进行进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本申请,并不用于限定本申请。
可以理解,本申请所使用的术语“第一”、“第二”等可在本文中用于描述各种元件,但这些元件不受这些术语限制。这些术语仅用于将第一个元件与另一个元件区分,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括至少一个该特征。在本申请的描述中,“多个”的含义是至少两个,例如两个,三个等,除非另有明确具体的限定。
需要说明的是,当元件被称为“设置于”另一个元件,它可以直接在另一个元件上或者也可以存在居中的元件。当一个元件被认为是“连接”另一个元件,它可以是直接连接到另一个元件或者可能同时存在居中元件。
本申请实施例涉及的射频系统可以应用到具有无线通信功能的通信设备,其通信设备可以为手持设备、车载设备、智能汽车、可穿戴设备、计算设备或连接到无线调制解调器的其他处理设备,以及各种形式的用户设备(User Equipment,UE)(例如,手机),移动台(Mobile Station,MS)等等。为方便描述,上面提到的设备统称为通信设备。
图1为一实施例的射频模组的结构框图,参考图1,在本实施例中,射频模组包括至少两个电源模块10、至少两个发射组20及供电控制电路30。
各发射组20包括至少两个功率放大模块210,各功率放大模块210可切换地导通连接至至少两个电源模块10中的任意一个,同一发射组20中的各功率放大模块210用于在同一的供电作用下对接收的射频信号进行功率放大(图1仅示出与各发射组20中功率放 大模块210导通连接的电源模块的连接情况,而未示出其他与功率放大模块210断开连接的电源模块10的连接情况);供电控制电路30,用于获取各发射组20中各功率放大模块210的工作状态,根据工作状态确定异常功率放大模块所处的异常发射组,并控制异常发射组中正常功率放大模块由当前导通连接的电源模块10切换至目标电源模块,其中,目标电源模块为至少两个电源模块10中除当前导通连接的电源模块10之外的任意一个电源模块10。
其中,电源模块10的数量为至少两个,每个电源模块10可连接同一发射组20中的各功率放大模块210,也可连接不同发射组20的多个功率放大模块210,当电源模块10与功率放大模块210之间的连接导通时,电源模块10向导通连接的功率放大模块210提供供电信号,以使得功率放大模块210对接收的射频信号进行功率放大。可选地,电源模块10可以根据功率放大模块210需要支持功率放大的射频信号的频段进行电压调节,以输出适用于功率放大模块210正常工作的供电信号,以满足用户的需求。电源模块10例如可以包括电池和与电池连接的电源管理芯片(Power management IC,PMIC),以将电池的电能进行调整后提供至功率放大模块210。
其中,发射组20的数量为至少两个,各发射组20包括至少两个功率放大模块210,从而射频模组包括多个功率放大模块210,多个功率放大模块210可以形成多个发射通路,从而射频模组支持多路发射处理,提高通信质量和用户体验。可选地,可以根据实际应用中各功率放大模块210接收的射频信号是否处于同一发射通路组对多个功率放大模块210进行分组,与同一发射通路组连接的多个功率放大模块210可以归属于同一发射组20。可选地,也可以根据需要支持功率放大的射频信号的频段进行分组,例如将低频频段、中频频段及高频频段的部分功率放大模块210划分在同一发射组20,将高频频段和超高频频段的部分功率放大模块210划分在同一发射组20,以支持不同频段组合;也可以根据各功率放大模块210的供电需求进行分组,例如将供电需求接近的不同功率放大模块210划分在同一发射组20。需要说明的是,本实施例并不局限于前述提及的分组方式,具体可以根据实际需求进行设定。
其中,各功率放大模块210切换连接至至少两个电源模块10,同一发射组20中的各功率放大模块210用于在同一电源模块的供电作用下对接收的射频信号进行功率放大。通常情况,在各发射组20都处于正常供电的情况下,不同发射组20中各功率放大模块210的导通连接的电源模块10默认不同。可以理解,切换连接是指功率放大模块210可分别连接至少两个电源模块10,并可以切换地导通功率放大模块210与一电源模块10之间的连接。
各功率放大模块210可以包括一个或多个功率放大器(Power amplifier,PA),各PA的电源端切换连接至至少两个电源模块10,各PA的输入端用于与射频收发器连接以接收射频信号,各PA的输出端用于与天线或其他射频前端模块连接,当PA与电源模块之间的连接导通时,PA对接收的射频信号进行功率放大,并将功率放大后的射频信号输出至天线,以供天线向外发射。可选地,供电控制电路30可以包括射频收发器,当供电控制电路30包括射频收发器时,供电控制电路30可与各功率放大模块210的输入端连接,以向各功率放大模块210提供射频信号(图1以此为例,示出了供电控制电路30与各功率放大模块210的连接)。
可选地,功率放大模块210还可以包括其他功能器件以实现其他辅助功能,例如,还可以包括低噪声放大器以同时实现接收功能。当功率放大模块210还包括低噪声放大器时,功率放大模块210可以为内置低噪放的低频功率放大器模块(LB L-PA Mid,Low Band PA Mid With LNA),还可以为内置低噪放的中高频功率放大器模块(MHB L-PA Mid,Middle and High Band PA Mid With LNA),此外,还可以为集成有滤波器和低噪声放大器的功率放大器开关模组(LPAF,LNA-PA ASM module with integrated filter)等,例如,可 以是支持高频信号或者超高频信号的LPAF。
其中,供电控制电路30用于获取各发射组20中各功率放大模块210的工作状态,根据工作状态确定异常功率放大模块所处的异常发射组,并控制异常发射组中正常功率放大模块由当前导通连接的电源模块切换至目标电源模块,其中,目标电源模块为至少两个电源模块10中除当前导通连接的电源模块10之外的任意一个电源模块10。
各功率放大模块210的工作状态包括正常工作状态和异常工作状态,在功率放大模块210中,PA属于大功率器件,经常处于高温、大功率、大电流工作场景下,可能会出现小概率烧毁的事件,当功率放大器烧毁后,功率放大模块210内部会出现电源线短路,可能导致由同一电源模块10供电的其他功率放大模块210也会无法正常工作。本实施例将功率放大模块210内部出现电源线短路的工作状态定义为异常工作状态,将处于异常工作状态的功率放大模块210定义为异常功率放大模块,异常功率放大模块归属的发射组20定义为异常发射组。可以理解,异常工作状态外的其他状态可以定义为正常工作状态,处于正常工作状态的功率放大模块210定义为正常功率放大模块。
通过供电控制电路30获取功率放大模块210的工作状态,可以确定异常功率放大模块及异常功率放大模块所处的异常发射组,从而及时地控制异常发射组中正常功率放大模块由当前导通连接的电源模块10切换至目标电源模块,以保证正常功率放大模块能够保持正常工作,提升在发生功率放大模块210烧毁后射频模组可使用的频段数量,以提升用户体验,减少客退率。可以理解,在其他实施例中,多个发射组中的某一些发射组可以仅包括一个功率放大模块,当异常发射组中仅包括一个异常功率放大模块时,供电控制电路30可以不进行目标电源模块切换的相关操作。可选地,供电控制电路30可以根据功率放大模块210的状态参数获取功率放大模块210的工作状态,状态参数例如可以是功率放大模块210的电源端的电压参数、电流参数或者温度参数等,在功率放大模块210处于异常工作状态时,供电通路短路由此将产生状态参数变化,例如,功率放大模块210的电源端的电压参数可能突变至零,电流参数和温度参数可能异常升高,因此,根据功率放大模块210的状态参数即可获取功率放大模块210的工作状态。可选地,供电控制电路30也可以根据直接能够反馈功率放大模块210状态的状态信号获取功率放大模块210的工作状态。进一步可选地,可以在供电控制电路30和功率放大模块210之间设置相应功能的电路,以实现对前述的状态参数的获取或者状态信号的获取,例如,可以设置采样电路,采样电路对功率放大模块210的状态参数进行采集并反馈至供电控制电路30;例如,可以设置检测电路,检测电路根据功率放大模块210的状态参数生成与工作状态对应的状态信号,并将状态信号反馈至供电控制电路30;例如,也可以配置供电控制电路30自身具备状态参数的采集功能。可以理解,功率放大模块210的工作状态的获取方式不限于前述所记载的实施例,其他方式的实施例不进行进一步限定。
本实施例提供的射频模组,包括至少两个电源模块10、至少两个发射组20及供电控制电路30,各发射组20包括至少两个功率放大模块210,各功率放大模块210可切换地导通连接至至少两个电源模块10中的任意一个,同一发射组20中的各功率放大模块210用于在同一电源模块的供电作用下对接收的射频信号进行功率放大。通过供电控制电路30获取各功率放大模块210的工作状态,可以确定异常功率放大模块所处的异常发射组,从而及时地控制异常发射组中正常功率放大模块由当前导通连接的电源模块10切换至目标电源模块,以保证正常功率放大模块能够保持正常工作,提升在发生功率放大模块210烧毁后射频模组可使用的频段数量,以提升用户体验,减少客退率。
在一些实施例中,如图2所示,射频模组还包括开关模块40,供电控制电路30通过控制开关模块40的导通情况控制各功率放大模块210与电源模块10之间的连接的导通情况。
开关模块40,具有受控端、多个第一端和多个第二端,开关模块40的各第一端与一 电源模块10连接,多个第一端中至少部分第一端连接至同一电源模块10,开关模块40的各第二端各与一功率放大模块210的电源端连接,开关模块40的受控端与供电控制电路30连接,开关模块40用于在供电控制电路30的控制下,将正常功率放大模块由当前导通连接的电源模块10切换至目标电源模块。
其中,开关模块40通过受控端与供电控制电路30连接,通过多个第一端与多个电源模块10对应连接,通过多个第二端与多个功率放大模块210对应连接,开关模块40在供电控制电路30的控制下,将正常功率放大模块切换目标电源模块。
可选地,可以选定默认电源模块10作为当前导通连接的电源模块,在各功率放大模块210均处于正常工作状态时,开关模块40导通各功率放大模块210与默认电源模块10之间的连接通路,以使得各默认电源模块10对默认导通连接的发射组20进行供电;在存在异常功率放大模块时,开关模块40关断异常功率放大模块所处的发射组20中其他正常功率放大模块与该默认电源模块10之间的连接,同时导通正常功率放大模块与其他电源模块10之间的连接。
通过供电控制电路30和开关模块40可以在功率放大模块210出现异常时,及时对异常发射组中正常功率放大模块切换至目标电源模块,保证正常功率放大模块正常工作。
在一些实施例中,开关模块40还用于在供电控制电路30的控制下,断开异常功率放大模块与当前导通连接的电源模块的连接。
当功率放大模块210内部的PA烧毁后,异常功率放大模块与原先导通连接的电源模块之间的供电通路上会产生异常大电流,当供电控制电路30根据各功率放大模块210的工作状态判定出异常功率放大模块时,及时控制开关模块40断开异常功率放大模块与当前导通连接的电源模块的连接,可以避免功率放大模块210持续异常大电流,导致严重发热情况的出现。
在一些实施例中,如图2所示,供电控制电路30可以包括:射频收发器310和控制模块320。
控制模块320,用于获取各功率放大模块210的工作状态,在工作状态为异常工作状态时,生成电源切换指令,电源切换指令携带异常发射组及正常功率放大模块的参数信息;射频收发器310,分别与控制模块320、功率放大模块210的输入端、开关模块40的受控端连接,用于提供射频信号,还用于根据电源切换指令控制开关模块40将正常功率放大模块由当前导通连接的电源模块10切换至目标电源模块。
其中,控制模块320与射频收发器310连接,控制模块320能够获取各功率放大模块210的工作状态,并在工作状态为异常工作状态时,生成电源切换指令,以指示射频收发器310进行相应操作。控制模块320获取各功率放大模块210的工作状态的方式,可以参见上述实施例中的相关描述,在此不再赘述。可选地,当射频模组应用在通信设备中时,控制模块320可以是通信设备中的应用处理器(AP,Application Processor)或者基带处理器。以控制模块320为AP为例,则当AP根据各功率放大模块210的工作状态发现异常功率放大模块时,通过电源切换指令通知射频收发器310进行相应操作。
其中,射频收发器310分别与控制模块320、功率放大模块210的输入端、开关模块40的受控端连接,射频收发器310能够向功率放大模块210提供射频信号,还能够接收控制模块320输出的电源切换指令,由于电源切换指令携带异常发射组及正常功率放大模块的参数信息,因此射频收发器310可以根据各参数信息生成相应的控制信号,以控制开关模块40实现目标电源模块的切换。
通过控制模块320与射频收发器310之间的交互,可以及时发现异常功率放大模块,并及时控制开关模块40的导通情况,以使得开关模块40及时对异常发射组中正常功率放大模块切换目标电源模块,保证正常功率放大模块正常工作。
在一些实施例中,请继续参考图2,在本实施例中,开关模块40包括:多个开关单 元410,射频收发器310通过控制各开关单元410的导通情况实现对正常功率放大模块的目标电源模块的切换。
多个开关单元410,各开关单元410具有受控端、至少两个第一端和第二端(图2中以两个第一端和一个第二端为例进行示意),各开关单元410的至少两个第一端分别与至少两个电源模块10对应连接,各开关单元410的第二端与一功率放大模块210连接;其中,射频收发器310被配置有多个控制接口,各控制接口与一开关单元410的受控端连接,射频收发器310用于根据电源切换指令生成控制信号,并通过控制接口向目标开关单元410发送控制信号,以控制目标开关单元410将正常功率放大模块由当前导通连接的电源模块切换至目标电源模块,目标开关单元410与正常功率放大模块连接。
其中,开关单元410设置在各功率放大模块210与电源模块10之间的连接通路上,通过控制开关单元410的导通情况,即可控制电源模块10对各功率放大模块210的供电情况。控制信号包括导通信号和关断信号,导通信号用于控制开关单元410导通原先处于关断状态的连接通路,关断信号用于控制开关单元410关断原先处于导通状态的连接通路。
当射频收发器310接收到电源切换指令时,射频收发器310根据电源切换指令携带的参数信息确定需要进行目标电源模块切换的目标开关单元410,并生成控制信号以通过控制接口发送控制信号给相应的目标开关单元410,以控制目标开关单元410进行目标电源模块的切换。通过设置多个开关单元410,各开关单元410设置在各功率放大模块210与电源模块10的连接通路上,从而可以独立控制各开关单元410的导通和关断情况,更加精准地进行目标电源模块的切换。
可选地,射频收发器310的控制接口包括mipi(Mobile Industry Processor Interface,移动行业处理器接口)接口、GPIO(General Purpose Input Output,通用输入/输出)接口中的一种,射频收发器310可以通过mipi接口或GPIO接口的电平变化控制,向开关单元410发送控制信号,从而提高控制效率。
可选地,各开关单元410包括至少一个开关器件,开关器件例如可以是单刀多掷开关,例如,当功率放大模块210分别与两个电源模块10连接时,开关单元410可以是单刀双掷开关,单刀双掷开关的两个第一端分别与两个电源模块10的输出端对应连接,单刀双掷开关的第二端与功率放大模块210的电源端连接。可以配置单刀双掷开关默认导通其中一电源模块10与功率放大模块210之间的连接,断开另一电源模块10与功率放大模块210之间的连接;在供电控制电路30获取到异常功率放大模块时,单刀双掷开关断开正常功率放大模块与异常功率放大模块同时供电的电源模块10之间的连接,导通另外一电源模块10与正常功率放大模块之间的连接,以实现目标电源模块的切换。
在一些实施例中,开关单元410可以设置在功率放大模块210外部(图2的实施例以开关单元410外置为例进行示意,请辅助参考图2)。其中,各功率放大模块210可以被配置有电源接口及输入接口,电源接口与开关单元410的第二端连接,输入接口与射频收发器310的发射接口连接;其中,电源接口用于接收电源模块10的供电信号,输入接口用于接收射频收发器310输出的射频信号。
在一些实施例中,开关单元410可以集成在功率放大模块210中,如图3所示,各功率放大模块210包括功率放大器,各功率放大模块210被配置有至少两个电源接口、受控接口及输入接口(图3以两个电源接口为例进行示意,两个电源接口分别为VCC1和VCC2,输入接口为PAIN,受控接口为BC,图中未示出功率放大器和开关单元410),至少两个电源接口分别与至少两个电源模块10对应连接,受控接口与射频收发器310的控制接口连接,输入接口分别与射频收发器310的发射接口、功率放大器的输入端连接;其中,各开关单元410集成在对应的功率放大模块210中,开关单元410的至少两个第一端分别与至少两个电源接口对应连接,开关单元410的第二端与功率放大器的电源端连接,开关单 元410的受控端与受控接口连接。
其中,功率放大模块210被配置有至少两个电源接口、受控接口及输入接口,各开关单元410集成在对应的功率放大模块210中,开关单元410的第一端通过电源接口与外部的电源模块10连接,开关单元410的第二端与功率放大模块210的功率放大器连接,开关单元410的受控端通过受控接口与外部的射频收发器310连接。通过将开关单元410集成在功率放大模块210内部,能够减少射频模组占用的主板面积,提高集成度,有利于射频模组的小型化,降低成本。
可以理解,当功率放大模块210包括多个功率放大器时,开关单元410也可以具有多个第二端,各第二端分别对应与一功率放大器的电源端连接。可以理解,功率放大模块210还被配置有输出接口,输出接口可以通过射频前端电路与天线连接。
在其他实施例中,开关单元410还可以集成在电源模块10中,例如可以将上述实施例中默认电源模块10对应的多个开关单元410集成在该默认电源模块10内部,以提高集成度,同样有利于射频模组的小型化,降低成本。
在一些实施例中,射频模组还可以包括:状态检测电路,供电控制电路30通过状态检测电路获取各功率放大模块210的工作状态。
状态检测电路,分别与控制模块320、功率放大模块210连接,用于检测功率放大模块210的工作状态,将工作状态反馈至控制模块320。具体地,状态检测电路可以检测功率放大模块210的状态参数,根据状态参数确定功率放大模块210的工作状态,将工作状态反馈至控制模块320,以供控制模块320获取。
可选地,状态检测电路可以根据状态检测结果,生成具有状态标志位变化的信号,例如,在检测到有异常功率放大模块时,产生一个拉高或者拉低电平信号,该拉高或者拉低电平信号用于向控制模块320指示对应功率放大模块210处于异常工作状态。可选地,状态检测电路可以是电压检测电路、电流采样电路、温度检测电路等,用于通过功率放大模块210的状态参数检测功率放大模块210的工作状态。可以理解,当状态检测电路为电压检测电路、电流采样电路时,状态检测电路可与功率放大模块210连接,当状态检测电路为温度检测电路时,状态检测电路也可以不与功率放大模块210连接,通过检测功率放大模块210周围环境的温度获取温度参数。
可选地,状态检测电路的数量可以为一个,该状态检测电路可以具有多个检测端和多个反馈端,各检测端可以与各个功率放大模块210连接,各反馈端与控制模块320各反馈接收端连接,状态检测电路用于将各检测端检测获得工作状态在对应的反馈端反馈,以使得控制模块320通过反馈接收端接收的状态信号即可确定各个功率放大模块210的工作状态。
可选地,状态检测电路的数量可以为多个,如图4所示,各功率放大模块210还被配置有状态反馈接口(状态反馈接口如图中的BD);其中,各状态检测电路对应集成在各功率放大模块210中,各状态检测电路的反馈端通过状态反馈接口与控制模块320的检测接口连接,各状态检测电路的检测端与功率放大器的电源端连接(图中未示出功率放大器及状态检测电路)。
通过将各状态检测电路集成在功率放大模块210内部,一方面能够减少射频模组占用的主板面积,提高集成度,有利于射频模组的小型化,降低成本;另一方面,可以缩短状态检测电路与功率放大器电源端之间的检测距离,提高状态检测电路的检测精度。
在一些实施例中,供电控制电路30,还用于获取异常功率放大模块支持功率放大的射频信号的目标频段,根据目标频段更新可用搜网频段,可用搜网频段为射频模组在目标制式网络中支持射频信号发射的频段。
其中,目标频段为异常功率放大模块支持功率放大的射频信号所处的频段,在功率放大模块210处于异常状态时,意味着该功率放大模块210支持的目标频段已无法工作。
其中,可用搜网频段为射频模组在目标制式网络中支持射频信号发射的频段。根据目标频段更新可用搜网频段,可以是在原可用搜网频段中去除目标频段。目标制式网络可以是一种或多种制式网络,例如包括GSM(Global System for Mobile Communications,全球移动通信系统)、UMTS(Universal Mobile Telecommunications System,通用移动通信系统)、LTE(长期演进,Long Term Evolution)和NR(NewRadio,新空口)等,每种网络制式可用包括多个频段。本实施例不做进一步限定。以LTE网络制式和NR网络制式为例,LTE信号和NR信号分别包括低频信号、中频信号、高频信号和超高频信号,其中低频信号、中频信号、高频信号和超高频信号的频段划分可以参照下表。
需要说明的是,5G网络中沿用4G所使用的频段,仅更改序号之前的标识。此外,5G网络还新增了一些4G网络中没有的超高频段,例如,N77、N78和N79等。
当射频模组应用在通信设备中时,通信设备在运行时通常需要搜索网络,在相关技术中,网络搜索过程通常是对射频模组支持的所有频段均尝试搜索。而在功率放大模块210处于异常状态时,意味着该功率放大模块210实现的目标频段已无法工作,继续对无法工作的频段进行搜索,可能导致设备出现死机风险。在本实施例中,更新的可用搜网频段去除了目标频段,可供设备在执行网络搜索的操作时跳过无法工作的频段,从而不仅能够降低由于网络搜索所带来的功耗,而且还能够缩短网络搜索时间,加快通信服务速度。
可选地,可以由供电控制电路30中的控制模块320获取异常功率放大模块支持功率放大的射频信号的目标频段,并根据目标频段更新可用搜网频段。可选地,控制模块320还可以根据更新后的可用搜网频段建立搜网列表,以供设备根据搜网列表执行网络搜网的操作。通过搜网列表的建立,能够进一步提高设备的搜网速度。
以下以至少两个电源模块包括第一电源模块和第二电源模块,至少两个发射组包括第一发射组和第二发射组为例对上述实施例进行进一步说明:
第一发射组,包括分别连接至第一电源模块和第二电源模块的低频功率放大模块、中高频放大模块及第一超高频放大模块,低频功率放大模块用于支持对低频信号的功率放大,中高频放大模块用于支持对中频信号和高频信号的功率放大,第一超高频放大模块用于支持对超高频信号的功率放大,第一发射组中各功率放大模块默认与第一电源模块导通连接;第二发射组,包括分别连接至第一电源模块和第二电源模块的高频放大模块及第二超高频放大模块,高频放大模块用于支持对高频信号的功率放大,第二超高频放大模块用于支持对超高频信号的功率放大,第二发射组中各功率放大模块默认与第二电源模块导通连接。
其中,供电控制电路30,用于在第一发射组包括至少一个异常功率放大模块且第二发射组未包括异常功率放大模块时,将第一发射组中正常功率放大模块由当前导通连接的第一电源模块切换至第二电源模块,或者在第二发射组包括至少一个异常功率放大模块且第一发射组未包括异常功率放大模块时,将第二发射组中正常功率放大模块由当前导通连接的第二电源模块切换至第一电源模块。
如图5所示(图中以供电控制电路30包括射频收发器310和控制模块320,射频模组还包括状态检测电路及开关模块40,开关模块40包括多个开关单元410为例进行示意), 第一发射组中低频功率放大模块、中高频放大模块及第一超高频放大模块默认由第一电源模块供电,第二发射组中高频放大模块及第二超高频放大模块默认由第二电源模块供电。其中,第一电源模块为电源1,第二电源模块10为电源2,低频放大模块可以为LB LPAMID模块,中高频放大模块可以为MHB LPAMID模块,第一超高频放大模块可以为N78 LPAF#1模块,高频放大模块可以为N41 LPAF PA模块,第二超高频放大模块N78 LAPF#2模块,控制模块320可以为AP。LB LPAMID模块、MHB LPAMID模块、N78 LPAF#1模块、N41 LPAF PA模块及N78 LAPF#2模块各自分别可以通过前端模块与对应的天线(如图中的ANT1、ANT2、ANT3、ANT4及ANT5)连接。
假设LB LPAMID模块发生PA烧片短路,AP通过状态检测电路获取LB LPAMID模块处于异常工作状态,确定第一发射组为异常发射组,继而生成电源切换指令通知射频收发器310,射频收发器310根据电源切换指令生成控制信号,并通过mipi或者GPIO接口发送控制信号至MHB LPAMID模块及N78 LPAF#1模块对应的开关单元410,以控制开关单元410将当前导通连接的第一电源模块切换至第二电源模块。同时,AP可以将B5、B8、B28、n5、n8、n28等低频频段从搜网列表中去除。
假设N78 LAPF#2模块发生PA烧片短路,AP通过状态检测电路获取N78 LAPF#2模块处于异常工作状态,确定第二发射组为异常发射组,继而生成电源切换指令通知射频收发器310,射频收发器310根据电源切换指令生成控制信号,并通过mipi或者GPIO接口发送控制信号至N41 LPAF模块对应的开关单元410,以控制开关单元410将当前导通连接的第二电源模块切换至第一电源模块。同时,AP可以将N78超高频频段从搜网列表中去除。
可以理解,通常PA烧片短路的概率比较低,第一发射组和第二发射组内部的功率放大模块同时发生异常的概率很低,因此,目标电源模块通常在第一电源模块和第二电源模块中切换即可。为了避免极小概率的第一发射组和第二发射组内部的功率放大模块同时发生异常的情况,也可以增加第三电源模块,以进行目标电源模块的切换备选。
上述射频模组中各个模块、电路的划分仅仅用于举例说明,在其他实施例中,可将射频模组按照需要划分为不同的电路,以完成上述射频模组的全部或部分功能。
图6为一实施例的供电控制方法的方法流程图,参考图6,在本实施例中,供电控制方法包括步骤602-步骤604。
步骤602,获取各发射组中各功率放大模块的工作状态。
步骤604,根据工作状态确定异常功率放大模块所处的异常发射组,并控制异常发射组中正常功率放大模块由当前导通连接的电源模块切换至目标电源模块。
其中,目标电源模块为至少两个电源模块中除当前导通连接的电源模块之外的任意一个电源模块。发射组的数量为至少两个,各发射组包括至少两个功率放大模块,各功率放大模块可切换地导通连接至至少两个电源模块中的任意一个,同一发射组中的各功率放大模块用于在同一电源模块的供电作用下对接收的射频信号进行功率放大。
其中,发射组、功率放大模块、电源模块、目标电源模块等参见上述实施例中的相关描述,在此不再赘述;步骤602-步骤604可以由上述实施例中的供电控制电路执行,具体可以参见上述实施例的相关描述,在此不再赘述。
可选地,控制异常发射组中正常功率放大模块切换目标电源模块的步骤可以是控制开关模块将正常功率放大模块由当前导通连接的电源模块切换至目标电源模块。可选地,可以根据状态检测电路的反馈获取各功率放大模块的工作状态。开关模块及状态检测电路可以参见上述实施例中的相关描述,在此不再赘述。
本实施提供的供电控制方法,通过获取各功率放大模块的工作状态,可以确定异常功率放大模块所处的异常发射组,从而及时地控制异常发射组中正常功率放大模块切换目标电源模块,以保证正常功率放大模块能够保持正常工作,提升在发生功率放大模块烧毁后 射频模组可使用的频段数量,以提升用户体验,减少客退率。
在其中一个实施例中,如图7所示,供电控制方法还包括步骤702。
步骤702,断开异常功率放大模块与当前导通连接的电源模块的连接。
其中,步骤可以由上述实施例中的供电控制电路和开关模块执行,具体可以参见上述实施例的相关描述,在此不再赘述。
在其中一个实施例中,如图7所示,供电控制方法还包括步骤704。
步骤704,获取异常功率放大模块支持功率放大的射频信号的目标频段,根据目标频段更新可用搜网频段,可用搜网频段为射频模组在目标制式网络中支持射频信号发射的频段。
其中,步骤704可以由上述实施例中的供电控制电路执行,具体可以参见上述实施例的相关描述,在此不再赘述。
应该理解的是,虽然上述实施例的流程图中的各个步骤按照箭头的指示依次显示,但是这些步骤并不是必然按照箭头指示的顺序依次执行。除非本文中有明确的说明,这些步骤的执行并没有严格的顺序限制,这些步骤可以以其它的顺序执行。而且,上述实施例的流程图中的至少一部分步骤可以包括多个子步骤或者多个阶段,这些子步骤或者阶段并不必然是在同一时刻执行完成,而是可以在不同的时刻执行,这些子步骤或者阶段的执行顺序也不必然是依次进行,而是可以与其它步骤或者其它步骤的子步骤或者阶段的至少一部分轮流或者交替地执行。
本申请实施例还提供了一种通信设备,通信设备可包括上述任一实施例中的射频模组,通信设备能够及时地控制异常发射组中正常功率放大模块切换目标电源模块,以保证正常功率放大模块能够保持正常工作,提升在发生功率放大模块烧毁后射频模组可使用的频段数量,以提升用户体验,减少客退率。
本申请实施例还提供了一种通信设备,通信设备可包括至少两个电源模块、至少两个发射组及存储器和处理器。其中,电源模块、发射组可以参见上述实施例中的相关描述,在此不再赘述。存储器和处理器,存储器存储有计算机程序,处理器执行计算机程序时实现如上实施例的供电控制方法的步骤。
本实施例的通信设备,包括至少两个电源模块、至少两个发射组及存储器和处理器,能够通信设备能够及时地控制异常发射组中正常功率放大模块切换目标电源模块,以保证正常功率放大模块能够保持正常工作,提升在发生功率放大模块烧毁后射频模组可使用的频段数量,以提升用户体验,减少客退率。
如图8所示,进一步的,以上述通信设备为手机11为例进行说明,具体的,如图8所示,该手机11可包括存储器21(其任选地包括一个或多个计算机可读存储介质)、处理器22、外围设备接口23、射频系统24、输入/输出(I/O)子系统26。这些部件任选地通过一个或多个通信总线或信号线29进行通信。本领域技术人员可以理解,图8所示的手机11并不构成对手机的限定,可以包括比图示更多或更少的部件,或者组合某些部件,或者不同的部件布置。图8中所示的各种部件以硬件、软件、或硬件与软件两者的组合来实现,包括一个或多个信号处理和/或专用集成电路。
存储器21任选地包括高速随机存取存储器,并且还任选地包括非易失性存储器,诸如一个或多个磁盘存储设备、闪存存储器设备、或其他非易失性固态存储器设备。示例性的,存储于存储器21中的软件部件包括操作系统211、通信电路(或指令集)212、全球定位系统(GPS)电路(或指令集)213等。
处理器22和其他控制电路(诸如射频系统24中的控制电路)可以用于控制手机11的操作。该处理器22可以基于一个或多个微处理器、微控制器、数字信号处理器、基带处理器、功率管理单元、音频编解码器芯片、专用集成电路等。
处理器22可以被配置为实现控制手机11中的天线的使用的控制算法。处理器22还 可以发出用于控制射频系统24中各开关的控制命令等。
I/O子系统26将手机11上的输入/输出外围设备诸如键区和其他输入控制设备耦接到外围设备接口23。I/O子系统26任选地包括触摸屏、按键、音调发生器、加速度计(运动传感器)、周围光传感器和其他传感器、发光二极管以及其他状态指示器、数据接口等。示例性的,用户可以通过经由I/O子系统26供给命令来控制手机11的操作,并且可以使用I/O子系统26的输出资源来从手机11接收状态信息和其他输出。例如,用户按压按钮261即可启动手机或者关闭手机。
射频系统24可以包括前述任一实施例中的射频模组。
本申请实施例还提供了一种计算机可读存储介质。一个或多个包含计算机可执行指令的非易失性计算机可读存储介质,当计算机可执行指令被一个或多个处理器执行时,使得处理器执行供电控制方法的步骤。
本申请实施例还提供了一种包含指令的计算机程序产品,当其在计算机上运行时,使得计算机执行供电控制方法的步骤。
本申请所使用的对存储器、存储、数据库或其它介质的任何引用可包括非易失性和/或易失性存储器。合适的非易失性存储器可包括只读存储器(ROM)、可编程ROM(PROM)、电可编程ROM(EPROM)、电可擦除可编程ROM(EEPROM)或闪存。易失性存储器可包括随机存取存储器(RM),它用作外部高速缓冲存储器。作为说明而非局限,RM以多种形式可得,诸如静态RM(SRM)、动态RM(DRM)、同步DRM(SDRM)、双数据率SDRM(DDR SDRM)、增强型SDRM(ESDRM)、同步链路(Synchlink)DRM(SLDRM)、存储器总线(Rmbus)直接RM(RDRM)、直接存储器总线动态RM(DRDRM)、以及存储器总线动态RM(RDRM)。
以上实施例的各技术特征可以进行任意的组合,为使描述简洁,未对上述实施例中的各个技术特征所有可能的组合都进行描述,然而,只要这些技术特征的组合不存在矛盾,都应当认为是本说明书记载的范围。
以上实施例仅表达了本申请的几种实施方式,其描述较为具体和详细,但并不能因此而理解为对本申请专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本申请构思的前提下,还可以做出若干变形和改进,这些都属于本申请的保护范围。因此,本申请专利的保护范围应以所附权利要求为准。

Claims (19)

  1. 一种射频模组,包括:
    至少两个电源模块;
    至少两个发射组,各所述发射组包括至少两个功率放大模块,各功率放大模块可切换地导通连接至所述至少两个电源模块中的任意一个,同一所述发射组中的各所述功率放大模块用于在同一电源模块的供电作用下对接收的射频信号进行功率放大;
    供电控制电路,用于获取各所述发射组中各所述功率放大模块的工作状态,根据所述工作状态确定异常功率放大模块所处的异常发射组,并控制所述异常发射组中正常功率放大模块由当前导通连接的电源模块切换至目标电源模块,其中,所述目标电源模块为所述至少两个电源模块中除所述当前导通连接的电源模块之外的任意一个电源模块。
  2. 根据权利要求1所述的射频模组,其中所述射频模组还包括:
    开关模块,具有受控端、多个第一端和多个第二端,所述开关模块的各第一端与一所述电源模块连接,所述多个第一端中至少部分第一端连接至同一所述电源模块,所述开关模块的各第二端各与一所述功率放大模块的电源端连接,所述开关模块的受控端与所述供电控制电路连接,所述开关模块用于在所述供电控制电路的控制下,将所述正常功率放大模块由当前导通连接的电源模块切换至所述目标电源模块。
  3. 根据权利要求2所述的射频模组,其中所述开关模块还用于在所述供电控制电路的控制下,断开异常功率放大模块与当前导通连接的所述电源模块的连接。
  4. 根据权利要求2所述的射频模组,其中所述供电控制电路包括:
    控制模块,用于获取各所述功率放大模块的工作状态,在所述工作状态为异常工作状态时,生成电源切换指令,所述电源切换指令携带所述异常发射组及所述正常功率放大模块的参数信息;
    射频收发器,分别与所述控制模块、所述功率放大模块的输入端、所述开关模块的受控端连接,用于提供所述射频信号,还用于根据所述电源切换指令控制所述开关模块将所述正常功率放大模块由当前导通连接的电源模块切换至所述目标电源模块连接。
  5. 根据权利要求4所述的射频模组,其中所述开关模块包括:
    多个开关单元,各所述开关单元具有受控端、至少两个第一端和第二端,各所述开关单元的至少两个第一端分别与至少两个所述电源模块对应连接,各所述开关单元的第二端与一所述功率放大模块连接;
    其中,所述射频收发器被配置有多个控制接口,各所述控制接口与一所述开关单元的受控端连接,所述射频收发器用于根据所述电源切换指令生成控制信号,并通过所述控制接口向目标开关单元发送所述控制信号,以控制所述目标开关单元将所述正常功率放大模块由当前导通连接的电源模块切换至所述目标电源模块,所述目标开关单元与所述正常功率放大模块连接。
  6. 根据权利要求5所述的射频模组,其中各所述功率放大模块包括功率放大器,各所述功率放大模块被配置有至少两个电源接口、受控接口及输入接口,至少两个所述电源接口分别与所述至少两个所述电源模块对应连接,所述受控接口与所述射频收发器的控制接口连接,所述输入接口分别与所述射频收发器的发射接口、所述功率放大器的输入端连接;
    其中,各所述开关单元集成在对应的所述功率放大模块中,所述开关单元的至少两个第一端分别与至少两个所述电源接口对应连接,所述开关单元的第二端与所述功率放大器的电源端连接,所述开关单元的受控端与所述受控接口连接。
  7. 根据权利要求5所述的射频模组,其中各所述功率放大模块被配置有电源接口及输入接口,所述电源接口与所述开关单元的第二端连接,所述输入接口与所述射频收发器的发射接口连接;其中,所述电源接口用于接收所述电源模块的供电信号,所述输入接口用于接收所述射频收发器输出的射频信号。
  8. 根据权利要求4所述的射频模组,其中所述射频模组还包括:
    状态检测电路,分别与所述控制模块、所述功率放大模块连接,用于检测所述功率放大模块的工作状态,将所述工作状态反馈至所述控制模块。
  9. 根据权利要求8所述的射频模组,其中各所述功率放大模块还被配置有状态反馈接口,各功率放大模块包括功率放大器;
    其中,所述状态检测电路的数量为多个,各所述状态检测电路对应集成在各所述功率放大模块中,各所述状态检测电路的反馈端通过所述状态反馈接口与所述控制模块的检测接口连接,各所述状态检测电路的检测端与所述功率放大器的电源端连接。
  10. 根据权利要求8所述的射频模组,其中所述状态检测电路的数量为一个,所述状态检测电路具有多个检测端和多个反馈端,各所述检测端与各个所述功率放大模块连接,各所述反馈端与所述控制模块的各反馈接收端连接,所述状态检测电路用于将各所述检测端检测获得工作状态在对应的反馈端反馈,以使得所述控制模块通过反馈接收端接收的状态信号,确定各个所述功率放大模块的工作状态。
  11. 根据权利要求2-10任一项所述的射频模组,其中所述开关模块还用于在所述供电控制电路的控制下,断开所述异常功率放大模块与当前导通连接的所述电源模块的连接。
  12. 根据权利要求1-10任一项所述的射频模组,其中所述供电控制电路,还用于获取所述异常功率放大模块支持功率放大的射频信号的目标频段,根据所述目标频段更新可用搜网频段,所述可用搜网频段为所述射频模组在目标制式网络中支持射频信号发射的频段。
  13. 根据权利要求1-10任一项所述的射频模组,其中所述至少两个电源模块包括第一电源模块和第二电源模块,所述至少两个发射组包括:
    第一发射组,包括分别连接至所述第一电源模块和所述第二电源模块的低频功率放大模块、中高频放大模块及第一超高频放大模块,所述低频功率放大模块用于支持对低频信号的功率放大,所述中高频放大模块用于支持对中频信号和高频信号的功率放大,所述第一超高频放大模块用于支持对超高频信号的功率放大,所述第一发射组中各功率放大模块默认与所述第一电源模块导通连接;
    第二发射组,包括分别连接至所述第一电源模块和所述第二电源模块的高频放大模块及第二超高频放大模块,所述高频放大模块用于支持对高频信号的功率放大,所述第二超高频放大模块用于支持对超高频信号的功率放大,所述第二发射组中各功率放大模块默认与所述第二电源模块导通连接;
    其中,所述供电控制电路,用于在所述第一发射组包括至少一个异常功率放大模块且所述第二发射组未包括异常功率放大模块时,将所述第一发射组中正常功率放大模块由当前导通连接的所述第一电源模块切换至所述第二电源模块,或者在所述第二发射组包括至少一个异常功率放大模块且所述第一发射组未包括异常功率放大模块时,将所述第二发射组中正常功率放大模块由当前导通连接的所述第二电源模块切换至所述第一电源模块。
  14. 一种供电控制方法,包括:
    获取各发射组中各功率放大模块的工作状态;
    根据所述工作状态确定异常功率放大模块所处的异常发射组,并控制所述异常发射组中正常功率放大模块由当前导通连接的电源模块切换至目标电源模块;
    其中,所述目标电源模块为至少两个电源模块中除所述当前导通连接的电源模块之外的任意一个电源模块;所述发射组的数量为至少两个,各所述发射组包括至少两个功率放大模块,各功率放大模块可切换地导通连接至所述至少两个电源模块中的任意一个,同一所述发射组中的各所述功率放大模块用于在同一电源模块的供电作用下对接收的射频信号进行功率放大。
  15. 根据权利要求14所述的供电控制方法,其中所述供电控制方法还包括:
    获取所述异常功率放大模块支持功率放大的射频信号的目标频段,根据所述目标频段更新可用搜网频段,所述可用搜网频段为所述射频模组在目标制式网络中支持射频信号发射的频段。
  16. 根据权利要求14所述的供电控制方法,其中所述供电控制方法还包括:
    断开所述异常功率放大模块与当前导通连接的电源模块的连接。
  17. 一种通信设备,包括:
    如权利要求1-13任一项所述的射频模组。
  18. 一种通信设备,包括:
    至少两个电源模块;
    至少两个发射组,各所述发射组包括至少两个功率放大模块,各功率放大模块可切换地导通连接至所述至少两个电源模块中的任意一个,同一所述发射组中的各所述功率放大模块用于在同一电源模块的供电作用下对接收的射频信号进行功率放大;
    存储器和处理器,所述存储器存储有计算机程序,所述处理器执行所述计算机程序时实现如权利要求14-16任一项所述的供电控制方法的步骤。
  19. 一种计算机可读存储介质,其上存储有计算机程序,所述计算机程序被处理器执行时实现如权利要求14-16任一项所述的供电控制方法的步骤。
PCT/CN2023/122940 2022-11-30 2023-09-28 射频模组、供电控制方法及通信设备、可读存储介质 WO2024114100A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202211519726.7 2022-11-30
CN202211519726.7A CN118118048A (zh) 2022-11-30 2022-11-30 射频模组、供电控制方法及通信设备、可读存储介质

Publications (1)

Publication Number Publication Date
WO2024114100A1 true WO2024114100A1 (zh) 2024-06-06

Family

ID=91214345

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/122940 WO2024114100A1 (zh) 2022-11-30 2023-09-28 射频模组、供电控制方法及通信设备、可读存储介质

Country Status (2)

Country Link
CN (1) CN118118048A (zh)
WO (1) WO2024114100A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070249304A1 (en) * 2005-03-25 2007-10-25 Pulsewave Rf, Inc. Radio frequency power amplifier and method using a controlled supply
CN114531163A (zh) * 2020-11-23 2022-05-24 Oppo广东移动通信有限公司 射频架构及终端设备
CN114696867A (zh) * 2020-12-29 2022-07-01 Oppo广东移动通信有限公司 一种射频电路、控制方法、通信装置及终端
CN217037166U (zh) * 2022-04-19 2022-07-22 Oppo广东移动通信有限公司 射频放大电路、射频系统及无线通信设备
CN114826436A (zh) * 2022-04-06 2022-07-29 Oppo广东移动通信有限公司 检测方法、装置、电子设备及计算机可读介质
CN115208418A (zh) * 2022-06-30 2022-10-18 Oppo广东移动通信有限公司 一种射频系统以及射频系统的控制方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070249304A1 (en) * 2005-03-25 2007-10-25 Pulsewave Rf, Inc. Radio frequency power amplifier and method using a controlled supply
CN114531163A (zh) * 2020-11-23 2022-05-24 Oppo广东移动通信有限公司 射频架构及终端设备
CN114696867A (zh) * 2020-12-29 2022-07-01 Oppo广东移动通信有限公司 一种射频电路、控制方法、通信装置及终端
CN114826436A (zh) * 2022-04-06 2022-07-29 Oppo广东移动通信有限公司 检测方法、装置、电子设备及计算机可读介质
CN217037166U (zh) * 2022-04-19 2022-07-22 Oppo广东移动通信有限公司 射频放大电路、射频系统及无线通信设备
CN115208418A (zh) * 2022-06-30 2022-10-18 Oppo广东移动通信有限公司 一种射频系统以及射频系统的控制方法

Also Published As

Publication number Publication date
CN118118048A (zh) 2024-05-31

Similar Documents

Publication Publication Date Title
RU2614383C2 (ru) Терминал с поддержкой множества режимов и способ хэндовера для такого терминала
CN107070466B (zh) 功率放大器模块及其控制方法以及无线通信装置
WO2023061043A1 (zh) 电子设备及其控制方法、计算机设备和可读存储介质
US10628372B2 (en) Internal serial interface
CN108495344B (zh) 一种网络切换方法、装置以及终端
WO2023016199A1 (zh) 射频系统和通信设备
KR102081760B1 (ko) 라우팅 방법, 근거리 무선 통신 컨트롤러, 디바이스 호스트, 및 단말기
WO2018219231A1 (zh) 一种扩展lte b41频段带宽的移动终端及其方法
WO2023142657A1 (zh) 射频模组和通信设备、PAMiD模组及L PAMiD模组
CN111711423A (zh) 射频功率放大器、射频前端模块及通信终端
WO2022062541A1 (zh) 射频架构及终端设备
CN113676191A (zh) 发射模组、射频系统及通信设备
WO2024114100A1 (zh) 射频模组、供电控制方法及通信设备、可读存储介质
CN112469112B (zh) 频率控制方法、装置、射频系统及通信设备
WO2011157010A1 (zh) 多模移动终端天线匹配的实现方法及多模移动终端
WO2024114098A1 (zh) 射频模组、供电控制方法及通信设备、可读存储介质
CN109714067B (zh) 系统频段切换方法、装置、存储介质、接收端及终端
CN204836094U (zh) 一种功率放大电路及射频电路
CN217037166U (zh) 射频放大电路、射频系统及无线通信设备
CN117240319A (zh) 射频模组及其保护方法、通信设备及可读存储介质
JP2011109526A (ja) 無線通信端末、並びにこれに用いる通信制御方法及びプログラム
US11277165B2 (en) Radio frequency front-end transmission module, chip, and communications terminal
JP2017512011A (ja) 信号伝送方法及びシステム、並びに制御装置
CN117240321A (zh) 射频发射模组及其保护方法、通信设备及可读存储介质
WO2024114099A1 (zh) 射频模组及通信设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23896256

Country of ref document: EP

Kind code of ref document: A1