WO2024113068A1 - Biological filtration system for volatile organic waste, and related method, device and microbial composition - Google Patents

Biological filtration system for volatile organic waste, and related method, device and microbial composition Download PDF

Info

Publication number
WO2024113068A1
WO2024113068A1 PCT/CL2023/050119 CL2023050119W WO2024113068A1 WO 2024113068 A1 WO2024113068 A1 WO 2024113068A1 CL 2023050119 W CL2023050119 W CL 2023050119W WO 2024113068 A1 WO2024113068 A1 WO 2024113068A1
Authority
WO
WIPO (PCT)
Prior art keywords
biofilter
bioreactor
gases
biofilm
filter bed
Prior art date
Application number
PCT/CL2023/050119
Other languages
Spanish (es)
French (fr)
Inventor
Daniela SEPULVEDA AVILA
Gabriela VILLOUTA ROMERO
Original Assignee
Sepulveda Avila Daniela
Villouta Romero Gabriela
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sepulveda Avila Daniela, Villouta Romero Gabriela filed Critical Sepulveda Avila Daniela
Publication of WO2024113068A1 publication Critical patent/WO2024113068A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D46/00Filters or filtering processes specially modified for separating dispersed particles from gases or vapours
    • B01D46/30Particle separators, e.g. dust precipitators, using loose filtering material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/02Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography
    • B01D53/04Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography with stationary adsorbents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/74General processes for purification of waste gases; Apparatus or devices specially adapted therefor
    • B01D53/84Biological processes
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F11/00Treatment of sludge; Devices therefor
    • C02F11/02Biological treatment
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N1/00Microorganisms, e.g. protozoa; Compositions thereof; Processes of propagating, maintaining or preserving microorganisms or compositions thereof; Processes of preparing or isolating a composition containing a microorganism; Culture media therefor

Definitions

  • the present invention corresponds to a biological filtration system for volatile organic waste, and is especially useful in the agricultural industry, especially livestock and agricultural industries, as well as the agri-food industry, especially in the pork industry.
  • GHG total greenhouse gases
  • the GHG emission specifically; such as methane generated in the physical treatment stage of pig and poultry manure, are one of the main components that affect the pollution caused by livestock farming and its emission is being questioned and regularized both in Chile and in the world.
  • wine production the main sources of pollution occur in the water footprint of its processes and in the treatment of its RILES, which, in addition to bad odors, also emanate large concentrations of polluting gases (Peralta, 2005).
  • the problem has its origin in the location of the production plants, which are mostly close to residential sectors where, as a result of the annoying odors generated by the industry and the emanation of highly polluting gases, they can lead people to demonstrate against the plant, drawing the attention of the authorities who are in charge of sanctioning them, establishing new production limits and even closing them (Spa, 2019).
  • This problem affects not only populations surrounding the industry, but also plant operators, who are exposed in their workplace to high concentrations of ammonia, and, finally, it also affects producers and business owners, since up to 10% loss of meat production is recorded due to a direct impact on the health of the animals due to the high concentration of ammonia that is recorded in the livestock environment, also including the air quality of the cities. and the surrounding environment (Acu ⁇ a and Pizarro, 2019).
  • ammonia gas is a gaseous component that produces irritation of the mucous membranes, headache, dizziness and nausea, immediately upon contact at a concentration of 10 ppm, it is also a precursor of particulate matter 2.5 (PM 2.5). , which is the cause of respiratory diseases, associated with 4,000 deaths per year in Chile.
  • PM 2.5 particulate matter 2.5
  • the greenhouse gas potential of methane, for its part is 21 times more than carbon dioxide, which is why, Its emission is questioned worldwide, trying to reduce its production with global environmental programs.
  • Sulfured hydrogen is a toxic gas that directly affects the population and, depending on the concentration at which it is found, has consequences such as the perception of a bad smell (rotten egg), irritation of the eyes, nose, nausea, respiratory obstruction and if intensifies the level, loss of consciousness and death can occur.
  • waste treatment systems in agribusiness aim to reduce the environmental impact produced by slurry discharges, generating final waste that meets the stipulated flows and concentrations of contaminants.
  • current legislation or in the company's policies therefore, there is a system of processes that involves a series of stages or steps, sequenced and differentiated as primary and secondary, in order to obtain results in accordance with the stated objectives.
  • the only regulations in force for the reduction of ammonia emissions are those contemplated in the Decontamination Plan of the metropolitan region, where articles 70, 71 and 72 declare the need to intervene in homogenization wells and declare ammonia emissions starting in 2020.
  • a filter bed is composed of a microorganism support medium and one or more microorganisms capable of forming a biofilm, allowing it to function as a biological filter for substances or compounds in solution (liquid).
  • the microorganisms will be necessary to use in these biological filtration systems.
  • a biofilter formulation for the treatment of water with a high content of heavy metals that comprises a mixture of macroalgal biomass, selected from algae of the genus Macrocystis pyhfera, Lessonia spicata, Durvillaea antarctica, Ulva spp. and/or Gracilaha chilensis, which are immobilized in a polymeric alginate matrix; biofilter, process for making the biofilter and use.
  • macroalgal biomass selected from algae of the genus Macrocystis pyhfera, Lessonia spicata, Durvillaea antarctica, Ulva spp. and/or Gracilaha chilensis, which are immobilized in a polymeric alginate matrix
  • biofilter process for making the biofilter and use.
  • the formation of biofilms with microorganisms represents a greater difficulty in ensuring the stability of said biofilm, where microorganisms such as bacteria and archaea require greater control over the environment and
  • a fresh or salt water treatment and recirculation system is provided in an aquaculture culture system whose configuration allows the water quality to be restored to optimal levels, without having to configure large, complex systems with a large amount of equipment, water treatment and recirculation system to restore water quality to optimal levels in fish farming system aimed mainly at the aquaculture industry in both fresh and salt water and/or collection centers, which includes means to drive water flows at the required pressures, a coarse mechanical filter with a mesh size of approximately 100 microns, whose focus is to capture coarse particulates, means of oxygen production, means for autonomous electricity generation, and means for controlling variables through a foot, which manages variables such as pressure, oxygen and CO2 level, flows, pH, among others, which comprises: a) means for ultrafiltering and remove particles of up to 0.02 microns, in order to remove macro particles of organic material, disinfect bacteria and viruses by mechanical removal and elimination of harmful contaminants, such as ammonia; b) means for degassing to eliminate the co2 produced, using a multitubular exchange
  • CL 2019034766 it refers to a filtration device and procedure for treating contaminated indoor air, which can operate using gas scrubbers, adsorbing means, or by using a microbial biodegrading medium for contaminating gases, where said device allows
  • the technical problem of filter efficiency has to do with whether said filter is capable of processing the greatest amount of contaminants with a minimum residence time and with a filter bed volume. which allows its application in devices of adequate size for interior spaces, such as indoor spaces, that is, it operates at its maximum capacity without having to increase the size of the reactor.
  • the scope of this technology is limited, focused mainly on small environments or with a non-industrial level of contaminants.
  • the invention relates to a biofilter device for biologically removing odorous substances and volatile organic compounds (VOCs) discharged from various environmental foundations and industrial facilities, and more specifically, a bio-trickle filter, which is a pretreatment device
  • the present invention relates to a biofilter including a biofilter filled with a porous foamed polymer carrier including a flow control transfer unit, activated carbon powder and zeolite powder, an acid automatic control supply device and alkali and a nutrient supply device. According to the present invention, it is possible to effectively and stably remove odorous substances and volatile organic compounds (VOCs) and the like, and there is an effect that few secondary pollutants are generated.
  • the document describes a utility model that refers to a deodorization system by the nanophotocatalytic plasma biological method, which comprises a first stage purification chamber and a second stage purification chamber, in which the outlet of the The first stage purification chamber is connected with the inlet of the second stage purification chamber, and a coarse filter device, an electrostatic dust collection device, a photocatalyst, a plasma purification system and an ion generator Negatives are sequentially in the first stage purification chamber along a direction from the inlet to the outlet, and a spray atomizer is arranged in the purification chamber of the second stage; and the plant extract in a storage system is atomized to form liquid droplets with a diameter of less than 1 mother by the spray atomizer, and the outlet of the second stage purification chamber is connected with an exhaust system .
  • the utility model has the characteristic of good deodorizing effect.
  • the invention relates to a method for using composite microbes and nanometric composite carriers to treat malodorous gas, and relative device.
  • the biological filter box is divided by several vertical baffle plates, which contain a microbial nutrient storage pool, a liquid level controller, a porous baffle plate, a nutrition spray tube and a nutrient circulation pump, while the bad smell flows into the box to contact with the nanomethco composite mineral carrier stacked on the porous baffle plate, to degrade the object through the microbe group in/on the nanomethco composite mineral carrier in the material without toxicity and damage , such as water, carbon dioxide, nitrogen gas and sulfur.
  • the invention uses the bad smell object as carbon source, energy source, nitrogen source and sulfur source of microbes to realize circulation, save cost and reduce nutrient consumption.
  • the invention has simple structure and low cost, while the LQ-SSB composite microbial group and nanomethco composite mineral carrier have high stability and efficiency.
  • the invention relates to a composite microbial deodorant for the treatment of household garbage and a method of preparing the deodorant.
  • the composite microbial deodorant is prepared from raw materials as follows: 20-30 parts of composite photosynthetic bacteria powder, 10-20 parts of Bacillus subtilis powder, 20-40 parts of aspergillus composite powder and 30-50 parts compound yeast powder.
  • the composite microbial deodorant comprises beneficial microbes such as Thiocapsa roseopersicina capable of efficiently degrading hydrogen sulfide, Rhodospirillum rubrum capable of efficiently degrading fatty acid series odors and ammonia, Aspergillus oryzae rich in enzyme systems such as proteases, cellulose and the like, Bacillus subtilis capable of rapidly degrading ammonia, Rhizopus oryzae rich in lactic acid, Saccharomyces cerevisiae to produce ethyl alcohol, Candida guilliermondii rich in aroma-producing substances and the like, beneficial microbes grow and reproduce in household garbage and have the synergistic effect, the ecological environment of household garbage is effectively improved, and hydrogen sulfide emissions , ammonia and odors of the fatty acid series are greatly reduced.
  • beneficial microbes such as Thiocapsa roseopersicina capable of efficiently degrading hydrogen sulfide, Rhodospirillum rubrum capable
  • this process has reduced performance compared to technologies focused on obtaining or generating cultures of microorganisms on supports that expand and favor the contact surface with odorant gases, for example, to improve or increase the contact space between microorganisms and odorant gas. , thus facilitating their metabolic process.
  • the invention relates to a biofilter using a polyethylene carrier, and more particularly, to a biofilter for the efficient treatment of odors and volatile organic compounds using a polyethylene carrier according to the present invention in a biofilter system conventional.
  • Phosphorous polyethylene resin is used for provide optimal conditions for the growth of microorganisms due to the high resource recycling aspect and water content.
  • the technology will depend on the colonizing capacity of the ethylene carriers, and the stability of colonization by the microorganisms necessary for the purification of odors and respective VOCs.
  • the invention relates to an odor removal and heavy metal removal composition
  • an odor removal and heavy metal removal composition comprising the new strain Bacillus lyke niformis BC4 KCCM 10860P and a method for purifying livestock wastewater or food waste using the same
  • the new strain Bacillus lyke niformis BC4 KCCM 10860P O refers to a microbial agent containing them as an active ingredient and a purification method for recycling livestock wastewater or food waste using the same.
  • the invention belongs to the technical field of wastewater treatment, discloses a bacterial ammonia nitrogen removal agent and aims to provide a bacterial ammonia nitrogen removal agent which is high in ammonia nitrogen removal efficiency and can recycle bacteria killing agents and fillers.
  • the technical scheme includes that the composite bacterial agents are cured in the fillers and comprise heterotrophic nitrifying bacteria, bacilli and denitrifying bacteria.
  • the invention refers to biofilter systems and biofilter media used in said systems, as well as the methods of using them to eliminate odor-causing compounds from waste gas streams.
  • the biofilter media has a plurality of expanded glass granules. Each expanded glass granule has a coating on it. The coating includes a binding agent, an adsorbent agent, microorganisms and nutrients.
  • biofilter media is highly efficient at removing hydrogen sulfide from waste gas streams at high concentrations at low empty bed residence times.
  • Biofiltration performance models in aqueous media have been developed and experimentally validated, depending on the supply of nutrients, and nitrogen in particular (the most important element after carbon and oxygen); where and to date, there is no mechanism or filtering system that allows optimizing the variables of filtering surface and gas flow through the bed, allowing optimal, maintenance-free filtering that is stable over time.
  • this type of systems for gas treatment has not been adequately described and/or tested, due to the inherent difficulty that exists in filtering substances in a gaseous medium, and with acceptable efficiency and performance. to be applied and incorporated directly into industrial processes.
  • the proposed invention includes the development of a biological filter system, defined as a biological treatment system with low environmental impact that does not generate waste, and at the same time optimizes the use of water, as a technological solution to reduce and control the emanation of bad odors and atmospheric pollution, designed for the animal industry and especially for the swine industry, due to the generation of large quantities of ammonia, methane and hydrogen sulfides inside the slurry accumulator homogenization wells.
  • a biological filter system defined as a biological treatment system with low environmental impact that does not generate waste, and at the same time optimizes the use of water, as a technological solution to reduce and control the emanation of bad odors and atmospheric pollution, designed for the animal industry and especially for the swine industry, due to the generation of large quantities of ammonia, methane and hydrogen sulfides inside the slurry accumulator homogenization wells.
  • the invention corresponds to an air and gas biofilter, mediated by a composition of microorganisms that form a biofilm on a specially designed support inside the bioreactor, and that in contact with the waste gases channeled into the interior of the bioreactor, resulting of agricultural activity, the microorganisms present in the biofilm carry out an exchange of substances, incorporating/fixing residual gases (such as ammonia, methane, among others) for their metabolism, converting said gases into neutral or non-polluting products for the environment, which can They can also be used as nutrients or substrates in other industrial sectors.
  • residual gases such as ammonia, methane, among others
  • the biofilter of the invention at the gaseous concentrations of NH3 and H2S tested in the pork and wine industry, did not present inhibition of nitrification, nor variations in pH, nor decrease in bacterial viability, so the biofiltration in one stage was successful. without the need to design a process in two or more stages to avoid nitrification inhibition. In this way, a design with less compartmentalization, modularity and a composition capable of eliminating NH3, H2S and CH4 simultaneously was chosen.
  • the biofilter allows the filtration of high concentrations of contaminants present in the industry, without generating chemical waste such as, for example, a gas washer; Additionally, it does not require permanent replacement of the medium, as is the case with absorbing media that normally become saturated within a certain time.
  • one of the components of the biofilter of the proposed invention comprises a culture of microorganisms associated with at least one support device, in the form of a biofilm, which provides greater resistance to metabolic degradation compared to other culture systems, such as For example, a planktonic culture.
  • biofilms are communities of microorganisms associated with a surface and commonly embedded in extracellular polymeric substances (EPS), and where in such communities, the Microorganisms generally demonstrate greater tolerance to hostile environments, thus recognizing that the biofilm matrix plays a relevant role in the resistance of these communities, for example, limiting the diffusion of toxic molecules.
  • EPS extracellular polymeric substances
  • the invention also includes a critical step for the success of the biofilter, which includes the optimization of the microbial composition in the laboratory, to promote the stability of the biofilm, and the formation of the biofilm outside the device that houses the biofilter and then be installed directly inside.
  • said optimization comprises at least two stages: i) Formation of biofilms of microorganisms with a sufficient minimum thickness (at least 10 pm), on polymeric supports with culture medium at high concentrations of organic waste to be treated, including Ammonium, for a period of time. determined time, at constant temperature and aeration; i) once the biofilm is formed on the polymeric supports, it is packaged and transported under sterile conditions to be placed inside the biofilter installed on the ground.
  • the biological filter system comprises the following elements: a) a bioreactor, b) a support for fixing microorganisms arranged inside the bioreactor, c) a composition/formulation of microorganisms added to the fixing support for the formation of a biofilm. active as part of the filter bed, d) a communication and alert system to the user, and e) a filtration method that includes the bioreactor, the support or filter bed, the microbial composition or formulation and a series of steps that allow the gases to be filtered.
  • the bioreactor in turn comprises at least one air compressor, a pump for recirculation, a support system with biofilms for the purification of contaminating gases emanating from the homogenization wells, a composition/formulation of microorganisms, and a panel digital connected to the ammonia sensors that recorded the concentration of the gas (in ppm) at the inlet and outlet of the gas biofilter.
  • a biological filtering and monitoring system for volatile organic waste is described to reduce contaminating gases from a waste reception well, which comprises: a.
  • a bioreactor (1) which in turn comprises at least the following components: structure, an inner chamber, a stirring device, an aeration device, a recirculation system (2), a heating device, an acquisition system data, a fine droplet spray system (7), a filter bed chamber and a data acquisition unit; b. At least one lattice-type polymeric support (6), for the formation of biofilm as part of the filter bed; c.
  • a microbial composition that comprises at least one active ingredient, at least one adjuvant, a pH stabilizer and a vehicle, which in combination with the support (6) of the filter bed allows the formation of a biofilm associated with the support (6) of the bed filter capable of optimizing the filtration of volatile organic waste;
  • a user communication and alert system comprising a digital panel connected to the data acquisition system; and.
  • a filtration method that includes the bioreactor and also includes the following steps: i. Receive the gases for purification at the entrance to the biofilter;
  • monitoring includes: i) reviewing the input and output levels of the different gases recorded by the data acquisition system, i) review the pressure, humidity and temperature levels of the environment inside the bioreactor, iii) diagnose and modify virtually or remotely the levels of any of the aforementioned parameters, and iv) control the flow of incoming gas and recirculating liquid inside the bioreactor and the filter bed,
  • the structure of the bioreactor corresponds to a resistant structure, which allows all the components of the bioreactor to be contained in controlled pressure and temperature conditions, with respect to the environmental conditions and where the structure also comprises at least: a thickness , a central section diameter, a total height from the base to the plenum and a maximum operating volume, and at least one collector; where the structure can be made from the list that includes the following materials: HDPE, Stainless steel, fiberglass, metals, metal alloys and any combination of these; and where the collector allows storing a liquid reservoir that contains chemical components, stabilizers, adjuvants and/or any additional component necessary to generate stability of the microorganisms forming the biofilm, and promote adsorption in the gas-liquid phase exchange.
  • the bioreactor chamber comprises at least two differentiated zones: gas zone (8) and liquid zone (9), where the gas zone (8) is in contact with the filter bed and where the liquid zone (9) contains an aqueous reservoir that comprises: MgSO4, CaCI2, FeSO4 x 7 H2O, CuSO4, NaH2PO4 x H2O, Na2HPO4 x 2 H2O, NaOH, where said components are found in a range between: 0.01 - 1.35 g/L, 0.04 - 1.6 mg/L, 1.6 - 3.3 mg/L, 0.01 - 0.88 mg/L, 0.1 - 1.7 g/L, 0.3 - 1.9 g/L, and 0.3 - 1.9 g/L respectively, the stirring device includes the following parameters: Stirring speed (rpm), Speed control (rpm), Voltage (Volt), Maximum power (Watt), allowing the homogenization of the substances that enter the interior of the biofilter, and where
  • the aeration device includes the following parameters: Maximum flow rate (m3/h), Maximum working pressure (m/s), Voltage (Volt), Maximum power (Watt), which allows the homogeneous diffusion of air inside the biofilter, and where the aeration device corresponds to an air extractor (3), including a Helicocentrifugal in-line extractor (3).
  • the recirculation system comprises at least one collector (2), at least two recirculation pumps (4) operating alternately and at least one reservoir, connected to the sensor system, where the recirculation system also comprises the following parameters: Maximum flow rate (L/m), Level sensor.
  • the heating device includes the following parameters: Working temperature (°C), Temperature control Voltage (Volt), Maximum power (Watt), allowing the biofilter temperature to be maintained between the ranges 15°C to 25°C, and where the heating device corresponds to any device that allows modulating the temperature of an aqueous environment, including an immersion heater.
  • the data acquisition system comprises input, output and internal functioning sensors, where said sensors allow the collection of information on the input and output of substances in the biofilter, and comprises at least: a level sensor, a pH sensor, a fixed Methane gas sensor and detector (ppm), a hydrogen sulfide detector (ppm), and a fixed Ammonia detector (ppm).
  • the support (6) that is part of the filter bed corresponds to a combination of parametric structures of the lattice or lattice type, where the pore size is at least between 0.2 to 1 cm, which allows increasing the available area. for the association with microorganisms of the microbial composition, facilitating the optimization of the formation of a biofilm as an active filter, in the filter bed.
  • the microbial composition comprises as active ingredient, at least two heterotrophic and chemolithotrophic microorganisms, which can be chosen from the list comprising: Delftia acidovorans, Ochrobactrum pecor ⁇ s, Variovorax paradoxus, Pseudomonas gessardii, and at least two microorganisms with aerobic nitrifying activity, and where the composition also comprises adjuvants, at least one pH stabilizer and a suitable vehicle; where the adjuvants correspond to inorganic components that can be selected from the list that includes: (NH4)2SO4, MgSO4, CaCI2, FeSO4, CuSO4, NaH2PO4, Na2HPO4, NaOH, and where the concentrations of said adjuvants comprise a range between: 0.3 - 3.5 g/L, 0.01 - 1.35 g/L, 0.04 - 1.6 mg/L, 1.6 - 3.3 mg/L, 0.01 - 0.88 mg/L, 0.1 - 1.7
  • the microbial composition comprises at least one strain of Delftia acidovorans and one strain of Variovorax paradoxus, wherein the first strain is BIOPROC -C1 (RGM 3299) and the second strain is BIOPROC-C13 (RGM 3300), respectively; and where in addition, the optimization of the microbial composition, preparation and formation of the biofilm outside the bioreactor, comprises at least two stages: i) Formation of biofilms of microorganisms (> 10 pm) on polymeric supports (6) with culture medium at high concentrations of at least one organic waste to be treated, including ammonium, methane and hydrogen sulfide gases for a minimum time necessary to ensure the formation of the biofilm with sufficient minimum thickness, at constant temperature and aeration; and i) once the biofilm is formed on the polymeric supports (6), it is packaged and transported under sterile conditions to be placed inside the biofilter installed on the ground.
  • the user communication and alert system comprises: a user interface, a gas monitoring system and operational variables that comprises at least one connection device between the user interface and the physical sensors present in the bioreactor, at least one device wireless communication system that allows information from the local bioreactor to be transmitted to a remote information receiving device through the Internet and a data processing system in the cloud, which allows processing information and generating reports, storing information and from where it is can download information directly for the operator and/or user.
  • a method for biological filtering and monitoring of volatile organic waste to reduce polluting gases from a waste reception well for the discharge of slurry, especially slurry resulting from agroindustry comprising: to. Install the biofilter less than one meter from the waste reception pit, on a flat and stable cement surface (by anchoring it to the ground) and inside a house that isolates it from climatic variables; b. Connect the inlet (10) of the biofilter with the purification gas outlet of a waste reception well; c.
  • the filter bed comprises a bacterial biofilm (>10 pm) optimized and preformed in the laboratory; wherein said optimization comprises at least two stages: i) Formation of microorganism biofilms (> 10 pm) on a polymeric support (6) with culture medium at high concentrations of at least one organic waste to be treated, including ammonium, methane and hydrogen sulfide gases for a minimum time necessary to ensure the formation of the biofilm with sufficient minimum thickness, at constant temperature and aeration; i) once the biofilm is formed on the polymeric support (6), it is packaged and transported under sterile conditions to be placed inside the biofilter installed on the ground. d.
  • the operation of the biofilter is completely manual, and where each biofilter device can be energized independently; and where the biofilter also includes an emergency pump with continuous flow capacity and protection against high ambient humidity with condensation in the work area and implementation of the filtration system.
  • the emergency pump corresponds to one of the pumps of the circulation system, where said pump alternates operation with the main pump to maintain continuous operation.
  • the filtration method does not generate liquid secondary products, since the elimination of gases occurs by metabolic transformation of the input substrate.
  • a bioreactor for biological filtering and monitoring of volatile organic waste to reduce polluting gases from a waste reception well for the discharge of slurry, especially slurry resulting from agroindustry, comprising: a rigid closed structure, a stirring device, an aeration device, a recirculation system, a heating device, a data acquisition system, a fine droplet spray system, a bed chamber filter, which in turn contains a lattice-type polymeric support (6) for the formation of biofilm inside the filter bed and a data acquisition unit.
  • the structure of the bioreactor corresponds to a resistant structure, which allows all the components of the bioreactor to be contained in controlled pressure and temperature conditions, with respect to the environmental conditions and where in addition the structure comprises at least: a thickness, a center section diameter, a total height from the base to the plenum and a maximum operating volume; and where the structure can be made from the list that includes the following materials: HDPE, Stainless steel, fiberglass, metals, metal alloys and any combination of these.
  • the stirring device comprises the following parameters: Stirring speed (rpm), Speed control (rpm), Voltage (Volt), Maximum power (Watt), allowing the homogenization of the substances that enter the interior of the biofilter, and where the agitation device is an agitator that can be selected from the list that includes: mechanical agitator, bubbling agitator, including a low-pressure axial agitator. speed.
  • the aeration device includes the following parameters: Maximum flow rate (m3/h), Maximum working pressure (m/s), Voltage (Volt), Maximum power (Watt), which allows the homogeneous diffusion of air inside the biofilter, and where the aeration device corresponds to an air extractor (3), including a Helicocentrifugal in-line extractor (3).
  • the recirculation system comprises at least one collector (2), at least two recirculation pumps (4) operating alternately and at least one reservoir, connected to the sensor system, where the recirculation system also comprises the following parameters: Maximum flow rate (L/m), Level sensor.
  • the heating device includes the following parameters: Working temperature (°C), Temperature control Voltage (Volt), Maximum power (Watt), allowing the biofilter temperature to be maintained between the ranges 15°C to 25°C and in where the heating device corresponds to any device that allows modulating the temperature of an aqueous environment, including an immersion heater.
  • the data acquisition system comprises input, output and internal functioning sensors, where said sensors allow the collection of information on the input and output of substances in the biofilter, and comprises at least: a level sensor, a pH sensor, a fixed gas sensor and detector Methane (ppm), a hydrogen sulfide detector (ppm), a fixed Ammonia detector (ppm).
  • the support that is part of the filter bed corresponds to a combination of parametric structures of the lattice or lattice type, where the pore size is at least between 0.2 to 1 cm, which allows increasing the area available for filtration. association with the microorganisms of the microbial composition, facilitating the optimization of the formation of a biofilm as an active filter, in the filter bed.
  • a microbial composition for biological filtering and monitoring of volatile organic waste to reduce polluting gases from a waste reception well for the discharge of slurry, especially slurry resulting from agroindustry, CHARACTERIZED because the microbial composition comprises at least: i) A primary active ingredient,
  • a secondary active ingredient iii) An adjuvant, and iv) A vehicle.
  • the primary active ingredient comprises at least two heterotrophic and chemolithotrophic microorganisms, which can be chosen from the list that includes: Delftia acidovorans, Ochrobactrum pecoris, Var ⁇ ovorax paradoxus, Pseudomonas gessardii, and wherein the primary active ingredient comprises at least 90% of the microorganisms present in the composition; wherein the secondary active ingredient corresponds to microorganisms with aerobic nitrifying activity, where said organisms do not exceed 10% of the total microorganisms present in the composition, where the adjuvant comprises at least one pH stabilizer and the adjuvant corresponds to at least an inorganic component that can be selected from the list comprising: (NH4)2SO4, MgSO4, CaCI2, FeSO4 x 7 H2O, CuSO4, NaH2PO4 x H2O, Na2HPO4 x
  • the microbial composition comprises at least two active ingredients, where the first is a strain of Delftia acidovorans and the second is a strain of Var ⁇ ovorax paradoxus, and where furthermore, the first strain is BIOPROC-C1 (RGM 3299) and the second strain is BIOPROC-C13 (RGM 3300), respectively; and wherein the microbial composition comprises at least a total concentration of primary and secondary active ingredients of between 10 7 - 10 9 cells/mL.
  • the invention is characterized by having a differentiating technology that mixes the simultaneous elimination of different volatile organic waste or polluting and/or odorant gases with the real-time sensorization and measurement of the gases produced and removed, allowing useful information for environmental reports and traceability of polluting gases, contributing to the culture of continuous improvement of companies in the agricultural and livestock sector, where in particular, the invention has been optimized for the animal industry, so its operation is optimal for the gas concentrations that occur there. , including: methane, ammonia, hydrogen sulfide, VOC, NOX.
  • the invention also comprises an internal architecture of the biofilter that is designed to optimize the settlement of microorganisms and a composition of microorganisms. selected in a solution that provides high viability and performance, where in addition, the microorganisms present in the biofilter were studied, selected and enhanced in order to obtain high filtration efficiency.
  • the invention also comprises a bioreactor designed optimized for efficiency, reduction in start-up time in relation to other existing bioreactors, "zero" production of secondary waste and is adaptable to different sizes of wells without having to modify the engineering.
  • a bioreactor designed optimized for efficiency, reduction in start-up time in relation to other existing bioreactors, "zero" production of secondary waste and is adaptable to different sizes of wells without having to modify the engineering.
  • the lattice structure and/or the geometry of the polymeric bed comprises pores of at least a range between 0.2 - 1.0 cm in diameter, allowing a balance between providing a structure and an optimized area to support the formation. of a biofilm from the microbial composition of the invention, and in turn, favor the flow of gases through the polymeric bed, in order to favor the contact of the gas flow and the microorganisms of the biofilm, resulting in optimal filtration inside the filter bed and the biofilter device.
  • the formulation of the invention also includes the use of adjuvants that promote the stability of the composition, and which correspond mainly to salts, which can be selected from the list that includes: KH 2 PO 4, NaH2PO4, Na2HPO4, KNO 3, (NH4)2 SO 4 , NH 4CI, NH 4 HCO 3 , CaCl 2 , MgSO 4 , MnSO 4 , FeSO 4 , Na 2 MoO 4 , and vitamins, including B1, B6, B12, C, D, A, E, and any combination of these.
  • adjuvants that promote the stability of the composition and which correspond mainly to salts, which can be selected from the list that includes: KH 2 PO 4, NaH2PO4, Na2HPO4, KNO 3, (NH4)2 SO 4 , NH 4CI, NH 4 HCO 3 , CaCl 2 , MgSO 4 , MnSO 4 , FeSO 4 , Na 2 MoO 4 , and vitamins, including B1, B6, B12, C, D, A, E
  • the invention also allows, under controlled conditions and on a smaller scale, to remove at least 60% of volatile organic waste, including ammonia, methane and hydrogen sulfide gases in microbiological cultures subjected to cultivation with high ammonia content, allowing the implementation and validation of the prototype. in real industry conditions.
  • the design of the bioreactor (1) and its main components are described (FIGURE 3), where a rear view of the biofilter (A), a tangential side view (B) and a basal view (C) are shown. ).
  • An entry of residual gases (10) is observed, where at least one extractor (3) exerts the suction force on them, to lead them into the biofilter.
  • the gases pass through at least one microbiological support system (6) and are located in a so-called gas zone of the bioreactor (8), facilitating the exchange of compounds in the microbiological community through its metabolism.
  • the gas zone (8) is maintained in constant humidification by dripping sprinklers (7), a process that is optimized by dividing the support system (6) into two, in order to cover the greatest amount of surface area of the supports ( 6).
  • the spraying process is achieved by the supply delivered by the so-called liquid zone (9) of the bioreactor (1), acting as a reservoir for the medium, and is controlled by the continuous supply of at least a pair of pumps (4) that operate in alternate manner to ensure a continuous process.
  • the area is supplied liquid (9) with at least two collectors (2), in order to provide an autonomy of the bioreactor (1) of between two to three months, thus avoiding a total loss of liquid that could affect the metabolism of the community. microbiological.
  • the purified gas is returned to the outside through a gas outlet (11).
  • the bioreactor (1) is kept in operation by means of a domestic energy supply, which is controlled from an electrical box (5) and distributed to each of the parts mentioned above.
  • the operation of the biofilter is completely manual and each device (fan, pumps, heater, others) can be powered independently.
  • the prototype also comprises an emergency pump with continuous flow capacity and protection against high ambient humidity with condensation in the work area and implementation of the filtration system.
  • FIG. 1 Diagram of the operation of the Biofilter System.
  • FIG. 1 Design of the Biofilter and its components. A) Front view, B) Tangential side view, C) View from the base.
  • FIG. Strains sent to INIA viable post-preservation.
  • Figure 5 Visualization of the real-time remote access platform of the gas monitoring system.
  • A) Visualization of the georeferenced terrain plan in an aerial view indicating the location of the bioreactor and the sensor system
  • B) Visualization of a real-time data graph of the monitored variables which includes, i) a live image that allows view a video of the biofilter in real time to monitor/evaluate its status; i) the concentration of NH3, and iii) the concentration of H2S both at the inlet of the bioreactor (blue line) and at the outlet of the bioreactor (green line) and the percentage of removal (orange line) with respect to time; as well as the graphs where iv) the variation of pressure with respect to time is observed; (v) the variation of temperature with respect to time; and vi) the variation of the flow with respect to time is observed.
  • FIG. 1 Visualization of H2S sensor information on the web platform.
  • Figure 7. Visualization of H2S sensor information on the web platform.
  • Figure 8. Visualization of CH4 sensor information on the web platform.
  • Figure 9 Average percentage removal of NH3, CH4 and H2S in Vi ⁇ a Requingua and NH3 in Agr ⁇ cola Chorombo. Information obtained from data collected from the remote platform.
  • Microbiological support system (lattice type).
  • Biological Filtration Service composed of the installation of a biological filtration system which is anchored to closed waste wells with the objective of reducing and mitigating polluting gases. This incorporates sensors and a digital platform to monitor online the concentrations of gases generated and the % removal of these, allowing reports to be periodically generated for the client.
  • Ultraproc® is a biological filtration unit, designed to treat polluting and odorant gases through microbiological metabolization. This is anchored to closed pits of agricultural and livestock waste that release volatile polluting and/or odorant compounds such as ammonia, sulfurized hydrogen and methane.
  • the air current is directed by extraction from the well to a purification area inside the biofilter, which is composed of: free of contaminants.
  • the treatment process is accompanied by a system of electrochemical sensors attached to the biofilter and a digital platform that monitors gas concentrations online, generating periodic environmental management reports for users.
  • Ubiproc® The main attributes of Ubiproc® are the design of the filter bed that allows the efficient fixation of microorganisms and guarantees gas exchange and a composition of selected microorganisms in a stable solution, in addition to a reactor design that allows maintaining high microbial viability and a Quick field installation.
  • EXAMPLE 2 Constant monitoring in the field (pig manure)
  • the biofilter could be monitored for 55 days, establishing 3 times (9, 14 and 19 hours.
  • the data recorded at 9 a.m. showed an average ammonia inlet value of 27.6 ⁇ 9.4 ppm and output 15.1 ⁇ 7.4 ppm, with an increase in the removal percentage, starting with a average of 42% the first 10 days, and ending with an average of 64% (last 10 days).
  • the data recorded at 2 p.m. show an average ammonia input value of 18.4 ⁇ 4.7 ppm and output value of 9.9 ⁇ 2.7 ppm, marking an increase in the removal percentage, starting with a value of 40.2% on average of the first 10 days, to reach 63.6% on average of the last 10 days.
  • Bacteria with nitrifying activity and abilities to degrade polluting organic compounds were selected from sediments, including Delftia acidovorans, Ochrobactrum pecoris, Var ⁇ ovorax paradoxus, and Pseudomonas gessardii. A stable and viable composition at room temperature with filtering capacity was developed.
  • Biofilm cultures were carried out in 5-liter reactors using PETG filter bed in culture medium of ammonium salts ((NH4)2SO4 3.3 g/L, MgSO4 0.51 g/L, CaCl2 0.74 mg/L, FeSO4 x 7 H2O 2.5 mg /L, CuSO4 0.08 mg/L, NaH2PO4 x H2O 0.90 g/L, Na2HPO4 x 2 H2O 1.12 g/L, NaOH (2N) 1.12 g/L) (Chung et al., 2007) and incubation in dark conditions , constant aeration (9 mg/L) and ambient temperature (25 ⁇ 1°C) for 20 days.
  • ammonium salts (NH4)2SO4 3.3 g/L, MgSO4 0.51 g/L, CaCl2 0.74 mg/L, FeSO4 x 7 H2O 2.5 mg /L, CuSO4 0.08 mg/L, NaH2PO4 x H2O 0.90 g
  • the cultivation of biofilms on polymeric supports in the laboratory is carried out at high concentrations of ammonium (> 900 mg), in order to increase yield and perform microbial selection.
  • a prototype of a biological filter was developed to be installed and tested in the field in an agricultural pig production company.
  • the microbiological composition was grown in a 5-liter fed reactor, with constant aeration and at room temperature. Ammonium and pH concentrations were measured over time as part of the reactor log, with the culture obtained the colonization of the polymeric bed was carried out, obtaining a 10pm biofilm with the capacity to degrade contaminating organic compounds.
  • the small-scale biofilter operating in real conditions was designed by the Bioproc work team and installed in manure homogenization well 2 in said company, where the periodic discharge of 9,000 pigs in the fattening phase occurs, located in the plant located in the Maule region, Chile.
  • the prototype has dimensions of 390 mm in diameter and 1400 mm in height, equipped with an air extractor, polymer bed, internal spray system, formulation storage area, temperature control, recirculation pumps, ammonia sensors and digital panel of receiving information. Using sensors, the ammonia concentration at the biofilter inlet and outlet was recorded. The removal percentage from the slurry discharge pit from day 1 to day 55 showed an increasing trend, starting with an average removal of 35% and reaching 60%.
  • the data reporting platform is in beta version, currently in the validation stage.
  • a. Power Supply System A power supply system with UPS is considered to allow the system to operate for at least 4 hours after a power outage. The power source has a minimum noise level so as not to alter the measurements of the variables.
  • b. Acquisition Controller A computer is considered to control the data acquisition and processing of the system. At least one Intel processor will be used. 1.92Ghz with 4 cores and 2 Gb of RAM. This computer includes a BAM to connect to the internet through a SIM card.
  • the acquisition system contemplates the use of a terrain information display interface for monitoring the level of gases and other sensors indicating mechanical and physical functions of the filtering system, which contemplates:
  • biofilms of microorganisms are carried out on polymeric supports using culture medium at high concentrations of ammonium (> 900 mg), at a stable temperature for the growth of the culture and with constant aeration; where the culture time will be directly related to the desired biofilm thickness, and where the level of aeration is directly related to the temperature of the culture medium.
  • the biofilm formed on the polymeric supports is packaged and transported under sterile conditions to be placed inside the biofilter installed on the ground.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Organic Chemistry (AREA)
  • Environmental & Geological Engineering (AREA)
  • Biomedical Technology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Zoology (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • General Chemical & Material Sciences (AREA)
  • Biotechnology (AREA)
  • Molecular Biology (AREA)
  • Analytical Chemistry (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Genetics & Genomics (AREA)
  • Wood Science & Technology (AREA)
  • Microbiology (AREA)
  • Biochemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Virology (AREA)
  • Tropical Medicine & Parasitology (AREA)
  • Hydrology & Water Resources (AREA)
  • Medicinal Chemistry (AREA)
  • Water Supply & Treatment (AREA)
  • Apparatus Associated With Microorganisms And Enzymes (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

The present invention relates to a biological filtration system comprising a digital platform for the inline treatment and monitoring, in an efficient and sustainable manner, of residual gases and greenhouse gases (GHGs) generated by the agricultural and/or food industry, by directly treating the gas or gases produced by purines, which allows the gases to be metabolised by means of the action of a microbiological community, thereby reducing the composition of the gases by more than 90% without leaving secondary residues, thus reducing bad odours emitted as a consequence of the accumulation of purines in different agricultural industries, such as in the release of scrubbing gases from a pit for receiving waste, or as a result of stages of animal rearing. This is achieved using a device comprising a biofilter, a filtering bed and a microbial composition associated with the filtering bed, thus forming a stable biofilm, and associated methods, wherein the biofilter does not require direct maintenance by the user, wherein the gases are filtered together (in one step) and not separately, wherein the biofilter can be remotely monitored without requiring user intervention, allowing reports to be downloaded, in order to change and/or correct parameters or aspects of the invention, both onsite and remotely, according to the user's requirements or objectives.

Description

SISTEMA DE FILTRADO BIOLÓGICO DE RESIDUOS ORGÁNICOS VOLÁTILES, MÉTODO, DISPOSITIVO Y COMPOSICIÓN MICROBIANA RELACIONADOS. BIOLOGICAL FILTERING SYSTEM FOR VOLATILE ORGANIC WASTE, METHOD, DEVICE AND RELATED MICROBIAL COMPOSITION.
Campo de la invención field of invention
La presente invención, corresponde a un sistema de filtración biológica para residuos orgánicos volátiles, y es útil especialmente en la industria agropecuaria, especialmente industrias ganadera y agrícola, así como también industria agroalimentaria, especialmente en la industria porcina. The present invention corresponds to a biological filtration system for volatile organic waste, and is especially useful in the agricultural industry, especially livestock and agricultural industries, as well as the agri-food industry, especially in the pork industry.
Antecedentes Background
A través de los años, la industria agropecuaria ha sido señalada como uno de los principales sectores que más potencia el calentamiento global, emitiendo un 15% del total de gases de efecto invernadero (GEI) en el mundo (Fonseca et al, 2018). La emisión GEI, en específico; como por ejemplo el metano generados en la etapa de tratamiento físico del purín de cerdo y aves, son uno de los principales componentes que inciden en la contaminación provocada por la ganadería y su emisión está siendo cuestionada y regularizada tanto en Chile como en el mundo. En cuanto a la producción de vinos, las principales fuentes de contaminación se producen en la huella hídrica de sus procesos y en el tratamiento de sus RILES, los cuales emanan además de malos olores, grandes concentraciones de gases contaminantes (Peralta, 2005). La problemática tiene origen en la localización de las plantas de producción, las cuales se encuentran en su mayoría cercanas a sectores residenciales donde, producto de lo molestos olores generados por la industria y la emanación de gases altamente contaminantes pueden llevar a las personas a manifestarse contra la planta, llamando la atención de las autoridades quienes son encargados de sancionarlas, estableciendo nuevos límites de producción e incluso cerrándolas (Spa, 2019). Esta problemática afecta no solo a poblaciones aledañas a la industria, sino que también a los operarios de planta, que están expuestos en su lugar de trabajo a elevadas concentraciones de amoníaco, y, finalmente, también afecta a los productores y dueños de las empresas, ya que se registra hasta un 10% de pérdida de la producción de carne por incidencia directa en la salud de los animales debido a la elevada concentración de amoniaco que se registra en el entorno de chanza, incluyendo además a la calidad de aire de las ciudades y al medio ambiente aledaños (Acuña y Pizarro, 2019). Over the years, the agricultural industry has been identified as one of the main sectors that most contributes to global warming, emitting 15% of the total greenhouse gases (GHG) in the world (Fonseca et al, 2018). The GHG emission, specifically; such as methane generated in the physical treatment stage of pig and poultry manure, are one of the main components that affect the pollution caused by livestock farming and its emission is being questioned and regularized both in Chile and in the world. Regarding wine production, the main sources of pollution occur in the water footprint of its processes and in the treatment of its RILES, which, in addition to bad odors, also emanate large concentrations of polluting gases (Peralta, 2005). The problem has its origin in the location of the production plants, which are mostly close to residential sectors where, as a result of the annoying odors generated by the industry and the emanation of highly polluting gases, they can lead people to demonstrate against the plant, drawing the attention of the authorities who are in charge of sanctioning them, establishing new production limits and even closing them (Spa, 2019). This problem affects not only populations surrounding the industry, but also plant operators, who are exposed in their workplace to high concentrations of ammonia, and, finally, it also affects producers and business owners, since up to 10% loss of meat production is recorded due to a direct impact on the health of the animals due to the high concentration of ammonia that is recorded in the livestock environment, also including the air quality of the cities. and the surrounding environment (Acuña and Pizarro, 2019).
El sector porcino a nivel global es dinámico, con un importante crecimiento y buenas proyecciones. En Chile, la producción de carne de cerdo se ha duplicado en las últimas tres décadas y se proyecta que su demanda aumente 32% a 2030 (Odepa, 2021), sin embargo, el desarrollo de este sector debe hacerse cargo del desafío de suplir esta creciente demanda de alimentos, al tiempo que gestiona sus impactos sobre los recursos naturales y las personas, como las emisiones de amoniaco, hidrógeno sulfurado y metano que se producen en la etapa de tratamiento físico del purín de cerdo. The global pork sector is dynamic, with significant growth and good projections. In Chile, pork production has doubled in the last three decades and its demand is projected to increase 32% by 2030 (Odepa, 2021), however, the development of this sector must take on the challenge of meeting this demand. growing demand for food, while managing its impacts on natural resources and people, such as emissions of ammonia, sulfurized hydrogen and methane that occur in the physical treatment stage of pig manure.
Ambos gases afectan la calidad de vida de la población. Por un lado el gas amoniaco, es un componente gaseoso que produce irritación en mucosas, dolor de cabeza, mareos y náuseas, de manera inmediata al estar en contacto a una concentración de 10 ppm, también es precursor de material particulado 2.5 (PM 2.5), el cual es el causante de enfermedades respiratorias, asociadas a 4000 muertes al año en el Chile. Por otro lado, el potencial como gas invernadero del metano por su parte, es 21 veces más que el dióxido de carbono, por lo cual, se cuestiona su emisión a nivel mundial, intentando reducir su producción con programas ambientales mundiales. El hidrógeno sulfurado es un gas tóxico que afecta directamente a la población y, dependiendo de la concentración a la cual se encuentre, trae como consecuencias desde percepción de mal olor (huevo podrido), irritación ojos, nariz, náuseas, obstrucción respiratoria y si se intensifica el nivel, se puede llegar a pérdida de conciencia y muerte. Both gases affect the quality of life of the population. On the one hand, ammonia gas is a gaseous component that produces irritation of the mucous membranes, headache, dizziness and nausea, immediately upon contact at a concentration of 10 ppm, it is also a precursor of particulate matter 2.5 (PM 2.5). , which is the cause of respiratory diseases, associated with 4,000 deaths per year in Chile. On the other hand, the greenhouse gas potential of methane, for its part, is 21 times more than carbon dioxide, which is why, Its emission is questioned worldwide, trying to reduce its production with global environmental programs. Sulfured hydrogen is a toxic gas that directly affects the population and, depending on the concentration at which it is found, has consequences such as the perception of a bad smell (rotten egg), irritation of the eyes, nose, nausea, respiratory obstruction and if intensifies the level, loss of consciousness and death can occur.
En general, los sistemas de tratamiento de residuos en la agroindustria, en particular en empresas de crianza de cerdos, tiene como finalidad reducir el impacto ambiental que se produce por descargas de purines, generando residuos finales que cumplan con los flujos y concentraciones de contaminantes estipulados en la legislación vigente o en las políticas de la empresa, por lo tanto, se tiene un sistema de procesos que involucra una serie de etapas o pasos, secuenciados y diferenciados como primarios y secundarios, con el fin de obtener resultados acordes a los objetivos señalados anteriormente. Cabe señalar que, por ejemplo en Chile, la única normativa vigente para la reducción de emisión de amoniaco es la que se contempla en el Plan de Descontaminación de la región metropolitana, en donde se declara en sus artículos 70, 71 y 72 la necesidad de intervenir pozos de homogeneización y declarar emisiones de amoniaco a contar del año 2020. In general, waste treatment systems in agribusiness, particularly in pig farming companies, aim to reduce the environmental impact produced by slurry discharges, generating final waste that meets the stipulated flows and concentrations of contaminants. in current legislation or in the company's policies, therefore, there is a system of processes that involves a series of stages or steps, sequenced and differentiated as primary and secondary, in order to obtain results in accordance with the stated objectives. previously. It should be noted that, for example in Chile, the only regulations in force for the reduction of ammonia emissions are those contemplated in the Decontamination Plan of the metropolitan region, where articles 70, 71 and 72 declare the need to intervene in homogenization wells and declare ammonia emissions starting in 2020.
Debido a ello, en el proceso de chanza de cerdos y principalmente derivado del material fecal, se generan altas concentraciones de amoníaco al interior de los pozos de homogeneización acumuladores de purín, con lo cual, se hace necesario el desarrollo de nuevas tecnologías que permitan el tratamiento biológico con un menor impacto ambiental, para reducir y controlar la emanación de malos olores y la contaminación atmosférica, para la industria porcina. Due to this, in the process of slaughtering pigs and mainly derived from fecal material, high concentrations of ammonia are generated inside the homogenization wells that accumulate slurry, which makes it necessary to develop new technologies that allow the biological treatment with a lower environmental impact, to reduce and control the emission of bad odors and atmospheric pollution, for the pork industry.
Una de las alternativas que existen para la filtración de sustancias en medio acuoso, corresponde al uso de lechos filtrantes en sistemas de filtros o biofiltros para el tratamiento de aguas residuales o aguas contaminadas con sustancias solubles o metabolites. En general, un lecho filtrante se compone de un medio de soporte de microorganismos y uno o más microorganismos capaces de formar una biopelícula, permitiendo funcionar como un filtro biológico de sustancias o compuestos en solución (líquida). Dependiendo de tes componentes o sustancias que se requieran filtrar, neutralizar o eliminar, serán los microorganismos necesarios para utilizar en estos sistemas de filtración biológica. One of the alternatives that exist for the filtration of substances in an aqueous medium corresponds to the use of filter beds in filter or biofilter systems for the treatment of wastewater or water contaminated with soluble substances or metabolites. In general, a filter bed is composed of a microorganism support medium and one or more microorganisms capable of forming a biofilm, allowing it to function as a biological filter for substances or compounds in solution (liquid). Depending on the components or substances that need to be filtered, neutralized or eliminated, the microorganisms will be necessary to use in these biological filtration systems.
Por ejemplo, en CL 201603232, se describe una formulación biofiltrante para el tratamiento de aguas con alto contenido de metales pesados que comprende una mezcla de biomasa macroalgal, seleccionadas entre las algas del género Macrocystis pyhfera, Lessonia spicata, Durvillaea antárctica, Ulva spp. y/o Gracilaha chilensis, las que se encuentran inmovilizadas en una matriz poliméhca de alginate; biofiltro, proceso para la elaboración del biofiltro y uso. Sin embargo, la formación de biopelículas con microorganismos supone una dificultad mayor para asegurar la estabilidad de dicho biofilm , en donde microorganismos como bacterias y arqueas, requieren de un control mayor sobre el ambiente y otros factores que pueden ser relevantes para asegurar la estabilidad y funcionalidad de la biopelícula en el tiempo. For example, in CL 201603232, a biofilter formulation is described for the treatment of water with a high content of heavy metals that comprises a mixture of macroalgal biomass, selected from algae of the genus Macrocystis pyhfera, Lessonia spicata, Durvillaea antarctica, Ulva spp. and/or Gracilaha chilensis, which are immobilized in a polymeric alginate matrix; biofilter, process for making the biofilter and use. However, the formation of biofilms with microorganisms represents a greater difficulty in ensuring the stability of said biofilm, where microorganisms such as bacteria and archaea require greater control over the environment and other factors that may be relevant to ensure stability and functionality. of biofilm over time.
En CL 201701776, se proporciona un sistema de tratamiento y recirculación de agua dulce o salada en un sistema de cultivo acuícola cuya configuración permite restablecer la calidad del agua a niveles óptimos, sin tener que configurar sistemas de grandes dimensiones, complejos y con gran cantidad de equipos, sistema de tratamiento y recirculación de agua para restablecer la calidad del agua a niveles óptimos en sistema de cultivo de peces orientado principalmente a la industria acuícola tanto en agua dulce como salada y/o centros de acopio, que comprende medios para impulsar flujos de agua a las presiones requeridas, un filtro mecánico grueso con malla de app 100 mieras, cuyo foco es capturar el particulado grueso, medios de producción de oxígeno, medios de generación de electricidad autónomo, y medios de control de variables mediante un pie, que administra variables tales como presión, nivel de oxigeno y co2, flujos, ph, entre otros, que comprende: a) medios para ultrafiltrar y remover partículas de hasta 0,02 mieras, con el objeto de remover macro partículas de material orgánico, desinfectar bacterias y virus por remoción mecánica y eliminación de contaminantes dañinos, como puede ser el amoniaco; b) medios para desgasificar para eliminar el co2 producido, mediante un intercambiador multitubular con membranas de material hidrofóbico y micro perforaciones que arrastra el co2 a un gas de extracción en condiciones atmosféricas o de vacío; y c¡ medios para oxigenar el agua mediante un intercambiador multitubular con membranas de material hidrofóbico y micro perforaciones que inyecta el 02 al agua de un gas en condiciones atmosférica. Sin embargo, si bien este sistema está diseñado para la filtración de material particulado y para mantener óptimos parámetros de calidad en agua de sistema de peces, la aplicación industrial de este tipo de sistemas se complejiza en industrias ganaderas, agrícolas u otro tipo de industrias que requieren un mayor volumen de filtrado o depuración. In CL 201701776, a fresh or salt water treatment and recirculation system is provided in an aquaculture culture system whose configuration allows the water quality to be restored to optimal levels, without having to configure large, complex systems with a large amount of equipment, water treatment and recirculation system to restore water quality to optimal levels in fish farming system aimed mainly at the aquaculture industry in both fresh and salt water and/or collection centers, which includes means to drive water flows at the required pressures, a coarse mechanical filter with a mesh size of approximately 100 microns, whose focus is to capture coarse particulates, means of oxygen production, means for autonomous electricity generation, and means for controlling variables through a foot, which manages variables such as pressure, oxygen and CO2 level, flows, pH, among others, which comprises: a) means for ultrafiltering and remove particles of up to 0.02 microns, in order to remove macro particles of organic material, disinfect bacteria and viruses by mechanical removal and elimination of harmful contaminants, such as ammonia; b) means for degassing to eliminate the co2 produced, using a multitubular exchanger with membranes of hydrophobic material and micro perforations that drags the co2 to an extraction gas under atmospheric or vacuum conditions; and c¡ means to oxygenate the water through a multitubular exchanger with membranes of hydrophobic material and micro perforations that inject 02 into the water of a gas under atmospheric conditions. However, although this system is designed for the filtration of particulate matter and to maintain optimal quality parameters in fish system water, the industrial application of this type of system becomes more complex in livestock, agricultural or other types of industries that require a greater volume of filtering or purification.
En CL 201903476, se refiere a un aparato y procedimiento de filtración para tratamiento de aire interior contaminado, el cual puede operar mediante lavadores de gases, medios adsorbedores, o bien mediante la utilización de un medio microbiano biodegradante de gases contaminantes, donde dicho aparato permite que el proceso de biofiltración sea eficiente y aplicable en espacios interiores, el problema técnico de la eficiencia del filtro tiene que ver con que dicho filtro sea capaz de procesar la mayor cantidad de contaminantes con un mínimo tiempo de residencia y con un volumen de lecho filtrante que permite su aplicación en aparatos de tamaño adecuado para espacios interiores, tal como espacios intradomiciliahos, es decir, que éste opere a su máxima capacidad sin tener que aumentar el tamaño del reactor. Sin embargo, el alcance de esta tecnología es reducido, enfocado principalmente a ambientes reducidos o con un nivel de contaminantes no-industrial In CL 201903476, it refers to a filtration device and procedure for treating contaminated indoor air, which can operate using gas scrubbers, adsorbing means, or by using a microbial biodegrading medium for contaminating gases, where said device allows For the biofiltration process to be efficient and applicable in indoor spaces, the technical problem of filter efficiency has to do with whether said filter is capable of processing the greatest amount of contaminants with a minimum residence time and with a filter bed volume. which allows its application in devices of adequate size for interior spaces, such as indoor spaces, that is, it operates at its maximum capacity without having to increase the size of the reactor. However, the scope of this technology is limited, focused mainly on small environments or with a non-industrial level of contaminants.
En KR100528358B1, la invención se refiere a un dispositivo de biofiltro para eliminar biológicamente sustancias olorosas y compuestos orgánicos volátiles (COV) descargados de diversas fundaciones ambientales e instalaciones industriales, y más específicamente, un filtro de bio-goteo, que es un dispositivo de pretratamiento, La presente invención se refiere a un biofiltro que incluye un biofiltro lleno de un portador de polímero espumado poroso que incluye una unidad de transferencia de control de caudal, polvo de carbón activado y polvo de zeolita, un dispositivo de suministro de control automático ácido y álcali y un dispositivo de suministro de nutrientes. De acuerdo con la presente invención, es posible eliminar de manera efectiva y estable sustancias olorosas y compuestos orgánicos volátiles (COV) y similares, y existe un efecto de que se generan pocos contaminantes secundarios. In KR100528358B1, the invention relates to a biofilter device for biologically removing odorous substances and volatile organic compounds (VOCs) discharged from various environmental foundations and industrial facilities, and more specifically, a bio-trickle filter, which is a pretreatment device The present invention relates to a biofilter including a biofilter filled with a porous foamed polymer carrier including a flow control transfer unit, activated carbon powder and zeolite powder, an acid automatic control supply device and alkali and a nutrient supply device. According to the present invention, it is possible to effectively and stably remove odorous substances and volatile organic compounds (VOCs) and the like, and there is an effect that few secondary pollutants are generated.
En CN201410131Y, el documento describe un modelo de utilidad que refiere a un sistema de desodorización por el método biológico de plasma nanofotocatalítico, que comprende una cámara de purificación de primera etapa y una cámara de purificación de segunda etapa, en la que la salida de la cámara de purificación de la primera etapa está conectada con la entrada de la cámara de purificación de segunda etapa, y un dispositivo de filtro grueso, un dispositivo de recolección de polvo electrostático, un fotocatalizador, un sistema de purificación de plasma y un generador de iones negativos están secuencialmente en la purificación de primera etapa cámara a lo largo de una dirección desde la entrada hasta la salida, y un atomizador de pulverización está dispuesto en la cámara de purificación de la segunda etapa; y el extracto de la planta en un sistema de almacenamiento se atomiza para formar gotas líquidas con un diámetro de menos de 1 madre por el atomizador de pulverización, y la salida de la cámara de purificación de la segunda etapa está conectada con un sistema de escape. El modelo de utilidad tiene la característica de un buen efecto desodorizante. In CN201410131Y, the document describes a utility model that refers to a deodorization system by the nanophotocatalytic plasma biological method, which comprises a first stage purification chamber and a second stage purification chamber, in which the outlet of the The first stage purification chamber is connected with the inlet of the second stage purification chamber, and a coarse filter device, an electrostatic dust collection device, a photocatalyst, a plasma purification system and an ion generator Negatives are sequentially in the first stage purification chamber along a direction from the inlet to the outlet, and a spray atomizer is arranged in the purification chamber of the second stage; and the plant extract in a storage system is atomized to form liquid droplets with a diameter of less than 1 mother by the spray atomizer, and the outlet of the second stage purification chamber is connected with an exhaust system . The utility model has the characteristic of good deodorizing effect.
En CN101011591A, la invención se refiere a un método para utilizar microbios compuestos y portadores compuestos nanométricos para tratar el gas con mal olor, y dispositivo relativo. La caja del filtro biológico está dividida por vahas placas deflectoras verticales, que contienen una piscina de almacenamiento de nutrientes de microbios, un controlador de nivel de líquido, una placa deflectora porosa, un tubo de pulverización de nutrición y una bomba de circulación de nutrientes, mientras que el mal olor fluye en la caja para entrar en contacto con el portador mineral compuesto nanométhco apilado en la placa deflectora porosa, para degradar el objeto a través del grupo microbio en/en el portador mineral compuesto nanométhco en el material sin toxicidad ni daño, como agua, dióxido de carbono, gas nitrógeno y azufre. Y la invención utiliza el objeto de mal olor como fuente de carbono, fuente de energía, fuente de nitrógeno y fuente de azufre de microbios para realizar la circulación, ahorrar costos y reducir el consumo de nutrientes. La invención tiene una estructura simple y bajo costo, mientras que el grupo de microbios compuestos LQ-SSB y el portador mineral compuesto nanométhco tienen una alta estabilidad y eficiencia. In CN101011591A, the invention relates to a method for using composite microbes and nanometric composite carriers to treat malodorous gas, and relative device. The biological filter box is divided by several vertical baffle plates, which contain a microbial nutrient storage pool, a liquid level controller, a porous baffle plate, a nutrition spray tube and a nutrient circulation pump, while the bad smell flows into the box to contact with the nanomethco composite mineral carrier stacked on the porous baffle plate, to degrade the object through the microbe group in/on the nanomethco composite mineral carrier in the material without toxicity and damage , such as water, carbon dioxide, nitrogen gas and sulfur. And the invention uses the bad smell object as carbon source, energy source, nitrogen source and sulfur source of microbes to realize circulation, save cost and reduce nutrient consumption. The invention has simple structure and low cost, while the LQ-SSB composite microbial group and nanomethco composite mineral carrier have high stability and efficiency.
En CN104667320A, la invención se refiere a un desodorante microbiano compuesto para el tratamiento de basura doméstica y un método de preparación del desodorante. El desodorante microbiano compuesto se prepara a partir de materias primas de la siguiente manera: 20-30 partes de polvo de bacteria fotosintética compuesta, 10-20 partes de polvo de Bacillus subtilis, 20-40 partes de polvo compuesto de aspergillus y 30-50 partes de polvo de levadura compuesta. De acuerdo con el desodorante microbiano compuesto, el sulfuro de hidrógeno, el amoníaco y las cepas adaptadas a la basura doméstica se criban y degradan de manera específica, el desodorante microbiano compuesto comprende microbios beneficiosos como Thiocapsa roseopersicina capaz de degradar eficientemente el sulfuro de hidrógeno, Rhodospirillum rubrum capaz de degradar eficientemente los olores de la serie de ácidos grasos y el amoníaco, Aspergillus oryzae rico en sistemas enzimáticos tales como proteasas, celulosa y similares, Bacillus subtilis capaz de degradar rápidamente el amoníaco, Rhizopus oryzae rico en ácido láctico, Saccharomyces cerevisiae para producir alcohol etílico, Candida guilliermondii rica en sustancias productoras de aromas y similares, los microbios beneficiosos crecen y se reproducen en la basura doméstica y tienen el efecto sinérgico, el entorno ecológico de la basura doméstica se mejora efectivamente y las emisiones de sulfuro de hidrógeno, amoníaco y los olores de la serie de ácidos grasos disminuyen considerablemente. Sin embargo, este proceso presenta un rendimiento reducido frente a tecnologías enfocadas a obtener o generar cultivos de microorganismos en soportes que amplían y favorecen la superficie de contacto con gases odorantes, por ejemplo, para mejorar o incrementar el espacio de contacto entre microorganismo-gas odorante, facilitando así el proceso metabólico de estos.In CN104667320A, the invention relates to a composite microbial deodorant for the treatment of household garbage and a method of preparing the deodorant. The composite microbial deodorant is prepared from raw materials as follows: 20-30 parts of composite photosynthetic bacteria powder, 10-20 parts of Bacillus subtilis powder, 20-40 parts of aspergillus composite powder and 30-50 parts compound yeast powder. According to the composite microbial deodorant, hydrogen sulfide, ammonia and strains adapted to household garbage are specifically screened and degraded, the composite microbial deodorant comprises beneficial microbes such as Thiocapsa roseopersicina capable of efficiently degrading hydrogen sulfide, Rhodospirillum rubrum capable of efficiently degrading fatty acid series odors and ammonia, Aspergillus oryzae rich in enzyme systems such as proteases, cellulose and the like, Bacillus subtilis capable of rapidly degrading ammonia, Rhizopus oryzae rich in lactic acid, Saccharomyces cerevisiae to produce ethyl alcohol, Candida guilliermondii rich in aroma-producing substances and the like, beneficial microbes grow and reproduce in household garbage and have the synergistic effect, the ecological environment of household garbage is effectively improved, and hydrogen sulfide emissions , ammonia and odors of the fatty acid series are greatly reduced. However, this process has reduced performance compared to technologies focused on obtaining or generating cultures of microorganisms on supports that expand and favor the contact surface with odorant gases, for example, to improve or increase the contact space between microorganisms and odorant gas. , thus facilitating their metabolic process.
En KR100638325B1, la invención se refiere a un biofiltro que utiliza un portador de polietileno, y más particularmente, a un biofiltro para el tratamiento eficiente de olores y compuestos orgánicos volátiles utilizando un portador de polietileno de acuerdo con la presente invención en un sistema de biofiltro convencional. La resina de polietileno fosforado se utiliza para proporcionar condiciones óptimas para el crecimiento de microorganismos debido al alto aspecto de reciclaje de recursos y contenido de agua. Sin embargo, en éste caso, la tecnología dependerá de la capacidad colonizadora de los portadores de etileno, y la estabilidad de colonización por los microorganismos necesarios para la depuración de olores y COV respectivos. In KR100638325B1, the invention relates to a biofilter using a polyethylene carrier, and more particularly, to a biofilter for the efficient treatment of odors and volatile organic compounds using a polyethylene carrier according to the present invention in a biofilter system conventional. Phosphorous polyethylene resin is used for provide optimal conditions for the growth of microorganisms due to the high resource recycling aspect and water content. However, in this case, the technology will depend on the colonizing capacity of the ethylene carriers, and the stability of colonization by the microorganisms necessary for the purification of odors and respective VOCs.
En KR101106037B1, la invención se refiere a una composición de eliminación de olores y eliminación de metales pesados que comprende la nueva cepa Bacillus lyke niformis BC4 KCCM 10860P y un método para purificar las aguas residuales del ganado o los residuos de alimentos utilizando la misma, más específicamente, la nueva cepa Bacillus lyke niformis BC4 KCCM 10860P O se refiere a un agente microbiano que los contiene como ingrediente activo y un método de purificación para el reciclaje de aguas residuales de ganado o residuos de alimentos utilizando el mismo. In KR101106037B1, the invention relates to an odor removal and heavy metal removal composition comprising the new strain Bacillus lyke niformis BC4 KCCM 10860P and a method for purifying livestock wastewater or food waste using the same, more Specifically, the new strain Bacillus lyke niformis BC4 KCCM 10860P O refers to a microbial agent containing them as an active ingredient and a purification method for recycling livestock wastewater or food waste using the same.
En CN109439571A, la invención pertenece al campo técnico del tratamiento de aguas residuales, divulga un agente bacterio de eliminación de nitrógeno amoníaco y tiene como objetivo proporcionar un agente bacteria de eliminación de nitrógeno amoníaco que es alto en eficiencia de eliminación de nitrógeno de amoníaco y puede reciclar agentes de eliminación de bacterias y rellenos. El esquema técnico incluye que los agentes bacterianos compuestos se curan en los rellenos y comprenden bacterias de nitrificación heterótrofa, bacilos y bacterias desnitrificantes. In CN109439571A, the invention belongs to the technical field of wastewater treatment, discloses a bacterial ammonia nitrogen removal agent and aims to provide a bacterial ammonia nitrogen removal agent which is high in ammonia nitrogen removal efficiency and can recycle bacteria killing agents and fillers. The technical scheme includes that the composite bacterial agents are cured in the fillers and comprise heterotrophic nitrifying bacteria, bacilli and denitrifying bacteria.
Finalmente, en US20080085547A1 , la invención se refiere a los sistemas de biofiltro y los medios biofiltrantes empleados en dichos sistemas, así como, los métodos de uso de los mismos para eliminar los compuestos causantes de olores de las corrientes de gases residuales. El medio biofiltro tiene una pluralidad de gránulos de vidrio expandido. Cada gránulo de vidrio expandido tiene un recubrimiento sobre el mismo. El recubrimiento incluye un agente de unión, un agente adsorbente, microorganismos y nutrientes. Cuando se utiliza en un sistema de biofiltro, el medio biofiltro es altamente eficiente para eliminar de las corrientes de gases residuales sulfuro de hidrógeno a altas concentraciones en tiempos de residencia de lecho vacío bajos. Finally, in US20080085547A1, the invention refers to biofilter systems and biofilter media used in said systems, as well as the methods of using them to eliminate odor-causing compounds from waste gas streams. The biofilter media has a plurality of expanded glass granules. Each expanded glass granule has a coating on it. The coating includes a binding agent, an adsorbent agent, microorganisms and nutrients. When used in a biofilter system, biofilter media is highly efficient at removing hydrogen sulfide from waste gas streams at high concentrations at low empty bed residence times.
Asimismo, en literatura se conoce que los lechos filtrantes que contienen partículas pequeñas ofrecen áreas superficiales específicas elevadas, favoreciendo así la actividad microbiana (Oude Luttighuis, 1998; Kent et al., 2000 ), pero también constituyen una mayor resistencia al flujo de gases, que se incrementa aún más cuando la biomasa crece en las porosidades del lecho (Bailey y Ollis, 1986 ; Allen y Yang, 1991). Aunque las partículas más grandes favorecen el flujo de gas a través del lecho (menor caída de presión), ofrecen menos sitios de superficie para la reacción de oxidación y, por lo tanto, pueden conducir a un menor rendimiento de eliminación (Delhoménie et al., 2002b). Estos trabajos han demostrado que, cualquiera que sea el material de filtración empleado, la adición constante de nutrientes es necesaria para mantener una actividad de degradación satisfactoria. Se han desarrollado y validado experimentalmente modelos de rendimiento de biofiltración en medio acuosos, en función del suministro de nutrientes, y de nitrógeno en particular (el elemento más importante después del carbono y el oxígeno); en donde y hasta la fecha, no existe un mecanismo o sistema de filtrado que permita optimizar las variables de superficie de filtrado y flujo de gas a través del lecho, que permita un filtrado óptimo y libre de mantenciones que sea estable en el tiempo Sin embargo, el uso y aplicación de este tipo de sistemas para el tratamiento de gases no ha sido descrito y/o probado adecuadamente, por la dificultad inherente que existe para realizar el filtrado de sustancias en medio gaseoso, y con una eficiencia y rendimiento aceptables para ser aplicado e incorporado directamente en procesos industriales. Likewise, in the literature it is known that filter beds containing small particles offer high specific surface areas, thus favoring microbial activity (Oude Luttighuis, 1998; Kent et al., 2000), but they also constitute greater resistance to gas flow, which increases even more when biomass grows in the porosities of the bed (Bailey and Ollis, 1986; Allen and Yang, 1991). Although larger particles favor gas flow through the bed (lower pressure drop), they offer fewer surface sites for the oxidation reaction and can therefore lead to lower removal performance (Delhoménie et al. , 2002b). These works have shown that, whatever the filtration material used, the constant addition of nutrients is necessary to maintain satisfactory degradation activity. Biofiltration performance models in aqueous media have been developed and experimentally validated, depending on the supply of nutrients, and nitrogen in particular (the most important element after carbon and oxygen); where and to date, there is no mechanism or filtering system that allows optimizing the variables of filtering surface and gas flow through the bed, allowing optimal, maintenance-free filtering that is stable over time. However, the use and application of this type of systems for gas treatment has not been adequately described and/or tested, due to the inherent difficulty that exists in filtering substances in a gaseous medium, and with acceptable efficiency and performance. to be applied and incorporated directly into industrial processes.
Descripción detallada de la invención Detailed description of the invention
La invención propuesta, comprende el desarrollo de un sistema de filtro biológico, definido como un sistema de tratamiento biológico de bajo impacto ambiental que no genera residuos, y a su vez optimiza el uso de agua, como una solución tecnológica para reducir y controlar la emanación de malos olores y la contaminación atmosférica, diseñado para la industria animal y especialmente, para la industria porcina, debido a la generación de grandes cantidades de amoníaco, metano e hidrógeno sulfurados al interior de los pozos de homogeneización acumuladores de purín. En particular, la invención corresponde a un biofiltro de aire y gases, mediado por una composición de microorganismos que forman un biofilm en un soporte especialmente diseñado al interior del biorreactor, y que en contacto con los gases de residuo canalizados al interior del biorreactor, resultantes de la actividad agropecuaria, los microorganismos presentes en el biofilm realizan un intercambio de sustancias, incorporando/fijando gases residuales (como amoníaco, metano, entre otros) para su metabolismo, convirtiendo dichos gases en productos neutrales o no contaminantes para el ambiente, que pueden además ser utilizados como nutrientes o sustrato en otros sectores industriales. The proposed invention includes the development of a biological filter system, defined as a biological treatment system with low environmental impact that does not generate waste, and at the same time optimizes the use of water, as a technological solution to reduce and control the emanation of bad odors and atmospheric pollution, designed for the animal industry and especially for the swine industry, due to the generation of large quantities of ammonia, methane and hydrogen sulfides inside the slurry accumulator homogenization wells. In particular, the invention corresponds to an air and gas biofilter, mediated by a composition of microorganisms that form a biofilm on a specially designed support inside the bioreactor, and that in contact with the waste gases channeled into the interior of the bioreactor, resulting of agricultural activity, the microorganisms present in the biofilm carry out an exchange of substances, incorporating/fixing residual gases (such as ammonia, methane, among others) for their metabolism, converting said gases into neutral or non-polluting products for the environment, which can They can also be used as nutrients or substrates in other industrial sectors.
El biofiltro de la invención, a las concentraciones gaseosas de NH3 y H2S ensayadas en industria porcina y vitivinícola, no presentó inhibición de la nitrificación, ni variaciones del pH, ni disminución de la viabilidad bacteriana por lo que la biofiltración en una etapa resultó exitosa, sin necesidad de diseñar un proceso en dos etapas o más para evitar la inhibición de la nitrificación. De esta forma se optó por un diseño con menor compartimentalización, modular y con una composición capaz de eliminar NH3, H2S y CH4 de forma simultánea. The biofilter of the invention, at the gaseous concentrations of NH3 and H2S tested in the pork and wine industry, did not present inhibition of nitrification, nor variations in pH, nor decrease in bacterial viability, so the biofiltration in one stage was successful. without the need to design a process in two or more stages to avoid nitrification inhibition. In this way, a design with less compartmentalization, modularity and a composition capable of eliminating NH3, H2S and CH4 simultaneously was chosen.
En otro aspecto de la invención, el biofiltro permite la filtración de concentraciones altas de contaminantes presentes en la industria, sin generar desechos químicos como por ejemplo, una lavadora de gases; adicionalmente, no necesita recambio permanente del medio, como lo es el caso de los medios absorbedores que normalmente se saturan en un tiempo determinado. Finalmente, uno de los componentes del biofiltro de la invención propuesta comprende un cultivo de microorganismos asociados al menos a un dispositivo de soporte, en forma de biopelícula, lo que provee una mayor resistencia a la degradación metabólica respecto de otros sistemas de cultivo, como por ejemplo, un cultivo planctónico. In another aspect of the invention, the biofilter allows the filtration of high concentrations of contaminants present in the industry, without generating chemical waste such as, for example, a gas washer; Additionally, it does not require permanent replacement of the medium, as is the case with absorbing media that normally become saturated within a certain time. Finally, one of the components of the biofilter of the proposed invention comprises a culture of microorganisms associated with at least one support device, in the form of a biofilm, which provides greater resistance to metabolic degradation compared to other culture systems, such as For example, a planktonic culture.
Así entonces, una forma de proteger a las bacterias del estrés ambiental es el cultivo de biopelículas, en donde los biofilms son comunidades de microorganismos asociados a una superficie y comúnmente embebidos en sustancias poliméricas extracelulares (EPS), y en donde en tales comunidades, los microorganismos generalmente demuestran una mayor tolerancia a los entornos hostiles, reconociendo así, que la matriz del biofilm juega un papel relevante en la resistencia de estas comunidades, por ejemplo, limitando la difusión de moléculas tóxicas. Adicionalmente, el desarrollo de una arquitectura de biopelícula tridimensional (3D) compleja como el de la presente invención, estructura poliédrica de tipo lattice, da como resultado la formación de gradientes de nutrientes, gases y moléculas de señalización; y en donde finalmente, esto conduce a la expresión de genes diferenciales y actividades fisiológicas específicas en todo el biofilm en respuesta a las condiciones microambientales locales, como lo es al interior del lecho filtrante, estimulando la aparición de vahantes fenotípicas en subpoblaciones de biopelículas que contribuyen a la expresión de nuevas funciones comunitarias como la tolerancia al estrés ambiental, característica clave en la capacidad, estabilidad y durabilidad del biofiltro de la presente invención en aplicaciones industriales. Thus, one way to protect bacteria from environmental stress is the cultivation of biofilms, where biofilms are communities of microorganisms associated with a surface and commonly embedded in extracellular polymeric substances (EPS), and where in such communities, the Microorganisms generally demonstrate greater tolerance to hostile environments, thus recognizing that the biofilm matrix plays a relevant role in the resistance of these communities, for example, limiting the diffusion of toxic molecules. Additionally, the development of a complex three-dimensional (3D) biofilm architecture such as that of the present invention, a lattice-type polyhedral structure, results in the formation of gradients of nutrients, gases and molecules of signaling; and where finally, this leads to the expression of differential genes and specific physiological activities throughout the biofilm in response to local microenvironmental conditions, such as within the filter bed, stimulating the appearance of phenotypic variants in subpopulations of biofilms that contribute to the expression of new community functions such as tolerance to environmental stress, a key characteristic in the capacity, stability and durability of the biofilter of the present invention in industrial applications.
La invención, comprende además un paso crítico para el éxito del biofiltro, que comprende la optimización de la composición microbiana en laboratorio, para favorecer la estabilidad de la biopelícula, y la formación de la biopelícula fuera del dispositivo que alberga el biofiltro y para luego ser instalado directamente en su interior. En donde dicha optimización comprende al menos dos etapas: i) Formación de biopelículas de microorganismos con un espesor mínimo suficiente (al menos 10 pm), en soportes poliméhcos con medio de cultivo a altas concentraciones de residuos orgánicos a tratar, incluyendo Amonio, durante un tiempo determinado, a temperatura y aireación constante; ¡i) una vez formada la biopelícula en los soportes poliméhcos, ésta se empaca y traslada en condiciones de esterilidad para ser dispuesta al interior del biofiltro instalado en terreno. Esto permite obtener una biopelícula previamente establecida en los soportes y con capacidad de metabolizar altas concentraciones de amonio, disminuyendo los tiempos de puesta en marcha del biofiltro, riesgos de operación, y aumentando su capacidad de filtración; en donde el riesgo de operación es alto cuando la formación de la biopelícula se realiza in situ, mientras que mediante este paso crítico, se reduce el riesgo de operación y se asegura la estabilidad de la biopelícula en el tiempo, mientras se mantengan las condiciones de operación, por al menos 1 año. The invention also includes a critical step for the success of the biofilter, which includes the optimization of the microbial composition in the laboratory, to promote the stability of the biofilm, and the formation of the biofilm outside the device that houses the biofilter and then be installed directly inside. Wherein said optimization comprises at least two stages: i) Formation of biofilms of microorganisms with a sufficient minimum thickness (at least 10 pm), on polymeric supports with culture medium at high concentrations of organic waste to be treated, including Ammonium, for a period of time. determined time, at constant temperature and aeration; i) once the biofilm is formed on the polymeric supports, it is packaged and transported under sterile conditions to be placed inside the biofilter installed on the ground. This allows obtaining a biofilm previously established on the supports and with the capacity to metabolize high concentrations of ammonium, reducing biofilter start-up times, operating risks, and increasing its filtration capacity; where the risk of operation is high when the formation of the biofilm is carried out in situ, while through this critical step, the risk of operation is reduced and the stability of the biofilm over time is ensured, while the conditions of operation are maintained. operation, for at least 1 year.
El sistema de filtro biológico, comprende los siguientes elementos: a) un biorreactor, b) un soporte para la fijación de microorganismos dispuesto al interior del biorreactor, c) una composición/formulación de microorganismos adicionada al soporte de fijación para la formación de una biopelícula activa como parte del lecho filtrante, d) un sistema de comunicación y alerta al usuario, y e) un método de filtración que comprende el biorreactor, el soporte o lecho filtrante, la composición o formulado microbiano y una serie de pasos que permiten filtrar los gases indeseados, los cuales serán capturados, transformados y solubilizados por acción de la comunidad microbiana al interior del lecho filtrante presente en el biorreactor; en donde el biorreactor a su vez comprende al menos un compresor de aire, una bomba para recirculación, un sistema de soporte con biopelículas para la depuración de los gases contaminantes emanados de los pozos de homogeneización, una composición/formulación de microorganismos, y un panel digital conectado a los sensores de amoniaco que registraban la concentración del gas (en ppm) a la entrada y salida del biofiltro de gas. The biological filter system comprises the following elements: a) a bioreactor, b) a support for fixing microorganisms arranged inside the bioreactor, c) a composition/formulation of microorganisms added to the fixing support for the formation of a biofilm. active as part of the filter bed, d) a communication and alert system to the user, and e) a filtration method that includes the bioreactor, the support or filter bed, the microbial composition or formulation and a series of steps that allow the gases to be filtered. unwanted, which will be captured, transformed and solubilized by the action of the microbial community inside the filter bed present in the bioreactor; wherein the bioreactor in turn comprises at least one air compressor, a pump for recirculation, a support system with biofilms for the purification of contaminating gases emanating from the homogenization wells, a composition/formulation of microorganisms, and a panel digital connected to the ammonia sensors that recorded the concentration of the gas (in ppm) at the inlet and outlet of the gas biofilter.
En una realización preferente de la invención, se describe un sistema de filtrado biológico y monitoreo de residuos volátiles orgánicos para reducir los gases contaminantes a partir de un pozo de recepción de residuos, que comprende: a. Un biorreactor (1), que a su vez comprende al menos los siguientes componentes: estructura, una cámara interior, un dispositivo de agitación, un dispositivo de aireación, un sistema de recirculación (2), un dispositivo de calefacción, un sistema de adquisición de datos, un sistema de aspersión de gota fina (7), una cámara de lecho filtrante y una unidad de adquisición de datos; b. Al menos un soporte polimérico de tipo lattice (6), para la formación de biopelícula formando parte del lecho filtrante; c. Una composición microbiana que comprende al menos un ingrediente activo, al menos un coadyuvante, un estabilizador de pH y un vehículo, que en combinación con el soporte (6) del lecho filtrante permite la formación de un biofilm asociado al soporte (6) del lecho filtrante capaz de optimizar el filtrado de residuos orgánicos volátiles; d. Un sistema de comunicación y alerta al usuario, que comprende un panel digital conectado al sistema de adquisición de datos; e. Un método de filtración que comprende el biorreactor y que comprende además los siguientes pasos: i. Recibir los gases para depuración en la entrada del biofiltro; In a preferred embodiment of the invention, a biological filtering and monitoring system for volatile organic waste is described to reduce contaminating gases from a waste reception well, which comprises: a. A bioreactor (1), which in turn comprises at least the following components: structure, an inner chamber, a stirring device, an aeration device, a recirculation system (2), a heating device, an acquisition system data, a fine droplet spray system (7), a filter bed chamber and a data acquisition unit; b. At least one lattice-type polymeric support (6), for the formation of biofilm as part of the filter bed; c. A microbial composition that comprises at least one active ingredient, at least one adjuvant, a pH stabilizer and a vehicle, which in combination with the support (6) of the filter bed allows the formation of a biofilm associated with the support (6) of the bed filter capable of optimizing the filtration of volatile organic waste; d. A user communication and alert system, comprising a digital panel connected to the data acquisition system; and. A filtration method that includes the bioreactor and also includes the following steps: i. Receive the gases for purification at the entrance to the biofilter;
¡i. Activación de los sistemas de recirculación y agitación para movilizar los gases hacia la cámara de lecho filtrante; iii. Detección de la composición de los gases entrantes por medio de los sensores de gases del biorreactor; iv. Optimización de la composición microbiana, preparación y formación de la biopelícula fuera del biorreactor; v. Depósito de la composición microbiana (formulado) al interior del biorreactor, en la cámara de lecho filtrante; vi. Activación del sistema de aspersión (7), que comprende la generación de microgotas de solución acuosa al interior de la cámara de lecho filtrante, en donde la solución acuosa contiene sales minerales que facilitan así la biodisponibilidad de gases como sustratos bacterianos, incluyendo al menos uno de los siguientes: amoníaco, hidrógenos sulfurados y metano; vii. Monitoreo del sistema de filtrado de gases al interior del biorreactor, mediante el sistema de adquisición de datos, la unidad de adquisición de datos y el sistema de comunicación, en donde el monitoreo comprende: i) revisar los niveles de entrada y salida de los diferentes gases censados por el sistema de adquisición de datos, ¡i) revisar los niveles de presión, humedad y temperatura del ambiente al interior del biorreactor, iii) diagnosticar y modificar virtualmente o a distancia los niveles de cualquiera de los parámetros anteriormente mencionados, y iv) controlar el flujo de gas entrante y de líquido recirculante al interior del biorreactor y el lecho filtrante, Yo. Activation of the recirculation and agitation systems to mobilize the gases towards the filter bed chamber; iii. Detection of the composition of incoming gases by means of the bioreactor gas sensors; iv. Optimization of the microbial composition, preparation and formation of the biofilm outside the bioreactor; v. Deposit of the microbial composition (formulated) inside the bioreactor, in the filter bed chamber; saw. Activation of the spray system (7), which includes the generation of microdroplets of aqueous solution inside the filter bed chamber, where the aqueous solution contains mineral salts that thus facilitate the bioavailability of gases as bacterial substrates, including at least one of the following: ammonia, sulfurized hydrogens and methane; vii. Monitoring of the gas filtering system inside the bioreactor, through the data acquisition system, the data acquisition unit and the communication system, where monitoring includes: i) reviewing the input and output levels of the different gases recorded by the data acquisition system, i) review the pressure, humidity and temperature levels of the environment inside the bioreactor, iii) diagnose and modify virtually or remotely the levels of any of the aforementioned parameters, and iv) control the flow of incoming gas and recirculating liquid inside the bioreactor and the filter bed,
En donde en dicho sistema de filtrado, la estructura del biorreactor corresponde a una estructura resistente, que permite contener todos los componentes del biorreactor en condiciones de presión y temperatura controlados, respecto de las condiciones ambientales y donde además la estructura comprende al menos: un espesor, un diámetro de sección central, una altura total desde la base al plenum y un volumen máximo de operación, y al menos un colector; en donde la estructura puede ser elaborada de la lista que comprende los siguientes materiales: HDPE, Acero inoxidable, fibra de vidrio, metales, aleación de metales y cualquier combinación de estos; y en donde el colector, permite almacenar un reservorio líquido que contiene componentes químicos, estabilizantes, adyuvantes y/o cualquier componente adicional necesario para generar la estabilidad los microorganismos formando la biopelícula, y favorecer la adsorción en el intercambio de fase gas-líquido. En donde además dicho sistema, comprende características preferentes para los diferentes componentes, en donde: la cámara del biorreactor comprende al menos dos zonas diferenciadas: zona gaseosa (8) y zona líquida (9), en donde la zona gaseosa (8) está en contacto con el lecho filtrante y en donde la zona líquida (9) contiene un reservorio acuoso que comprende: MgSO4, CaCI2, FeSO4 x 7 H2O, CuSO4, NaH2PO4 x H2O, Na2HPO4 x 2 H2O, NaOH, en donde dichos componentes se encuentran en un rango entre: 0.01 - 1.35 g/L, 0.04 - 1.6 mg/L, 1.6 - 3.3 mg/L, 0.01 - 0,88 mg/L, 0.1 - 1.7 g/L, 0.3 - 1.9 g/L, y 0.3 - 1.9 g/L respectivamente el dispositivo de agitación comprende los siguientes parámetros: Velocidad de agitación (rpm), Control de velocidad (rpm), Voltaje (Volt), Potencia máxima (Watt), permitiendo la homogeneización de las sustancias que ingresan al interior del biofiltro, y en donde el dispositivo de agitación es un agitador que puede ser seleccionado de la lista que comprende: agitador mecánico, agitador por burbujeo, incluyendo un agitador axial de baja velocidad. el dispositivo de aireación comprende los siguientes parámetros: Caudal máximo (m3/h), Presión máxima de trabajo (m/s), Voltaje (Volt), Potencia máxima (Watt), que permite la difusión homogénea de aire al interior del biofiltro, y en donde el dispositivo de aireación corresponde a un extractor (3) de aire, incluyendo un extractor (3) en línea Helicocentrifugo. el sistema de recirculación comprende al menos un colector (2), al menos dos bombas (4) de recirculación funcionando alternadamente y al menos un reservorio, conectado al sistema de sensores, en donde el sistema de recirculación comprende además los siguientes parámetros: Caudal máximo (L/m), Sensor de nivel. el dispositivo de calefacción, comprende los siguientes parámetros: Temperatura de trabajo (°C), Control de temperatura Voltaje (Volt), Potencia máxima (Watt), permitiendo mantener la temperatura del biofiltro entre los rangos 15°C a 25°C, y en donde el dispositivo de calefacción corresponde a cualquier dispositivo que permita modular la temperatura de un ambiente acuoso, incluyendo un calefactor de inmersión. el sistema de adquisición de datos, comprende sensores de entrada, salida y funcionamiento interno, en donde dichos sensores permite recopilar información de la entrada y salida de sustancias en el biofiltro, y comprende al menos: un sensor de nivel, un sensor de pH, un sensor y detector fijo de gas Metano (ppm), un detector de ácido sulfidrico (ppm), un detector fijo de Amoniaco (ppm). el soporte (6) que forma parte del lecho filtrante, corresponde a una combinación de estructuras paramétricas de tipo entramado o lattice, en donde el tamaño de poro es de al menos entre 0,2 a 1 cm, lo que permiten aumentar el área disponible para la asociación con los microorganismos de la composición microbiana, facilitando la optimización de la formación de un biofilm como un filtro activo, en el lecho filtrante.Wherein in said filtering system, the structure of the bioreactor corresponds to a resistant structure, which allows all the components of the bioreactor to be contained in controlled pressure and temperature conditions, with respect to the environmental conditions and where the structure also comprises at least: a thickness , a central section diameter, a total height from the base to the plenum and a maximum operating volume, and at least one collector; where the structure can be made from the list that includes the following materials: HDPE, Stainless steel, fiberglass, metals, metal alloys and any combination of these; and where the collector allows storing a liquid reservoir that contains chemical components, stabilizers, adjuvants and/or any additional component necessary to generate stability of the microorganisms forming the biofilm, and promote adsorption in the gas-liquid phase exchange. Wherein said system also includes preferential characteristics for the different components, where: the bioreactor chamber comprises at least two differentiated zones: gas zone (8) and liquid zone (9), where the gas zone (8) is in contact with the filter bed and where the liquid zone (9) contains an aqueous reservoir that comprises: MgSO4, CaCI2, FeSO4 x 7 H2O, CuSO4, NaH2PO4 x H2O, Na2HPO4 x 2 H2O, NaOH, where said components are found in a range between: 0.01 - 1.35 g/L, 0.04 - 1.6 mg/L, 1.6 - 3.3 mg/L, 0.01 - 0.88 mg/L, 0.1 - 1.7 g/L, 0.3 - 1.9 g/L, and 0.3 - 1.9 g/L respectively, the stirring device includes the following parameters: Stirring speed (rpm), Speed control (rpm), Voltage (Volt), Maximum power (Watt), allowing the homogenization of the substances that enter the interior of the biofilter, and where the agitation device is an agitator that can be selected from the list that includes: mechanical agitator, bubbling agitator, including a low speed axial agitator. The aeration device includes the following parameters: Maximum flow rate (m3/h), Maximum working pressure (m/s), Voltage (Volt), Maximum power (Watt), which allows the homogeneous diffusion of air inside the biofilter, and where the aeration device corresponds to an air extractor (3), including a Helicocentrifugal in-line extractor (3). The recirculation system comprises at least one collector (2), at least two recirculation pumps (4) operating alternately and at least one reservoir, connected to the sensor system, where the recirculation system also comprises the following parameters: Maximum flow rate (L/m), Level sensor. The heating device includes the following parameters: Working temperature (°C), Temperature control Voltage (Volt), Maximum power (Watt), allowing the biofilter temperature to be maintained between the ranges 15°C to 25°C, and where the heating device corresponds to any device that allows modulating the temperature of an aqueous environment, including an immersion heater. The data acquisition system comprises input, output and internal functioning sensors, where said sensors allow the collection of information on the input and output of substances in the biofilter, and comprises at least: a level sensor, a pH sensor, a fixed Methane gas sensor and detector (ppm), a hydrogen sulfide detector (ppm), and a fixed Ammonia detector (ppm). The support (6) that is part of the filter bed, corresponds to a combination of parametric structures of the lattice or lattice type, where the pore size is at least between 0.2 to 1 cm, which allows increasing the available area. for the association with microorganisms of the microbial composition, facilitating the optimization of the formation of a biofilm as an active filter, in the filter bed.
La composición microbiana, comprende como ingrediente activo, al menos dos microorganismos heterótrofos y quimiolitotrofos, los cuales pueden ser escogidos de la lista que comprende: Delftia acidovorans, Ochrobactrum pecorís, Variovorax paradoxus, Pseudomonas gessardii, y al menos dos microorganismos con actividad nitrificante aerobios, y en donde la composición comprende además coadyuvantes, al menos un estabilizador de pH y un vehículo adecuado; en donde los coadyuvantes corresponden a componentes inorgánicos que pueden ser seleccionados de la lista que comprende: (NH4)2SO4, MgSO4, CaCI2, FeSO4 , CuSO4, NaH2PO4, Na2HPO4, NaOH, y en donde las concentraciones de dichos coadyuvantes comprenden un rango entre: 0.3 - 3.5 g/L, 0.01 - 1.35 g/L, 0.04 - 1.6 mg/L, 1.6 - 3.3 mg/L, 0.01 - 0,88 mg/L, 0.1 - 1.7 g/L, 0.3 - 1.9 g/L, y 0.3 - 1.9 g/L respectivamente; en donde el vehículo adecuado es agua estéril; en donde además, la composición microbiana es efectiva en un rango de pH de entre 6 y 8. Y en donde además, la composición microbiana comprende al menos una cepa de Delftia acidovorans y una cepa de Variovorax paradoxus, en donde la primera cepa es BIOPROC-C1 (RGM 3299) y la segunda cepa es BIOPROC-C13 (RGM 3300), respectivamente; y en donde además, la optimización de la composición microbiana, preparación y formación de la biopelícula fuera del biorreactor, comprende al menos dos etapas: i) Formación de biopelículas de microorganismos (> 10 pm) en soportes poliméricos (6) con medio de cultivo a altas concentraciones de al menos un residuo orgánico a tratar, incluyendo Amonio, metano y gases hidrógeno sulfurados por un tiempo mínimo necesario para asegurar la formación de la biopelícula con el espesor mínimo suficiente, a temperatura y aireación constante; y ¡i) una vez formada la biopelícula en los soportes poliméricos (6), ésta se empaca y traslada en condiciones de esterilidad para ser dispuesta al interior del biofiltro instalado en terreno. el sistema de comunicación y alerta al usuario comprende : una interfaz de usuario, un sistema de monitoreo de gases y variables operacionales que comprende al menos un dispositivos de conexión entre la interfaz de usuario y los sensores físicos presentes en el biorreactor, al menos un dispositivo de comunicación inalámbrico que permite transmitir la información del biorreactor local a un dispositivo receptor de información remoto a través de internet y un sistema de procesamiento de datos en la nube, que permite procesar información y generación de reportes, almacenar información y desde donde el cual se pueda descargar información directamente para el operador y/o el usuario. The microbial composition comprises as active ingredient, at least two heterotrophic and chemolithotrophic microorganisms, which can be chosen from the list comprising: Delftia acidovorans, Ochrobactrum pecorís, Variovorax paradoxus, Pseudomonas gessardii, and at least two microorganisms with aerobic nitrifying activity, and where the composition also comprises adjuvants, at least one pH stabilizer and a suitable vehicle; where the adjuvants correspond to inorganic components that can be selected from the list that includes: (NH4)2SO4, MgSO4, CaCI2, FeSO4, CuSO4, NaH2PO4, Na2HPO4, NaOH, and where the concentrations of said adjuvants comprise a range between: 0.3 - 3.5 g/L, 0.01 - 1.35 g/L, 0.04 - 1.6 mg/L, 1.6 - 3.3 mg/L, 0.01 - 0.88 mg/L, 0.1 - 1.7 g/L, 0.3 - 1.9 g/L , and 0.3 - 1.9 g/L respectively; wherein the suitable vehicle is sterile water; wherein furthermore, the microbial composition is effective in a pH range between 6 and 8. And where furthermore, the microbial composition comprises at least one strain of Delftia acidovorans and one strain of Variovorax paradoxus, wherein the first strain is BIOPROC -C1 (RGM 3299) and the second strain is BIOPROC-C13 (RGM 3300), respectively; and where in addition, the optimization of the microbial composition, preparation and formation of the biofilm outside the bioreactor, comprises at least two stages: i) Formation of biofilms of microorganisms (> 10 pm) on polymeric supports (6) with culture medium at high concentrations of at least one organic waste to be treated, including ammonium, methane and hydrogen sulfide gases for a minimum time necessary to ensure the formation of the biofilm with sufficient minimum thickness, at constant temperature and aeration; and i) once the biofilm is formed on the polymeric supports (6), it is packaged and transported under sterile conditions to be placed inside the biofilter installed on the ground. The user communication and alert system comprises: a user interface, a gas monitoring system and operational variables that comprises at least one connection device between the user interface and the physical sensors present in the bioreactor, at least one device wireless communication system that allows information from the local bioreactor to be transmitted to a remote information receiving device through the Internet and a data processing system in the cloud, which allows processing information and generating reports, storing information and from where it is can download information directly for the operator and/or user.
En otra realización de la invención, se describe un método para el filtrado biológico y monitoreo de residuos volátiles orgánicos para reducir los gases contaminantes a partir de un pozo de recepción de residuos para la descarga de purines, especialmente purines resultantes de la agroindustria que comprende: a. Instalar el biofiltro a menos de un metro del pozo de recepción de residuos, en una superficie plana y estable de cemento (mediante anclaje al suelo) y dentro de una caseta que lo aísle de las variables climáticas; b. Conectar la entrada (10) del biofiltro con la salida de gases de depuración de un pozo de recepción de residuos; c. Incorporar el lecho filtrante preparado y optimizado al interior del biofiltro, en donde el lecho filtrante comprende un biofilm bacteriano (>10 pm) optimizado y pre- formado en laboratorio; en donde dicha optimización comprende al menos dos etapas: i) Formación de biopelículas de microorganismos (> 10 pm) en un soporte polimérico (6) con medio de cultivo a altas concentraciones de al menos un residuo orgánico a tratar, incluyendo Amonio, metano y gases hidrógeno sulfurados por un tiempo mínimo necesario para asegurar la formación de la biopelícula con el espesor mínimo suficiente, a temperatura y aireación constante; ¡i) una vez formada la biopelícula en el soporte polimérico (6), ésta se empaca y traslada en condiciones de esterilidad para ser dispuesta al interior del biofiltro instalado en terreno. d. Llenar los colectores (2) de solución acuosa hasta un 80 % de su capacidad, en el biofiltro; e. revisar que el sistema no presente ningún tipo de fuga de líquido y conectar a la red eléctrica 220V; f. Encender el extractor (3) del biofiltro, para permitir el ingreso de los gases; hacia el lecho filtrante; g. Encender el sistema de calefacción de líquido, para ajustar la temperatura del líquido que recirculará; h. Activar del sistema de recirculación y aspersión de líquido, que comprende la generación de microgotas de solución acuosa al interior de la cámara de lecho filtrante, en donde la solución acuosa contiene compuestos coadyuvantes para facilitar así la biodisponibilidad de gases como sustratos bacterianos, incluyendo al menos uno de los siguientes: amoníaco, hidrógenos sulfurados y metano; i. activación de los sensores de amoniaco, hidrógeno sulfurado y metano a la entrada (10) y salida del biofiltro (11), además, de los sensores de pH y flujo; j. Conexión de sensores a sistema de adquisición de datos que recopila información por segundo y en tiempo real que permite calcular tasas de abatimiento de gases del filtro biológico; y k. Monitoreo y puesta en marcha del biofiltro, se evalúa estabilidad en la remoción de gases y funcionamiento mecánico y eléctrico durante 7 días.In another embodiment of the invention, a method is described for biological filtering and monitoring of volatile organic waste to reduce polluting gases from a waste reception well for the discharge of slurry, especially slurry resulting from agroindustry, comprising: to. Install the biofilter less than one meter from the waste reception pit, on a flat and stable cement surface (by anchoring it to the ground) and inside a house that isolates it from climatic variables; b. Connect the inlet (10) of the biofilter with the purification gas outlet of a waste reception well; c. Incorporate the prepared and optimized filter bed inside the biofilter, where the filter bed comprises a bacterial biofilm (>10 pm) optimized and preformed in the laboratory; wherein said optimization comprises at least two stages: i) Formation of microorganism biofilms (> 10 pm) on a polymeric support (6) with culture medium at high concentrations of at least one organic waste to be treated, including ammonium, methane and hydrogen sulfide gases for a minimum time necessary to ensure the formation of the biofilm with sufficient minimum thickness, at constant temperature and aeration; i) once the biofilm is formed on the polymeric support (6), it is packaged and transported under sterile conditions to be placed inside the biofilter installed on the ground. d. Fill the collectors (2) with aqueous solution up to 80% of their capacity, in the biofilter; and. check that the system does not present any type of liquid leak and connect to the 220V electrical network; F. Turn on the extractor (3) of the biofilter, to allow the gases to enter; towards the filter bed; g. Turn on the liquid heating system, to adjust the temperature of the liquid that will be recirculated; h. Activate the liquid recirculation and spray system, which includes the generation of microdroplets of aqueous solution inside the filter bed chamber, where the aqueous solution contains adjuvant compounds to facilitate the bioavailability of gases as bacterial substrates, including at least one of the following: ammonia, sulfurized hydrogens and methane; Yo. activation of the ammonia, sulfurized hydrogen and methane sensors at the inlet (10) and outlet of the biofilter (11), in addition to the pH and flow sensors; j. Connection of sensors to a data acquisition system that collects information per second and in real time that allows calculating gas reduction rates of the biological filter; and k. Monitoring and start-up of the biofilter, stability in gas removal and mechanical and electrical operation is evaluated for 7 days.
En donde en dicho método, la operación del biofiltro es completamente manual, y donde cada dispositivo del biofiltro puede ser energizado de manera independiente; y en donde el biofiltro comprende además una bomba de emergencia con capacidad para flujo continuo y protección respecto de la alta humedad ambiental con condensación en la zona de trabajo e implementación del sistema filtración. Wherein in said method, the operation of the biofilter is completely manual, and where each biofilter device can be energized independently; and where the biofilter also includes an emergency pump with continuous flow capacity and protection against high ambient humidity with condensation in the work area and implementation of the filtration system.
En donde además en dicho método, la bomba de emergencia, corresponde a una de las bombas del sistema de circulación, en donde dicha bomba alterna el funcionamiento con la bomba principal para mantener un funcionamiento continuo. Wherein also in said method, the emergency pump corresponds to one of the pumps of the circulation system, where said pump alternates operation with the main pump to maintain continuous operation.
Y en donde además en el método antes descrito, el método de filtración no genera productos secundarios líquidos, ya que la eliminación de gases ocurre por transformación metabólica del sustrato ingresado. And where also in the method described above, the filtration method does not generate liquid secondary products, since the elimination of gases occurs by metabolic transformation of the input substrate.
En otra realización de la invención, se describe un biorreactor para el filtrado biológico y monitoreo de residuos volátiles orgánicos para reducir los gases contaminantes a partir de un pozo de recepción de residuos para la descarga de purines especialmente purines resultantes de la agroindustria que comprende: una estructura cerrada rígida, un dispositivo de agitación, un dispositivo de aireación, un sistema de recirculación, un dispositivo de calefacción, un sistema de adquisición de datos, un sistema de aspersión de gota fina, una cámara de lecho filtrante, que a su vez contiene un soporte polimérico (6) de tipo lattice para la formación de biopelícula al interior del lecho filtrante y una unidad de adquisición de datos. In another embodiment of the invention, a bioreactor is described for biological filtering and monitoring of volatile organic waste to reduce polluting gases from a waste reception well for the discharge of slurry, especially slurry resulting from agroindustry, comprising: a rigid closed structure, a stirring device, an aeration device, a recirculation system, a heating device, a data acquisition system, a fine droplet spray system, a bed chamber filter, which in turn contains a lattice-type polymeric support (6) for the formation of biofilm inside the filter bed and a data acquisition unit.
En donde en dicha realización, la estructura del biorreactor corresponde a una estructura resistente, que permite contener todos los componentes del biorreactor en condiciones de presión y temperatura controlados, respecto de las condiciones ambientales y donde además la estructura comprende al menos: un espesor, un diámetro de sección central, una altura total desde la base al plenum y un volumen máximo de operación; y en donde la estructura puede ser elaborada de la lista que comprende los siguientes materiales: HDPE, Acero inoxidable, fibra de vidrio, metales, aleación de metales y cualquier combinación de estos. Wherein in said embodiment, the structure of the bioreactor corresponds to a resistant structure, which allows all the components of the bioreactor to be contained in controlled pressure and temperature conditions, with respect to the environmental conditions and where in addition the structure comprises at least: a thickness, a center section diameter, a total height from the base to the plenum and a maximum operating volume; and where the structure can be made from the list that includes the following materials: HDPE, Stainless steel, fiberglass, metals, metal alloys and any combination of these.
En donde además dicha realización, comprende características preferentes para los diferentes componentes de la invención, en donde: el dispositivo de agitación comprende los siguientes parámetros: Velocidad de agitación (rpm), Control de velocidad (rpm), Voltaje (Volt), Potencia máxima (Watt), permitiendo la homogeneización de las sustancias que ingresan al interior del biofiltro, y en donde el dispositivo de agitación es un agitador que puede ser seleccionado de la lista que comprende: agitador mecánico, agitador por burbujeo, incluyendo un agitador axial de baja velocidad. el dispositivo de aireación comprende los siguientes parámetros: Caudal máximo (m3/h), Presión máxima de trabajo (m/s), Voltaje (Volt), Potencia máxima (Watt), que permite la difusión homogénea de aire al interior del biofiltro, y en donde el dispositivo de aireación corresponde a un extractor (3) de aire, incluyendo un extractor (3) en línea Helicocentrifugo. el sistema de recirculación comprende al menos un colector (2), al menos dos bombas (4) de recirculación funcionando alternadamente y al menos un reservorio, conectado al sistema de sensores, en donde el sistema de recirculación comprende además los siguientes parámetros: Caudal máximo (L/m), Sensor de nivel. el dispositivo de calefacción, comprende los siguientes parámetros: Temperatura de trabajo (°C), Control de temperatura Voltaje (Volt), Potencia máxima (Watt), permitiendo mantener la temperatura del biofiltro entre los rangos 15°C a 25°C y en donde el dispositivo de calefacción corresponde a cualquier dispositivo que permita modular la temperatura de un ambiente acuoso, incluyendo un calefactor de inmersión. el sistema de adquisición de datos, comprende sensores de entrada, salida y funcionamiento interno, en donde dichos sensores permite recopilar información de la entrada y salida de sustancias en el biofiltro, y comprende al menos: un sensor de nivel, un sensor de pH, un sensor y detector de gas fijo Metano (ppm), un detector de ácido sulfhídrico (ppm), un detector fijo de Amoniaco (ppm). el soporte que forma parte del lecho filtrante, corresponde a una combinación de estructuras paramétricas de tipo entramado o lattice, en donde el tamaño de poro es de al menos entre 0,2 a 1 cm, lo que permiten aumentar el área disponible para la asociación con los microorganismos de la composición microbiana, facilitando la optimización de la formación de un biofilm como un filtro activo, en el lecho filtrante.Wherein said embodiment also includes preferred characteristics for the different components of the invention, where: the stirring device comprises the following parameters: Stirring speed (rpm), Speed control (rpm), Voltage (Volt), Maximum power (Watt), allowing the homogenization of the substances that enter the interior of the biofilter, and where the agitation device is an agitator that can be selected from the list that includes: mechanical agitator, bubbling agitator, including a low-pressure axial agitator. speed. The aeration device includes the following parameters: Maximum flow rate (m3/h), Maximum working pressure (m/s), Voltage (Volt), Maximum power (Watt), which allows the homogeneous diffusion of air inside the biofilter, and where the aeration device corresponds to an air extractor (3), including a Helicocentrifugal in-line extractor (3). The recirculation system comprises at least one collector (2), at least two recirculation pumps (4) operating alternately and at least one reservoir, connected to the sensor system, where the recirculation system also comprises the following parameters: Maximum flow rate (L/m), Level sensor. The heating device includes the following parameters: Working temperature (°C), Temperature control Voltage (Volt), Maximum power (Watt), allowing the biofilter temperature to be maintained between the ranges 15°C to 25°C and in where the heating device corresponds to any device that allows modulating the temperature of an aqueous environment, including an immersion heater. The data acquisition system comprises input, output and internal functioning sensors, where said sensors allow the collection of information on the input and output of substances in the biofilter, and comprises at least: a level sensor, a pH sensor, a fixed gas sensor and detector Methane (ppm), a hydrogen sulfide detector (ppm), a fixed Ammonia detector (ppm). The support that is part of the filter bed corresponds to a combination of parametric structures of the lattice or lattice type, where the pore size is at least between 0.2 to 1 cm, which allows increasing the area available for filtration. association with the microorganisms of the microbial composition, facilitating the optimization of the formation of a biofilm as an active filter, in the filter bed.
En otra realización de la invención, se describe una composición microbiana para el filtrado biológico y monitoreo de residuos volátiles orgánicos para reducir los gases contaminantes a partir de un pozo de recepción de residuos para la descarga de purines especialmente purines resultantes de la agroindustria, CARACTERIZADA porque la composición microbiana comprende al menos: i) Un ingrediente activo primario, In another embodiment of the invention, a microbial composition is described for biological filtering and monitoring of volatile organic waste to reduce polluting gases from a waste reception well for the discharge of slurry, especially slurry resulting from agroindustry, CHARACTERIZED because the microbial composition comprises at least: i) A primary active ingredient,
¡i) Un ingrediente activo secundario, iii) Un coadyuvante, y iv) Un vehículo. en donde el ingrediente activo primario, comprende al menos dos microorganismos heterótrofos y quimiolitotrofos, los cuales pueden ser escogidos de la lista que comprende: Delftia acidovorans, Ochrobactrum pecoris, Varíovorax paradoxus, Pseudomonas gessardii, y en donde el ingrediente activo primario comprende al menos al 90 % de los microorganismos presentes en la composición; en donde el ingrediente activo secundario corresponden a microorganismos con actividad nitrificante aerobia, en donde dichos organismos no sobrepasan el 10% del total de microorganismos presentes en la composición, en donde el coadyuvante comprende al menos un estabilizador de pH y el coadyuvante corresponde a al menos un componente inorgánico que puede ser seleccionados de la lista que comprende: (NH4)2SO4, MgSO4, CaCI2, FeSO4 x 7 H2O, CuSO4, NaH2PO4 x H2O, Na2HPO4 x 2 H2O, NaOH; y en donde el vehículo adecuado es agua estéril; y en donde además, la composición microbiana es efectiva en un rango de pH de entre 6 y 8. ¡i) A secondary active ingredient, iii) An adjuvant, and iv) A vehicle. wherein the primary active ingredient comprises at least two heterotrophic and chemolithotrophic microorganisms, which can be chosen from the list that includes: Delftia acidovorans, Ochrobactrum pecoris, Varíovorax paradoxus, Pseudomonas gessardii, and wherein the primary active ingredient comprises at least 90% of the microorganisms present in the composition; wherein the secondary active ingredient corresponds to microorganisms with aerobic nitrifying activity, where said organisms do not exceed 10% of the total microorganisms present in the composition, where the adjuvant comprises at least one pH stabilizer and the adjuvant corresponds to at least an inorganic component that can be selected from the list comprising: (NH4)2SO4, MgSO4, CaCI2, FeSO4 x 7 H2O, CuSO4, NaH2PO4 x H2O, Na2HPO4 x 2 H2O, NaOH; and where the suitable vehicle is sterile water; and where in addition, the microbial composition is effective in a pH range between 6 and 8.
En donde además, la composición microbiana comprende al menos dos ingredientes activos, en donde el primero es una cepa de Delftia acidovorans y el segundo es una cepa de Varíovorax paradoxus, y en donde además, la primera cepa es BIOPROC-C1 (RGM 3299) y la segunda cepa es BIOPROC-C13 (RGM 3300), respectivamente; y en donde la composición microbiana comprende al menos una concentración total de ingredientes activos primarios y secundarios, de entre 107 - 109 células/mL. Wherein furthermore, the microbial composition comprises at least two active ingredients, where the first is a strain of Delftia acidovorans and the second is a strain of Varíovorax paradoxus, and where furthermore, the first strain is BIOPROC-C1 (RGM 3299) and the second strain is BIOPROC-C13 (RGM 3300), respectively; and wherein the microbial composition comprises at least a total concentration of primary and secondary active ingredients of between 10 7 - 10 9 cells/mL.
La invención se caracteriza por contar con una tecnología diferenciadora que mezcla la eliminación simultánea de diferentes residuos orgánicos volátiles o gases contaminantes y/o odorantes con la sensorización y medición en tiempo real de los gases producidos y removidos, permitiendo tener información útil para informes medioambientales y trazabilidad de gases contaminantes aportando a la cultura de mejora continua de empresas del rubro agrícola y ganadero, en donde en particular, la invención ha sido optimizada para la industria animal, por lo que su funcionamiento es óptimo para las concentraciones de gases que allí se presentan, incluyendo : metano, amoníaco, hidrógeno sulfurado, COV, NOX. The invention is characterized by having a differentiating technology that mixes the simultaneous elimination of different volatile organic waste or polluting and/or odorant gases with the real-time sensorization and measurement of the gases produced and removed, allowing useful information for environmental reports and traceability of polluting gases, contributing to the culture of continuous improvement of companies in the agricultural and livestock sector, where in particular, the invention has been optimized for the animal industry, so its operation is optimal for the gas concentrations that occur there. , including: methane, ammonia, hydrogen sulfide, VOC, NOX.
La invención también comprende una arquitectura interna del biofiltro que está diseñada para optimizar el asentamiento de microorganismos y de una composición de microorganismos seleccionados en una solución que otorga alta viabilidad y rendimiento, en donde además, los microorganismos presentes en el biofiltro fueron estudiados, seleccionados y potenciados con el fin de obtener una alta eficiencia de filtración. The invention also comprises an internal architecture of the biofilter that is designed to optimize the settlement of microorganisms and a composition of microorganisms. selected in a solution that provides high viability and performance, where in addition, the microorganisms present in the biofilter were studied, selected and enhanced in order to obtain high filtration efficiency.
La invención comprende además, un biorreactor diseñado optimizado para la eficiencia, reducción en el tiempo de puesta en marcha en relación a otros biorreactores existentes, producción "cero" de residuos secundarios y es adaptable a distintos tamaños de pozos sin tener que modificar la ingeniería de estos, en donde la ausencia de generación de productos secundarios corresponde a que la eliminación de gases ocurre por transformación metabólica, a diferencia de sistemas de tratamiento químicos, que generan residuos líquidos que hay que tratar subsecuentemente para su eliminación, y en donde el soporte para la fijación de microorganismos, corresponde a un lecho polimérico (lecho filtrante) cuya estructura es de tipo lattice y que comprende una geometría con diseños repetitivos e interconectados, que permite extender la durabilidad de la unidad, al menos 2 generaciones (> 100 años). En donde además, la estructura lattice y/o la geometría del lecho polimérico, comprende unos poros de al menos un rango entre los 0.2 - 1.0 cm de diámetro, permitiendo un balance entre proporcionar una estructura y un área optimizada para dar soporte a la formación de una biopelícula a partir de la composición microbiana de la invención, y a su vez, favorecer el flujo de gases a través del lecho polimérico, a fin de favorecer el contacto del flujo de gas y los microorganismos de la biopelícula, resultando en un filtrado óptimo al interior del lecho filtrante y el dispositivo de biofiltro. The invention also comprises a bioreactor designed optimized for efficiency, reduction in start-up time in relation to other existing bioreactors, "zero" production of secondary waste and is adaptable to different sizes of wells without having to modify the engineering. these, where the absence of generation of secondary products corresponds to the fact that the elimination of gases occurs by metabolic transformation, unlike chemical treatment systems, which generate liquid waste that must be subsequently treated for elimination, and where the support for The fixation of microorganisms corresponds to a polymeric bed (filter bed) whose structure is lattice-type and that includes a geometry with repetitive and interconnected designs, which allows extending the durability of the unit, at least 2 generations (> 100 years). Wherein in addition, the lattice structure and/or the geometry of the polymeric bed comprises pores of at least a range between 0.2 - 1.0 cm in diameter, allowing a balance between providing a structure and an optimized area to support the formation. of a biofilm from the microbial composition of the invention, and in turn, favor the flow of gases through the polymeric bed, in order to favor the contact of the gas flow and the microorganisms of the biofilm, resulting in optimal filtration inside the filter bed and the biofilter device.
La formulación de la invención, comprende además el uso de coadyuvantes que favorecen la estabilidad de la composición, y que corresponden principalmente a sales, las cuales pueden ser seleccionadas de la lista que comprende: KH 2 PO 4 , NaH2PO4 ,Na2HPO4, KNO 3 , (NH4)2 SO 4 , NH 4CI, NH 4 HCO 3 , CaCI 2 , MgSO 4 , MnSO 4 , FeSO 4 , Na 2 MoO 4 , y vitaminas, incluyendo B1, B6, B12, C, D, A, E, y cualquier combinación de estas. The formulation of the invention also includes the use of adjuvants that promote the stability of the composition, and which correspond mainly to salts, which can be selected from the list that includes: KH 2 PO 4, NaH2PO4, Na2HPO4, KNO 3, (NH4)2 SO 4 , NH 4CI, NH 4 HCO 3 , CaCl 2 , MgSO 4 , MnSO 4 , FeSO 4 , Na 2 MoO 4 , and vitamins, including B1, B6, B12, C, D, A, E, and any combination of these.
La invención permite además, en condiciones controladas y en menor escala, remover al menos un 60% de residuos orgánicos volátiles, incluyendo amoniaco, metano y gases hidrógeno sulfurados en cultivos microbiológicos sometidos a cultivo con alto contenido amoniacal, permitiendo la implementación y validación del prototipo en condiciones reales de la industria. The invention also allows, under controlled conditions and on a smaller scale, to remove at least 60% of volatile organic waste, including ammonia, methane and hydrogen sulfide gases in microbiological cultures subjected to cultivation with high ammonia content, allowing the implementation and validation of the prototype. in real industry conditions.
En una realización de la invención, se describe el diseño del biorreactor (1) y sus componentes principales (FIGURA 3), donde se exhibe una vista posterior del biofiltro (A), una vista lateral tangencial (B) y una vista basal (C). Se observa un ingreso de los gases residuales (10), donde al menos un extractor (3) ejerce la fuerza de succión de éstos, para conducirlos al interior del biofiltro. Al estar en el interior, los gases atraviesan al menos un sistema de soportes microbiológico (6) y se ubican en una denominada zona gaseosa del biorreactor (8), facilitando el intercambio de compuestos en la comunidad microbiológica mediante el metabolismo de ésta. La zona gaseosa (8) se mantiene en constante humidificación mediante el goteo de aspersores (7), proceso que se optimiza dejando dividido el sistema de soportes (6) en dos, con el fin de abarcar la mayor cantidad de superficie de los soportes (6). El proceso de aspersión, se logra por el suministro entregado por la denominada zona líquida (9) del biorreactor (1), actuando como reservorio del medio, y se controla mediante el suministro continuo de al menos un par bombas (4) que operan de manera alternada para asegurar un proceso continuo. Para evitar que se produzca una pérdida total del medio, se abastece la zona líquida (9) con al menos dos colectores (2), con el fin de entregar una autonomía del biorreactor (1) de entre dos a tres meses, evitando así que se produzca una pérdida total del líquido que puede afectar al metabolismo de la comunidad microbiológica. Una vez finalizado el proceso de intercambio de los gases en el sistema de soportes (6), el gas depurado es devuelto al exterior mediante una salida de gases (11). El biorreactor (1) se mantiene en funcionamiento mediante suministro de red de energía doméstica, la cual se controla desde una caja eléctrica (5) y se distribuye a cada una de las piezas señaladas anteriormente. In one embodiment of the invention, the design of the bioreactor (1) and its main components are described (FIGURE 3), where a rear view of the biofilter (A), a tangential side view (B) and a basal view (C) are shown. ). An entry of residual gases (10) is observed, where at least one extractor (3) exerts the suction force on them, to lead them into the biofilter. Being inside, the gases pass through at least one microbiological support system (6) and are located in a so-called gas zone of the bioreactor (8), facilitating the exchange of compounds in the microbiological community through its metabolism. The gas zone (8) is maintained in constant humidification by dripping sprinklers (7), a process that is optimized by dividing the support system (6) into two, in order to cover the greatest amount of surface area of the supports ( 6). The spraying process is achieved by the supply delivered by the so-called liquid zone (9) of the bioreactor (1), acting as a reservoir for the medium, and is controlled by the continuous supply of at least a pair of pumps (4) that operate in alternate manner to ensure a continuous process. To prevent a total loss of the medium from occurring, the area is supplied liquid (9) with at least two collectors (2), in order to provide an autonomy of the bioreactor (1) of between two to three months, thus avoiding a total loss of liquid that could affect the metabolism of the community. microbiological. Once the gas exchange process in the support system (6) is complete, the purified gas is returned to the outside through a gas outlet (11). The bioreactor (1) is kept in operation by means of a domestic energy supply, which is controlled from an electrical box (5) and distributed to each of the parts mentioned above.
En una realización de la invención, la operación del biofiltro es completamente manual y cada dispositivo (ventilador, bombas, calefactor, otros) puede ser energizado de manera independiente. In one embodiment of the invention, the operation of the biofilter is completely manual and each device (fan, pumps, heater, others) can be powered independently.
En otra realización de la invención, el prototipo comprende además una bomba de emergencia con capacidad para flujo continuo y protección respecto de la alta humedad ambiental con condensación en la zona de trabajo e implementación del sistema filtración. In another embodiment of the invention, the prototype also comprises an emergency pump with continuous flow capacity and protection against high ambient humidity with condensation in the work area and implementation of the filtration system.
Breve descripción de las Figuras Brief description of the Figures
Figura 1. Diagrama de flujo del sistema del biofiltro Figure 1. Flowchart of the biofilter system
Figura 2. Esquema del funcionamiento del Sistema de Biofiltro. Figure 2. Diagram of the operation of the Biofilter System.
Figura 3. Diseño del Biofiltro y sus componentes. A) Vista frontal, B) Vista lateral tangencial, C) Vista desde la base. Figure 3. Design of the Biofilter and its components. A) Front view, B) Tangential side view, C) View from the base.
Figura 4. Cepas enviadas a INIA viables post-cñopreservación. A) Delftia acidovorans BIOPROC-C1 (RGM 3299) B) Vañovorax paradoxus BIOPROC-C13 (RGM 3300). Figure 4. Strains sent to INIA viable post-preservation. A) Delftia acidovorans BIOPROC-C1 (RGM 3299) B) Vañovorax paradoxus BIOPROC-C13 (RGM 3300).
Figura 5. Visualization de la plataforma de acceso remoto en tiempo real del sistema de monitoreo de gases. A) Visualization del plano georreferenciado del terreno en una vista aérea indicando la ubicación del biorreactor y del sistema de sensores, B) Visualization de un gráfico de datos en tiempo real de las variables monitoreadas, que incluye, i) una imagen en vivo que permite visualizar un video del biofiltro en tiempo real para monitorear/evaluar su estado; ¡i) la concentración de NH3, y iii) la concentración de H2S tanto en la entrada del biorreactor (línea azul) como en la salida del biorreactor (línea verde) y el porcentaje de eliminación (línea naranja) con respecto al tiempo; así como las gráficas donde iv) se observa la variación de presión con respecto al tiempo; (v) la variación de la temperatura con respecto al tiempo; y vi) se observa la variación del flujo con respecto al tiempo. Figure 5. Visualization of the real-time remote access platform of the gas monitoring system. A) Visualization of the georeferenced terrain plan in an aerial view indicating the location of the bioreactor and the sensor system, B) Visualization of a real-time data graph of the monitored variables, which includes, i) a live image that allows view a video of the biofilter in real time to monitor/evaluate its status; i) the concentration of NH3, and iii) the concentration of H2S both at the inlet of the bioreactor (blue line) and at the outlet of the bioreactor (green line) and the percentage of removal (orange line) with respect to time; as well as the graphs where iv) the variation of pressure with respect to time is observed; (v) the variation of temperature with respect to time; and vi) the variation of the flow with respect to time is observed.
Figura 6. Visualization de information sensores de H2S en plataforma web. A) gráfica de concentración de H2S registrado al ingreso y salida del biofiltro (eje Y) vs tiempo (eje X). B) porcentaje de remoción de H2S reportado por la acción del biofiltro. Figure 6. Visualization of H2S sensor information on the web platform. A) graph of H2S concentration recorded at the entrance and exit of the biofilter (Y axis) vs time (X axis). B) percentage of H2S removal reported by the action of the biofilter.
Figura 7. Visualization de information sensores de H2S en plataforma web. A) gráfica de concentración de H2S registrado al ingreso y salida del biofiltro (eje Y) vs tiempo (eje X). B) porcentaje de remoción de H2S reportado por la acción del biofiltro. Figura 8. Visualization de information sensores de CH4 en plataforma web. A) gráfica de concentración de CH4 registrado al ingreso y salida del biofiltro (eje Y) vs tiempo (eje X). B) porcentaje de remoción de CH4 reportando por la acción del biofiltro. Figure 7. Visualization of H2S sensor information on the web platform. A) graph of H2S concentration recorded at the entrance and exit of the biofilter (Y axis) vs time (X axis). B) percentage of H2S removal reported by the action of the biofilter. Figure 8. Visualization of CH4 sensor information on the web platform. A) graph of CH4 concentration recorded at the entrance and exit of the biofilter (Y axis) vs time (X axis). B) percentage of CH4 removal reported by the action of the biofilter.
Figura 9. Porcentaje promedio de remoción de NH3, CH4 y H2S en Viña Requingua y de NH3 en Agrícola Chorombo. Información obtenida de datos recopilados de la plataforma remota. Figure 9. Average percentage removal of NH3, CH4 and H2S in Viña Requingua and NH3 in Agrícola Chorombo. Information obtained from data collected from the remote platform.
Detalle información de las figuras Detail information of the figures
1. Biorreactor 1. Bioreactor
2. Colectores 2. Collectors
3. Extractor 3. Extractor
4. Bombas 4. Bombs
5. Caja Eléctrica 5. Electrical Box
6. Sistema de soporte microbiológico (tipo lattice). 6. Microbiological support system (lattice type).
7. Aspersores 7. Sprinklers
8. Zona gaseosa al interior del biorreactor 8. Gaseous zone inside the bioreactor
9. Zona líquida al interior del biorreactor 9. Liquid zone inside the bioreactor
10. Entrada de gases al biorreactor. 10. Gas entry to the bioreactor.
11. Salida de gases filtrados del biorreactor. 11. Exit of filtered gases from the bioreactor.
Ejemplos Examples
EJEMPLO 1 - Realización de la invención EXAMPLE 1 - Realization of the invention
Servicio de Filtración biológica: compuesto por la instalación de un sistema de filtración biológica el cual es anclado a pozos cerrados de residuos con el objetivo de abatir y mitigar gases contaminantes. Este, incorpora sensores y una plataforma digital para monitorear en línea las concentraciones de gases generados y el % de remoción de estos permitiendo generar reportes de manera periódica al cliente. Biological Filtration Service: composed of the installation of a biological filtration system which is anchored to closed waste wells with the objective of reducing and mitigating polluting gases. This incorporates sensors and a digital platform to monitor online the concentrations of gases generated and the % removal of these, allowing reports to be periodically generated for the client.
"Ubiproc®" es una unidad de filtración biológica, diseñada para tratar gases contaminantes y odorantes mediante metabolización microbiológica. Este se ancla a pozos cerrados de residuos agrícolas y ganaderos que liberan compuestos volátiles contaminantes y/o odorantes como amoniaco, hidrógeno sulfurado y metano. La corriente de aire es direccionada mediante extracción desde el pozo a una zona de depuración al interior del biofiltro, la cual se compone: por un lecho filtrante compuesto por material polimérico humedecido y formulado microbiológico produciéndose la metabolización de los gases ingresados y la salida del gas libre de contaminantes. El proceso de tratamiento va acompañado de un sistema de sensores electroquímicos unidos al biofiltro y una plataforma digital que monitorea las concentraciones de gases en línea generando reportes periódicos de gestión medioambiental para los usuarios."Ubiproc®" is a biological filtration unit, designed to treat polluting and odorant gases through microbiological metabolization. This is anchored to closed pits of agricultural and livestock waste that release volatile polluting and/or odorant compounds such as ammonia, sulfurized hydrogen and methane. The air current is directed by extraction from the well to a purification area inside the biofilter, which is composed of: free of contaminants. The treatment process is accompanied by a system of electrochemical sensors attached to the biofilter and a digital platform that monitors gas concentrations online, generating periodic environmental management reports for users.
Los principales atributos de Ubiproc® son el diseño del lecho filtrante que permite la eficiente fijación de microorganismos y garantiza el intercambio gaseoso y una composición de microorganismos seleccionados en una solución estable, además de un diseño de reactor que permite mantener una alta viabilidad microbiana y una rápida instalación en terreno. EJEMPLO 2 - Monitoreo Constante en terreno (purines de cerdo) The main attributes of Ubiproc® are the design of the filter bed that allows the efficient fixation of microorganisms and guarantees gas exchange and a composition of selected microorganisms in a stable solution, in addition to a reactor design that allows maintaining high microbial viability and a Quick field installation. EXAMPLE 2 - Constant monitoring in the field (pig manure)
Se pudo realizar un seguimiento del biofiltro por 55 días, estableciendo 3 horarios (9, 14 y 19 horas. The biofilter could be monitored for 55 days, establishing 3 times (9, 14 and 19 hours.
Los datos registrados en el horario de las 9 horas marcaron un valor promedio de ingreso de amoniaco de 27,6 ±9,4 ppm y de salida 15,1 ±7,4 ppm, con un alza de porcentaje de remoción, comenzando con un promedio de 42% los primeros 10 días, y finalizando con un promedio de 64% (últimos 10 días). The data recorded at 9 a.m. showed an average ammonia inlet value of 27.6 ±9.4 ppm and output 15.1 ±7.4 ppm, with an increase in the removal percentage, starting with a average of 42% the first 10 days, and ending with an average of 64% (last 10 days).
Los datos registrados en el horario de las 14 horas arrojan un valor promedio de entrada de amoniaco de 18,4 ±4,7 ppm y de salida de 9,9 ±2,7ppm, marcando un alza en el porcentaje de remoción, comenzando con un valor de 40,2% en promedio de los primeros 10 días, para llegar a 63,6% en promedio de los últimos 10 días. The data recorded at 2 p.m. show an average ammonia input value of 18.4 ±4.7 ppm and output value of 9.9 ±2.7 ppm, marking an increase in the removal percentage, starting with a value of 40.2% on average of the first 10 days, to reach 63.6% on average of the last 10 days.
Los datos registrados para el horario de las 19, marcaron un promedio de ingreso de amoniaco de 19,2 ±3,8 ppm y de salida de 11 ,3 ±2,4, y nuevamente como se vio en los horarios anteriores, se produce un alza sostenida del porcentaje de remoción comenzando con un promedio de 33,4% y finalizando con un promedio de 66,7%. The data recorded for the 7:00 p.m. hour showed an average ammonia entry of 19.2 ±3.8 ppm and an average ammonia exit of 11.3 ±2.4, and again, as seen in the previous hours, there is a sustained increase in the removal percentage starting with an average of 33.4% and ending with an average of 66.7%.
EJEMPLO 3 - Primera etapa (Pruebas en laboratorio) EXAMPLE 3 - First stage (Laboratory tests)
Se seleccionó desde sedimentos bacterias con actividad nitrificante y capacidades para degradar compuestos orgánicos contaminantes, destacan Delftia acidovorans, Ochrobactrum pecoris, Varíovorax paradoxus, Pseudomonas gessardii. Se desarrolló una composición estable y viable a temperatura ambiente con capacidad filtrante. Se realizaron cultivos en reactores de 5 litros de biopelículas utilizando lecho filtrante PETG en medio de cultivo de sales de amonio ((NH4)2SO4 3.3 g/L, MgSO4 0.51 g/L, CaCI2 0.74 mg/L, FeSO4 x 7 H2O 2.5 mg/L, CuSO4 0.08 mg/L, NaH2PO4 x H2O 0.90 g/L, Na2HPO4 x 2 H2O 1.12 g/L, NaOH (2N) 1.12 g/L) (Chung et al., 2007) y la incubación en condiciones de oscuridad, aireación constante (9 mg/L) y temperatura ambiente (25±1°C) durante 20 días .
Figure imgf000019_0001
Bacteria with nitrifying activity and abilities to degrade polluting organic compounds were selected from sediments, including Delftia acidovorans, Ochrobactrum pecoris, Varíovorax paradoxus, and Pseudomonas gessardii. A stable and viable composition at room temperature with filtering capacity was developed. Biofilm cultures were carried out in 5-liter reactors using PETG filter bed in culture medium of ammonium salts ((NH4)2SO4 3.3 g/L, MgSO4 0.51 g/L, CaCl2 0.74 mg/L, FeSO4 x 7 H2O 2.5 mg /L, CuSO4 0.08 mg/L, NaH2PO4 x H2O 0.90 g/L, Na2HPO4 x 2 H2O 1.12 g/L, NaOH (2N) 1.12 g/L) (Chung et al., 2007) and incubation in dark conditions , constant aeration (9 mg/L) and ambient temperature (25±1°C) for 20 days.
Figure imgf000019_0001
El cultivo de biopelículas en soportes poliméricos en laboratorio se realiza a altas concentraciones de amonio (> 900 mg), con el fin de aumentar el rendimiento y realizar selección microbiana. The cultivation of biofilms on polymeric supports in the laboratory is carried out at high concentrations of ammonium (> 900 mg), in order to increase yield and perform microbial selection.
EJEMPLO 4 - Segunda etapa (Pruebas en terreno condiciones reales de operación) EXAMPLE 4 - Second stage (Field tests, real operating conditions)
Se desarrolló un prototipo de filtro biológico para instalarlo y realizar pruebas en terreno en una empresa agrícola de producción porcina. La composición microbiológica se cultivó en reactor alimentado de 5 litros, con aireación constante y a temperatura ambiente. Se midió en el tiempo concentraciones de amonio y pH como parte de la bitácora del reactor, con el cultivo obtenido se realizó la colonización del lecho polimérico, obteniendo una biopelícula de 10pm con capacidad de degradar compuestos orgánicos contaminantes. El biofiltro a escala pequeña de operación en condiciones reales fue diseñado por el equipo de trabajo de Bioproc e instalado en el pozo 2 de homogeneización de purines en dicha empresa, donde se produce la descarga periódica de 9000 cerdos en fase de engorda, ubicado en la planta ubicada en la región del Maule, Chile. El prototipo consta de dimensiones de 390 mm de diámetro y 1400 mm de alto equipado con un extractor de aire, lecho polimérico, sistema de aspersión interna, zona de almacenamiento de formulado, control de temperatura, bombas de recirculación, sensores de amoniaco y panel digital de recepción de información. Mediante sensores se registró la concentración de amoniaco de la entrada del biofiltro y de la salida. El porcentaje de remoción desde pozo de descarga de purines del día 1 al día 55, mostró una tendencia al alza, comenzando con un promedio de remoción de 35% y llegando a 60%. La plataforma de reporte de datos se encuentra en versión beta, actualmente en etapa de validación. En una segunda instancia se desarrolló un prototipo con las mismas especificaciones técnicas en pozo de residuos vitivinícolas en una empresa vitivinícola, donde se obtuvo una remoción del 90% de los gases amoniaco, metano e hidrógeno sulfurado producidos, además se validó la sensorización electroquímica unida a sistema de entrega de datos en tiempo real, por medio de plataforma de información. A prototype of a biological filter was developed to be installed and tested in the field in an agricultural pig production company. The microbiological composition was grown in a 5-liter fed reactor, with constant aeration and at room temperature. Ammonium and pH concentrations were measured over time as part of the reactor log, with the culture obtained the colonization of the polymeric bed was carried out, obtaining a 10pm biofilm with the capacity to degrade contaminating organic compounds. The small-scale biofilter operating in real conditions was designed by the Bioproc work team and installed in manure homogenization well 2 in said company, where the periodic discharge of 9,000 pigs in the fattening phase occurs, located in the plant located in the Maule region, Chile. The prototype has dimensions of 390 mm in diameter and 1400 mm in height, equipped with an air extractor, polymer bed, internal spray system, formulation storage area, temperature control, recirculation pumps, ammonia sensors and digital panel of receiving information. Using sensors, the ammonia concentration at the biofilter inlet and outlet was recorded. The removal percentage from the slurry discharge pit from day 1 to day 55 showed an increasing trend, starting with an average removal of 35% and reaching 60%. The data reporting platform is in beta version, currently in the validation stage. In a second instance, a prototype was developed with the same technical specifications in a wine waste pit in a wine company, where a removal of 90% of the ammonia, methane and sulphurized hydrogen gases produced was obtained, in addition the electrochemical sensorization linked to real-time data delivery system, through an information platform.
EJEMPLO 5 - Implementation Plataforma digital en filtro biológico EXAMPLE 5 - Implementation Digital platform in biological filter
Mediante el uso de sensores electroquímicos de amoníaco, metano e hidrógeno sulfurado ubicados a la entrada y salida del flujo de aire desde el filtro biológico instalado en terreno se recopila información por segundo y en tiempo real que permitirá calcular tasas de abatimiento de gases del filtro biológico. Through the use of electrochemical sensors of ammonia, methane and sulfurized hydrogen located at the inlet and outlet of the air flow from the biological filter installed on the ground, information is collected per second and in real time that will allow the calculation of gas abatement rates of the biological filter. .
Se ha considerado un sistema de adquisición donde se podrán conectar hasta 16 variables de medición. Para el desarrollo de este proyecto se usarán detectores de gases con salida análoga. Éstos captarán la información de las plantas la analizarán y la enviarán a la nube de Amazon AWS, en donde será analizada para la generación de alertas y reportes o para los requerimientos que tengan las áreas de operación con relación al sistema. An acquisition system has been considered where up to 16 measurement variables can be connected. For the development of this project, gas detectors with analog output will be used. These will capture the information from the plants, analyze it and send it to the Amazon AWS cloud, where it will be analyzed for the generation of alerts and reports or for the requirements that the operation areas have in relation to the system.
Se analizarán datos recibidos de acuerdo con: Data received will be analyzed according to:
• Ocurrencia de peaks y correlaciones temporales. • Occurrence of peaks and temporal correlations.
• Cambios en medias móviles. • Changes in moving averages.
• Desviaciones Estándar, se relaciona inercia en el cambio de una señal. • Standard deviations, inertia is related to the change of a signal.
• Correlaciones, miden la dependencia de las señales, cambios sugieren variación de propiedades del sistema biológico. • Correlations, measure the dependence of the signals, changes suggest variation in properties of the biological system.
Las características técnicas de cada uno de los elementos considerados en el sistema de adquisición de datos y que forman parte de la unidad de datos, se presentan a continuación: a. Sistema de Alimentación Eléctrica: Se considera un sistema de alimentación eléctrica con UPS que permite que el sistema opere al menos 4 horas luego de un corte de energía. La fuente de poder posee un nivel mínimo de ruido de manera de no alterar las mediciones de las variables. b. Controlador de la Adquisición: Se considera un ordenador para controlar la adquisición de datos y procesamiento del sistema. Como mínimo se utilizará un procesador Intel de 1.92Ghz de 4 núcleos y 2 Gb de memoria RAM. Este computador incluye una BAM para conectarse a internet a través de una tarjeta SIM. c. Adquisición de datos: El sistema de adquisición está compuesto por un conversor análogo digital de 12bits, pudiendo llegar a tasas de muéstreos de 20hz por canal, para este proyecto se utilizará una tasa de muestreo de un dato por minuto para las señales por cada canal. d. Sensores: Se consideran pares de sensores de amoniaco, metano y ácido sulfhídrico, los cuales son alimentados con 24 V y entregan una señal 4-20mA. e. Interfaz de Visualization: Se considera una interfaz de visualization que contendrá el logo de la empresa, usando sus colores institucionales. The technical characteristics of each of the elements considered in the data acquisition system and that form part of the data unit are presented below: a. Power Supply System: A power supply system with UPS is considered to allow the system to operate for at least 4 hours after a power outage. The power source has a minimum noise level so as not to alter the measurements of the variables. b. Acquisition Controller: A computer is considered to control the data acquisition and processing of the system. At least one Intel processor will be used. 1.92Ghz with 4 cores and 2 Gb of RAM. This computer includes a BAM to connect to the internet through a SIM card. c. Data acquisition: The acquisition system is composed of a 12-bit digital analog converter, and can reach sampling rates of 20 Hz per channel. For this project, a sampling rate of one data per minute will be used for the signals per channel. d. Sensors: Pairs of ammonia, methane and hydrogen sulfide sensors are considered, which are powered with 24 V and deliver a 4-20mA signal. and. Visualization Interface: It is considered a visualization interface that will contain the company logo, using its institutional colors.
Se considera la instalación de un gabinete de instrumentación en terreno conectado a los sensores que sean necesarios. Éstos captarán la información de las plantas, la analizarán y la enviarán a la nube de Amazon AWS, en donde será analizada para la generación de alertas y reportes o para los requerimientos que tengan las áreas de operación en relación al sistema.The installation of an instrumentation cabinet in the field connected to the necessary sensors is considered. These will capture the information from the plants, analyze it and send it to the Amazon AWS cloud, where it will be analyzed to generate alerts and reports or for the requirements that the operation areas have in relation to the system.
El sistema de adquisición, contempla el uso de una interfaz de despliegue de información de terreno para el monitoreo del nivel de gases y otros sensores indicadores de funciones mecánicas y físicas del sistema de filtrado, la cual contempla: The acquisition system contemplates the use of a terrain information display interface for monitoring the level of gases and other sensors indicating mechanical and physical functions of the filtering system, which contemplates:
• Login con correo y password, sin límites de usuarios. • Login with email and password, without user limits.
• Un set de gráficos polares que desplegará KPI de distintos sensores (medias, desviaciones estándar). • A set of polar graphs that will display KPIs from different sensors (means, standard deviations).
• Gráfico temporal en línea con los valores históricos monitoreados. • Time graph online with monitored historical values.
• Un listado de las últimas alertas recibidas, donde se indique fecha y hora y una breve descripción de lo ocurrido. • A list of the latest alerts received, indicating date and time and a brief description of what happened.
EJEMPLO 6 - Preparación biopelícula del biofiltro. EXAMPLE 6 - Biofilm preparation of the biofilter.
Se realiza formación de biopelículas de microorganismos (> 10 pm) en soportes poliméricos mediante medio de cultivo a altas concentraciones de amonio (> 900 mg), a temperatura estable para el crecimiento del cultivo y con aireación constante; en donde el tiempo de cultivo estará directamente relacionado con el espesor de la biopelícula deseado, y en donde el nivel de aireación está directamente relacionado con la temperatura del medio de cultivo. En una segunda etapa la biopelícula formada en los soportes poliméricos se empaca y traslada en condiciones de esterilidad para ser dispuesta al interior del biofiltro instalado en terreno. Formation of biofilms of microorganisms (> 10 pm) is carried out on polymeric supports using culture medium at high concentrations of ammonium (> 900 mg), at a stable temperature for the growth of the culture and with constant aeration; where the culture time will be directly related to the desired biofilm thickness, and where the level of aeration is directly related to the temperature of the culture medium. In a second stage, the biofilm formed on the polymeric supports is packaged and transported under sterile conditions to be placed inside the biofilter installed on the ground.
Esto permite obtener una biopelícula previamente establecida en los soportes y con capacidad de metabolizar altas concentraciones de amonio, disminuyendo los tiempos de puesta en marcha del biofiltro, riesgos de operación y aumentando su capacidad de filtración Lista de Secuencias This allows obtaining a biofilm previously established on the supports and with the capacity to metabolize high concentrations of ammonium, reducing biofilter start-up times, operating risks and increasing its filtration capacity. Sequence List
Seq ID No. 1 Seq ID No. 1
<210> 1 <210> 1
<211 > 782 <211 > 782
<212> DNA <212> DNA
<213> BIOPROC-C1 (Cepa aislada) <213> BIOPROC-C1 (Isolated strain)
<220> <220>
<221 > 16S <221 > 16S
<400> 1 <400> 1
CGGAC GCTGA CGAGT GGCGA ACGGG TGAGT AATAC ATCGG AACGT GCCCA GTCGT GGGGG 60 ATAAC TACTC GAAAG AGTAG CTAAT ACCGC ATACG ATCTG AGGAT GAAAG CGGGG GACCT 120 TCGGG CCTCG CGCGA TTGGA GCGGC CGATG GCAGA TTAGG TAGTT GGTGG GATAA AAGCT 180 TACCA AGCCG ACGAT CTGTA GCTGG TCTGA GAGGA CGACC AGCCA CACTG GGACT GAGAC 240 ACGGC CCAGA CTCCT ACGGG AGGCA GCAGT GGGGA ATTTT GGACA ATGGG CGAAA GCCTG 300 ATCCA GCAAT GCCGC GTGCA GGATG AAGGC CTTCG GGTTG TAAAC TGCTT TTGTA CGGAA 360 CGAAA AAGCT TCTCC TAATA CGAGA GGCCC ATGAC GGTAC CGTAA GAATA AGCAC CGGCT 420 AACTA CGTGC CAGCA GCCGC GGTAA TACGT AGGGT GCGAG CGTTA ATCGG AATTA CTGGG 480 CGTAA AGCGT GCGCA GGCGG TTATG TAAGA CAGAT GTGAA ATCCC CGGGC TCAAC CTGGG 540 AACTG CATTT GTGAC TGCAT GGCTA GAGTA CGGTA GAGGG GGATG GAATT CCGCG TGTAG 600 CAGTG AAATG CGTAG ATATG CGGAG GAACA CCGAT GGCGA AGGCA ATCCC CTGGA CCTGT 660 ACTGA CGCTC ATGCA CGAAA GCGTG GGGAG CAAAC AGGAT TAGAT ACCCT GGTAG TCCAC 720 GCCCT AAACG ATGTC AACTG GTTGT TGGGA ATTAG TTTTC TCAGT AACGA AGCTA ACGCG 780 TG 782 CGGAC GCTGA CGAGT GGCGA ACGGG TGAGT AATAC ATCGG AACGT GCCCA GTCGT GGGGG 60 ATAAC TACTC GAAAG AGTAG CTAAT ACCGC ATACG ATCTG AGGAT GAAAG CGGGG GACCT 120 TCGGG CCTCG CGCGA TTGGA GCGGC CGATG GCAGA TTAGG TAGTT GGTGG GATAA AAGCT 180 TACCA AGC CG ACGAT CTGTA GCTGG TCTGA GAGGA CGACC AGCCA CACTG GGACT GAGAC 240 ACGGC CCAGA CTCCT ACGGG AGGCA GCAGT GGGGA ATTTT GGACA ATGGG CGAAA GCCTG 300 ATCCA GCAAT GCCGC GTGCA GGATG AAGGC CTTCG GGTTG TAAAC TGCTT TTGTA CGGAA 360 CGAAA AAGCT TCTCC TAATA CGAGA GGCCC ATGAC GGTAC CGTAA GAATA AGCAC CGGCT 4 20 AACTA CGTGC CAGCA GCCGC GGTAA TACGT AGGGT GCGAG CGTTA ATCGG AATTA CTGGG 480 CGTAA AGCGT GCGCA GGCGG TTATG TAAGA CAGAT GTGAA ATCCC CGGGC TCAAC CTGGG 540 AACTG CATTT GTGAC TGCAT GGCTA GAGTA CGGTA GAGGG GGATG GAATT CCGCG TGTAG 600 CAGTG AAATG CGTAG ATATG CGGAG GAACA CCGAT GGCGA AGGCA ATCCC CCTGT 660 ACTGA CGCTC ATGCA CGAAA GCGTG GGGAG CAAAC AGGAT TAGAT ACCCT GGTAG TCCAC 720 GCCCT AAACG ATGTC AACTG GTTGT TGGGA ATTAG TTTTC TCAGT AACGA AGCTA ACGCG 780 TG 782
Sea ID No. 2 Be ID No. 2
<210> 2 <211 > 643 <212> DNA <213> BIOPROC-C13 (Cepa aislada) <210> 2 <211 > 643 <212> DNA <213> BIOPROC-C13 (Isolated strain)
<220> <221 > 16S <220> <221 > 16S
<400> 2 <400> 2
CATGC AAGTC GAACG GCAGC GCGGG AGCAA TCCTG GCGGC GAGTG GCGAA CGGGT GAGTA 60 ATACA TCGGA ACGTG CCCAA TCGTG GGGGA TAACG CAGCG AAAGC TGTGC TAATA CCGCA 120 TACGA TCTAC GGATG AAAGC AGGGG ATCGC AAGAC CTTGC GCGAA TGGAG CGGCC GATGG 180 CAGAT TAGGT AGTTG GTGAG GTAAA GGCTC ACCAA GCCTT CGATC TGTAG CTGGT CTGAG 240 AGGAC GACCA GCCAC ACTGG GACTG AGACA CGGCC CAGAC TCCTA CGGGA GGCAG CAGTG 300 GGGAA TTTTG GACAA TGGGC GAAAG CCTGA TCCAG CCATG CCGCG TGCAG GATGA AGGCC 360 TTCGG GTTGT AAACT GCTTT TGTAC GGAAC GAAAC GGTCT TTTCT AATAA AGAAG GCTAA 420 TGACG GTACC GTAAG AATAA GCACC GGCTA ACTAC GTGCC AGCAG CCGCG GTAAT ACGTA 480 GGGTG CAAGC GTTAA TCGGA ATTAC TGGGC GTAAA GCGTG CGCAG GCGGT GATGT AAGAC 540 AGTTG TGAAA TCCCC GGGCT CAACC TGGGA ACTGC ATCTG TGACT GCATC GCTGG AGTAC 600 GGCAG AGGGG GATGG AATTC CGCGT GTAGC AGTGA AATGC GTA 643 CATGC AAGTC GAACG GCAGC GCGGG AGCAA TCCTG GCGGC GAGTG GCGAA CGGGT GAGTA 60 ATACA TCGGA ACGTG CCCAA TCGTG GGGGA TACG CAGCG AAAGC TGTGC TAATA CCGCA 120 TACGA TCTAC GGATG AAAGC AGGGG ATCGC AAGAC CTTGC GCGAA TGGAG CGGCC GATGG 180 CAGAT TAGGT AGT TG GTGAG GTAAA GGCTC ACCAA GCCTT CGATC TGTAG CTGGT CTGAG 240 AGGAC GACCA GCCAC ACTGG GACTG AGACA CGGCC CAGAC TCCTA CGGGA GGCAG CAGTG 300 GGGAA TTTTG GACAA TGGGC GAAAG CCTGA TCCAG CCATG CCGCG TGCAG GATGA AGGCC 360 TTCGG GTTGT AAACT GCTTT TGTAC GGAAC GAAAC GGTCT TTTCT AATAA AGAAG GCTAA 4 20 TGACG GTACC GTAAG AATAA GCACC GGCTA ACTAC GTGCC AGCAG CCGCG GTAAT ACGTA 480 GGGTG CAAGC GTTAA TCGGA ATAC TGGCC GTAAA GCGTG CGCAG GCGGT GATGT AAGAC 540 AGTTG TGAAAA TCCCCC GGGCT CAACC TGGGA ACTGC ATGC ATCTG TGACT GCTG GCTGG GCTGG AGTGG AGU G AATTC CGCGT GTAGC AGTGA AATGC GTA 643

Claims

REIVINDICACIONES Un sistema de filtrado biológico y monitoreo de residuos volátiles orgánicos para reducir los gases contaminantes a partir de un pozo de recepción de residuos, CARACTERIZADO porque comprende: a. Un biorreactor (1), que a su vez comprende al menos los siguientes componentes: estructura, una cámara interior, un dispositivo de agitación, un dispositivo de aireación, un sistema de recirculación (2), un dispositivo de calefacción, un sistema de adquisición de datos, un sistema de aspersión de gota fina (7), una cámara de lecho filtrante y una unidad de adquisición de datos; b. Al menos un soporte polimérico de tipo lattice (6), para la formación de biopelícula formando parte del lecho filtrante; c. Una composición microbiana que comprende al menos un ingrediente activo, al menos un coadyuvante, un estabilizador de pH y un vehículo, que en combinación con el soporte (6) del lecho filtrante permite la formación de un biofilm asociado al soporte (6) del lecho filtrante capaz de optimizar el filtrado de residuos orgánicos volátiles; d. Un sistema de comunicación y alerta al usuario, que comprende un panel digital conectado al sistema de adquisición de datos; e. Un método de filtración que comprende el biorreactor y que comprende además los siguientes pasos: i. Recibir los gases para depuración en la entrada del biofiltro; CLAIMS A biological filtering and monitoring system for volatile organic waste to reduce polluting gases from a waste reception well, CHARACTERIZED because it comprises: a. A bioreactor (1), which in turn comprises at least the following components: structure, an inner chamber, a stirring device, an aeration device, a recirculation system (2), a heating device, an acquisition system data, a fine droplet spray system (7), a filter bed chamber and a data acquisition unit; b. At least one lattice-type polymeric support (6), for the formation of biofilm as part of the filter bed; c. A microbial composition that comprises at least one active ingredient, at least one adjuvant, a pH stabilizer and a vehicle, which in combination with the support (6) of the filter bed allows the formation of a biofilm associated with the support (6) of the bed filter capable of optimizing the filtration of volatile organic waste; d. A user communication and alert system, comprising a digital panel connected to the data acquisition system; and. A filtration method that includes the bioreactor and also includes the following steps: i. Receive the gases for purification at the entrance to the biofilter;
¡i. Activación de los sistemas de recirculación y agitación para movilizar los gases hacia la cámara de lecho filtrante; iii. Detección de la composición de los gases entrantes por medio de los sensores de gases del biorreactor; iv. Optimización de la composición microbiana, preparación y formación de la biopelícula fuera del biorreactor; v. Depósito de la composición microbiana (formulado) al interior del biorreactor, en la cámara de lecho filtrante; vi. Activación del sistema de aspersión (7), que comprende la generación de microgotas de solución acuosa al interior de la cámara de lecho filtrante, en donde la solución acuosa contiene sales minerales que facilitan así la biodisponibilidad de gases como sustratos bacterianos, incluyendo al menos uno de los siguientes: amoníaco, hidrógenos sulfurados y metano; vii. Monitoreo del sistema de filtrado de gases al interior del biorreactor, mediante el sistema de adquisición de datos, la unidad de adquisición de datos y el sistema de comunicación, en donde el monitoreo comprende: i) revisar los niveles de entrada y salida de los diferentes gases censados por el sistema de adquisición de datos, ¡i) revisar los niveles de presión, humedad y temperatura del ambiente al interior del biorreactor, iii) diagnosticar y modificar virtualmente o a distancia los niveles de cualquiera de los parámetros anteriormente mencionados, y iv) controlar el flujo de gas entrante y de líquido recirculante al interior del biorreactor y el lecho filtrante, El sistema de filtrado de la reivindicación 1, CARACTERIZADO porque la estructura del biorreactor corresponde a una estructura resistente, que permite contener todos los componentes del biorreactor en condiciones de presión y temperatura controlados, respecto de las condiciones ambientales y donde además la estructura comprende al menos: un espesor, un diámetro de sección central, una altura total desde la base al plenum y un volumen máximo de operación, y al menos un colector; en donde la estructura puede ser elaborada de la lista que comprende los siguientes materiales: HDPE, Acero inoxidable, fibra de vidrio, metales, aleación de metales y cualquier combinación de estos; y en donde el colector, permite almacenar un reservorio líquido que contiene componentes químicos, estabilizantes, adyuvantes y/o cualquier componente adicional necesario para generar la estabilidad los microorganismos formando la biopelícula, y favorecer la adsorción en el intercambio de fase gas-líquido. El sistema de filtrado de la reivindicación 1, CARACTERIZADO porque la cámara del biorreactor comprende al menos dos zonas diferenciadas: zona gaseosa (8) y zona líquida (9), en donde la zona gaseosa (8) está en contacto con el lecho filtrante y en donde la zona líquida (9) contiene un reservorio acuoso que comprende: MgSO4, CaCI2, FeSO4 x 7 H2O, CuSO4, NaH2PO4 x H2O, Na2HPO4 x 2 H2O, NaOH, en donde dichos componentes se encuentran en un rango entre: 0.01 - 1.35 g/L, 0.04 - 1.6 mg/L, 1.6 - 3.3 mg/L, 0.01 - 0,88 mg/L, 0.1 - 1.7 g/L, 0.3 - 1.9 g/L, y 0.3 - 1.9 g/L respectivamente El sistema de filtrado de la reivindicación 1 , CARACTERIZADO porque el dispositivo de agitación comprende los siguientes parámetros: Velocidad de agitación (rpm), Control de velocidad (rpm), Voltaje (Volt), Potencia máxima (Watt), permitiendo la homogeneización de las sustancias que ingresan al interior del biofiltro, y en donde el dispositivo de agitación es un agitador que puede ser seleccionado de la lista que comprende: agitador mecánico, agitador por burbujeo, incluyendo un agitador axial de baja velocidad. El sistema de filtrado de la reivindicación 1 , CARACTERIZADO porque el dispositivo de aireación comprende los siguientes parámetros: Caudal máximo (m3/h), Presión máxima de trabajo (m/s), Voltaje (Volt), Potencia máxima (Watt), que permite la difusión homogénea de aire al interior del biofiltro, y en donde el dispositivo de aireación corresponde a un extractor (3) de aire, incluyendo un extractor (3) en línea Helicocentrifugo. El sistema de filtrado de la reivindicación 1, CARACTERIZADO porque el sistema de recirculación comprende al menos un colector (2), al menos dos bombas (4) de recirculación funcionando alternadamente y al menos un reservorio, conectado al sistema de sensores, en donde el sistema de recirculación comprende además los siguientes parámetros: Caudal máximo (L/m), Sensor de nivel. El sistema de filtrado de la reivindicación 1 , CARACTERIZADO porque el dispositivo de calefacción, comprende los siguientes parámetros: Temperatura de trabajo (°C), Control de temperatura Voltaje (Volt), Potencia máxima (Watt), permitiendo mantener la temperatura del biofiltro entre los rangos 15°C a 25°C, y en donde el dispositivo de calefacción corresponde a cualquier dispositivo que permita modular la temperatura de un ambiente acuoso, incluyendo un calefactor de inmersión. El sistema de filtrado de la reivindicación 1, CARACTERIZADO porque el sistema de adquisición de datos, comprende sensores de entrada, salida y funcionamiento interno, en donde dichos sensores permite recopilar información de la entrada y salida de sustancias en el biofiltro, y comprende al menos: un sensor de nivel, un sensor de pH, un sensor y detector de gas fijo IP65 Metano (ppm), un detector de ácido sulfidrico (ppm), un detector fijo de Amoniaco (ppm). El sistema de filtrado de la reivindicación 1, CARACTERIZADO porque el soporte (6) que forma parte del lecho filtrante, corresponde a una combinación de estructuras paramétricas de tipo entramado o lattice, en donde el tamaño de poro es de al menos entre 0,2 a 1 cm, lo que permiten aumentar el área disponible para la asociación con los microorganismos de la composición microbiana, facilitando la optimización de la formación de un biofilm como un filtro activo, en el lecho filtrante. El sistema de filtrado de la reivindicación 1 , CARACTERIZADO porque la composición microbiana, comprende como ingrediente activo, al menos dos microorganismos heterótrofos y quimiolitotrofos, los cuales pueden ser escogidos de la lista que comprende: Delftia acidovorans, Ochrobactrum pecoris, Varíovorax paradoxus, Pseudomonas gessardii, y al menos dos microorganismos con actividad nitrificante aerobios, y en donde la composición comprende además coadyuvantes, al menos un estabilizador de pH y un vehículo adecuado; en donde los coadyuvantes corresponden a componentes inorgánicos que pueden ser seleccionados de la lista que comprende: (NH4)2SO4, MgSO4, CaCI2, FeSO4 , CuSO4, NaH2PO4, Na2HPO4, NaOH, y en donde las concentraciones de dichos coadyuvantes comprenden un rango entre: 0.3 - 3.5 g/L, 0.01 - 1.35 g/L, 0.04 - 1.6 mg/L, 1.6 - 3.3 mg/L, 0.01 - 0,88 mg/L, 0.1 - 1.7 g/L, 0.3 - 1.9 g/L, y 0.3 - 1.9 g/L respectivamente; en donde el vehículo adecuado es agua estéril; y en donde además, la composición microbiana es efectiva en un rango de pH de entre 6 y 8. El sistema de la reivindicación 10, CARACTERIZADO porque la composición microbiana comprende al menos una cepa de Delftia acidovorans y una cepa de Varíovorax paradoxus, en donde la primera cepa es BIOPROC-C1 (RGM 3299) y la segunda cepa es BIOPROC-C13 (RGM 3300), respectivamente. El sistema de filtrado de la reivindicación 1 , CARACTERIZADO porque sistema de comunicación y alerta al usuario comprende : una interfaz de usuario, un sistema de monitoreo de gases y variables operacionales que comprende al menos un dispositivos de conexión entre la interfaz de usuario y los sensores físicos presentes en el biorreactor, al menos un dispositivo de comunicación inalámbrico que permite transmitir la información del biorreactor local a un dispositivo receptor de información remoto a través de internet y un sistema de procesamiento de datos en la nube, que permite procesar información y generación de reportes, almacenar información y desde donde el cual se pueda descargar información directamente para el operador y/o el usuario. El sistema de filtrado de la reivindicación 1, CARACTERIZADO porque la optimización de la composición microbiana, preparación y formación de la biopelícula fuera del biorreactor, comprende al menos dos etapas: i) Formación de biopelículas de microorganismos (> 10 pm) en soportes poliméricos (6) con medio de cultivo a altas concentraciones de al menos un residuo orgánico a tratar, incluyendo Amonio, metano y gases hidrogenosulfurados por un tiempo mínimo necesario para asegurar la formación de la biopelícula con el espesor mínimo suficiente, a temperatura y aireación constante; y ¡i) una vez formada la biopelícula en los soportes poliméricos (6), ésta se empaca y traslada en condiciones de esterilidad para ser dispuesta al interior del biofiltro instalado en terreno. Un método para el filtrado biológico y monitoreo de residuos volátiles orgánicos para reducir los gases contaminantes a partir de un pozo de recepción de residuos para la descarga de purines, especialmente purines resultantes de la agroindustria CARACTERIZADO porque comprende: a. Instalar el biofiltro a menos de un metro del pozo de recepción de residuos, en una superficie plana y estable de cemento (mediante anclaje al suelo) y dentro de una caseta que lo aísle de las variables climáticas; b. Conectar la entrada (10) del biofiltro con la salida de gases de depuración de un pozo de recepción de residuos; c. Incorporar el lecho filtrante preparado y optimizado al interior del biofiltro, en donde el lecho filtrante comprende un biofilm bacteriano (>10 pm) optimizado y pre- formado en laboratorio; en donde dicha optimización comprende al menos dos etapas: i) Formación de biopelículas de microorganismos (> 10 pm) en un soporte polimérico (6) con medio de cultivo a altas concentraciones de al menos un residuo orgánico a tratar, incluyendo Amonio, metano y gases hidrógeno sulfurados por un tiempo mínimo necesario para asegurar la formación de la biopelícula con el espesor mínimo suficiente, a temperatura y aireación constante; ¡i) una vez formada la biopelícula en el soporte polimérico (6), ésta se empaca y traslada en condiciones de esterilidad para ser dispuesta al interior del biofiltro instalado en terreno. d. Llenar los colectores (2) de solución acuosa hasta un 80 % de su capacidad, en el biofiltro; e. revisar que el sistema no presente ningún tipo de fuga de líquido y conectar a la red eléctrica 220V; f. Encender el extractor (3) del biofiltro, para permitir el ingreso de los gases; hacia el lecho filtrante; g. Encender el sistema de calefacción de líquido, para ajustar la temperatura del líquido que recirculará; h. Activar del sistema de recirculación y aspersión de líquido, que comprende la generación de microgotas de solución acuosa al interior de la cámara de lecho filtrante, en donde la solución acuosa contiene compuestos coadyuvantes para facilitar así la biodisponibilidad de gases como sustratos bacterianos, incluyendo al menos uno de los siguientes: amoníaco, hidrógenos sulfurados y metano; i. activación de los sensores de amoniaco, hidrógeno sulfurado y metano a la entrada (10) y salida del biofiltro (11), además, de los sensores de pH y flujo; j. Conexión de sensores a sistema de adquisición de datos que recopila información por segundo y en tiempo real que permite calcular tasas de abatimiento de gases del filtro biológico; y k. Monitoreo y puesta en marcha del biofiltro, se evalúa estabilidad en la remoción de gases y funcionamiento mecánico y eléctrico durante 7 días. El sistema de filtrado de la reivindicación 1, CARACTERIZADO porque la operación del biofiltro es completamente manual, y donde cada dispositivo del biofiltro puede ser energizado de manera independiente. El sistema de filtrado de la reivindicación 1, CARACTERIZADO porque el biofiltro comprende además una bomba de emergencia con capacidad para flujo continuo y protección respecto de la alta humedad ambiental con condensación en la zona de trabajo e implementación del sistema filtración. El sistema de filtrado de la reivindicación 14, CARACTERIZADO porque la bomba de emergencia, corresponde a una de las bombas del sistema de circulación, en donde dicha bomba alterna el funcionamiento con la bomba principal para mantener un funcionamiento continuo. El sistema de filtrado de la reivindicación 1 , CARACTERIZADO porque el método de filtración no genera productos secundarios líquidos, ya que la eliminación de gases ocurre por transformación metabólica del sustrato ingresado. Un biorreactor para el filtrado biológico y monitoreo de residuos volátiles orgánicos para reducir los gases contaminantes a partir de un pozo de recepción de residuos para la descarga de purines especialmente purines resultantes de la agroindustria CARACTERIZADO porque comprende: una estructura cerrada rígida, un dispositivo de agitación, un dispositivo de aireación, un sistema de recirculación, un dispositivo de calefacción, un sistema de adquisición de datos, un sistema de aspersión de gota fina, una cámara de lecho filtrante, que a su vez contiene un soporte polimérico (6) de tipo lattice para la formación de biopelícula al interior del lecho filtrante y una unidad de adquisición de datos; El biorreactor de la reivindicación 19, CARACTERIZADO porque la estructura del biorreactor corresponde a una estructura resistente, que permite contener todos los componentes del biorreactor en condiciones de presión y temperatura controlados, respecto de las condiciones ambientales y donde además la estructura comprende al menos: un espesor, un diámetro de sección central, una altura total desde la base al plenum y un volumen máximo de operación; y en donde la estructura puede ser elaborada de la lista que comprende los siguientes materiales: HDPE, Acero inoxidable, fibra de vidrio, metales, aleación de metales y cualquier combinación de estos. El biorreactor de la reivindicación 19, CARACTERIZADO porque el dispositivo de agitación comprende los siguientes parámetros: Velocidad de agitación (rpm), Control de velocidad (rpm), Voltaje (Volt), Potencia máxima (Watt), permitiendo la homogeneización de las sustancias que ingresan al interior del biofiltro, y en donde el dispositivo de agitación es un agitador que puede ser seleccionado de la lista que comprende: agitador mecánico, agitador por burbujeo, incluyendo un agitador axial de baja velocidad. El biorreactor de la reivindicación 19, CARACTERIZADO porque el dispositivo de aireación comprende los siguientes parámetros: Caudal máximo (m3/h), Presión máxima de trabajo (m/s), Voltaje (Volt), Potencia máxima (Watt), que permite la difusión homogénea de aire al interior del biofiltro, y en donde el dispositivo de aireación corresponde a un extractor (3) de aire, incluyendo un extractor (3) en línea Helicocentrifugo. El biorreactor de la reivindicación 19, CARACTERIZADO porque el sistema de recirculación comprende al menos un colector (2), al menos dos bombas (4) de recirculación funcionando alternadamente y al menos un reservorio, conectado al sistema de sensores, en donde el sistema de recirculación comprende además los siguientes parámetros: Caudal máximo (L/m), Sensor de nivel. El biorreactor de la reivindicación 19, CARACTERIZADO porque el dispositivo de calefacción, comprende los siguientes parámetros: Temperatura de trabajo (°C), Control de temperatura Voltaje (Volt), Potencia máxima (Watt), permitiendo mantener la temperatura del biofiltro entre los rangos 15°C a 25°C y en donde el dispositivo de calefacción corresponde a cualquier dispositivo que permita modular la temperatura de un ambiente acuoso, incluyendo un calefactor de inmersión. El biorreactor de la reivindicación 19, CARACTERIZADO porque el sistema de adquisición de datos, comprende sensores de entrada, salida y funcionamiento interno, en donde dichos sensores permite recopilar información de la entrada y salida de sustancias en el biofiltro, y comprende al menos: un sensor de nivel, un sensor de pH, un sensor y detector de gas fijo Metano (ppm), un detector de ácido sulfidrico (ppm), un detector fijo de Amoniaco (ppm). El biorreactor de la reivindicación 19, CARACTERIZADO porque el soporte que forma parte del lecho filtrante, corresponde a una combinación de estructuras paramétricas de tipo entramado o lattice, en donde el tamaño de poro es de al menos entre 0,2 a 1 cm, lo que permiten aumentar el área disponible para la asociación con los microorganismos de la composición microbiana, facilitando la optimización de la formación de un biofilm como un filtro activo, en el lecho filtrante. Una composición microbiana para el filtrado biológico y monitoreo de residuos volátiles orgánicos para reducir los gases contaminantes a partir de un pozo de recepción de residuos para la descarga de purines especialmente purines resultantes de la agroindustria, CARACTERIZADA porque la composición microbiana comprende al menos: i) Un ingrediente activo primario, Yo. Activation of the recirculation and agitation systems to mobilize the gases towards the filter bed chamber; iii. Detection of the composition of incoming gases by means of the bioreactor gas sensors; iv. Optimization of the microbial composition, preparation and formation of the biofilm outside the bioreactor; v. Deposit of the microbial composition (formulated) inside the bioreactor, in the filter bed chamber; saw. Activation of the spray system (7), which includes the generation of microdroplets of aqueous solution inside the filter bed chamber, where the aqueous solution contains mineral salts that thus facilitate the bioavailability of gases as bacterial substrates, including at least one of the following: ammonia, sulfurized hydrogens and methane; vii. Monitoring of the gas filtering system inside the bioreactor, through the data acquisition system, the data acquisition unit and the communication system, where monitoring includes: i) reviewing the input and output levels of the different gases recorded by the data acquisition system, i) review the pressure, humidity and temperature levels of the environment inside the bioreactor, iii) diagnose and modify virtually or remotely the levels of any of the aforementioned parameters, and iv) control the flow of incoming gas and recirculating liquid inside the bioreactor and the filter bed, The filtering system of claim 1, CHARACTERIZED because the structure of the bioreactor corresponds to a resistant structure, which allows all the components of the bioreactor to be contained under controlled pressure and temperature conditions, with respect to the environmental conditions and where the structure also comprises at least : a thickness, a central section diameter, a total height from the base to the plenum and a maximum operating volume, and at least one collector; where the structure can be made from the list that includes the following materials: HDPE, Stainless steel, fiberglass, metals, metal alloys and any combination of these; and where the collector allows storing a liquid reservoir that contains chemical components, stabilizers, adjuvants and/or any additional component necessary to generate stability of the microorganisms forming the biofilm, and promote adsorption in the gas-liquid phase exchange. The filtering system of claim 1, CHARACTERIZED in that the bioreactor chamber comprises at least two differentiated zones: gas zone (8) and liquid zone (9), where the gas zone (8) is in contact with the filter bed and wherein the liquid zone (9) contains an aqueous reservoir that comprises: MgSO4, CaCI2, FeSO4 x 7 H2O, CuSO4, NaH2PO4 x H2O, Na2HPO4 x 2 H2O, NaOH, where said components are in a range between: 0.01 - 1.35 g/L, 0.04 - 1.6 mg/L, 1.6 - 3.3 mg/L, 0.01 - 0.88 mg/L, 0.1 - 1.7 g/L, 0.3 - 1.9 g/L, and 0.3 - 1.9 g/L respectively The filtering system of claim 1, CHARACTERIZED because the stirring device comprises the following parameters: Stirring speed (rpm), Speed control (rpm), Voltage (Volt), Maximum power (Watt), allowing the homogenization of the substances that enter the interior of the biofilter, and where the agitation device is an agitator that can be selected from the list that includes: mechanical agitator, bubbling agitator, including a low speed axial agitator. The filtering system of claim 1, CHARACTERIZED because the aeration device comprises the following parameters: Maximum flow rate (m3/h), Maximum working pressure (m/s), Voltage (Volt), Maximum power (Watt), which It allows the homogeneous diffusion of air inside the biofilter, and where the aeration device corresponds to an air extractor (3), including an in-line Helicocentrifugal extractor (3). The filtering system of claim 1, CHARACTERIZED in that the recirculation system comprises at least one collector (2), at least two recirculation pumps (4) operating alternately and at least one reservoir, connected to the sensor system, where the The recirculation system also includes the following parameters: Maximum flow rate (L/m), Level sensor. The filtering system of claim 1, CHARACTERIZED because the heating device comprises the following parameters: Working temperature (°C), Temperature control Voltage (Volt), Maximum power (Watt), allowing to maintain the temperature of the biofilter between the ranges 15°C to 25°C, and where the heating device corresponds to any device that allows modulating the temperature of an aqueous environment, including an immersion heater. The filtering system of claim 1, CHARACTERIZED in that the data acquisition system comprises input, output and internal functioning sensors, where said sensors allow the collection of information on the input and output of substances in the biofilter, and comprises at least : a level sensor, a pH sensor, a fixed IP65 Methane (ppm) gas sensor and detector, a hydrogen sulfide detector (ppm), a fixed Ammonia detector (ppm). The filtering system of claim 1, CHARACTERIZED because the support (6) that is part of the filter bed, corresponds to a combination of parametric structures of the lattice or lattice type, where the pore size is at least between 0.2 to 1 cm, which allows increasing the area available for association with microorganisms of the microbial composition, facilitating the optimization of the formation of a biofilm as an active filter, in the filter bed. The filtering system of claim 1, CHARACTERIZED in that the microbial composition comprises as an active ingredient, at least two heterotrophic and chemolithotrophic microorganisms, which can be chosen from the list that includes: Delftia acidovorans, Ochrobactrum pecoris, Varíovorax paradoxus, Pseudomonas gessardii , and at least two microorganisms with aerobic nitrifying activity, and where the composition also comprises adjuvants, at least one pH stabilizer and a suitable vehicle; where the adjuvants correspond to inorganic components that can be selected from the list that includes: (NH4)2SO4, MgSO4, CaCI2, FeSO4, CuSO4, NaH2PO4, Na2HPO4, NaOH, and where the concentrations of said adjuvants comprise a range between: 0.3 - 3.5 g/L, 0.01 - 1.35 g/L, 0.04 - 1.6 mg/L, 1.6 - 3.3 mg/L, 0.01 - 0.88 mg/L, 0.1 - 1.7 g/L, 0.3 - 1.9 g/L , and 0.3 - 1.9 g/L respectively; wherein the suitable vehicle is sterile water; and wherein furthermore, the microbial composition is effective in a pH range between 6 and 8. The system of claim 10, CHARACTERIZED because the microbial composition comprises at least one strain of Delftia acidovorans and a strain of Varíovorax paradoxus, wherein the first strain is BIOPROC-C1 (RGM 3299) and the second strain is BIOPROC-C13 (RGM 3300), respectively. The filtering system of claim 1, CHARACTERIZED in that the user communication and alert system comprises: a user interface, a gas monitoring system and operational variables that comprises at least one connection device between the user interface and the sensors. physical elements present in the bioreactor, at least one wireless communication device that allows the information from the local bioreactor to be transmitted to a remote information receiving device through the Internet and a data processing system in the cloud, which allows the processing of information and generation of reports, store information and from where information can be downloaded directly for the operator and/or user. The filtering system of claim 1, CHARACTERIZED because the optimization of the microbial composition, preparation and formation of the biofilm outside the bioreactor, comprises at least two stages: i) Formation of microorganism biofilms (> 10 pm) on polymeric supports ( 6) with culture medium at high concentrations of at least one organic waste to be treated, including ammonium, methane and hydrogen sulfide gases for a minimum time necessary to ensure the formation of the biofilm with sufficient minimum thickness, at constant temperature and aeration; and i) once the biofilm is formed on the polymeric supports (6), it is packaged and transported under sterile conditions to be placed inside the biofilter installed on the ground. A method for biological filtering and monitoring of volatile organic waste to reduce polluting gases from a waste reception well for the discharge of slurry, especially slurry resulting from agroindustry CHARACTERIZED because it comprises: a. Install the biofilter less than one meter from the waste reception pit, on a flat and stable cement surface (by anchoring it to the ground) and inside a house that isolates it from climatic variables; b. Connect the inlet (10) of the biofilter with the purification gas outlet of a waste reception well; c. Incorporate the prepared and optimized filter bed inside the biofilter, where the filter bed comprises a bacterial biofilm (>10 pm) optimized and preformed in the laboratory; wherein said optimization comprises at least two stages: i) Formation of microorganism biofilms (> 10 pm) on a polymeric support (6) with culture medium at high concentrations of at least one organic waste to be treated, including ammonium, methane and Sulphurized hydrogen gases for a minimum time necessary to ensure the formation of the biofilm with sufficient minimum thickness, at constant temperature and aeration; i) once the biofilm is formed on the polymeric support (6), it is packaged and transported under sterile conditions to be placed inside the biofilter installed on the ground. d. Fill the collectors (2) with aqueous solution up to 80% of their capacity, in the biofilter; and. check that the system does not present any type of liquid leak and connect to the 220V electrical network; F. Turn on the extractor (3) of the biofilter, to allow the gases to enter; towards the filter bed; g. Turn on the liquid heating system, to adjust the temperature of the liquid that will be recirculated; h. Activate the liquid recirculation and spray system, which includes the generation of microdroplets of aqueous solution inside the filter bed chamber, where the aqueous solution contains adjuvant compounds to facilitate the bioavailability of gases as bacterial substrates, including at least one of the following: ammonia, sulfurized hydrogens and methane; Yo. activation of the ammonia, sulfurized hydrogen and methane sensors at the inlet (10) and outlet of the biofilter (11), in addition to the pH and flow sensors; j. Connection of sensors to a data acquisition system that collects information per second and in real time that allows calculating gas reduction rates of the biological filter; and k. Monitoring and start-up of the biofilter, stability in gas removal and mechanical and electrical operation is evaluated for 7 days. The filtering system of claim 1, CHARACTERIZED because the operation of the biofilter is completely manual, and where each biofilter device can be energized independently. The filtering system of claim 1, CHARACTERIZED because the biofilter also comprises an emergency pump with capacity for continuous flow and protection against high ambient humidity with condensation in the work area and implementation of the filtration system. The filtering system of claim 14, CHARACTERIZED in that the emergency pump corresponds to one of the pumps of the circulation system, where said pump alternates operation with the main pump to maintain continuous operation. The filtering system of claim 1, CHARACTERIZED because the filtration method does not generate liquid secondary products, since the elimination of gases occurs by metabolic transformation of the input substrate. A bioreactor for biological filtering and monitoring of volatile organic waste to reduce polluting gases from a waste reception well for the discharge of slurry, especially slurry resulting from agroindustry, CHARACTERIZED because it comprises: a rigid closed structure, an agitation device , an aeration device, a recirculation system, a heating device, a data acquisition system, a fine droplet spray system, a filter bed chamber, which in turn contains a polymeric support (6) of type lattice for biofilm formation inside the filter bed and a data acquisition unit; The bioreactor of claim 19, CHARACTERIZED in that the structure of the bioreactor corresponds to a resistant structure, which allows all the components of the bioreactor to be contained under controlled pressure and temperature conditions, with respect to the environmental conditions and where the structure also comprises at least: a thickness, a center section diameter, a total height from the base to the plenum and a maximum operating volume; and where the structure can be made from the list that includes the following materials: HDPE, Steel stainless, fiberglass, metals, metal alloys and any combination of these. The bioreactor of claim 19, CHARACTERIZED because the stirring device comprises the following parameters: Stirring speed (rpm), Speed control (rpm), Voltage (Volt), Maximum power (Watt), allowing the homogenization of the substances that enter the interior of the biofilter, and where the agitation device is an agitator that can be selected from the list that includes: mechanical agitator, bubbling agitator, including a low speed axial agitator. The bioreactor of claim 19, CHARACTERIZED because the aeration device comprises the following parameters: Maximum flow rate (m3/h), Maximum working pressure (m/s), Voltage (Volt), Maximum power (Watt), which allows the homogeneous diffusion of air into the biofilter, and where the aeration device corresponds to an air extractor (3), including an in-line Helicocentrifugal extractor (3). The bioreactor of claim 19, CHARACTERIZED in that the recirculation system comprises at least one collector (2), at least two recirculation pumps (4) operating alternately and at least one reservoir, connected to the sensor system, where the Recirculation also includes the following parameters: Maximum flow rate (L/m), Level sensor. The bioreactor of claim 19, CHARACTERIZED because the heating device comprises the following parameters: Working temperature (°C), Temperature control Voltage (Volt), Maximum power (Watt), allowing the temperature of the biofilter to be maintained between the ranges 15°C to 25°C and where the heating device corresponds to any device that allows modulating the temperature of an aqueous environment, including an immersion heater. The bioreactor of claim 19, CHARACTERIZED in that the data acquisition system comprises input, output and internal functioning sensors, where said sensors allow the collection of information on the input and output of substances in the biofilter, and comprises at least: a level sensor, a pH sensor, a fixed Methane gas sensor and detector (ppm), a hydrogen sulfide detector (ppm), a fixed Ammonia detector (ppm). The bioreactor of claim 19, CHARACTERIZED because the support that is part of the filter bed corresponds to a combination of parametric structures of the lattice or lattice type, where the pore size is at least between 0.2 to 1 cm, which that allow increasing the area available for association with microorganisms of the microbial composition, facilitating the optimization of the formation of a biofilm as an active filter, in the filter bed. A microbial composition for biological filtering and monitoring of volatile organic waste to reduce polluting gases from a waste reception pit for the discharge of slurry, especially slurry. resulting from agroindustry, CHARACTERIZED because the microbial composition includes at least: i) A primary active ingredient,
¡i) Un ingrediente activo secundario, iii) Un coadyuvante, y iv) Un vehículo. en donde el ingrediente activo primario, comprende al menos dos microorganismos heterótrofos y quimiolitotrofos, los cuales pueden ser escogidos de la lista que comprende: Delftia acidovorans, Ochrobactrum pecoris, Varíovorax paradoxus, Pseudomonas gessardii, y en donde el ingrediente activo primario comprende al menos al 90 % de los microorganismos presentes en la composición; en donde el ingrediente activo secundario corresponden a microorganismos con actividad nitrificante aerobia, en donde dichos organismos no sobrepasan el 10% del total de microorganismos presentes en la composición, en donde el coadjuvante comprende al menos un estabilizador de pH y el coadyuvante corresponde a al menos un componente inorgánico que puede ser seleccionados de la lista que comprende: (NH4)2SO4, MgSO4, CaCI2, FeSO4 x 7 H2O, CuSO4, NaH2PO4 x H2O, Na2HPO4 x 2 H2O, NaOH; y en donde el vehículo adecuado es agua estéril; y en donde además, la composición microbiana es efectiva en un rango de pH de entre 6 y 8. La composición microbiana de la reivindicación 26, CARACTERIZADA porque la composición microbiana comprende al menos dos ingredientes activos, en donde el primero es una cepa de Delftia acidovorans y el segundo es una cepa de Varíovorax paradoxus, y en donde además, la primera cepa es BIOPROC-C1 (RGM 3299) y la segunda cepa es BIOPROC-C13 (RGM 3300), respectivamente. La composición microbiana de la reivindicación 26, CARACTERIZADA porque la composición microbiana comprende al menos una concentración total de ingredientes activos primarios y secundarios, de entre 107 - 109 células/mL. i) A secondary active ingredient, iii) An adjuvant, and iv) A vehicle. wherein the primary active ingredient comprises at least two heterotrophic and chemolithotrophic microorganisms, which can be chosen from the list that includes: Delftia acidovorans, Ochrobactrum pecoris, Varíovorax paradoxus, Pseudomonas gessardii, and wherein the primary active ingredient comprises at least 90% of the microorganisms present in the composition; wherein the secondary active ingredient corresponds to microorganisms with aerobic nitrifying activity, where said organisms do not exceed 10% of the total microorganisms present in the composition, where the adjuvant comprises at least one pH stabilizer and the adjuvant corresponds to at least an inorganic component that can be selected from the list comprising: (NH4)2SO4, MgSO4, CaCI2, FeSO4 x 7 H2O, CuSO4, NaH2PO4 x H2O, Na2HPO4 x 2 H2O, NaOH; and where the suitable vehicle is sterile water; and wherein furthermore, the microbial composition is effective in a pH range between 6 and 8. The microbial composition of claim 26, CHARACTERIZED because the microbial composition comprises at least two active ingredients, wherein the first is a strain of Delftia acidovorans and the second is a strain of Varíovorax paradoxus, and where in addition, the first strain is BIOPROC-C1 (RGM 3299) and the second strain is BIOPROC-C13 (RGM 3300), respectively. The microbial composition of claim 26, CHARACTERIZED in that the microbial composition comprises at least a total concentration of primary and secondary active ingredients of between 10 7 - 10 9 cells/mL.
PCT/CL2023/050119 2022-11-29 2023-11-29 Biological filtration system for volatile organic waste, and related method, device and microbial composition WO2024113068A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CL202203374 2022-11-29
CL2022003374A CL2022003374A1 (en) 2022-11-29 2022-11-29 Biological filtration system for volatile organic residues, method, device and related microbial composition.

Publications (1)

Publication Number Publication Date
WO2024113068A1 true WO2024113068A1 (en) 2024-06-06

Family

ID=85172251

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CL2023/050119 WO2024113068A1 (en) 2022-11-29 2023-11-29 Biological filtration system for volatile organic waste, and related method, device and microbial composition

Country Status (2)

Country Link
CL (1) CL2022003374A1 (en)
WO (1) WO2024113068A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002045826A1 (en) * 2000-12-04 2002-06-13 Biosaint Co., Ltd. Biofilter equipped with a stirrer and injector of solid feed and method for removing odor and volatile organic compounds from waste gases using the same
JP2009262022A (en) * 2008-04-23 2009-11-12 Hitachi Plant Technologies Ltd Operating method of voc gas treating apparatus
CN111701444A (en) * 2020-07-01 2020-09-25 盐城工学院 Method for treating organic waste gas by using biotrickling filter based on convolutional neural network

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002045826A1 (en) * 2000-12-04 2002-06-13 Biosaint Co., Ltd. Biofilter equipped with a stirrer and injector of solid feed and method for removing odor and volatile organic compounds from waste gases using the same
JP2009262022A (en) * 2008-04-23 2009-11-12 Hitachi Plant Technologies Ltd Operating method of voc gas treating apparatus
CN111701444A (en) * 2020-07-01 2020-09-25 盐城工学院 Method for treating organic waste gas by using biotrickling filter based on convolutional neural network

Non-Patent Citations (11)

* Cited by examiner, † Cited by third party
Title
ANONYMOUS: "Datasheet", EDIBON, INGENIERIA Y EQUIPAMIENTO DIDACTICO TECNICO; EQUIPO DE PROCESOS DE BIOPELÍCULA, CONTROLADO DESDE COMPUTADOR (PC), CON SCADA PPBC, 1 November 2017 (2017-11-01), XP093181238, Retrieved from the Internet <URL:https://www.edibon.com/es/control-de-procesos-industriales-por-plc-para-ppbc/catalogo> *
ANONYMOUS: "Trickling biofilter as a technology for the control of industrial VOC emissions: feasibility study in real cases", 19 September 2018 (2018-09-19), XP093181239, Retrieved from the Internet <URL:https://www.olores.org/index.php?option=com_content&view=article&id=815:biofiltro-percolador-como-tecnologia-para-el-control-de-emisiones-industriales-de-covs-estudio-de-viabilidad-en-casos-reales&catid=90:reduccion-de-olores&lang=es&Itemid=608> *
ANONYMOUS: "Uso de biorreactores para controlar la contaminacion del aire", U.S. ENVIRONMENTAL PROTECTION AGENCY, 1 June 2004 (2004-06-01), XP093181230, Retrieved from the Internet <URL:https://nepis.epa.gov/Exe/ZyPDF.cgi/9101V4JJ.PDF?Dockey=9101V4JJ.PDF> *
CHEN L. F., CHEN L. X., PAN D., REN Y. L., ZHANG J., ZHOU B., LIN J. Q., LIN J. Q.: "Ammonium removal characteristics of Delftia tsuruhatensis SDU2 with potential application in ammonium‑rich wastewater treatment", INTERNATIONAL JOURNAL OF ENVIRONMENTAL SCIENCE AND TECHNOLOGY, CENTER FOR ENVIRONMENT AND ENERGY RESEARCH AND STUDIES (C E E R S), IR, vol. 20, no. 4, 1 April 2023 (2023-04-01), IR , pages 3911 - 3926, XP093181234, ISSN: 1735-1472, DOI: 10.1007/s13762-022-04219-3 *
DEJONGHE WINNIE, BERTELOOT ELLEN, GORIS JOHAN, BOON NICO, CRUL KATRIEN, MAERTENS SISKA, HÖFTE MONICA, DE VOS PAUL, VERSTRAETE WIL: "Synergistic Degradation of Linuron by a Bacterial Consortium and Isolation of a Single Linuron-Degrading Variovorax Strain", APPLIED AND ENVIRONMENTAL MICROBIOLOGY, AMERICAN SOCIETY FOR MICROBIOLOGY, US, vol. 69, no. 3, 1 March 2003 (2003-03-01), US , pages 1532 - 1541, XP093181232, ISSN: 0099-2240, DOI: 10.1128/AEM.69.3.1532-1541.2003 *
GUO LI, ZHAO BO, JIA YINGYING, HE FUYANG, CHEN WEIWEI: "Mitigation Strategies of Air Pollutants for Mechanical Ventilated Livestock and Poultry Housing—A Review", ATMOSPHERE, MDPI AG, BASEL, vol. 13, no. 3, Basel, pages 452, XP093181226, ISSN: 2073-4433, DOI: 10.3390/atmos13030452 *
KHALIFA AYZ: "Polyphasic characterization of Delftia acidovorans ESM-1, a facultative methylotrophic bacterium isolated from rhizosphere of Eruca sativa", SAUDI J BIOL SCI, vol. 26, no. 6, September 2019 (2019-09-01), pages 1262 - 1267, XP085762852, DOI: 10.1016/j.sjbs. 2018.05.01 5 *
KHANONGNUCH RAMITA; ABUBACKAR HARIS NALAKATH; KESKIN TUGBA; GUNGORMUSLER MINE; DUMAN GOZDE; AGGARWAL AYUSHI; BEHERA SHISHIR KUMAR;: "Bioprocesses for resource recovery from waste gases: Current trends and industrial applications", RENEWABLE AND SUSTAINABLE ENERGY REVIEWS, ELSEVIERS SCIENCE, NEW YORK, NY., US, vol. 156, 27 December 2021 (2021-12-27), US , XP086930777, ISSN: 1364-0321, DOI: 10.1016/j.rser.2021.111926 *
PACHAIAPPAN REKHA, CORNEJO-PONCE LORENA, RAJENDRAN RATHIKA, MANAVALAN KOVENDHAN, FEMILAA RAJAN VINCENT, AWAD FATHI: "A review on biofiltration techniques: recent advancements in the removal of volatile organic compounds and heavy metals in the treatment of polluted water", BIOENGINEERED, LANDES BIOSCIENCE, US, vol. 13, no. 4, 1 April 2022 (2022-04-01), US , pages 8432 - 8477, XP093181225, ISSN: 2165-5979, DOI: 10.1080/21655979.2022.2050538 *
SEPULVEDA AVILA DANIELA ANTONIA: "DETECCIÓN DE SISTEMA QUORUM SENSING TIPO 1 EN COMUNIDAD BACTERIANA NITRIFICANTE AISLADA DE BIOFILTRO DE SISTEMA DE RECIRCULACION ACUICOLA DE SALMÓNIDOS", BACHELOR'S THESIS, UNIVERSIDAD DE CONCEPCION, 1 March 2021 (2021-03-01), XP093181237, Retrieved from the Internet <URL:http://repositorio.udec.cl/xmlui/bitstream/handle/11594/10560/Tesis%20Daniela%20Sepulveda.pdf?sequence=1&isAllowed=y> *
WU, HAO ET AL.: "Recent progress and perspectives in biotrickling filters for VOCs and odorous gases treatment", JOURNAL OF ENVIRONMENTAL MANAGEMENT, vol. 222, 2018, pages 409 - 419, XP085409405, DOI: 10.1016/j.jenvman.2018.06.001 *

Also Published As

Publication number Publication date
CL2022003374A1 (en) 2023-01-13

Similar Documents

Publication Publication Date Title
Sheoran et al. Air pollutants removal using biofiltration technique: a challenge at the frontiers of sustainable environment
Kraakman et al. Recent advances in biological systems for improving indoor air quality
CN100560715C (en) A kind of microorganism of removing ammonia and sulfureted hydrogen foul gas simultaneously and preparation method thereof
CN201470536U (en) MRM spraying equipment
CN202569951U (en) Device for performing biological deodorization and waste gas treatment on sewage
CN104437035A (en) Multi-stage exhausting and deodorization device for livestock and poultry houses
CN205340565U (en) Waste gas processing system
CN210186866U (en) Odor purification system in livestock and poultry farm house
CN107135978A (en) Fowl house taste removal system and deodorizing method and application
CN109069988A (en) For controlling the process of air cleaning system
KR20200051192A (en) Fine dust removal system
CN104807085A (en) Air purifier for removing PM2.5 by microalgae and application method of air purifier
Zhou et al. A low-cost deodorizing spray net device for the removal of ammonia emissions in livestock houses
CN105056751B (en) A kind of device and method for the VOC that degraded using pseudomonas aeruginosa
Suresh et al. Microalgae-based biomass production for control of air pollutants
Montaluisa-Mantilla et al. Botanical filters for the abatement of indoor air pollutants
CN103357266A (en) Device for absorbing and purifying odor of fertilizer fermentation workshop
Uguz et al. Cultivation of Scenedesmus dimorphus with air contaminants from a pig confinement building
WO2024113068A1 (en) Biological filtration system for volatile organic waste, and related method, device and microbial composition
CN202823152U (en) Garbage deodorization device
CN104748264A (en) Air conditioner based on bionics
Mohamed et al. Biodegradation of formaldehyde gas pollutant by a novel immobilized haloalkaliphilic Salipaludibacillus agaradhaerens strain NRC-R isolated from hypersaline soda lakes
KR101061690B1 (en) Deodorization system capable of supplying liquid fertilizer production strain and liquid fertilizer production facility comprising the deodorization system
CN107384842A (en) A kind of composite bacteria and its application, composite bacteria agent
CN204320063U (en) A kind of multistage exhaust odor removal for poultry house

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23895639

Country of ref document: EP

Kind code of ref document: A1